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   ملخص
الارتفاع المتسارع لقوة الحوسبة المتاحة، بالإضافة إلى المعقدة لتسجيل إشارات الدماغ،  في السنوات العشر الماضية، أدى التطور السريع للطرق

واسعة النطاق. ، بالباحثين إلى استخدام تسجيلات فسيولوجية عصبية و إستغلال وضائف الدماغ من أجل التحكمزيادة الوعي بخلل وظائف الدماغ 
هو مقياس شائع جدًا لديناميات الدماغ بسبب طبيعته غير الجراحية و المجموعة الكبيرة من التطبيقات الممكنة التي  (EEG) مخطط كهربية الدماغ

 (MI) صور الحركيةعلى أساس ال (BCI) تتضمنه. في هذا المشروع، تم تنفيذ تطبيقين، الأول هو بنية جديدة مقترحة لواجهة الكمبيوتر الدماغي
، (CSP) للتحكم في روبوت متحرك في الوقت الحقيقي في ثلاثة اتجاهات، مبنية على حوسبة الطاقة الطيفية، النمط المكاني المشترك متعدد الفئات

 إستخدام التعلم الآليبالاعتماد على مجموعة بيانات مكتسبة، و ب الإرهاق تشخيصليتضمن التطبيق الثاني تطوير برنامج  .(ML) والتعلم الآلي
(ML)التعلم العميق ، (DL)والخوارزميات الجينية ، .(GA) 

مخطط كهربية الدماغ، واجهة الكمبيوتر الدماغي، الصور الحركية ، التعب ، استخراج الميزات ، التعلم الآلي ، التعلم العميق : مفتاحيةالكلمات ال
  ، الخوارزمية الجينية.

 

Resumé 

Au cours de la dernière décennie, le développement rapide de méthodes d'enregistrement des signaux 
cérébraux, l'augmentation exponentielle de la puissance de calcul disponible ainsi que la 
sensibilisation accrue aux dysfonctionnements du cerveau et aux troubles mentaux ont conduit les 
chercheurs à utiliser les enregistrements neurophysiologiques à grande échelle pour le diagnostic et le 
control de ces derniers. Les électroencéphalogrammes (EEG) sont une mesure très populaire de la 
dynamique du cerveau en raison de leur nature non invasive et de leur large gamme d'applications 
possibles. Dans ce projet, deux applications ont été mises en œuvre, la première est une nouvelle 
architecture d'interface cerveau-ordinateur (ICO) basée sur l'imagerie motrice (IM) pour contrôler un 
robot mobile en temps réel, basée sur le calcul de la puissance spectrale, le modèle spatial commun 
multi-classe (MSC) et l'apprentissage automatique (AA).  La seconde consiste à développer une 
approche de détection de la fatigue en s'appuyant sur un ensemble de données acquises et en utilisant 
l'apprentissage automatique (AA), l'apprentissage profond (DL) et les algorithmes génétiques (GA). 

Mots-clés : EEG, ICO, Imagerie Motrice, Fatigue, Extraction de Caractéristiques, Apprentissage 
Automatique, Apprentissage Profond, Algorithme Génétique. 

Abstract 
In the last decade, the rapid development of complex methods for recording brain signals and the 
exponential rise of available computing power as well as the increased awareness of brain 
dysfunctions and mental disorders, have led researchers to use large-scale neurophysiological 
recordings for abnormal behaviours detection, diseases diagnosis, and motor control. 
Electroencephalograms (EEG) are a very popular measurement for brain activities because of their 
non-invasive nature and their wide spectrum of possible applications. In this context, two applications 
have been developed in this project, the first aims to design a novel Brain Computer Interface (BCI) 
architecture based on Motor Imagery (MI) for real time control of a mobile robot. Spectral power 
computing, multi-class Common Spatial Pattern (CSP), and Machine Learning (ML) have been used 
to reach this aim. The second involves the proposal of an approach for fatigue detection using 
Machine Learning (ML), Deep Learning (DL), and Genetic Algorithms (GA). 

Keywords: EEG, BCI, Motor Imagery, Fatigue, Feature Extraction, Machine Learning, Deep 
Learning, Genetic Algorithm. 
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Introduction

After several decades of research and many advances in recent years, there has been an
increasing interest in exploring brain activity regardless of the complexity of the human
brain and the lack of an accurate model of the dynamics of our cerebrum [39]. Thus,
many applications exploring and processing the electrical brain activity measurement (also
called Electroencephalography (EEG)) [23][61], were successfully achieved by researchers.

EEG is a non-invasive and inexpensive technique that records the electrical activity pro-
duced by the brain with good temporal and frequency resolution. However, it remains a
challenge to be used effectively due to its complexity and difficulties that arise during the
acquisition process [117].

In our work, two applications were developed using EEG signals. In the first application, a
Brain Computer Interface (BCI) was realized in order to control an external device. BCIs
are recently developed as alternative technologies for human computer interaction. These
interfaces aim to interpret the brain’s activity as user intentions in active BCI systems or
cognitive/ emotional state in passive BCI systems with a unique and attractive property
of not requiring muscle movements. Thus, it makes BCIs beneficial to people who lost
the control over all muscles such as paraplegic or hemiplegic peoples [58][34].

Even so , we are still far from having BCI applications used for daily tasks. Mainly, they
are applied for medical purposes and research works [119][114]. In our work , we aim
to design a BCI based application for mobile robot control using advanced EEG signals
processing techniques.

In a second application, EEG signals are processed for fatigue detection. According to
the World Health Organization, 1.25 million people die on the roads due to accidents
each year across the globe 1. Drowsy driving is one of the leading causes of car crashes
around the world. According to the US National Highway Traffic Safety Administration
(NHTSA), 679 deaths are registered from drowsy driving related crashes in 2019 and a
total of 100,000 crashes related to driver fatigue resulted in an estimated 1,550 deaths,
71,000 injuries 2. In fact, a large number of existing works in the literature have attempted
to deal with the problem of fatigue detection and have propounded various drowsiness
and fatigue monitoring systems [50][85]. These studies are mainly focused on pilot fatigue
and driving drowsiness detection and evaluation [77].

1These statistics are extracted from :"Global Status Report on Road Safety 2015,"
2Source: https://www.nhtsa.gov/risky-driving/drowsy-driving
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In addition, laboratories prototypes could not make their way into the real world owing to
their expensiveness and poor detection performance [24]. Even though various commer-
cialized driver alertness or fatigue monitoring systems have been developed by automobile
companies, these systems are only being used in the vehicles of the respective companies
[29]. Most of the existing systems use behavioral measure-based drowsiness detection
algorithms that involve analyzing facial video or eye tracking data[24].

With the recent advances in artificial intelligence, classification and analysis of EEG
signals have become more accessible. From machine learning classifiers to deep learning
algorithms, the identification of discriminate characteristics has been automated where
the pre-trained model provided the appropriate commands and response.

Thesis Organization

Chapter1: titled "Introduction to Electroencephalography", it is a general introduction
on the measurement of the brain activity and EEG signals characteristics. We will also
give an overview of the existing systems and applications given in the literature.

Chapter2: titled "State of the art on EEG signals processing ", in this chapter we will
derive the different methods applied for EEG processing and classification, from pre-
processing, feature extraction methods to machine and deep learning algorithms used for
the classification. We will also detail the genetics algorithm used for feature selection and
dimensional reduction.

Chapter3: titled " Brain Computer Interface Implementation for Mobile Robot Control"
where we derive the implementation process for the realisation of BCI used to control
an epuck mobile robot. The chapter includes the obtained performance of our private
dataset as well as a selected public dataset.

Chapter4: titled "EEG Signals Classification for Fatigue Detection" where we cover the
methods used and the computer implementation of fatigue detection approach based on
EEG. In this chapter, we will give some notions in deep learning and genetics algorithms,
we will also present the proposed architecture as well as the method used for EEG signals
processing.
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1 Introduction to
Electroencephalography

The aim of this chapter is to provide fundamental definitions and concepts of brain
signal measurements that are related to and used in this project. The chapter starts
with a small description of the Cortex’s components in the section 1.1. Then, we
define the Electroencephalogram (EEG) signals; the characteristics of these signals
are also mentioned in Section 1.2, we also detail the international 10-20 system for
electrode placement. In Section 1.3 and 1.4,we discuss the acquisition of EEG signals
and the different artifacts and noises associated with them. Furthermore, we will
enumerate in Section 1.5, 1.6 and 1.7 the application of EEG signal in Brain Computer
Interfaces and drowsiness study and detection. We finally end with a conclusion of
the chapter.

Abstract

1.1 Brain Anatomy
The brain is a well sophisticated organ that allows full control of the functionality of

the human body, interprets information from the outside world and reflects the essence
of thought and soul. The brain also has full governance over the intelligence, creativity,
emotion and memory.

1.1.1 Brain Composition
The brain is composed of:

• Cerebrum
It is the largest component of the brain and composed of right and left hemispheres.
Higher functionality such as vision, reasoning, learning and movement control are
performed in this part of the brain.

• Cerebellum
Located under the cerebrum with a functionality of coordination of the muscle
movements, maintaining posture and balance.
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• Brainstem
It is considered the relay center connecting the cerebrum and cerebellum as it can
be seen in the figure below. Many automatic functions are performed in this center
such as breathing, wake and sleep cycles and heart rate. Figure 1.1a1 demonstrates
the brain components as describe above.

The cerebral hemisphere is also characterized by cracks, dividing the brain into multiple
lobes. Each hemisphere has 4 lobes: frontal, temporal, parietal and occipital, and the
motor cortex is located between the frontal and the parietal lobes as can be seen in Figure
1.1b2 below.

(a) Brain Global Components
(b) The cerebrum’s lobes

Figure 1.1: Brain Anatomy.

1.1.2 Brain Functionalities
The most important functionalities of the frontal lobe are intelligence, concentration, and
body movement (motor strip).

The parietal lobe interprets vision, hearing, and sensory signals as well as memory.

The occipital lobe interprets vision (color, light) as well as the movement .

The surface of the brain is called the cortex. It has a folded appearance, with hills and
valleys. The cortex contains approximately 16 billion neurons , which are arranged in
specific layers. The nerve cell body stains the cortex grayish brown, hence the name-gray
matter, this is illustrated in Frigure 1.23. Below the cortex are long nerve fibers (axons)
that connect areas of the brain-called white matter.

1Source: https://mayfieldclinic.com/pe-anatbrain.html
2Source: https://mayfieldclinic.com/pe-anatbrain.html
3Source: https://mayfieldclinic.com/pe-anatbrain.html
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Figure 1.2: The cortex components

1.2 Electroencephalography
Electroencephalography (EEG) is a non-invasive measurement of electrical potential

that reflects the electrical activity of the human brain. EEG is considered as a ready-made
test that provides evidence of how the brain functions over time. EEG is widely used by
physicians and scientists to study brain function and diagnose neurological diseases, such
as epilepsy [26], brain tumors [68], head injuries [82], sleep disorders [96], dementia and
monitoring depth Anesthesia during surgery [97]. It also helps diagnose abnormalities,
behavior disorders (such as autism) [1],and depression [16].

In 1929, Hans Berger introduced the world’s first EEG recorder. He was a neuropsychia-
trist at the University of Jena in Germany, he used the German term "Elektroenzephalo-
gramm" to describe the brain. He suggested that changes in brain currents depend on the
functional state of the brain, such as sleep, fatigue, anesthesia, and epilepsy. This is a
revolutionary idea that helped create a new branch of medicine called neurophysiology[46].

Since the advent of personal computing in the 1970s, engineers have been trying to shrink
the communication gap between humans and computer technology. The process started
with The development of graphical user interfaces (GUI), computers, and mice [98] has
led to more Intuitive technology, especially with the advent of computational intelligence.
Today, the ultimate boundary between humans and computers is building a bridge through
the use of brain-computer interfaces (BCI), which enables computers to be deliberately
controlled by monitoring brain signals.

1.2.1 EEG Signal Properties
EEG equipment is widely used to record brain signals in BCI systems Because it is non-
invasive, has high temporal resolution, allows the user to freely move, and has a relatively
Low cost[75]. Although BCI can be designed to use EEG signals for control in many ways,
Motion Image (MI) BCI, where the user imagines the movement of the limbs in order to
control the control system, has been extensively studied[63][4][20]. This interest is due to
their extensive application potential in the fields of neurorehabilitation, neuroprosthetics
and games, among which decoding the user’s idea of imaginative movement will be in-
valuable [3].
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Due to the weak electrical signal produced by the neurons with an order of the microvolt;
usually between 0.5 and 100 µV as it can be seen in Figure 1.3[83], an amplification
device is needed. Given the electrical conductivity of the skull and scalp, EEG signals
are considered as the result of the sum of the potentials of a large number of neurons.
The EEG signal is also altered by the skull and cerebrospinal fluid. In effect, the signal
received by the electrodes on the surface of the skull is modified through the skull and
scalp. Considering these two major reasons, the localisation of the signal source has
proven to be a challenge.[3]

Figure 1.3: EEG signal

1.2.2 EEG Signal Spectral Components
EEG signals are spectrally defined at low frequencies (0-100Hz), the important infor-

mation are generally found between 0.1Hz and 40Hz.The signal is subdivided into five
important wave bands defined as follows:

• Delta Waves (between 0.1Hz and 4Hz)
the dynamics of the signal in this band is the slowest but possesses the highest
amplitude. They represent the gray matter of the brain. They appear in all phases
of sleep. Physiologically, they reflect the deep third stage of sleep.

• Theta waves (between 4Hz and 8 Hz)
In this band the signals represent the activity of the subconscious. They are observed
during relaxation and drowsiness. Physiologically, they reflect light slow sleep.

• Alpha waves (between 8Hz and 12 Hz)
These waves represent white matter and establish the link between the conscious
and the subconscious. They describe the activities made in quiet status and in a
status of concentration.

• Beta waves (between 12Hz and 30 Hz)
In this wave band, the signals are related to the sensory activity of the individual.
They are present during mental exertion. Physiologically, they reflect the normal
electrical activity of the brain when conscious and alert.

• Gamma waves (above 30 Hz)
These waves are linked to complex brain activities like cognitive processing.
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Figure 1.4 represents EEG bands in respect to their frequency locations:

Figure 1.4: EEG wave bands

1.2.3 Evoked Potentials
Evoked potentials represent the response of the nervous system to an external stimuli

namely visual, auditive or acoustic. EP can also be considered a response to an internal
event such as emotion or imagination [3].

EP are then used to measure the electrical activity in certain areas of the brain that are
affected by the stimuli. Therefore, the change in response to the external stimuli is small
without neglecting the effects of the artifacts and noise on the quality of the signal. To
overcome this problem, multiple records of the EEG signal associated with the same task
need to be done. The average of the signals is then taken into consideration for the study
in order to increase the signal to noise ratio (SNR). Figure 1.5 shows the effect of an
example of an external stimuli.

Figure 1.5: Example of an Evoked Potential
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1.2.4 Electrode Placement Nomenclature
In order to maintain standardized test methods ensuring that the results of a sub-

ject’s study could be compiled consistently and with reproducible results, an international
nomenclature named the 10-20 configuration has been established as shown in Figure 1.64.

The 10–20 system is an internationally recognized method for describing and applying
the location of electrodes in the context of an EEG examination. The system is based
on the relationship between the location of an electrode and the underlying areas of the
brain, specifically the cerebral cortex.

The "10" and "20" refer to whether the actual distances between adjacent electrodes are
10 or 20 percent of the total distance between the skull and the fore-aft or between the
right and the left. Each site has a letter identifying the lobe and a number identifying
the location of the hemisphere.

Figure 1.6: EEG electrode positions in the 10-20 system along with as-
sociated landmarks and lobes of the brain

• Abbreviations in letters
Describe the location of the electrode sites relative to the brain: F = frontal, C
= central, T = temporal, P = parietal, O = occipital, z = mid-line (the line that
connects the nasion to the inion ).

• Abbreviations in numbers
They denote the location of the electrodes according to the hemisphere in which they
are located. Odd numbers are used for electrodes located in the left hemisphere and
even numbers are used for the right hemisphere.

4Source: https://en.wikipedia.org/wiki/10–20system(EEG)
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1.3 EEG Signal Acquisition
From physical and mental health support to Brain-Computer-Interfaces (BCI). Elec-

troencephalogram (EEG) signals provide a Brain activity observation where the electrical
discharges of millions of neurons are recorded with a high temporal resolution and porta-
bility advantage, which helps achieve our objective.

Two major BCI approaches exist for the measurement of the EEG signals; invasive and
noninvasive BCI. The invasive approach is a complex and a dangerous method for mea-
surement since the electrodes are directly implemented into the brain, this process needs
to be implemented and supervised by a neurologist, the neuron’s activities can be read
without any external interference which detects high-quality signals as can be seen in
Figure 1.7a[53] below:

On the other part, in the non-invasive approach, the electrodes are placed on the scalp as
shown in Figure1.7b[17] below:

(a) Invasive EEG measurement (b) Non invasive EEG recording with dry electrodes

Figure 1.7: EEG Measurement Types.

This approach can be easy to implement and the signal recording does not need profes-
sional assistance, but the resulting signals have more noise contents and they have reduced
spatial resolution but due to its easiness, safety and cost effectiveness,it is widely used in
the literature[54].

The quality of the EEG signal can be ensured by measuring the contact impedance be-
tween the skin (the scalp) and the electrode. An increase in noise and poor signal quality
is seen as high contact impedance, as a consequence, a low contact impedance needs to
be insured before the signal acquisition.

The impedance can be reduced by using conductive gel paste, but requires a lot of skin
preparation .This involves extensive skin wear and dead cells removal from the surface of
the skin[54].

The EEG recording for the non-invasive approach can be done by using either wet gel
electrodes or dry electrodes, the difference between the wet and dry electrodes is described
in the section below:
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Wet Electrodes

The main characteristics of wet gel electrodes is described as follows:

• The contact between the electrode and the scalp is assured with electrolyte gel.

• Generally, the electrodes are made of gold, silver or tin.

• Low impedance due to high contact.

• Installation time is quite long (a least 30 min).

• The application of the gel creates a contact surface allowing the electrode to remain
connected, which helps the resilience to the movement in order to maintain the
signal away from the disturbance during any movement made by the subject.

• On the other hand, a risk of creating an electrolyte gel bridge between two close
electrodes or more might occur as a result of this, the obtained measurement will
be identical.

• impedance between a wet gel electrode and the scalp need be less than 5kHz.

Dry electrodes

For the dry electrodes , the main characteristic are described as fellow:

• Does not require any gel for the connection.

• The electrodes are generally made of graphite or carbon.

• High impedance between the electrode and the scalp.

• High sensitivity to the movement that might increase the signal to noise ratio (SNR).

• Quick installation time (less than 20min), however , the impedance reduction might
require more time.

1.4 EEG Signal Artifacts
As we mentioned in the sections above, the information contained in EEG signals

is defined to be at low frequencies. In addition to this, EEG signals are very weak
in amplitude therefore they are easily disturbed, and contain artifacts that make EEG
processing quite challenging, the two types of artifacts are defined as follows:

1.4.1 Ambient Noise
Ambient noises are external disturbances external to the brain and body. These dis-

turbances are generally created by electromagnetic fields governed by radiation from the
sector of other electrical equipment, which may not be superimposed on the useful fre-
quency band of EEG signals and can be easily removed by low pass or filtering. However,
in some cases, sub-harmonics might be generated by the sector and seen in the useful
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spectrum of the EEG, to overcome this problem, a notch filter can be added or an exper-
imental precaution can be done such as keeping distance from electrical equipment and
the sector.

Figure 1.8: EEG spectrum with 50Hz power-line noise and 25Hz sub-
harmonic

1.4.2 Physiological Noises
As for this type of artifacts, we first look for artifacts that come out of the brain. The

brain consists of billions of constantly running neurons, resulting in the electrical activity
of different neurons superimposed and experiencing distortion. The original EEG signal
contains a measurement of combination of all the sources of the brain.

On the other hand, physiological muscle signals, muscle noise, heart pulse, eye move-
ments, and line noise are very common physiological artifacts. Unlike environmental
noise, EOG artifacts appear in the frequency band 0-10 Hz a.d is included in the EEG
band. Nevertheless, this artifact can be processed by source separation algorithms.

1.5 Brain Computer Interface
In recent years, researchers were able to develop a wide range of applications with aim

to improve life quality for those with muscular or motor-neuron disabilities using Brain
Computer Interface (BCI) devices with a wide potential for applicability in fields such
as neurorehabilitation [6], neuroprosthetics and gaming [75]. EEG-based BCI provides
the opportunity to control external devices in a non-muscular communication using the
interneuron brain activity measured by EEG signals with a real time implementation.The
major use of BCI can be easily seen in establishing the communication between a muscle
or multiple muscles and the environment of people that are suffering from serious motor
function problems such Amyotrophic Lateral Sclerosis (ALS), Cerebral Palsy, brain or
spinal cord injury [87], or any other struggle or disease that interrupted the transmission
of the brain command to the patient’s muscles and his external environment.
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The electrophysiological signals generated from the brain can be used to control and
command real devices such as wheelchairs [88], lower-limb exoskeletons [59]. In [63] and
[87], an EEG based brain-machine interfacing is developed for the navigation of the mobile
robot “E-PUCK” in four directions. A BCI system can be controlled using EEG signals in
different ways such as Motor imagery (MI) where the thoughts of an imagined movement
are decoded and then transformed into a real electric command.

(a) Brain Controlled Wheel [59]. (b) BCI for virtual wheelchair control[107].

Figure 1.9: Example of BCI for mobile robot control .

1.6 Types of EEG-Based BCI
EEG-based BCI can be classified into two types: Evoked and Spontaneous, also referred

to as exogenous and endogenous respectively [75], in the following1.10 diagram the most
used BCI in the literature are illustrated:

Figure 1.10: BCI Types
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1.6.1 Sensory Evoked BCI
In Evoked Systems, the intention of the movement is identified using stimuli that evoke

responses of an external stimulation such as visual, auditory, or sensory stimulation. EEG
evoked systems are also separated into two main categories : EEG systems based on Event-
Related Potentials (ERP), and systems based on Visually Evoked Potentials (VEP), where
the brain signals are generated in response to a visual stimulus.

Event Related Potentials (ERP)

The Event Related Potential is defined as an electrophysiological response to a stim-
ulus, which can be an external sensory, cognitive, or a motor event and generally uses
an oddball-paradigm which consists of a sequence of standard irrelevant stimuli with in-
terspersed rare deviant but relevant stimuli (the oddballs)[56]. One of the advantage of
the use of ERP is that it’s does not require neurofeedback training since it is elicited
autonomously as a response of the brain to external stimulation, when it comes to this
type of evoked BCI, the P300 Speller and Dynamic Auditory are the most common.

• P300 Speller [5] and in many cases follows an oddball. P300 is characterized by
its amplitude, latency, and energy which can reflect the information associated with
attention, error awareness and memory performance [56]. The first use of P300
for BCI was in [32],in which they introduced it as a positive deflection that occurs
200–700 ms after stimulus onset which is typically recorded over central–parietal
scalp locations.

The realization of such BCI is demonstrated by the P300 Speller matrix which is
presented as a 6 by 6 matrix of characters as shown in the figure1.11[94] below.
Many protocols can be considered for the application: like making the user spell the
word displayed on the top on the screen [94], or attend to a specific letter shown in
parentheses and count how many times the letter flashed.

Figure 1.11: P300 BCI
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• Dynamic Auditory Speller
Auditory Speller presents another type of BCI based on ERP which applies a spelling
interface as external stimuli. In [92] the user was surrounded by six speakers at ear
height and faced a screen, during the experiment, the subject’s task was to focus
their attention to one (target) of the six directions and mentally count the number
of appearances. During the calibration phase the target was given to the subject
explicitly. During the writing phase the target direction was not given explicitly,
but had to be inferred from the spelling interface and the stimulus onset asynchrony
was set to 175ms.

In [19], the auditory stimuli were delivered from five distinct spatial locations using
loudspeakers positioned in a row in front of the user’s head.

Visually Evoked Potentials (VEP)

Visually Evoked Potentials (VEP), or Visually Evoked Responses (VER) refer to the
electrical potentials caused by visual stimuli. Steady-State Visually Evoked Potentials
(SSVEPs) are one of the most widely researched areas of VEP based BCIs.

SSVEP is a stable small amplitude signal that appears in the occipital lobe in response to
repetitive visual stimulation. The occipital lobe is the center of integration of this visual
information. This type of signal has the property of oscillating at the same frequency
as that of the stimulation where different options are displayed to the user as stimuli
flickering at unique frequencies higher than 6hz, from which the user selects an option by
focusing on the associated stimulus, so that the stimulus that the user observed can be
identified and trigger the associated command, the performance of such a system depends
on the number of stimuli, the modulation schemes, and the hardware used for the stimuli
[75][38].

In [48], four different stimuli with individual frequencies (5.45 hz for up, 8.75 hz for down,
12 hz for right and 15 hz for left) are considered for 4 direction movement control as
shown in the figure 1.12[48] below:

Figure 1.12: SSVEP BCI
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1.6.2 Spontaneous BCI
EEG-based Spontaneous BCI is a type of Brain Computer Interface that does not

require any external stimulation, the decision of any controlling action is based on activity
produced as a result of mental or muscle activity, there are two types of Spontaneous BCI:
BCI based on eye blinking (EOG) and BCI based on Motor imagery (MI).

EOG-Based Spontaneous BCI

EOG or Electrooculography is a measurement technique for recording the average of
the resting amplitude between the cornea and the retina during the adaptation from
light to darkness, and can be measured by analyzing the surrounding muscles of the eye.
Eye blinking is typically classified into three categories: spontaneous (or normal) eye
movements which occur frequently, a reflexive eye blink which is evoked by an external
stimulus, and the voluntary eye blink. EOG-based BCI is a Spontaneous paradigm where
eye blinking is analyzed in tandem with EEG signals (to detect eye closure events). In
[81], an EOG-Based approach was developed to control a robot arm in four directions
(left, right, top, bottom).

In [47], a hybrid BCI was designed for the control of a robotic arm as well as the movement
of a wheelchair, the proposed system combined both EEG and EOG for controlling both
systems as it can be demonstrated in the Figure2.1 below.

Figure 1.13: BCI based EOG
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MI-Based Spontaneous BCI

In Motor Imagery (MI), the control action is synthesized based on the user’s imagina-
tion of a specific movement for a certain task without actually performing it [3], BCI based
on MI presents an operational option for patients with lack of independence and com-
munication, this type of BCI is well implemented for patients with locked-in syndrome
(LIS) [116], moreover, MI-Based Spontaneous BCI technology is well implemented for
non medical domains such as the navigation and control of complex systems (wheelchair
[107],virtual robot [87]).

MI-Based Spontaneous BCI rose out of its advanced approach with low requirement ad-
vantage and little to no body movement requirement, which made it a widely researched
approach [6]. When the imagination of the movement of a limb is used to activate the
cortical zone which is dedicated to it [75][69], the responses are called Event Related
Desynchronization (ERD). It is also possible to teach the user to control the activation of
a particular zone or a specific frequency band, in that case it is called Voluntary Cerebral
Modulation, the response to which is called Event Related Synchronization (ERS). ERD
is concealed in a form of a power drop in a frequency band and in a certain area, it is
the witness of the desynchronization of a set of neurons. Conversely, the ERS results in
an increase in power, thus reflecting a synchronization of the oscillatory of a group of
neurons [69].

The EEG signals generated by MI tasks are considered as spontaneous type signals since
they are generated based on the user’s imagination according to a specific protocol. This
spontaneity is interesting in that it makes MI technique perfect for supporting healthy
and disabled users by streamlining their brains with no requirement of external stimulus
signals in which they can potentially harm themselves and/or cause negative effects.

On the other hand, processing high-dimensional MI signals is problematic because of
reasons related to: non-linearity, non-stationary, weak SNR, and high complexity of the
signals [3].Due to this complexity of the EEG signal, as well as the signal quality and the
user’s mental state, recording the EEG data for testing and making sure that the data
set is “valid” becomes a major challenge.

One of the other challenges that is caused by the MI data is the statistical distribution
which is highly variable across subject-to-subject and session-to-session, this variation is
due to the existence of alternative physiological and psychological features for each person
at each time, as a result, the subsequent BCI system will be subject-dependent study [3].

The common class of movement for MI EEG systems are: left hand movement, right
hand movement, the movement of the tongue [75][3] and the movement of the right and
the left feet, even though the the movement of the feet is often labeled as a single class,
with no distinction between the left and right foot movement because, as mentioned in
[75], it is impossible to distinguish between left and right foot motor imagery, or between
the movement of particular fingers because the cortex area associated with these different
movements is too small to produce distinguishable ERD and ERS signal.
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1.7 Fatigue Detection Based on EEG Signals
Whether at work, commuting, or at home, there are many activities in life that require

full alertness, continuous attention, and high vigilance in order to be achieved successfully
and safely[110]. These tasks, such as driving various vehicles, operation surgeries, and
manual labor, when coupled with the lack of alertness or fatigue caused by a number of
factors, such as chronic kidney disease, high or low blood sugar or thyroid hormone levels,
liver failure, brain infection, disorders or injury, heart or breathing problems or just ex-
tended periods of performing this one task can lead to a decrease in the performance and
risking damage in property, and even the loss of lives at times[84]. As a consequence, the
study and early detection of vigilance is essential in tasks that demand sustained atten-
tion over an extended period, including air traffic control, military surveillance, seaboard
navigation, industrial process/quality control, medical systems and long-distance driving
etc [57].

Fatigue is defined as the transition between waking and sleeping states and it and generally
accompanies drowsiness[79]. Further, fatigue accumulates gradually, The effects of fatigue
can be resumed in a decrease in awareness and a decline in attention, slowing the reaction
time and reducing the person’s judgment, senses and performance[7].

Mechanisms that can identify fatigue are necessary to prevent related accidents. The
studies [101][43] deployed indicators to measure physiological changes, such as changes in
blinking rate and heart rate, as a means of evaluating cognitive capabilities[49].

Multiple studies showed that EEG signals may be a reliable indicator of fatigue where sig-
nificant changes in EEG signals’ power spectrum are associated to variations performance
and state of an individual.

EEG spectrum has been found to change with the onset of fatigue. EEG has been widely
used to judge individuals’ alertness level during monotonous tasks or ones requiring sus-
tained attention. Relative energy of different energy bands (alpha, beta, beta/alpha ratio
and (alpha+theta)/beta ratio) has often been used as an indicator of fatigue [31]. The
relative energy parameter (alpha+theta)/beta has also been found to proportionally to
the alertness level[25].

Karolinska Sleepiness Scale

Measuring the level of fatigue of an operator is a subjective measurement since it is based
on the user’s own personal estimation which calls for a scale to unify the measurement
of drowsiness. The most commonly used fatigue or drowsiness scale is the Karolinska
sleepiness scale (KSS) which is a nine-point scale that has verbal anchors for each step
as can be seen in the Table 1.1 below. Researchers have determined that major fatigue
related physiological signals are prevalent in operators with a KSS rating between 6 and
9.
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Table 1.1: Karolinska Sleepiness Scale.
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1.8 Conclusion
Cerebral activity translates the brain’s cognitive tasks. There are several alternative

measurement techniques of this activitiy, which differ only in the physical principle used
for the acquisition. EEG presents an efficient measurement with an advantage of a fast
time resolution. These signals have spectral peculiarities including a band extending from
[0.5 100] Hz containing several sub-bands δ, α, β and γ . The acquisition of these signals
is done with electrodes positioned according to the international 10-20 system and are
generally put to the areas responsible for cognitive activity to be studied. The EEG
signals recorded by the electrodes contain mainly two types of noise, one created by the
equipment and another physiological generated by the various activities inside the body.

In the next chapter, we are going deep into the processing of EEG signals where we
derive the multiple methods described in the literature, and their applications for Brain
Computer Interfaces’ realization in order to control an external device such as mobile
robot as well as for drowsiness/fatigue detection.
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2 State of The Art on EEG signal
Processing

In this chapter, we detail the required methods for EEG signals processing for hu-
man fatigue detection and Brain Computer Interface design. Section 2.1 develops the
different filters used in the literature for the de-noised and source separation of the
EEG signals, while Section 2.2 provides a literature review on the feature extraction
methods already used for EEG based applications. Section 2.3 discusses the used
machine learning algorithms for such applications, as well as the various evaluation
metrics. Section 2.4 presents the deep learning (DL) algorithms used for this aim,
its architectures and developments. And Section 2.5 describes the Genetic Algorithm
used for dimensionality reduction. Finally, Section 2.6 develops on the Genetic Al-
gorithm, its composition, and how it is applied along with DL methods to extract
meaningful data from features.

Abstract

2.1 EEG Signal Pre-Processing
Filtering the signal is considered to be one of the important steps in signal processing.

It can be used to eliminate background noise and suppress interference signals by elimi-
nating unwanted frequencies, DC offset and line frequency noise (50Hz or 60Hz depending
on the country) are also removed using a specific filter such as a band pass filter. For
power line noise, a notch filter is often applied to ensure the removal of the line frequency.

Two types of filtering are considered; frequency filtering the spatial filtering as can be
seen in the following 2.1 diagram:
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Figure 2.1: Pre-processing Diagram.

2.1.1 Frequency Filtering
Butterworth Filter

The Butterworth filter is an active infinite impulse response filter designed to have as
flat a frequency response as possible (no fluctuations) in the passband and zero roll-off
response in the stopband. It is one of the most commonly used digital filters in motion
analysis and audio circuits, it is also well used for EEG processing [75].

The Butterworth filter was first introduced in 1930 by the physicist and British engineer
Stephen Butterworth where he described its hardware realization along with other filter
types in his book (on the theory of filter amplifiers) [15].

The filter design can be implemented digitally based on matching two methods of Z-
transform and bilinear transformation. These two methods can be used to simplify the
design of analog filters. If we consider a Butterworth filter with an all-pole filter, the pulse
variance and the matched z-transform of the two methods are both considered equivalent.

The transfert function of the butterworth filter is given as:

G2(w) =
∣∣∣H(jw)2

∣∣∣ = G2
0

1 + ( jw
jwc

)2n
(2.1)
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where n is the order of the filter, wc is the cut-off frequency and G0 is the DC gain, by
increasing the order of the filter, the transfert function gets closer to approximating a
rectangular filter as it can be seen in Figure 2.2 below1.

Figure 2.2: Low pass butterworth presented in different order.

2.1.2 Spatial Filtering
Spatial filtering has been widely used in EEG-based BCI in order to increase the signal

to ratio of the eeg signal, in [70], Independent Component Analysis (ICA) was proposed
for artifact rejection, Common Spatial Pattern (CSP) which is generally used for feature
extraction is also considered as a spatial filtering method.

Independent Component Analysis (ICA)

Independent Component Analysis allows the estimation of hidden sources, and it is
considered a powerful method with widespread use in the fields of source separation and
artifact rejection.

On the surface, ICA is related to Principal Component Analysis (PCA), PCA is used
to compress information and reduce the dimension of the input data while ICA aims to
separate information by transforming the input space into a maximally independent basis
as it can be seen in the figure 2.3.

1Source: https://www.electronicshub.org/butterworth-filter
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This method assumes that the recorded signals are a composition for a non-Gaussian
independent signal denoted S, the signal vector X can be written as follow:

X = W .S (2.2)

where W is the mixing weights matrix. There are several variants of ICA, they differ by
the criterion used to calculate the matrix W. The most used criteria are the minimization
of mutual information between non-Gaussians sources, the maximization of entropy and
the maximization of Kurtosis.

Figure 2.3: ICA source separation in case of 3 colour mixture.

2.2 Feature Extraction
Feature extraction represents a major step for motor imagery classification, several

categories of characteristics can be extracted from EEG signals:

• Time Domain Characteristics

• Frequency Domain Characteristics

• Time-Frequency Domain Characteristics

• Spatial Characteristics

The diagram 2.4 below demonstrates the most common characteristics used in the liter-
ature:
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Figure 2.4: Feature Extraction.

In this section, we will describe the characteristics used in our work. In [21][30][102], a
Common Spatial Pattern method is used for feature extraction, in [64], Power Spectral
Density was used as features and input to an RNN network.

In [89], PSD and entropy were used separately as characteristics of the model and con-
sidered as an input to an SVM classifier.
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2.2.1 Power Spectral Density (PSD)
Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is considered as a common technique used for EEG data
manipulation. The method’s process consists of computing either the discrete Fourier
Transform (DFT) or the Continuous Fourier Transform (CFT) for the first step and then
converting the signal from the time domain to the frequency domain by applying Fourier
analysis.

DFT assumes that a signal is repeated over a certain period of time and then converts
a finite sequence of equally-spaced samples of the signal into a same-length sequence
of equally-spaced samples of the Discrete-Time Fourier transform (DTFT), which is a
complex-valued function of frequency.

DFT can be written as follows:

x [k] =
N−1∑
n=0

x [n] e
−2jπkn
N (2.3)

To determine the DFT of a discrete signal x [n] (where N is the size of its domain), we
multiply each of its values by e raised to some function of n. We then sum the results
obtained for a given n. If we used a computer to calculate the Discrete Fourier Transform
of a signal, it would need to perform N (multiplications) x N (additions) = O(Nš)
operations.

As the name implies, FFT is an algorithm that determines the DFT of an input signif-
icantly faster than computing it directly. In computer science lingo, FFT reduces the
number of computations needed for a problem of size N from O(N2) to O(NlogN).

CFT on the other hand assumes that the signal does not have a period of repetition
which means that the signal is extended to infinity, it is considered the simplest method
of time-frequency transforms for the infinite functions and signals.

The CFT of a signal can be computed as follows:

S(f) =
∫ ∞
−∞

x(t)e−jw0tdt (2.4)

Welch PSD

The Welch method, also called the periodogram method, was firstly proposed by Peter
D. Welch [89], and is a method of Spectral Density estimation for both stationary and
non-stationary signals. It is widely used in applied mathematics and engineering with a
main purpose of estimating the power of signals at different frequencies.

The Welch method is considered an improvement to the standard periodogram estimation
with a concept of using periodogram spectrum estimation, which is the result of converting
the signal from the time domain to the frequency domain. The method allows reduction
in the power spectrum estimation in exchange for reducing the frequency resolution. Due
to the noise caused by imperfect and limited data, this method is usually needed to reduce
the noise which can be achieved by filtering the data before applying this method.[89]
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Welch’s method splits the data into overlapping segments where the data segment is di-
vided into small segments L with a length of M each with an overlap of a D points, each
segment is than windowed using the hamming window (Figure 2.5 , after that the mod-
ified periodogram for each segment is calculated, and then averages the periodogram to
calculate the estimated value of the PSD with a motive of reducing the variance that is
associated with the periodogram estimate of the power spectrum, this variance is propor-
tional to the value of the spectrum itself so as the number of data increases, it does not
decrease and in this approach we can take advantage of averaging independent estimates
to reduce it.

Welch’s PSD estimation is computed as follows:

S(w) =
1

L ∗∑M
m=1 |h(m)|2

L∑
l=1

∣∣∣∣∣
m∑

m=1
h(m)x(m+ (l− 1)D)exp(−jwm)

∣∣∣∣∣
2

(2.5)

Figure 2.5: Hamming window.

2.2.2 Entropy
In 1945, Shannon introduced the notion of Entropy associated with a source which

is modeled by a discrete random variable X, as the mean of the amount of information
provided by the realizations of this variable. Since that date, this notion has had very
great use in the field of information processing and particularly in data encoding and
compression in telecommunications.

The Entropy associated with a discrete scalar random variable X with realizations {x1 · · · xN}
and the probability distribution {p1 · · · pN} measures is defined by:

H [x] = −
n∑

i=1
p(i)ln(p(i))) (2.6)
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2.2.3 Common Spatial Pattern (CSP)
Common Spatial Pattern or CSP is a method of projecting multi-channel EEG data

in a subspace of reduced spatial dimension using a projection matrix W. Each row of the
projection matrix W is a spatial filter. CSP in its basic version only uses two classes. It
maximizes the variance between them and exploits the covariance matrix for the design
of the CSP.

The projection matrix is calculated based on the simultaneous diagonalization of the two
mean covariance matrices of each class. three approaches can be distinguished to obtain
the projection matrix: geometric approach, by optimization or by solving an eigenvalue
problem generalized.

Multiple extensions of CSP exist for multi-class projection. In [113] One-Versus-The-Rest
CSP extension is proposed for feature extraction.

A detailed analysis of CSP and OVR CSP is in Appendix A.

2.3 Machine Learning Methods
Machine Learning (ML), a subfield of Artificial Intelligence, has revolutionized the

biomedical research field offering tools to address the high complexity of EEG signals and
further decode the information they have to offer.

The Figure 2.6 below shows the common ML methods used for EEG classification, they
are divided based on their training algorithm, as well as on the way it is applied, either
individually or in an Ensemble.

Figure 2.6: A diagram of the used Machine Learning methods.
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2.3.1 Machine Learning Metrics
In order to evaluate a ML model’s performance, various metrics are used depending on

the application and the desired result. In order to see the whole picture and be able to
fully evaluate a model, using many metrics is recommended, as each covers only part of
the result.

Confusion Matrix

Not a metric but one of the key concepts in classification performance evaluation,
the confusion matrix is a tabular visualization of the model’s predictions against the
actual data labels. Every row in the confusion matrix represents the model’s number
of predictions for each class respectively while the columns represent the classes’ actual
values. This matrix helps understand if and how the classification model is confused
when making predictions. This not only allows us to know what mistakes were made, but
especially the type of mistakes that were made[66], an example of it is shown in the figure
below:

Figure 2.7: Confusion Matrix for 2 categorical classification.

When training a model for a classification problem, it is important to understand the
concepts of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN), in order to understand its classification metrics. After the model is suc-
cessfully trained, the correct and incorrect results are broken down by class and compared
with the real values to obtain these four terms[66], which are defined by:

• True Positives (TP) represent the cases where the model’s prediction is positive,
and the real value is indeed positive.

• True Negatives (TN) represent cases where the model’s prediction is negative,
and the real value is indeed negative.

• False Positives (FP) represent cases where the prediction is positive, but the real
value is negative.
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• False Negatives (FN) represent cases where the prediction is negative, but the
real value is positive[66].

Classification Metrics

• Classification Accuracy
One of the simplest ML metrics, it is obtained by dividing the number of the ML
model’s correct predictions by the total number of predictions, and multiplied by
100 to obtain a percentage.

Accuracy =
Correct Predictions

Total Number of Predictions
=

TP + TN

TP + TN + FP + FN
(2.7)

Although Accuracy gives a general idea of the model’s performance, there are many
cases in which it does not convey the necessary information or throws the user off
course, one such case is when one of the classes is predominant over the others,
thus, it is a valid evaluation metric on its own only if there is no class imbalance[66].
Therefore, evaluating class specific classification metrics is necessary too.

• Precision
Precision is defined as:

Precision =
TP

TP + FP
(2.8)

Precision is a valid choice of evaluation when we want to be very sure of our pre-
diction, and when False Positives are unwanted in the end result[66].

• Recall
Recall is defined as:

Recall =
TP

TP + FN
(2.9)

Recall is a valid choice of evaluation when we want to capture as many positives as
possible[66].

• F1 Score
F1 Score is the harmonic mean of precision and recall, and it is defined as:

F1 = 2. Precision.Recall
Precision+Recall

(2.10)

• ROC Curve

The Receiver Operating Characteristic curve is a plot of the True Positive rate
(TPR) against the False Positive rate (FPR), it indicates how well the model is
separating the positive classes from the negative classes. The ROC Curve is a
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useful metric when deciding on a classification threshold because it is Classification-
Threshold-Invariant unlike the other metrics (Accuracy, F1 Score, . . . ), the classifi-
cation threshold simply decides which classification results get classified as positive
class or negative class, which, depending on the classifier’s application, is not always
0.5[66].

Figure 2.8: ROC Curve and the different types of classification thresh-
olds.

2.3.2 Underfitting and Overfitting
One of the main problems encountered in the ML process are Underfitting and Over-

fitting, which are majorly responsible for poor ML models’ performance [52]. In order to
fully understand these terms, a few concepts must be clarified:

• Generalization in Machine Learning refers to how well the model adapts to
never before seen data.

• Bias is assumptions made by the ML model to better adapt it to the data, that can
possibly make it prejudiced towards one class or another.

• Variance is the amout of training error change we get from changing the training
data.

• Good Fit is said when the ML model is well trained on the data, and making little
to no error in its predictions, this is the desired result when training ML models,
and it is right between Underfitting and Overfitting[52].

The concepts of Underfitting and Overfitting are highly linked to these four concepts,
they are defined by:

• Underfitting
A ML model is said to have Underfitting when it cannot capture the full pattern
of the data, thus not being trained enough to be of use. Underfitting lowers the
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model’s accuracy significantly, two common causes for it is not having enough data
to build an accurate model, or when a linear model’s trained on non-linear data.
Underfitting is characterized by high Bias and low Variance.

In order to avoid Underfitting, one can simply increase the model’s complexity,
its number of features, clean the data, or increase the number of epochs/training
duration[52].

• Overfitting
Conversely, a model’s said to be Overfit, when it is trained on too much data, thus
training it on the noise and inaccuracies in the dataset. Its causes include using
non-parametric and non-linear methods when they not needed, giving the model
more freedom and causing the end result to be an unrealistic model, or giving the
model a long training duration (high number of epochs). Overfitting is characterized
by low Bias and high Variance.

Overfitting’s soluions include increasing the training data, reducing the model’s
complexity, using early stopping (stopping the training right before the model starts
overfitting on data), Ridge/Lasso Regularization, and using Dropout in the case of
Neural Networks (explained more in Section 2.4.6)[52].

Figure 2.9: A comparison between an appropriately fit model, an Underfit
model, and an Overfit one.

2.3.3 Cross-Validation
In order to better estimate the ML model’s accuracy and avoid overfitting, Cross-

Validation is used, especially in cases where data may be limited or particularly biased.
Cross-Validation is done by dividing the dataset into a fixed number of partitions, running
the process on each of them, and then averaging the overall accuracy or error estimation.

Cross-Validation techniques can be classified into two categories, Exhaustive and Non-
Exhaustive methods, two examples of Non-Exhaustive ones ones that are particularily
useful are:
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• Holdout Cross-Validation
Holdout Cross-Validation is the simplest of all the methods, the dataset is divided
into training and testing parts only once, with a high ratio of training data to testing
data, usually around 70:30 or 80:20, but can be different depending on the problem
at hand.

This method is done by first randomly shuffling the data before splitting it, which,
depending on the nature of the dataset, can give different results every instance that
it is done, this makes the method inherently unstable[99][22].

• K-Fold Cross-Validation

This method further improves upon the Holdout method, and guarantees that the
model’s evaluation is not dependent on the way it was shuffled and split[99].

This method is done by randomly splitting the dataset into k folds (k being a
parameter for tuning based on the data), and for each fold, the model is train on the
other k-1 folds and its accuracy is tested, this process is repeated for every fold and
then the testing accuracies are averaged which results in the K-Fold Cross-Validation
accuracy that serves as the evaluation metric for the classifier. The Holdout method,
can be considered as one particular case of K-Fold Cross-Validation that has K set
to 1[99][22].

The drawback of this method is that it is time consuming, especially for higher
values of k, because the model has to be trained k times from scratch, which means
it the method needs k times as much time as the Holdout method to calculate the
model’s accuracy[99].

Both Cross-Validation methods are illustrated in the figures2 below:

(a) Holdout Cross-Validation. (b) K-Fold Cross-Validation.

Figure 2.10: An illustration of both Holdout and K-Fold Cross-
Validation.

2.3.4 Support Vector Machine (SVM)
Support Vector Machines is a supervised Machine Learning model mainly used for

classification, most commonly used with data pertaining to 2 categories and especially
effective with high dimensional data.

2Source: https://www.mygreatlearning.com/blog/cross-validation/sh1
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Its algorithms aim to construct a hyperplane that acts as a boundary for classifying data
points by separating them in two and then seeing what side of the boundary an unclassified
point falls on, this hyperplane is represented by a function called a kernel, which can either
be linear, polynomial of any order, or a radial basis function (Gaussian)[95][8].

Figure 2.11: Linear SVM classifying three dimensional data into two
categories.

Given the infinite number of possible defining boundaries or hyperplanes dividing the
data, the algorithms construct it in a way such that the distance between it and the
points in each class is maximal, in order to decrease the chance of false classification.
All by using support vectors, which are virtual vectors going from the origin to every
data point, and the distance between the support vectors and the decision boundary is
called the margin. The closest support vectors to the margin are crucial in defining the
hyperplane, in fact, the SVM algorithm can construct the hyperplane entirely without
referring to the non-marginal support vectors, which is one of the algorithm’s advantages,
making it faster than the other algorithms that have to use all training points to make a
prediction[95][8].

2.3.5 K-Nearest Neighbors (KNN)
Being one of the simplest Machine Learning algorithms to implement, the K-Nearest

Neighbors algorithm predicts the label of new data instances based on the labels of its
closest training set neighbors. This is done by normalizing the numeric data, finding the
distance between these instances and all training data points, sorting the distances and
fining the nearest K points, and finally classifying the unknown data points based on the
most instances of the nearest K points[95]. This process differs slightly in the case of a
regression. The figure below shows an example of KNN, where depending on which circle
is used (representing k=3 or k=5 respectively), the unlabeled data point can either be
classified as red or blue:
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Figure 2.12: Example of KNN classification.

The idea behind this algorithm is based on the assumption that close-by points are likely
to be more relevant making their labels similar. One of this algorithm’s advantages is
that depending on the training set’s nature, finding neighbors can be an extremely fast
process [95]. This algorithm still needs more computational time on average than the
other algorithms [104].

The only parameter in this algorithm is K: an integer representing the number of neigh-
bors. Increasing K decreases accuracy and leads to underfitting, while decreasing it causes
overfitting, it must be fine-tuned with a trial and error process.

Data normalization is integral when applying KNN, due to the distances in it being Eu-
clidean, which means the algorithm’s efficacy can decrease in the case of heterogeneous
training data [80], in the case of noise, irrelevant features, or inconsistently scaled features
[71]. Many techniques for normalization exist[42], among them are Min-Max Normaliza-
tion and Z-Score Normalization.

2.3.6 Decision Trees
A decision tree is a classification method that predicts the label associated with an

instance by representing the differentiating criteria of the data features as branches ema-
nating from a root node to other nodes, which eventually end in leaves representing the
class labels. Binary decision trees are most commonly used although they’re applicable
to other problems[95]. A binary decision tree is a structure based on a sequential deci-
sion process. Starting from the root, features are evaluated and one of the branches is
selected. This procedure gets repeated until a final leaf is reached, which represents one
of the classification targets we’re looking for. In comparison to other algorithms, decision
trees are simpler; however, if the dataset can be split while keeping an internal balance,
the process is intuitive and fast in its predictions. Moreover, decision trees can work with
unnormalized datasets because their internal structure is not influenced by the values
assumed by each feature[8].

When making decision trees, two different methods are used to find the best feature to
split a dataset on, Gini Impurity and Information Gain:
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• Gini Impurity.
Which is defined as:

IGini(j) =
∑

i

p(i|j).(1− p(i|j)) (2.11)

• Information Gain
This theory uses the Cross-entropy impurity index which is very similar to the Gini
Impurity, it is defined as:

ICross−Entropy(j) = −
∑

i

p(i|j).logp(i|j) (2.12)

However, without proper limitations, a decision tree could potentially grow until a single
sample (or a very low number) is present in every node. This situation drives to overfit
the model, and the tree becomes unable to generalize correctly[8].

2.3.7 Random Forests
All the aforementioned methods’ algorithms train models on single instances, aiming to

minimize a certain loss function and looking for the best possible solution. An alternate
approach employs a set of weak algorithms and runs them in parallel or sequentially, the
results can then be used as an ensemble (thus the nomenclature), based on a majority
vote or the averaging of results[8].

Random Forests is one such ensemble method that uses an Ensemble method called Boot-
strap Aggregating (Bagging). By generating multiple versions of Decision Trees and using
them to get an aggregated predictor. The resulting versions do a majority vote when pre-
dicting new data. The "Bootstrap Aggregating" name comes from the process done, the
training set is replicated resulting in bootstrap versions that are used as new learning
sets. It can increase accuracy in many cases, especially when changing the training set
causes significant changes in the resulting model[10]. This method is usually applied to
decision trees, although it can be used with other types of methods[8].

2.4 Deep Learning Methods
Just like Machine Learning is a subfield of Artificial Intelligence, Deep Learning is a

subfield of Machine Learning. The “Deep” in the name is a reference to the existence of
multiple layers forming DL models, that ranging from a few to hundreds. The efficiency of
Deep Learning shows when using a sufficiently large dataset/computational power, which
makes them perfect for EEG signals, with the existence of the OpenBCI Mark IV that
can supply as much data as needed[2].

2.4.1 Artificial Neural Networks (ANN)
Deep Learning models are represented by what is called Artificial Neural Networks

(ANN), the name is inspired by Neurobiology, because of its resemblance to the real
biological neural networks contained in the brain[2].
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Artificial Neural Networks, or simply Neural Networks, are formed by data transforming
layers, represented by weights, stacked on top of each other. And in order to train them,
four things are needed:

• Layers constituting the Network, this means the number of layers, the type of layers,
their activation functions as well as the Network’s input and output dimensions and
type.

• Input Data, a database used for training and/or evaluating the model using Cross-
Validation.

• Loss Function, which determines how well the Network’s learning.

• Optimizer, which determines how learning proceeds based on the Loss Func-
tion[22].

Figure 2.13: Anatomy of the Artificial Neural Network.

The figure above shows the structure of an Artificial Neural Network’s learning process:
Data inputs are given to the Network, they are passed through its layers (weight matri-
ces), giving the Network’s predictions, the Loss Function then measures the discrepancy
between the predictions and the true values, thus measuring how good the results are, and
based on that, the Optimizer updates the weights inching them closer to their optimal
value with every training epoch. This process is repeated until the specified number of
epochs has passed or the stopping condition has been fulfilled[22].

Artificial Neurons

The primary building block of Neural Networks, not all Neurons come in this exact struc-
ture but it is the most common. Its architecture is simple, as shown in the figure below, it
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takes in a number of inputs (x1,x2, ...,xi) and multiplies each by their respective weights
(w1,w2, ...,wi), a bias term b is often added to the result as an extra weight that shifts
the weighted sum’s value with a constant to better fit the data if need be. This weighted
sum is then passed through a non-linearity called the Activation Function, and the result
is outputted from the Neuron[2].

Figure 2.14: Structure of a single Artificial Neuron.

This process can be resumed with the equations:

{
z =

∑n
i=1wixi + b = W TX + b

y = f(z)
(2.13)

Such that X are the inputs, y is the output, W is the Weight matrix, b is the bias and f
is the Activation Function.

Activation Function

The Neuron’s Activation Function is a non-linearity that is applied to the weighted sum
that fires off into the next layer, deciding what is to be transferred. It is used mainly to
allow the Neural Network to learn more complex patterns in the data, because without
it the output is just a linear weighted sum that can only mimic simple patterns. There
are many Activation Functions, and their choice is a critical part of designing a Neural
Network, it depends on the Network’s desired function and the type of data used[2].

Some examples of Activation Functions are illustrated in Figure 2.15 below:
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Figure 2.15: Some of the most commonly used Activation Functions.

Activation functions are deliberately used depending on the task, and they can be clas-
sified into Hidden Layer Activation Functions and Output Layer Activation Functions.
Both Feedforward Neural Networks (2.4.2) and Convolutional Neural Networks (2.4.5)
often employ ReLU Activation Functions in their Hidden Layers, while Recurrent Neural
Networks (2.4.3) can have either a Sigmoid or Tanh Activation Function[14]. The Out-
put Layer’s Activation Function depends on the problem, Regression problems use linear
Activation Functions, while Classification problems use Softmax or Sigmoid Activation
Functions.

Layers

The layer is a processing module that contains the accumulated knowledge it has learned
in the form of Weights, that are one or several matrices learned using Stochastic Gradient
Descent. It takes in data and transforms it using them, and outputs the result[22].

There are many types of layers, depending on the corresponding data structure and data
processing needed. Simple data instances, stored in 2D tensors (vectors), are processed by
Fully Connected Layers, Sequence data (time series), stored in 3D tensors, are processed
by Recurrent Layer (An LSTM Layer for example), and image data, stored in 4D tensors,
is processed by 2D convolution layers, as well as other image processing layers[22] which
will be discussed in later sections.

Fully Connected Layers process the simplest kind of data samples, in them, every input
to the layer’s neurons is connected to every activation function passing to the next layer.
Their data transformation process can be represented using the equations:

Z = W TX +B (2.14)
Y = f(Z) (2.15)
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Such that X are the inputs, Y are the outputs,W and B are the Weight and Bias matrices
and f is layer of Activation Functions.

Neural Networks composed only of these layers are dubbed Fully Connected Neural Net-
works.

Loss Function

The Loss Function, also called the Objective/Cost Function, is the quantity that will be
minimized when training the Neural Network’s weight matrixes. It represents a measure
of success for the objective at hand.

Choosing the right Loss Function is paramount for having optimal weights and good
model performance, the network’s weights will be updating based on this function, which
means that any inconsistency between the current objective and the Cost Function will
result in the model doing unwanted things, because of the shortcuts it tends to take when
minimizing the loss[22].

Examples for common Loss Functions for known problems include:

• Binary Cross-Entropy for binary classification problems:

BCE =
1
n

n∑
i=1

yi[log(ŷi) + (1− yi)log(1− ŷi)] (2.16)

• Categorical Cross-Entropy for multi-class classification problems:

CCE = −
n∑

i=1
[yilog(ŷi)] (2.17)

• Mean Squared Error (MSE) for regression problems:

MSE =
1
n

n∑
i=1

[yi − ŷi]
2 (2.18)

Optimizer

In order to update the Neural Network’s Weights and optimize the Loss Function, an
Optimizer is used. Gradient Descent-Based Algorithms are the most common for this,
they are all variations of the Gradient Descent Algorithm, each introducing a small change
on the original.

The Optimizer defines how the DL model learns and algorithm choice plays an immense
role in the eventual performance of the resulting model[22].

Gradient Descent
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Gradient Descent is one of the most widely used algorithms for Neural Network optimiza-
tion, and one of the most popular optimization algorithms of all time. It is often used in
one of its many variations[91]. Its equation is:

θj+1 = θj − α
∂(Loss)

∂(θj)
(2.19)

Such that:

• θ is the parameter/weight to optimize.

• I is the Loss Function.

Gradient Descent updates its parameters iteratively all the while minimizing a given Cost
Function to its minimum. It reduces the Cost Function’s value by moving in the opposite
direction of its steepest ascent. It is dependent on derivatives of the Loss Function for
finding minima[91]. This process is represented in Figure 2.163 below:

Figure 2.16: Gradient Descent optimization process.

Alpha is the learning rate, it represents how big/small the steps the Gradient Descent takes
into the direction of the local minimum are, which figures out how fast or slow the weights
will move towards their optimal values. If this value is too small, parameter convergence
will be slow, and if it is too large, the loss function might oscillate or deviate from the
minimum. A compromise must be found mainly using a trial and error process[91]. These
three cases are illustrated in Figure 2.174 below:

3Source: https://morioh.com/p/15c995420be6
4Source: https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
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Figure 2.17: Learning Rate effect on Gradient Descent.

The amount of data the algorithm processes in each of its iterations depends on which of
its variations is used, they are:

• Batch Gradient Descent

Batch Gradient Descent uses the entire training dataset to calculate the gradient of
the Cost Function to the parameters which consumes a large amount of processing
power and takes a long time, although it is easy to implement[91].

• Stochastic Gradient Descent (SGD)

Another one of the Gradient Descent’s variations. It updates the model parameters
on the training data one by one[91]. This method requires less memory, and for that
same reason allows the processing of much bigger datasets, but on the other side, its
frequency can have a negative effect, resulting in noisy gradients which may cause
the error to increase instead of decreasing it, it results in much higher variance, and
its frequent updates are computationally expensive[22][91].

• Mini-Batch Gradient Descent

Mini-Batch Gradient Descent is a combination of both SGD and Batch Gradient
Descent. Splitting the training dataset into batches and performing a parameter
update using each of those batches at a time. This creates a middle ground be-
tween SGD’s robustness and Batch Gradient Descent’s efficiency. This method
leads to more stable convergence, has more efficient parameter calculations and re-
quires less memory than Batch Gradient Descent, its only downside is that it does
not guarantee convergence, and depends on the batch size, which is an important
hyperparameter in the learning process[91]

• Adaptive Moment Estimation (Adam)

One of the most commonly used Gradient Descent Optimization algorithms. This
method computes adaptive learning rates for each parameter, storing both the de-
caying averages of past gradients, and the decaying average of the past squared
gradients. Adam is easy to implement, computationally efficient, and requires little
memory[2][91].
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Its algorithm relies on the following equations:

mt = β1mt−1 + (1− β1)gt (2.20)

vt = β2vt−1 + (1− β2)g
2
t (2.21)

m̂t =
mt

1− βt
1

(2.22)

v̂t =
vt

1− βt
2

(2.23)

wt+1 = wt −
η√
v̂t + ε

m̂t (2.24)

2.4.2 Feedforward Neural Networks
One of the simplest types of ANN, Feedforward Neural Networks are Neural Networks

in which information only moves in one direction: from the input nodes through the
hidden nodes and out the output nodes. There are no loops in the network or in the
connections between layers, like there are in Recurrent Neural Networks[40].

Figure 2.18: A Feedforward Neural Network with an input layer, an
output layer, and 2 hidden layers.

2.4.3 Recurrent Neural Networks (RNN)
Recurrent neural network is an artificial neural network with cyclic connections. They

are composed of interconnected units (neurons) that interact nonlinearly, and they contain
at least one cycle in the structure. These units are connected by arcs-synapses with
weights. The output of a neuron is a non-linear combination of its inputs as can be seen
in Figure 2.19[33].
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Recurrent neural networks are particularly suitable for variable size input data and time
series analysis.

Figure 2.19: A Recurrent Neural Network.

2.4.4 Long Short-Term Memory (LSTM)
Due to the problem of vanishing gradient which risks overfitting, training standard

RNN is challenging. To overcome this challenge, Hochreiter and Schmidhuber introduced
a long-term Short-term memory (LSTM) model [44]. This model replaces the hidden
layer of the standard RNN with a memory cell, and uses a cell, that memorizes data over
random time intervals, and three gates: an input gate, an output gate, and a forget gate,
whose job is to regulate the flow of data in and out of the cell.

Figure 2.20: LSTM Cell.

Bidirectional LSTM or bi-LSTM networks were first proposed in [93], they are variation
of normal the LSTM unit. Bi-LSTM models are trained not only from the inputs to the
outputs, but also from the outputs to the inputs. Bi-LSTM models first feed input data
to an LSTM model, and then repeat the training via another LSTM model but on the
reverse order of the sequence of the input data, thus analyzing the data in both directions.
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Figure 2.21: A standard LSTM and a bi-LSTM.

2.4.5 Convolutional Neural Networks (CNN)
In the past decade, Convolutional Neural Networks (CNN) have become the main stan-

dard operator for Computer Vision and Deep Learning. CNN is a Feedforward Artificial
Neural Network with alternating convolution and pooling/subsampling layers, followed
by Fully Connected Layers. Deep 2D CNN with many hidden layers and millions of pa-
rameters are capable of learning very complex objects and patterns, provided that they
can be trained on a large scale visual database with real labels. With proper training,
this unique ability allows them to be the main tools for various engineering applications
of 2D signals (such as images) And video frames. However, in many other applications,
the 1D-CNN may be a more viable option Especially for time series data.

1D-CNN were recently proposed fully study time series, and they immediately became
the norm for multiple applications. Another major advantage is that Real-time and low-
cost hardware implementation is feasible because of simplicity and compactness of one-
dimensional CNN that only perform one-dimensional Convolution (scalar multiplication
and addition), as well as one-dimensional Pooling.

1D-CNN can recognize local patterns in a sequence because the same filter (input trans-
formation) passes over each plot (Figure 2.22. The filter having characterized a pattern
at a certain position will be able to recognize the same pattern at a different position
which makes the transformation invariant in time.
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Figure 2.22: 1D-CNN Architecture.

2.4.6 Underfitting and Overfitting
Unfortunately, Neural Networks suffer from Underfitting and Overfitting too, the two

concepts have already been explained in 2.3.2.

The solution for Underfitting in Neural Networks is to simply increase the model’s ca-
pacity, which is its ability to fit more functions with more weights, giving it more range
for mapping inputs to outputs. This is usually done by adding more layers and/or more
Neurons to layers[13].

The ease of addressing an underfit model makes the more common problem Overfit-
ting[13], which can be dealt with in a wide range of solutions called Regularization tech-
niques.

2.4.7 Regularization
Regularization is when subtle changes are made to the learning algorithm so that the
resulting model can generalize better, this improves the model’s performance on unseen
data[22][13].

A few different Regularization techniques exist in order to reduce Overfitting in DL mod-
els, they include:

• Dropout
Dropout is one of the Regularization methods used for avoiding Overfitting in Neural
Networks. When training, a certain number of layer outputs are randomly dropped
out, meaning they are ignored temporarily removing them from the Neural Network,
along with all their connections. Creating a new layer that has a different number
of Neurons and input and output connections.



62 Chapter 2. State of The Art on EEG signal Processing

The hyperparameter specifying the Dropout rate is a probability, representing the
rate at which layer outputs are kept. A common value for it is 0.5 for hidden layers
and a value close to 1, such as 0.8, for output layers[22][12].

• Early Stopping
Generally, when training a Neural Network, at a certain point the model will reach
minimum Loss but then rebound due to it no longer generalizing based on the
training data but learning the statistical noise in the dataset. This makes the
model less useful and worsens its performance on other unseen data.

We then need to train the Neural Network long enough so that it learns the data’s
pattern, but not long enough so that It starts overfitting. This is called Early
Stopping, and it is another Regularization method used to avoid Overfitting.

One approach to stopping early is putting the number of epochs among the hyper-
parameters and training the Neural Network multiple times all the while registering
the resulting model’s performance and/or Loss, and then choosing whichever suits
us best. This approach is time consuming and requires a large amount of computa-
tional power, especially for larger datasets.

Another approach is training the model only once for a large number of epochs,
and evaluating the model’s performance using a Holdout Cross-Validation dataset
on every epoch. This can give insight into the model’s performance’s evolution over
time, the training process can then be stopped when the model’s performance starts
to decline[22][11]. Figure 2.235 below is an example of the resulting graph’s form:

Figure 2.23: Neural Network training over many epochs (Training cycles)
and Early Stopping point.

Other regularization techniques exist, such as activity regularization, introducing Weight
Constraints, or training the Neural Network with Noise[13].

5Source: https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-
networks.html



2.5. Dimensionality Reduction 63

2.4.8 Hyperparameter Optimization
Tuning hyperparameters is essential for having a well fit and performing DL model.

This can be done using optimization algorithms such as Particle Swarm Optimization
(PSO)[109], Genetic Algorithms (GA)[76], or Bayesian Optimization[51]. However, these
algorithms come with the cost of additional computing time and even more parameter
optimization, and in many cases it is better to use manual methods like Grid Search,
Random Search[121], or just a trial and error process by generating a large amount com-
binations and taking the best one.

2.5 Dimensionality Reduction
Dimensionality Reduction, is the process of transforming high dimensional data into low

dimensional data, to both reduce the number of features because high dimensional data
is very time consuming to manage, as well as to derive meaning from the few remaining
features[106], which is this section’s objective. With the features being brain regions, this
meaning is the exact regions that witness Energy/Entropy changes when transitioning into
or from a state of fatigue. The type of Optimization algorithms that suit this objective
are Metaheuristic Methods:

2.5.1 Metaheuristic Methods
Metaheuristic methods are a subfield of stochastic optimization, utilizing their objective

functions in an abstract way without further insight into their inner structure, essentially
treating them as a black-box. These methods are often inspired by used in a wide variety
of problems, making them the most general type of algorithm among all optimization
algorithms[45][73].

Many of these methods are inspired by natural systems, such as the thermodynamic
process underlying annealing (the atoms in the molten material randomly move about,
but, as the temperature drops, attempt to settle into the lowest possible energy state),
the behavior of a colony of ants searching for food, or in our case, evolution and natural
selection, creating varied and powerful algorithms[73][100].

These algorithms include but are not limited to: Particle Swarm Optimization (PSO),
Simulated Annealing (SA), Ant Colony Optimization (ACO), and Genetic Algorithm
(GA) which will be explained in detail in the next section.

2.5.2 Genetic Algorithm
The processes of natural evolution, as seen in a population of individuals competing

for survival, has inspired the metaheuristic optimization algorithm known as the Genetic
Algorithm[45].

This algorithm’s areas of application include Chemistry, Medicine, Data Mining and Data
Analysis, Geometry and Physics, Economics and Finance, Networking and Communica-
tion, and Electrical Engineering and Circuit Design[111].
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In this algorithm, a population of individual solutions are represented by a binary se-
quence called a genome, similar to that of a human DNA, a first generation is randomly
generated, natural selection then selects who survives and gets to reproduce, based on an
objective/cost function called a fitness function, individuals would be selected from the
pool of genomes favoring those who had better fitness using a selection function, the re-
sulting members would then be combined into new ones using a crossover function, which
will mix and recombine the survivors’ genes into a new population, essentially mating the
two candidate solutions, a mutation function would then be applied to randomly alter
some genes to further increase diversity among them and to avoid local minima, the next
generation is now born. This cycle is then applied across multiple generations (iterations),
however many is needed to get the needed genome which represents the fitness function’s
optimal point and/or satisfies the algorithm’s terminal condition, many of the functions
mentioned above have parameters that need to be fine-tuned in order for the algorithm to
properly converge in a convenient time frame, all of which will be detailed in the following
sections[45][100][111].

Figure 2.24: The Genetic Algorithm Cycle.

This algorithm is comprised of various functions, all of whom will be detailed in the next
section in order of execution.

Genetic Representation

In order to apply the Genetic Algorithm to our problem/fitness function, a genetic
representation function should be employed in order to encode the candidate solutions in
the form of a binary sequence (called a genome, genotype or chromosome) which acts as
the population (also called phenotypes). This representation differs in accordance with
the candidate solution’s form, and may in cases involve non-binary representation, when
using integers/real numbers they can simply be converted to binary, in the case of a
list the different items can be encoded using integers, or in that of 3D coordinates the
binary sequence can be omitted for one containing the coordinates themselves, many more
encoding schemes exist, but binary remains the most common one[105]
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Seeing as this algorithm will be applied to regions of the brain, or features thereof, and only
concerns their presence or absence in a ML/DL algorithm, each of the regions/features
are represented by a binary sequence with a length of 16 bits.

Figure 2.25: Genetic Representation of The Genome.

Population Initialization

When launching the algorithm, there is no existent population, thus the need to initial-
ize one by random generation of genomes. The population size is generally in the range of
50-1000 depending on the problem at hand and the computational time needed for each
individual[111][105].

Apart from random initialization, a heuristic one exists, initializing the initial population
based on a known heuristic for the problem, and it has been seen to result in similar
solutions that lack diversity and decrease the overall exploration capability of the algo-
rithm[74]. This method will not be used because the nature of the problem requires proper
convergence.

Fitness Function

The Fitness Function evaluates an individual’s aptitude to survive within the popula-
tion to be able to reproduce. It is the most important part of the Genetic Algorithm, any
flaw in this function can prevent the algorithm from converging. GA being a Metaheuris-
tic method means that there are countless possibilities for Fitness Functions because the
inside content does not matter so long as the result is outputted [111][105].



66 Chapter 2. State of The Art on EEG signal Processing

Selection

Selection is where parents are chosen from the population for mating, and where the
survivors whose genes get carried over are determined based on their fitness, it’s applied
to every member of the population[105].

• Tournament Selection
This method draws k candidates from the population randomly and selects the
members from the group with the best fitness, k is a parameter to tune.

• Fitness Proportionate Selection (Roulette Wheel Selection)
This method involves selecting individuals based on a probability of being selected.
This is done by sorting the population by fitness, generating a random probability,
iterating through the sorted population, summing each individual’s score up until
it is equal to or greater than the probability, they are then selected as a parent.

• Truncation Selection This method selects a percentage of the fittest individuals
to either mate with the rest of the population or with each other[105].

Crossover

In the analogy of this algorithm to natural selection, crossover represents reproduction
and biological crossover, where parents are selected and offspring are produced using their
genetic material[86]. There are many types of crossover, depending on the problem at
hand.

• Single-point Crossover
In this crossover, a random crossover point is selected and the two parent genomes’
segments are swapped to get new offspring[105].

• K-Point Crossover
This is a generalization of the single-point crossover wherein alternating segments
are swapped to get new offspring[86].

• Random Crossover
Child genes are treated separately and chosen randomly from either one of the
corresponding parent genomes[105].

• Uniform Crossover
Each gene is treated separately and a probability is used to decide which of the
parents’ genes is included in the offspring[86].

Figure 2.26: An illustration of Single-Point, Two-Point and Random
Crossover.
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Other types of crossover exist, such as mixed crossover, parent centric crossover, sequential
crossover, and random mixed crossover[86].

The type used in this case is a single-point crossover, the crossover probability will be
discussed in the results section.

Mutation

Like its counterpart in nature, mutation helps diversify the population and expand
its search area, with the added benefit of helping the algorithm avoid local minima by
preventing the population from becoming too similar. It is implemented on every child
in the population by giving each of their genes a small probability of being altered at
random, depending on the genetic representation[111][105].

Figure 2.27: Mutation as applied on a Genome.

The genomes used are binary sequences, which means the individual bits are inverted when
mutating a genome, the mutation probability will be discussed in the results section.
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2.6 Conclusion
For the many applications involving the use of EEG signals, processing them is always

necessary. In this chapter we have seen the different processing tools used in our work.
First, we have defined frequency and spatial filtering for the pre-processing of signals.
Then the extraction of characteristics that are classified by their domain: temporal, fre-
quential, time-frequency, or spatio-temporal. The classification step is done with Machine
Learning algorithms such as SVM, KNN, Decision Trees, and Random Forests classifiers
and/or Deep Learning algorithms like CNN or LSTM as detailed. The evaluation process
is done using classification metrics like accuracy, recall, precision, and the confusion ma-
trix. Meta-Heuristic algorithms were also introduced for use in EEG systems for feature
selection and dimensitioniality reduction.

In the following chapter, we will introduce the model and materials used for the realiza-
tion of the Brain Computer Interface (BCI) based on Motor Imagery, we will detail the
proposed protocol , demonstrate the implementation of the described methods and we
will discuss the obtained results.
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3 Brain Computer Interface
Implementation for Mobile Robot

Control

Along this chapter, we present the implementation process for BCI design. The
chapter starts with an introduction in3.1. Then in Section 3.2, we describe the
materials used in our project as well the necessary mathematical model for robot
trajectory evaluation. Subsequently, we detail our proposed experimental protocol
for dataset collection in Section 3.3. In addition, the public dataset used in this work
for comparison purpose is also described along the section. Further in In Section
3.4, we will outline the offline implementation architecture of BCI realisation, and its
result will be showed in section 3.5, thereafter Section 3.6 demonstrates the real time
implementation of our proposed architecture.

Abstract

3.1 Introduction
BCI design requires seven main processing phases in order to ensure an acceptable

results. Starting from choosing the type of BCI to work with, then collecting the data
which can be provided from recording a private dataset using a specific instrumental
sensor or using a publicly available dataset such as the BCI competition dataset. The next
step is the preprocessing of the raw data by eliminating background noise and undesired
frequencies. After that comes extracting application-specific features from the cleaned
version of the data, these features can be computed in time domain, frequency domain,
spatial domain or a combination of these such as the time-frequency features, a selection
of the most salient features from the extracted ones is then done by applying one of
the various methods proposed in the literature. These obtained characteristics are then
classified using Machine Learning algorithms to deduce decisions and send commands to
the desired device. The final step of this process is to provide feedback to the user based
on the decisions after executing the commands by the device, visual feedback is the most
commonly used [75], but other forms of feedback can be used such as auditory or haptics
[3].
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3.2 Materials

3.2.1 EEG Acquisition Device
The acquisition process of the EEG signals is achieved with the OpenBCI Ultracortex

Mark IV headset available in the Complexes Systems Control and Simulator Laboratory
(L(CS)2) of the Military Polytechnic Institute in Algiers. This device offers open source
access to all materials and data. This device is capable of recording research-grade brain
activity (EEG), muscle activity (EMG), and heart activity (ECG) by sampling up to
16 channels of EEG signals and up to 35 different locations using dry electrodes for
recording, which significantly reduce the time needed for preparation. The placement
of the electrodes on the human scalp in the context of EEG is established according to
the 10-20 international configuration detailed above. Figure 3.1 presents the 16 channel
configuration of the Ultracortex headset that we have used in our project.

Figure 3.1: ULTRACORTEX Mark IV headset with Daisy Module in-
cluded (16 channel)

Acquisition Module

The main component of the Mark IV headset is the Cyton board (Figure 3.2a) which
includes a micro-controller, an amplifier for electrical recordings, wireless connectivity and
a SD card recording options for up to 8 recording channels from which electrophysiological
data can be collected.

The Daisy Shield on the other hand allows data acquisition from eight additional channels
as has been seen in Figure 3.2b. Therefore, with this combination, the OpenBCI system
allows collecting EEG signals from 16 channels with a sampling frequency of 125 Hz, data
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resolution of 24 bits and compatibility with active and passive electrodes, among other
features.

(a) Cyton Module (b) Daisy Module

Figure 3.2: OpenBCI Modules.

The Table shows the main characteristics of the OpenBCI Modules.

Features Characteristics
Microcontroller Atmel Atmega32-8p with Arduino uno

bootloader with 8GPIO pins
Accelerometer ST LIS3DH 3 axis accelerometer with 16 bit data output
Input Channels 8 biopotential input channels, 16 input channels

for Daisy Module.
AC DC Converter ADS 1299 Texas instrument with a High gain, and a

Low noise ADC, 24 bit channel resolution.
Type of the extracted signal EEG, EMG, ECG.

Sampling Rate From 125Hz up to 16 kHz.

Table 3.1: OpenBCI Module Characteristics.

Electrodes

OpenBCI provides four different dry electrodes: flat (flat), pointed (spiky), 5mm combs
and comfort electrodes. These electrodes are made of AgCl silver chloride.
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(a) 5 mm pointed electrode. (b) Comfort electrode. (c) Spiky electrode.

(d) Flat electrode.

Figure 3.3: OpenBCI electrodes.

Ground and Reference Placement

Grounding is used for common mode rejection. The main purpose of grounding is
to prevent power line noise from interfering with small biopotential signals of interest.
According to the design, the amplifier should not be affected by large changes in the
active and reference point potentials. For reference, this electrode is usually placed on
the ear, or in the case of "total ear", placed on a pair of electrodes, one for each ear.
Ideally, the measured potential difference is the voltage drop from the active electrode
(connected to Vin+ on the amplifier) to the reference electrode (connected to Vin- on the
amplifier). For the openbci system , the right earlobe is considered as the reference and
the left earlobe as the ground.

OpenBCI Recording Software

The recording, streaming and the visualisation of the eeg data is done with the Open-
BCI GUI software proposed by the OpenBCI Community. The data is recorded via a
bluetooth communication between the bluetooth dongle and the headset. After setting
the connection a live-time displaying of the data is provided. The data is saved in the
computer with a .txt format to be used for an offline processing using Matlab or python.
A live-time streaming of data to a third-party such as Matlab, Python, Ros or Java can
be done using the LSL streaming layer.
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Figure 3.4: OpenBCI GUI Software

The Openbci GUI is compatible with all the OpenBCI boards like ; Cyton, Ganglion,
the Wifi Shield and the Daisy board that we have used in our experiment. The software
provides multiple tools and visualisation option such as :

• Time series plot.

• Frequency spectrum plot.

• Headset energy distribution plot.

• EEG rhythms (α, β..) power represented in histograms.

• 50 Hz and 60 Hz notch filter

• Impedance testing

• Pre-defined pass band filtering

• signal smoothing

3.2.2 Mobile Robot Description
The E-puck 2 mobile robot available in the (L(CS)2) laboratory is used in this work.

It is a small robot used for education and research. It was originally designed by Francesco
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Mondada and Michael Bonani at EPFL (Lausanne, Switzerland) in 2004. A more recent
version e-puck 2 as it is represented in Figure 3.5 was realized in 2018 which is more
powerful and better equipped with sensors with WiFi, USB connectivity, long distance
Time of Flight distance sensor, RGB led, and more. The e-puck is open hardware and
open source platform.

Figure 3.5: E puck2 robot

E-puck 2 Robot Properties

Although the e-puck was developed for education, its low price and large number of sensors
make it interesting for research. It has been used in collective robotics, evolutionary
robotics, and artistic robotics. In [78] a control of synchronization regimes in networks of
mobile interacting agents based of epuck robot was achieved and in [62] a multiple epuck
robots was formed as swarm groupe of robotics system and a Supervisory control theory
was applied to control the proposed system. The main specification of the e-puck 2 robot
is described in the table 3.2 below:
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Table 3.2: E-puck 2 Proporties.

Feature Characteristics
Size, Weight 70mm diameter,55mm height, 150g
Processor 32-bit STM32F407 168Mhz
Motors 2 stepper motors with a 50:1 reduction gear and

20 steps per revolution
Wheels diameter=41mm, distance between wheels=53mm
Speed Max=1000 steps/s (about 12.9 cm/s)

Distance sensor 8 infra-red sensors measuring ambient light and
proximity of objects up to 6 cm.

IMU 3D accelerometer, 3D gyro, 3D magnetometer.
Camera VGA color camera , typical use: 160 ∗ 120
Audio 4 omni-directional microphones (digital) for sound localization

speaker capable of playing WAV or tone sounds
LED 4 red LEDs and 4 RGB LEDs around the robot,

green light, 1 strong red LED in front
Communication USB Full-speed, Bluetooth 2.0, BLE, WiFi
Programming Free C compiler and IDE, Webots simulator

, onboard debugger (GDB)

Robot Localisation

Since trajectory tracking and evaluation requires knowing the exact position of the
center of the robot, Webot simulation provides the angular displacement of the left and
right wheel, the position of the center is computed following the development below: The
odometers provide the angular displacement δdD(t), and δdG(t) of each of the rear wheels
during the period t. From these two values, the elementary displacements of the vehicle
in rotation δd and along its path δθ (Figure 3.28), are given by :

δd(t) =
R(δdG(t) + δdD(t))

2 (3.1)

δθ =
R(δdG(t)− δdD(t))

2L (3.2)
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Figure 3.6: Robot Odometry Scheme

We seek to express recursively, with respect to the universal reference frame R, the position
of the mobile system (xk, yk, θk) at time k as a function of the position (xk−1, yk−1, θk−1)
at time k − 1 and the measured elementary displacements. The kinematic model of the
mobile robot is described according to the following system of equations:

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = w

(3.3)

Since the robot model is nonlinear, for which there is no general discretization method [9].
In the particular case we are interested in, we can approximate ẋ by a finite difference, if
the sampling period Te is small (same for ẏ and θ̇) then :

ẋ =
xk − xk−1

Te
(3.4)

We finally obtain the equations below that leads to the identification of the position of
the centre of our robot: 

xk = xk−1 + δd cos(θk−1)
yk = yk−1 + δd sin(θk−1)
θk = θk−1 + δθ

(3.5)

The equations above describe the displacement of a moving system in a straight line along
the direction θk−1 along length δd , and then rotates in place by δθ.
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3.3 Datasets Description

3.3.1 Private Dataset Building
Experimental protocol

Two male subjects (23 ± 1 years) were selected from the LCS2 laboratory. A quick
questionnaire was established to make sure the subjects have no medical contraindications
such as a prior brain injury, use of prescription medication, severe concomitant or any
psychological ,minor psychiatric disorders or any intellectual problems. For a proper
acquisition, the subjects have to be in an alert state defined with a good sleep quality
and a minimum mental activity. They were also requested to stop drinking caffeine such
as cafe, tea or any stimuli 24h before the acquisition. The experiment was performed
from 13h to 15h30 in a very quiet room with a controlled temperature. The participants
received a comprehensive instruction about the protocol and the required tasks. Each
participant needs to be trained for at least one week or 5 sets of training sessions before
the official acquisition where the data are actually collected and used. The protocol for
movement imagination consists of :

• Left movement : the left movement is defined by imagining squeezing an object
with the left hand.

• Right movement : the right movement is defined by imagining squeezing an object
with the right hand

• Forward movement: the forward movement is defined by imagining the move-
ment of the tongue, this movement was previously defined as the imagination of
feet movement, but due to problems of such imagination and realisation, we had
to change this specific protocol, another advantage for this change is that the sig-
nals that are responsible for the tongue can be separable from the other classes in
contrary to the feet imagination.

• Stop: the protocol for stopping the movement is defined with eye movement. A
voluntary eye movement made by opening and closing both of the eyes is a short
amount of time (2 to 3 seconds), the effect of the voluntary eye movement is affected
in both EEG and EOG signals. The motive for this protocol is to detect with
efficiently the stop and to be highly distinguishable.

Electrodes Placements

The main focus of the acquisition is to provide the EEG from from the region that is
responsible for the motor imagery, as detailed in the 1 we chose the following electrodes
placement based on the 10-20 system: F3,Fz,F4,FC5,FC1,FC2,C3,CZ,C4,CP1,CP2. And
since the experiment protocol requires the EMG and EOG signal for the stop move-
ment, as a result we have collect the signal for this class using the electrodes located in :
FP1,FP2,F7,F8 and as it be seen it the Figure 3.7 below.
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Figure 3.7: Electrode placement for the motor imagery

3.3.2 Public Dataset
In our work, we tested our approach and model with the BCI competition IV 2a

dataset.The EEG acquisition for the dataset was made for nine able-bodied subjects,
three females and six males, with a mean age of 23.8 years (standard deviation of 2.5
years). The Cue-based com paradigm takes on 4 different tasks of motor imagery, the
motor imagery of left hand movement (class 1), right right hand movement (class 2),
both feet movement (class 3) and tongue movement (class 4). Two sessions were recorded
on different days for each subject. Each session contains 6 sets of acquisition separated
by a short pause. Each set of acquisition contains 48 trials (12 trials for each of the
classes ), which leads to a total of 288 tests per session. EEG signals were recorded
using Twenty-Two Ag/AgCl electrodes, the locations of each electrode was based on the
10-20 international system, As shown in the figure 3.8 below, the electrodes were more
concentrated in the motor cortex.
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Figure 3.8: Electrode placement of the BCI IV 2a dataset for EEG ac-
quisition

The reference for the recording signals was placed in the left mastoid and the ground was
placed in the right mastoid. All signals were recorded monopolarly with the left mastoid
serving as reference and the right mastoid as ground.The signal were sampled at 250 Hz
and band-pass filtered between 0.5 Hz and 100 Hz. The sensitivity of the amplifier is set
to 1 mV. An additional 50 Hz notch filter was enabled to suppress line noise. All the
subjects were seated in a comfortable armchair in front of a computer screen during the
acquisition,The data was visually inspected by an expert and the tests containing artifacts
have been labeled.The EOG were recorded for the artifacts removal ( Figure 3.9 and the
study of the influence of the EOG signals for the EEG, as consequence these channels will
not be included in the classification.

Figure 3.9: electrode placement for the three monopole EOG channels
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The training paradigm includes repetitions of cue-based (synchronized) trials on four
different moving image tasks, namely left hand, right hand, and foot imagination And
tongue movement. At the beginning of each beep (at t = 0 s), a short beep will sound and
a fixed cross will be displayed in the middle of the screen. After 2 seconds (t = 2 seconds),
a visual cue (arrows pointing to the left, right, up or down) appeared on the screen for 1.25
s. Each position of the arrow requires the subject to perform a corresponding imaginary
movement, namely to the left, right, tongue or foot respectively. Specifically, they were
asked to maintain their imagination of movement for 3 to 6 seconds. After 6 s (t = 6 s),
the fixed fork disappeared, allowing the subject to relax. The next test will start after a
rest period of 1.5-2.5 seconds. The exact timing scheme is shown in the figure 3.10 below.

Figure 3.10: Diagram of the acquisition protocol

3.4 Offline Implementation Architecture

3.4.1 BCI Type
The main objective of our work is to control a mobile robot in multi direction by using

the intention (imagination of the movement )of the user. BCI based on motor imagery is
the most suitable in our case since it doesn’t require any external stimuli, the realisation
of this brain computer interface is based on the EEG signals as the measurement for the
brain activity. The motive is to provide a non-invasive technique in order to not cause
any harm to the user.

3.4.2 EEG Acquisition
The acquisition of the EEG signals is done with the ULTRACORTEX Mark IV 16

channels Daisy board headset with a sampling frequency of 125 Hz. The impedance
between the electrode and the scalp is measured before starting the acquisition, this latter
needs to be lower than 50 khz in order to provide a good acquisition with a high signal to
noise ratio (SNR), the impedances were measured at 30hz as provides by the OpenBCI
GUI software the signals are measured with a full respect of the experimental protocol.
The table 3.3 shows the average of impedance obtained before starting the acquisition.
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Channel Brain Average impedance Channel Brain Average impedance
Region (kOhm) Region (kOhm)

1 Fp1 10.4 9 F7 8.5
2 Fp2 12.5 10 F8 5.4
3 C3 18.7 11 F3 7.6
4 F4 9.6 12 C4 15.1
5 Cz 30.2 13 Fc5 5.2
6 Fz 26.4 14 Fc6 8
7 Cp1 14 15 Fc1 10.3
8 Cp2 18.2 16 Fc2 14.5

Table 3.3: Impedance Measurements.

3.4.3 Preprocessing
The acquisition of EEG signals by using non-invasive techniques has an influence of

external noises such as the powerline but also the internal noises or artifacts like the eye
blink and muscle movement, a Butterworth pass band filter [1 40] is applied to reduce the
effect of the noises.
Since the motor imagery activities are related to α band [8 12] and the β band [12 30] ,
these rhythms are extracted by applying a pass band filter with respect to their defined
frequencies.the Figures 3.11 and 3.12 illustrate the frequency spectrum before and after
the preprocessing.

Figure 3.11: EEG Spectrum before filtering
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Figure 3.12: EEG Spectrum after filtering

3.4.4 Data Segmentaion
Time sequencing presents an important step for data processing, two type for segmen-

tation can be defined:

Overlapping window

The first window is set with a fixed length, and the next window slides over the current
window, such that the time interval between two windows is less than the width of the
latter but greater than the processing time of the computer as can be seen in the Figure
3.13 below.

Figure 3.13: overlap window segmentation
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Disjoint Segmentation

the data is decomposed into a predefined window, the length of the window needs to be
bigger than the sampling time.in the figure below, we illustrate the denoised EEG signals
with a fix segmentation of 200 ms in Figure 3.14 .

Figure 3.14: 200ms EEG data segmentation after filtering



84 Chapter 3. Brain Computer Interface Implementation for Mobile Robot Control

3.4.5 Features Extraction
The power spectral density for the alpha and the beta rhythms is extracted by using the

welch method as describe in 2.2.1. The contribution of our work is applying the common
spatial pattern (CSP) to the obtained PSD where we computes the maximum ratio of
variances between different classes of data by applying filters on it. The One Versus the
Rest variant of the csp is applied to the 4 classes of movement. The PSD is divided into
different sub-bands to extract information from different portions and then the selection
of most relevant features from the extracted features. The Figure 3.15a and 3.15b show
the data distribution before and after applying CSP respectively.

(a) PSD data before CSP (b) PSD data after CSP

Figure 3.15: CSP features.

As it can be seen in the results above, the discriminability of the classes increased which
made the dots of data more separable. The separability of the data is manifested with
an angle between a couple of classes. We can also see that the data of the fourth class
possess a high amplitude and the scatter plot distribution is distant from the other data
which can be explained by the high energy generated from the EMG signals caused by
the movement of the eyes. After applying the spatial filtering and extracting feature from
the PSD, relevant features are extracted from the CSP, for each direction of an imagined
movement, the variances of only a small number of signals most suitable for discrimination
are used for the construction of the classifier. The signals that maximize the difference
of variance of a class versus the rest of classes are the ones that are associated with the
largest eigenvalues and they are related to the first and last rows of the projection matrix.
In the next sections, we discuss the variation of the number of the selected features and
the performance of the model in each case.

3.4.6 Feature Classification
For the classification , machine learning classifiers were chosen to classify the selected

features. The final architecture of the processing is shown in the Figure 3.16 below:
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Figure 3.16: Offline EEG Processing

3.5 Results and Discussions
The signal and classification process was applied in Matlab 2018b. In order to final the

accurate model, two parameters were tuned in order to visualise their influence to the :
the segmentation window and the number of the selected features of the OVR CSP , in
the other hand , multiple classifier has been chosen and finally validate the best obtained
model in order to be test in the real-time.

3.5.1 Study of the Influence of the Disjoint Window Length
In order to find the best length of the disjoint segmentation of data , we have chosen

three values : 200, 400 and 800 ms as a length of the disjoint window. Four classifiers
have been chosen for this study which are : Trees,SVM, KNN And Random Forest, we
chose the accuracy as the validation metric, even though the confusion matrix and the
Roc curve will be computed. The data is divided into 80% for the train and 20% for
the test, the test accuracy is computed for the test data. The validation accuracy is
computed using the K-fold cross validation as described in 2.3.3, for the continuity of the
implementation we set k=5. The figures below show the test and validation accuracy for
the different window’s length. The results shown in Figure 3.17 and 3.18 presents the
mean accuracy of both subjects
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Figure 3.17: Cross validation accuracy for different window length

Figure 3.18: Test accuracy for different window length

The Histograms below showed the influence of the variation of the length of segmentation
window for the performance of the model. For this study, no reduction of the CSP
has been considered. As it can be seen , the best accuracy was obtained for a 200 ms
segmentation for the majority of the classifiers, as for the classifiers, Random Forest (RF)
gave the best results with 87.3% in validation and 90.12 % for the test. The high accuracy
of the RF can be explained by the characteristics of the classifier, in facts, Random forest
adds extra randomness to the model while growing the tree. Instead of searching for the
most important feature when splitting nodes, it searches for the best feature in a random
subset of features. This leads to a wide range of diversity, which usually results in better
models. As a conclusion, the window length will be set to 200 ms for the continuity of
our work.
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3.5.2 Study of the Influence of the Dimensiality Reduction of
CSP

For this study, we tune the number of the number of rows taken from the CSP projection
matrix, thus four option are taken : no reduction and m=8,5,4, the results are shown in
the Figure 3.19 and 3.20.

Figure 3.19: Cross validation accuracy for different dimension of feature
selection

Figure 3.20: Test accuracy for different dimension of feature selection

From the study below, we illustrated the influence of the number of the selected features
on the performance of our model. The input of the model is of size 32 in which it can be
reduced by selecting the m first and last rows of the transformed signal. The study showed



88 Chapter 3. Brain Computer Interface Implementation for Mobile Robot Control

that selecting the 8th first and last rows leads to an improvement in the RF performance
from 87.3% to 90.35% in validation and from 90.12 to 90.98% in test accuracy.

RF Model Characteristics: The random forest has been tuned in order to obtained
the suitable parameters that led to better performance, the Table 3.4 shows the parameters
of the our RF model:

Parameter Value
Maximum number of splits 2400

Number of learners 30
Learning rate 0.1

Subspace dimension 1

Table 3.4: Random Forests Model Parameters

Confusion Matrix: In the figure 3.21 below, the confusion matrix of the subject 1 is
showed by applying the best parameters found above , the accuracy was 92.75 %, and as
it can be seen the model has a high accuracy for the third and fourth class and a relative
low performance of the first and second class, which caused by the confusion between
the right and left movement since it require a high intention in order to separate the
movements. The best performance was obtained by the fourth class which can valid the
choice of the proposed protocol.

Figure 3.21: Confusion matrix

ROC Curve: The ROC curve of the obtained model is shown in the Figure 3.22 below.



3.5. Results and Discussions 89

Figure 3.22: ROC Curve

3.5.3 BCI Competition IV 2a Dataset Results
As described in the Section above, we tried to implement our architecture to the BCI

competition dataset, the table below show the accuracy of our model and a comparison
with the best global results is shown in the Table 3.5 below, three cases has been chosen
for the implementation, the 4 class imagery, and 3 class : right /left and tongue imagery
since it matched with our protocol.

Model Subj. Subj. Subj. Subj. Subj. Subj. Subj. Subj. Subj. All
1 2 3 4 5 6 7 8 9 (Mean)

Cubic SVM 93.5 88.8 90.09 96.07 87.56 90.81 95.02 94.7 93.4 92.22
(3 classes) % % % % % % % % % %

Random Forests 82.4 77.95 87.6 80.8 79.4 83.61 86.74 84.91 86.42 83.31
(4 classes) % % % % % % % % % %

Random Forests 90.5 87.3 91.12 95.6 90 90.04 91.5 94.8 93.77 91.59
(3 classes) % % % % % % % % % %

Table 3.5: BCI Competition IV 2a results

The best result obtained by using the random forest classifier for the 4 movement class
and cubic SVM for the 3 movement class, for this analysis we have applied with a 1s
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segmentation with 8 vectors selected from the CSP matrix. As it can be seen, the model
showed satisfactory results for the majority of the subjects, however The models trained
on subjects 2 and 5 respectively have shown a poor accuracy due to the high amount of
noise contained in their respective data, which confirms the statement in [27].

In the figure 3.23 we compare the performance of our model to the best obtained models
in the literature, in which we see a good performance of our model

Figure 3.23: Comparison of BCI competition IV 2a results

3.6 Online Implementation
In order to validate the obtained results and test the model in a closed loop, starting

from signal acquisition to the features extraction and classification , the output of the
model presents the command of our mobile robot which in our case is the e-puck 2 mobile
robot and a visual feedback is provided by the user as it is demonstrated in the Figure
3.24 below. The robot is implemented in Webot simulator which can also transfert the
commands to a real robot using Bluetooth or WiFi connexion.
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Figure 3.24: Closed loop diagram

For the control of the robot with the best model obtained in the classification step, we
have developed a new code in MATLAB whose flowchart is shown in Figure3.25. First, a
step of online acquisition of the EEG signal is performed using the Lab Streaming Layer
(LSL) library and the openBCI GUI software. The sampling frequency chosen during the
analog/digital conversion of the signal is the same during the training phase, i.e. 150 Hz
and the recording window of the 16-channels signals is fixed at 200 ms. Then, a filtering
stage is carried out for the elimination of the various noises and the extraction of the α
and β wave, this is carried out by a programmed function which allows the application
of a butterworth band-pass filter with respective frequencies [8-12] Hz and [12-30 ] Hz.
Following the filtering step, the power spectral density is computed for both waves which
creates a matrix of (25*32), the next step , the CSP features are computed by projection
the PSD to the CSP matrix. The latter is the input of the pre-trained Random Forest
model that will estimate the class of movement performed by the user.
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Figure 3.25: Real time Flow chart
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For the implantation, we proposed a trajectory as it can be seen in the Figure 3.26 below,
the user needs to provide real time commands to the robot with the aim of moving the
robot from the initial position to the proposed final position passing by the designated
path.

Figure 3.26: Proposed trajectory

Two scenarios are proposed for the experiment as shown in the figure 3.27. The operator
had issues regarding the realisation of successive imagination which leads to lack of perfor-
mance, as a consequence the second scenario was proposed to overcome the consuciotivity
of movements.

Figure 3.27: Real time scenarios
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Time management The Table 3.6 below shows the required time for model to be
trained and also the the needed time for the pre-trained time to delivered the command
regarding the input signal.

Table 3.6: Processing timing.

Model Trained Time Pre-Trained
RF 12s 99ms

SVMcubic 11.2s 86.3ms

Figure 3.28: Robot Trajectory

Discussion The implementation of our model showed a satisfied results and perfor-
mance regarding the complex nature of the EEG signal and the difficulties of real time
realisation. As it can be seen from the Figure 3.28 the model showed a good perfor-
mance in the forward movement and the stop movement. For the right class, the robot
made a rotation angle bigger than the required angle (90 degree); this angle error can be
explained by the visual difficulties of such movement and the required time to provide a
perfect 90 degree rotation, we also remind that the robot is controlled only in velocity and
the command provided from the user are quantitative commands since we can’t provide
an exact reference angle to the robot.
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3.7 Conclusion
Along this chapter, we detailed the implementation steps of the Brain Computer Inter-

face realization. We have also evaluated the obtained results of our proposed model. The
evaluation process is done using both the online “BCI COMPETITION IV 2A” dataset
and our acquired private dataset which is used for real time control.

For the online dataset, we achieved a state-of-the art performance with minimum training
time and only by applying Machine Learning algorithms. For better performance, we
can suggest individual subject study for Feature Selection and to extract other relevant
features in order to improve the obtained results.

As for our private dataset, we have obtained promising results with a mean of 90% for
the offline implementation, our model has been validated online where the output of our
model was considered as the commands of the e-puck robot.

These results are obtained for subject candidates in alert state. However, if a user is tired,
the proposed approach may give wrong results. Thus, we have targeted to integrate an
additional module for fatigue detection.

In the next chapter, we will design a fatigue detection approach based on EEG signal
using both machine learning and deep learning algorithms.
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4 EEG Signals Classification for
Fatigue Detection

In this chapter, we develop the implementation process for drowsiness/fatigue de-
tection. In Section 4.1, we review the various methods applied for fatigue detection,
Section 4.2, details our proposed experimental protocol for data acquisition as well as
the description for the public dataset used. In Section 4.3, we resume the application
and results of the methods discussed in Chapter 2 for fatigue detection; in Subsection
4.3.1 we discuss the validity of the extracted features, in Subsection 4.3.2 we review
the application of the previously discussed Pre-processing techniques. In Subsections
4.3.3, 4.3.4, and 4.3.5, we display the obtained results of the ML and DL algorithms
on their respective datasets, and in Subsection 4.3.6, the results of Dimensionality
Reduction are discussed. Finally, We close off this chapter with a conclusion 4.4.

Abstract

4.1 Introduction
In the literature, two path of processing has been considered for the detection of drown-

iess, in 2, we have detailed the features extraction methods and machine learning algo-
rithms that can be used for classification. In [50] the FFT of θ,α, β bands were used as
part of a study on their proportionality with the states of fatigue and alertness, in [112],
the same was been done with (θ+ β)/β, (β/α), (θ+ α)/(β + α) and (θ/(β)) ratios as
part of a study of the effect of fatigue on EEG spectrum, Independent Component Anal-
ysis (ICA) was used for artefact removal .in [90] CSP filter was applied to the pre-process
EEG data and the result feature were fed to LDA classifier. In [108] Shannon entropy
was computed on the EEG signal and then classified using PCNN classifier, the model
was validated in real-time implementation. In [65], a comparison study of the SVM,KNN
,Random forest (RF) algorithms was made to classify the Shannon entropy of the EEG
signals in both states (fatigue and non fatigue).

Recently, deep learning (DL) techniques have demonstrates strong capabilities in time
series classification [60] With a main focus on the application of deep learning techniques
to the classification of EEG signals[37]. These DL-based methods have achieved effective



4.2. Dataset Description 97

classification results in various EEG-based recognition tasks, but still face many problems.
Extracted features from deep learning technology are difficult to explain and analyze,
and the network itself is also difficult to train the number of parameters is large, and
the network depth is high. Deep learning technology still needs further research and
development, including their Training efficiency and internal mechanism description.

Figure 4.1: EEG processing scheme.

In DL methods (represented by path B Figure 4.1), raw EEG information was fed to the
network in order to obtain the state of the subject [18], in [118] the drowsiness was detected
using convolutional neural network (CNN) where the network identifies automatically
the features of the first path and classify in two states. In [55], CNN and long short-
term memory (LSTM) were both developed for offline drowsiness detection. Artifact
removal present a major step for pre-processing of EEG data and it leads to performance
improvement for the majority of the studies, in [41] ICA was applied to the EEG data in
order to remove signal artifacts and extract the source components and the transformed
signal was fed to the CNN network, and in [36] the source components were fed to the
recurrent neural network RNN for drowsiness detection.

4.2 Dataset Description

4.2.1 Private Dataset
Workstation

The model were trained and implemented using a working station based on an I7-
6700K Intel processor, an Nvidia GTX 1080 GPU and 32 GB Ram, and SSD hard drive.
The station is available in the L(CS)2 with a triple Full-HD monitors and is also used
for flight simulation.
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Experimental Protocol

9 male subjects (22-43 years old) were selected from the L(CS)2 laboratory. A quick
questionnaire was established to make sure the subjects have no medical contraindications
such as a prior brain injury, use of prescription medication, severe concomitant or any
psychological ,minor psychiatric disorders or any intellectual problems. For a proper
acquisition, the subjects have to be in an alert state defined with a good sleep quality
and a minimum mental activity. They were also requested to stop drinking caffeine such
as cafe, tea or any stimuli 24h before the acquisition.

The participants received a comprehensive instruction about the protocol and the required
tasks. Each participant needs to be trained to use the Xplane 11’s based L(CS)2 flight
simulator and the attached command devices as it can be seen in the Figure 4.2. The
motif for studying the driven or pilot fatigue is that the flight simulator as well as the
drive simulator provides a good inducing of fatigue. The state of fatigue and alert state
are defined as follows:

Alert state:

• The participant should have a minimum of 8 hours of sleep.

• The participant should have some previous experience with the flight simulator.

• The acquisition should occur in the morning.

Fatigue state:

• The operator should have from 4 to 5 hours maximum of sleep.

• The participant should operate withe the flight simulator for at least 30 minutes.

• The acquisition should occur in the afternoon.

Figure 4.2: Pilot fatigue protocol

Electrode Placement

The effect of fatigue can not be seen in a specific area of the brain which require a
collection of EEG data from the globality of the brain, features selection methods can
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be used for the selection of electrodes related to fatigue detection. In our work, we use
the Ultracortex Mark IV headset described in 3.2.1, as for the electrodes’ placement, the
configuration is shown in the figure below:

Figure 4.3: 10-20 system for fatigue detection

4.2.2 Public Dataset
In order to validate the obtained models’ results, the "Min-Wang-Hu" public dataset

(avaiable online)1 has also been used in tandem with the private dataset. It contains
EEG data that has been collected from twelve healthy subjects aged from 1-24 able-
bodied persons with normal sleep schedules. Prior to the experiment, the participants
practiced driving for 5 minutes in order to become acquainted with the experimental
procedure. All experimental procedures were performed with a static driving simulator
in a controlled lab environment, as shown in Figure 4.4 below:

Figure 4.4: Acquisition protocol of the Min Wang Hu dataset

1Source: https://figshare.com/articles/dataset/TheoriginalEEGdatafordriverfatiguedetection/5202739
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The driving simulation involves two protocols for each state, the first one lasts 20 minutes,
with the last 5 minutes of EEG signals being recorded and labeled as the alert state,
the second one lasts 40–100 minutes until the self-reported fatigue questionnaire results
indicate that the subject is in a fatigue state, the last 5 minutes of EEG signals are
then recorded and labeled as the fatigue state. All channel data were referenced to
two electrically linked mastoids at A1 and A2, digitized at 1000 Hz from a 40-channel
electrode cap based on the International 10–20 System and stored in a computer for offline
analysis. Eye movements and blinks were monitored by recording horizontal and vertical
EOG signals[65].

4.3 Results and Discussions

4.3.1 Energy and Fatigue Correlation Study
Frequency Band Energy Estimations

In order to be able to use the various frequency bands’ PSD estimation for linear fatigue
detection, a correlation between these energy estimates and the states of fatigue and non
fatigue must be made. In order to do this, Energy estimations belonging to subject 3 were
calculated for all frequency bands of two samples representing the two states, knowing
that each sample has 16 channels, we can then observe the changes between the Energy
values as the subject changes gets fatigued for each of the channels individually.

The results are illustrated in the figures below:



4.3. Results and Discussions 101

(a) δ Band Energy. (b) θ Band Energy.

(c) α Band Energy. (d) β Band Energy.

(e) γ Band Energy.

Figure 4.5: The four Band Energy estimations in both fatigue and alert
states.

By observing the illustrations, we can deduce a correlation between all four frequency
bands’ energies and the state the subject is in, the Delta and Theta energies increase with
the transition to fatigue, while the Alpha and Beta energies decrease, the Gamma band’s
energy on the other hand does not reflect any noticeable pattern. This is explained by
the fact that Delta waves reflect deep sleep and Theta waves reflect light sleep, while
Alpha waves reflect concentration and Beta waves reflect alertness (this has been detailed
in 1.2.2).

Energy Ratios

The same Energy ratios ((θ+ β)/β, (β/α), (θ+ α)/(β + α) and (θ/(β))) have consis-
tently been used in [50], [112], and others, as part of a simple fatigue detection study.
The validity of these ratios will be tested simply using the resulting energy estimations
from the previous part. The results are shown in the figures below:
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(a) (θ+ α)/β. (b) α/β

(c) (δ + θ)/(α+ β). (d) θ/β.

Figure 4.6: Different Band Energy ratio estimations in both fatigue and
alert states.

Only three out of the four ratios are noticeably proportionate to the subject’s state,
which are (θ+ α)/β, (δ+ θ)/(α+ β), and θ/β, all of whom notice an increase with the
increase of fatigue, α/β on the other hand, gives inconsistent results, and fails to convey
the transition in a meaningful way.

Therefore, there is a possibility of predicting noise merely through calculating the ratios
(θ+α)/β, (δ+ θ)/(α+ β), and θ/β, but it remains an unreliable method because of the
EEG signals’ susceptibility to noise, even with pre-processing and/or source separation.

4.3.2 Pre-Processing Results
In order to make the brute signals (used in 4.3.4 and 4.3.5) and their features (used
in 4.3.3) devoid of noise, and more easily learned, pre-processing was done using the
EEGLAB toolbox available on Matlab, more information is available in Annex B.

• Data Selection (Private Dataset only)
In the private dataset, due to the impedance inconsistency and the amount of noise
both while starting the acquisition process and while finishing it, parts of the ac-
quired data (taken in 50s intervals) had to be removed in a selection process, leaving
only the middle 30s. Further tests showed this improved results when using multiple
methods.

This process is assumed to have already been applied to the online dataset, it is for
this that it has not been applied for it.
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• Downsampling (Online Dataset only)
The online dataset comes in a sampling frequency of 1000Hz, making it too volu-
minous for pre-processing and training, it has thus been downsampled to 125Hz, a
frequency similar to that of the private dataset.

• Filtering
A 3rd order bandpass Butterworth filter in the range of [1Hz, 40Hz] has been used
to filter the data’s noise and artifacts, which are apparent at and around the 50Hz
line noise.

• Independent Component Analysis (ICA)
ICA was applied using EEGLAB to both datasets to remove artifacts resulting from
various sources as well as to apply Source Separation, which is more prevalent the
more electrodes there are.

In the case of the online dataset, the resulting features were reduced from 40 channels
into 33 ones because of the nature of the dataset, this is not the case for the private
dataset, its end result has 16 channels.

4.3.3 Machine Learning Classification Results
To obtain results for the 4 ML methods mentioned previously, features had to be extracted
from the resulting data from pre-processing. Samples are taken using a window size of
125Hz which corresponds to one second, and four out of the five Energy estimations are
calculated (δ, θ, α, β), as well as three of the four ratios studied previously ((θ+ α)/β,
(δ + θ)/(α + β), and θ/β), and the Entropy. The γ band Energy and the α/β ratio
were omitted as features due to their poor performance, which was confirmed with a trial
and error process. The resulting feature selection is a fusion between band energies, band
energy ratios and Entropy.

The result is then reorganized in a data transformation that labels the data and makes it
easier to loop through the features using Matlab.

Validation and Testing Results

The Validation Accuracy was calculated using 5-Fold Cross-Validation on 70% of the
dataset, and the Training Accuracy was calculated on the remaining 30%, using 70:30
Holdout Cross-Validation. The two tables below 4.1, and 4.2 show the obtained Validation
and Testing Accuracy results respectively:
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Method Subj. Subj. Subj. Subj. Subj. Subj. Subj. All
1 2 3 4 5 6 7

SVM 98.30 96.30 96.20 96.40 95.20 86.90 94.10 94.77
% % % % % % % %

KNN 96.40 96.30 96.40 92.40 91.20 83.80 93.70 92.89
% % % % % % % %

Decision 97.50 87.30 93.80 79.30 96.20 76.20 93.10 89.06
Trees % % % % % % % %

Random 99.20 95.50 95.70 93.30 95.70 88.90 95.80 94.87
Forests % % % % % % % %

Table 4.1: Machine Learning Validation Results

Method Subj. Subj. Subj. Subj. Subj. Subj. Subj. All
1 2 3 4 5 6 7

SVM 93.17 98.77 93.89 93.79 90.56 86.42 95.11 93.10
% % % % % % % %

KNN 93.17 95.68 96.11 94.41 88.33 81.89 94.67 92.04
% % % % % % % %

Decision 92.55 88.89 92.22 72.67 97.22 76.54 91.56 87.38
Trees % % % % % % % %

Random 94.41 96.91 94.44 93.79 91.67 87.24 96.44 93.56
Forests % % % % % % % %

Table 4.2: Machine Learning Testing Results.

Resulting Model Parameters
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Parameter Value
Training Environment i7-7600K

Dataset size 15360 - 103680
after pre-processing (Total of 622208)

Model SVM
Kernel Cubic
Model KNN

Number of neighbors 1
Distance Euclidean

Normalization method Min-Max Normalization
Model Decision Trees

Max number of splits 100
Loss Function Gini Impurity

Model Random Forests
Learning Rate 0.1

Max number of splits 356
Number of learners 30

Table 4.3: Resulting Model Parameters.

4.3.4 Deep Learning Classification Results (Private Dataset)
To test the efficiency of 1D-CNN and LSTM in analyzing and learning from temporal data,
the resulting data from pre-processing had to be reorganized in data formats that can be
inputted into either 1D-CNN and LSTM. The training process is done using Matlab.

Testing Results

The Training Accuracy was calculated using 70:30 Holdout Cross-Validation. Table 4.4
below shows the obtained results:

Method Subj. Subj. Subj. Subj. Subj. Subj. Subj. All
1 2 3 4 5 6 7

1D-CNN 94.77 95.68 95.56 94.77 91.67 77.78 98.67 92.70
% % % % % % % %

LSTM 96.08 77.78 92.78 71.24 88.33 61.32 97.33 83.55
% % % % % % % %

bi-LSTM 94.77 79.01 95 79.08 92.22 61.73 99.56 84.43
% % % % % % % %

Table 4.4: Private Dataset Deep Learning Training Results.

Hyperparameter Tuning
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All three models’ Hyperparameters were tuned using a trial and error process that involved
generating multiple layers of different types and sizes in order, and training them with a
fixed set of training Hyperparameters, once the architecture with the best result is found,
the same process is then applied to training Hyperparameters, until a good combination
that is a good fit for the data is found.

1D-CNN Model

The 1D-CNN Model’s architecture involves a 1D image input, one Convolution Layer
followed by a ReLU Activation Function, a Max Pooling Layer, then a Fully Connected
Neural Network composed of 2 layers, the output is passed through a Softmax Activation
Function with a classification threshhold of 0.5.

The model’s architecture parameters and Hyperparameters are shown in Table 4.5 below:

Parameter Value
Training Environment i7-7600K & GTX 1080

Dataset size 240000 - 1620000
after pre-processing (Total of 9722000)

Learning rate 0.001
Number of epochs 30

Batch size 5
Optimizer Adam
Input size [1, 125, 16]

Convolution Layer number of filters 96
Convolution Layer filter size [1, 3]

Max Pooling Layer window size [1, 5]
Fully Connected Layer 1 32

number of neurons
Fully Connected Layer 2 2

number of neurons

Table 4.5: Private Dataset 1D-CNN Model Parameters and training op-
tions.

LSTM and bi-LSTM Models

Both LSTM models’ architectures involve a sequence input, followed by an LSTM/bi-
LSTM layer, outputting directly into a Fully Connected Neural Network composed of 2
layers, the output is passed through a Softmax Activation Function with a classification
threshhold of 0.5.

The model’s architecture parameters and Hyperparameters are shown in Table 4.6 below:
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Parameter Value
Training Environment GTX 1080

Dataset size 240000 - 1620000
after pre-processing (Total of 9722000)

Learning rate 0.001
Number of epochs 20

Batch size 5
Optimizer Adam
Input size [16, 125]

LSTM/bi-LSTM Layer number of neurons 16
Fully Connected Layer 1 32

number of neurons
Fully Connected Layer 2 2

number of neurons

Table 4.6: Private Dataset LSTM and bi-LSTM Model Parameters and
training options.

4.3.5 Deep Learning Classification Results (Online Dataset)
To test the efficiency of 1D-CNN and LSTM in analyzing and learning from temporal
data, the resulting data from pre-processing had to be reorganized in data formats that
can be inputted into 1D-CNN and LSTM ([1, 125, 16], and [16, 125] respectively). The
training process is done using Matlab.

To test the architectures in use as well as to compare results to others in the literature,
the "Min-Wang-Hu" dataset is used and the same data organization process is applied as
in the previous section. The end architectures are trained on Matlab.

The same model architectures as used in 4.3.4 were used, only their parameters and
Hyperparameters differ. The same trial and error method of tuning them was used.

Testing Results

The Training Accuracy was calculated using 70:30 Holdout Cross-Validation. Table 4.7
below shows the obtained results:
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Method Subject Subject Subject Subject Subject Subject
1 2 3 4 5 6

1D-CNN 100.00% 96.11% 100.00% 100.00% 100.00% 93.89%
LSTM 97.22% 98.89% 96.11% 99.44% 93.33% 95.56%

bi-LSTM 99.44% 98.89% 92.22% 99.44% 95.00% 90.00%
Subject Subject Subject Subject Subject Subject All

7 8 9 10 11 12
98.33% 100.00% 96.11% 99.44% 100% 99.44% 98.61%
93.89 98.89% 96.11% 93.33% 95.56% 95.56% 96.16%
94.44% 96.11% 94.44% 95% 95% 96.11% 95.51%

Table 4.7: Online Dataset Deep Learning Training Results.

1D-CNN Model

Parameter Value
Training Environment i7-7600K & GTX 1080

Dataset size 2475000 - 2483250
after pre-processing (Total of 29724750)

Learning rate 0.001
Number of epochs 40

Batch size 10
Optimizer Adam
Input size [1, 125, 33]

Convolution Layer number of filters 96
Convolution Layer filter size [1, 3]

Max Pooling Layer window size [1, 5]
Fully Connected Layer 1 64

number of neurons
Fully Connected Layer 2 2

number of neurons

Table 4.8: Online Dataset 1D-CNN Model Parameters and training op-
tions.

LSTM and bi-LSTM Models
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Parameter Value
Training Environment GTX 1080

Dataset size 2475000 - 2483250
after pre-processing (Total of 29724750)

Learning rate 0.001
Number of epochs 60

Batch size 10
Optimizer Adam
Input size [33, 125]

LSTM/bi-LSTM Layer number of neurons 33
Fully Connected Layer 1 64

number of neurons
Fully Connected Layer 2 2

number of neurons

Table 4.9: Online Dataset LSTM and bi-LSTM Model Parameters and
training options.

Result Comparison

Referring to the obtained performances, our model showed a satisfied results for both
private and online dataset using both machine and deep learning algorithms.

Obtained results using the Min-Wang-Hu dataset are compared with the other perfor-
mances in the literature using the same dataset. Min et al. [65] applied a multi entropy
fusion for fatigue detection, Yin et al. [115] proposed a fatigue detection model based
on entropy fusion analysis, Nugraha et al. [72] proposed a fatigue detection model based
on EEG using emotive EPOC+, and Zhang et al. [120] using entropy and complexity
measure for fatigue detection. The accuracy for each model is shown and compared in
Figure 4.7 below:
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Figure 4.7: Model Comparaison.

4.3.6 Dimensionality Reduction Results
In order to determine the brain reginos that are the most responosible for conveying
the states of fatigue and alertness, the Genetic Algorithm is applied on the previously
pre-processed private dataset,

The GA has been realized on Matlab as one central algorithm employing a group of smaller
functions dedicated to every task in the cycle, it is more computationally demanding than
Deep Learning because each iteration involved training an entire population of DL models.

Fitness Function

In order to quantify an individual’s fitness, the genome must be transformed into an
accuracy. This is what the created Fitness Function does. Given the binary sequence, it
removes the features corresponding to a 0 and reconstitutes the data, lowering the data’s
number of channels, training a ML/DL model on this data, and outputting its testing
Accuracy.

Due to its performance being the best among the used architectures, 1D-CNN is used in
the Fitness Function, thus the dataset must be reorganized inside the Fitness Function
into 1D images of [1, 125, 16] dimensions, and the resulting Accuracy is calculated using
70:30 Holdout Cross-Validation.
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Figure 4.8: Fitnes Function Process.

Genetic Algorithm Parameters

The Genetic Algorithm has various parameters whose functions are described in 2.5.2,
the criteria for tuning them are as follows:

• Population size
A well chosen Population size helps the GA converge, it needs to be big enough
to allow diversity in the Population, but not too big so as to require too much
computational power.

• Selection Tournament parameter
This parameter should not be as low as to make the chosen parents relatively unfit,
and not high enough so that the same parents are chosen everytime, stagnating the
process.

• Crossover probability
The Crossover probability mostly depends on the application at hand, a trial and
error process was then used to tune it.

• Mutation probability
The Mutation probabiliy needs to be very low, so as not to destroy the solution by
distorting the population too much and diverging the algorithm.

Based on the crieria and [111] and [45], the GA parameters were concluded. They are
summed up in the following table:
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Parameter Value
Number of iterations 15

Genome Length 16
Population Size 20

Selection Tournament parameter 3
Crossover Probability 0.9
Mutation Probability 0.05

Table 4.10: Genetic Algorithm parameters.

Results

The Genetic Algorithm was applied to the data until it gained maximal accuracy by
the 15th iteration, seeing as the testing process is stochastic by nature, it would give
slightly different results every time. Thus, the process was applied multiple times for
every subject, and the different combinations associated with each one were combined
and averaged to obtain the regions that display fatigue the most for every subject. These
results are resumed in Table 4.11 below:

Subject Selected Electrodes/Brain Regions
1 O1, O2, F4, T7, P3
2 Fp2, C3, C4, O1, O2, F7, F8
3 Fp1, O1, F3
4 Fp1, C4, P7, F3, F4, P3
5 C3, C4, P4
6 C4, P7, P8, O1, O2, P3, P4
7 C3, C4, P7, F3, T4, P3

Table 4.11: Dimensionality Reduction Results.

The results show a strong Occipital, Frontal, and Parietal region influence in most sub-
jects. Which is explained when analyzing the individual regions’ functions, the Occipital
lobe is associated with visuospatial processing, depth and distance perception, object and
face recognition and memory formation, all of which are affected when in a state of fatigue.
The Frontal lobe is responsible for voluntary movement and language, as an individual
transitions into a state of fatigue, both of those functions slow down and become harder
to control. And the Parietal lobe interprets the sensory world, the distortion of which is
very common when fatigued.

——————————————————
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4.4 Conclusion
Detection of fatigue based on EEG signals requires Pre-processing and Feature Extraction.
In this chapter, we have studied the effects of drowsiness on the EEG power spectrum, the
obtained result is then merged with entropy and considered as the input for the Machine
Learning classifiers, we have obtained a good accuracy of 94% for the SVM and Random
Forests classifiers.

Deep Learning methods are inspired from real life, and serve as a useful tool in handling
EEG signals and a variety of data, but introduce a new level of complexity into customizing
the model. Using them removes the need for Feature Extraction as they are capable of
analyzing the temporal signal directly and classifying it, in our work we have designed
1D-CNN, LSTM and Bi-LSTM architectures which showed a high performance for both
our private and the public dataset.

The Genetic Algorithm, also inspired from nature, is composed from various smaller al-
gorithms that represent different steps in the natural evolutionary process. It is perfectly
suited to handling EEG signals and extracting meaning from its binary composition. The
GA used in the work aimed to reduced the number of electrodes for each subjects sepa-
rately, the obtained results showed that with a smaller number of electrodes used as input
based mainly around the Occipital, Frontal, and Parietal regions, better performance is
achieved, this is due to the regions’ inherent functions as part of the Cortex.
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Final Conclusion

The objective of this work is to propose an architecture for brain electrical activity
interpretation and exploitation using EEG signals. A BCI was performed to control the
movement of a mobile robot was achieved according to the operator’s imagination based
on Motor imagery (MI) techniques.

The BCI based on MI depends strongly on the user’s concentration, state of mind and the
amount of the preparation and practice performed before the implementation. Therefore,
collecting a large dataset from multiple subjects requires an enormous amount of time
and a well established protocol.

Since the collected data usually suffers from various noises, artifacts as well as the insepa-
rability between the proposed classes of data, it makes it more challenging to get a proper
command to the external device. For this reason, we have proposed a novel architecture
combining Power Spectral Density computing and a One-Versus-The-Rest Common Spa-
tial Pattern variant as features characteristics inputted to the different machine learning
algorithms.

The proposed approach showed a high performance in the offline implementation with an
average accuracy of 90%. This performance has been validated using the online available
dataset "BCI Competition IV 2a" where it showed a satisfied results of 83.31% comparing
to the best obtained performance in the literature and in which verified the robustness of
our approach.

The realization of such BCI requires an online closed-loop validation where the signals
are extracted from the user and a command is sent to the external device based on
the trained model. This validation requires a large training data, a high quality signal
acquisition device while dealing with real time constraints. Taking into consideration
these requirement, an online algorithm is proposed and validated where our subject had
to control an e-puck mobile robot according to a specific scenario.

In the second application, an approach for fatigue detection based on EEG signals Power
Spectral Density and Entropy fusion analysis. In order to build our dataset, 9 subjects
have participated in the established experiment. The proposed approach has been also
validated using an available online dataset.

To prove the effectiveness and robustness of the proposed method, four common Machine
Learning classifiers were selected for training and testing data, after the data was filtered
and Independent Component Analysis was applied to the resulting signals for Source Sep-
aration, PSD of the source rhythms was extracted using the Welch method, ratio of these
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PSD values were also calculated and used as features. They were then studied, extracted
and the useful ones were combined with the Entropy of the signal. Theses features are
then considered as the input of our classifiers where it showed a mean performance of 93%
.

With the progress of Deep Learning algorithms, the classification and analysis of EEG
signals has become more accessible. The appearance of CNN, RNN and LSTM has au-
tomated the processing and showed better results in the offline implementation. In our
application, we have proposed a 1D-CNN architecture which gave a mean of 92.7% for our
private dataset and 98.61% for the online dataset. Two architectures of LSTM and Bidi-
rectional LSTM or BI-LSTM were also implemented and compared with a performance
higher than 95% for the online dataset and 84% for our private dataset.

In this work, a channel selection method was also used for optimizing electrodes using
a Genetic Algorithm was proposed. The results indicated that this type of system has
potential for detecting fatigue especially when applied to three distinct regions of the
brain, the Occipital, Frontal and Parietal regions, since it achieved a better performance
rate with far less electrodes.

Perspectives

For the continuity of this work, different perspectives can be considered. We propose:

• Experimenting with other applications exploring EEG signals.

• Real-time testing and implementation the fatigue detection.

• Validation of the MI-Based BCI on a large private dataset and operators.

• Combining fatigue and BCI based in one real-time system

• The test of hybrid DL architectures for processing temporal signals such as CNN-
RNN, CNN-LSTM, CNN-RF, CNN-SVM.

• Real-time implementation using DL algorithms
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Annex
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A Common Spatial Pattern (CSP)

In this appendix, we will describe the common spatial pattern in its simple version,
furthermore we will detail and develop the One Versus the Rest variant of the CSP.

In order to achieve a suitable brain-computer interface, it is important to extract relevant
features that capture better the variant characteristic of each specific brain state.

A.1 CSP for Binary Class
CSP was first proposed in [103] in its binary version, where an optimal decomposition
were found, which converts the two sets of measurements into their shared space. In this
common space, the two groups of transformed data have the same principal components,
and their corresponding eigenvalues add to 1. Because these principal components are
optimal in terms of the proportion of variance that they can explain in the public space,
they can be used to distinguish the two groups to the greatest extent.

For this analysis, the original EEG data of a single experiment is expressed as a matrix. As
a fist step of the development, the normalized spatial covariance of the EEG is computed
as follows:

C =
EE′

trace(EE′)
(A.1)

Where E denotes the raw eeg signal presented in N ∗T matrix, and where N presented the
number of channels and T the number of samples,E′ is the transpose of the EEG matrix.
Each of distribution is separated and their respective spatial covarinace is computed based
on A.2 equation, finally the composite spatial covariance is given as:

Sc = S1 + S2 (A.2)

where S1 is the spatial covariance if the first class and S2 the spatial covariance of the
second class.Sc is then factored to Sc = UcλcU

′
c, Uc presents the matrix of eigenvectors

and λc the diagonal matrix of eigenvalues sorted in descending order.
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The next step is computing the whitening transformation computed as follows:

P =
√
λ−1

c (A.3)
if S1 and S2 are transformed, we can then write the transformation below:

C1 = PS1P
′ and C2 = PS2P

′ (A.4)

Another property that can be described is that C1 and C2 shares the same eigenvectors,
thus:

if C1 = Bλ1B
′ then C2 = Bλ2B

′ and λ1 + λ2 = I (A.5)

where I is the identity matrix, one of conclusion that we can declare is that Since the
sum of two corresponding eigenvalues is always one, the eigenvector of C1 with the largest
eigenvalue has the smallest C2 eigenvalue, and vice versa on the contrary. This attribute
makes the feature vector useful for classifying two distributions. Projecting the whitened
EEG onto the first and last eigenvectors in B will give the features The best vector to
distinguish between two populations EEG in the sense of least squares. The projection
matrix is then defined as :

W = (B′P )′ (A.6)
the decomposition of a trial E is given as:

Z = WE (A.7)

where the columns of W−1 presents the common spatial pattern.

A.2 OVR FPCSP for Multi Class
The need of multiclass classification leds to development of such extention of the CSP,
the first multiclass extention of the csp was first proposed in [67] which is based on
pairwise classification and voting but since this approach still in its binary version, other
variant were developed ; the One Versus the Rest (OVR) [28] and the Simultaneous
Diagonalization (SIM). In our apprach we have applied the OVR variant of CSP applied
to power spectral density of the filtred EEG data in which we denoed as the FPCSP short
of Filter Power Common Spatial Pattern. In this approach, spatial pattern are computed
for each class against all others. we will derive the OVR FPCSP algorithm for four class
case. Extension to more classes or less is trivial. We denoted filtered power spectral
density of four classes EEG signal matrix as X1,X2,X3 and X4 with a N ∗ T dimension,
where N presents the number of channels and T the number of samples in time. As a
first step, we considered the spatial covariance of the EEG classes such as:

R1 = X1X
T
1 R2 = X2X

T
2 R3 = X3X

T
3 R4 = X4X

T
4 (A.8)

and the composite covariance matrix as:

R = R1 +R2 +R3 +R4 (A.9)
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The composite covariance is then factored to :

R = V λV T (A.10)

where λ is a N ∗N matrix of eigenvalues and V in the N ∗N unitary matrix of principal
components, the whitening transformation matrix is defined as

W =
√
λ−1V T (A.11)

The common Spatial patterns are extracted for each class, let considered the first class,
we first defined the spatial covariance R′1 = R2 +R3, which is transformed to :

S′1 = WR′1W
T (A.12)

and the transformation related to R1 is defined as

S1 = WR1W
T (A.13)

From [35] S′1 and S1 share common principal components, and the sum of the correspond-
ing eigenvalues is equal to one, the eigendecomposition of S1 and S′1 are:

S1 = Uλ1U
TS′1 = Uλ′1U

T (A.14)

and
λ1 + λ′1 = I (A.15)

Where U is the matrix of common principal components. Combining the equations above,
we obtain the couple of equations below:

λ1 = (W TU)TR1(W
TU) = F1R1F

T
1 (A.16)

and
λ′1 = (W TU)TR′1(W

TU) = F1R
′
1F

T
1 (A.17)

and where the spatial filter is defined as

F1 = UTW (A.18)

For this first class , the m common principal components of the m largest eigenvalues
of λ1 possesses a maximal variance. In the other part, the eigenvalues of λ′1 should
represent the variance accounted for the other classes and based on A.15 equation, when
the variance of the signal components for the first class is maximized, the variance of the
signal components for all other classes is minimized and thus we have

λ2 + λ3 + λ4 = λ′1 (A.19)

and where λ2 = F1R2F T
1 ,λ3 = F1R3F T

1 and λ4 = F1R4F T
1 Evidently, the diagonal

elements of λ2,λ3 and λ4 represent the variance accounted by other classes on the com-
mon principal components, As a result of the development above the signal components
corresponding to the first class is giving as:

Z1 = F1X1 (A.20)
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and the decomposition of X1 can be written as:

X1 = P1Z1 (A.21)

where P1 is the matrix of common spatial patterns and it is the pseudo-inverse of F1
Therefore, X1 is projected into the space of common spatial pattern as orthogonal com-
ponents and where Z1 is seen as a new time series that is equivalent to X1 in the space of
common spatial patterns. The final step is to considered m rows in Z1 as feature vectors
for X1, we finally denotes the matrix of the selected vectors as Zs

1 which can be written
as :

Zs
1 = F s

1X1 (A.22)

We repeat the above procedures in order to find feature vectors Zs
2 ,Zs

3 and Zs
4
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B EEGLAB

EEGLAB is wide use offline environment for EEG data analysis, transformation and
visualisation. EEG is considered as Matlab toolbox and can be installed for the official
EEGLAB website1.

B.1 EEGLAB Quickstart

B.1.1 Basics Tools
Once openning the toolbox via Matalb, the EEGLAB window pop up, the data need to be
loaded in mat form and the frequency rate is introduced as a parameter in the beginning
of the session, the location of electrodes are also loaded in the beginning of session in
order to provide component map in each location.

1For more information: https://eeglab.org
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Figure B.1: EEGLAB Starting Page

After loading the data, the operator can starting exploring the toolbox, these are the
main operation that can be done :

• Selecting a specific time segment of data.

• Selecting a number of data points.

• Visualise data in time domain.

• Visualise the spectrum of EEG signals.

• Frequency filtering, where either FIR filter or IIR filter can be used, the filter can
be a pass-band or stop-band filter and where the parameters are introduced by the
user

B.1.2 Independent Component Analysis (ICA)
One of the main tools of EEGLAB toolbox is the independent components computing
using the runica() function, After calculating using the ICA algorithm, a window appears.
This window contains first of all a topography of the projection of the component onto the
electrodes ( see Figure B.2,and secondly, information relating to independent components.



B.1. EEGLAB Quickstart 123

Figure B.2: Topography of 16 independent component

In B.3 we illustrate the effect of the independent component on each electrode through a
projection. Green represents no activity, red and blue member of positive and negative
contributions, respectively.
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Figure B.3: Topography of the first independent component

in Graph B.4 the spectral energy of the independent component (mean with respect to
the axis of the set of temporal windows) according to the C3 electrode placement is shown
.

Figure B.4: PSD and Topography of the independent component of C3
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