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  :الملخص

ورسم  يذ خوارزميات التموضعتنفل مضمنة أنظمةركزت العديد من المشاريع البحثية على تصميم . للمركبات ذاتية القيادة تينأساسيمهمتين  ورسم الخرائط موضعالت
. "Meet-in-the-middle"  مقاربةمستندين إلى،  SLAMللنماذج الأولية العامة مخصصًا لـ منصة في هذا العمل ، نقترح . (SLAM) المتزامنين الخرائط

 حول الشق الجهازيتم تصميم . مجيوالشق البر  الشق الجهازي: شقينمن الأرضية تكون ت. ةدر المفتوحاوالمص SoC: الغرض م نموذجين رئيسيين لهذاااستخدتم 
SoC-FPGA مركزية، تدمج وحدة معالجة تكلفة منخفضة ذو CPU  وFPGA دائرة التسريع على  تم تصميم. في نفس الشريحةFPGA  ستخدام لغةr

مجي على نظام يعتمد الشق البر . الجهازي الأخرىيقلل استخدام هذه اللغة من وقت التطوير ويوفر إمكانية النقل إلى منصات التسريع . OpenCLعالية المستوى 
Linux تُستخدم أداة أتمتة البناء لبناء وإنشاء نظام . والمكو{ت مفتوحة المصدرLinux لإضافة إلى إمكانية إعادة . المضمنr تتيح هذه الأداة تقليل وقت التطوير

تم استخدام . ، مصمم مسبقا، على منصتناSLAMتم توطين . المرئي SLAMدراسة حالة حول  أجرينافي النهاية ، . الاستهداف rستخدام المترجمات المتقاطعة
، استنادًا إلى )بر{مج أو جهاز(التي سيتم تنفيذها على أي شق من المنصة  SLAMتتيح هذه المنهجية تحديد وظيفة . الأجهزة/ منهجية التصميم المشترك للبرامج 

في الوقت الفعلي  SLAMتمكنا من تشغيل . للز�دة في الأداء OpenCLتقنيات تحسين نواة  تماستخد . SLAMوالأدائي لـ التحليل الزماني
)57.14Hz ( ضعف التصميم البرامجي 1.93، مع تسريع بنحو. 

 Buildroot، منصة نمذجة، لينكس مضمن، OpenCLأجهزة، / ، تصميم مشترك برامج SLAM، SoC-FPGA :الكلمات المفتاحية

 

Résumé 

La localisation et la cartographie sont des taches essentielles pour les véhicules autonomes. Plusieurs 

travaux de recherche avaient comme objectif la conception des systèmes embarqués exécutant les 

algorithmes de localisation et de cartographie simultanées(SLAM). Dans ce travail, on propose une 

plateforme de prototypage générique dédiée au SLAM en se basant sur une approche "Meet-in-the-

middle". Pour cela deux paradigmes clés ont utilisés : les SoC et l’open source. La plateforme comporte 

deux partie : partie matérielle et partie logicielle. La partie matérielle est conçue autour d’un SoC-FPGA de 

faible coût intégrant un CPU et un FPGA dans une même puce. Le circuit accélérateur sur le FPGA est conçu 

en utilisant un langage haut niveau : OpenCL. L’utilisation de ce langage permet de réduire le temps de 

développement et  offre la possibilité de portage vers d’autres plateformes d’accélération matérielle. La 

partie Logicielle est basé sur le système Linux est des briques open-source. Un outil d’automatisation de 

construction est utilisé pour construire et  générer le système Linux embarqué. Un tel outil permet une 

réduction du temps de développement ainsi qu’un reciblage en utilisant des compilateurs croisés. A la fin, 

une étude de cas sur un SLAM visuel a été réalisée. Une implémentation existante du SLAM a été 

implémentée sur notre plateforme. Une méthodologie de conception conjointe (co-design) 

Logicielle/matérielle est utilisée. Cette méthodologie permet de décider quelle fonction du SLAM qui va 

être exécuté sur quelle partie (Logicielle ou matérielle) de la plateforme en se basant sur un profiling et 

une analyse du code SLAM. Des techniques d’optimisation du noyau OpenCL ont été utilisées pour 

augmenter la performance.  Le fonctionnement du SLAM étais en temps réel (57.14Hz), avec une 

accélération de 1.93 fois l’implémentation logicielle. 

Mots clés : SLAM, SoC-FPGA, Co-conception logicielle/Matérielle, OpenCL, Plateforme de prototypage, 

Linux embarqué, Buildroot. 

 

Abstract : 

Localization and mapping are essential tasks for autonomous vehicles. Several research projects focused 

on the design of embedded systems executing simultaneous localization and mapping algorithms (SLAM). 

In this work, we propose a generic prototyping platform dedicated to SLAM, based on a "Meet-in-the-

middle" approach. Two key paradigms have been used for this: SoCs and open-source. The platform has 

two parts: hardware part and software part. The hardware part is designed around a low cost SoC-FPGA 

integrating a CPU and an FPGA in the same chip. The accelerator circuit on the FPGA is designed using a 

high level language: OpenCL. The use of this language reduces development time and offers the possibility 

of porting to other hardware acceleration platforms. The Software part is based on the Linux system and 

open-source bricks. A build automation tool is used to build and generate the embedded Linux system. 

Such a tool allows a reduction in development time as well as retargeting using cross compilers. At the 

end, a case study on a visual SLAM was carried out. An existing implementation of SLAM has been 

implemented on our platform. A software / hardware co-design methodology is used. This methodology 

makes it possible to decide which SLAM function will be executed on which part (software or hardware) of 

the platform, based on profiling and analysis of the SLAM code. OpenCL kernel optimization techniques 

were used to increase performance. The operation of the SLAM was in real time (57.14Hz), with an 

acceleration of 1.93 times the software implementation. 

Keywords: SLAM, SoC-FPGA, Co-design Hardware/software, OpenCL, Prototyping platform, Embedded 

Linux, Buildroot 
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GENERAL INTRODUCTION

The design of autonomous robots has been a growing subject of research for many

years. Today, interest in the development of these robots is increasing with the emer-

gence of robotic systems widely used in many applications. Autonomous mobile

robots are widely used to explore and interfere in inaccessible area to humans like

distant worlds or dangerous situations. These robots must have the capacity to move

safely and autonomously in environments that are unknown and which cannot be

mapped in advance by humans.

An autonomous mobile robot must have information about its surrounding envi-

ronment in order to move safely. It must answer two basic questions: Where am I and

what does the surrounding environment look like? The entire process that enables a

mobile robot to identify the surrounding environment and localize itself in this en-

vironment is known by Simultaneous Localization And Mapping (SLAM). Mapping

allows the construction of a map representing the spatial structure of the environment

from certain information gathered by the robot’s sensors. Localization determines the

robot’s position on the map that corresponds to its position in the real environment.

Motivation

In the context of SLAM, many algorithms have been developed to solve this problem.

These algorithms have complex calculations, and for a real-time execution, we need

11



General Introduction

high-performance and powerful machines. High performance machines have large di-

mensions and weight. Besides the high power consumption, these disadvantages pre-

vent them from being used on mobile robots. Running SLAM on a fully autonomous

mobile robot requires an implementation of SLAM in an embedded system with an

efficient software / hardware architecture to maintain real-time processing.

In the literature, we find several research works which aim to implement different

SLAM algorithms on embedded systems. These embedded systems (targets) have dif-

ferent characteristics and vary in size, technology, performance...etc in addition to the

different methods of implementation of each target. The design of these embedded

SLAM systems follows a top-down approach that make these system specific, and

without the possibility to reuse it for other systems, and rise the cost of te time of the

development. A generic prototyping platform that bases on hardware and software

reuse can be used to reduce the time to market, development risks and system cost.

These SLAM-dedicated embedded systems prototyping platforms must take into ac-

count the constraints associated with autonomous vehicles and SLAM algorithms ,

such as energy consumption, embeddability, processing power, algorithm complex-

ity...etc. and supports multi-targeting. In the literature these prototyping platform for

embedded SLAM are not very common.

A Magister project, by Ben Messaoud [1], proposed a generic prototyping plat-

form, to help design and build embedded systems dedicated to SLAM. The core of

the SoPC used in the platform is an FPGA from Altera. The hardware system is

based on the soft processor NiosII, in which is ported an embedded operating sys-

tem µCLinux. The design of the SLAM is based on a co-design methodology using

an AAA approach (Algorithm-Architecture Adequacy). The platform is design to be

adaptable to different mobile platform and can integrate different sensors.

SLAMBench [2–4]is a publicly available software framework which is starting

point for quantitative, comparable, and validatable experimental research to investi-

gate trade-offs in performance, accuracy and energy consumption of SLAM systems.

It aims to unify the interface of SLAM algorithms to perform the benchmarking and

the evaluation of these algorithms over an extensible list of datasets. Wide variety

12



General Introduction

of existing SLAM algorithms are supported. It provides implementation in many

programming languages from generic to specific ones (C++, OpenMP, OpenCL and

CUDA). These algorithms can be tested on a variety of multicore and GPU acceler-

ated platforms. The framework is growing to support more and more algorithms.

This framework concerns high-level layers and requires an existing operating system.

In addition, the list of supported platforms doesn’t include FPGA based platforms.

The evaluation on this type of platform can result in better performance over other

type of platforms.

Contribution

The objective of this thesis is to propose a generic prototyping platform, to aid in

the design and production of embedded systems dedicated to SLAM. This platform

minimize the time to market cost and risks, while taking into account constraints

related to embedded system sand SLAM. Accordingly, the following are the major

contributions of this thesis:

• A prototyping platform for designing SLAM systems is proposed designed. The

platform, consisting of hardware part and software part, bases on System on

Chip (SoC) and open source bricks. The platform offers the necessary resources

to design an embedded SLAM system

• A design methodology is used to implement the SLAM algorithms on the plat-

form, based on already existing implementations. In this methodology a per-

formance analysis is used in order to make the Software/Hardware partitioning

decision. We also use OpenCL as a high level language to facilitate the hardware

design, reduce design time and allow the possibility of porting to other targets.

• A validation of the proposed platform is done by implementing a SLAM system

in DE1-SoC board. This board is a low-cost SoC-FPGA that combines a mobile

hard core CPU with an FPGA in the same chip.

13



General Introduction

Thesis Organization

The thesis is organized as follows:

Chapter 1 presents a retrospective on SLAM algorithms and embedded SLAMs.

Some works are cited in this context. In addition, some recent works, on which our

study was based, is presented.

Chapter 2 introduces embedded systems and design methodologies of embedded

systems, to better choose the implementation methodology and the design and eval-

uation tools.

In, Chapter 3 we proceed to the presentation of our prototyping platform. The

platform contains two parts: the hardware part, and the software part. In the hard-

ware part, we see the different existing architectures, then we make our choice on the

SoC-FPGA which will be the basis of our platform. We see the design methodology

on this SoC, the high level design tool (OpenCL) and performance analysis tools. In

the second part, we present the software designs of our platform. We also see the

Buildroot tool which is used to build a Linux system customized to our application

and the design methodology and evaluation tools used.

In chapter 4, we present a case study of an implementation of an EKF SLAM

on our platform. We analyze the performance obtained and compare with other

implementations.

Finally, a General Conclusion summarizes the thesis, and highlights the main con-

tributions of the research. It also contains recommendations for future works.
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Chapter 1. SLAM and Embedded Systems

1.1 Introduction

Localization and mapping are essential tasks in robotics. Autonomous mobile robot

navigating in an environment needs to localize itself and map its surroundings to

take the appropriate decisions. In an unknown environment, these two tasks are

performed simultaneously: Simultaneous Localisation and Mapping (SLAM). The

SLAM is performed using an algorithm that exploits the data collected by the sensors

from the environment.

In robotic, SLAM is needed to support other tasks such as path planning, avoiding

obstacle, etc., and to provide a graphical visualization to humans. SLAM also cor-

rects the localization errors generated by the proprioceptive sensors like odometer, by

revisiting the area already visited, in this case we speak of "loop-closure".

The interest in using SLAM appears in military, rescue, and exploration appli-

cations. For such applications, a robot must be able to localize itself and build a

cartography of dangerous non-accessible environment for humans. These places may

have bad or no positioning system coverage, and whose environment is unknown,

such as caves, collapsed buildings,etc.

In the last two decades, researchers reported several algorithms to resolve this

problem. However, these algorithms require a lot of computation. Besides, the

SLAM’s application field is in mobile robots. This means it involves the use of an

embedded system to run these algorithms. However, an embedded system is limited

on processing power and energy consumption. It requires designing an appropriate

architecture to get around these limitations.

In this chapter, we describe the SLAM problem. Then, we give a brief history of

the SLAM. We give also the most important works done to develop SLAM algorithms

and to implement SLAM on embedded systems.

1.2 Simultaneous localization and mapping

The SLAM problem, in robotics, addresses two questions: Where am I in the envi-

ronment? and, what does the environment, where I am, look like?. The answer to
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1.2. Simultaneous localization and mapping

the first question gives the position of the robot, while the answer to the second gives

the map of the environment. These questions seem intuitive to humans, however, this

is not the case for robots. In fact, these two questions are related, and each question

needs the answer of the other question. A robot must have the environment map to

localize itself in this environment. On the other hand, the environment is unknown,

and to build the map of this environment the robot must have information about its

position.

Localizing a robot means giving its 3 dimensional position (x, y, z) and orientation

(roll, pitch, yaw). These parameters are used to describe the state of the robot. In

addition to these parameters, in some cases, other parameters of the robot are used

to describe the state of the robot too, like linear and angular velocities, and linear and

angular accelerations.

Mapping the environment means giving the positions of the points of interests

that describe the environment around the robot.

Mathematically, the problem can be interpreted with the mathematics formula:

P(xk, m|Z0:k, U0:k, x0) (1.1)

Where:

• X0:k = {x1, x2, ..., xk} is the current location and orientation of the vehicle

• m = {m1, m2, ..., mn} the map landmarks

• Z0:k = {z1, z2, ..., zk} is the set of all landmark observations

• U0:k = {u1, u2, ..., uk} is the history of control inputs

The localization question aims to estimate the current location xk with respect

to the landmarks, and it is described in the form of the probability distribution

p(xk|Z0:k, U0:k, m). This assumes that the locations of landmarks m are known as well

as the observations Z0:k and the control inputs U0:k. Conversely, the mapping ques-

tion aims to estimate the landmarks location m assuming that the current location xk

is known with the observations Z0:k and the control inputs U0:k. It is described in the

form of the probability distribution p(m|X0:k, Z0:k, U0:k)
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Figure 1.1: The essential SLAM problem [5]

Figure 1.1 shows the relation between the mobile vehicle path (successive loca-

tions) and the landmarks. zk,j are the observations made between the true mobile

vehicle and landmarks locations, and the uk are the control inputs that move the mo-

bile vehicle between two true successive locations. The true locations of the mobile

vehicle and the landmarks are never known or measured directly, however, they can

be estimated from the observations and the control inputs made.

To compute these estimations from the control inputs and the observations, we

need mathematical models that describe the state transitions and the observations.

Two models are used: motion model and observation or measurement model.

The motion model is the probability density that describes the state transition of

the mobile vehicle from state xk−1 to xk knowing the previous state xk−1 and the

control input uk. It can be described in the form:

P(xk | xk−1, uk) (1.2)

The control input uncertainty (translation and rotation) affects the probability density

of the vehicle state. This uncertainty propagates by the motion model with the motion

of the vehicle, so that it accumulates as the vehicle moves forward. The control input is
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1.3. Structure of a SLAM system

generally measured either with an odometer or a speed sensor. Even the two sensors

suffer from slip and drift errors, the odometer is more accurate than the speed sensor.

This is because it gives directly the position of the vehicle, while a speed derivation

is needed to get the position when using the speed sensor. This derivation increases

the impact of the errors on the results. In systems without control inputs, only the

uncertainty of the previous state is propagated.

The observation model describes how a landmark is observed (zk) knowing the

landmark position m and the vehicle state xk. It is described in the form of the prob-

ability density:

P(zk | xk, m) (1.3)

The sensors used to observe landmarks and measures the distances are called extero-

ceptive sensors since they are linked to external measurements. Many types of sensors

can be used, and each type of sensor has its own observation model. Errors related to

the sensors determine the accuracy of the measurements.

These previous descriptions are the basics of the various solutions to the SLAM

problem. These solutions are the result of extensive research over the years, making a

great story of SLAM.

1.3 Structure of a SLAM system

A SLAM system has three main parts: the data acquisition part, the preprocessing

part, and the processing part of SLAM. In the data acquisition part, data are acquired

by sensors. There are two types of sensors: proprioceptive sensors and exteroceptive

sensors. In the preprocessing part, useful informations are extracted from the data

received from the sensors using filters and detectors algorithms. The processing part

represents the core of SLAM, we use the data produced by the second part to perform

the localization and mapping process. This composition is summarized in Figure 1.2.
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Acquisition

Sensors
Proprioceptive

Exteroceptive

Pre-processing

Features extraction

Features matching

SLAM core

Tracking

Mapping

Figure 1.2: SLAM system main components

1.3.1 Data acquisition phase

This phase is considered the input phase of the system. The variables of the state of

the mobile vehicle and that of the external environment are measured using sensors.

There are two types of sensors, according to the type of measurement: proprioceptive

sensors and exteroceptive sensors.

1.3.1.1 Proprioceptive sensors

Proprioceptive sensors measure values internal to the system, in this case the mobile

vehicle. In other words, it measures the internal state of the system. Examples of these

measurements are: distance traveled, velocity, acceleration...etc. These sensors are not

sufficient to implement a SLAM since it requires data from the external environment

to create a map. In SLAM two type of proprioceptive sensors are used

Odometer An odometer is an electromechanic device used to measure the distance

traveled by a mobile vehicle. It consists of a rotary encoder installed on the wheel to

give direction and measure the distance traveled. However, many factors can affect

the odometer measurements results, like wheel slip and odometer precision. These

will generate cumulative errors with the movement of the vehicle.

Inertial measurement sensor An inertial measurement unit (IMU) measures the ac-

celeration and angular velocity of the vehicle along three perpendicular axes. The
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1.3. Structure of a SLAM system

velocity and the distance traveled can be derived from accelerations, using deriva-

tion, and the same for the angular deviation. However, The results are affected by

cumulative errors of measurement, just like the odometer.

1.3.1.2 Exteroceptive sensors

Exteroceptive sensors measure values external to the system. In other words, it mea-

sures the state of the external environment. Examples of these measurements are

distances, light intensity, ...etc. Some SLAM systems can do their jobs using extero-

ceptive sensors only. Some algorithms can extract the robot state using only external

data. In SLAM, exteroceptive sensors used can be classified into range sensors and

bearing sensors

range sensors Range sensors measure the distance between the sensor and objects in

the environment (the range). Laser sensors are the commonly used range sensors in

robotics. However, it is hard to use on experimental and low-cost platforms because it

is an expensive sensor. Ultra-sonic sensors are also used in robotics as range sensors

[6].

bearing sensors Most common bearing sensor is the camera. A lot of computer

vision algorithms exists, this makes them widely used in SLAM systems. The camera

gives us a 2D representation of the 3D space. The camera must be calibrated in order

to get a precision data. The calibration parameters are used in the measurement

model to make a precise representation of the environment.

bearing-range sensor The bearing range sensors are sensors that are capable of giv-

ing both the bearing and the range of the objects in the environment. An omnidirec-

tional laser sensor is a bearing-range sensor, that gives the direction and the range of

objects. An RGB-D is a type of camera with depth sensor that gets each pixel’s depth.
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1.3.2 Pre-processing phase

There are two methods regarding the use of sensor data by SLAM: direct method and

features-based method. The data acquired by the sensors contains a lot of information

in raw format. In direct method, all the information of the sensor data is used by the

SLAM core, to build a dense map. This method does not require a pre-processing

phase but has more computational costs. In features-based method, the data acquired

by the sensor are not used directly by the SLAM core. Instead, they are pre-processed

to extract distinguishing features that will be used to build a sparse map later. Besides,

this simplifies the SLAM process. This phase contains two main process: features-

extraction and features matching

1.3.2.1 Features extraction

Features extraction process searches to extract some points of interest from the sensor

data. These points of interest must be identifiable and distinctive. In SLAM systems

with a vision sensor, these points of interest are features extracted from images, and

they are representations of landmarks in the environment. The relation between the

position of the landmarks in the environment and the detected feature in the sensor

data is described by an observation model. An initialization process can be done for

each feature to estimate its position in the environment if it is impossible to estimate

it at the first time, as is the case with monocular SLAM.

1.3.2.2 Features matching

The features matching process is responsible for matching the features from the pre-

vious frame with their corresponding features on the new frame. The information

of the features from the previous frames are retrieved from the SLAM core. These

information are the position of the feature, its descriptor, and the uncertainty of its

position. The matching process uses the position and its uncertainty to delimit the

search region, and the descriptor to find the exact position of the feature in the new

image.
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1.3. Structure of a SLAM system

1.3.3 SLAM core

The SLAM core is the heart of the SLAM system. It runs the necessary algorithms for

the localization and mapping. It contains two main process: tracking and mapping.

Running these two processes is insufficient for long trajectories. In fact, returning

to the start point after a long distance isn’t detected, and the robot appears as it is

performing odometry in a long corridor. The loop-closing process is added in some

SLAMs in order to detect the loops in trajectory and correct the map after returning

to a previous mapped place. This is usually used in outdoor applications, when the

traveling long distances results in drifts.

1.3.3.1 Tracking

The role of the tracking process is to localize the sensor in the environment. In visual

SLAM, it gives the pose of the sensor with respect to a defined reference. The results

of theses poses over time are used to trace the path of the sensor. In key-frame-based

SLAM, only frames with the most important poses are retained to trace the path, and

are passed to the mapping process.

1.3.3.2 Mapping

The Mapping process, as it is named, builds the surrounding map, and corrects the

existing map using the observation model. It retrieves informations from the tracking

process and the sensor data. In direct SLAM, as mentioned before, there is no pre-

processing of sensor data, and all sensor data information are used. The constructed

map is dense, robust, and more detailed. However, this demands more computations.

In features-based SLAM the map is constructed with the features retrieved from the

pre-processing phase. The constructed map is a set of sparse features that describes

the map. This reduce the computation complexity, but gives sparse and less detailed

map.

The information from the mapping and tracking process are used by the features

matching process in the pre-processing phase.
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1.3.3.3 Loop-closing

A vehicle, after moving a certain distance, may return to an already visited area.

Without additional process (to the tracking and mapping processes), this fact cannot

be noted, and the vehicle seemed like it moves in a infinite corridor. Loop-closing is

responsible for finding out whether the vehicle has returned to an area already visited

or not. Then, it aligns the new and the previous regions of the constructed map to

close the loop by calculating the needed transformations.

1.4 Embedded SLAM, History and state-of-the-art

In the last century, many works done outside robotics studied methods that was to

be used by SLAM later, like least squares methods [7], Kalman Filters [8], bundle

adjustment [9]...etc.

According to Durrant-Whyte and Bailey [5], The first works on SLAM begins to

appear in the mid-eighties, with the works of Smith and Cheesman [10] and Durrant-

Whyte [11]. Their works were about representing and describing the geometric uncer-

tainty, using statistical methods. According to the same author, the acronym SLAM

has first appeared in the seventh international symposium on robotic researches [12].

The SLAM development has evolved over the previous three decades. Cadena

et al. [13] divided the SLAM evolution into three periods, Classical age from 1986

to 2004, where the main probabilistic formulations for SLAM are introduced. The

second period from 2004 to 2015 is called the algorithmic-analysis age, where the

fundamental properties of SLAM are studied, Theses properties includes observabil-

ity, convergence and consistency. This period also saw the development of the main

open-source algorithms. In their paper, Cadenaet al. described the age after 2015

as the age of robust perception which is characterized by robust performance and

high-level understanding of the environment.
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1.4.1 Formulating and solving SLAM problem researches

The first researches focused on formulating and solving the SLAM problem. Proba-

bilistic methods and filters, notably Extended Kalman Filter, particle filters were used.

The graphical representations based SLAM comes later to find solutions to some lim-

itations of the filter based approaches.

1.4.1.1 Kalman Filters:

Extended kalman filter was used in the earliest works [14], the goal is to minimize

map uncertainty and estimate the robot and map state using uncertain observations.

It uses a single state vector containing the locations estimation of the vehicle and the

landmarks. The state vector is associated with a covariance matrix that represent the

uncertainty of the state vector estimations, and the correlation between them. This

approach assumes that the environment is represented using features. These features

are used as landmarks to in the state vector.

As the robot moves, it takes measurement from the environment. At each move,

it predicts its position and the observation of the landmarks according to the pre-

vious state and the control inputs. Then it updates the state vector using the new

measurements.

As new features is detected, they are added to the state vector, and the covariance

matrix size grows quadratically. The Extended Kalman Filter calculates the entire state

vector and covariance matrix. The advantage of calculating the entire state vector is

the propagation of the correction information to all previously observed landmarks.

However, the computation complexity increases quadratically with the addition of

the features to the state vector. This is considered as the main disadvantage of this

approach, especially in outdoor uses when the number of landmarks is large.

1.4.1.2 Particle Filters:

Another approach was adopted to deal with some limitation of the EKF approach,

especially with the large environment, is the particle filter [15]. In this approach,

we use a set of particles. Each particle contains a sample path and 2D guassian
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representation for each landmark. These particles represent the state of the system

(the vehicle and landmarks). It has two main steps: prediction and correction. The

prediction uses the motion model to predict the new location of the robot and predict

the measurements. The particles are then sampled according to this prediction with

the addition of system noise. In the correction step, the observations from the sensors

are used to compute the weights of each particle. The weight measures how well

the particle represents the real state of the system. In the end, a resampling step is

done to redistribute the particles according to these weights, the good particles are

likely to survive and the bad particles are likely to die. And the process repeats the

steps again. The correlation between the landmarks are not calculated which reduces

the computation complexity comparing with EKF. The particles are distributed to

represent the probability of the state of the system FastSLAM [16] is one of the first

works in SLAM that uses particle filter. They used a type of particle filters known as

Rao-Blackwellised.

1.4.1.3 Graph based SLAM:

A third approach is used in SLAM which is graphical SLAM, it is used in Graph-

SLAM [17] and is based on graphical representations. In this approach, sparse non-

linear optimization methods are used to solve the SLAM problem. The system is

represented with a graph with nodes and edges (see Figure 1.3) . The series of

the consecutive vehicle locations and landmarks are represented by nodes. These

nodes are related with edges. The edges represent the constraints between the nodes.

The control inputs are represented with edges between consecutive vehicle locations

nodes, and measurements are represented with edges between the landmark nodes

and the corresponding vehicle location node where they are observed. The number

of constraints increases linearly with the number of the nodes since each node is only

connected to a small number of other nodes. The Constraints are computed as the un-

certainties of the observations. To find the configuration of the nodes (robot state and

landmarks), these uncertainties are minimized using graph optimization algorithms.
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Figure 1.3: Graph-based SLAM illustration

1.4.2 Embedded SLAM implementation researches

In the second decade, the implementation of SLAM algorithms becomes interesting.

Many works have sought to implement different algorithms on different computer

systems. The goal was to design a system running SLAM in real time with more

precision. One of the remarkable works is the one of Davison [18], where he imple-

mented an EKF-SLAM running in real-time. The SLAM community developed many

SLAM implementations, and they made many of these implementations open-source.

This helps the community to contribute in these open-source project and provide a

complete SLAM solution [3, 19–22].

Over the past two decades, researchers were able to implement the different SLAM

algorithms in different platforms from powerful computing machines to less power-

ful embedded systems. These works aim to get SLAM implementation with more

certainty, precision, and operation in real time, in order to integrate them on mobile

robots.

As the SLAM is needed to be run on a mobile robot, researches are conducted to

implement the SLAM on embedded targets. Implementing SLAM on an embedded

system presents a challenge by taking into account the limited performance, memory,

and power consumption of the embedded systems. Table 1.1 shows some recent

examples of SLAM implementations in embedded targets. We observe that the works

can be divided into Four, depending on the acceleration method used: pure software

optimization, acceleration using parallel hard co-processors, acceleration using FPGA,
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and the use of high level programming language.

Table 1.1: SLAM implementations in embedded systems

Reference Algorithm Implementation Platform Acceleration hardware Year

Gonzalez et al. [23] C-SLAM C PPC440/ARM9/VIA EPIA PPC440, ARM9, VIA EPIA 2011

Vincke et al. [24] EKF-SLAM C++/NEON/DSP OMAP3530 ARMv7-A/NEON/DSP 2012

Vincke et al. [25] EKF-SLAM C++/NEON/OpenMP OMAP4430 ARMv7-A/NEON 2014

Abouzahir et al. [26] FastSLAM C++/OpenGL Tegra K1 ARMv7-A/GPGPU 2016

Bonato et al. [27] EKF-SLAM Handel C Altera Stratix II FPGA 2009

Tertei et al. [28] EKF-SLAM C++/HDL Xillinx Virtex 5 PPC440 + FPGA 2014

Gu et al. [29] VO-SLAM *Not Mentioned* Altera Stratix III FPGA + NIOSII 2015

Idris et al. [30] EKF-SLAM HDL Xillinx Spartan-3A DSP FPGA 2012

Botero et al. [31] C-SLAM, RT-SLAM C/C++/HDL Xillinx Virtex 5 and 6 PPC + FPGA 2012

Fang et al. [32] ORB-SLAM *Not Mentioned* Altera Stratix V FPGA + ARM 2017

Liu et al. [33] ORB-SLAM *Not Mentioned* Xilinx Zynq 7045 SoC FPGA + ARM 2019

Abouzahir et al. [34] FastSLAM C++/OpenCL Intel Arria 10 SoC Host PC + FPGA 2018

Boikos et al. [35, 36] LSD-SLAM C++/HLS Xillinx Zynq-7020 ARM/FPGA 2017

Bodin et al. [3] Multiple algorithms C++, OpenCL, CUDA, OpenMP, PThread Multiple platform Multi-cores-CPU, GPU 2018

1.4.2.1 Software optimization

In this type of optimization, only the software is optimized. The developer does

not have to know about the hardware, but a good knowledge about the algorithm

and the code is required. Gonzalez et al. [23] designed a new architecture of a C-

coded program for visual SLAM intended to be implemented on different embedded

boards. In that work, only the software is optimized to face the limited resource

of the embedded targets. The software must respect some strong constraints like

DAL standard (Design Assurance Level), where the external libraries are forbidden

in addition to the use of recursive loops and dynamic memory allocations.

1.4.2.2 Hard co-processors

Other researchers explored the hardware domain, to benefit from the performance

offered by the existing hardware. The hard co-processors have parallel architectures

and run at a high frequency. They programmed using languages specific to these

hardware or using generic languages and specific compilers. Several heterogeneous

architectures are proposed using multi-core CPUs, DSPs, and GPUs to accelerate com-

plex computations and fit with the embedded system requirements. Vincke et al. [24]
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implemented an EKF SLAM on a multi-processor system, the authors used a hetero-

geneous architecture, a low-cost system composed from a single-core ARM processor

equipped with an SIMD co-processor in addition to a DSP in the same chip. The

authors analysed the SLAM program and picked up the main tasks and their pro-

cessing time, then the program is partitioned into functional blocks, each block is

implemented on CPU with NEON or in the DSP, depending on its processing nature.

The processing time is reduced by a factor of 4.7 from 80.85ms on an ARM to 17.5ms

in a non-optimized implementation.

In a later work [25], a Dual Core ARM (with a dual NEON) is used in order to opti-

mize some non-optimized blocks with the help of OpenMP library. This reduced the

processing time by a factor of 2.75 from the non-optimized implementation.

Abouzhir et al. [26] proposed an implementation of FAST-SLAM2.0 on Tegra K1

SoC equipped with a Quad-core ARM with NVIDIA GPU, the algorithm was parti-

tioned on functional blocks. Each functional block is then implemented on the CPU

or the GPU according to its nature. The sequential tasks run on the CPU, while the

tasks with intensive computations are processed by the GPU. The embedded GPU is

programmed with OpenGL among the existing choices, which gives the possibility

to be implemented on multitude GPU hardware. The processing time is reduced to

120ms by a factor of 37 from a non-optimized implementation on a single-core CPU.

1.4.2.3 FPGA and SoC-FPGA

In addition to the works that use platforms with hard processors, other works took

advantage of the high customizability of the FPGA and low power consumption to

design custom accelerators and used them as co-processors.

Many works discussed the acceleration of matrix operations with FPGA like [27–

29], they analyzed the algorithm, the complexity of the algorithm used in each case,

and the required memory bandwidth, then proposed architectures to speed-up some

functions of the algorithm. Bonato et al. [27] presented one of the first implemen-

tations of EKF-SLAM in an FPGA. They proposed an FPGA-based architecture with

parallel access to the memory banks, to accelerate matrix multiplication and increase
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memory bandwidth. In the same way, Tertei et al. [37] proposed a hardware archi-

tecture to accelerate the matrix multiplications using systolic arrays. The multiplier

is used as a coprocessor with a PPC 440. Gu et al. [29] implemented a VO-SLAM

on DE3 board (Altera Stratix III). A hardware architecture is proposed to accelerate

Matrix operations. A NIOSII soft-core is used as the master processor.

Some other works have chosen to accelerate other functions like [30–32]. Idris et

al. [30] proposed pipelined and parallel architecture to accelerate a cross-correlation

function on an FPGA. The decision is taken after profiling the entire algorithm. Botero

et al. [31] proposed an FPGA circuit to accelerate the Harris point extractor from

pictures coming from the camera acting as pre-processor. Fang et al. [32] proposed an

implementation of an ORB feature extraction on an FPGA for visual SLAM. The used

hardware is a Stratix V from Altera controlled by an ARM multi processors.

Nowadays, SoC-FPGA is getting popular as a powerful embedded system con-

taining an embedded CPU with an FPGA in a single SoC. The FPGA is used to

design a highly parallelized circuit and use it as an accelerator. The advantage of

using such SoC, is to have the full system with the FPGA accelerator implemented

in one SoC, reducing the size, the energy consumption and the hardware-software

communication cost. Liu et al. [33] used a Zynq 7045 SoC, a SoC-FPGA from Xilinx,

to implement ORB-SLAM. The feature extraction and matching are implemented on

the FPGA, while the remaining functions are executed on the ARM Processor. The

feature extraction and matching functions are modified to be hardware friendly.

In a recent work by Boikos et al. [38], implemented a semi-dense SLAM on SoC-

FPGA. In the first work [35] the tracking block is implemented in the FPGA while the

other blocks are running on the ARM side. In a second work [36] the mapping block

was chosen to be implemented in the FPGA. In their works, they used a High Level

Synthesis (HLS) to design and implement the accelerated blocks in the FPGA.

1.4.2.4 High level and Parallel computing languages

Parallel computing frameworks bring to the SLAM community powerful tools to im-

plement SLAM algorithms on parallel and heterogeneous architectures. One of the
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interesting works used those frameworks is SLAMBench Project. In the 3 papers

of the projects [2–4] They developed a framework to implement a set of SLAMs on

different hardware platforms. The SLAM algorithms are implemented using C++,

OpenMP, CUDA, and OpenCL. They aim to compare the computational performances

and power consumption between these implementations using different targets. The

result shows that the parallel computing implementations (CUDA and OpenCL) have

high performances against OpenMP and the single-core C++. The OpenCL/GPU

also shows less power consumption compared to other configurations. We observe

that platforms with FPGA are not included in their tested targets.

Besides using it as a parallel computing language to program parallel computing

units, OpenCL is a cross-platform language that is used to program heterogeneous

architectures. In the FPGA domain, OpenCL is considered as high-level synthesis

tool that offers parallel computing capabilities. Abouzahir et al. [34] used OpenCL

to implement Fast-SLAM on the different targets. The used four targets were: a

high-end desktop machine two targets containing multi-core ARM CPU, with GPU,

and an Arria 10, a mid-range SoC-FPGA from IntelFPGA. The experiments show

an improvement of the FPGA implementation against embedded GPU and high-end

GPU implementations.

Another tool used as a high level language for FPGAs is HLS (High Level Synthe-

sis), Boikos et al. [35], have used it in their work mentioned above. HLS is a C-like

language supported by both Xilinx and IntelFPGA, it facilitates the design of FPGA

circuits.

1.5 Conclusion

A lot of works in the last decades studied the algorithms of simultaneous localiza-

tion and mapping. In this chapter, we introduced the simultaneous localization and

mapping (SLAM) problem. We described the main mathematical models in which the

SLAM problem is based, the motion model that describes the motion of the mobile

vehicle in the environment and the observation model that describes how the mobile
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vehicle sensor see the environment.

We presented a structure of a SLAM system, from the acquisition part to the SLAM

core passing by the pre-processing part. We saw the two types of sensors used in

the SLAM: proprioceptive sensors depend on the internal parameters, and give an

inconsistent estimation of the mobile vehicle state, and exteroceptive sensors depend

on external parameters and improve the state estimation. The nature of the SLAM

influence on this structure, in addition to tracking and mapping in the SLAM core,

loop-closing are used in some SLAM algorithms to correct deviations in the SLAM

map. In the feature based SLAM, extracting and matching features constitutes an

essential tasks. These tasks are done in a pre-processing phase.

Finally, we made a literature review about the SLAM evolution history and the

state-of-the-art of SLAM implementations in embedded systems. We saw the main

approaches used to solve the SLAM problem, which are Kalman filters, Particle filters

and graph based SLAM. We classified the main works about SLAM implementation

according to the main techniques used to implement SLAM on embedded systems.
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2.1 Introduction

The evolution of SLAM algorithms over the years aims to increase precision and ro-

bustness. These algorithms require efficient implementation in order to allow real-

time execution. Indeed, faced with the growing complexity of these algorithms im-

plemented in embedded systems, and faced with the need to reduce time to market,

methods and associated tools are necessary to automate the process of implementing

these algorithms on embedded platforms. During the last decades, the architecture

of processors and computers as well as the tools of development and design have

evolved considerably. This facilitated the implementation of algorithms and the devel-

opment of complex applications. Therefore, the realization of these systems required

a software/hardware co-design methodology that takes into account the constraints

of the embedded SLAM system.

In a hardware-software co-design methodology, studying both algorithmic and ar-

chitectural aspects simultaneously is necessary to achieve better implementation. For

this, we first give an introduction to embedded systems, as well as the main char-

acteristics of embedded SLAM systems, this allows us to choose the implementation

methodology and the design and evaluation tools. Next, we see the approaches used

to design embedded systems, the design and evaluation methodology, as well as the

tools used for the implementation.

2.2 Embedded Systems

An embedded system can be defined as an autonomous electronic system that does

not have standard inputs/outputs such as a keyboard or computer screen. It is

special-purpose system integrated within a larger system to provide a dedicated ser-

vice to that. In embedded systems, the software is closely linked to the hardware sys-

tem, and they are not easily discernible. Usually, this software is a function-specific

application provided by the manufacturer, and the end-user has a limited access to

the application parameters. [1, 39]

Embedded systems are widely used nowadays, because many functions, formerly
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performed by mechanical or analog systems, are replaced by software components.

They are found in consumer electronic products, transport control systems, industrial

process control, Telecommunication...etc.

2.2.1 Characteristics of an embedded systems

Embedded systems are differentiated from other digital systems by some common

characteristics. Vahid And Givargis [40] describe these characteristics:

• Single-functioned: Unlike, PC-like machines that are polyvalent and can ex-

ecutes variety of programs, an embedded system usually executes a specific

function repeatedly. For example, the function of a network switch is to receive

and redirect data to destination using packet switch, no other function can be

executed on it.

• Reactive and real-time: An embedded system must be reactive and react to the

change on its input continually. Embedded systems can be classified in two

categories according to the type of the reaction:

Hard Real-time: No data sample can be dropped, a delayed response is not

permitted. If a data sample is dropped or a delay has been generated, it

could results in a serious impact or even failure in the embedded system’s

mission, for example, a car’s brake system must be responsive to the brake

signal and provide the right control signal to the brake in real-time, a de-

layed response may result in a fatal accident.

Soft Real-time: A delayed response is permitted and data sample can be dropped

to maintain the real-time execution of the function. For example a digital

video decoder can differ the video sequences or even drop some images,

without causing serious damages.

• Tightly constrained: An embedded system have tight constraints on design

metrics. These metrics are:

Cost: An embedded must have a low cost.
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Energy consumption: As the majority of embedded systems run with battery,

it must be designed to consume minimum power to extend battery life.

This will also reduce heat dissipation and therefore no need for a cooling

system.

Size and weight: From their names embedded systems are usually embedded on

larger mechanical or electrical systems. This requires a tiny size and light

weight to be placed inside these systems, and can be easily transported,

especially for portable systems.

Environment constraints: constraints dictated by the environment such as tem-

perature, humidity, vibrations, shocks, power supply variations, RF inter-

ference, corrosion, water, fire, radiation ... etc.

reliability: It must ensure continuous running for years without errors, and in

some cases, it must ensure an auto-recover if an error occurred.

2.2.2 General architecture of an embedded system

An embedded system is an electronic system that interacts with the environment.It

receives the measurement information from the external environment, processes them

and generates the output signals to the actuators. Figure 2.1 shows a general archi-

tecture of an embedded system. We can see that it consists :

1. CPU: It is the heart of the system, it runs the main program stored on memory,

process data received from inputs and generates outputs, and it controls all the

other peripherals. The CPU used in embedded systems are characterized by

low power consumption, low heat dissipation and low clock frequency. They

vary according to their instruction size, address range, etc. They constitutes the

majority of the CPU in the market.

2. Memory: It stores the main program that is executed by the CPU, and the data

used by the program. While stored on non-volatile memory, the data used by the

program are stored in volatile memory (RAM) since they are used in run-time.
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Figure 2.1: General architecture of an embedded system

Many types of memories can be used on an embedded system. These memories

differ according to their bandwidth, read/write latency, and size. In general, the

size and the bandwidth of memories are inversely proportional. The very used

data are stored in memory with high throughput and low latency, while the less

used are stored on low throughput.

3. Co-processors: Co-processors are electronic integrated circuit used to complement

the functions of the main processor (CPU). It is specialized in rapid execution of

a particular type of processing. Intensive tasks are offloaded from the main CPU

to accelerate them on the co-processor, and increase the system performance.

4. I/O ports:I/O ports are used to communicate with other peripherals and to send

and receive signals. These ports can be GPIO, USB, I2C, SPI...etc

5. Communication: Embedded systems can support communication with other com-

puters to transmit its status, receive commands or for debugging.

6. Sensors and actuators: Sensors and actuators are the interface of the embedded

system with the external environment. Sensors are the inputs and actuators

are the outputs. Sensors transform a physical quantity into an electrical signal,
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while actuators do the inverse by inverting the electrical signals from the CPU

to an action.

The majority of the embedded systems are implemented using heterogeneous sys-

tems [39]. This means that the system is composed of different types of processing

units. The system can contain in addition to the CPU, a GPU, programmable circuit

(ASIC, FPGA), DSP, microcontrollers...

The heterogeneous systems are implemented either in single board or in single

chip. In this latter case, we talk about System-on-Chip (SoC). [39]

Comparing the two types of implementations, the SoC provides better perfor-

mance and lower power consumption. The distance between the components of the

SoC are very small, which allows to have a high data transfer rate between these

components, in addition to minimizing the heat dissipation caused by the joule effect.

However, in single board systems, the components may be replaced, customized or

even modified.

In many SoCs, the system is engraved in the chip at the factory, which make the

system uncustomizable and impossible to replace its components. Another type of

SoCs are the configurable circuit like FPGA and ASIC. These circuits give the designer

possibility to develop his own system at his level.

2.3 Design Methodology

The continuous decrease in geometry size and increase in chip density has greatly

increased the complexity of digital systems. This makes it possible to integrate a

complete complex system on a single chip. As mentioned before, in a System-on-Chip,

many modules of a complex system are integrated in just one chip. This saves greatly

space, energy and size. However, the design of such systems becomes more complex

and take more time for development. An automated design flow with efficient tools is

necessary. One solution to dealing with these complexities is to move to higher levels

of abstraction, at the system level [41].

In embedded systems we have to deal with the design of both the hardware and
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Figure 2.2: Design approaches of an embedded system

the software. In order to achieve the objectives stated at the system level, we must opt

for a cooperative design of hardware and software, which is called Hardware/soft-

ware co-design.

2.3.1 Embedded Design approaches

In literature, there are several works related to developing suitable methodologies

to design an embedded system. These methodologies are classified into 3 main ap-

proaches, according to the direction of the design flow showed on the Figure 2.2:

• Top-Down approach: it starts with system description and generates the architec-

ture from the system behavior. It is performed by gradually adding implemen-

tation details to the design. The sequence of design decisions drives the designer

toward a solution that minimizes the cost of the micro-architecture. However it

is difficult to reuse the blocks on the lower levels. This because optimization is

preferred over the standardization. It is called sometimes Hardware/Software
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co-design approach [39] because the hardware and the software are designed

together in this approach.

• Bottom-Up approach: It starts with designing the low-level components, and as-

semble these components to produce the final systems. In general, in a bottom-

up approach, the low-level components are designed to support a set of different

applications that are often vaguely defined, this supposes that they have a stan-

dard interface to be easily used to produce the final system. This approach

maximizes the number of applications that can be used by the designed compo-

nents. It is called component-based approach. [39]

• Meet-in-the-middle design: It is a combination of the previous approaches. It

is also called platform approach [39]. Rather than generating the architecture

from the system behavior downing to the elementary components as in top-level

approach, in the meet-in-the-middle approach the described system is designed

using a set of standard predefined low-level components which are called IP

cores, to optimize cost, energy consumption, efficiency, and flexibility [42], and

gain in design time. In this approach we benefit from the advantage of both

top-down and bottom-up approaches.

2.3.2 System Level Design

System Level Design is an electronic design methodology, focused on higher abstrac-

tion level concerns. In order to manage the complexities of the embedded systems,

the design process begins at the highest level of abstraction. At the system-level, the

specification of the system is described and modeled using a high-level language such

as C/C++ or by using graphical design tools (Model-based design). Descending to

lower design levels, automated design methodologies are used to enable step-by-step

refinement.

There are 3 approaches to improve the design process labeled: synthesis, IP li-

braries, and verification [40]. Figure 2.3 shows these approaches and the relation with

the design abstraction levels.
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Figure 2.3: System-level design flow

• Synthesis: It is the process of exploring and generating the lower-level imple-

mentation details from the specification introduced in the higher level.

• IP Libraries: During the design process Intellectual Property (IP) components

can be used when it is feasible. The pre-designed implementation from lower

level are incorporated into higher level. This facilitates the design process and

shortens the development time by using pre-designed implementations.

• Verification: At each level, we must ensure the correct functionality of the design

at this level. This prevents wasting time on low-level debugging. There are many

methods of verification, Simulation is one of the most common used methods.

With the evolution of the design tools, the design is automated and computer-

assisted. The designer only has to deal with the system-level, and describe the system

with a high language, while the automation tools automate the synthesis process and

choose the right IPs to use in the system. The verification is also automated, and the
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design can use the system level verification tools to verify the design at high abstract

level.

2.3.3 Hardware/Software Co-design Methodology

As we have seen earlier in this chapter (see 2.2.2) An embedded system contains,

among other components, programmable component which is the CPU, and acceler-

ator circuits (co-processor). A co-processor can be a specialized processor like GPU,

DSP, NPU. . . etc. or a programmable circuit like ASIC and FPGA. An embedded appli-

cation can be implemented as a software running on a generic CPU and it can be im-

plemented on hardware running on a co-processor. While software implementation is

more cost effective and flexible, hardware implementation provide high performance

and dedicated circuits. In order to maximize the performance of the embedded sys-

tem, it is essential to share the computational load of the application between software

and hardware resources.

The hardware/software co-design is a cooperative design of software and hard-

ware. The software design engineers and the hardware design engineers are working

together to design the embedded system instead of working separately. They focus on

presenting a unified view of hardware and software, and the development of synthe-

sis tools and simulators. It is used especially with heterogeneous systems that contain

different types of processing units. [39]

Figure 2.4 shows a typical hardware/software co-design flow, as described by

Shaout et al. [39].

Generally, Hardware/Software co-design follows a Top-down approach or a meet-

in-the-middle approach. It begins with the specifications of the system, then the

synthesis of the software and the hardware and finally the prototyping. The design

can be done in several iterations.

The design flow starts with the system specifications. In this step, the behavior of

the system is described without specifying the implementations. This description is

written using a high level language like C/C++, etc. It is the first application model

that will be used to evaluate the final prototype. In the costs estimation we estimate

42



2.3. Design Methodology

Modelling and specification

Prototyping

Synthesis

System specification

Cost estimation

Hw/Sw partitionning

Hardware design

Hardware behaviour
validation

Hardware Synthesis

Synthesised Hardware
Validation (HIL)

TestbenchesIP Library

Software Design

Compilation
Libraries

+
Drivers

Emulation and testing

System evaluation

Final Prototype

Interface design

Hw/Sw Integration 
and Implementation

Figure 2.4: Hardware/Software Co-design workflow
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the system implementation cost, like resource usage, memory usage, performance,

power consumption, execution time, etc. Cost estimation helps us in design deci-

sions and reduce design iterations. In the first iteration, only the software costs are

evaluated. This step assists in making partitioning decision.

In the Hardware/Software partitioning step, we specify the parts of the applica-

tion that will be implemented in software and those will be implemented in hardware

based on the estimation of the previous step. The choice of which part of the applica-

tion will be executed in which part of the hardware (hardware/software partitioning)

depends on many factors like performance, cost, flexibility and development time or

time-to-market. Processors provide a much easier implementation of complex algo-

rithms, while configurable circuits are better by far in real-time processing and power

consumption.

In the synthesis stage, the hardware and the software are designed and tested. The

hardware is designed using description languages like VHDL, Verliog, or with High-

level languages like C, OpenCL, etc. The behavior of the hardware is simulated and

validated before passing to its synthesis. This decrease the development time. The

hardware is synthesized using IP cores when it is possible, and then, the synthesized

hardware is tested using a testbench with Hardware In the Loop (HIL) method. The

software on the other side is designed, compiled, and emulated. Libraries and drivers

are used when it is needed.

After validating the software and the hardware, They are integrated to to be im-

plemented on the target platform. The entire system is evaluated in term of many

parameters (execution time, memory usage, precision,etc.) to decide if an other iter-

ation is required. The evaluation is done using a known dataset as input, and the

output is compared with other results. If performances are not met, the hw/sw par-

titioning must be reviewed, according to the last evaluation of the system.
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2.4 Rapid Prototyping and Platform Design

When designing an embedded system, many factors must be taken into account.

Costs and time to market are factors that need to be reduced. Another factor, that

need to be reduced too, is development risks, especially in complex systems. Before

having the final system, it is necessary to go through prototyping. Prototyping is

to make an incomplete and non-definitive copy of the final product. In a prototype,

the design can be refined and validated to release the right one that meet the initial

constraints. while prototyping reduces development risks, it can be expensive and

take a relatively long time to get the final product.

Rapid prototyping is a method of using a set of tools that make it possible to

achieve a prototype in a very short time, at a lower cost and with the minimum

of tools and intermediate steps in the production process while guaranteeing the

performance of the final product. it makes it possible to reduce the two remaining

factors mentioned above: time-to-market and cost. [43]

2.4.1 Prototyping tools

The goal of the prototyping is study, then try and test a number of different solutions.

For this, a good development tool must be flexible and modular. Development tools

used in prototyping, usually, contains a library of functions, each allowing to perform

a precise operation. This library (bank) allows the designer to choose the necessary

functions (off-the-shelf). Some tools offer a graphical environment, the model is de-

signed using functional blocks connected with wires that show the data flow. The

development tool must be extensible by permitting the designers to add their cus-

tom functions to the library. These functions can be programmed using standard

programming languages.

The components used by the prototyping tools must be standardized. This will

reduce the development time and cost comparing to non-standard components, and it

helps in simulating and verifying the system’s functioning. In addition it and facilitate

the reuse of these components. In this case, we talk here about Platform-based-design.
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In case of a non-standard component a warp layer is developed to give the component

a standard interface. [43]

2.4.2 Platform-based-design

Application software

Software platform

Hardware platform

I/O devices

BSP

RTOS                                     
Device drivers

Software platform

Figure 2.5: The layered structure of a system plat-

form

In embedded systems, Hardware/Soft-

ware co-design is used to find the right

combination of hardware and software

resulting in the most efficient product

meeting the specification. However, the

design of an embedded system cannot be

done by a synthesis process using only

the behavioural specification and with-

out taking available components into ac-

count. Components reuse is unavoidable

to cope with the increasing complexity

of embedded systems and their time-to-

market requirements. This led to the

platform-based design methodology. [44]

Platform-based design is a design

methodology following a meet-in-the-middle approach. This methodology empha-

sizes systematic reuse, to develop complex products based on platforms. In particular,

as system designers will increasingly use software to implement their products, de-

sign methodologies that allow reuse of software are highly needed. This implies that

the hardware architecture must remain fixed with a certain degree of parametriza-

tion. The hardware architecture consists of different cores that can be found on an

embedded systems like programmable cores, programmable circuits, memories, in-

puts/outputs (I/O)...etc.

A family of hardware components that allow a substantial reuse of the software

is called Hardware Platform. In the top of this hardware platform, an Application

Program Interface (API) abstracts the hardware to a high-level where it can be seen
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by the software. This interface is called the software platform (see Figure 2.5). The

software platform is a set of software programs that are used to wrap the different

parts of the hardware platform. We found the operating system, the device drivers,

libraries...etc. The combination of the Hardware and software platforms is called the

system platform. [42].

2.4.2.1 Hardware Platform

The hardware Platform contains a family of hardware components that allow the

substantial reuse of the software. The decision of the hardware platform to use (The

components that make up our platform), is defined by two sets of constraints.

The first are the constraints seen from the application domain (from the top). These

constraints are given in terms of performance and memory size. The applications

require a minimum processing speed and a memory with at least a given number of

bytes. A more complex application requires stronger architectural constraints.

The second set of constraints are seen from the hardware domain (from the bot-

tom). These constraints are given in terms of cost and power consumption. These

constraints reduce the number of choices.

The hardware platform then is defined by the intersection of the two sets of con-

straints. In some cases, the hardware platform can be over-designed. It means that the

constraints of the hardware domain are relaxed in favor of the application domain, to

extend the application space and deliver new software. [42]

2.4.2.2 Software Platform

For application to take advantage of the hardware platform, it must be able to see a

high-level interface of the hardware. This interface is the abstraction of the hardware

platform. A software layer is used to form the hardware interface. This layer is called

the software platform. This layer functions as a wrapper of the components of the

hardware platform. This layer must be standard and have a unique representation

of the hardware platform components. This means that a software application can

be reused in different hardware platform or target. We speak here about platform
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retargeting. [42]

Figure 2.6 shows the platform abstraction and the design flow of system plat-

form. The application is mapped into the lower level abstract representation. This

abstraction representation is chosen from a restricted library of available components

(platform), to meet the constraints of the system and optimize cost, efficiency, energy

consumption and flexibility.

Application Space

Application Instance

Architectural space

Platform instances

System platform
(Hardware and software)

Platform 
Mapping

Platform 
Design space
Export

Bottom up
exposure

Top down
refinement

Figure 2.6: Design flow in platform-based-design

The selected set of components from

the platform defines a platform instance.

In a single platform we can obtain mul-

tiple instances. Refinement of the ap-

plication specifications leads to selecting

one instance from the set of platform in-

stances. The selection of the instance is

guided by the parameters characterizing

the platform components, this is called

platform design space export [45].

2.5 Conclusion

Current advances in semiconductor technology allow the development of complex

digital systems on embedded systems, devices that can contain millions of transis-

tors. Many types of computing components are developed, from the generic CPU

to the specialized units like GPUs, DSP, etc... to meet the needs of the embedded

applications. The current trend is to assemble several possibly heterogeneous compo-

nents in a single chip to meet the requirements of complex embedded applications.

These complexities at the hardware level make it difficult to design the system. A

methodology that facilitates the design is essential to reduce the design cost and time.

In this chapter, we’ve seen an overview of embedded systems architecture. Then

we had an overview of design approaches and methodologies. We’ve also seen a

platform-based design methodology. This design methodology aims to ease reusing
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and retargeting.

In the next chapter, we will present the proposed prototyping platform based on

the methodology seen in this chapter, and we will describe its components and the

design flow.
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3.1. Introduction

3.1 Introduction

Implementing a SLAM algorithm in an embedded system requires a design methodol-

ogy that takes into account a certain number of constraints such as processing power,

memory size, power consumption, hardware weight and size, cost, etc. It must also

consider constraints related to the SLAM, like large maps computations, large image

processing, etc. As a first step, a prototype must be produced to test and evaluate the

performance of the designed SLAM. In this step, the development time is important.

The choice of the hardware and the tools to use depends on the type of the SLAM

and the aforementioned constraints.

In this chapter, we propose a rapid prototyping platform for embedded SLAM.

This platform is a combination of hardware and software platforms that permits to

fully prototype a SLAM system and evaluate the performances. It aims to facilitate

the design of the SLAM system and to minimize the time of its development while

taking into account the design constraints. In such a platform, it must adapt to the

different mobile platforms (southbound) on one hand and the development, design,

and evaluation tools (northbound) on the other hand.

For this, we will describe both the hardware and the software parts of the platform.

Finally, we give our proposed design flow.

3.2 Hardware Design

In order to choose the Hardware platform to be used on our work, many factors must

be considered. First, this platform chosen must meet the specifications of the system.

In our case, the objective is to design a generic prototyping platform, to help design

and build embedded systems dedicated to SLAM. The system specifications lead us

to define the constraints of the system to be taken into consideration, in particular, the

processing power, the energy consumption, the physical properties (size and weight),

cost... etc. The necessary tools to help design and program the system are also an

important factor to choose the right platform. These tools facilitate and automate the

design process. The more these tools offer the possibility to program and design at a
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higher level the more the design process is easy and quick. another advantage of the

tools that uses the standardized languages is that they allow multi-targeting, ie. that

different type of platforms can be targeted with the same code.

In this section, we see the different possible choices of hardware platforms in

context of SoC. For that, we see the different architectures that can be used and the

difference between them. Then we see the tools used to design and evaluate the

hardware of the SLAM system.

3.2.1 SoC architectures and technologies

As seen before in section 2.2.2, an embedded system contains a CPU as the central

processing unit, acceleration circuits, memories and Inputs/outputs. In an SoC, all

these components are embedded in a single chip and linked to each other using an

on-chip interconnects, such buses and networks (Network on Chip or NoC). The CPU

and the acceleration circuit are the processing components of the system that runs the

application program.

3.2.1.1 System architecture

Many architectures can be used to implement a SLAM system on the SoC. Fig-

ure 3.1 shows a homogeneous multiprocessor system. In this system many processor

cores are presented, and the software program is distributed between these processor

cores. [46] presented an implementation of a SLAM application using a homogeneous

multiprocessing system. It affects to each processor core a SLAM task (Feature extrac-

tion, propagation, update, mapping). These processor cores communicates with each

other using a shared memory.

Most of the used SoC contain an acceleration circuit. The acceleration circuits are

a specialized processor such as DSP, GPU, NPU, etc, or configurable circuit such as

FPGA, ASIC, etc. Figure 3.2 shows another architecture where accelerator circuits

are used. They are usually connected to the system and receive data from the main

processor to be processed. Some acceleration circuits are used as to perform data

preprocessing received from the input [31] as shown on Figure 3.3
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Figure 3.1: Architecture of a multiprocessor SoC
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Figure 3.2: Architecture of a heterogeneous SoC

The choice of the types of the processing components to use in this system and the ar-

chitecture is important and depends on the application and the constraints mentioned

above.

3.2.1.2 Central Processor Unit

The processor is the core of any computer system. It executes the instructions of the

main software program. In multiprocessor SoC we find more than one processor core.

Two types of processors can be implemented in an SoC.

Hard-core processor It is a processor that is implemented on the final design in the

silicon chip using a physical layout. It is optimized and validated by the designer

but it can not be modified. It can achieve much faster processing speeds comparing
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Figure 3.3: Architecture of a heterogeneous SoC with preprocessor circuit

to the soft-core processors since they are optimized for this. Examples of hard-core

processors are Intel processors, AMD processors, ARM cortex-A processors, etc.

Soft-core processor It is a processor that is implemented on a programmable cir-

cuit(FPGA, ASIC, CPLD...etc), with the logic elements of that circuit. It is deliv-

ered as a synthesizable design using hardware description language like VHDL, Ver-

ilog,etc. [47]. The soft-core can be easily modified and customized by adding custom

instructions and more features. However, the processing speed is limited when com-

paring with hard-core processors. Besides, it reduces the remaining resources on the

programmable circuit for the implementation of other circuits. Examples of soft-core

processors are: MicroBlaze from Xillinx, and NIOS-II from IntelFPGA.

3.2.1.3 Accelerator circuits

The acceleration circuit is a specialized circuit intended to accelerate some functions

that take a lot of time on the CPU. These are capable of executing a large number of

tasks in parallel, to speed up processing flows. Accelerator circuits can be classified

in three categories [48]:

Programmable Processors: They are processors that can be software programmed

to perform a task. This category mainly includes GPU (Graphics Processing Unit)

and DSP (Digital Signal Processor). GPUs are widely used in SLAM, especially visual

SLAM that uses computer vision algorithm. The parallel architecture of the GPU
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and its high frequency of processing attracted the researchers to use them, not only

to perform computer vision tasks but also as GPGPU to process all the parallelized

tasks [26].

Dedicated circuits: A dedicated circuit is a circuit customized to perform a spe-

cific task in a hardwired manner. ASIC (Application-Specific Integrated Circuit) is a

common example used to design customized circuits.

Reconfigurable circuits: They are circuits composed of logical elements that can be

freely reconfigured to implement any logical function. They combine the customiza-

tion features found in dedicated circuits and the flexibility of programmable proces-

sors. In this category we find FPGA and CPLD. In the SLAM domain, FPGAs are

widely used. It has a low power consumption comparing to other types of circuits,

and despite it has a low frequency limited by the FPGA fabric, the high customiz-

ability of the FPGA makes it possible to design a very specialized acceleration circuit.

It is used usually to implement computer vision functions and matrix multiplication

functions [37, 49]. It is used also to implement the whole SLAM system [31]

3.2.1.4 On-chip interconnect

An SoC is made up of several execution units. These units exchange data and instruc-

tions back and forth. This requires having an on-chip communication subsystem. This

communication subsystem must take into account integrability in the SoC and sup-

port the transfer of data between multiple units. Two types of on-chip interconnects

are mainly used

Bus-based communication This type of communication is based on a shared medium

connected to the different components. It is the commonly used communication back-

bone in SoCs. There are two types of components communicating over shared bus:

master and slave. A shared bus allows only one communication at a time. Only the

master can initiate a communication over the shared bus. Usually, the only master is

the CPU. If there are more than one master on the shared bus, an arbitrating system is
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used to manage the communication and prevent bus contention. This architecture has

advantages of simple topology and low area cost. However, its bandwidth is shared

by all the cores on the chip which limits its scalability and the number of cores at-

tached. [50] Some common buses for SoC communication are AMBA from ARM and

Avalon from IntelFPGA.

Network-on-Chip Network-on-chip communication is based on data routing. The

communication subsystem is a network of routers connected to each other. Each core

on the chip is connected to a router via a point-to-point connection (Figure 3.4). The

router is responsible for routing data to its destination. This type of interconnection

is scalable and supports more connected cores than the buses. The bandwidth in this

type of communication is not affected by the number of cores connected, since they

do not share the same communication medium. [50].

CPU

I/O

Memory

Accel

Accel

Comm

RouterRouter

RouterRouter

RouterRouter

NoC

Figure 3.4: Network-on-chip

3.2.1.5 Technology selection

Reconfigurable circuits present a prominent solution for accelerating algorithms. FPGA

are a reconfigurable circuits having an advantages over other parallel coprocessors.
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The blocks of logic elements of the FPGA are used in parallel or pipelined to achieve

a final architecture which exploits its full capacity. Besides, FPGA can be fully config-

ured by users and offers better performance and reliability. However, FPGA may be

considered an unappealing option when using the traditional logic design techniques

to fully use the FPGA capacity. This techniques are long and complicated and require

the usage of a hardware description language (VHDL, Verilog...). High Level Synthe-

sis is a revolutionary solution that enhances the use of FPGAs. It is a technique that

transforms high-level languages into logical elements aimed at exploiting the recon-

figurable architecture efficiently to accelerate compute operations while conserving

the use of resources.

In this thesis, we are interested in using FPGAs. Its main use is to design highly

parallel circuits to replace functions with heavy execution on the processor. In ad-

dition to the circuit designed on the FPGA, a processor is required to run the main

SLAM program. FPGA manufacturers, including IntelFPGA, Xilinix and Microsemi

[51–53], have designed an SoC based on FPGA. This SoC-FPGA integrates a hard

processor with an FPGA fabric in the same chip.

3.2.2 FPGA-based SoC

FPGA is a constantly evolving technology, especially in terms of logic density and

speed. Modern FPGAs have over a billion logic gates. An entire system, with a

soft-processor and accelerator circuits, can be implemented on the FPGA. Although

clock frequencies have been improved, FPGAs operate at very low frequencies com-

pared to hard-processors. Implementing a soft-processor on FPGA doesn’t give the

same performances as a hard-processor. FPGA manufacturers, such as Altera, Xilinx

and Microsemi, have integrated hard-processors with an FPGA fabric in a single chip

called SoC-FPGA. Xilinx embeds ARM processors (Cortex-A9) in the Zynq-700. In-

telFPGA uses ARM processors (Cortex-A9) in the Cyclone V, Stratix 10, Arria V, Arria

10 and Agilex SoC circuits. Microsemi uses RISC-V processors in PolarFire SoC, and

ARM Cortex-M3 microcontroller core in the SmartFusion circuits.
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3.2.2.1 Why SoC-FGPA?

The FPGA offers great flexibility in the design of embedded systems, with low power

consumption compared to programmable processors. Its flexibility can be seen in its

customizability and reconfigurability. Customization makes it possible to design a

tailor-made circuit with a customized, parallelized and pipelined architecture. The

reconfigurability allows us to test and retest our system several times before the final

product.

On the other hand, a hard-processor operates at a higher frequency than that of the

FPGA which allows the software program to be executed with a higher performance

than in FPGA with a soft-processor. In addition, a hard-processor saves the resources

of the FPGA by avoiding its implementation using the FPGA fabric.

The integration of a hard-processor and an FPGA fabric in the same chip does not

just make it possible to take advantage of these two components, but also makes it

possible to reduce energy consumption and gain in terms of throughput between the

CPU and the FPGA.

3.2.2.2 Cyclone V SoC architecture

Among the SoC-FPGAs that exist, we have chosen to use a hardware platform based

on IntelFPGA’s Cyclone V SoC. The Arria 10 is one of the low-cost 28nm technology

SoCs produced by IntelFPGA company. Figure 3.5 shows a block digram of the Cy-

clone V SoC. It contains two distinct parts: Hard Processor System (HPS) and FPGA.

The HPS is based on the ARM Cortex-A9 dual-core processor operating at 800MHz.

The HPS integrates, in addition to the CPU, Memory controllers, interface peripher-

als, and PLL. The FPGA is clocked with a 50MHz clock. It can reach up to a frequency

of 200MHz using PLLs.

The HPS and the FPGA communicate with each other using bridges. These bridges

are 128-bit, 64-bit, and 32-bit AXI interfaces. The FPGA can access the slave buses of

the HPS through the FPGA-to-HPS bridge. The HPS can access the FPGA slave buses

through two types of bridges: a high-speed HPS-to-FPGA interface, used primarly to

send data, and a 32-bits lightweight HPS-FPGA bridge used to send control signals.
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Figure 3.5: Cyclone V SoC Block diagram

The bandwidth of the of the interconnect bridges can reach 6400MB/s.

The SoC doesn’t contain memory and it must be associated with external memory.

The HPS contains a memory controller to interface the external memory. FPGA can

access this memory using one of the six (6) FPGA-DRAM interfaces.

In this thesis work, we used a DE1-SoC development board as an evaluation plat-

form. This board is built around the IntelFPGA Cyclone V SoC. The DE1-SoC board

has two external memories to be used with SoC: a 64MB SDRAM to be used with the

FPGA and 1GB DDR3 connected with the HPS. The board contains also a set of I/O

interfaces like USB, I2C and GPIO. These interfaces can be used to connect a visual

sensor (Camera, RGB-D...) or odometers. It contains also a G-sensor, that can be used

as a proprioceptive sensor [54].

Table 3.1 resumes the specifications of the DE1-SoC, while Table 3.2 lists the avail-

able resources on the FPGA of the Cyclone V 5CSEMA5F31C6 chip used in DE1-SoC

3.2.3 Designing tools

FPGAs have advantages in terms of parallelism and power consumption. But the

description of FPGA-based architectures remains relatively complex compared to
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Table 3.1: DE1-SoC board specification

Specifications

FPGA Device Cyclone V 5CSEMA5F31C6

FPGA SDRAM 64MB SDRAM

Processor ARM-Cortex-A9 Dual-Core

HPS Frequency 800MHz

HPS SDRAM 1GB DDR3

Table 3.2: Available resources of the Cyclone V 5CSEMA5 chip

Resources Cyclone V

5CSMEA5

Logic Elements (LE) (K) 85

ALM 32075

Registers 128300

Memory(Kb) M10K 3970

MLAB 480

Variable-precision DSP Blocks 87

18 x 18 Multipliers 174

programmable processors. Unlike programmable processors where a program is

written in a high-level programming language and then compiled for execution, an

FPGA-based architecture is described using low-level hardware description languages

and then synthesized for implementation in an FPGA. Since the appearance of pro-

grammable circuits, design tools have undergone an evolution which aims to facili-

tates the hardware description and to move towards high level languages.

3.2.3.1 Low-level hardware description languages

A Hardware Description Language (HDL) is used to describe the structure and behav-

ior of electronic circuits. From this description, the electronic circuits can be analyzed,

simulated and synthesized to be implemented on the configurable circuit. Unlike pro-
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gramming languages, HDLs make it possible to describe competitive behavior at the

instructional level, and explicitly include the notion of time.

The most known and used HDLs are VHDL and Verilog, both introduced in the

80s. VHDL is strongly typed while Verilog is weakly typed and influenced by the the

C programming language.

The use of description languages is a complex task and often takes a relatively

long time to develop and verify. The complexity and development time increase with

the complexity of the system. This requires design help tools and going to high level

languages.

The development environments of the FPGA manufacturers have a graphical en-

vironments that help design a system from the IP cores that exist in the library. Ex-

amples of such graphical environments are IntelFPGA’s Qsys System Integration Tool

and Vivado IP Integrator and Xilinx. These tools are used to generate the HDL code

from the graphic description of the system. However, adding a new IP core requires

writing it with HDL.

3.2.3.2 High-level synthesis

High-Level Synthesis (HLS) consists of the automated generation of HDL descriptions

from an algorithmic description performed using a high-level language such as C/C

++, Matlab. High level synthesis saves development time by describing our circuit in

high level language. Simulation and verification are done at the high level. It also

allows developers not experienced in HDL to design their circuits without knowing

the details of the target.

Regarding existing high-level synthesis tools, Vitis HLS from Xilinx [55], Intel HLS

compiler from IntelFPGA [56]. MATLAB and Simulink have also their High-level

synthesis tools called HDL coder [57].

In addition to high-level synthesis tools, the OpenCL standard is also used as a

high-level design language. The goal of adopting OpenCL was to standardize design

on heterogeneous architectures. Next, we will see OpenCL framework that we will

use it on our work.
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3.2.4 OpenCL approach

OpenCL is an open standard for parallel programming of heterogeneous systems us-

ing a C-based language [58]. It uses a unified programming language to program

these devices and offers an API that controls the execution of the program on the ac-

celeration devices. The heterogeneous system contains one or more different comput-

ing devices such as CPUs, GPUs, DSPs, FPGA...etc. attached to a host CPU. OpenCL

is portable which means that the same kernel code can be used to run on multiple

device types.

An OpenCL program is divided into two parts: the host code, and OpenCL kernel

code. The host code is the code that is running as software on the CPU, it is written

with C/C++. The kernel code, written in OpenCL, is the part of the code to be

implemented and executed on the compute device. OpenCL offers a C/C++ API to

use in the host code. This API is used to control the execution of the kernel and the

data transfer from and to the processing device.

Figure 3.6 shows a model of a generic OpenCL system. An OpenCL compute

device contains multiple compute units, each compute unit comprises multiple pro-

cessing elements.

From the kernel point of view, the workload is divided into work-groups, each

work-group is in turn divided into work-items. The work-item is described by the

kernel program. Work-items are running on processing elements, and work-groups

are running on compute units.

Two types of OpenCL kernels are existing:

Single task kernel: the kernel is executed by only one work-item. This is common

on FPGA where the parallelism is achieved using pipelining.

NDRange kernel: the kernel is executed on multiple work-items, and the parallelism

is achieved using data-parallelism.

From memory point of view of the system, OpenCL describe 5 different types of

memory that can be used with OpenCL:
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Figure 3.6: Model of generic OpenCL system

Host memory: It is used by the host program (The CPU program) and it is not ac-

cessible by the kernel. This memory is cacheable and managed by the operating

system

Global memory It can be accessed by both the host program and the OpenCL pro-

gram, it is accessed by all the work-groups

Constant memory: It is a type of global memory with read-only access from the ker-

nel.

Local memory: it is a memory shared between the work-items of a work-group

Private memory: It is a memory that can be accessed only by the corresponding

work-item.

In single task kernels, the local memory and the private memory are the same

since there is one work-item.
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3.2.4.1 OpenCL for SoC-FPGAs

In the FPGA domain, Altera was the first constructor to provide a complete SDK

for OpenCL [59]. Xilinx, also, released its SDK for OpenCL integrated with Vivado

environment called SDAccel [60].

On programmable processors, the architecture of the device is known and the

OpenCL kernel is compiled at run-time. However, in the FPGA the architecture is

configured according to the kernel before run-time. This requires an offline compila-

tion of the FPGA circuit.

The architecture of the OpenCL circuit on the FPGA can take two forms according

to the type of kernel used. In the NDRange kernels, the OpenCL circuit has a parallel

architecture providing data parallelism. In a single task kernel, the OpenCL circuit

has a pipelined architecture.

The memories architecture for an OpenCL system in the SoC-FPGA is shown on

Figure 3.7.

HPSHPS FPGAFPGA

Accelerator

Host Memory Global Memory

DRAM

Local Memories Private Memories

CPU

Cache Memory

Figure 3.7: Memories architecture for OpenCL system on SoC-FPGA

The host memory is a cacheable memory and it is the region in the DRAM used by

the HPS. The global memory is the memory region dedicated to the FPGA device on

the DRAM, it is a non-cacheable memory accessed by the kernel. It is characterized
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by a large size compared with other OpenCL device memory types, however, it has

low bandwidth and causes an undefined stall behavior. Local and private memories

are implemented with RAM blocks and registers on the FPGA chip. They are charac-

terized by smaller size and zero delay access comparing with the global memory.

3.2.4.2 IntelFPGA® SDK for OpenCL™

In this work as it is mentioned earlier, we use a DE1-SoC board, containing a Cy-

clone V SoC from IntelFPGA, as target platform (Figure 3.8). IntelFPGA has released

its SDK for OpenCL development on FPGAs. The FPGA programming flow of the

IntelFPGA SDK for OpnCL is shown in Figure 3.9.

Figure 3.8: DE1-SoC DEveloppement board

The programming flow contains two parts: the host part and the FPGA part. In the

host part, IntelFPGA SDK for OpenCL contains the libraries of functions necessary to

control and communicate with the kernel on the target. These functions are used with

the host code. The host code is then cross-compiled according to the architecture of

the target. In our case, it is compiled to run on the ARM processor on the HPS.

On the FPGA part, IntelFPGA SDK for OpenCL contains a tool called AOCL (Al-

tera offline compiler). AOCL creates an executable file (.aocx) containing the hardware
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Figure 3.9: IntelFPGA SDK for OpenCL FPGA Programming Flow

configuration and the information necessary at runtime. This file is used to configure

the FPGA and provides the necessary information to the host application to create

program objects used at runtime. [61].

The process of creating the FPGA hardware configuration file can be done on a

single step or several steps, depending on the complexity of the circuit.

In our case, we need to optimize and improve the performance of the OpenCL

application. A multi-step design compilation is used. The multi-step design flow is

showed in Figure 3.10, it is based on an iterative process, and has four main steps:

Emulation: This is the first step in the programming flow. The aim of this step is

to verify the functional correctness of the kernel. To emulate the kernel, AOCL

compiles the OpenCL code to be run on x86 host system (PC-Like machine). The

compilation is done on the high-level to emulate the behavior of the kernel, and

it doesn’t depend on the target. The host program code must be also compiled

to be run on the same system. This allows us to verify and debug the kernel

before implementing it on the FPGA.

Intermediate Compilation: In this task, AOCL checks for syntactic errors and gen-
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Figure 3.10: FPGA design-flow using AOCL
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erates an object file containing information about the kernel. The hardware

configuration file is not generated in this step. At the end of the compilation an

optimization report is generated in HTML form. This report is specific to the

implementation target, it estimates the resource usage of the FPGA, loops analy-

sis, latency estimation, bottleneck, and stalls summary. Based on this report the

kernel may be restructured again for more optimization. Using the optimization

report saves time since the hardware is not built.

evaluation: Before generating the final kernel, it is necessary to evaluate the real

performance on the hardware. AOCL can add performance counters to the

HDL code of the harwadre configuration file (.aocx). These counters collect

performance information at runtime and generate a .mon file. The OpenCL

Dynamic Profiler measures the performance using the collected data from the

performance counters during the execution. The OpenCL Dynamic Profiler GUI

reports the total time of the kernel execution and information about the band-

width, stalls, and efficiency of memory accesses. A kernel restructuring may be

necessary depending on the results of the Dynamic Profiler

synthesis: After this step, AOCL performs a full compilation and generates an exe-

cutable file (.aocx) without performance counters. The hardware configuration

file is used by the host program to configure the FPGA, communicate and con-

trol the FPGA kernel. It contains the necessary informations to be used at run-

time.

3.2.5 Conclusion

In this section, we have chosen, among the existing technologies, SoCs based on FP-

GAs or SoC-FPGAs. This choice is justified by the advantages offered by the com-

bination of a hard processor and an FPGA in the same chip. The CPU executes the

software program with a high execution frequency, while the FPGA allows the con-

figuration of an acceleration circuit for heavy functions on the processor. We chose an

implementation method based on OpenCL to minimize the design time and facilitate
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porting to other targets. The methodology of designing an OpenCL application is de-

scribed. In the following section, we see the software design for our rapid prototyping

platform.

3.3 Software Design

An embedded system is made up of two essential elements: software and hardware.

A design platform for an embedded system must support the design of the software

and the hardware. In the previous section, we dealt with the hardware part of the

platform. In this section, we will deal with the software part and end up choosing

our software platform. Indeed, the software design process consists of developing

a program in a machine language or in a high-level language. This program will

be executed on the CPU. Software design should take into consideration design con-

straints including software size, development time, retargeting, evaluation, etc. The

use of tools to automate the system building allows us to reduce the build time and

to customize our software system, which also implies a reduction in its size.

3.3.1 Implementation approaches

In software design, there are three possible approaches to implementing an embedded

application. The first approach is bare-metal implementation (Figure 3.11a). In this

approach the application is implemented directly on the hardware without the use

of an intermediate layer. In this approach, the embedded application runs faster and

uses less memory space. In addition, access to peripherals and I/O is direct without

any redirection to subroutines. But in this type of implementation, the management

of peripherals, memory, interrupts, and errors is not assured if it is not implemented

in the application. These applications are generally written with low-level languages

like C/C++ and assembler, they are generally used in microcontroller programming.

The bare-metal applications are very dependent on the development platform which

means that these applications are very rarely portable.

The second approach is to implement the embedded application on a Hardware
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Figure 3.11: Software Implementation approaches

Abstraction Layer (HAL) (Figure 3.11b). This layer is considered an abstraction of the

hardware, it contains the functions necessary to facilitate access to peripherals and

I/O.

The third approach is to implement on an embedded OS (Figure 3.12). An operat-

ing system provides a variety of solutions such as memory management, scheduling,

hardware abstraction, tools, libraries, services, real-time, etc. In addition, it facilitates

the portation to other hardware platforms supported by this OS. There are several OSs

that are used in the embedded field. Among the most famous OS, we can mention:

Linux, Windows Embedded, FreeRTOS, VxWorks. Linux is an operating system that

is widely used in this field, considering the advantages it presents. In the next section,

we talk about Linux for the embedded.

3.3.2 Embedded operating system

Embedded systems are becoming more and more complex and are evolving towards

architectures containing powerful computers in addition to several peripherals. This

evolution allows the implementation of complex software applications on these sys-

tems. In this case a system that manages the scheduling of tasks and access to hard-

ware resources for this application is necessary. Hence the interest of using an oper-

ating system.

The role of an operating system in an embedded system is to abstract hardware
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resources so that the application has a simplified view. This abstraction has two

different ways. The first concerns the processor, the role of the OS is to share the

computing power of the processor. This sharing is carried out thanks to a “scheduler”

which selects a given task at a given moment for immediate execution. The second

concerns access to peripherals. The OS must share access to devices and provide a

high-level interface to applications. The drivers provide access to peripherals and

perform the necessary configuration and data exchange [62].

Embedded OSs are very constrained by the hardware platform which has limited

resources, such as computing performance, memory size, energy consumption, stor-

age memory, etc. At the same time, They must ensure the execution of the embedded

application in real-time and with the required performances.

One of the most used OS in embedded system is Linux, the famous open-source

OS developed initially by Linus Torvalds.
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3.3.2.1 Embedded Linux

Linux is a Unix-like multitasking operating system based on the Linux kernel. It was

originally developed for personal computers based on Intel x86 type processors, but

has since been ported to more platforms than any other operating system. Among

the supported platforms, we found many embedded platforms like PowerPC, ARM,

NIOSII, MicroBlaze... Linux conforms to the POSIX (Portable Operating System In-

terfaces) standard, which means that sources developed under Linux can be easily

compiled on other POSIX compatible operating systems. [63]

Linux is free software which means that the source code is available for free, with

the right to modify and redistribute and use without restriction while respecting the

GPL license (General Purpose License).

In the early 2000s, Linux was already widely used in the server world. Thanks

to its reliability, code availability, and free redistribution, the Linux community has

been able to develop it for use in industrial and embedded solutions. Today several

embedded systems are based on Linux such as set-top boxes, smartphones, smart-TV

(Android)

3.3.2.2 Why Choosing Linux?

In addition to its Reliability and performances, Linux has some characteristics that

make it a better choice for use in embedded systems.

The First characteristic cited earlier is being Free and Open-source software. This

makes it possible for a developer to copy the source code and modify it, then redis-

tribute it without any loyalty. Such characteristic allows a development basing on

previous works and not from zero. The users of the systems can read the code source

and be sure that there is no risk to its personal information security. Having no roy-

alty is also a problem since there is no person assumes responsibility for damages

resulting from its use.

The second characteristic is having a large community. This means that Linux is

the result of collective efforts. The bugs are fixed fast, and the updates are released

constantly. The large community also offers help via forums.
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The Linux community leads to the development of the system to adapt it to other

architectures. Linux today is ported to a very large number of processors and hard-

ware architectures, including low power processors. Portability and adaptability are

important characteristics of Linux. [64]

Since Linux is Free and Open-source, modification of the source code is permitted.

This makes it customizable. The Linux customizability is one of the strong points to

use for embedded systems. Only the needed modules and functions are included in

Linux. This reduces the usage of memory and CPU. A Linux system of few megabytes

can be built.

3.3.2.3 Structure of Linux system

Linux is a Unix-Like system and they share a similar architecture. It is composed

essentially of a kernel, executables, libraries, and bootloader to boot the system.

Bootloader: It has two essential functions: hardware initialization and kernel and

filesystem loading. First, the bootloader initializes the hardware devices essential for

booting such as memory and disks. Then it launches the kernel that exists on the hard

disk.

Kernel: The kernel is a stand-alone executable file responsible for performing es-

sential system functions such as managing the memory and the scheduling of tasks

as well as interfacing between hardware and applications, using device drivers. It is

the unique interface between the system and the hardware. The kernel is extensible,

modules can be added if needed. These modules can be device drivers or be linked

to higher level generic support such as SCSI support. The use of modules optimizes

system memory at a given time because an unused driver can be unloaded, freeing its

memory. Likewise, the use of modules will allow a dynamic addition of peripherals

without restarting the system.

Libraries: Libraries contain functions needed by the applications. There are main

libraries that contains essential functions of Linux. Other libraries can be added to
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the system when needed. There are two types of libraries Static libraries and dynamic

libraries.

Applications: They are in the upper layer. They can be commands delivered with

the system or developed for specific needs.

Figure 3.13 shows the layered structure of the Linux system. The kernel is the

lowest layer and applications are the highest layer.

Hardware

Kernel

System Libraries

Applications

Figure 3.13: Layered structure of Linux system

3.3.3 Software libraries

A library is a collection of pre-compiled functions. These functions are called by the

applications to perform a specific task. Libraries improve reusability and modularity.

They save time by providing reusable functions, data structures, classes, etc. The

programmer doesn’t need to rewrite all these functions, fix bugs, and update them,

These tasks are done by other developers or by the community. Instead, he has only

to call the needed functions from the library.

A library is collection of archived object files with an index (table of content) for

fast symbol access. At compile-time, the linker search for symbols and functions in

the library. If they’re found, the program is linked to to it. There are two types of

libraries, static libraries and shared libraries:
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Static libraries: A static library is an archive file containing a collection of raw object

files with a table of content. When this library is included during a program linking,

the linker adds all the code and data, corresponding to symbols used in the source

code, to the final program. The advantage of using static libraries is that they are easy

to create and use and run faster(no need to search and load the needed functions). The

program created with static libraries does not require to install the needed functions in

the target system. However, the use of a static library in a program present a number

of software maintenance and resource utilization problems. If the library is updated

or fixed, the program linked to it need to be rebuilt too, to include these changes. The

program file includes all the needed functions, this means that its size will be large,

and take a considerable amount of disk space. Executing many programs with shared

functions is a waste of disk space and memory [65].

Shared libraries: To resolve maintenance and resource problems encountered with

static libraries, shared libraries are used. In this case, at compile-time, the compiler

search for the symbols in the library without copying its content to the program file.

At run-time, a dynamic linker searches for needed symbols in the library to load them

into memory and perform the run-time linking task. Run-time linking allows easier

library maintenance. Updating the shared library doesn’t require relinking or rebuild-

ing the applications, the symbols are kept unchanged so that can be found the next

time by the applications. In addition the size of the program file will be reduced since

the shared symbols are not copied. Shared libraries, from their names, are shared be-

tween applications in run-time. If many applications need to use a single library, it is

loaded once in physical memory and used by all the applications, which saves mem-

ory by not loading many copies of the same library. However, the loading libraries

at run-time and dynamic linking will influence the execution speed. The application

requires that the shared library to be implemented in the target system, since it is not

copied with the program file [65].

In the SLAM domain, many known libraries are used, for computer vision, math-

ematical calculations, linear algebra, graph optimization...etc. These libraries must be
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offered by our platform to be implemented when needed by the SLAM application.

One of the works that evaluates SLAM libraries is that of Hertzberg et al.. [19] They

evaluated some open-source libraries used in visual SLAM for three modules: feature

detection, data association, source components. The work shows that open-source

libraries are mature enough to build a visual SLAM system. Next, we see some of the

most used open-source libraries by the SLAM applications.

3.3.3.1 OpenCV

OpenCV (Open Source Computer Vision) is an optimized and open source computer

vision library specializing in real-time image processing. It was originally developed

by Intel to advance CPU intensive applications in computer vision. It is a cross-

platform library written in C / C ++ and python. The OpenCV library provides

many very diverse functionalities allowing to create programs from raw data to go

up to the creation of basic graphical interfaces. It provides an easy-to-use computer

vision environment for quickly building sophisticated applications. OpenCV pro-

vides a set of image acquisition and processing functions. These functions include

camera calibration, image filtering, landmarks extraction and detection, motion esti-

mation and target tracking, object detection and recognition, and machine learning.

We also find projects that aim to develop accelerated implementations with CUDA

and OpenCL. [1, 66]

OpenCV is used by many SLAM applications to calibrate and manipulate images

and features, We cite for example MonoSLAM [22, 67], ORB-SLAM2 [68, 69], LSD-

SLAM [70, 71]...etc.

3.3.3.2 MRPT

MRPT is a cross-platform and open source C ++ library that aims to help researchers

design and implement algorithms related to the field of robotics. These algorithms are

in the area of simultaneous location and mapping (SLAM), computer vision and mo-

tion planning (obstacle avoidance). It was developed for first time in 2004 at MAPIR

lab at the University of Málaga [72]. The libraries include classes for easily manag-

76



3.3. Software Design

ing 3D geometry, probability density functions (pdfs) over many predefined variables

(points and poses, landmarks, maps), Bayesian inference (Kalman filters, particle fil-

ters), image processing, path planning, and obstacle avoidance, 3D visualization of all

kind of maps (points, occupancy grids, landmarks,...), and a sort of drivers for a vari-

ety of robotic sensors. A list of SLAM works that used MRPT can be found here [72].

Among these, we can cite Blanco et al. [73] in RO-SLAM, Moreno et al. [74] in particle

filter-based SLAM, Blanco et al. [75] ...etc

3.3.3.3 Other Libraries

Many other libraries are used in SLAM programs. Next is a non exhaustive list of

these libraries:

Eigen3: It is a C++ open-source library of template headers for linear algebra. It is

used in matrix and vectors operations, geometrical transformations, numerical

solvers and related algorithms.

SuiteSparse: It is a set of open-source C/C++ libraries developed by Timothy Davis

[76]. It implements a number of sparse matrix algorithms.

g2o [77]: It is an open source C++ framework for optimizing graph-based non-linear

errors by solving non-linear least-square problems.

Boost: It is a set of C++ libraries that provides support tasks and structures such as

linear algebra, image processing...etc.

3.3.4 System builders

Our platform is based on a Linux system, it should contain all the components needed

to build an entire system running an embedded SLAM. To build this system, We have

multiple choices [78]:

1. Use a pre-build binary distribution such as Debian, Ubuntu, or Fedora. They

are easy to set up and come usually with a package manager to facilitate instal-

lation and updating packages. However, they are not very flexible on package
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configuration and support only a few architectures. The system is pre-built and

rebuilding it is not easy especially for developing a device driver.

2. Build all system components manually. Despite the high flexibility this method

offers on system and package configuration, it is a painful task to deal with

complex cross-compilation issues and track all the intra-package dependencies.

In addition, it cannot be reproducible because it lacks build automation tools.

This makes it an inefficient method.

3. Use an automated build system, that builds the entire system from source.

This method is situated in the middle between the two previous methods. It is

flexible and can be easily configured. It allows building a custom system based

on Linux. The build automation tool handles most of the cross-compilation

issues and track all the intra-package dependencies automatically. The system

is easily reproducible and supports a lot of architectures. We can cite as an

example: Buildroot, Yocto, OpenEmbedded...

Among these solutions, the last solution is by far the most effective. The automatic

build and rebuilding of the system as well as the possibility of configuration and

customization all support the goal of the rapid prototyping platform. This solution

the one we will use in our platform, Such a tool allows us to produce the components

that we can install on the target:

– The image of a bootloader like U-Boot;

– The static kernel image often named zImage or uImage as well as the associated

"device tree" files (DTB).

– One or more images of the root filesystem.

The two main Linux system builders for embedded systems are Buildroot and

Yocto.
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3.3.4.1 Yocto

Yocto or (Yocto project) is a collaborative open-source project that aims to produce

tools and processes allowing the creation of Linux distributions intended for embed-

ded systems. It supports many hardware architectures. It is based on OpenEmbedded

build system and BitBake a make-like build tool. OpenEmbedded is a set of metadata

made up of configuration files, classes, and recipes describing the tasks to be carried

out to build the packages and binary images as well as their dependencies.

Yocto uses the notion of layers. A layer can add support for a given hardware (BSP:

Board Support Package), but also software components. The layers are represented

by metadata grouped in directories each corresponding to a layer. Yocto allows you

to create binary packages as in a classic distribution. The formats taken into account

are RPM, DEB, and IPK

• Advantages

– Large Community (Support, training, experienced engineers...)

– It has backing from many influential companies since it is widely used in

the industry.

– It is expandable through layers

– It supports a wide range of hardware

– It is highly flexible and customizable.

– Updating, adding, and removing packages from a running system is possi-

ble without a need to rebuild the whole system.

• Disadvantages

– It is hard to learn and master

– Produces a large image system

– The configuration is done using files, and there is no interface like makeconfig.
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3.3.4.2 Buildroot

Buildroot is a set of Makefiles and patches that simplifies and automates the process

of building a complete and bootable Linux environment for an embedded system. It

builds the required cross-compilation toolchain, generates the bootloader, compiles

the Linux kernel image and creates the root file-system for the targeted embedded

system. It supports many hardware architectures. It focuses on simplicity and mini-

malism. Extensions and features can be added to Buildroot using simple Kconfig and

Makefile files. It does not support package management and prefer the use of static

libraries. Generally, the produced system image is as small as possible.

• Advantages

– It focuses on simplicity, simple to learn, to understand and to contribute

– It produces smaller system images by disabling all optional build-time set-

tings.

– It can be configured using a graphical interface like menuconfig.

– It supports many hardware architectures and contains many configuration

examples of know boards.

• Disadvantages

– No package management. This makes it difficult to update, install, or re-

move a package in a running system

– A change on components of the system requires rebuilding all the system,

no partial rebuild is possible.

In our work, we used Buildroot to build our Linux-based system.

3.3.5 Buildroot

Buildroot is an embedded Linux build system. Its purpose is to simplify and auto-

mate the process of building an embedded Linux system. It is based on simple and
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well-known tools developed by the Linux community: Kconfig for the configuration

interface and language, and Makefiles for The build logic. These technologies are fa-

miliar to all embedded Linux developers which makes it simple to use and easy to

understand, learn, and develop. The build process is fast by doing only the necessary

tasks. By default, it doesn’t integrate runtime package management system like dpkg

and rpm, to be suitable for small and medium embedded systems.

Open-source 
components

In-house 
components

Custom 
components System Configuration

Buildroot

Root filesystem  image

Kernel image

Bootloader image(s)

Cross-compilation 
toolchain

Figure 3.14: Schematic representation of Buildroot

Figure 3.14 shows the schematic representation of Buildroot tool. Buildroot has a

list of open source components that can be downloaded from the Internet. This list

contains the recipes for downloading, configuring, and building these components.

In addition to these open source components, proprietary and custom components

can also be added to this list. These components are mainly: cross compilers, Linux

kernel, host packages, and target packages. Host packages are the packages needed

by the host to build the target system, while target packages are the packages that

will be executed on the embedded target.

A Buildroot based project is structured in directories. These directories are:

• toolchain/: this directory contains information and recipes for all software

related to the cross-compilation toolchain
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• arch/: It contains the definitions for the supported processor architectures.

• package/: contains configurations and recipes to download and build user-

space tools and libraries. These informations are inside directories.

• linux/: This directory is contains files for Linux kernel.

• boot/: It contains files for bootloaders supported by Buildroot.

• system/: It contains support for system integration, e.g. the target filesystem

skeleton and the selection of an init system.

• fs/: contains informations and recipes for software related to the generation of

the target root filesystem image.

Buildroot must be configured in order to be able to build the target system. The

configuration contains information on the properties of the target’s architecture, com-

pilation options, information on the kernel to compile, the packages to install, the

type of final system images, etc. Buildroot can be configured in graphical mode with

menuconfig. The configuration can be stored in a file to be used later.

Once the configuration is done. Buildroot creates the output directories (staging/,

target/, build/) inside output/ directory. Before building the system image,

Buildroot downloads the cross-compilation toolchain that will be used to compile the

needed package for the selected target. After building the system components, the

root filesystem is created as well as the kernel image and the bootloader optionally if

it is required.

3.3.6 Debugging and profiling

In the development phase of an application, the appearance of errors is almost in-

evitable. Many errors can occur during the integration or the execution of the appli-

cation on the embedded target. To resolve these errors, a debugging tool is essential.

this tool allows you to put breakpoints in the program and run it step by step to

analyze and identify runtime errors. After resolving all runtime errors, a profiling
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tool is used to identify bottlenecks. The bottlenecks present functions in the program

that take a long execution time. These functions can be accelerated to improve the

program performance.

To debug and profile an application running on Linux there are many tools that

can be used.

3.3.6.1 Debuggers

Local debugging: gdb The GNU Debugger (GDB) is a portable debugger that runs

on many Unix-like systems and works for many programming languages, including

Ada, C, C++, Objective-C, Free Pascal, Fortran, Go, and partially others GDB offers

extensive facilities for tracing and altering the execution of computer programs. The

user can monitor and modify the values of programs’ internal variables, and even call

functions independently of the program’s normal behavior.

Remote debugging: gdb-server GDB offers a possibility of remote debugging of

embedded systems. On remote debugging GDB runs on the host machine while the

program being debugged runs on the target machine. GDB can communicate to the

remote target that uses GDB protocol through a serial device or TCP/IP. gdbserver

is used on the target to remotely debug the program without needing to change it in

any way.

Manual debugging In this type of debugging, we use the print function to print

some intermediate variables on the screen. This allows us to locate the error and

identify the instruction or variable that caused it. Even if this method appears to be

tedious, but sometimes remains the last solution to debug the program.

3.3.6.2 Profilers

Program profiling is a form of dynamic program analysis that measures some pro-

gram metrics, for example, the memory usage or time complexity of a program, the

usage of particular instructions, or the frequency and duration of function calls. The
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profiling information used to assist program optimization, and performance engineer-

ing. Profiling is done by instrumenting either the program source code or its binary

executable form using a tool called a profiler. Profilers may use a number of different

techniques, including event-based, statistical, and instrumented methods.

Event-based profilers: They are also called tracing profilers. The event-based profil-

ers collect data on well-defined events. These events can be entering/leaving function,

thrown exceptions,etc. The profiler consists of an event tracker and a performance

monitor. The event tracker detects and manages events, while the performance moni-

tor collects information about the program state (run-time, memory usage, etc.) based

on events that occurred during the program execution. The result is information ac-

cumulated on an event basis [79]. We can cite in this type of profilers perf the perfor-

mance counter of Linux.

Statistical profilers: Also called sampling profilers. These type of profilers polls the

target application on regular intervals. To poll the application ,the profiler use OS

interrupts, and at each interruption, it determines the function that is being executed

and rises the sample count of that function. At the end, it reports the number of

collected samples for each function. This report provides an estimation of the time

spent by the application inside each function. The function that has more sample

counts is the function that takes much time. This may be the result of two possible

reasons: the function is called too frequently while the application is running, or the

function is running slowly. This requires the use of another tool or other method to

define the reason. In the two cases, optimization is required [80]. We found in this

type of profilers OProfile and perf (Linux).

Instrumented profiling It is a technique that adds instructions to the source code

or to the executable of the target program to collect the required information. This

technique allows to choose which information to collect but may cause performance

change and lead to inaccurate results. This may be done manually by adding in-

structions to the source code or compiler assisted by adding profiling symbols to the
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executable program. We found in this type of profiling GProf from GNU project.

3.4 Design Flow

Now we have the hardware and the software platforms, the design flow shown in

Figure 3.15 is followed to implement the SLAM on the embedded target and improve

its performance.

SLAM code
Functional
verification

Integration in
Buildroot

Configuring
Buildroot

SLAM
Cross-compilation

and implementation

Profiling
and analysis

Software - Hardware
partitionning

Modifying
software code

Designing
hardware

EvaluationDone
OK

Repartitioning

1Figure 3.15: SLAM design flow on the SoC-FPGA

The first step is to take an existing SLAM code and verify its functionality in

a PC-Like machine. The code is compiled to be run on an x86 architecture. This

step ensures the well functioning of the SLAM. The results obtained can be used to

compare with those obtained from the embedded target.

After verifying the correct functioning of the SLAM, we proceed with its integra-

tion into Buildroot. The SLAM application is integrated in Buildroot as a package. If

one of its dependencies is not included in the list of the supported packages, then it

must be integrated too. The integration is done by adding two files: Config.in and
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Figure 3.16: Buildroot configuration graphical interface menuconfig

package.mk with package is the name of the package. The Config.in file con-

tains the package configurations like: name, dependencies.etc. While package.mk

contains a recipe of how to download, configure, build and install the package. These

files are included in a folder inside packages/ folder with the name of the package.

The main Config.in file must be modified to include the new package. These two

first steps are done once at the first time. Next time, we don’t need to reintegrate the

package in Buildroot.

After integrating the needed packages in Buildroot, we configure buildroot to

build our system. The configuration is done using menuconfig (see Figure 3.16),

a graphical interface that helps to select the options and packages to be included in

the system.

From this menu we can configure the target options, the toolchain to use, the

Linux kernel options, the target packages, and the output filesystem image. In the

target package submenu, we found the newly integrated SLAM application and de-
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pendencies. From the same menu, we choose a profiler and debugger application to

be included in the system. This allows us to debug and profile the application if it

is needed. To debug the application we must add the debugging option in the build

option submenu. This means that the compiler will add debugging symbols to the

executable files.

After finishing the configuration, we proceed to the cross-compilation. In this

step Buidroot will use the cross-compilation toolchain to compile the packages of the

system and produce the filesystem image.

After building the system and implement it on the target, it is ready now to be

executed. The SLAM application is executed and profiled. The profiling allows us to

identify bottlenecks in the program and helps us in the software/hardware partition-

ing. The bottlenecks are analyzed to make a decision of which part of the code to be

implemented in the hardware and how will be implemented. The hardware/software

partitioning requires a modification in the software source code by replacing the part

of code to be accelerated with a calling function to the accelerating hardware. The

hardware is designed with OpenCL as described in section 3.2.4.2. The system is then

rebuilt and evaluated to decide if a new partition is needed or no. If no repartitioning

is needed, the system is rebuilt without debugging symbols, to have the final version

of the SLAM system.

3.5 Conclusion

In this chapter, we have described the two parts of our platform.

In the hardware part, we have seen the existing architectures, and we opted for the

SoC-FPGA because of the benefits that it offers. The combination of a mobile CPU

and an FPGA in the same chip, allows us to take advantage of the advantages of a

hard-processor to execute the software and of the advantages of the high parallelism

of the FPGA to accelerate the heavy functions, in addition to the high bandwidth

data transfer between the two parts. We used the development board DE1-SoC that

contains a low-cost SoC-FPGA from IntelFPGA Cyclone V SoC.
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In the software part, we opted for a system based on embedded Linux. In addi-

tion to the advantage of being open-source, Linux is modular and customizable. It

allows to be customized according to our needs. To build the SLAM system based on

Linux, we used the automatic build system Buildroot. Buildroot allows to shorten the

development time and automate the build of the system.

In the end, we described the design flow of the SLAM system on the embedded

target. The design is based on profiling the program and software-hardware parti-

tioning.

In the next chapter , we see a case study of implementing a visual SLAM based on

EKF on the platform.
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CASE STUDY: IMPLEMENTATION OF EKF-SLAM ON

DE1-SOC

This chapter is based on a journal article co-authored by Rabah Sadoun and Mourad Adnane

[Bouhoun et al., JSA, 2020 [81]]
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Chapter 4. Case study: Implementation of EKF-SLAM on DE1-SoC

4.1 Introduction

In the chapter we see a case study of implementing of an existing SLAM on our

embedded platform. MonoSLAM an EKF based SLAM developed and implemented

by Davison and reimplemented by Hanme Kim, is used in our application. In the

next section, we describe the EKF-SLAM and the MonoSLAM program. Then, we

will configure our platform to implement the chosen SLAM.

After preparing the platform, we implement the SLAM in the platform following

the design flow described in the past chapter.

4.2 Monocular EKF-SLAM Algorithm

Monocular EKF-SLAM is a SLAM based on Extended Kalman Filter with a single

camera. It has two main parts, the prediction step and the estimation step. In the

prediction step, we calculate the predicted (a priori) state of the robot using previous

state information and proprioceptive sensors if they exist. Measurement with an

exteroceptive sensor is taken, and a matching process finds the association between

measured and predicted features. In the estimation (correction) step, we estimate the

new state of the robot and the features using the information from the exteroceptive

sensors. An initialization step is required whenever the robot explores a new area to

add new landmarks to the map (state vector). In this paper, a hand-held camera is

used as an exteroceptive sensor for the correction step, while a prediction method is

used to replace the lack of the proprioceptive sensor.
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4.2.1 State vector and covariance matrix

The state vector x̂ and the covariance matrix P describe the environment map, with N

landmarks. They are defined as:

x̂ =



x̂v

ŷ1

ŷ2
...

ŷN


(4.1)

P =



Pxx Pxy1 Pxy2 · · · PxyN

Py1x Py1y1 Py1y2 · · · Py1yN

Py2x Py2y1 Py2y2 · · · Py2yN

Py3x Py3y1 Py3y2 · · · Py3yN
...

...
... . . . ...

PyN x PyNy1 PyNy2 · · · PyNyN


. (4.2)

In this case study we use 3D landmarks, and a camera with 6 degrees of freedom.

The camera state vector x̂v will contain the position vector rW , the orientation vector

represented with a quaternion qWR, the velocity vector vW and the angular velocity

vector ωR. W and R are defined as coordinate frames fixed, respectively, in the world

or with respect to the camera:

x̂v =


rW

qWR

vW

ωW

 = (4.3)

(
x y z q1 q2 q3 q4 vx vy vz ωx ωy ωz

)T
(4.4)

The landmarks state component ŷi are written in Cartesian coordinates.

The covariance matrix P represents the uncertainty of the state vector. The diago-

nal values are variance of the state vector elements, while the off-diagonal values are
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the correlation between them. They shows how the measurement of an element of the

state vector affects the estimation of the other elements [18].

While this matrix is useful to recognize known areas after loop-closing, it presents

a major constraint in implementing EKF-SLAM. This is because increasing the size

of the state vector, by exploring more landmarks, will cause it to grow exponentially.

This requires the same exponential increase in computation and memory allocation

on the hardware target.

The EKF-SLAM steps are shown in Figure 4.1. The main steps are Prediction,

Matching, Updating and Initialization.

State predicition
x̂k|k−1 = fx̂k−1|k−1

Pk|k−1 = ∂fv
∂x P ∂fv

∂x

T
+Q

Measurement prediction
h(x̂k|k−1)

Matching
ỹk = zk − h(x̂k|k−1)

Measurement
zk

Update
Sk = HkPk|k−1HT

k +Rk

Kk = Pk|k−1HT
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk
Pk|k = (I −KkHk)Pk|k−1

Feature initialization

next timestep
k − 1← k

1
Figure 4.1: Flowchart of EKF based SLAM

4.2.2 Prediction step

In the prediction step, the current state n of the robot is predicted according to its

previous state n− 1.

x̂k|k−1 = f x̂k−1|k−1,uk−1 = fv (4.5)

In the case of a hand held camera, the control vector does not exist. The movement

of the camera causes an unknown linear acceleration aW and angular acceleration

αW , that affect on the linear velocity and the angular velocity. These accelerations are
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supposed to be a process having a Gaussian distribution with a zero mean. They are

added to the transition vector as Gaussian noise vector:

n =

 aW∆t

αW∆t

 =

 VW

ΩW

 (4.6)

The state update equation will be:

fv =


rW

new

qWR
new

vW
new

ωW
new

 =


rW + (vW + VW)∆t

qWR × q((ωW + ΩW)∆t)

vW + VW

ωW + ΩW

 (4.7)

The predicted covariance matrix is calculated:

Pk|k−1 =
∂ fv

∂x
P

∂ fv

∂x

T
+ Q (4.8)

After predicting the positions of the landmarks, the prediction of their new pro-

jections on the camera frame (u, v) is calculated using the measurement model. From

the camera state and the positions of the landmarks, we can predict the measurement

of the landmark relative to the camera.

hR
L = RRW(yW

i − rW) (4.9)

Using the pinhole camera model, the predicted position of the feature in the image

is calculated:

hi =

 u

v

 =

 u0 − f ku
hR

Lx
hR

Lz

v0 − f kv
hR

Ly

hR
Lz

 (4.10)

4.2.3 Matching step

In this step, a matching process searches for a new image patch in the region near

each feature, similar to the initial image patch saved from the previous step. First, a

search region is calculated for each visible feature in the new frame, it is determined

from the feature position yi and the covariance matrix P. The reference image patch

f (u, v), from the previous frame, scans the region and searches for the position of the
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feature t(u, v) in the new frame, using the value of the Normalized Sum of Squared

Differences (NSSD) (4.11).

NSSD =
1
n ∑

u,v

(
(
( f (u, v)− f̄ )

σf
− (t(u, v)− t̄)

σt

)2

(4.11)

where n = length× width of the image patch.

After matching the measured features, measurement error is calculated:

ỹk = zk − h(x̂k|k−1) (4.12)

4.2.4 Correction and update step

In the correction step, the innovation covariance matrix Sk and the Kalman gain Kk

are calculated, and the state vector and the covariance matrix are updated:

Sk = HkPk|k−1HT
k + Rk (4.13)

Kk = Pk|k−1HT
k S−1

k (4.14)

x̂k|k = x̂k|k−1 + Kkỹk (4.15)

Pk|k = (I − KkHk)Pk|k−1 (4.16)

4.2.5 Feature initialization step

In this step, an initialization of new features is done, if there are not enough visible

features. In order to do that, we must extract some features from a sensible area in

the camera image.

Davison and Murray [82] show that image patches with large dimensions (9×9

to 15×15) can serve as long-term landmark features. In this work, the features are

detected using the Shi and Tomasi operator, with patches of 11×11 pixels. The image

patch is saved and associated with the corresponding point.
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These features are the 2D projections on the camera (u, v), and it cannot be con-

verted directly to give the 3D positions of the landmarks due to the lack of the depth

information, we must have more than one image to extract it. The method of Davi-

son [18] is followed, it consist of a first representation in form of 3D semi-infinite

line starting at the estimated camera position and heading to the feature direction.

The landmark is predicted to be in this line, the probability of its position is equally

distributed along this line in the first measurement. The probability distribution is

approximated as Gaussian distribution, and after many measurements the probabil-

ity of the landmark position converge. The standard deviation getting lower so that

its representation in the vector state can be replaced with 3D coordinates.

4.3 Integrating MonoSLAM in Buildroot

The MonoSLAM is based on SceneLib2 library, developed by Davison [22] and reim-

plemented by Kim [67]. The SceneLib, itself, depends on some libraries. All those

libraries, except one, are included in the packages list of Buildroot (OpenCV, Boost,

ffmpeg, FreeGLUT, etc.) These package are selected in the menuconfig. Pangolin is a

library that isn’t included in the package list of Buildroot.

To add the SceneLib package to Buildroot we add Config.in and SceneLib.mk

files in package/SceneLib2/ folder, and Config.in and Pangolin.mk files in

package/Pangolin/ folder. These files are included in the appendix of this thesis

(see Appendix A.1 and Appendix A.2).

For the MonoSLAM application, we created the main program executing SLAM

locally on the host machine. This application uses SceneLib2 library. Like other pack-

ages, the application is also added to Buildroot list of packages by adding Config.in

and SceneLib.mk files in package/SLAM/ folder (see Appendix A.3).

Newly added packages need to be listed in the packages configuration menu. We

add those packages to the configuration menu by adding entries to packages/Config.in

file (see Appendix A.4).

After integrating the packages and add entries to the configuration menu Kconfig
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file, we configure our system. First we use a predefined configuration type of our

platform that exists in Buildroot by calling make altera_socdk_defconfig. This

will set the target, kernel, and toolchain options of the Buildroot configuration to the

parameters of the used platform (DE1-SoC). We select then the dependencies packages

in target packages menu and our packages. (see figures 4.2)

After configuring and selecting the system packages, we launch the building pro-

cess. The source code of each package is first downloaded then patched if any patches

exists. After applying the patches, It is configured and built. The package is then

installed in the output folder. The resulted files are copied to the output folders ac-

cording to their destination, if it is a host package they are copied to the host folder to

be used by other packages, and if it is a target package, they are copied to the target

folder. After, building all the packages, the target filesystem is created using the target

output folder.

The build process need a large time especially in the first build beacause of down-

loading packages. Figure 4.3 shows the build time of the SLAM system by steps

excluding download step. Package building and configuring take the majority of the

build time. Figure 4.4 shows a snippet of the package build durations histogram.

4.4 MonoSLAM profiling and analysis

The SLAM program was tested and profiled on dual-core ARM Cortex-A9. Table 4.1

shows a snippet of the profiling result of the SLAM program. The profiling tools

use a statistical approach, and the shown results are the self-time of each function.

We notice that correlate2_warning function occupies 55.90% of the global time of the

program. To get more information, an analysis of the function is required, in addition,

we examine the caller tree until the main function, to determine the best level of the

tree to be accelerated.

The correlate2_warning calculates the correlation between two image patches, and

return the sum of the squared differences Eq. (4.11). This function is used to search

for a feature in a region.
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Figure 4.2: Selecting the SLAM package in Buildroot menuconfig
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extract1.6%
patch

0.5%

configure

25.3%

build

63.6%
install-target

5.9%
install-staging

1.4% install-images
0.0% install-host1.6%

Build time per step

Figure 4.3: Duration fo building steps

A basic implementation of the function (Algorithm 1 requires calculation of 5

loops, in 3 sequential stages, each loop has 11x11 iteration ( f̄ , t̄, σf , σt, NSSD).

With this implementation we need to access to the same memory elements ( f (x, y)

and t(x, y)) three times, first to calculate the patches’ means (lines 3 to 6), second, to

calculate the standard deviations of the two patches (lines 11 to 14) which depend

on the result of the previous loop, finally, to calculate the NSSD (line 20 to 22) which

depends on the result of the previous loops too.

The implemented function in the SceneLiB2 library, is simplified to have just one

loop, so the Eq. (4.11) becomes:

NSSD =
1
n

(S f 2

σ2
f
+

St2

σ2
t
+ n × k2 − 2 × S f×t

σf σt
− 2 × k× S f

σf
+ 2 × k× St

σt

)
(4.17)

where :

S f 2 = ∑x,y ( f (x, y))2 is the sum of the squared values of the reference image patch
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Figure 4.4: A snippet of package build duration histogram

Table 4.1: Profiling result of the SLAM program

function percentage

correlate2_warning 55.90%

Eigen::internal::gebp_kernel 7.97%

SearchMultipleOverlappingEllipses::search 2.61%

MonoSLAM::elliptical_search 2.60%

pixels.

St2 = ∑x,y (t(x, y))2 is the sum of the squared values of the new image patch pixels.

S f = ∑x,y ( f (x, y)) is the sum of the reference image patch pixels.

St = ∑x,y (t(x, y)) is the sum of the new image patch pixels.

S f×t = ∑x,y ( f (x, y)× t(x, y)) is the sum the products of the reference image patch

pixels and the new image patch pixels.

The algorithm 1 becomes as it is shown in algorithm 2.

This implementation reduces the number of dependent consecutive loops from

three to one loop, this will reduce the memory access by preventing the access to the

two patches elements more than one time. Inside the loop, there is 5 independent op-

erations executed on each iteration to get 5 values. The number of iterations depends
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on the size of the patch. Taking a patch of 11× 11 in our case, this will result on 121

iterations. These iterations are executed sequentially on the processor, this will take

5× 121 = 605 operations. Other expensive operations are used after the loop, we have

2 squared root operations and 10 division operations.

The correlate2_warning function is called by two other function, elliptical_search with

96.2% of calls and SearchMultipleOverlappingEllipses::search with 3.8% of calls. To re-

trieve more information we have to examine the elliptical_search function, which has a

high number of calls to the correlate2_warning function. The Algorithm of the ellipti-

cal_search is described in Algorithm 3.

For each feature, a search region is delimited using the projection of its predicted

position on the screen and its innovation covariance. For this region, the correspond-

ing reference image patch will scan the pixels of this region (lines 4 to 10) to find

the new feature position on the screen. On each loop, the reference image patch

and a new image patch from the search region are passed to the correlate2_warning

function (line 5). The projection coordinates of the new feature is determined by the

lowest correlation result (lines 6 to 9). The search process will be executed sequen-

tially due to the software implementation nature. This means that the next call to

correlate2_warning is not called only after the return of the present call, even the two

processes are independent. The processing time depends on the size of the search

region.

4.5 SLAM program implementation flow

4.5.1 Hardware-software partitioning

In this step, we chose the part of the code to be implemented on the FPGA. Accoding

to the definition of Amdahl’s law [83], the acceleration of a task is determined by

the the amount of the parallelized part and the acceleration of this part. This can be

written by the following equation:
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S =
1

1− p + p
s

(4.18)

S is the acceleration of the whole task, p is the parallelized part and s is the ac-

celeration of the parallelized part. The theoretical upper limit of the acceleration then

will be:

Slimit =
1

1− p
(4.19)

the higher the p, the higher the upper limit. The acceleration factor s depends

on the execution time of the parallelized part. In hardware acceleration this time is

the sum of the computation time and the data transfer time to and from the acceler-

ator. In the hardware/software partionning process, we must choose the most time

consuming part of the software with less data transfer to reduce the execution time.

Implementing correlate2_warning function as it is, with OpenCL for FPGA is not

optimal due to the inefficiency of the data transfer. The correlate2_warning function

requires the transfer of the reference image patch and the new image patch each time,

this transfer has redundant information that can be eliminated. Figure 4.5 shows

scan process of the search region by the reference image patch, for each iteration, the

correlate2_warning function is called, the 11× 11 reference image patch and 11× 11

image patch from the search region are transferred. Hence, the reference image patch

is transferred several times, in addition to the common pixels (dark blue) from two

successive image patches, this reduces the efficiency of the data transfer.

To eliminate the transfer of the redundant data, the reference image patch and the

search region are transferred entirely to the hardware at the beginning of the process.

From the previous The caller loop of the correlate2_warning (Algorithm 3 from

lines 4 to 10) is chosen to be implemented in the hardware.

4.5.2 OpenCL Implementation

Despite that the FPGA offers the possibility of designing a parallel architecture, that

speeds up the processing, an unoptimized architecture can cause poor performance
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Figure 4.5: scanning process of search region by a reference image patch

comparing to the software version. Designing an accelerator circuit on an FPGA

platform with OpenCL, must consider these 3 types of constraints: computation con-

straints, communication or data transfer constraints and available resources in the

FPGA.

The optimization report, generated by the IntelFPGA offline compiler, helps us to

optimize the kernel by showing the origin of the stalls which can be a result of a data

dependency, memory dependency, or loop iteration dependency.

4.5.2.1 Implementation constraints

As starting point we choose a single work-item kernel, as it is recommended by In-

tel FPGA [84], since the function does not have an explicit description of multiple

concurrent threads. Figure 4.6 shows the execution flow of the OpenCL program.

The kernel in this case is similar to the C code. The algorithm is implemented using

a pipelined architecture, each stage of the pipeline is an operation of the algorithm.

The data passes through the pipeline stages, and each stage process one data per cycle

concurrently.
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yes

no

1Figure 4.6: Diagram flowchart

Computational constraints The main computational constraint in implementation

of this function is the nested loops. The nested loops have an Initiation Interval (II)

greater than 1, which is the interval between the launches of two successive loops.

This prevents the outer loops from initiating an iteration every clock cycle, and gen-

erates stalls in the pipeline.

Data transfer constraints In OpenCL, the data transfer time is an important factor

since it has a great influence in the global processing time. In an OpenCL kernel for

the FPGA, the only shared memory between the host and the device is the global
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memory. The input data transferred between the host and the OpenCL device are

initially loaded to the global memory.

The optimization report shows that the load operations in the inner sums loop are

stallable, this prevents the outer sums loop to be launched every clock cycle (II > 1).

The report suggests a dynamic profiling to determine the performance impact.

The second constraint is the kernel parameters transfer constraint. Unlike vectors,

reading and writing kernel single parameters are not read in a burst mode. The

reading and writing these parameters one by one takes a long time comparing to

reading and writing vectors.

FPGA resource constraints Some operations in the algorithm are expensive and use

lot of FPGA resources. In this algorithms, division and the square root operations are

used many times. This risks that the kernel does not fit in the FPGA.

4.5.2.2 Kernel optimization

Many researchers used OpenCL to implement their system on an FPGA [85–87]. They

also explored the optimization techniques to improve the performance of the OpenCL

kernels and to better use of the FPGA resources. In this subsection we describe the

optimization techniques used in our work.

Unrolling loops We choosed to implement the Algorithm 2, since it presents less

nested loops. The loop in this algorithm (from Algorithm2 line 6 to line 12) calculate

the five sums S f , St, S f 2 , St2 and S f×t, two accumulate operations and three multiply

accumulate operations. These 5 operations are done simultaneously, since they are

independent. The inner loop calculates the lines, and the outer loop calculates the

columns. To speed up the calculation, the inner loop is fully unrolled to be able to

process one line per cycle, and the outer loop can load one line per cycle, with an II of

1. However unrolling loop request more FPGA resources, and generates simultaneous

access to the memory, which can cause performance degradation.
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Minimizing expensive operations Complex operations require a large FPGA re-

source usage and cause a long time delay. To minimize the number of complex opera-

tions, the 5 divisions by the constant n are replaced by the multiplication by 1/n. The

lines from 19 to 21, containing many division operations, are simplified by reducing

the formula to a common denominator, so we will need only a division operation.

The two formulas become:

G = ( f̄ × σt)− (t̄× σf ) (4.20)

Numerator = (S f 2 × t̄) + (St2 × f̄ )+

(n× G2)− (2× S f×t × σf σt)+

(2× G)× ((St × σf )− (S f × σt)) (4.21)

Denominator = f̄ × t̄ (4.22)

NSSD =
1
n
× Numerator

Denominator
(4.23)

The lines from 19 to 21 becomes as shown in Algorithm 4:

Data types Data types has an important impact on the processing speed and the

FPGA resources usage.

The images used by the SLAM are black and white, and the pixels are written as

a 256 level grayscale. The reference image patch and the search region are coded as a

vector of unsigned char, this minimizes the amount of data transferred from the host

to the device, and reduce the resources used to memorize and process them.

The result of the five sums calculated in Algorithm 2 lines 6 to 12 are coded as

integers, since they are sums and multiplications of unsigned characters. This will

reduce the time of the two operations and the resources used to calculate them.

The other values used in the algorithm 2 from lines 13 to the end are written in 32

bits float point.
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The output values, the position of the smallest NSSD and its NSSD, are structured

so that they can be transferred as vectors instead of reading them one by one, which

will reduce the read time.

Data structuring The output of the device is a structure containing the smaller NSSD

in the search region with the coordinates of the new image patch corresponding to this

NSSD, the structure is interpreted as an array, and the transfer is more efficient. Since

it is able to be changed every cycle, according to the comparison between NSSDs. This

structure is stored on local memory to prevent stallable store operations to the global

memory. At the end, the result is transferred to the global memory to be read by the

host.

Cached memory To avoid the stallable operations, the data stored in the global

memory are transferred to the local memory. This is shown as the first step in Fig-

ure 4.6. The local memory has a zero latency, the load operations are stall free, and

the Initiation interval will be equal to 1.

Memory replication The inner sums loop is unrolled, this requires many load op-

erations at one clock cycle, however to support multiple access efficiently to the local

memory, it must be replicated. In our case, 11 load operations are needed from each

of the two memories containing the reference image patch and the new image patch,

the memories are replicated 3 times. The replication reduces the access time, how-

ever it increases the resources usage. This optimizations is automatically done by the

offline compiler.

4.6 Evaluation and Discussion

In order to implement and evaluate the SLAM system, we used a DE1-SoC board from

Terasic containing the Cyclone V SoC. Cyclone V SoC is a low cost and low power

SoC from IntelFPGA. It consists of two parts: a dual core ARM Cortex A9 based

Hard Processor System (HPS) operating at 925 MHz and an FPGA fabric. A DDR3
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Memory is associated with the HPS, and can be accessed from the FPGA through

the HPS. Both HPS and FPGA are interconnected with a high throughput datapaths

with a bandwidth up to 6400MB/s. DSP blocks in the FPGA provides up to 32.8

Giga floating point operations per second (GFLOPS). Table 4.2 shows the resources

available on Cyclone V SoC FPGA 5CSEMA5 used in our work.

Resources Cyclone V

5CSEMA5

Logic Elements (LE) (K) 85

ALM 32075

Registers 128300

Memory(Kb)
M10K 3970

MLAB 480

Variable-precision DSP Block 87

18 x 18 Multiplier 174

Table 4.2: Table of resource for Cyclone V SE

The SLAM program and libraries with a custom Linux OS are cross-compiled

and built using Buildroot in PC-like machine, targeting the ARM CPU used in the

Cyclone V SoC. Buildroot automates the build process and reduce its time. In the

end, it produces a small system with only the needed tools and libraries.

The accelerated function is developed in OpenCL using Intel FPGA SDK for OpenCL.

The Intel FPGA SDK for OpenCL offline compiler will perform all the steps needed

to generate an FPGA hardware. The Intel FPGA SDK for OpenCL offline compiler

generates an FPGA programming image of the built hardware that will be used by

the HPS to program the FPGA.

The designed OpenCL kernel is compiled with offline compiler using two options

: -fp-relaxed that relaxes the order of floating-point operations using a balanced tree

hardware implementation, and -fpc that reduces the floating-point rounding opera-

tions. This will reduce the resource usage of the FPGA and speeding up the process-

ing. We used -profile with offline compiler to profile the FPGA implementations. The
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profiling report of the OpenCL implementation can be exploited using Intel FPGA

dynamic profiler for OpenCL. We used a random image of n× n as a search region

and a random image patch of 11× 11 from this image as reference patch.

Figure 4.7 shows the execution time of the OpenCL kernels in the FPGA using

different optimization techniques (UL: unrolling loops and LM: using local memory)

compared to the unoptimized kernel. The kernels having unrolled loops achieve a

speedup nearly 5 times compared with the kernels having unoptimized loops. The

kernel with local memory as a cache shows a speedup that can achieve 2 times com-

pared with kernel without a cache. However, it has no effect on the kernel having

unoptimized loops. This is because the global memory bandwidth suffices to feed the

kernel with data in real time.
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Figure 4.7: Execution speed kernels with/without LM: using local memory and UL: unrolling loops

Reading and writing very used data, requires a high bandwidth between the FPGA

and the used memory. Using the global memory as the main memory, to store data,

generates a heavy traffic with this memory. The global memory has a theoretical
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bandwidth limit (claculated to 4010MB/s by the dynamic prfoiler) and it is subject to

stalls. In the other hand, the local memory is a no delay memory, and it is designed to

deliver data at the same speed of the FPGA, hence the traffic with the global memory

is light. The data traffic with the global memory is shown in Figure 4.8. The kernel

with unrolled loops has parallel operations executed simultaneously, which requires

more data at a time. This explains the the high data traffic in the kernel with unrolled

loops, and less data traffic in the unoptimized kernel.
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Figure 4.8: The global bandwidth needed to access the global memory

As mentioned in section 4.5.2.2, transferring input data to a local memory is sup-

posed to prevent stalls that can be caused by random access to the global memory.

Using the dynamic profiler, we can see in Figure 4.9 the percentage of stalls time when

using the global memory to read the input data. The stall time percentage depends,

also, on the required data transfer rate, that’s why the unoptimized kernel generates

lower stalls time percentage than the kernel with unrolled loops. On the other hand,
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there is no stalls when using a local memory to read the input data.
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Figure 4.9: Percentage of stalls time in global memory accessing

The optimized kernel is chosen to be used as accelerator for the SLAM application.

The table 4.3 shows the report generated by the offline compiler, it contains the FPGA

resources used for the optimized kernel and its running frequency for the optimized

kernel.

As we can see, in addition to the high usage of the logic utilization (87%), the

usage of DSP blocks (76%) and RAM blocks (62%) is high too. Unrolling loops of

sums requires replicating computation elements to have a simultaneous processing

inside a loop, this explains the logic element utilization. The optimization report

shows that the reference image patch and search region memories are replicated 3

times to support multiple access from the unrolled loop, this explains the usage of

RAM blocks (62%). Reducing the number of division to 1, optimizes greatly the

usage of the FPGA resources, the only floating point division operation used takes 14

DSP of the 87 DSPs in the FPGA (16%).
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Compilation report

ALUTs 28433

Registers 77650

Logic utilisation 27978 / 32070 ( 87% )

I/O pins 115 / 457 ( 25% )

DSP blocks 66 / 87 ( 76% )

Memory bits 1095946 / 4065280 ( 27% )

RAM blocks 246 / 397 ( 62% )

Kernel fmax (MHz) 125.42

Table 4.3: Compilation report

Figure 4.10 shows the comparison between the software and OpenCL implemen-

tations in terms of execution time, versus the number of iterations needed to scan a

search region by the reference image patch. The OpenCL implementation has a short

time of processing comparing to the software implementation, and the differences

increases with the number of iterations.

To evaluate the OpenCL implementation with the SLAM, we integrate it inside

the SLAM by replacing the searching process and the Correlate2_warning function.

The SLAM is executed to process 300 frames from a 640× 480 video sequences. It

is configured to keep a maximum of 15 visible features and update 15 features per

frame. A handheld camera is used to record the video sequences. These sequences

are used to compare the performance of the proposed OpenCL implementation with

the pure software implementation.

Using an FPGA circuit to accelerate a function can affect the accuracy of the results.

This is due to the change in the order of the operations (balanced tree operations)

and the reduction in rounding operations. To evaluate the accuracy of the OpenCL

implementation, we compared the results obtained from the OpenCL implementation

with those obtained from the software implementation. The NSSD mean error at

the output of the accelerated function is about 3.12× 10−3 with a relative error about

0.092%. The mean error of the position of the matched patch is about 0.091 pixels with
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Figure 4.10: Processing time

some irregular results having a maximum error of 34.132 pixels. These errors at the

output of the accelerated function have a small impact on the SLAM results in some

positions. The calculated mean error of the trajectory of the OpenCL implementation

is 0.31 cm

The software implementation has an average time of processing of 33.76 ms per

frame, while the OpenCL implementation has an average of 17.5 ms per frame. This

means that the OpenCL implementation can operate at a performance up to 57.1 FPS

and with an acceleration of 1.93 times faster than the software implementation. With

55.9% of the processing time occupied by the correlate2_warning function, the theoret-

ical maximum acceleration never achieved is 2.27.

The search regions size measured during the experiment is typically 20 to 24 pixels

across. In the software implementation the correlate2_warning function has an average

processing time of 18.87 ms per frame, which is equivalent to an average of 1258 µs

per feature.
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Table 4.4: Comparison of some SLAM implementation with ours

Works year HW type Full. emb. Prog. Lang. Cost Resolution Frame rate

Fang et al. [32] 2018 FPGA Yes HDL High 640x480 67 f ps

Gu et al. [29] 2015 FPGA Yes HDL High *NM* 31 f ps

Liu et al. [33] 2019 FPGA No HDL Medium 640x480 31.45 f ps

Abouzahir et al. [34] 2018 PC + FPGA No OpenCL Medium 320x240 102.14 f ps

Boikos et al. [35] 2017 SoC-FPGA Yes HLS Low 320x240 22 f ps

Our 2020 SoC-FPGA Yes OpenCL Low 640x480 57.1 f ps

In the FPGA implementation, the average time occupied by the function is 2.61 ms,

which is equivalent to an average of 174 µs per feature. This value does not corre-

spond with the result obtained from the profiler which is around 70 to 90 µs. This is

due to two reasons: first, the data transfer time from the host memory to the device

global memory is not measured, since the kernel has not started yet and so the profiler

too. The second reason is the clFinish() function that blocks the host program until all

the device events are completed. The achieved acceleration of the correlate2_warning

inside the SLAM is around 7 times faster than the software implementation.

In terms of energy consumption, the power consumption of the SLAM system

is estimated using the PowerPlay Power Analyzer from the Intel Quartus tool. The

estimated power consumption is 2663.76 mW for the OpenCL implementation ver-

sus 1392.92 mW for the software implementation. This difference in terms of power

consumption is due to the FPGA accelerating circuit. However in terms of power

consumption per frame this difference is reduced, and the power consumption per

frame of the OpenCL implementation is about 46.65mJ/ f rame.

The implementation presents many advantages compared to other works in the

field. Table 4.4 shows a comparison of some remarkable research works of imple-

menting SLAM on embedded systems with ours.

In our case, we used a low-cost hardware platform to implement SLAM, com-

pared with other works where high-cost [32] [29] or mid-range platforms [33] [34] are

used. This is suitable for using the SLAM on low-cost applications. The SoC-FPGA

used in this work offers the advantage of using a mobile hard processor in the same

chip with the FPGA, and avoids the use of the FPGA resources to implement a soft-

113



Chapter 4. Case study: Implementation of EKF-SLAM on DE1-SoC

processor [29] [32], or the need for a distant host [34].

The use of OpenCL as a high language to implement the SLAM reduces the develop-

ment time, and in contrast with HLS used in [35], it is a cross-platform language that

can be used on other computing platforms.

4.7 Conclusion

In this section, we presented a case study of implementing an EKF-SLAM using the

proposed platform. To achieve this, we first integrated an existing EKF-SLAM into the

platform. After profiling the SLAM program, we extracted the most time-consuming

part. The analysis of this part of the program helps us in the hardware/software

partitioning step. After taking the partitioning decision, the hardware accelerator is

designed using the OpenCL.

We listed the design constraints as well as the optimization techniques used to

optimize the design. After designing the hardware accelerator, we compared the

results using different types of optimization techniques. The optimized accelerator is

used in a complete SLAM program and evaluated on the proposed platform.

Finally, a comparison table is made to compare the proposed platform with the

implementation works cited in the state of the art in terms of performance, used

tools, and cost.
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Algorithm 1 Basic NSSD Algorithm

1: f̄ ← 0

2: t̄← 0

3: for x ∈ [0; x0] , y ∈ [0; y0] do

4: f̄ ← f̄ + f (x, y)

5: t̄← t̄ + t(x, y)

6: end for

7: f̄ ← f̄ /(x0 × y0)

8: t̄← t̄/(x0 × y0)

9: var f ← 0

10: vart ← 0

11: for x ∈ (0; x0] , y ∈ [0; y0] do

12: var f ← var f + ( f (x, y)− f̄ )2

13: vart ← vart + (t(x, y)− t̄)2

14: end for

15: var f ← var f /(x0 × y0)

16: vart ← vart/(x0 × y0)

17: σf ← √var f

18: σt ←
√

vart

19: NSSD ← 0

20: for x ∈ (0; x0] , y ∈ [0; y0] do

21: NSSD ← NSSD +
(

f (x,y)− f̄
σf

− t(x,y)−t̄
σt

)2

22: end for

23: NSSD ← NSSD/(x0 × y0)
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Algorithm 2 Implemented NSSD Algorithm

1: S f ← 0

2: St ← 0

3: S f 2 ← 0

4: St2 ← 0

5: S f×t ← 0

6: for x ∈ [0; x0] , y ∈ [0; y0] do

7: S f ← S f + f (x, y)

8: St ← St + t(x, y)

9: S f 2 ← S f + ( f (x, y))2

10: St2 ← St + (t(x, y))2

11: S f×t ← S f×t + ( f (x, y)× t(x, y))

12: end for

13: f̄ ← S f /(x0 × y0)

14: t̄← St/(x0 × y0)

15: var f ← S f 2/n− f̄ 2

16: vart ← St2/n− t̄2

17: σf ← √var f

18: σt ←
√

vart

19: k = f̄ /σf − t̄/σt

20: NSSD ← S f 2

var f
+

St2
vart

+ n× k2 − 2× S f×t
σf×σt

− 2× S f×k
σf

+ 2× St×k
σt

21: NSSD ← NSSD/(x0 × y0)
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Algorithm 3 elliptical_search algorithm

1: hal f width, hal f weight← Calculate the dimension of the search box

2: ucentre, vcentre← Calculate the center of the box

3: urelstart, urel f inish, vrelstart, vrel f inish← Check the limits aren’t outside the im-

age

4: for {urel, vrel} ← {(urelstart : urel f inish), (vrelstart : vrel f inish)} do

5: corr ← correlate2_warning( f eature, image(urel + ucentre, vrel + vcentre))

6: if corr < corrmax then

7: corrmax ← corr

8: {u, v} ← {urel + ucentre, vrel + vcentre}
9: end if

10: end for

Algorithm 4 Implemented NSSD Algorithm with OpenCL

19: G ← ( f̄ × σt)− (t̄× σf )

20: NSSD ← Numerator
Denominator

21: NSSD ← NSSD× ninv
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GENERAL CONCLUSION

The main purpose of this thesis is to develop a prototyping platform to help design

and build embedded systems dedicated to SLAM. This platform is centered on SoCs

and open-source bricks. SLAM algorithms are complex and are initially developed on

powerful machines. The implementation of SLAM algorithms on embedded systems

requires the use of an architecture and an implementation methodology that take into

account the constraints of embedded systems.

In this context, a study of some implementations of SLAM algorithms on embed-

ded targets was made. This study directed us towards the use of FPGA based SoC

and High level languages.

In the second chapter of the thesis, we explored the embedded systems design ap-

proaches. As we talk about platform, a meet-in-th-middle approach is the convenient

approach in our case. To efficiently partition the SLAM program between the Hard-

ware and Software parts of the platform, we used Hw/Sw co-design methodology.

The proposed prototyping platform is composed of two parts hardware part and

software part. The hardware part of the proposed platform is based on SoC-FPGA. An

SoC-FPGA integrates a hard CPU and an FPGA fabric in the same chip. This allows

us to benefit from the high parallelism and customization of the FPGA with a high

bandwidth data transfer with the CPU. A DE1-SoC board equipped with Cyclone

V-SoC, a low-cost SoC-FPGA from IntelFPGA is used as the technology target. This

type of SoC-FPGA can be programmed using OpenCL.
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The software part is based on the Linux operating system. We used Buildroot, an

automated system building tool, to build a light and customized Linux system. It

allows also reproducing and retargeting to other platforms.

A case study carried on implementation of an EKF-SLAM on the SoC-FPGA and

has shown that the result of the platform is comparable, from a performance point of

view, with other SLAM implementation work.

Future Work

Prototyping platforms for embedded SLAM are not common as it is mentioned above.

These platforms can have many applications in research or in industry. At the end of

this thesis, we consider the following perspectives:

• It would be interesting to integrate other types of SLAM. Many SLAM imple-

mentations exist as open-source such as ORB-SLAM, LSD-SLAM, etc. They

present other types of SLAMs and their implementation on the platform can

be investigated.

• In this work, we used OpenCL to design the FPGA accelerator. Although it has

several advantages such as porting to other platforms and a high-level design,

the use of HLS can be studied and compared with OpenCL.

• As we aim for multi-targeting, the use of different embedded targets is a vali-

dation step of the proposed platform. The platform can also be tested with real

mobile robots, equipped with many types of sensors in a real environment.
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APPENDIX A

SCENELIB2 AND PANGOLIN CONFIGURATION FILES

A.1 Pangolin package files

Listing A.1: ./package/Pangolin/Config.in

conf ig BR2_PACKAGE_PANGOLIN

bool " Pangolin "

depends on BR2_PACKAGE_BOOST

depends on BR2_PACKAGE_HAS_LIBGL

depends on BR2_PACKAGE_LIBGLEW

depends on BR2_PACKAGE_LIBFREEGLUT

depends on BR2_PACKAGE_LIBGLU

depends on BR2_PACKAGE_EIGEN

depends on BR2_PACKAGE_FFMPEG

depends on BR2_PACKAGE_LIBUSB

depends on BR2_PACKAGE_LIBPNG

depends on BR2_PACKAGE_JPEG

depends on BR2_PACKAGE_TIFF

help

Pangolin i s a l ightweight por tab le rapid development

l i b r a r y f o r managing

OpenGL display / i n t e r a c t i o n and a b s t r a c t i n g video input .

ht tp ://www. stevenlovegrove . com/? id =44

ht tps :// github . com/stevenlovegrove/Pangolin
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A.2. SceneLib2 package files

comment " Pangolin need L i b r a r i e s "

depends on ! ( BR2_PACKAGE_BOOST && BR2_PACKAGE_HAS_LIBGL &&

BR2_PACKAGE_LIBGLEW && BR2_PACKAGE_LIBFREEGLUT &&

BR2_PACKAGE_LIBGLU && BR2_PACKAGE_EIGEN &&

BR2_PACKAGE_FFMPEG && BR2_PACKAGE_LIBUSB &&

BR2_PACKAGE_LIBPNG && BR2_PACKAGE_JPEG &&

BR2_PACKAGE_TIFF)

Listing A.2: ./package/Pangolin/Pangolin.mk

#########################################################

# #

# Pangolin #

# #

#########################################################

PANGOLIN_VERSION = 021 ed52ca8e355abf7cd2c783e12a316fc07218d

PANGOLIN_SITE = $ ( c a l l github , stevenlovegrove , Pangolin , $ (

PANGOLIN_VERSION) )

PANGOLIN_INSTALL_STAGING = YES

PANGOLIN_INSTALL_TARGET = YES

PANGOLIN_CONF_OPTS = −DCPP11_NO_BOOST=ON −DBUILD_SHARED_LIBS=ON −

DCMAKE_BUILD_TYPE=Release

PANGOLIN_DEPENDENCIES = boost l i b g l l ibglew l i b f r e e g l u t l i b g l u eigen

ffmpeg l i b u s b libpng l i b j p e g t i f f opencv

$ ( eval $ ( cmake−package ) )

A.2 SceneLib2 package files

Listing A.3: ./package/SceneLib2/Config.in

conf ig BR2_PACKAGE_SCENELIB2

bool " SceneLib2 "

depends on BR2_PACKAGE_BOOST

depends on BR2_PACKAGE_HAS_LIBGL

depends on BR2_PACKAGE_LIBGLEW

depends on BR2_PACKAGE_LIBFREEGLUT

depends on BR2_PACKAGE_LIBGLU
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Appendix A. SceneLib2 and Pangolin configuration files

depends on BR2_PACKAGE_EIGEN

depends on BR2_PACKAGE_FFMPEG

depends on BR2_PACKAGE_LIBUSB

depends on BR2_PACKAGE_LIBPNG

depends on BR2_PACKAGE_JPEG

depends on BR2_PACKAGE_TIFF

depends on BR2_PACKAGE_PANGOLIN

help

SceneLib2 i s an open−source C++ l i b r a r y f o r SLAM o r i g i n a l l y

designed and

implemented by Andrew Davison and c o l l e a g u e s a t the

Univers i ty of Oxford .

ht tp ://hanmekim . blogspot . com/2012/10/ scene l ib2 −monoslam−

open−source − l i b r a r y . html

ht tps :// github . com/hanmekim/SceneLib2

comment " S c e n e l i b needs L i b r a r i e s "

depends on ! ( BR2_PACKAGE_BOOST && BR2_PACKAGE_HAS_LIBGL &&

BR2_PACKAGE_LIBGLEW && BR2_PACKAGE_LIBFREEGLUT &&

BR2_PACKAGE_LIBGLU && BR2_PACKAGE_EIGEN &&

BR2_PACKAGE_FFMPEG && BR2_PACKAGE_LIBUSB &&

BR2_PACKAGE_LIBPNG && BR2_PACKAGE_JPEG &&

BR2_PACKAGE_TIFF && BR2_PACKAGE_PANGOLIN)

Listing A.4: ./package/SceneLib2/SceneLib2.mk

#########################################################

# #

# SceneLib2 #

# #

#########################################################

SCENELIB2_VERSION = 39991 c61becbebe0c66601fe5c14f8155264be4e

SCENELIB2_SITE = $ ( c a l l github , hanmekim , SceneLib2 , $ ( SCENELIB2_VERSION

) )

SCENELIB2_INSTALL_STAGING = YES

SCENELIB2_INSTALL_TARGET = YES

SCENELIB2_CONF_OPTS = −DCMAKE_BUILD_TYPE=Release

SCENELIB2_DEPENDENCIES = boost l i b g l l ibglew l i b f r e e g l u t l i b g l u eigen
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A.3. MonoSLAM package files

ffmpeg l i b u s b libpng l i b j p e g t i f f opencv Pangolin

$ ( eval $ ( cmake−package ) )

A.3 MonoSLAM package files

Listing A.5: ./package/SLAM/Config.in

conf ig BR2_PACKAGE_SLAM

bool "SLAM"

depends on BR2_PACKAGE_BOOST

depends on BR2_PACKAGE_HAS_LIBGL

depends on BR2_PACKAGE_LIBGLEW

depends on BR2_PACKAGE_LIBFREEGLUT

depends on BR2_PACKAGE_LIBGLU

depends on BR2_PACKAGE_EIGEN

depends on BR2_PACKAGE_FFMPEG

depends on BR2_PACKAGE_LIBUSB

depends on BR2_PACKAGE_LIBPNG

depends on BR2_PACKAGE_JPEG

depends on BR2_PACKAGE_TIFF

depends on BR2_PACKAGE_PANGOLIN

depends on BR2_PACKAGE_SCENELIB2

help

SLAM i s a t i n y a p p l i c a t i o n of SLAM using SceneLib2 Library

http :// eln . enp . edu . dz

sa lah . bouhoun@g . enp . edu . dz

comment "SLAM needs L i b r a r i e s "

depends on ! ( BR2_PACKAGE_SCENELIB2 && BR2_PACKAGE_BOOST &&

BR2_PACKAGE_HAS_LIBGL && BR2_PACKAGE_LIBGLEW &&

BR2_PACKAGE_LIBFREEGLUT && BR2_PACKAGE_LIBGLU &&

BR2_PACKAGE_EIGEN && BR2_PACKAGE_FFMPEG &&

BR2_PACKAGE_LIBUSB && BR2_PACKAGE_LIBPNG &&

BR2_PACKAGE_JPEG && BR2_PACKAGE_TIFF &&

BR2_PACKAGE_PANGOLIN)

131



Appendix A. SceneLib2 and Pangolin configuration files

Listing A.6: ./package/SLAM/SLAM.mk

#########################################################

# #

# SLAM #

# #

#########################################################

SLAM_SOURCE = SLAM− 0 . 0 . t a r . gz

SLAM_SITE = /home/salah/My_Projects/SceneLib/S cen eL ib 2_ t es t/

my_example

SLAM_SITE_METHOD= = l o c a l

SLAM_INSTALL_STAGING = NO

SLAM_INSTALL_TARGET = YES

SLAM_CONF_OPTS = −DCMAKE_BUILD_TYPE=Release

SLAM_DEPENDENCIES = boost l i b g l l ibglew l i b f r e e g l u t l i b g l u eigen

ffmpeg l i b u s b libpng l i b j p e g t i f f opencv Pangolin SceneLib2

$ ( eval $ ( cmake−package ) )

A.4 Configuration Menu file

Listing A.7: ./packageConfig.in

menu " Target packages "

.

.

.

menu "My Appl icat ions "

source " package/Pangolin/Config . in "

source " package/SceneLib2/Config . in "

source " package/SLAM/Config . in "

endmenu

endmenu
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