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مــلـــخـــص: 

ي هذه 
قمنا بتطوير نموذجي   جديدين للمراقبة التلقائية للحالة الصحية لأدوات القطع. تتكون هذه  الدراسة،ف 

ي توفرها  (.RULالطريقة من التقدير؛ التحقق من صحة الحياة المتبقية وحسابها )
تستخدم الطريقة بيانات المراقبة الت 

: المرحلة الأولى عبر  والتسارع، القوة،أجهزة الاستشعار ) ( ، وتستند إلى مرحلتي   رئيسيتي   ي
والمرحلة  الإتصالانبعاث صوت 

ي النموذج  الثانية دون اتصال. 
 لاستخراج  الأول،ف 

ً
ي توفرها أجهزة الاستشعار أولا

تتم معالجة الإشارات الأولية الت 
ي المستمر ) ي SCAصل المصدر "( ، وفCWTالمعلومات المفيدة من خلال استخدام التحويل المويجر

-" ونظام تاجيتش 
ي النموذج  (؛MTSل أنوبيس. )امح

،وف  ي
(. تعد CNN-BLSTM( و )VMDتم تطبيق التقسيم الوضعي المتغب  ) الثات 

معالجة البيانات بعد فصل المصدر موضوع تطوير مؤش  الصحة. يسمح التنبؤ بالحياة المتبقية بتحديد الدقة والمعايب  
ي تسمح بتصنيف والتحقق من قوة هذا النموذج.  ،RMSEالمختلفة للتشخيص مثل 

 والت 
حة على بيانات حقيقية من أجل تحديد مدى تآكل أدوات القطع أثناء عملية تصنيع المواد  يمكن تنفيذ الطريقة المقب 

المختلفة. 

، التقسيم، هندسة التكهناتالتشخيص،  الأدوات،مراقبة التآكل  :الكلمات الدالة ي
، التحويل ال الى الوضع المتبق  ي تالمتغب  مويجر

 ، تعلم أقصى. ، تعلم عميقالمستمر 

Résumé: 

     Dans cette étude nous avons élaboré deux nouveaux modèles pour la surveillance 
automatique de l’état de santé des outils de coupe. Cette méthode consiste d’estimer ; de 
valider et de calculer leur durée de vie résiduelle (RUL).  La méthode utilise des données de 
surveillance fournies par des capteurs (Force, Accélération et AE), et s'appuie sur deux 
étapes principales : la première étape en ligne et la deuxième étape hors ligne.  
Dans la premier model, les signaux brutes fournies par les capteurs sont d'abord traitées 
pour extraire des informations utiles grâce à l'utilisation de transformation en ondelettes 
continues (CWT), de la séparation de sources "SCA" et du système Tagichi-Mahal-Anubis 
(MTS); et dans le deuxième model, la décomposition en mode variable (VMD) et  
(l'apprentissage profond) ont été appliqué. Le traitement des données après la séparation de 
sources est fait l'objet de développement de l'indicateur de santé. La prédiction de la durée 
de vie résiduelle permet  la détermination de l'accuracy et les différents paramètres du 
pronostic comme le RMSE, qui permettent  de classer et de valider la robustesse de ce 
modèle. La méthode proposée peut être mise en œuvre sur des données réelles pour but de 
déterminer l'usure des outils de coupe lors du procédé d'usinage des différents matériaux. 

Mots clés: Surveillance de l’Usure d’Outil, Extraction et Réduction des Données, Diagnostic, 
Pronostics, Indicateur de Santé,  Durée de Vie Utile Apprentissage profond, Apprentissage maximal, 
Transformation continue en ondelettes, partitionnement en mode variable 

Abstract : 
     In this study we have developed two new models for the automatic monitoring of the state of 
health of cutting tools. This method consists of estimating; validate and calculate their residual life 
(RUL). The method uses monitoring data provided by sensors (Force, Acceleration AND AE), and is 
based on two main stages: the first stage online and the second stage offline. 
In the first model, the raw signals provided by the sensors are first processed to extract useful 
information through the use of continuous wavelet transform (CWT), source separation "SCA" and 
the Tagichi-Mahal system. -Anubis (MTS); and in the second model, variational mode decomposition 
(VMD) and (CNN-BLSTM) were applied. Data processing after source separation is the subject of the 
development of the health indicator. The prediction of the residual life allows the determination of 
the accuracy and the various parameters of the prognosis like the RMSE, which allow to classify and 
validate the robustness of this model. 

The proposed method can be implemented on real data in order to determine the wear of the 
cutting tools during the machining process of the different materials. 

Key words: Tool Wear Monitoring, Data Extraction and Reduction, Diagnostics, Prognostics, Health 
Indicator, Remaining useful Life, Deep Learning, Extreme Learning, Continuous Wavelet Transform, 
Variable Mode decomposition. 
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GENERAL INTRODUCTION

Machining process by material removal become a very hot point in the manufacturing in-

dustry with the development of systems and CNC machine [1, 2]. There is a growing need 

for rapid, direct and mass production of important products from super alloys in aerospace, 

automotive, biomedical and military applications. Reliability analysis of industrial 

equipment are extremely important for machining process. Remaining Useful life 

estimation and health assessment can reduce the maintenance downtime of machining 

equipment, improve production safety and reduce production costs [3]. Generally, 

several sensing techniques have been proposed and evaluated within the literature for 

tool wear estimation indirectly including vibrations, force, spindle current and acoustic 

emission [4] or using sensor fusion [5, 6]. However, no research has been investigated on 

the feasibility of moni-toring using sparse components analysis and Mahalanobis distance 

for tool wear conditions monitoring.

Several signal processing methods for failure prognostic is closely related to features 

extraction from collected signals [7]. Many of these methods analyzing the signal in time 

domain, frequency, and time-frequency domains [8]. Lauro et al. [9] present a discussion 

for the first steps involved in choosing and defining various techniques that may be used to 

monitor machining processes. The limitation of these methods are sensitive to the cutting 

conditions, and cannot be used to estimate the current state of the wear in the presence 

of different cutting conditions throughout the process [10]. The force signal is the most 

widely used measurement in TCM. Due to the differences in the nature of sensors, each can 

extract different information from the machine. Moreover, it has been shown that time-

frequency analyses such as Continuous Wavelet analysis or Wavelet Packet Decomposition 

can provide valuable information about the health state of the tool in different machining 

operations [11]. The different signals collected by sensors (vibrations, forces and Acoustic 

Emission) for TCM are define the combination of vibration energy produced by different
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components (spindle, cutting tool, electric motor, workpiece...etc.) in addition to the noise. 

In this mixture of signal measurements it is difficult to obtain reliable monitoring criteria to 

identify in situ tool failure during machining process because the collected sensor signals 

are usually contaminated with a great deal of noise. However, developing degradation 

signals from component sensors is an important issue to estimating the RUL.

Several research utilizing MTS to determine values similarities from known and un-

known samples. However, little are available to compare the use of MTS to predict the 

prognostics methodologies such as neural networks or support vector machines. The main 

objective of MTS is to make accurate predictions in multidimensional systems by construct-

ing a measurement scale. MTS is a powerful in solving a wide range of problems including 

medical diagnosis, manufacturing ,face recognition and has recently popularized a new set 

of multivariate techniques, as tools for diagnosis, classification and variable selection [12]. 

Chinnam, et al. [13] applied MTS in detecting the ageing of cutting tools and used MTS to 

determine the key parameters in the ageing of cutting tools, so as to replace them promptly 

and save cost and time. . Therefore, it is important to develop a robust filtering scheme for 

improving the signal and features extraction. A blind source separation (BSS) proposed for 

recovering the various independent sources exciting a system given only the measurements 

of the outputs of that system [14]. BSS has become an appealing field of research with many 

technological applications areas such as medical, image processing, communications ...etc. 

Lately, it was applied to condition monitoring of rotating machinery [15]. However, little 

has been investigated with the application of the BSS for tool wear condition monitoring. 

Shao et al. [16] developed blind sources separation (BSS) technique to separate those source 

signals in milling process. A single-channel BSS method based on wavelet transform and 

independent component analysis (ICA) is used, and source signals related to a milling 

cutters and spindle are separated from a single-channel power signal. Zhu et al. [17] 

introduces a Fast ICA algorithm as a preprocessor to provide noise-free forces for later 

correlation to tool flank wear. It was identified that there exist both Gaussian and non-

Gaussian noises. It applies the Fast ICA for these blind sources separation and then 

discards the separated noise components. The BSS process is treated as signal denoising 

in this approach. Shi et al. [18] proposed an approach based on empirical mode 

decomposition and independent component analysis is presented to deal with the blind 

source separation problem of cutting sound signals in face milling with the objective of 

separating cutting oriented sound signals from those background noises.

The approach to study in the first work, presented in the third chapter; it is a new ap-
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proach to failure prognosis based on the Mahalanobis-Taguchi system (MTS). The purpose 

of this research is focused on the separation of dependent sources and propose an algorithm 

combining CWT and BSS. The CWT is used to reduce the computational cost of covariance 

estimation. The method consists of three processing stages. In the first s tage, the sensor 

signal collected from milling cutters decomposed into several groups of signals based on 

CWT. In the next stage, the BSS algorithm is used to deal with these CW signal, and hence to 

complete the separation process. The proposed data-driven scheme used the Mahalanobis 

distance values over time. When the degradation started, the prognostics scheme, which 

monitors the progression of the MD values, is initiated. Finally, using a linear 

approximation, time to failure is estimated. The performance of the approach has been 

validated via experiments performed on cutting tool inside the (CNC) machine 

experimental setup. The cutting tool have been instrumented with force, vibration and 

acoustic emission sensors and experiments involving healthy and various types of faulty 

operating conditions have been performed. The experiments show that the proposed 

approach renders satisfactory results for tool wear condition monitoring. Overall, the 

proposed solution provides a re-liable multivariate analysis thus reducing analysis 

overhead. In addition, the MTS-based approach is a robust methodology that is 

insensitive to variations in multidimensional systems. The implementation of MTS based 

approach requires limited knowledge of statistics. A single-channel BSS method based on 

wavelet transform and independent component analysis (ICA) is developed, and source 

signals related to a cutter and spindle are separated from a single-channel power signal; 

experiments with different tool conditions illustrate that the separation strategy is 

robust and promising for the cutting process monitoring [19].

Subsequently, the UBSS algorithm is used to process these CWT signals and conse-

quently to terminate the separation process. In addition, the application of the MTS algo-

rithm with these functionalized processes the signals of the multi- channel transformation. 

Finally, the state of health of the cutting tools was identified by calculating the state of 

health of the cutting tools, a health indicator obtained by calculating the energy of the in-

dependent signal (RMS). The objectives of this survey are to propose a new approach based 

on CWT, BSS and MTS for diagnosis and prognosis, as well as; to optimize the parameters 

of the model, in order to verify the robustness and the meaning of this mathematical model. 

The CWT based on the UBSS method is developed and the source signals associated with a 

milling cutter and a machine are separated. The MTS method based on CWT and UBSS is 

applied to predict the RUL of cutting tools, and experimental results have shown that the
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predictive model formed by CWT, UBSS and MTS is very accurate, as well as experiments

with different cutting tools show that the separation strategy is robust and promising for

monitoring the cutting process.

An approach to tool wear classification by means of sensory data imaging and deep

learning. The GASF encoding keeps the temporal correlations for each flute, which is an

advantage over classification methods that are based on statistical features, where the fea-

tures of a particular flute are lost. Experimental results show the ability of the CNN to

capture and learn the features on the raw data to correctly classify tool wear condition.

Overall, the percentage of accurately classified cases on the test set is high, achieving in

most cases above 80% when testing in a new cutter. The moment prior to the transition

from critical wear to failure is in most cases correctly identified, and the cases where it is

incorrectly classified were generally labelled as a failure, which from an application stand-

point means the replacement of the tool would still be enacted. These results show the

importance of using a training sample set that can represent all of the input space. In this

case, the training set needs to be enriched with samples from multiple cutters to ensure

the successful detection of the transition period from severe to failure. The application of

this work will allow for the extension of the remaining useful life of the tool, improve cut

quality and ensure machining elements are replaced before failure[20].

In the second work Recently, a new processing technique called VMD has enriched the

signal denoising method. [21] proposed a new method for level estimation based on LSTM

and multi-mode decomposition. Compared with other decomposition technique such as

the Empirical Modes Decomposition (EMD), VMD successfully avoids mode aliasing and

border effects, and has better noise and sample rate robustness. Lahmiri et al. [22] proposed

a method for signal denoising based on VMD and discrete wavelet transform. LSTM has

been successful because of their performance in several fields of research such as, speech

recognition, medicine, maintenance, etc. this part is dedicate to expose some frameworks

based on LSTM network in maintenance field.Weili et al. [23] proposed a hybrid model

based on LSTM for tool wear monitoring, The feature extraction from raw data by using the

designed stacked LSTM. Then, the feature selection was fed in model for regression to pre-

dict the tool wear. Xia et al. [24] propose an ensemble framework for predicting turbofans

RUL,CNN-BLSTM is proposed and applied as the base model which has high level of pre-

diction accuracy and speed computation. Jianjing et al. [25] proposed a method based on

BiLSTM for tool wear condition monitoring, this deep network allows from statistical fea-

tures to predict the life of cutting tool and compared with traditional technique to show its
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effectiveness. Wang et al. [26] proposed a new condition awareness technique by the com-

bination of two powerful structures of deep learning using CNN and LSTM. The proposed 

model is able to extract and learn simultaneously both spatial and temporal features.

In the second work, a new driven approach is proposed to predict cutter RUL. Firstly, 

the signal distribution obtained using the Variational Mode Decomposition allows 

modeling random degradation tools. The signals construction are used also for Health 

indicator construction. Secondly, using convolution neural network to extract useful 

information’s from Variational Mode Decomposition, then deep learning to track 

degradation during cut-ter’s life. Finally, the validation of the eectiveness of the 

proposed approach based on experimental dataset [27] of cutter’s degradation. The 

thesis document is divided into 5 chapters, where: Chapter 01: Is devoted to the 

emergence of prognostic activity in main-tenance strategies. We present the new 

industrial challenges which have made the maintenance function evolve, as well as the 

major role of prognosis. The concept of prognosis as well as a state of the art of 

prognosis approaches are also presented. The purpose of this chapter is to define the 

prediction of the state of a cutting tool which degrades progressively, and for which no a 

priori knowledge on its degradation law. Chapter 02: Provides a literature review of tool 

wear characterization. It describes the fundamentals of direct and indirect measurements, 

as well as successful and unsuccessful efforts over the years. The move to multiple 

sensing of processes is described, as well as efforts to automate the analysis of the tool wear 

state, with Artificial Intelligence (AI). Chapter03: This chapter presents a data-driven 

approach for estimating tool wear using the Mahalanobis Taguchi (MTS) system, based on 

Continuous Wavelet Transformation (CWT) and Sparse Component Analysis (SCA ). The 

MTS distance values are then fitted with a regression to obtain the model for estimating 

the remaining useful life (RUL). In addition, this chapter discusses several relevant 

challenges, such as determining the failure threshold during anomaly detection and RUL 

estimation, by developing adaptive thresholds.

Chapter04: This chapter proposes a new data-driven approach using Variational Mode 

Decomposition (VMD) and deep learning. Two deep learning machines used in this study, 

Convolutional Neural Networks (CNN) and Bi-Directional Long-Term Memory (BiLSTM) 

to perform collaborative data mining on (VMD) and to improve modeling accuracy . In a 

general conclusion, we reposition all of our developments with regard to the initial 

objective of the study: "Diagnosis and Prognosis of Cutting Tools by Blind Source 

Separation "Application to Milling"". We summarize the main results of our work and 

end up with a discussion of the work perspectives that flow from this thesis.
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CHAPTER 01

PROGNOSTICS AND HEALTH MANAGEMENT APPROACH

FOR CUTTING TOOLS

2.1 Introduction

The incorporation of online monitoring systems for monitoring the wear of cutting tools in 

the machining process has become an unavoidable requirement in order to complete the 

automation chain of mechanical production systems. Also, in order to perform this task, 

several reliable techniques for online monitoring, supervision and monitoring of cutting 

tool wear have been developed. In this context, the wear of the cutting tool is one of the 

major factors most determining the maximization of production and the guarantee of the 

quality of machined products.

Prognostics and Health Management (PHM) aims at extending the life cycle of 

engineering assets, while reducing exploitation and maintenance costs. For this reason, 

prognostics is considered as a key process with future capabilities. Indeed, accurate 

estimates of the Remaining Useful Life (RUL) of an equipment enable dining further plan 

of actions to increase safety, minimize downtime, ensure mission completion and efficient 

production. Recent advances show that data-driven approaches (mainly based on machine 

learning methods) are increasingly applied for fault prognostics. They can be seen as 

black-box models that learn system behavior directly from Condition Monitoring (CM) 

data, use that knowledge to in-fer its current state and predict future progression of 

failure. However, approximating the behavior of critical machinery is a challenging task 

that can result in poor prognostics[28].
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2.2 Taxonomy of maintenance policies

Long seen as a necessary evil, maintenance has become a real concern in industry. It has 

established itself as a real competitive issue, both in terms of ensuring the availability 

performance of existing equipment and in terms of safety, quality and costs, for example. 

We also note the inclusion of new concerns such as environmental aspects through the 

reduc-tion of polluting waste emissions or the recycling of end-of-life systems. Today, it is 

seen as an industrial process in its own right when it is not identified as one of the main 

activities of industrial exploitation. We are thinking here in particular of an industrial 

activity such as nuclear or wind energy production, for example, for which maintenance 

costs should evolve from 30% of the overall operating budget during the operating phase 

in 2012. This taking into account results in a more global vision with the highlighting of 

the various interactions with traditional processes and the development of new processes 

such as "main-tenance logistics". Thus, this evolution positions the objectives of the 

maintenance manager at a strategic decision-making level while ensuring the business 

objectives of the company.

2.2.1 Definition of maintenance

According to standard NF EN 13306 (2001), maintenance can be defined as the set of all 

technical, administrative and management actions during the life cycle of an asset, 

intended to maintain it or restore it to a good condition. in which it can perform the 

required func-tion [29]. It thus includes a series of troubleshooting, repair, control and 

verification actions for material equipment, and should contribute to the improvement of 

industrial processes. In the traditional view, the maintenance function makes it possible 

to guarantee the op-erational safety characteristics of equipment, in particular 

availability. It therefore aims globally to apprehend the failure phenomena and to act 

accordingly, in order to ensure that the system (the asset) is able to fulfill the function for 

which it was designed (Maintenance in Operational Conditions, MCO). However, the 

missions of the maintenance function are no longer limited to the implementation of 

the means to ensure the "service of goods". Quality, safety and cost requirements have 

arisen, and the challenges and prerogatives of the maintenance function have evolved 

over the past twenty years. [30].
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Figure 2.1: Classification of maintenance policies. [30]

2.2.2 Maintenance policies

Maintenance strategies can be classified into two broad categories: Corrective maintenance 

(MC) and preventive maintenance (PM) (Figure2.1). Corrective maintenance is the 

intervention following a failure in a system [28, 31].

Corrective maintenance

Corrective maintenance is an earliest form of maintenance that is unplanned (or reactive) 

and is undertaken after machinery breakdown. A failed item is repaired or replaced with 

a new one to store functional capabilities. This type of maintenance can be further 

categorized as immediate corrective maintenance or deferred corrective maintenance [31]. 
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However, such maintenance is suitable for non-critical engineering assets, where failure 

consequences are slight and no immediate safety risks are involved. In other words, it 

should be used when there are no serious consequences of unscheduled downtime [28].

Preventive maintenance

Preventive maintenance is a planned (or proactive) strategy for maintaining machinery that 

was introduced in 1950s [32]. The main objective was to increase availability of machinery 

as compared to corrective maintenance. This type of maintenance is triggered according 

to a schedule (working hours, kilometers worked, etc.) and results in the periodic 

replacement of parts, without prior checking and whatever the state of deterioration of the 

goods, it is possible to avoid certain breakdowns. , sometimes catastrophic, to occur. On 

the other hand, it can also lead to over-maintenance, that is to say to an excess of 

unnecessary interventions, and therefore to financial waste for the company and 

uncontrolled production stoppages[28]. To remedy this, two other preventive 

maintenance policies have emerged: predetermined maintenance and Condition Based 

Maintenance (CBM).

a- Predetermined maintenance

With predetermined maintenance repairs are performed on the basis of predefined 

schedule (or fixed intervals). Maintenance tasks are carried periodically (like 

lubrication, calibration, refurbishing, checking and inspecting machinery) after fixed time 

intervals to decrease the deterioration phenomena [33]. However, the maintenance 

procedures do not involve evaluation of current state in particular. Although 

predetermined maintenance can be a simple approach to maintain equipment, it can be 

costly due to unnecessary stoppages or replacements of operating machinery. Another 

problem of this approach is that failures are assumed to occur in well defined intervals.

b- Condition-based maintenance

Condition-based maintenance is defined as "preventive maintenance based on monitoring 

the operation of the asset and / or significant parameters of this operation including the 

resulting actions" (Figure2.1). This maintenance strategy is thus based on the analysis of 

real-time data from industrial equipment (for example, vibrations, temperature, etc.). It 

aims to detect anomalies in the functioning of industrial machines: the discovery of changes 

in their characteristics foreshadows in the short term a failure to come. Condition-based 

maintenance makes it possible to take better account of the conditions of use of an 

equipment than
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traditional systematic maintenance. However, it does not allow the maintenance policies 

to be dimensioned with certainty: the date of occurrence of the failure remains uncertain 

[30]. Forecast / predictive maintenance aims to compensate for this lack of knowledge. It is 

defined as "  Condition-based maintenance carried out by following extrapolated forecasts 

from the analysis and evaluation of significant parameters of the degradation of the asset". 

The underlying idea is to project the current state of the asset into the future, in order to 

estimate the uptime before failure. Predictive maintenance is thus more dynamic. It takes 

into account the current conditions of the equipment and tries to predict the evolution over 

time of the condition of the assets. As maintenance interventions are planned with greater 

precision, predictive maintenance should lead to substantial savings and has been the 

subject of increasing attention in recent years. The expected benefits are indeed numerous:

- reduction in the number of breakdowns;

- production reliability;

- improvement of personnel safety and the image of the company;

- reduction of equipment downtime (costly);

- increase in business performance.

The implementation of a predictive maintenance policy is based on the deployment of

a key process aimed at determining the future states of the monitored system: that of the 

“industrial prognosis”. The following section is devoted to it[30].

2.3 Diagnostic and prognostic framework

2.3.1 Definitions

The term prognostic founds its origin in the Greek word “prognôstikos”, which means “to 

know in advance”. Prognostic is well used in medical domain, where doctors try to make 

predictions about the health of a patient by taking into account the actual diagnosis of 

a disease and its evolution compared with other similar observed cases. This reasoning 

can be transposed into the industrial domain where the patient is a machine, an industrial 

system or a component[34].

Several definitions have been given in the literature about industrial prognostic, where 

three main points are highlighted: the system’s actual state, the projection (or 

extrapolation) of this latter, and the estimation of the remaining time before failure. 

These definitions are then normalized by the ISO13381-1 standard [35] in which 

prognostic is defined

Laboratory of Green and Mechanical Development 31 National Polytechnic School



PHM approach for cutting tools

as the estimation of the operating time before failure and the risk of future existence or 

appearance of one or several failure modes. This standard defines the outlines of 

prognostic, identifies the data needed to perform prognostic and sets the alarm thresholds 

and the limits of system’s reset (total shutdown). The main steps to perform prognostic, as 

defined in the standard, are summarized in Fig. 1. The first step consists of monitoring 

the system by a set of sensors or inspections achieved by operators. The monitored data 

are then pre-processed to be used by the diagnostic module. The output of this module is 

an identification of the actual operating mode (more details on failure diagnostic can be 

found in [36]. This mode is then projected in the future, by using adequate tools, in 

order to predict the system’s future state. The intersection point between the value of 

each projected parameter or feature and its corresponding alarm threshold permits to 

estimate the RUL.

Finally, appropriate maintenance actions can be taken depending on the estimated RUL. 

These actions may aim at eliminating the origin of the failure, which can lead the system to 

evolve to any critical failure mode, delaying the instant of a failure by some maintenance 

actions or simply stopping the system if this is judged necessary[36].

Diagnostics is the act of tracing back the evidence of anomaly behavior to their 

respective causes, i.e., their faults. In particular, taking inspiration from [36, 37], defines a 

fault as “an unmerited deviation of at least one characteristic property or parameter of the 

system from the acceptable condition” (or baseline). Usually, diagnostics is performed 

after the machine has experienced a breakdown, i.e., it has been conceived as a posterior 

analysis. Therefore, in the context of PHM, it is more appropriate to think of the diagnosis 

phase as the diagnosis of early fault signs [36], which basically is needed to trigger the 

prognostic module. While monitoring translates into a comparison between baseline and 

current machine data, diagnostics translates into a comparison between current operating 

data and a faults database. From a more technical perspective, diagnostics is a pattern 

recognition and classification problem:

+ Pattern recognition because the data set collected with a faulty machine are used

to search for patterns among the extracted features, to be able to distinguish among

the different faults. It is worthy to elaborate a bit on this statement. Pattern recogni-

tion is a preliminary phase, which comes before classification, only when supervised

learning algorithms are used. In this case, a training dataset with already recognized

faults is needed. When using unsupervised learning algorithms, pattern recognition

is called clustering [38]. Unsupervised learning algorithms are useful for detecting

new faults. For instance, faults that could not be inferred neither in the preliminary
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analysis nor analyzing the training dataset. The event in which a technician did not 

fix correctly a screw while reassembling the asset and this caused unexpected 

machine vibrations can be considered as a realistic example. These issues could 

even happen when the faults contained in the recorded data are not known a 

priori that demonstrates that there is a very limited knowledge of the system;

+ Classification because, once the fault database has been built, the current machine

data have to be classified to decide which faults are affecting the system. Several 

algorithms can be used for pattern recognition and classification. A review of their 

application to the diagnostics problem . See [39] for a table which sums up the 

strengths and shortcomings of the main diagnostic algorithms today available. As 

for monitoring, the feature selection step is crucial. There are currently two 

methods for diagnostic feature selection [40]:

* Filter-based method, which ranks the features based on a pre-selected criterion. One 

of the most used index for feature ranking is Fisher score;

* Wrapper-based method, which selects the best features by using the chosen 

classification algorithm along with search methods as for instance forward and 

backward search [40]. Basically, the feature set which yields the best classification 

results is elected as the diagnostic feature set [41].

2.3.2 Relation between diagnostics and prognostics

Like prognosis, diagnosis is also an important element of PHM cycle. In literature, there is 

a little disagreement, that prognostics is related to and highly dependent upon diagnostics. 

Mainly, diagnostics involves fault / failure detection, isolation and identification of 

damage that has occurred, while prognostics is concerned with RUL estimation and 

associated confidence interval ( Figure6.2). Therefore, in terms of relation between 

diagnostics and prognostics, diagnostics process detects and identifies a fault / failure that 

has caused degradation, where prognostics process generates a rational estimation of 

RUL until complete failure [42, 28]. However, in general, diagnostics is a reactive 

process that is per-formed after the occurrence of fault / failure and cannot stop 

cutting tool downtime in, where a prognostic is a predict to prevent behavior [39]. It 

should be noted that there is a difference between /fault diagnostics" and /failure 

diagnosis". The terminology of fault diagnostics implies that, the cutting tool under 

observation is still operational, however, cannot continue operating indefinitely without any 
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FAULT 
DETECTION

• Detecting and reporting an abnormal
operating codition.

FAULT ISOLATION                                                

• Determining which component
(subsystem,system) is failing or has failed.

IDENTIFICA-TION

• Estimating the nature and extent of the
fault.

RUL PREDICTION

• Identifying the lead time to failure

CONFIDENCE 
INTERVAL 

ESTIMATION

•Estimating the confidence interval
associated with the RUL prediction

DIAGNOSTICS

PROGNOSTICS

Figure 2.2: Steps of prognosis results and relation to diagnoses. [42]

maintenance intervention. Where, failure diagnosis is performed on machinery that has 

ceased to perform its functionality [43]. As compared to prognostic, diagnosis domain is 

well developed and has several applications in industry.

2.3.3 Prognosis and Estimation of Remaining Useful Life (RUL)

Therefore, rely on evaluation criteria whose limits depend on the monitoring system 

and the performance objectives. Formulated differently, the prognosis implies not only 

to be able to project the behavior of a system over time [30], but also to know how to 

identify its state at any time, taking into account the mission criteria chosen. Therefore, 

there is no one set of evaluation metrics suitable for all prognostic applications [44]. 

Two classes of measures can however be distinguished.
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Prognostic measures

The main objective of the prognosis is to provide the information enabling good decisions 

to be made. Thus, a first s et o f m etrics i s t hat w hich m akes i t p ossible t o q uantify the 

risks incurred by the monitored system. This type of metric corresponds to prognostic 
measurements, the main one of which is the residual time before failure T0: T ime − to − 

Failure(T T F) − or − [Remaining Usef ul Lif e.(RUL)] [30]. A confidence measure must also 

be constructed to indicate the degree of certainty of the RUL. By way of illustration, let us 

consider the left part of (Figure2.3) in which, for the sake of simplicity, the degradation is 

considered as a one-dimensional quantity. The RUL can be defined as the t ime between 
the current instant tc (after detection of the degradation; tD ), and the instant when the 

degradation will reach the failure threshold tf :

RUL = tf − tc.[30] (2.1)

Performance measures of the prognosis system

It is also necessary to be able to judge the quality of the prognosis in order to decide on 

adequate actions. In this sense, several indicators can be constructed: the performance 

measures of the prognosis system. The main measures put forward in the literature are 

Timeliness, Precision and Accuracy. These are distance measurements between a set of 

RUL estimates and exact RUL values (Figure2.3) [30]. The definition of a set of appropriate 

metrics for prognostic applications is the subject of work by researchers as well as 

industrialists working in the field of [30] CBM. Several measures emerge from the 

literature and are presented below. At least two classes of metrics are of interest:

1- The main objective of the prognosis is to provide the information allowing good 

decisions to be made, ie the choice of maintenance actions. Thus, a first set of 

metrics is that which makes it possible to quantify the risks incurred by the 

monitored system. This type of metric corresponds to prognostic measurements [34];

2- Given that the prognosis is in essence an uncertain process, it is interesting to be able 

to judge its quality in order to imagine more adequate actions. In this sense, several 

indicators can be constructed. These are the performance measures of the prognosis 

system.
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Figure 2.3: Illustration of prognostics and RUL estimates. [30]

a- Accuracy

Measures how close the expected failure date is to the actual failure date. The calculation

of this metric represents a critical point in the prognosis process. The calculation of this

quantity is based on the existence of historical data on several components which have

broken down as a result of stresses undergone throughout a known period of time, which

is not always possible (single equipment). If a set of N systems have failed (with associated

prognoses).

Accuracy =
1
N

N∑
i=1

e
Di
D0 .[45] (2.2)

With Di =
∣∣∣t̂f ail (i)− tf ail(i)∣∣∣ the distance between the planned and actual instants of failure;

D0 a normalization constant whose value is based on the importance of the actual value
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in the application. The exponential function is used here to give a smooth monotonically

decreasing curve. The value of e
Di
D0 represents the decrease in accuracy. In other words,

the accuracy is great (close to 1) when the predicted value is the same as the actual value

and decreases when the predicted value deviates from the actual value. The exponential

function also has the greatest decay rate when D0 is close to 0.

b- Precision

Precision is a measure of the dispersion of predictions. It evaluates how the predicted

values are grouped around the interval in which the failure occurs. Precision is highly

dependent on the level of confidence and the distribution of predictions. The precision

equation is as follows:

Precision =

 1
N

N∑
i=1

e
− RiR0

e σ2
σ0 .[45] (2.3)

With

- Ei = t̂f ail (i)− tf ail(i);

- Ē = 1
N

N∑
i=1
Ei and σ2 = 1

N

N∑
i=1

(
Ei − Ē

)2
;

- σ0 and R0 are the normalization factors, and the confidence interval of the prediction 

for experiment i.

Likewise, an exponential function is used here to define the relationships between the 

standard deviation of the prediction, the confidence interval and the precision. The 

precision has a value between 1 and 0 (1 indicating the highest precision and 0 the lowest).

c- Timeliness

The timeliness is the relative position of the probability density function (pdf: 

probability density function) of the prognostic model with respect to the occurrence of 

the failure event. This measure changes as data becomes available and helps to judge the 

right time to perform maintenance. [34] recommends defining limits at the earliest and 

at the latest beyond which the predicted value must be considered unacceptable from a 

performance point of view. These two limits are the consequence of the fact that the 

prediction error is not systematically centered with respect to zero (where the error is 

defined as the difference between the real remaining life and the estimated remaining 

life). For example, if the prediction is (too early), the resulting alarm requests intervention 

too early to check the potential for a failure to occur, to monitor the various process 

variables and to perform a recovery mode. In the other case, if the failure is expected (too 

late), this error reduces [34].
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Definition of Prognostic Indicators

The efficacy of a prognostic method relies on the representativeness of the prognostic 

indicators chosen. A number of desirable characteristics are expected to be look at in the 

choice [46]:

- Monotonicity: The indicators are wished to present an overall positive or negative 

trend in time, excluding possible self-healing situations;

- Prognosability: The distribution of the final value that an indicator takes at failure is 

wished to be ‘peaked’, i.e. not too wide-spread;

- Trendability: The entire histories of evolution of the indicator towards failure are 

wished to have quite similar underlying shapes, describable with a common 

underlying functional form.

Other characteristics may be desirable. For any characteristic sought, a metric must be 

introduced to allow comparing the different potential prognostic indicators on the 

different characteristics. A detailed list of possible metrics, and their meaning, is given in 

[44] with the distinction among accuracy-based, precision-based and robustness-based 

metrics. Furthermore, in the manipulation of prognostic indicators for the tasks of state 

estimation and prediction it is often convenient to reduce the multivariate problem into 

a single-variable one, by opportunely combining the multiple indicators, e.g. by weighted 

average. Multiob-jective optimization problems may arise from these issues.

2.3.4 Prognostics and Health Management (PHM)

With aging, machinery or its components are more vulnerable to failures. Availability and 

maintainability of such machinery are of great concern to ensure smooth functioning 

and to avoid unwanted situations. Also, the optimization of service and the 

minimization of life cycle costs / risks require continuous monitoring of deterioration 

process, and reliable prediction of life time at which machinery will be unable to perform 

desired functionality. The barriers of traditional condition-based maintenance (CBM) for 

widespread application, are as follows [28]:

* Inability to continually monitor a machine and / or a cutting tool;

* Inability to accurately and reliably predict the Remaining Useful Life (RUL);
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* Inability of maintenance systems to learn and identify impending failures and recom-

mend what action should be taken.

Mainly, acronym PHM consists of two elements [46].

+ Prognostics refers to a prediction / forecasting / extrapolation process by modeling 

fault progression, based on current state assessment and future operating conditions;

+ Health Management refers to a decision making capability to intelligently perform 

maintenance and logistics activities on the basis of diagnostics / prognostics 

information.

That is why, PHM is a key enabler to facilitate different industries to meet their desired

goals e.g. process industry, power energy, manufacturing, aviation, automotive, defense,

etc. Some of the key benefits of PHM can be highlighted as follows:

= Increase availability and reduce operational costs to optimized maintenance;

= Improve system safety (predict to prevent negative outcomes);

= Improve decision making to prolong life time of a machinery [28].

Prognostics and Health Management architecture

1- Prognostics and Health Management modules

PHM is a process consisting of seven modules, as shown in (Figure6.4)

- Data acquisition: consists of measuring physical quantities such as acoustic emission, 

acceleration, temperature, etc. using sensors, software and human observations. This 

data is obtained through an acquisition system that collects and preprocesses data to 

be sent to other modules and to be stored in a reliable and secure database;

- Signal / data processing: analyzes and interprets the signals in order to extract 

information characterizing the behavior of the system, either in the time and / or 

frequency domain;

- The evaluation of the current state: will be obtained from these characteristics and 

will allow the nominal behavior aid to detect the various possible anomalies;
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Figure 2.4: Prognostics and Health Management cycle. [47]

- Diagnostics: corresponds to the location and identification of the causes of anomalies

or failures;

- Prognostics: Based on the current state of the system and the outcome of detection

and / or diagnosis to predict life to failure;

- Decision support: concerning the maintenance strategies to be implemented to keep

the system in good condition. This module is based on all the information obtained

(current state of the system, RUL, knowledge of the context, etc.);

- The human-machine interface: provides a means of presenting and storing useful

information in different forms [28].
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2- Prognostics and Health Management phases

PHM makes use of past, present and future information of an equipment in order to assess 

its degradation, diagnose faults, predict and manage its failures. Considering such 

activities, PHM is usually described as the combination of 7 layers adapted from Open 

System Architecture for CBM [28, 46], that all together enable linking failure mechanisms 

with life management (Figure2.4). we can divided these layers into three main phases 1) 

observe, 2) analyze and 3) act (Table6.1).

Table 2.1: Prognostics and Health Management phases. [28]

Observe

1 Data acquisition: gather useful condition monitoring (CM) data records

using digitized sensors.

2 Data processing: perform data cleaning, denoising, relevant features ex-

traction and selection.

Analyze

3 Condition assessment: assess current condition of monitored machinery,

and degradation level.

4 Diagnostics: perform diagnostics to detect, isolate and identify faults .

5 Prognostics: perform prognostics to project current health of degrading

machinery onto future to estimate RUL and associate a confidence 

interval.

Action

6 Decision support: (off-line) recommend actions for maintenance / logis-

tic, and (on-line) system configuration (safety actions).

7 Human Machine Interface: interact with different layers, e.g. prognos-

tics, decision support and display warnings etc
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2.3.5 Prognostics approaches

Many failure prognosis tools and methods have been proposed during the last decade. The 

prognosis methods generally differ by the type of application considered, while the tools 

implemented depend mainly on the nature of the data and knowledge available to build a 

model of the behavior of the real system including the phenomenon of degradation. Also,

Statistical algorithms 
 Failure distribution, Experience…

Physical model 
 Failure mechanism &

physics 

Hybrid models 
 Combination between physical & data-

driven

Data-driven models 
 Neural networks, Dynamic Bayesian network, 
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Cost & precision 

A
p

p
li

ca
b

il
it

y
 

Figure 2.5: prognostics approaches. [48]

these methods and tools can be grouped into a limited number of approaches. The first 

classification of prognostic approaches was proposed by. In their paper, the authors 

suggest a three-level pyramid classification of prognostic approaches (Figure2.5): 

experience-based approaches, data-driven approaches, and model-based approaches. 

To dissociate these three types of approaches, the following criteria are considered: the 

cost and complexity of implementation, the precision of the results obtained, and the 

applicability of the approaches. In 2006, proposed a new taxonomy of prognostic methods, 

distinguishing two main categories of methods. The first groups together the methods 

relating to the esti-mation of the future state of the component, subsystem, or system 

(estimation of the RUL or TTF), and the second category concerns the methods allowing to 

determine the RUL while integrating the context system operation (maintenance actions 

and operating conditions). Recently, proposed a new classification based on the three 

approaches suggested by [47] to which has been added a fourth class qualified as 

integrated. 
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Table 2.2: Prognostic approaches and type of information. [49]

Approaches

Model-based Data-driven Reliability based prognostics

System model Necessary Useful Not necessary

Failure history Useful Not necessary Necessary

Past conditions Necessary Not necessary Useful

Current conditions Necessary Necessary Useful

Failure recognition methods Necessary Necessary Not necessary

Maintenance history Useful Not necessary Useful

Sensors and model Yes Yes No

The authors therefore suggest considering prognostic approaches depending on the type 

of data and knowledge avail-able. With regard to the first type of approach, they propose 

to group together the methods which use experience feedback data. The second type of 

approach corresponds to methods which employ surveillance data (mainly those provided 

by sensors installed on the system) as input information for prognostic algorithms.

These methods can be divided into two subcategories, those based on 

mathematical models and those using monitoring data exclusively. The last type of 

approach corresponds to methods combining reliability and monitoring data. The 

classification of prognostic approaches is not an end in itself and it appears that the 

pyramidal vision [47] is the reference today. We therefore choose for the following to 

distinguish approaches based on a physical model, approaches guided by data, and 

approaches based on experience.

From an application point of view, the information required to deploy prognostic 

approaches is of a diverse nature: engineering models, data, failure histories, system 

stresses, operating conditions, etc. [28] gives a generalization of what could be the set of 

inputs and outputs of a prognosis model. The main inputs and their interest in each of the 

for prognosis approaches can be schematized as proposed in (Table2.2) [28]. Of course, 

the expected outputs are essentially those making it possible to judge the future state of 

the system.

Physics based prognostics

The physics based or model based approaches for prognostics use explicit 

mathematical representation (or white-box model) to formalize physical understanding 

of a degrading
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system [50]. RUL estimates with such approaches are achieved on the basis of acquired 

knowledge of the process that affects normal machine operation and can cause failure. They 

are based on the principle that failure occurs from fundamental processes: mechanical, 

electrical, chemical, thermal, radiation. Common approaches of physics based modeling 

include material level models like spall progression models, crack-growth models or gas 

path models for turbine engines [42]. To identify potential failure mechanisms, such 

methods utilize knowledge like loading conditions, geometry, and material properties of 

a system [50]. To predict the behavior of the system, such methods require detailed 

knowledge and through understanding of the process and mechanisms that cause failure. 

In other words, failure criteria are created by using physics of failure (POF) analysis and 

historic data information about failed equipment [51]. Implementation of physics based 

approach has to go through number of steps that include, failure modes and effects 

analysis (FMEA), feature extraction, and RUL estimation [50]. It should be noted that in 

literature, different works categorize physics based (or model based) prognostics as POF 

and system modeling ap-proach [52]. However, because system modeling approaches are 

dependent on data-driven methods to tune parameters of physics based model and should 

be classified as hybrid approach for prognostics.

In general, physics based approaches are application specific. They assume that system 

behavior can be described analytically and accurately. Physics based methods are suitable 

for a situation where accuracy outweighs other factors, such as the case of air vehicles. POF 

models are usually applied at component or material level [53]. However, for most 

industrial applications physics based methods might not be a proper choice, because fault 

types can vary from one component to another and are difficult to identify without 

interrupting operating machinery. In addition, system specific knowledge like material 

composition, geometry may not be always available. Besides that, future loading 

conditions also affect fault propagation. Therefore, in a dynamic operating environment, 

the model may not be accurate due to assumptions, errors and uncertainty in the 

application [53, 28]. In such cases POF models are combined with data-driven methods 

to update model parameters in an on-line manner, which turns into a hybrid approach.

Data-driven prognostics

Data-driven prognostics approaches are black box models that learn equipment behavior 

directly from CM data (to fit changing observations). They are low cost approaches and 

have the advantage of better applicability. They require data to gain knowledge internally,
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instead of detailed external knowledge from experts. Several studies are performed to 

classify data-driven approaches. [54] grouped data-driven approaches as machine learning 

and statistical approaches. [55] classified data-driven approaches as artificial intelligence 

(AI) techniques and statistical techniques. A survey on AI approaches, where data-

driven ap-proaches were grouped as machine learning and conventional numerical 

methods. classi-fied data-driven methods as machine learning/ AI, evolutionary and state 

estimation tech-niques. According to literature, we classify data-driven approaches as 

machine learning and statistical learning approaches and also elaborate their close links.

a- Machine learning approaches

The branch of AI that attempt to learn by examples and are capable to capture complex 

relationships among collected data that are hard to describe. They have the advantage of 

low implementation cost and can be deployed quickly. Also, they can give system-wide 

scope. Depending on the type of data, learning with such data-driven methods can be 

performed in different ways[54]. 1) Supervised learning can be applied to labeled data, 

i.e., inputs and the desired output is known; 2) Unsupervised learning is applied to 

unlabeled data,

i.e., only inputs; 3) Semi-supervised learning that involves both labeled and unlabeled data

(see Fig. 9). Machine learning approaches are categorized as follows with examples[54].

b- Connectionist methods

1. Artificial neural networks (ANN) [56];

2. Neuro-Fuzzy systems [56].

c- Bayesian methods

1. Markov Models and variants, e.g., Hidden Markov Models (HMM);

2. State estimation methods, e.g., kalman Filter, particle -lter and variants [42].

d- Instance Based Learning methods (IBL)

1. K-nearest neighbor algorithm [57];

2. Case-based reasoning [54].

e- Combination methods

1. Connectionist and state estimation techniques [58];

2. Connectionist and clustering methods [59];

3. Ensemble to quantify uncertainty/ robust mod- els [60].
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Statistical learning approaches

RUL is achieved by fitting the empirical model (a function) as close as possible to the 

collected data and extrapolating the fitted c urve t o f ailure c riteria. S uch m odels c an b e 

regression methods for trend extrapolation for e.g linear, exponential and logarithmic 

functions. Like machine learning approaches they are simple to conduct. Also they 

require sufficient data to learn behavior of degrading equipment. [61] Presented a 

review of statistical methods, where the taxonomy was mainly based on nature of CM 

data. From this systematic review paper, some commonly known prognostics 

approaches are: stochastic filtering (or state estimation) methods like kalman filters, 

particle filters and variants, hid-den Markov models and variants etc. The details about 

this taxonomy are given in [61]. Note that, Bayesian techniques mentioned just above 

can also be called as machine learn-ing approaches. Other methods in this group can be 

classical time series approaches like auto-regressive moving average and variants [42]. 

Lastly, this category also include combination models for example using a particle filter to 

tune the parameters of the empirical model (i.e., exponential/ logarithmic, etc.,).

2.3.6 Application perspective

Data-driven approaches encounter a common criticism that they need more data as 

compared to physics based modeling, which is not surprising. Obviously sufficient 

run-to-failure data are necessary to train data-driven models and to capture complex 

relations among data. According to [42], sufficient quantity means that data have been 

observed for all fault modes of interest. The machine learning prognostics could be 

performed with an ANN [56] to recursively predict the continuous state of degradation, 

until it reaches the defined FT. Bayesian techniques can be applied to manage prognostics 

uncertainty [62], but, again RUL estimation rely on FT. In contrast, instance based 

learning does not require FT and can estimate RUL directly by matching similarity among 

saved examples and new test instances [57]. They are also known as experience based 

approaches [54]. A combination of different machine learning methods can be an 

appropriate choice to overcome the drawbacks of an individual method [59]. But, 

whatever approach is considered for prognostics modeling, it is necessary to integrate 

operating conditions and actual usage environment. Lastly, in some cases the statistical 

learning approaches for prognostics do not consider operating conditions, failure 

mechanism and actual usage environment [54].
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Experience-based prognostics

The experience-based prognosis approaches are based on the formalization of the failure

mechanisms of systems by probabilistic models (lifetime law, Markovian or non-Markovian

processes) constructed by prior knowledge, by experience feedback or by expert judgment.

The main advantage of this type of approach is that it does not require in-depth knowledge

of the physical degradation mechanisms. Also, they are relatively simple to implement

and inexpensive. This method is mainly used in the situation where there is no knowledge

available on the physical nature of the system and where no device for monitoring the state

of degradation is operational [28]. The main limitations of experience-based approaches

are as follows: - There is frequently a gap between the models developed (single-component

with 2 states) and industrial reality (multi-component multi-state system), - It is difficult to

have a history of past experience representative of all the conditions of use of the systems

[28].

The experience-based approaches are mainly derived from traditional abilist modeling

and treatment methods. The prognosis is in this sense assimilated to a study of predictive

ability, the objective being to identify the parameters of a random distribution describing

the phenomenon of degradation or failure (Poisson’s law, exponential law, Weibull’s law ,

log-normal distribution). In this set, weibull’s law remains the most widespread [34]. In

addition, the use of an evolutionary abilist model such as ALM (Accelerated Life Model),

PHM (Proportional Hazard Model), or the implementation of a Bayesian approach allowing

to update the parameters of the law of degradation with each new information available can

also represent a solution. Monte Carlo simulation makes it possible to combine different

random phenomena but is confronted with the problem of explosion of simulation time

[34].

- Applications

Among the recent works in the field of experience-based prognosis, we can mention the

following. proposed the EXAKT software to optimize the replacement of critical equip-

ment (turbine, valve, motor, etc.). The proposed methodology combines the monitoring

of the failure rate obtained by a Weibull model and the forecasting of the evolution of co-

variates following a discrete non-homogeneous Markovian process. proposed EDF’s IBTV

software suite by integrating an original prognosis methodology where the maintenance

strategy is based on triggering interventions following the detection of component aging

(valve, electrical relay, mechanical structure, for example). The approach is based on a
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Bayesian approach with a priori modeling of the behavior of the failure rate (exponential 

law / Weibull composition). In addition, the e ciency of maintenance actions is taken into 

account according to the expert opinion. optimized the frequency of preventive 

interventions on ventilators. modeled the service life of concrete bridges to improve 

their maintenance and replacement cost. [34] calculated the average availability of a 

compressed air circuit breaker subjected to two failure modes.

Hybrid prognostics

A hybrid prognosis method is the integration of a physical model of behavior and a data-

driven approach. Two classes of hybrid prognosis are generally distinguished. When a 

physical (even empirical) model can be established, a data driven approach is used to 

estimate and predict the unobservable parameters of the model. We then speak of 

series approaches [63, 30]. A so-called "parallel" (or "fusion") approach consists in 

combining the output of a physical model with that of a data-oriented tool to reconstruct 

the overall output. In such cases, the data-oriented tool is generally used to estimate and 

predict unexplained and therefore non-modeled phenomena [64, 30]. Hybrid approaches 

exhibit good estimation and prediction performance. They also allow good modeling of 

uncertainties. On the other hand, they can be very costly in computing resources, and are 

limited by the need for physical modeling of degradation phenomena. Hybrid modeling 

can be performed in two ways: 1) series approach, and 2) parallel approach.

- Series prognostics

In PHM discipline, series approach is also known as system modeling approach that 

combines physics based approach having prior knowledge about the process being 

modeled, and a data-driven approach that serves as a state estimator of unmeasured 

process parameters which are hard to model by first principles. Several works in recent 

literature address series approach as model based prognostics [64, 28, 54]. However it 

cannot be regarded as model based, because, physics based model is dependent on a data-

driven approach to tune its parameters (Figure6.6). In brief, the representation (or 

modeling) of an engineering asset is made with mathematical functions or mappings, like 

differential equations. Statistical estimation methods based on residuals and parity 

relations (i.e., difference of predictions from a model and system observations) are 

applied to detect, isolate and predict degradation to estimate the RUL [30]. Practically, 

even if the model of process is known, RUL estimates might be hard to achieve, where the 

state of the degrading machinery may not be
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Figure 2.6: Series prognostics for hybrid prognostics model. [64]

observable directly or measurements may be affected by noise [64]. In this case, a 

mathematical model is integrated with on-line parameter estimation methods to infer 

degrading state and furnish reliable quantification of u ncertainty. State estimation 

techniques can be Bayesian methods like Kalman filter, Particle filter and variant [42], that 

update the predic-tion upon collection of new data.

As for example from recent literature, [30] developed a physics based model relying on 

particle filtering to predict the RUL of turbine b lades. An approach to RUL estimation of 

power MOSFETs (metal oxide field effect transistor), which used an extended Kalman filter 

and a particle filter to accomplish prognostics m odels. An unscented Kalman filter 

based approach was applied for prognostics of PEMFC (polymer electrolyte membrane 

fuel cell)[65]. Recently, another interesting application on prognostics PEMFC was 

presented by [30], using particle filter that enabled to include non-observable states into 

physical models. Proposed a particle filter b ased a pproach t o t rack s pall p ropagation r 

ate a nd t o update predictions. A Matlab-based tutorial presentation that combines a 

physical model for crack growth and a particle filter, which uses observed data to 

identify model p arameters. [60] Proposed a serial approach to predicting the RUL of a 

creeping turbine blade.

- Parallel prognostics

Physics based approaches make use of system specific k nowledge, w hile d ata-driven 

approaches utilize in situ monitoring data for prognostics. Both approaches can have 

their own limitations and advantages. A parallel combination can benefit f rom a 

dvantages of physics based and data-driven approach, such that the output from resulting 

hybrid model is more accurate (Figure2.7). According to literature, with parallel 

approach, the datadriven models are trained to predict the residuals not explained by the first 

principle model [64].
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Figure 2.7: Parallel prognostics for hybrid prognostics model. [64]

In PHM discipline still different terminologies are being used for such modeling. Called 

it as parallel hybrid approach, to build a model by combining a data-driven ensemble to 

POF model for an application of choke valve. In some works, such a combination of physics 

based and data-driven approaches is also called as fusion prognostics, that also requires an 

accurate mathematical model to represent a system for POF, and data for the data-driven 

approach [66]. As for some examples, [64] presented a fusion approach for prognostics 

of multilayer ceramic capacitors. A fusion methodology for electronics products. A case 

study was performed on computer by considering environmental and operational 

loads that a system is exposed to throughout its life cycle. presented a road map for 

information and electronics-rich systems, where the proposed fusion approach was 

illustrated on an application of printed circuit card assembly. A hybrid approach to 

fuse outputs from model-based and data-driven approaches was proposed by [28].

= Application point of view

Series approach for hybrid prognostics requires detailed knowledge of degrading process.

However, for the complex systems in a dynamic industrial environment, it’s hard to achieve

accurate mathematical models. Also, it is important to precisely have FTs to estimate the

RUL.

The need for implementation of parallel hybrid prognostics model lies in the limitation

of building a prognostics model with an individual approach i.e., data-driven or model
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based approach. There fore, accuracy of parallel approach should be higher. However, 

implementation of such models include several steps, which can limit their applicability 

in real-time for some cases, due to computational complexity factor [66]. For example, 

the main steps to achieve RUL estimates by a parallel hybrid approach can be, parameter 

identification a n d m o nitoring, f e ature e x traction a n d h e althy b a seline c r eation, anomaly 

detection, parameter isolation, POF models, failure definition, parameter trending and RUL 

estimation [30]. Finally, parallel hybrid prognostics approach has higher complexity than 

series hybrid approach.

2.4 Conclusion

Maintaining industrial systems in operational condition at a lower cost has become a 

critical factor in the performance of companies and the traditional concepts of preventive 

and corrective maintenance are gradually being supplemented by a more reactive and 

proactive consideration of failures. With this in mind, Prognostics and Health 

Management has received increasing attention over the past twenty years. Its overall 

principle is to transform a set of raw data collected on the monitored equipment into one 

or more health indicators whose extrapolation over time makes it possible to define 

adequate and above all detailed reaction policies (decision support: control, maintenance). 

In this, seven subprocesses are generally distinguished as the founder of the PHM. In 

addition to this position-ing of the PHM with regard to the maintenance activity.

The acquisition of data representative of the initiation and progression of degradations 

in the system, where a generic approach to obtain reliable and exploitable monitoring data 

for a PHM application is proposed. This is based on:

- Identification of critical components;

- The definition of the physical quantities to be monitored;

- The choice of sensors to be installed;

- Specification of the data acquisition and storage system.
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CHAPTER 02

TOOL WEAR CONDITIONS MONITORING

3.1 Introduction

Machining as a manufacturing technology has invariably played a significant r ole i n 

the manufacturing processes of many enterprises. It is estimated [67] that expenditure on 

machining account for approximately 5% of the GDP in the developed countries. 

Therefore, machining technology is constantly evolving. It results from numerous 

research concerning i.e. the accuracy of the machined parts, or the stability of the high-

speed machining process [68].

Despite a number of research and innovations regarding technologically advanced 

cutting tools, or more demanding materials to be machined, further striving to increase 

productivity and quality decreasing total costs at the same time, requires search for 

innovative solutions, including those of an optimizing character. Therefore, recently, the 

number of scientific research in the field of machining is growing. They concern advanced 

processing of collected measurement data coming from diagnostic and monitoring systems 

of technological machines. On the one hand, this is the result of the rapid development of 

measurement and analytical techniques [69], and the growing importance of broadly 

understood durability and reliability.

On the other hand, it is the result of expectations related to the implementation of 

solutions based on the idea of Industry 4.0. Machine to machine communication, smart 

technologies, or the need to develop cyber-physical systems (CPS), taking into account the 

broadly understood principle of sustainable development, pose a number of new research 

challenges.
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According to Lee at al. [70], recent advances in manufacturing industry have paved way 

for a systematical deployment of CPS systems, within which information from all related 

perspectives is closely monitored and synchronized between the physical factory floor and 

the cyber computational space. This requires advanced information analytics for networked 

machines, which finally will be able to perform more efficiently and collaboratively.

Currently available advanced technological solutions in measurement sensors and data 

collection and processing systems as well as widespread use of industrial computer 

networks open up an opportunity for potential future smart factories. However, the 

increasing amount of collected data requires effective analytical tools [68, 71]

3.2 Advanced analysis in terms of tool wear condition 

monitoring

Over many years, there has been a number of evaluations undertaken on the state-of-the-art 

of research internationally, in a keynote paper, detailed the activities of the CIRP 

(International Academy for Production Engineering) Tool Condition Monitoring; gave an 

overview of the research being undertaken, however, only in Korea, into machining 

process monitoring; published another state-of-the-art paper within CIRP and at this 

point investigations were very active in the field. Many of the process parameters being 

sensed are the same now as in the 1970s. What has changed dramatically in the 

intervening years is the com-puter processing power, memory storage and data 

acquisition speeds. If one accepts the prediction of Moore’s Law in terms of computing 

capacity doubling every 18 months, then it is easy to also accept that the available 

computing tools are dramatically different now to the ones that the early TCM pioneers 

had at their disposal (Figure3.1).

In that light, [73] keynote paper, being the most recent overview paper and issued more 

or less in the era when Big Data analysis is possible, offers the most relevant insight into 

the advantages and the limitations of the various methodologies that had been investigated. 

The sensed parameters are unlikely to change any more and, while the sensors may undergo 

further improvement, it is tempting to believe the state-of-the-art is now ripe for working 

TCM systems (Figure7.2). For this reason, an area of particular interest to this researcher 

in that paper, although not part of the research presented in this thesis, was in the usage 

of artificial intelligence (in the form of Neural Network’s and pattern matching) to inter-

pret the data, and ultimately to use the data and the networks’ understanding of this to
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[Figure 3.1: Basic process flow of tool condition monitoring (TCM) in milling processes. 72]

make decisions. To properly accomplish TCM tasks, a great amount of the TCM models

Milling machine 

Computer 

Cutting tool 
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Regulated power supply 
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Figure 3.2: Layout for online tool condition monitoring system. [4]

published recently are focused on empirical analysis [74], or sensory data-driven methods 

such as cutting forces [74, 75], spindle current, vibration [76, 77], and acoustic 

emission (AE). The related studies have been summarized in several comprehensive 

reviews. 
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Typically, the TCM system employs sensing systems to monitor the process, and then 

extract most relevant information from the sensory signals to identify and classify the 

tool conditions, to reduce the cost increased by tool failure. As sensing technology 

continues to mature and advance, how to extract the most relevant information has become 

a vital issue for TCM. However, discontinuous cutting is one of the remarkable features of 

the milling process, and this would result in non stationary sensory signals. The commonly-

used time-domain statistical features, frequency-domain features [78, 79] are sensitive to 

the variation of cutting conditions [75] in milling; this would limit the applications of the 

proposed TCM systems. Wavelet analysis has strong time-frequency analysis capability to 

analyze non stationary signals effectively [74].

Singularity analysis is applied and is observed in sensory signals collected in the 

machining process, particularly during tool tilting and breaking. Fourier transform and 

wavelet analysis are commonly used singularity analysis tools, but wavelets can provide 

a better time-frequency localization property. Singularity analysis based on wavelet 

transform to deal with TCM in machining, wavelet coefficient standard and statistical 

characteristics of AE signals were selected as data samples to classify tool conditions in 

turning. Fractal property is one of the important attributes of singularity analysis; it 

was also employed to classify the variation of tool conditions in turning, they established 

are current neural network to connect the fractal features of machining dynamics with 

flank wear. The introduction of the singularity probability density functions estimated from 

the cutting force in micro-milling is done to correlate with different tool conditions, and 

insensitivity to cut-ting conditions such as part material, federation, depth of cut, etc. 

has been verified by experimental studies [80]. In summary, the recent TCM studies with 

singularity analysis [80] were focusing on cutting force, AE in turning or micro-milling 

process experimentally or theoretically. As a result of the non-stationary and the 

sophistication of the vibration signal of the milling process, the TCM approaches based on 

singularity analysis of vibration signals are rarely established[74].

3.3 Cutting tool health

Automated Tool condition monitoring is critical in intelligent manufacturing to improve 

both productivity and sustainability of manufacturing operations. Estimation of tool wear 

in real-time for critical machining operations can improve part quality and reduce scrap 

rates. Tool wear monitoring is an important factor to ensure a high quality in the 

manufacturing
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process and an efficient operation. Moreover, the early detection of damage in cutting 

tools and end mills represents the opportunity to avoid furtive costs due to down-time, 

quality issues or even injuries [81, 82, 83]. Therefore, different challenges and research 

questions are addressed to monitor CNC 5 milling machines [84, 85]. Nowadays, CNC 

milling machines are optimized towards Industry 4.0 and able to measure internal 

signals like spindle speed and feed rate. Those signals can be evaluated to characterize the 

tool condition [86] and the remaining tool life. While Industry 4.0 is closely related to the 

latest sensing technologies and network connectivity [87], the vast majority of the existing 

machines and tooling in the industry do not have any of those capabilities. A key factor to-

wards a swift transition into Industry 4.0 resides on the feasibility to retrofit conventional 

machinery to meet the current technological needs [88]. The purpose of this work is to 

demonstrate the process of retrofitting machines of middle (10 years) to long production 

lives (30 years and above). One focus will be given to implement the existing, low-budget, 

all in one sensing technologies, which enable collecting, exchanging and making informa-

tion available through a so-called cloud server. Based on the acquired data, the application 

of artificial neural networks (ANN) will be demonstrated in order to classify the tool state.

CNC technology has evolved to the point where, in some cases at least, finish tolerances 

of low single microns are now possible, which places a demand on the CNC operator and 

on the CNC manufacturing companies. This is all the more so, when the material being 

machined is challenging [89]. A typical example in biomedical devices would be austenitic 

stainless steels and titanium (and its alloys), which have been widely used for bio-materials, 

such as artificial hip joints and dental implants and in the aerospace industry. A specific 

biomedical example that is very challenging is Ti–6Al–4V, one of the most often used bio 

materials. It is well known for its poor machinability, due to its low thermal conductivity 

that causes high temperature on the tool face and strong chemical affinity with most tool 

materials, thereby leading to premature tool failure. Moreover, its inhomogeneous 

deformation makes the cutting force fluctuate and further aggravates tool-wear. In 

practice, the solution in industry to this challenging machinability is to limit the cutting 

speed to less than 60 m/min [89].

Another challenge is that as tool wear increases, the hardness of the material increases 

also due to the work hardening process while machining [90].

The negative impact of tool wear is usually only detected at the end of the machine cycle. 

In most commercial deployments, errors associated with tool wear remain uncompensated 

for and once an error is spotted, the product is usually only of scrap value. For example, the
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author is an engineering manager at the Schivo CNC facility, where scrap at is estimated to 

be 2%of turnover and costs the company about €300,000 per year. Analysis of this figure 

has shown that over 50% of the scrap generated is attributed to worn or broken tooling. If 

real time TCM were in place, then machining parameters could be adjusted to compensate 

for tool wear, tools could be replaced in proper time when they approach their tool life, and 

not prematurely (or posthumously) as they are now. Machines could also be scheduled for 

down time and surface finish and dimensional stability would be increased [89].

3.4 A Technology Update

Direct monitoring of the machining results (e.g. machined surface) is one of the traditional 

approaches to TCM. Another approach, which is widely applied, is the exchange of the tool 

after a predetermined machining time, which must be much smaller than the real tool life, 

to avoid machining with a blunt tool and thereby not assuring the desired product quality. 

Even more damaging is the possibility of catastrophic tool failure, which can happen when 

the tool wear is too high. TCM research is driven on by the need for higher quality, 

stimulated by growing demands for process automation and reduction of human 

supervision requirements.

The illustration of many inputs and outputs from the machining operation that have 

been investigated as possible sources of information related to the effectiveness of the pro-

cess [89]. This illustration outlines many of the physical emissions from the CNC process 

that could be monitored and indeed have been evaluated through the years of research.

One of the early innovations in terms of in-situ evaluation was the development by 

Renishaw of the touch trigger probe in the early 1970’s, which is now widely used in 

machine tools to provide location and measurement information on both the tools and 

the work-pieces.

In terms of CNC machine development, there are ongoing attempts by the two 

largest CNC machining manufacturers to develop systems to offer feedback on machine 

process stability. Yamazaki Mazak have developed a number of systems such as IBA 

(Intelligent Balance Analyser), ITS (Intelligent thermal shield), IPS (Intelligent 

performance spindle), IMS (Intelligent Maintenance Support) and AVC (Active Vibration 

Control). These systems are all useful for monitoring a specific element of the m achine. 

H owever, at the t ime of writing, there is no fusion of the information and, overall, a 

general machining performance status is not available. Mori-Seiki has developed the Mori-

Net system, which allows remote monitoring of the machine. 
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Table 3.1: Commercial products and their limitations. [89]

Technology Use Limitations

Probes Quantify tool wear Poor accuracy, not related to product quality,

doesn’t measure efficiency of process

Machine Vision Machine Vision Processing lag time, poor accuracy, inability to

determine surface roughness; doesn’t measure

process efficiency

Individual Sensors Process efficiency Not robust, Not accurate, limited capabilities,

requires experience to analyze

However, the only real advantage of Mori’s offering is that monitoring that takes place 

at the machine can now be undertaken remotely. The Mori-Seiki Company presented 

their vision of next generation CNC machine technology at the 2015 CIRP winter 

meetings [89].

Other companies have developed systems, which enable some degree of monitoring 

of the performance of the machine. However, like the developments offered by the big 

CNC machining manufacturers, these do not have the resolution to give the required 

level of performance information. For example, the OMAT vibration control monitor 

system does indicate when there has been a change to the monitored state of the 

machine, but will not provide any indication as to the cause or effect of the detected 

change. Inevitably it seems that it will improve, but most commercially available 

systems apply "one process – one signal feature (SF)" strategies.

Shows the current technologies available to industrial precision engineering firms 

and their associated limitations. Suprock Technologies is one of the more recent 

additions to the market and have developed a tool tip which incorporates torque, 

vibration, and tem-perature sensors into it. However, this system experiences problems 

with channel fading and disruption of signal in the machining environment, particularly 

at high spindle speeds and is limited by its design to particular machining processes 

(rotating cutting and end-milling). This product also does not have an integrated 

artificial neural network and soft-ware designed to combine various sensory data into 

one simple graphical output and also requires significant operator knowledge to operate 

the system effectively [89].

In the laboratory, there has also been extensive investigation of tool condition 

monitoring. The most often used of the available signals and variables, are the cutting 

force
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components; acoustic emission (AE) and vibration [91].

Machine vision systems based on digital image processing (DIP) offer great promise, 

when applied for measurement of tool wear. Two approaches are taken in DIP: observation 

of the outline of a tool or observation of flank wear [ 9 2]. Use of information on the state of 

tools from the camera in conjunction with information from sensors: cutting forces, acous-

tic emission or vibration, can increase the effectiveness of monitoring system (X, 2002).

Despite many sensors and sensor techniques available, it is generally acknowledged that 

reliable tool wear evaluation based on one signal feature (SF) is impossible, because the 

measured feature depends not only on the tool wear but also on variety of other process 

parameters of random nature. It makes the relationship between tool wear and measured 

values very complex and it has a statistical rather than strict, predictable nature.

3.4.1 Patented technology pertaining to TCM

To gain an understanding of the attempts that have been made to commercialize different 

methodologies or systems, the author decided that a review of successful patent applica-

tions relating to systems or devices that claim to monitor and measure tool breakage, would 

be of benefit. A patent has been filed on a device on a device, which used as its signal input, 

the cutting tool motor forces. A blunt tool has greater overall interaction with the 

work piece material, so motor forces tend to increase as a tool wears. The patent 

application proposed a system whereby continuous monitoring was employed on the ratio 

of one of spindle force or power, or low frequency vibration energy compared to high 

frequency vibration energy during the cutting process. The patent application does 

suggest some methodologies, such as motor power, that have since been found to be 

challenging in overall effectiveness in terms of their ability to provide useful, real-time 

information on the cutting tool condition. However, the patent application also saw great 

merit in the effectiveness of accelerometers. The use of motor current as an indicator of 

cutting performance has also been patented. The basis of their device is the use of 

measurement of the active power being absorbed by the spindle motor and the 

comparison of this power to known power data for good cutting conditions, which had 

been detected, for example, during the first cutting operation of the tool. In theory, the 

application is feasible, assuming the motor information is valuable. However, (as 

discussed in the broader literature review) the use of motor power and currents can be 

challenging in monitoring the performance of the cutting tool, for example, due to 

transmission losses and excessive signal-to-noise ratios in the measured parameters [89]. 
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An application had been made by for a similar system, which again used a reference 

signal, detected during the first operation of the tool. This signal is assumed to be a known 

good set of information and compared that signal against the current signal being obtained 

from sensors providing information on the tool profile and cutting c onditions. Again, the 

application goes into detail on the sensor signal analysis, but the main sensor application 

is an eddy current sensor, which would be unlikely to be accurate enough for today’s high-

precision applications . The Howatt proposal also claimed improvements that its system 

would have over a previous patent filed [ 89]. H amilton p roposed t he u se o f a  distance 

comparison arrangement, where the degree of wear of the tool would be monitored using 

sensing device(s), to measure the distance to an area of the cutting surface of the tool and a 

non-cutting surface of the same tool. The logic being that as the tool wears, the distance to 

the cutting surface increases, while the distance to the non-cutting surface remain the same, 

in a manner similar to some of ultrasonic TCM research. The application details the 

electronics involved and it is particularly this element of the application that Howatt felt he 

had improved. However, neither system would be sufficiently accurate for a modern 

application based on their platform technologies. Thompson proposed using a probe on the 

tool holder to probe the distance to the freshly cut metal, as an indication of tool wear. As 

the freshly cut metal surface comes closer to the probe, this is an indication that there is 

wear on the nose of the tool[89]. The systems proposed for use, in order of preference 

were, air gauging, capacitance gauging, inductance gauging, optical and contact gauging. 

The measuring probe would be mounted just after the tool for the measurement of the 

distance to the cut metal surface. The obvious issue with this configuration is that their 

system is expected to perform distance measurements in an extremely harsh environment, 

where cutting fluid and swarf are interference factors. Their system provides some 

alleviation for this, by using a mean of the readings to determine the overall distance. 

However, overall their system would not produce the required accuracy and would not 

give more valuable information on the process, such as surface finish and chatter, which 

are both also caused by tool wear, but do not necessarily affect the depth of the tool cut 

[89]. A patent application, which employed the use of resistance to determine the wear of 

a tool, was successfully filed. Their system used a resistor applied directly to the tool, the 

resistance of which varied according to the level of wear being experienced by the tool. 

Overall, the patent application seemed speculative and lacking in detail and seemed to be 

an attempt to patent the use of resistance as a tool condition monitoring method rather 

than detailing the application. For example, the ideal location of the sensor was not 

identified, with multiple sites instead being suggested.
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  Moreover, the benefit i s f urther c louded b y n ot s pecifying t he c utting operation, as 

the application states that overall the invention relates broadly to the use of electrical 

resistance in tool condition monitoring. A similarly vague (in this author’s opinion) patent 

application was submitted by, which employed a plurality of sensors for monitoring of the 

tool condition. Their patent application is more concerned with the monitoring and 

understanding system that is being proposed, rather than the actual acquisition methods for 

the raw process data. In stating that, if suitable sensors were applied, theirs is a good 

initial expert system for the prediction of tool wear. While the application claims to be a 

system and method for the use of an expert system for tool life prediction and tool wear 

analysis, the actual patent claims relate more to the expert system than to the tool wear 

monitor method, in the opinion of this author. More recently a system was developed, 

which was using work process data for the tools, rather than actual real-time condition 

information.[93] patented the system, “Tool Sentinel”. Their system in essence used 

sensors to detect the machine cycles in which the tooling is being used and extrapolated a 

tool condition by comparing that data against the predicted tool life for that tool. The 

system can be used on multiple machines and with multiple tooling once all the prediction 

information has been entered for the tooling types and operation cycles. The obvious 

drawback is the fact that their system was theoretical rather than actually realized and 

would not detect issues such as unusual tool degradation (from a material fault in a tool 

or a workpiece material), or a catastrophic event (tool breakage). Another considerable 

drawback is the fact that the tool life is just an estimation and if the initial estimation of the 

tool life is conservative, then the system will declare a tool worn, when it may still have 

considerable cutting life left. Overall the patents that have been applied for in relation to 

the area of tool wear and associated monitoring systems seem vague and many appear to 

be an attempt to get a patent on a particular tool condition monitoring methodology, 

while the validation of the system is not yet completed, and the fundamentals of the 

applied technology have not been practically proven [89]. Some of the most relevant 

patented technology in this field i s s ummarised in (table 3.2).

3.5 Tool condition monitoring sensors

A number of sensors have been employed in TCM to obtain signals for tool condition 

monitoring. The sensor configuration can be divided according to the types of sensors 

employed into two categories: single sensor and multi-sensor configurations. 
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Table 3.2: Patented technology pertaining to TCM. [89]

Patent Name Patent Number Date Filed Expired

Tool Wear and/or Breakage Control De-

vice for a Machine Tool

US2004/0217873 6th Feb 2004 No

Production of Tool Wear Detector 4120196 25th Mar 1978 Yes

Apparatus for Directly Measuring Tool

Wear

4176396 23rd Sep 1977 Yes

In-Process Cutting Tool Condition Com-

pensation and Part Inspection

4620281 15th Feb 1984 Yes

Cutting Tool Wear Detection Apparatus

and Method

4831365 5th Feb 1988 Yes

Tool Wear Detector 5000036 23rd Mar 1990 Yes

System and Method Utilizing a Real

Time Expert System For Tool Life Pre-

diction and Tool Wear Diagnosis

5251144 18th Apr 1991 Yes

In terms of single-sensor configurations. While other types of single sensors have been 

employed for TCM in milling processes, such as sound [94] and temperature [72] sensors, 

these sensors are rarely adopted alone because they are significantly affected by 

environmental conditions. Therefore, they are generally employed in conjunction with 

other sensors in multi-sensor configurations.

Sensors for process monitoring must meet the following requirements:

- Accurately measure the sensed parameter and correctly convey that measurement the

TCM processor;

- Cause no reduction in the static and dynamic stiffness of the machine tool;

- Cause no restriction of working space and cutting parameters;

- Should be wear- and maintenance-free, easily changed, and low cost;

- Be resistant to external influences, e.g. dirt/chips/fluid, mechanical, electromagnetic

and thermal stress;

- Function independently of tool or workpiece;

- Display adequate metrological characteristics and afford reliable signal transmission.
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3.5.1 Intelligent Sensors

Generally, intelligent sensors have a much greater functionality than conventional 

sensors because they must respond to the special needs of the machine tool or process they 

are monitoring. An intelligent sensor may be best described as one driven based on 

self-decision making as opposed to predetermined commands [95]. In addition to sensor 

feedback of the machining process the intelligent machine can utilize experience 

accumulated during past operations, accumulates knowledge through learning and can 

accommodate ambiguous in-puts.

Intelligent sensors should be able to do some or all of the following:

- Self-calibration;

- Signal processing;

- Decision making;

- Dusion ability;

- Dearning capability.

Signal processing in this case means that the sensor has the capability to do feature 

extraction from the measurement vector, so that a data stream comes out of the sensor, 

not just the sensed signal. Decision making as part of the sensor system enables it to do 

such things itself not relying on the controller or other processors to do this. Sensor 

fusion describes the ability to combine or add the output of other sensors to provide a 

more robust decision on the process state. A very important aspect of the sensor is that 

it should be able to learn from past information using a neural network or other 

knowledge representa-tion scheme, in order to continuously increase its reliability and 

robustness. An intelligent sensor is, thus, more or less a combination of conventional 

sensors, signal processing and feature extraction methods, as well as implementation 

strategies that are integrated in the sensor or sensor system [95].

3.5.2 Energy monitoring

To reduce power consumption in machine tool operation, the major causes are investigated 

and three cases are studied with following findings:
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1- Power consumption can be reduced for drilling and face/end milling by setting the 

cutting conditions high yet within a value range which does not compromise tool life, 

surface finish, thereby shortening of machining time;

2- Power consumption for deep hole machining can be reduced with an adaptive pecking 

cycle, which executes pecking as needed by sensing cutting load;

3- Power consumption can be reduced further by synchronizing the spindle 

acceleration/deceleration with the feed system at rapid traverse stage.[96]

Analyzing the overall efficiency of manufacturing systems by combining electricity 

consumption data with additional facility level or process level information has been 

investigated by many researchers with promising results, however, there is scant attention 

given to the challenge of choosing the correct power metering solution within the 

literature. Choosing the correct metering device for the required analysis is a challenging 

task that requires an understanding of both the meter characteristics such as 

measurement resolution, sam-pling rate, and accuracy and also the characteristics of the 

electrical event including spectral content and duration. This paper gives an overview 

of the current state of the art in electrical energy metering. Three classifications of meter 

are proposed and the functionality associated with each class is investigated; an indication 

of price is also given. A state of the art in industry review is also included and this 

illustrates the different options available from different meter suppliers. Considering the 

fact that power metering within industrial facilities is a process that has only recently 

become popular due to its ability to fault find and facilitate energy efficient 

optimizations, it is safe to assume that the industrial power metering industry is one that 

will continue to expand over the next decade [97].

3.5.3 Visual and optical systems

An early, good overall evaluation of the state of- the-art of different sensing techniques has 

been provided. As a foundation for the discussion on vision sensor applications an 

overview of the basics of machine tool wearing is discussed, along with a general 

discussion on direct sensoring (proximity, vision) and indirect sensoring (force, vibration, 

AE). The vision based tool condition monitoring systems comprises of three major 

components; illumination, cameras and image digitization. Two camera types are 

commonly used in vision tool condition monitoring. Videocon cameras, which use an 

electron beam to provide image data onto a photosensitive surface,

Laboratory of Green and Mechanical Development 65 National Polytechnic School



Tool wear conditions monitoring

have been used, but have been found to suffer from image drift and geometric distortions. 

More recently CCD cameras have been employed in these types of systems, which offer high 

resolution and are also available in high speed.

The image digitization comprises of the following block sequence: The paper includes 

a state-of-the-art description on tool wear monitoring using vision systems. It discusses in 

broad terms the contribution made to the field, but makes no real claims as to the validity 

or worth of any of the various methods discussed. However, a second in a further detailed 

paper discussed in depth a specific application of vision systems in this area and discounted 

the general worth of the method [89].

Another proposal of a method to visually monitor the cutting face of a tool using 

two lighting configurations a nd o ne c amera p osition t o r ecord w ear f rom b oth t he fl ank 

and rake faces. The images were segmented into 10-pixel wide strips and for each of the 

strips, the degree of wear was determined by comparing the average grey level for the 

worn and unworn regions of the tool. Although this approach was novel at that time and 

formed the basis in some respects for the more recent experimentation into the use of 

vision system examination, it was clearly constrained by the available technology.

The cutting tool tip has been illuminated with a 0.8mm beam diameter laser and 

captured the reflected pattern with a camera located perpendicularly to the flank fa ce. A 

contour of the wear region of the tool was produced using a series of signal processing 

steps. The system was found to be accurate to within 0.1mm of the traditional tool 

microscope limits and was found to have very high processing speed of 1.7 seconds. the 

accuracy of 0.1mm is really not good enough for modern applications [89].

3.5.4 Ultrasonic analysis

Through the years there were a number of advances in the field, all of which were based on 

the application of high energy and high frequency ultrasound waves at the cutting interface. 

provided a state-of-the-art review of the research into this area of machining, which made 

good observations in conclusion on the optimum conditions and configurations that would 

be required to achieve maximum efficiency from an ultrasonic machining process.

However, while the research and industrial development into the use of ultrasonically 

assisted machining was further pursued, the use of this energy for the monitoring of the 

performance of the cutting operation was also being researched.

In ultrasonic CNC research, there are two significant experimental attempts, by Hamm
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(2006) and also by, that have practically demonstrated that there is theoretical merit in the 

suggestion that ultrasonic analysis and monitoring of a cutting operation is viable.

The two practical investigations both demonstrated the merits of ultrasonic energy as 

a monitoring methodology, to determine tool wear in machining. However, both 

encountered similar experimental difficulties, in terms of transmission pathways and the 

overall practicality of the use of this medium.

A further discussion of the wider research, briefly t ouched o n a t t he b eginning o f this 

section, which has been undertaken into ultrasonic applications at the cutting interface, 

would also demonstrate that researchers in this area have encountered similar difficulties 

in their research. However, the primary challenges and benefits have been teased out here, 

in covering the two papers and deeper analysis is outside the scope of this research [89].

A theoretical model for calculating TWCR r in UVAM process was proposed, which 

was helpful to understand intermittent machining mechanism in UVAM. The influence of 

machining parameters on TWCR in UVAM was also studied in detail. Since machining 

parameters are closely related to the TWCR, this work experimentally studied the effect 

of cutting and vibration parameters on machining performance in UVAM of titanium alloy 

Ti-6Al-4V. According to the analytical model and experiment results, following conclusions 

can be drawn [98].

The experimental setup mainly consists of a CNC machining center, an ultrasonic 

vibration system, a data acquisition system and an on-line monitoring system. The 

ultrasonic vibration system mainly includes an ultrasonic generator, an ultrasonic 

transducer, an ultrasonic horn and a resonant block. An online monitoring system used 

to monitor vibration characteristics of the workpiece mainly consists of a laser 

displacement sensor, a controller, a high-speed acquisition card and a PC Figure(3.3).

- According to the analytical model of TWCR r in UVAM, the nominal cutting speed

nuc, ultrasonic frequency f , ultrasonic amplitude a and cutting angle phi are four key

machining parameters affecting TWCR. And the relationship between TWCR r and

the four machining parameters were expressed in graphical;

- The analysis of cutting force signal in UVAM and CM demonstrated the oscillation

characteristics and amplitude reduction characteristics in UVAM original force signal.

Both low and high frequency components existed in FFT spectrum in UVAM force

signal while only low frequency components appeared in FFT spectrum in CM;

- The experiment results showed that the cutting force components Fx and Fy in UVAM
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Figure 3.3: Schematic diagram of a complete UVAM system. [98]

were respectively reduced by 21,5−37,24% and 31,02−46,30% compared with t hat 

in CM. And t he cutting f orce Fx and Fy i n UVAM decreased with t he i ncrease of 

vibration amplitude;

- The comparison of surface morphology between UVAM and CM showed machining

defects, such as tool path marks and bulges, had an excellent improvement in UVAM.

It could be observed that uniform vibration pattern appeared on the finished surface

in UVAM. The finished surface roughness Ra using UVAM were lower than that using

CM method. And the maximum improvement of surface roughness Ra was 48.3%

at a cutting speed of 17m/min and the minimum improvement was 25.9% at a

cutting speed of 5m/min. In addition, the excessive vibration amplitude had a

negative influence on the machined surface quality;

- The experimental results also verified the technical advantages of UVAM method in

burr suppression and uniform chip formation. Burr phenomenon in titanium

alloy machining had been improved obviously because of the intermittent

machining mechanism in UVAM, which could greatly reduce cutting force. In

UVAM, the short, thin and uniform chips were produced because of the reduction

of dynamic cutting
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thickness. And uniform ultrasonic vibration texture appeared on chips morphology

in UVAM process. The experimental results showed that the sizes of chips tended to

decrease with the increase of vibration amplitude [98].

3.5.5 Acoustic emission

Acoustic emission (AE) signals are measured using an acoustic emission transducer or mi-

crophone. This is a prevalent method among TCM techniques. AE signals consist of acous-

tic (elastic) waves, which are generated when the workpiece is exposed to plastic deforma-

tion after the cutting tool penetrates the workpiece during machining. They occur due to 

the rapid release of energy within a material as a result of plastic deformation [99, 100].

According to [101] and, AE signals are divided into continuous and transient signals, 

which have different characteristics. If the AE signal is continuous, it comes from the cut-

ting tool and indicates tool wear. However, if the AE signal is transient, it indicates that the 

cutting tool is broken.

Another work has been developed intensively on an AE-based TCM method Ṫhey ben-

efited from AE signals used to predict tool wear and chip formation generated during face 

milling. During an analysis, AE signals and the size of the cutting tool flank wear were 

measured at a fixed interval, and at the same time, chips were also collected synchronously 

for monitoring the tool wear and chip formation. Furthermore, Marinescu and Axinte con-

ducted a study on the monitoring and detection of both tool failure and surface defects 

during the milling process using AE signals. In this study, AE signals obtained during the 

milling are transformed from the time domain into the time-frequency domain using the 

STFT method to identify tool and workpiece malfunctions. The time-frequency domain 

represents a spectrogram of AE signals. Here, the cutting time (Tc) for each tool was first 

determined. Then, STFT transformation was applied to the obtained time-series graphs for 

each tool, resulting in time-frequency matrices called spectrograms. A sample spectrogram 

obtained after an STFT transformation. In this spectrogram, the pattern of the STFT area 

representing each tooth engagement is extracted and combined on a dense spectrogram for 

further inference [99].

3.5.6 Cutting force

As soon as the tool starts cutting, due to the relative motion between the tool and workpiece, 

various wear modes become active and the tool starts becoming blunt. Worn tool requires
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more force to remove the same amount of material than the sharp tool. So, the cutting force 

increases with increasing wear and is thus considered as one of the parameters that can 

be measured easily to monitor tool wear. The nonlinear relationship was observed between 

friction force, friction coefficient, and tool wear (Figure3.4). The cutting force measurement 

techniques have been used by many researchers for tool wear monitoring, Dan and Mathew 

[101] have reviewed various force measurement techniques and proposed that although the 

force measurement techniques is one of the most commonly used techniques in detecting 

tool wear, due to the complex relationship between cutting forces and mechanisms causing 

tool wear and failure, the results of various research are quantitatively different and cannot 

be used even empirically.

Dimla carried out another detailed review of tool condition monitoring techniques, and 

various force measurement techniques for tool wear monitoring were discussed. As the 

static cutting force is prone to fluctuations due to joints and couplings of machine tools 

and minute changes in cutting conditions and can lead to chatter, it is necessary to know 

the dynamic cutting forces in order to obtain an indication of system fluctuation. It was 

emphasized that the measurement of static as well as dynamic cutting forces is vital in 

order to develop a reliable TCMS.

It was proposed that forces are the most important process parameters related to tool 

wear but as not only the wear but also changes of variable cutting conditions have a 

significant influence on the force signals, the force sensing method can only make sense 

if used in combination with a force normalizing method.

In their recent publication presenting an update of the literature on tool condition 

monitoring, Teti [73] carried out an up-to-date comprehensive survey on sensor 

technologies, signal processing, and decision-making strategies for the monitoring of 

machining operations. The force measurement techniques used for flank wear 

monitoring Scheffer and Heyns [102] have been reviewed by them along with many recent 

publications. It was concluded that the systems developed so far were only tested in the 

laboratories in industry like environment but not on the actual shop floor.

Developed a model-based methodology capable of operating under varying cutting 

conditions for the online flank wear estimation based on cutting force measurements. The 

proposed system could estimate the flank wear for varying conditions with the limitation 

that the cutting variables must vary one at a time in a step wise and constant manner 

which is not feasible in practice. Developed an analytical model relating flank wear to 

cutting forces. Cutting forces were reconstructed from the accelerometer signals and 

experimentally determined dynamic model of a lathe. 
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   The low-frequency system response obtained through the model correlated well with 

experimental data. Choudhury used the ratio of feed force to the cutting force to develop 

a mathematical model for flank wear. The experiments were carried out to measure the 

forces during turning, and the measured values were used to calibrate the regression 

equation for flank wear. The force ratio monitored the flank wear reliably.

Chungchoo and Saini [103] developed a quantitative model based on a correlation 

between increases in feed and radial forces and the average width of flank wear. Sikdar 

measured three-dimensional cutting forces and three-dimensional flank wear surface area 

and observed an increase in the cutting force with increasing flank wear. It was concluded 

that the greater value of flank wear results in increased area of contact at the flank–

workpiece interface increasing the friction between them and resulting in a higher value of 

the cutting force. Cakir and Isik [101] carried out tool wear and breakage detection 

tests and found that among various methods available for TCM, the force measurements 

were more sensitive to chipping and breakage than vibration and motor current. It was 

concluded that the success rate obtained with the developed TCMS was low and can be 

improved by measuring vibration signals along with the force signals. Luo et al. [104] 

developed a flank wear rate model combining the cutting mechanics simulation and an 

empirical model to predict the flank wear width. Experiments were carried out for the 

force measurement, and a good agreement was observed between predicted and measured 

tool flank wear land width. Oraby et al. [101] developed a tool wear diagnostic 

approach based on the hid-den correlation between instantaneous tool wear state and 

the corresponding variations in the stochastic component of the dynamic cutting force. 

Autoregressive moving average (ARMA) analysis was used to obtain significant models of 

tool wear at various levels from the cutting force signals. The approach can accurately 

detect the onset of the plastic defor-mation zone and can be utilized as an integrated 

monitoring and control system. Thangavel et al. [101] used force measurement results 

along with response surface methodology to develop the mathematical model for the flank 

wear prediction, and the results obtained using the mathematical model were found to be 

in good agreement with experimental results.

Chen [105] monitored force and vibration signals during turning to carry out tool con-

dition monitoring. The combination of force and vibration features extracted from the 

frequency domain correlated well with tool wear. Sharma and Gajate carried out cutting 

force, vibration, and AE measurement in order to develop flank wear monitoring system. 

The neuron-fuzzy techniques used for constructing flank wear monitoring systems -
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provided satisfactory results with the cutting parameters for which the models were 

trained. Calamaz [106] measured cutting forces, and from experimental results, it was 

found that feed force increases with flank wear. The numerical cutting model was 

developed to understand the evolution of feed force with tool wear.

Dynamometer 

AE sensor 

AE sensor 

Workpiece 

Fixture system 

10KHz 

1800 KHz 

X 

Y Z 
Milling tool 

Figure 3.4: TCM method using an AE sensor and a dynamometer. [107]

Al-Habaibeh [108] used force and AE signals in a feature fusion model to predict 

tool wear during turning. An automated signal and signal processing selection system was 

used to automatically detect the features sensitive to the tool wear. The system was able to 

pre-dict tool wear successfully. Ren [109] considered cutting force measurement as the 

most reliable and accurate sensing method for online tool wear monitoring and used force 

mea-surements in a Takagi–Sugeno–Kang (TSK) fuzzy approach for tool wear 

monitoring. It was observed that such models were difficult in estimating the error of 

approximation and needed development to capture the uncertainty during turning 

process. Fang. [101] also carried out force and vibration measurement during turning 

to analyze the relationship between cutting tool wear and these signals. Apart from flank 

wear, the cutting forces are also sensitive to other parameters and can vary with cutting 

speed, depth of cut, and work hardness, making correlation with wear more complicated.
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3.5.7 Vibration

Vibration sensors are widely employed in TCM because they are inexpensive, easy to 

install, and provide a similar periodic signal shape to that of the cutting force [72]. 

Besmir et al. [110] established that low levels of vibration are generated with sharp 

cutting tools, while the levels of vibration increase with increasing deterioration in the 

tool condition. Numerous studies have demonstrated the feasibility of adopting vibration 

signals for TCM in milling processes [111]. For example, Hsieh et al. [112] demonstrated 

that the spindle vibration acceleration signal can distinguish different tool conditions 

during micro-milling when used in conjunction with appropriate feature extraction and 

classifiers. Madhusudana et al. [113] installed a tri-axial integrated electronic 

piezoelectric (IEPE) accelerometer on the spindle housing to capture the spindle vibration 

acceleration signal during face milling. Gao [113] achieved positive tool condition 

diagnostic accuracy by adopting a laser vibrometer to acquire the vibration displacement 

of a tool holder. However, the characteristics of milling processes limit the accuracy of 

TCM employing vibration signals. First, vibrations are generated during machine 

operation even when the tool is not engaged in cutting, as during an air-cut operation. 

In fact, efectively distinguishing between entitycut and air-cut operations remains an open 

challenge. Second, vibration signals are difficult to filter, and are therefore prone to 

providing erroneous data [110]. Finally, the position of sensor installation and the use of 

cutting fluid can affect the vibration signal [72].

3.5.8 Motor current

Because the cutting force increases with increasing tool wear, the current drawn by the ma-

chine motor undergoes a corresponding increase. Motor current sensors are considered to 

be more suitable for manufacturing settings than cutting force sensors due to their rela-

tively simple application and lack of installation effects on machining operations. Ghosh 

demonstrated that current sensors provide TCM results that are fairly comparable to that 

of cutting force sensors in actual industrial TCM applications. Stavropoulos [114] demon-

strated that motor current signals correlate more strongly with tool wear than do vibration 

signals, and the motor current signal suffers less sensitivity to environmental noise, result-

ing in more accurate tool condition diagnoses. Ammouri [72] established a TCM index 

based on the measured current values of the spindle and drive motors of a machine tool. 

However, use of the motor current signal for TCM also has a few disadvantages.

First, motor current signals contain a considerable amount of noise, obstructing the 
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detection of small fluctuations in the cutting force, and high-frequency components are 

lost by filtering [ 115]. Second, the motor current signal is significantly influenced by the 

viscous damping of the feed system and friction in the mechanical system [72]. Finally, 

experiments conducted by Lee et al. [116] demonstrated that the motor current is not 

sensitive to changes in the cutting force at high motor frequencies, which means that the 

motor current signal is not suitable for TCM conducted at high spindle speeds.

3.5.9 Audible sound energy

To the author’s surprise, at the outset of this research, there has not been a huge body or 

work undertaken to correlate the perceived ability of experienced machinists to “hear” the 

CNC machine process degrade through tool wear.

Lazarus [117] was one of the first w orks e ncountered p ursuing t his t heme. I n the 

Lazarus investigation, although the phenomenon is referred to as “acoustic 

emissions”, which includes a large range of frequencies that are outside the frequency 

range of hearing for humans, it was in fact audible sound energy that was being assessed 

during the exper-iment. In any event the experimentation lacked a degree of 

sophistication, but ultimately concluded that humans can hear tools wear over time. 

Teti proved with a greater degree of sophistication that there clearly is a correlation 

between tool wear and the sound energy from a CNC machine in the 2-20kHz range. This 

was further demonstrated by the authors own paper in the Journal Wear, Downey, 

O’Leary [117]. The big challenge faced by any investigation into audible sound energy 

is external interference from other noise sources, transmission paths transmission media.

3.5.10 Temperature

In metal cutting, temperature is another considerable outcome due to friction between the 

tool and the workpiece. As the cutting progresses, with the increase in cutting temperature, 

the chemical dissolution of the tool material increases. Thus, there is a good 

relationship between the mechanical abrasion/friction, tool wear, chemical dissolution, 

and cutting temperature, which can be established by developing mathematical models 

[118]. The models may be able to estimate wear rate and temperature, but it is hard to 

predict the wear length and requires a database of thermochemical properties of specific 

tool-workpiece combina-tion.

In order to measure the cutting temperature, as reviewed by this author in [119], 
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researchers investigate several techniques including the tool-work thermocouple, the 

inserted thermocouple, the spectral radiation thermography, and the recently proposed 

thin film thermal sensor. The tool tip is a very small zone (usually, 0.5-2 mm depending on 

parame-ters), where the maximum temperature is produced. It is hard to place a sensor in 

this tiny zone. The other techniques need special arrangement. Due to this, the 

measurement of ac-tual temperature from the active zone is almost impossible. The data or 

signals received by the above stated techniques are calibrated to estimate the flank wear 

land over cutting time. However, these techniques cannot provide any information about 

tool chipping, breakage and catastrophic failure, and tool life. Thus, the temperature 

data acquisition method is not useful for a TCMS in manufacturing production systems 

[120].

3.6 Signal processing tools

The development of a robust and reliable tool condition monitoring system requires 

the application of the most meaningful TCM signal features (SFs), which best describe the 

tool wear [121]. Therefore, the key issue in a TCM system is calculating a sufficient 

number of SFs related to tool and/or process conditions. There has been much work 

carried out on signal feature extraction of various different signals for various 

applications. Each of these signal feature extraction methods works, with varying 

success, with different sen-sor signals. Many of the various sensors used in tool 

condition monitoring (TCM) require individual feature extraction methods for optimal 

function. Feature extraction methods in-clude; general purpose time domain features, 

acoustic emission time domain features, time series modelling, Principal Component 

Analysis, Singular Spectrum Analysis, Permuta-tion Entropy (time domain), Fast Fourier 

transform, Wavelet transform and Hilbert–Huang transform (frequency and time–

frequency domain). Each of these signal processing meth-ods has advantages and 

disadvantages when used with different sensors and it is likely that for a multiple sensor 

configuration a number of these methods will need to be employed. It is impossible to 

predict in advance which SFs will be useful for tool and process condition monitoring in a 

particular application. Therefore, efficient methods to evaluate automat-ically their 

usability usually need to be applied. A robust TCM system should be able to combine 

signal feature extraction methodsand use robust methods to process multiple sensors, 

without any intervention by, or even knowledge of, the machine tool operator[89]. 
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- Scalar values (one dimension);

- Functions (two dimensions);

- Multidimensional, for example imaging in the visible domain, ionizing radiation (UV,

X) or even infrared (infrared thermography).

The concept of signal processing particularly affects the last two. It should be noted that 

some techniques for processing two-dimensional functions can also produce graphical 

indicators, for example time-frequency analysis. This is why it is common to categorize 

analyzes into three according to the domains of representation: time, frequency and 

time-frequency[122].

In temporal analysis based on the study of the evolution of a quantity over time, the 

statistical quantities such as: the average value, the peak or peak-to-peak value, the RMS 

value and the Kurtosis appear first. . Another method in this family is also the time 

synchronous average. Statistical modeling is still used, for example auto-regressive 

moving average models (ARMA). Finally, some nonlinear methods such as principal 

component analysis or pseudo phase portrait are classified in this category.

For the approaches relating to the frequency domain, the oldest is spectral analysis 

by the FOURIER transformation (FFT) from which various techniques have been derived 

(power spectral density, frequency filters, envelope analysis or HILBERT transform).

The CEPSTRE represents another tool making it possible to process signals either of 

pulse type or of modulated type.

   High order spectra, such as bi-spectrum or tri-spectrum, should also be mentioned. 

Some researchers to solve particular problems have also applied the notion of holo-

spectrum.

The analyzes in the time-frequency domain make it possible to represent non-stationary 

signals in these two spaces. In this category, apart from the sliding window Fourier 

transform (STFT), operation from which the spectrogram is determined, the energy 

distribution of WIGNER-VILLE constitutes an analysis method that is widely used in signal 

processing. With the distribution of CHOI-WILLIAMS, the latter fits into the class of 

bilinear transformations. Finally, the wavelet decomposition or time-scale analysis, largely 

developed here, appears in this third category[122].
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3.6.1 Time domain analyzes

For force signals, the features are usually extracted in the time domain. The features 

usually considered are the magnitude of the signal, RMS level, and force ratio. Jong-Jin 

and Ulsoy [101], Balazinski et al. [123], used time domain analysis for force signals. It 

was found that the time domain features of force signals correlated well with tool 

wear.Reddy used the time domain features of AE and surface roughness signals, and these 

features correlated well with progressing tool wear. Jemielniak [124] carried out 

multifeature fusion by extracting time domain, frequency domain, and time–frequency 

domain features from force, vibration, and AE signals [101].

Wang [101] used time domain features from surface roughness data and found good 

correlation with tool wear. Time domain features offer a great deal of simplicity in terms of 

extraction, but they are susceptible to disturbances so they need to be supplemented with 

features from other domains.

The signal in the time domain can be measured by parameters. Of these, kurtosis 

and RMS are the most effective. The shock pulse method has also gained wide industrial 

acceptance.

Root Mean Square (RMS) [125] √√√
1
N

N∑
n=1

[x (n)]2 (7.1)

Crest factor (Cf) [125]
sup |x (n)|√
1
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N∑
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[x (n)]2
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Shape factor [125]
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3.6.2 Frequency domain analysis

Features of the vibration and sound signals are often extracted using the frequency do-

main. To extract the signal features in the frequency domain, fast Fourier transform (FFT) 

is often used. Siddhpura [101] used the energy variation of sound signals in the frequency 

domain. It used the spectral density plots for vibration signals. The data-dependent system 

methodology developed isolated the mode of vibration most sensitive to tool wear and gave 

power contribution extracted from the frequency domain which showed a specific trend 

with tool wear.They used noise spectrum for AE signals. The level of noise emitted due 

to the rubbing action of the tool and workpiece in the frequency range 2.75 − 3.50 kHz 

increased with increasing tool wear.It used frequency spectra for the force signals. In the 

dynamic force spectrum, there was a distinct characteristic peak around 2−5 kHz. The am-

plitude of characteristic frequency signals was found to increase monotonically with tool 

wear and fall sharply at the point of entry to the tertiary wear zone. Al-Habaibeh [108] used 

a FFT program to obtain the power spectrum representation of time domain signals. The 

frequency domain features obtained using FFT correlated well with tool wear. It carried 

out a frequency domain analysis of AE signals. The lowfrequency AE signals were strongly 

dependent on the tool– workpiece and tool–chip interfacial contact conditions while the 

high-frequency AE signals were associated with cracking occurring at and below the tool 

surface. Kamarthi carried out experiments to compare frequency (FFT) and time–frequency 

(fast wavelet transform-FWT) domain features. The FFT-based method was more suitable 

for vibration signals while FWT models were recommended for the force signals.

They carried out a time domain and frequency domain analysis of force and vibration 

signals, respectively, and found good correlation with tool wear. They used frequency do-

main features for force, vibration, sound, and AE signals. used frequency domain features 

for sound signals and found that early prediction of tool wear was possible based on the 

sound signals. Silva [126] obtained energy in the frequency bands 2.2 − 2.4 and 4.4 − 4.6
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kHz for force, vibration, and sound signals from the power spectrum. The features ex-

tracted were adequate and generated enormous amount of information. Haddadi [101] 

used frequency domain features for surface roughness and vibration signals. The energy 

of the signal spectrum in the range of 0 − 3.5 kHz was a good indicator for tool wear, and 

wearing of the tool was accompanied by an increase in the spectrum amplitude in 0 − 3.5 

kHz frequency range. It is not always easy to identify the spectral bands which are sensitive 

to tool wear, and it is difficult to understand why certain frequencies are influenced by tool 

wear. Also, it is necessary to understand the dynamics of measurement hardware in order 

to fully utilize the benefits offered by this method.

3.6.3 Time-frequency domain analyzes

This domain is used to extract features from non-stationary signals. It is performed mainly 

based on wavelet transforms that can provide useful information about singularity (i.e., 

localization) of a signal in both the time and the frequency domains at the same time. 

Wavelet transforms can be of three types – continuous, discrete, and stationary. One or 

more are applied to extract tool condition features of machining signals including force, 

vibration [120] AE. As the metal cutting is a dynamic phenomenon, it is important to 

identify the most stationary part of the signals originating from neighbor sources. In their 

study, Scheffer observed that the time–frequency analysis with spectrograms can 

detect the most stationary parts of force signals.Found that the extracted features from 

discrete wavelet coefficients along with HMM can accurately predict the tool wear. In 

their review of various applications of wavelet analysis in TCMSs, Zhu [120] concluded 

that, due to its sparsity and localization properties, this analysis method is very 

effective in accurately analyzing non-stationary machining sensor signals than any 

other time–frequency methods. This method requires less processing time, but it is 

difficult to determine exact contribution of a specific frequency at a given time because 

of time variant nature of wavelet transforms. Overall, this method offers much better 

performance in TCM as compared to individual time or frequency domains. Although 

wavelet transform in the time-frequency domain has great potential for TCM, more 

efforts are needed to prove its superiority among all other techniques. Many researches 

are published to justify the appropriate domain for specific requirements in machining 

systems as presented in (table7.3).
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Table 3.3: Data/signal processing methods and their TCMS applications. [120]

Extractors Till

1989

1990−
1999

2000−
2009

2010−
2019

Applicability and key fac-

tors

Limitations

Time (43) 02 15 17 09 Suitable with force, AE

and surface roughness

data

Prone to distur-

bances. Limited

analyses on power

and vibration data

Frequency

(49)

10 9 14 16 Suitable with vibration,

sound, force, AE, and

roughness signals. Good

prediction accuracy.

Difficult to identify

the characteristic

spectral bands

Wavelet

(19)

2 6 11 Vibration, force, AE sig-

nals. High prediction

accuracy, Less processing

time.

Limited study. Hard

to estimate exact con-

tribution of specific

frequencies.

Statistical

(38)

6 6 16 10 Vibration, sound, force,

AE, wear image, surface

roughness. Good to esti-

mate wear rate. Fairly high

accuracy, less computation

efforts

Hard to identify the

random tool wear

features. Model-

based detection

3.6.4 Statistical domain

In the statistical domain, the signals are considered as the output from a random process 

and features are extracted. This includes the features which describe the probability 

dis-tribution of the random process such as mean, variance, skew, kurtosis, and standard 

deviation and coefficients of time series signals such as auto-regression (AR), moving 

average (MA), and ARMA.

Leslie and Lorenz [101] analyzed the wear behavior of two grades of carbide tools us-

ing multiple regression analysis in order to determine the effects of interrelated variables. 

If used correctly, the multiple regression comparison method can provide valuable infor-

mation regarding interrelationship of the variables and the degree of the interrelationship
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which affects the resulting estimating equations. It considered variance, skew, and kurtosis 

for AE signals from a turning process.

They used an AR series model for processing signals along with the power spectrum 

amplitude. The AR coefficient matrices were used as the parameters which characterize 

the state of the cutting tool. The application of the AR parameters with an artificial neural 

network (ANN) structure can effectively detect the tool wear.It carried out nonlinear 

regression to develop mathematical tool wear model using measured force data. The 

developed mathematical models were more appropriate in estimating the gradual wear 

levels only within the region of constant wear rate and the random disturbances such as 

chipping and fracture were not detectable. Ravindra [101] used regression models to 

develop an online tool wear monitoring strategy. The developed models held good at 

higher cutting velocities and depth of cuts as they closely resembled the measured values.

It used mean and standard deviation for the optical analysis of the image. A quite good 

correlation was found between the standard deviation parameter and tool wear. used 

absolute deviation, mean, skew, and kurtosis for sound and vibration signals. It was 

observed that these parameters exhibited little correlation with flank wear. But applications 

of neural networks along with all the parameters and Taylor’s tool life model led to a closer 

prediction of tool wear.

Choudhury and Srinivas [127] developed a tool wear model as a function of cutting 

velocity, feed, depth of cut, variation of normal load with respect to flank wear, wear 

coef-ficient, hardness of cutting tool, and the index of the diffusion coefficient. The 

regression equation was developed and experiments were carried out to obtain regression 

coefficients. The method of least squares was used to find the unknown parameters of 

the regression equation. It was found that the flank wear was significantly affected by the 

cutting velocity and the index of diffusion coefficient.

Oraby used ARMA models for an online monitoring technique to reflect dynamic 

characteristic variation due to the tool wear. The post processing of these models was 

carried out using Green’s function in order to extract information about dynamic 

behavior at various tool wear states. The ARMA models were adequate to represent the 

cutting process with reasonable accuracy. Özel and Karpat used analysis of variance 

(ANOVA) for feature extraction from surface roughness signals. The extracted features 

were used to train neural network models, and the developed prediction system was found 

to be capable of accurate surface roughness and tool wear prediction for the range it was 

trained. Thangavel used regression analysis to calculate the coefficients of the polynomial 

equation model developed
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using process parameters. Chelladurai processed the force and vibration signals 

through ANOVA to check the effect of machining parameters on them. The empirical 

models were developed by performing statistical analysis of the experimental data. The 

multiple regression model developed was in good agreement with experimental results. 

Deiab used neural network and polynomial classifiers ( PC) t o p redict a nd c lassify 

different t ool wear states based on statistical features extracted from cutting force and 

AE signals. The signals ob-tained from force and AE sensors correlated well with the tool 

wear. Dureja [128] analyzed the effect of machining parameters such as speed, feed, depth 

of cut on surface finish, and tool wear by ANOVA. The feed rate, depth of cut, and 

workpiece hardness had a statistically significant effect on the flank wear, whereas feed 

rate and workpiece hardness significantly affected the surface roughness [101].

Elangovan [129] used statistical features such as mean, standard error, median, 

standard deviation, sample variance, kurtosis, skewness, range, minimum, maximum, 

and sum for the vibration signals to develop a Bayes classifier-based condition monitoring 

system for the cutting tool. Statistical features were compared with histogram features, 

and it was found that the statistical features yielded more accurate results when compared 

to the histogram features. Ghani [101] developed a regression model based on the 

integrated kurtosis based algorithm for z-filter ( I-kaz) t o c arry o ut o nline t ool w ear m 

onitoring. T he s ystem pro-vided satisfactory results in terms of predicted flank wear, and 

it was possible to determine maximum permissible flank wear.

This technique largely reduces the computational costs. But some of the statistical 

do-main features largely depend upon the sample size and so can provide misleading 

results if correct sample size is not selected.

3.7 Conclusion

As can be seen in the earlier sections, there has been a long desire to develop a system 

or methodology for the accurate monitoring and reporting on the performance of the 

CNC machining process. Many avenues have been explored and there is no phenomenon 

within or around the cutting process the viability of which has not been evaluated in 

detail. For the past number of years the conclusion has been reached that it is only a 

combination of the available phenomena (in a sensor fusion) coupled with sophisticated 

data mining and analysis techniques, that will result in accurate and reliable 

monitoring of this process. Neural networks, coupled with data from multiple sensors, 

are the technique that holds most promise at the moment.
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   A neural network with input from multiple sensors mimics the cognitive ability of the 

human body, where the brain is the ANN, and sensors are the 5 senses. And we 

anecdotally know that experienced machine operators appear able to detect wearing 

tools through sound, vibration, touch and other variables. It is clear from the literature 

review that since the commencement of investigation into the potential to use physical 

phenomena from the CNC operation to interpret the performance of the operation 40 years 

ago the available technology has become so advanced that TCM systems are now 

inevitable. Early efforts as outlined earlier relied on piezo-electric sensors and analogue 

oscilloscopes as the sensor-interpretation circuit. Today we have extremely sophisticated 

sensors, deployed in fusion, with well-developed signal conditioning techniques. And this 

information is being interpreted by complex Neural Network computing systems.

In spite of previous technological shortfalls, for many years patents have been lodged 

outlining a tool condition monitoring system. As discussed earlier, these have proven 

largely speculative and without substance in terms of the key interpretative process that 

they will employ and have relied on vague descriptions of the hardware configuration. 

However, the key to intelligent tool condition monitoring systems now is in the sensor 

configuration (fusion) and subsequent signal i nterrogation. It is this sensor fusion and the 

interrogation of the signals that this research intends to address. The experimentation that 

will be outlined in the coming pages will investigate the worth of each of the identified 

sensor sources against the next, across a number of machines, a number of cutting 

configurations, and a number of materials.
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CHAPTER 03

CONDITION MONITORING BASED ON BLIND SOURCES

SEPARATION

4.1 Introduction

The automation of machine condition monitoring are gaining popularity due to 

advancements made in sensing technologies and computing algorithms.This paper 

presents a data-driven approaches for Tool wear estimation using Mahalanobis Taguchi 

System (MTS), based on Continuous wavelet Transform (CWT) and Sparse Components 

Analysis (SCA). CWT is one of the most powerful time frequency analysis and has been 

widely applied in TCM. The CWT used to transform one set of one-dimensional series 

into multiple sets of one dimensional series for preprocessing.

SCA method used to separate CWT series of one-dimensional time series into 

independent time series. The health indicator based on the MTS is proposed based on 

distance computing between the normal and faulty state of cutting tools. The MTS 

distance used to estimate the health between the differents degradation levels. The MTS 

distance values are then fitted to a regression to obtain the model for Remaining Useful 

Life (RUL) estimation. In addition, this paper addresses several pertinent challenges, such 

as failure threshold determination during anomaly detection and RUL estimation, by 

developing adaptive thresholds. The results demonstrate the efficacy of the proposed 

framework compared to state-of-the-art methods in terms of the accuracy and convergence 

of the RUL estimation of cutting tools. The method is applied on real world cutting tool 

degradations. Experimental results show that the proposed method can reflect effectively 

the performance degradation
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of tool wear condition monitoring. In this chapter, a novel MTS-based data driven approach 

is presented. The purpose of this research is focused on the separation of dependent sources 

by combining CWT and BSS and applied MTS for severity evaluation and life prediction. 

The proposed technique consists of three processing stages. In the first stage, the signal 

collected from milling cutters decomposed into several coefficients of signals based on 

CWT. In the next stage, the BSS algorithm is used to complete the separation coefficients 

obtained by CWT. When the degradation started, the prognostics approach, which 

monitors the progression of the MTS values, is initiated. And finally, using a linear 

approximation, time to failure is predicted. The performance of the approach has been 

validated via experiments performed on CNC machining process.

The cutter has been instrumented with force, vibration and acoustic emission 

transducers and experiments involving healthy and numerous types of faulty operating 

conditions have been achieved. The experiments show that the proposed method renders 

acceptable results for TCM. Overall, the proposed approach provides a reliable 

multivariate analysis thus reducing analysis overhead. In addition, the MTS-based 

approach is a robust approach that is insensitive to differences in multidimensional 

systems. The experiments with different tool conditions illustrate that the separation 

strategy is robust and promising for cutting process monitoring [19]. Subsequently, the BSS 

algorithm is used to process these CWT signals coefficients series and consequently to 

terminate the separation process. In addition, the application of the MTS algorithm with 

these functionality processes the signals of the multichannel transformation. Finally, the 

health state of the cutter was identified by cal-culating the state of health of the cutting 

tools, a health indicator obtained by calculating the energy of the independent signal 

(RMS). The objectives of this survey are: to propose a new approach based on CWT, BSS 

and MTS for diagnosis and prognosis, as well as; to optimize the parameters of the model, 

in order to verify the robustness and the meaning of this mathematical model. The CWT 

based on the SCA method is developed and the source signals associated with a milling 

cutter and a machine are separated. The MTS method based on CWT and SCA is applied 

to predict the RUL of cutting tools, and experimental results have shown that the 

predictive model formed by CWT, SCA and MTS is very accurate, as well as experiments 

with different cutting tools show that the separation strategy is robust and promising for 

monitoring the cutting process.
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4.2 Artificial intelligence methods and applications

The AI is the system that thinks and acts like a human being. It can also imitate human 

behavior. It is majorly concerned with the development of a computer’s ability to engage 

in human-like thought processes like learning, reasoning and self-correction. In the last 

decade, there has been a growing need in AI to solve the problems of engineering. Earlier, 

these problems were considered hard to be solved analytically or by using mathematical 

modelling and needed human intelligence [130].

Nowadays, there is an increased demand for advanced AE analysis tools. This chapter 

shows that many scholars have studied the detection and diagnostic of several faults by 

using the AE methods in AET and signal analysis. The AI techniques as mentioned earlier 

have also been extensively used in the field of engineering.

Fault diagnosis combining fault mechanism and detection techniques; it is a subject 

based on the theory of signal processing and pattern recognition. Various algorithms based 

on computational intelligence for fault and wear of cutting tools diagnosis are presented 

in this section. (Figure4.1) [131] shows the taxonomy of the computational intelligence 

techniques used as classifiers for machinery fault diagnosis.

Computational intelligence 

techniques 

SVM ANN FL EAs 

ESVM 

FSVM 

LSSVM 

GA 

PSO 

NFSs 

ANFIS 

eNF 

BPNN 

RBF 

ELM 

DLN 

Figure 4.1: Taxonomy of computational intelligence. [131]
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4.2.1 Artificial Neural Network (ANN)

ANN is a special case of neural computation, which is inspired by the human brain. This 

neural network is a mathematical model that can achieve distributed parallel information 

processing. ANN can adjust the interconnections among internal nodes to achieve 

information processing of a complex system.

Diagnostic inference can be interpreted as a solution of a problem based on the specific 

mapping relationship between fault symptoms and fault causes. For complex mechanical 

systems, the mapping relationship is generally nonlinear. Therefore, ANN has been widely 

used in fault diagnosis because it can effectively approximate various mapping relations. At 

present, most of fault classification methods utilize time-frequency analysis methods as the 

early feature extraction, and ANN or its optimized forms are then employed for fault 

classification. [131], wavelet packet transform (WPT) and ANN were integrated to diagnose 

fault in internal combustion engine, in which WPT was used to extract the fault 

characteristics, and generalized recurrent neural network (RNN) was proposed to classify 

various fault conditions. Lei [132], proposed an intelligent diagnosis method based on 

ensemble empirical mode decomposition (EEMD) and wavelet neural network. EEMD 

was used to extract the characteristics of time and frequency domains from the sensitive 

intrinsic mode functions (IMFs). Wavelet neural network was adopted to complete the 

pattern recognition. WPT and empirical mode decomposition (EMD) were utilized to 

preprocess and extract features, and ANN was used to diagnose early fault in rotating 

machinery. Cui, proposed a new back-propagation neural network (BPNN) based on 

the coefficient entropy of wavelet packet decomposition to realize quantitative diagnosis 

of fault severity trend of rolling bearings. Saravanan, presented a new hybrid method 

based on discrete wavelet transform (DWT) and ANN to diagnose various faults of spur 

bevel gearbox. Zhao [133], utilized BPNN and improved shuffled frog-leaping algorithm 

(SFLA) to perform fault classification. The accurate selection of suitable features that 

reflect the running status of equipment in practical application of fault diagnosis is the 

key point of research. Therefore, fault feature selection based on ANN is an important 

research direction [131].

Fault diagnosis of mechanical system based on ANN has some limitations. First, extrac-

tion and selection of features depend largely on the prior knowledge of signal-processing 

technique and diagnosis experience, and generalization is weak. Second, ANN adopts a 

shallow structure, which also limits ANN to learn complex nonlinear structures in fault 

diagnosis [134]. Deep neural network (DNN) is developed based on deep learning theory,
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which can enhance the accuracy of big data classification and effectively overcome the 

preceding shortcomings. Deep learning was first introduced into the field of fault 

diagnosis by Tran, who applied deep belief network (DBN) based on Teager energy 

operator to achieve fault diagnosis of reciprocating compressor valves. A multi-sensor 

health diagnosis method based on the DBN, which classified the sensor signals collected 

from a damaged structure. Guo, developed a hierarchical adaptive deep convolutional 

neural network for bearing fault diagnosis. [134], used DNN for intelligence fault diagnosis 

in rotating machinery, especially in the case when the vibration data were massive. ELM 

has been extensively applied and popularized in the fault diagnosis of mechanical system 

in recent years. Yang, proposed a multilayer ELM based on representational learning for 

fault diagnosis. The effectiveness of this method was successfully verified by applying a 

wind turbine system. Wei, proposed a method based on local mean decomposition to 

identify the different fault types of gearbox, combining permutation entropy and ELM. 

More references on the applications of ELM in machine fault diagnostics [131].

4.2.2 Spiking neural network

Recently, spiking neural network (SNN) is the third-generation neural network (Figure8.2) 

and has gained a lot of interest in the scientific community . The SNNs became famous 

before the introduction of the sigmoidal or the perceptron neuron [130]. It was observed 

that the SNNs were very suitable for the parallel implementation in the digital hardware 

and in the analogue hardware [130].

The earlier generations of the neural networks used the analogue signals for conveying 

the data from one neuron to the next. This communication between the neurons in the 

SNNs used spikes, which was similar to the system used in the actual human neurons. The 

spikes could be recognized only at those instances when they had occurred. With the help 

of the weighted sum of the analogue input value, the earlier neuron estimated the value 

using the sum-specific non-linear function. The value helped in determining the delay 

in the spike output, which was aimed for the succeeding neuron. Generally, the spiking 

neuron was viewed as the leaky integrator because the target neuron integrated the spikes 

for a period of time and accepted the resultant integrated values used as the membrane 

potential. When the membrane potential value approached a specific threshold value, then, 

the neuron was seen to send a spike; thereafter, the membrane potential v alue was reset 

[130].
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Figure 4.2: Spiking neural network. [135]

An increased knowledge in the information processing of the biological neurons helped 

in explaining many additional parameters (like the gene and the protein expression) that 

needed to be taken into consideration for the neurons to spike. The additional parameters 

included the different physical properties of the connections, the likelihood of the spikes 

being accepted at the synapse and the emitted neurotransmitters or the open-ion channels 

[136]. Several of the properties were modelled mathematically and were used for studying 

the biological neuronal system. The SNNs were made of the artificial neurons that 

communicated using the trains that were considered as the pulse-coded data [137]. The 

SNN was biologically acceptable, and it was seen to offer a means for the representation 

of the frequency, time, phase and such other features for the information processing. 

Moreover, the SNN possessed the ability for training the neurons for converting their 

spatial-temporal data to spikes (their properties include the spiking rates and spiking 

time). When one was selecting the neuronal model for an SNN, one needed to consider 

the computational efficacy and the biological credibility [137]. If it was seen that the 

computational efficacy was better than the biological plausibility, then the leaky integrate 

and-fire (LIF) model needed to be adopted due to its cost effectiveness.

In their study, [130] depicted the applications of the prototype decision support system
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for monitoring the tool wear depending on the SNN technique. This system consisted of 

six different components, that is, collection of data, feature extraction, multisensor 

integration, pattern recognition, tool wear estimation and the outlier detection. Their 

proposed architecture consisted of one built-in self-organizing neural architecture part 

that was based on the SNN. Their study showed that the modelling process was very 

efficient for classifying the tool wear level of the tool inserts with the help of the apparent 

weak features. Their method showed the effectiveness of using the SNN model for the tool 

condition monitoring, thus implying that the approach was feasible for many industrial 

applications, wherein a lot of noisy data are obtained. This researcher was the only one 

who used SNN in condition monitoring; the result showed the capability of spiking neuron 

networks for tool condition monitoring [130].

4.2.3 Neuro-fuzzy

Neuro-fuzzy inference techniques, also known as fuzzy neural networks (FNNs), combine 

the models of neural networks and fuzzy logic systems. They aim to take benefits of both 

the techniques by achieving the simplicity of modeling from NNs and by providing 

structured knowledge for complex system behavior offered by fuzzy logic systems [120]. 

Sharma et al. developed an adaptive neuro-fuzzy inference system (ANFIS) for predicting 

tool wear from the measured signals by force, vibration, and AE sensors during turning. 

The overall accuracy was estimated to be 82.9%. Different neuro-fuzzy approaches are 

attempted for TCM system development in [120], which include ANFIS, dynamic 

evolving neuro-fuzzy inference system (DENFIS), and transductive weighted neuro-fuzzy 

inference system (TWNFIS). Experiments show that the transductive methods are better 

than the inductive methods, because incremental online learning with data updates the 

knowledge in model [120].

The FNN techniques are comparatively new since 2000s; thus, a very few studies are 

performed so far. For tool wear estimation, researchers paid more attentions rather to 

realize the advantage of FNN techniques over both NN and fuzzy logics (FL). With 

processing force signals, concluded that the tool wear prediction accuracy is almost the 

same by these three classifiers. However, FNN perform better, while NNs are more time-

consuming model with the training duration and FL system models require some degree 

of skill and expert knowledge. Also studied comparison between NN, FL, and FNN 

classifiers for tool wear prediction with radial cutting force. They concluded that FNN 

can estimate better results
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than the other two techniques, but argued that the Kohonen’s SOM and FL could be applied

for shop floors due to an advantage of less processing time. With vibration signals, [112]

compared these three techniques, and concluded that FNN technique is the best in accuracy(
R2 = 99.2%

)
, followed by NN

(
R2 = 98.5%

)
, while FL is the least

(
R2 = 73.7%

)
.

In summary, although the average tool wear and the error prediction accuracy offered 

by NNs is highly acceptable, the training duration was found to be higher. Due to this, 

practical application of NNs in production floors i s  a  b i t d  i fficult. T h e p r ocessing time 

with fuzzy logic system is lower. However, practical use of FL system needs expertise of 

the operator to analyze and correlate the wear and the input signals. Neuro-fuzzy (FNN) 

techniques proved to be more effective due to their better or at least the same wear 

prediction ability by avoiding the burdens of less processing time and expertise. A 

drawback is that the calibrated model in FNN techniques can predict tool wear only for 

the specific cutting parameters for which it is trained. So, if the parameters are 

modified, the model has to be retrained. Though FNN techniques are suggested to be 

more viable, only a few researches are done [120]. Morever, they are only based on 

cutting forces, thus not that practical in the factory floors. However, a recent effort by 

this author in [81] suggest that, due to close prediction accuracy, the force data are 

replaceable with power data, which can be received from the spindle motor directly from 

the outside of the machine tools. Thus, FNN approaches should be further tested and 

confirmed for such viable signal options, like spindle power, AE, vibration, or insitu 

wear image signals in order to implement in unmanned or semi-automatic production 

floors [120].

4.2.4 Genetic algorithm-based fault diagnosis

GA created by John Holland in the 1970s is an evolutionary algorithm which is part of 

the field of artificial intelligence. A genetic algorithm (GA) is a method for solving both 

constrained and unconstrained optimization problems based on a natural selection process 

that mimics biological evolution. The algorithm repeatedly modifies a population of 

individual solutions. At each step, the genetic algorithm randomly selects individuals 

from the current population and uses them as parents to produce the children for the 

next gener-ation. Over successive generations, the population “evolves” towards an 

optimal solution [130].

As originally proposed, a simple GA mainly consists of three processes: selection, ge-

netic operation and replacement. The population composed of a group of chromosomes,
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which were the candidates for the solution. The fitness values of all chromosomes were 

evaluated by an objective function (performance criteria or a system’s behaviour) in a 

decoded form (phenotype). A particular group of parents was selected from the 

population for generating offspring on the basis of the defined genetic operations of 

crossover and mutation[130].

The fitness of all offsprings was then evaluated using the same criterion. The 

chromosomes in the current population were then replaced by their offspring on the basis 

of a certain replacement strategy. Such a GA cycle was repeated until the termination 

criterion was reached. Using ANNs utilised a simple problem of a roller with health 

monitoring to illustrate the effectiveness of GA in AE feature selection for fault 

classification. It re-vealed that utilising Gas to select an optimal feature set for a 

classification application of ANNs was a very powerful technique. Ming applies the AE 

technique for bearing condition monitoring and fault diagnosis. Scales for continuous 

wavelet transform, wavelet-based waveform parameter selection and optimisation on the 

basis of genetic algorithm were the proposed selection methods.

The AE was monitored by utilising a data acquisition system during the process of 

conducting the mechanical tests on several materials. Two of the sensors were positioned 

directly on the specimen. AE signals were thought to be pattern vectors described by a 

number of writers. In this chapter, “model” data sets were generated to become closer 

to AE signals that were recorded during the tests. This chapter presented and validated a 

genetic algorithm based approach to cluster the AE signals. Its superiority over the k-

means algorithm was highlighted by the study of different “model” data sets. The genetic 

strategy can be characterized by a high stability and a high performance especially to 

cluster data sets consisting of a minority class, a cluster with signals of extreme features 

or a set of clusters with very different sizes [130].

4.2.5 Support vector machine

SVM is a classifier which classifies the input data into one of two possible classes. Sun 

[101] considered manufacturing losses due to under-prediction and over prediction of tool 

wear and utilized SVM to carry out tool condition identification. The developed SVM 

approach which utilized the effective feature set extracted from AE signals as inputs and 

fivefold cross-validation for parameter tuning could reliably identify the tool flank wear 

and reduce the overdue prediction of worn tool condition and its relative losses. Yiqiu 

used
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support vector machine with a genetic algorithm along with surface texture analysis to pre-

dict the tool wear. The SVM with genetic algorithm (SVMG)-based predictive model was 

constructed by learning the correlation between extracted texture features and actual tool 

wear. It was found that SVMG implemented the principle of structural risk minimization 

instead of experimental risk minimization, and this has excellent generalization ability in 

the situation of small sample. The SVMG presented a good estimation error when the train-

ing data set was reduced and a greater capability of generalization when compared with the 

ANN [101]. It is evident from the above discussions that failure detection and flank wear 

monitoring is very crucial in order to achieve production targets in today’s demanding and 

competitive market scenario. In the research discussed, the signal acquisition and signal 

processing have been carried out separately. Although the field of sensorics is very old 

and research in the direction of efficient and reliable sensor developments is ever-growing, 

there still exists a need to develop sensors or fusion of sensors which are capable to carry 

out both signal acquisition and signal processing and show the results online or, in other 

words, smart sensors. For a critical application like flank wear monitoring, if smart sensors 

can be utilized, the tool change can be done over a shorter time. Future trends of sensors 

and actuators and their technologies were discussed emphasizing the fast growing tech-

nologies of 1990s like microsystems, smart materials, and integrated circuit technologies. 

It developed a smart tool based on the combination of advanced coating techniques with an 

efficient sensor and micro-electromechanical systems (MEMS) technology which enabled 

online control of the cutting conditions measured directly at the cutting edges and wear 

detection. The smart sensor was tested for various cutting conditions, and very satisfactory 

results were obtained. Ulrich [138] also emphasized the need for development of 

multifunctional tool coatings in order to optimize tribological applications like tool wear 

detection. Trejo-Hernandez [139] developed a fused smart sensor based on field 

programmable gate array (FPGA) for the quantitative estimation of flank wear area in 

inserts for CNC turning. The vibration signals obtained from a three-axial accelerometer 

and feed motor current signals measured by a current sensor were fused together and 

analyzed using FPGA-based hardware signal processing unit. The experimental results 

confirmed that this approach made it possible to obtain three times better accuracy in 

flank wear area estimation when compared with the accuracy obtained from processing 

both the signals separately. Des-forges [101] proposed a design methodology for smart 

actuator service for machine tool control and monitoring. The proposed smart actuators 

enable functions of monitoring, diagnosing, and adapting to be carried out and can 

accommodate the indirect type of flank wear monitoring technique.
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  Although the smart drive design methodology seems promis-ing in the field of 

smart sensing and overall monitoring of machine tools, it has been on the virtual lathe 

only and needs to be tested in an actual industry environment.

4.2.6 Fuzzy logic classifier

   Fuzzy modeling has the capability to model complex system behavior in such a 

qualitative way that the model is more effective and versatile in capturing the behavior of 

ill-defined systems with fuzziness or a fully defined system with realistic approximation []

[66]. When compared with neural networks, fuzzy systems can directly encode structured 

knowledge in a numerical framework and can estimate the functions of systems with 

even a partial system behavior description as described by Scheffer [101].

It carried out force measurement to compare neural network, fuzzy logic, and neuro-

fuzzy classifiers b ased o n a ccuracy o f t he r esults a s w ell a s p ractical u sability. T he feed 

forward back propagation neural networks, a fuzzy decision support system, and a neural 

network-based fuzzy inference system were used. All three artificial intelligence methods 

were able to estimate tool wear with almost the same accuracy, but the fuzzy logic approach 

was a bit difficult for practical use. This is due to the fact that the operator needs to ana-

lyze the dependence of tool wear on the cutting force while this was not the case for the 

other two, but the training time was a bit high in the case of neural network approach. It 

also followed this approach and carried out experiments to compare neural network, fuzzy 

logic, and neurofuzzy classifiers by monitoring the radial force to predict tool w ear. They 

used self-organizing maps for the neural network approach, triangular fuzzy membership 

for the fuzzy logic approach, and triangular fuzzy membership along with back propaga-

tion networks for the neurofuzzy technique. The fuzzy logic approach helped in generating 

linguistic rules, and among the three, neurofuzzy techniques proved to be more effective.

Bojja [140] developed a neural network-based proportional integral derivative (PID) 

controller and fuzzy logic-based PID controller and compared them with a PI controller 

and observed that the neural network and fuzzy logic controllers were superior. Chen [105] 

used fuzzy vertical clustering to carry out feature extraction from the force and vibration 

signals. The proposed method can extract information from a large number of objective 

characteristics for effective feature without expertise. Lan proposed a parameter 

optimization approach using the fuzzy Taguchi deduction optimization method. The 

proposed method can satisfactorily carry out the parameter optimization and improve tool 

wear performance.
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 Ren [101, 105] proposed a TSK fuzzy model for tool wear condition monitoring using 

force signals. The proposed model was effective for tool wear monitoring, but such 

models still lack the ability to estimate the error of approximation. The decision making 

in fuzzy system is fast due to its simplicity, but it suffers from the difficulties in selecting 

suitable membership functions for the target system.

4.3 Blind source separation methods (BSS)

Blind Source Separation (BSS) emerged in the 90s as a powerful signal processing tool for 

de-mixing audio sources from recordings, e.g., see [141]. BSS is often described using the 

cocktail party problem, where the basic objective is to identify individual speakers (sources) 

from a simultaneous recording (together called mixing) of multiple speakers. In this signal 

separation problem, unknown individual signals and contributions in the resulting 

mixtures are defined as the sources and mixing matrix, respectively. The problem is called 

separation if all the sources are identified simultaneously, or called extraction if only a 

subset of sources are sequentially separated. In their work, demonstrated the use of BSS 

in structural dynamics, however without explicitly considering the connection between 

the modal expansion theorem and the BSS models used in OMA. In the following papers 

[142], the mathematical equivalence with the problem of structural dynamics, namely 

modal superposition using normal modes for lightly damped systems, was established. In 

this relation-ship, the sources are nothing but the modal responses and the mixing matrix 

contains the amplitudes, or the arbitrarily scaled mode shapes (it is well-known fact that 

only un-scaled mode shapes can be obtained in OMA) of the system. Even though scaling 

and permutation ambiguities exist in the resulting sources, it can be circumvented 

using, say an ordering scheme based on the frequencies of hidden sources. In OMA, a 

simple ordering according to natural frequencies is deemed sufficient. The mathematical 

analogy (i.e., measured response equals the mixing matrix times the source components; 

physical response equals the modal matrix times the modal responses) only provides a 

necessary condition for application of BSS to OMA; the sufficient condition requires a 

relationship to exist between the identified sources and modal responses, for example the 

correlation structure of amplitude modulated sinusoids [143, 141]. Recently [144] showed 

how least action principles can be used to provide physical insights into the mechanism 

of BSS within the context of modal expansion theorem.
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4.3.1 Theory of Blind Sources Separation (BSS)

A detailed description of fundamental principles of BSS can be found in the following 

references [141] presented an excellent summary of various BSS methods with special 

emphasis on statistics-based source separation and showed the intra-relationship 

amongst various methods using information theory.

BSS models in the literature fall into two classes depending on the mixing structure for 

the sources:

- static or instantaneous;

- dynamic or convolutive. BSS for modal identification generally employ discrete linear

static mixing models (convolutive mixtures, which are less common, are described

later).

For example, consider m discrete time-domain measurements (x) comprising instantaneous

mixtures of n underlying sources (s) as follows [141]:

x1 (k) = a11s1 (k) + a12s2 (k) + ...+ a1nsn (k)

x2 (k) = a21s1 (k) + a22s2 (k) + ...+ a2nsn (k)

.

.

.

xm (k) = am1s1 (k) + am2s2 (k) + ...+ amnsn (k)


[141] (4.1)

Where aij are the un-known real or complex valued mixing coefficients of the mixing matrix

A BSS starts with the problem where both s and A are unknown (i.e., blind); hence, they are

determined based on x exclusively. The following reference [141] elegantly summarizes the

basic mathematical formulation of blind identification. First, it is important to recognize

that solving the algebraic equations for sj using least-squares by assuming an arbitrary

matrix A′ (containing a′ij elements) with the same column rank of the original matrix A (aij

elements) is meaningless. This is because such a process will yield little resemblance to sj in

both the shape and statistical properties. The authors then describe an equivalence relation

R defined as a set of ordered pairs of doublets (A,s) and (A′, s′) such that they are equivalent

to each other to the extent that they differ only by a scalar multiplier and/or a permutation

transformation. Such an equivalence preserves not only the shape of the sources, but also

the statistical properties of s and the algebraic properties of A Readers are referred to this
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reference [141] for a more in-depth discussion on the mathematical foundations of blind

identification.
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Physique mixing Inverse problem (identification) 
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(Mixing matrix) 
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(Un-Mixing matrix) 

X 

Output 

S 

(Estimated  

Sources) 

Figure 4.3: Illustration of BSS. [141]

Fundamental to solving (Eq4.1) is the assumption regarding the statistical nature of the 

sources and one of the most popular tools, called independent component analysis (ICA)

[145], assumes that the sources are statistically independent. Restrictions other than 

independence on the nature of the sources such as spatially uncorrelated sources (but, 

temporally correlated) have found widespread use in dealing with time-domain vibration 

data and modal identification problems. These methods have commonly been referred to 

in the literature as second-order methods [146].
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Figure 3.4: BSS flowchart. [141]
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BSS problem is best described using the schematic shown in (Figure8.3). By utilizing 

either statistical, temporal and/or structural information of the signal, an un-mixing 

matrix W and the sources can be estimated. For the case of over-determined mixtures (i.e. m 

> n ), the problem admits least-squa res type solution, however the matrix A−1 = W is 

unknown. The components of the un-mixing matrix W can be estimated, for example using 

ICA, by maximizing the independence (as quantified by measures of non-Gaussianity such 

as kur-tosis and information-theoretic criteria) of the resulting sources. In second order 

methods, the components of the mixing matrix are determined using matrix 

diagonalization methods, for example, joint approximate diagonalization (JAD) [146].

When m < n (under-determined mixtures), estimating W cannot be undertaken in the 

separation space (i.e. A−1 does not exist), but rather both A and s have to be estimated 

directly in the mixing space [147]. This estimation process typically consists of estimating 

A first, followed by estimating s , where concepts such as sparsity or norm solution [141] 

and tensor based decomposition under multiple time lags [148] have been used effectively.

A flowchart describing various modeling and solution approaches in BSS i s shown in 

(Figure8.4). It will be shown later that both of these methods can be classified into two sub-

classes – over determined (OD) and underdetermined (UD) – depending on the availability 

of sensor measurements compared to the number of target sources. These methods are pri-

marily based on the statistics (either higher order or second order statistical information), 

and data structure (i.e., sparsity or higher dimensional form) of the signal.

Instantaneous mixing

The instantaneous mixing model is the most rudimentary model where the sources are 

assumed to arrive instantaneously at the sensors with differing intensities and is expressed 

in (Eq4.2) as:

x (k) = As (k) + b (k)[149] (4.2)

where b denotes the measurement noise vector. Comparing (Eq4.2) with the problem 

of modal superposition, it was shown for linear lightly damped systems that operational 

modal analysis can be cast using a static mixing model where the mixing matrix is 

equivalent to the normal mode shape vectors and the sources are the modal responses. 

Consider a linear, classically damped and lumped-mass n degrees-of-freedom (DOF) 

dynamic system, subjected to a wide-band random input force,f (t):

Mẍ (t) +Cẋ (t) +Kx (t) = F (t)[141] (4.3)
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where, x (t) is a vector of displacement coordinates at the DOF. The solution to (Eq4.3) for 

the case of broad-band F (t) can be written in terms of an expansion of vibration modes:

x = Ψ  Q[141] (4.4)

where x ∈ Rn×N the trajectory matrix is composed of the sampled components of x at m 

measurement l ocations, and Q ∈  Rn×N i s a matrix of t he corresponding n modal coordinates 

and W ,  t he modal t ransformation matrix. ( Eq4.4) i s analogous t o classical i nstantaneous 

mixing model as shown in (Eq8.2) and provides the basic equivalence model for using BSS 

as a modal identification tool. Under certain special circumstances, the modal coordinates 

can be regarded as the most independent sources (termed as virtual sources) [142]. The 

modal coordinates Q can be regarded as a special case of the general sources s with time 

structure, and W the mixing matrix A. It is important to note that when the spectral 

contents of the sources are nearly disjoint as is the case with lightly damped and well 

separated modes, the sources are nearly uncorrelated. Hence, both the methods based on 

independence as well as second-order correlation measures have been demonstrated to be 

successful for OMA. Once the sources and the mixing matrix are recovered using BSS tools 

(described later), the natural frequencies can be identified either through observation of the 

cycles in the time series, or using the Fourier spectrum, and the damping can be estimated 

using the logarithmic decrement method, or the half-power bandwidth method provided 

the recovered sources are mono-component [141].

When sufficient number of vibration measurements are available, the modal 

identification problem becomes an over determined static mixing problem. On the other 

hand, the underdetermined static mixing model can be used to solve modal identification 

when a lim-ited number of sensor measurements are used. Various BSS solution 

approaches for static mixing addressing over determined and underdetermined modal 

identification problems will be discussed later [141].

Convolutive mixing

Static instantaneous mixture models are not capable of modeling time delays, i.e. if the 

sources (s) do not arrive simultaneously or the mixing matrix coefficients (i.e. A ) are time-

varying. For a majority of OMA problems, this issue has been less of a concern since the 

modal superposition model widely used and accepted in the field i s  a n  e q uivalent static 

mixture model. However, during the last decade, the validity of static mixtures model has 

been questioned in dealing with data acquired using wireless sensors, where data from
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multiple locations do not arrive simultaneously [150]. To separate sources mixed in a 

convolutive fashion, a technique called convolutive BSS was developed by treating signal 

mixing as a convolution allowing time delays to be accounted for in the modeling. For 

solution purposes, this model is then converted into an equivalent static mixing problem 

in a transformed domain using time-frequency transformation [151, 152]. A convolutive 

model can be of two types: echoic or anechoic. An echoic convolutive mixture can be 

expressed as:

xi (t) =
n∑
j=1


∞∫
∞

aij (τ)sj (t − τ)dτ

[153] (4.5)

Table 4.1: Linear operator and mixing parameters of different types of BSS mixing. [154]

Mixing Linear operation Mathematical model Mixing coefficient

Instantaneous Matrix multiplication x (t) = As (t) akjδ (t)

Anechoic Delay x (t) = A ∗ s (t) akjδ
(
t − τkj

)
Echoic Convolution x (t) = A ∗ s (t)

L∑
l
al kjδ

(
t − τ l kj

)
where i and j are the measurement and source indices, respectively. (Eq4.5) represents a 

dynamic problem where the sources and the outputs have well defined time properties and 

the coefficients of the un-mixing system are essentially the coefficients of a deconvolution 

filter (e.g. finite impulse response (FIR) filter). From a structural dynamics standpoint, 

this means that the mixing system is characterized by a transfer function with its attendant 

dynamics. The instantaneous mixing model is a special case of the convolutive model where

the filter coefficients are constrained to be proportional to the delta function; aij (t) = aij δ 

(t). Compared to the echoic model, an anechoic mixture model assumes a linear 

combination of time-shifted and scaled versions of the sources, without permitting 

multiple occurrences of the same source in the mixture. These models are equivalent to 

convolutive models in

that the filter coefficients are constrained to the form, aij (t) = aijδ
(
t − τij

)
[151] resulting in

the equation:

xi (t) =
n∑
j=1

aijsij
(
t − τij

)
[141] (4.6)

Unlike the static mixtures model, this model now allows for the non-concurrent arrival of

the source signals, as modeled using the shifted delay terms. The anechoic model provides
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more flexibility in terms of modeling time delays, e .g. time-synchronization (TS) errors in 

wireless sensors [155], compared to an instantaneous model.

It is relatively straight-forward to convert an anechoic model to an instantaneous form. 

Fourier transformation on both sides of (Eq4.6) yields:

Xi (ω) =
n∑
j=1

aije
−iωτijSj (ω)⇔ X (ω) = A (ω)S (ω)[141] (4.7)

which is an instantaneous mixing model in the frequency domain. Similar to 

instantaneous mixing, convolutive mixing also has two types: underdetermined and 

overdeter-mined, depending on the number of available sensors. Studies have shown 

that modal frequencies and damping ratios are not influenced by random time delays in 

the measurements; however, the quality of structural modeshapes obtained using such 

data can be affected [156]. The issue of synchronization errors has been investigated in the 

field of OMA. For example, Nagayama et al. proposed a resampling technique using 

lowpass filtering and curve fitting to minimize TS error. In [157], the authors related the 

presence of TS er-rors on modeshape reconstruction and showed that the resulting errors 

are proportional to the time delays and modal frequencies. A modified approach using 

complex modeshapes was proposed [158] to reduce TS error in modal identification.

Specific to BSS, in [159], the authors formulated the problem of time-delays present in 

non-concurrent measurements and showed that modal superposition under TS errors is 

analogous to an anechoic mixing problem. In this study, the timedomain signals were 

converted into an instantaneous mixing model in the frequency domain and then complex 

ICA was employed to undertake source separation. The resulting complex sources in the 

frequency domain were then transformed back into the time-domain through inverse 

Fourier transform. With recent advances in wireless technology, the TS errors in vibration 

measure-ments have been significantly reduced for low sample rates, which means that 

the instantaneous mixing model is generally satisfactory for most applications in OMA. A 

summary of various linear operators and mixing matrix components specific to the 

different types of BSS models is presented in (Table8.1).

4.3.2 Current challenges and future research directions

As evidenced from the review of BSS methods applied to OMA, it is clear that there is 

significant interest in utilizing BSS for a  variety of structural and mechanical engineering 

applications. The most appealing aspect of BSS based algorithms stems from the relatively
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simple underlying mathematical structure, which can be manipulated to yield results in a

wide range of situations related to OMA. While it is true that over hundred articles have

appeared specifically looking into various aspects and applications of OMA, there are areas

in which their application is yet to mature. Here is a short summary of the gaps and the

proposed research directions where BSS methods can be used to further the field and our

understanding of OMA.

- In the current literature, nearly all BSS-based modal identification methods are 

operated offline, or in a batch-mode. While this approach works adequately 

standard OMA applications, it is not suitable for control applications. There is a 

considerable amount of literature in the area of blind signal extraction, which can 

be leveraged to undertake online OMA. This would also enable automating the 

process of modal parameter identification;

- While the main advantage of a wide class of BSS tools have relatively few tunable 

parameters (which is the major advantage), tensor decomposition based methods 

involve the user selection of tunable parameters (i.e., rank order selection and lag 

parameters), whose choice is not obvious and depends on the data and problem at 

hand. A formal process to tune such control parameters and minimize user 

intervention still need to be studied and developed;

- While the work on overdetermined mixtures has matured considerably, the same 

cannot be said regarding underdetermined problems. Sparse BSS methods including 

tensor decomposition methods and Hankel matrix-based methods are only potential 

approaches and there is considerable potential to develop new and more efficient 

methods to undertake underdetermined BSS. Methods based on Hankel matrices 

have also been shown to perform relatively better compared to PARAFAC;

- The current suite of BSS algorithms are heavily focused on linear normal mode 

identification and there is virtually no literature on nonlinear mode identification. 

This could provide a valuable opportunity for furthering the field of BSS applied to 

structural dynamics;

- Latency issues related to decentralized wireless sensors require careful consideration 

through convolutive BSS methods, especially for high data rate applications where 

such issues may govern the quality of identified results;
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- The discrimination of physical and numerical modes which arise in many BSS algo-

rithms (and in sub-space methods such as SSI), still remains unsolved. Moreover,

very little work related to the effect of measurement noise on OMA results has been

undertaken, especially when the measurement noise does not satisfy the statistical

properties envisioned in standard BSS algorithms being widely used [141].

8.4 Mahalanobis–Taguchi system (MTS)

8.4.1 Mahalanobis Distance (MD)

Mahalanobis distance (MD) is a measure of distance, which is based on correlations between

variables and the different patterns that can be identified and analyzed in respect to the

reference population. This reference population is identified as Mahalanobis space (MS).

On the other hand, the measure of distance is commonly identified as Mahalanobis scale.

It aids the discriminant analysis approach in assessing the level of abnormality of datasets

against MS. In addition, MD is different from Euclidean distance (ED), in a sense that the

latter does not take correlations among variables of the data points into account. MD is

defined as in (Eq8.8) [160]:

MDj =D2
j =

1
k
ZTijA

−1Zij[160] (4.8)

with Zij =
xij−mi
si

Based on the equation(Eq4.8),k is the total number of variables, i represents the num-

bers of variables (i = 1,2, ..., k); j represent the number of samples (j = 1,2, ...,n); Zij is the

standardized vector of the normalized characteristics of xij . On the other hand, xij is the

value of the ith characteristic in the jth observation; mi represents the mean of the ith char-

acteristic; si is the standard deviation of the ith characteristics; T represents the transpose

of the vector. Last but not least, A−1 is the inversion of the correlation matrix [160].

MD has been well deployed into a broad range of applications [161]. This is mainly

because of its effectiveness in tracking intervariable correlations of data. Furthermore, the

Mahalanobis scale offers a statistical measure in order to distinguish between unknown

sample conditions and known sample conditions. It also provides information in order to

make predictions for future concerns.

In MTS, Taguchi extended MD methodology with his “robust engineering” concepts.

With these concepts, his methodology has become an efficient and effective strategy for the
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prediction and forecasting in multidimensional system. Moreover, compared to all pattern 

recognition systems, an efficient system would require less computational time while 

maintaining the same or better level of effectiveness. Therefore, the reduction in system 

variables has become a prime concern. As for optimization, orthogonal array (OA) was 

introduced as an approach utilized for feature selection mechanism, which is coupled with 

signal to noise ratio (SNR). SNR is used as an assessment metric for a significant 

extraction of feature, in order to achieve the objectives. Lastly, MTS methodology involves 

four fundamental stages [160],

• Stage 1: Construction of a measurement scale In order to construct a measurement 

scale, a homogeneous dataset representing normal observations needs to be collected. 

The collection of these data will build a reference group, which is identified as 

“normal group”. This is used as a base or reference point of the scale. 

Furthermore, the collected normal datasets need to be standardized in order to 

obtain a dimensionless unit vector. This is followed by MD computation using 

equation (1). Practically, the MD used for an unknown data is interpreted as the 

nearness to the mean of the normal group. In terms of countercheck, it is 

necessary that the average value for the MDs of the normal group is always close to 

unity. Therefore, they are identified as the unit space or Mahalanobis space (MS);

• Stage 2: Assessment of measurement scalesIn order to evaluate measurement scales, 

observations outside of MS or abnormal datasets will be used. Besides, the same 

mathematical calculation is repeated in order to produce the same goal (MD value) 

using abnormal sample data. However, the abnormal data is normalized based on the 

mean and the standard deviation of the normal group. Additionally, the inverse 

correlation matrix of the normal data will also be used during abnormal MD 

computations. It should also be noted that a good measurement scale demonstrates 

a significant discriminant ability of MDs used to distinguish between normal and 

abnormal observations;

• Stage 3: Identify significant variables In the third stage of MTS methodology, the 

system is optimized. This step is for the extraction and selection of useful features 

as important variables. Furthermore, this is where the OA and SNR approaches are 

applied. Moreover, the variables are assigned to two levels of orthogonal array exper-

imental run. In this experimental run, Level 1 is labelled as ‘used’, while Level 2 is 

labelled as ‘not used’. Following that, the computation of MD for each experiment
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needs to be repeated for all the related variables on each abnormal sample. Then the

MD value is again tabulated under the same experiment format. Therefore, the SNR

for each experiment is then computed.

In MTS, only two types of SNR are used, which consist of the larger SNR, and the SNR

with better dynamic. However, dynamic SNR is always recommended. Meanwhile,

in the context of MTS, SNR is used as a metric in order to assess the significance of

the contribution given by each variable in the system. This contribution is for the

discriminant ability to distinguish between the normal and abnormal observations.

(Eq8.9) shows the ratio of the dynamic SNR:

SN = 10log

 1
r

(
Sβ −Ve

)
Ve


2

[160] (4.9)

Based on the equation (Eq4.9), r represents the sum of squares due to input signal; Sβ 

is the sum of squares due to slope, and Ve represents the error variance. For further 

details on the formulation [162]. For each variable xi , SNR1 represents the average 

SNR of the 2nd level of xi , while SNR2 represents the average SNR of the 2nd level of 

xi throughout the vertical columns of OA. Therefore, the positive gains from (Eq4.10) 

constitute useful variables, while the negative gains from the same equation constitute 

otherwise:

Gain = SNR1 - SNR2[162] (4.10)

• Stage 4: Future deployment of MTS, with significant variables The optimized 

system should be re-evaluated using abnormal samples to validate the effectiveness 

of the system, which is done through an assessment on the discriminant power. 

Once confirmed, the optimized system is used for future applications of diagnosis, 

classification, or forecasting purposes [160].

4.4.2 Review on Current MTS Literatures

The reduced pattern recognition model, which is obtained via MTS, is considered robust. 

This is because the S/N ratio identifies the useful variables that are least sensitive to noise 

or variations. Furthermore, the variables that are cost efficient are also identified, as they
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Figure 4.5: Mechanism of MTS. [12]

constitute the smaller number of attributes for the same of higher level of performance’s 

effectiveness. These reasons have drawn tremendous amount of interests from various 

scholars around the globe across different continents (majority in Asian region) to use MTS. 

This method is useful, in terms of solving variety of pattern recognition problems, 

which are based on the number of papers produced regarding MTS studies (Figure4.6); 

(Figure4.7)[160].

4.4.3 Conventional MTS application

Japan is the pioneering country in deploying MTS methodology to its vast industrial 

spectrum for more than 20 years. However, the objective of this paper is to generally 

review the studies regarding conventional MTS under various industrial case studies 

outside Japan.
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Figure 4.7: Distribution of papers on MTS studies based on country of origin. [160]

The word ‘conventional MTS’ refers to the application of MTS deployment, which merely 

involves the four fundamental stages mentioned above.

In automotive industry, conventional MTS strategy has been demonstrated by Chen and 

Phillips for Engine Control Module (ECU) software abnormal detections [163]. Further-

more, significant work performed by Cudney et al . was r  ecorded using MTS. The record 

was made in order to predict customers’ satisfaction rating when driving a new vehicle. It is 

also for the prediction of the warranty cost of car components [164].

In electronics industry, Su and Hsio attempted to use MTS for the analysis on the radio 

frequency (RF)’s functional inspection process of dual band mobile phone manufacturing 

[165]. Meanwhile, Yang and Cheng used MTS in order to optimize the measurement of stud 

bump height area [166]. Moreover, Riho et al. deployed MTS in order to investigate the root 

cause of failure in CCD production process. This investigation is for the improvement of 

production rate.

As for the maintenance of machinery health screening, significant case studies have been
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conducted in order to diagnose any faults within the screening. The maintenance is also for 

the assessment on the health of bearings [167] and the prognosis of cooling fans and motors 

in rotating machinery [168].

In the electrical power industry, the study on the development of the remaining duration 

of service provided by the diagnostic technology of phenol insulators for circuit breakers 

has drawn Miki et al. to utilize the MTS approach in their research [169]. Several attempts 

have been recorded during the study on circuit breakers using MTS for the same industry 

from [170], which took place in the following years.

In the finance sector, [171] attempted to predict the status of the financial crisis occurred 

in Taiwan’s electronics companies. Meanwhile [160], conducted similar studies that took 

place in Malaysia. On the other hand, demonstrated the use of MTS in creating the criteria 

of decisions made for financial creditors.

In addition, pattern recognition is considered as important in the security sector. The 

subjects that are mostly involved in pattern recognition are (among others) the face [160], 

thumb and finger print, retina (eye), and v oices. Pattern recognition with the involvement 

of face, which is through MTS approach, was first p roposed b y [ 160]. M itsuyoshi e t al. 

further analyzed face recognition under a more complex condition, which was created by 

adding noise (variation due to different lighting luminance) in the given condition [160].

The application of conventional MTS could also be seen in aerospace, SMT , 

environmental corrosion, software industry [172], medical science [173], ICT 

management, aviation industry, building construction, manufacturing process, project 

management, and aquaculture [160].

A summary on the application of MTS in industrial sector as the manufacturing sector 

(i.e., automotive, electronics, electrical appliances, software, manufacturing processes), is 

shown in the figure below. On the other hand, service industry (i.e., medical and 

healthcare, finance, corporate management, ICT), as well as machinery and equipment 

health surveillance sector had higher demands of MTS in order to improve the respective 

system performances [160].

4.5 Prognostic and health management PHM for TCM

PHM is a contemporary maintenance strategy that can help equipment sellers, integra-

tor or operators to dynamically maintain their critical engineering assets[28]. In view of 

its importance in automation, modernization, sustainability, cost reduction and control of
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manufacturing processes, extensive research has been carried out in the area of Tool 

Condition monitoring (TCM) It is a new engineering approach that allows a real-time 

health assessment of the state of a tool and its future state (Figure8.8) the acronym PHM 

mainly comprises two elements.

Événement  - date

1

Preprocessing
- Filtering
- Features extraction
- Selection

Prognostic
- Prediction
- Health Assessment
- RUL estimation

Decision

DATA 
Acquisition

& 
processing

time

Raw data

Features extraction

Figure 4.8: PHM cycle.

1- Prognosis refers to a prediction, forecast and extrapolation process by modeling the

progression of faults, based on the assessment of the current state and future

operating conditions;

2- Health management refers to a decision-making capacity to intelligently carry out

maintenance and logistics activities based on diagnostic / prognostic information.

It is described as the combination of 7 modules [28]: data acquisition, manipulation, 

condition assessment, diagnostic, prognostics, decision making and human-machine 

interface (HMI) (Figure4.8). The 7 modules can be divided into three main phases 1) 

observe, 2) analyze and 3) act. In the analysis phase, prognosis is considered a key task 

with future capabilities, which should be performed effectively for successful decision 

support in order to recommend actions for maintenance.
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8.6 Methodology

The proposed MTS based approach used Mahalanobis distance for tool wear condition

monitoring in order to estimate the RUl s into different working cycle. The scheme also uti-

lizes the values progression of the MD over machining cycle in order to facilitate prognosis

of time to failure for cutting tool (Figure8.9). In (Figure8.9), the proposed mathematical

• Acceleration
• Acoustics
• Force

PREPROCESSING 

• CWT (Decomposition)
• SCA  (separation )

PROCESSING 

• MTS

• Regression

PROGNOSTICS

• Health assessment

• RUL estimation

DECISION MAKING

• Planning

• Scheduling

RAW SIGNALS 

Figure 4.9: Framework of the proposed method.

model of four steps to be followed in the MCT process are: The data acquisition step is to 

collect data related to the health of the system; Data preprocessing consists of analyzing 

the acquired signals, including centering and filtering, in order to remove the offset in the 

measured signals. The proposed approach used the progression of the MD values over time 

in order to facilitate the prognostics of time to failure for cutting tool. The details of the 

proposed approach are presented in the rest of the section.

4.7 Mahalanobis Taguchi System for RUL estimation

MTS uses Mahalannobis Distance to discriminate areas and identifies the pattern of data 

from multiple dimension data. Firstly, it introduces only one measurement scale in any 

multi-dimensional space by using the Mahalannobis Distance in any subset of the selected 

space as uniform one and calculating the distance from the norm against the distance of 

other members. Secondly, it uses the SN ratio to evaluate the quality of measurement. 

Finally, it optimizes all of the information to improve the SN ratio with an orthogonal 

array. MTS begin with data collection on normal conditions. Then, the MD is calculated 

using independent coefficients series obtained by SCA and CWT. The mathematical 

model pro-posed based on combining (CWT) and (SCA) for computing the MTS. In this 

context the coefficients series obtained by CWT considered as a mixture of source derived 

from the observed signal, and then MTS used to compute the health indicator between 

the good and
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degraded conditions shown in (Figure8.9) the variables collected on each element to 
determine its "healthiness" as Vi , i = 1,2, ...,p. The observation of the ith variable on the jth 

item i = 1,2, ...,p,j = 1,2, ...,m . Thus, the p × 1 data vectors for the normal group are 
designated vj , j = 1,2, ...,m [174]

Each individual variable in each data vector is standardized by subtracting the mean 

of the variable and dividing by its standard deviation, with both statistics calculated using 

data on the variable in the normal group. We thus obtain the standardized values.

Zij =

(
Vij − V̄i

)
Si

, i = 1,2, ...,p, j = 1,2, ...,m[160] (4.11)

Where

V̄i =
m∑
j=1

VIJ
m

and

Si =

√
m∑
j=1

(Vij−V̄i)
2

m−1

Next, the values of the MDs, MDj, j = 1,2, ...,m, are calculated for the normal items using

−10log

(1
t

) m+t∑
j=m+1

(
1

MDj

)2
[160] (4.12)

Where

zTJ =
[
z1j , z2j , ..., zpj

]
and S is the sample correlation matrix calculated as:

S =
1

m− 1

m∑
j=1

zjz
T
J [160] (4.13)

The MDj values in shown in (Eq8.12) have an average value of unity. For this reason, a uni-

tary space used for referenced the Mahalanobis distance. In step 2, the selected abnormal

items and not incorporated the uncertainty into the MTS showing the status of each item

utilized for determining the MTS scale measurement. In step 3, OAs and S
N ratios are used

for the identification of the most useful variables set. An OA is a matrix design that con-

tains the levels of some factors in the experiment runs for investigating the variables effects

on the interest response. Each experiment factor assigned to a column of the OA, and the

matrix rows correspond to the experimental runs. The MTS has p factors in the experiment.

The level of a factor signifies the inclusion or exclusion of a variable in the MTS analysis.

The p factors are assigned to the first p columns of the OA, with the other columns ignored.

Thus the OA selected must initially have at least p columns. The MD values are then used
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N
S
N

N

N

to calculate the value of a S ratio, which becomes the response for the run. Different 

ratios are utilized in Taguchi’s analysis of experiments designed. These are defined in such 

a way that larger S ratio values are preferred. One option mentioned in the MTS is to use 

Taguchi’s larger-is-better S ratio (Eq4.12)
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Figure 4.10: Illustration of remaining useful life. [48]

   PHM aims to assess the state of the current physical system and predict its RUL before 

the failure. The objective is to maximize the operational safety and availability of the 

Cutting tool, and better health management. An illustration of a RUL is given in 

(Figure4.10).

Finally the Health indicator (HI) is determined by this equation:

HI = −10log

(1
t

) m+t∑
j=m+1

(
1

MDJ

)2
[160] (4.14)

The predicted RUL can be obtained by estimating the time between the current time tc and 

the time tf related to the wear threshold. Therefore; the equation of the RUL is given by:

4.8 Results and discussion

4.8.1 Experimental setup

To evaluate the effectiveness of the proposed approach, the tool wear task prediction con-

ducted on a high-speed CNC machine tool (Figure4.11). The machining experiments were
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carried out on a Roder CNC machining center. The work piece is made of Inconel 718 which

is a hard material to be cut and whose thermal and mechanical properties are of interest

in the aeronautical field [27]. The piece used in the experiments is of square trapezoidal

AE Sensor Accelerometer 

Dynamometer 

Workpiece 

Accelerometer 

Cutter 

Figure 4.11: Experimental setup. [27]

shape with a width of 112.5mm and a high of 78 mm. The cutting tools are six in number. 

They are made of tungsten carbide, round nose and have three cutting edges. They 

operate at a speed of 10360 rpm, and with an advance of 1.555 m / min. The passes 

made are 0.125mm wide and 0.25mm deep. The data acquisition files for different 

signals (force in XYZ dimensions, acceleration in XYZ dimensions and acoustic emission) 

(Figure8.11) are in .csv format, with seven columns.

8.8.2 Health assessment and RUL estimation

The different steps involved in the proposed method are given in (Figure8.12). The 

estimation of RUL is done in two main phases, as shown in (Figure8.12) a learning phase 

and a testing phase . A cutting tool is planned for training and a new one for testing. The 

learning phase aims to extract the dominant characteristics contained in the collected 

force signals. The CWT, in particular at the seven levels, is used to break down the 

strength signals. The RMS of the actual ratio and the image coefficients for each 

frequency band are considered to be tools wear monitoring functions. These 

characteristics are then fed by SCA learning
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algorithms to establish the most appropriate data driven prognosis model (learning model) 

describing the evolution of wear on the cutting tools.

The next step is the test phase where a new cutter is taken. During this phase, the 

extracted entities are injected continuously into the model learned using MTS. The 

health indicator have been represented by the output result which is used to assess the 

current state of health and predict the RUL of cutting tools with identical previous 

operating conditions used in the offline phase. Several techniques for extracting 

parameters exist in the literature [4].

Input data for 
Training & Testing

Training data
MTS

Health assessment
 & 

RUL estimation

Testing data

Click hyperlink 
to navigate

Tool wear dataset 

Raw signals
Preprocessing

 CWT
 SCA

 Acceleration
 Force
 Acoustic-Emission Mahalanobis–Taguchi System

Figure 4.12: System framework for tool health prognostics.

     In this study, we use wavelet transforms, it is a signal analysis tool; Compared to normal 

wavelet analysis, it has special capabilities to achieve higher discrimination by analyzing 

the higher frequency ranges of a signal. The frequency domains separated by the 

wavelet can be easily selected and classified according to the characteristics of the signal 

analyzed. CWT considered a tree; the top is the original signal. The next level of the 

tree is the result of a step in the wavelet transformation. The following levels are built 

recursively by applying the wavelet transform, the low-pass and high-pass filters o f  the 

previous wavelet. Then, when the transformation process is complete, the energy in dif-

ferent frequency bands can be calculated and considered as a characteristic. In this study,

Daubechies "db4" wavelets were used to break down the cutting forces into six levels. The

different frequency bands represent the force coming from different levels of wear. In the 

signal analysis process, the CWT is used first t o d ecompose t he r aw c ut s ignal b y CWT 

and obtain the coefficients. By the CWT decomposition, the coefficients are obtained. (Fig-

ure4.13,Figure4.14) shows the coefficients extracted from the collected signals in all three 

directions force; and AE. (Figure4.15, and (Figure4.16) show the sensors measurements of 

the first and last cycle of machining for different sensors (Force, Acceleration and AE) re-

spectively. The RMS calculation and the continuous wavelet transformation of the signals 

(force, vibration and AE), represent three different regions. In the first region, we observe 

that the energy dissipation increases very quickly, which means the sudden entry of the 

tool into the material (wear). The second region represents the stability of the cutting tool,
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Figure 8.13: Energy coefficients of the force signal before separation (C3).

which implies an almost constant dissipation rate (stabilized wear) at the end of opera-

tions. Finally, the energy loss increases very quickly, the tool becomes unstable due to wear

faults resulting from the progressive contact between the tool and the material (accelerated

wear). The proposed CWT-BSS-MTS algorithm can separate the signals correctly. To com-

pare the different algorithms of the SRS according to the statistical performance criteria.

In order to verify the benefit of the CWT-BSS method, signal processing with the SRS has
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Figure 4.14: Energy coefficients for the Acoustic-Emission signal (C3).

only been performed in [48]. The signal collected in the grinding process was collected
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Figure 4.15: Sensors measurement for the force, acceleration and AE signals (First cycle).

using three sensors (vibration and force) (Figure8.17,Figure8.18). The observed signals 

obtained by computing the wavelet coefficients were selected as mixtures for the BSS 

only. The application of (CWT-SCA) source separation allows the information to condense 

in a well-determined energy coefficient in order to keep the Monotonicity, Prognosability 

and trendability; (Figure8.17) in this database indicate that the strength is the best 

performing to determine the health indicator and the RUL; In order to validate the 

robustness of this model.

4.8.3 Cutting Tool and Health Indicator

The application of MTS allows the extraction of the health indicator; the latter is the best 

approach to increase the effectiveness of tool wear monitoring. In this work, the health 

indicators of the tools (C3) rely mainly on the signals of force and vibration 

(Figure4.19,Figure4.20). The use of temporal domain features is allowed as health indicators 

for tools. The predicted and real HI for the cutter C3, is shown in (Figure4.21). It can be 

seen that the predicted HI is close to the real which is suitable for interventions before the 

occurrence of a failure.
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Figure 4.16: Sensors measurement for the force, acceleration and AE signals (Last cycle)

(C3).
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Figure 4.17: Energy coefficients evolution from force signal after separation.

8.8.4 Statistical independence

In order to confirm the validity of the proposed method CWT-SCA . The source correlation 

values of different sources obtained by CWT coefficients are shown in (Table4.2) for the 

vibrations signal in Z dimension at the cycle 160. Separated signals based on SCA are 

highly dependent for the cutter C3. The proposed CWT-SCA algorithm can separate the
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Figure 4.18: Energy coefficients evolution from vibration signal after separation.
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Figure 4.19: Health indicator obtained from the force signal after separation (C3).

source 1 source 2 source 3 source 4 source 5

Ŝ1 0,9998 0,0037 0,0242 -0,0164 -0,0058

Ŝ2 0,0442 0,9994 -0,0473 -0,0404 0,0265

Ŝ3 0,0130 -0,0237 0,9922 -0,1248 0,0970

Ŝ4 0,0032 -0,0062 -0,1048 0,9847 0,0278

Ŝ5 0,0235 -0,0177 -0,0929 -0,0250 0,9918

Table 4.2: The Correlation Values Between Sources.
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signals properly shown in (Table8.2).

4.8.5 RUL estimation

The estimated RUL obtained from MTS, real RUL and the failure threshold for the tested 

cutter C3, is shown in (Figure8.22). According to the gradually increasing trends of tool 

wear width with the development of wear severity, the tool wear processes contain three 

degradation stages, start by initial wear stage, moderate wear stage and severe wear stage. 

For the performances evaluation, to further reveal the advantage of proposed method Back 

propagation Neural Networks (BPNN) [175], LSSVM [176] are also used to predict tool 

wear. The comparison results of the proposed approach for three datasets are shown in 

(Table8.2). It is found that CWT-SCA based MTS can more accurately track the tool wear 

process than other existing methods [48]. The results between LSSVM, BPNN and our 

proposed methods indicate that our proposed approach still can achieve higher predic-
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Figure 4.20: Health indicator obtained from the acceleration signal after separation (C3).

tion accuracy. The performance evaluation of the three prediction datasets are given by:

RMSE =

√
1
N

N∑
i=1

(
ypredict − yreal

)2

The goal of this method is to analyze prediction capabilities by using CWT-SCA based 

MTS for tool wear estimation. A comparative study between some techniques in litterateurs 

on reliability performance analysis was summarized in (Table8.1). The wear evolution of 

three flutes for the cutter C1 are given in (Figure4.23). the first step is to use the data for 

selected three cutters (C1, C4 and C6) to build up a reference model which can be used

Laboratory of Green and Mechanical Development120 National Polytechnic School



Condition monitoring based on BSS

0 50 100 150 200 250 300

Cycle

0

0.02

0.04

0.06

0.08

0.1

0.12

H
ea

lth
 In

de
x

Health Indicator C3 
Regression

Figure 4.21: Tool Wear prediction from the force signal after separation (C3).

to predict tool wear for the cutter (C2,C3 and C5), the second step by using the model 

to predict tool life for another three cutters (data not used in model development) and 

check the model accuracy. The output wear values shown in (Figure8.24), (Figure8.25) 

and(Figure8.26) of the three flutes were provided (in 10-3 m m). the training cutters (C1, 

C4 and C6) were used for estimating the wear for the cutter (C2,C3 and C5). The value 

of the wear was predicted by the optimal input parameters of separation and the level of 

decomposition (L=7)and the signal from three dimension.

Method C1 C4 C6

RMSE RMSE RMSE

[175] 28.74 25.80 24.81

[176] 19.79 20.86 22.08

CWT-SCA based MTS 13.86 14.75 16.53

Table 4.3: Comparison results of eight approaches for three datasets.
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Figure 4.22: RUL evolution obtained for cutter C3.
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Figure 4.23: Wear of three flutes for the cutter C3.
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Figure 4.24: Tool Wear prediction for the cutter C1.
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Figure 4.25: Tool Wear prediction for the cutter C4.
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Figure 4.26: Tool Wear prediction for the cutter C6.

8.9 Conclusion

In this paper, a new scheme for tool wear condition monitoring has been proposed based 

on continuous wavelet transform, Sparse Components Analysis (SCA) and Mahalanobis 

Taguchi System (MTS). The method was applied starting from real data during several cuts 

of 06 CNC milling tools. For improving the computational capability, the relevant features 

from the force and acceleration signals were extracted by the CWT, particularly at the seven 

levels of the (Daubechies) wavelet. The RMS of the image coefficients for six levels was 

carried out. The extracted features are then reduced to set up energy coefficients By using 

SCA, the separated coefficients which are used as inputs in learning MTS for generating the 

model that represents the wear’s behavior. Based on the obtained model, the online phase 

leads to estimate the current health state and predict the RUL of the cutting tools. From the 

obtained results, it is expected that the proposed approach gave higher forecasting accuracy 

of RUL estimation than other existing approaches. Therefore, the proposed approach is 

very promising to the success of smart manufacturing operations for intelligent decision 

making. In the future scope, the other prediction methods will be applied in different wear 

degradation stages and the proposed approach will be extended and improved to other 

mechanical components.
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CHAPTER 04

CONDITION MONITORING BASED ON DEEP LEARNING

5.1 Introduction

Tool Condition Monitoring (TCM) has become essential to achieve high quality 

machining as well as profitable production. Identifying the condition of the cutting tool 

during machining before it reaches its failure stage is critical. With deep learning 

techniques combined with the development of Industry 4.0 technology, it is important to 

reduce maintenance costs and ensure the safety of the machining process. The degradation 

of the cutting tool can lead to economic losses and significant risks for the users of the 

machine. To overcome these difficulties, a new approach developed in the application of 

deep learning to estimate tool wear during the milling process. The proposed 

methodology is based on the data-driven approach using variational mode decomposition 

(VMD) and deep learning. Two deep learning machines used in this study, 

Convolutional Neural Networks (CNN) and Bi-Directional Long-Term Memory (BiLSTM) 

to perform collaborative data mining on (VMD) and to improve modeling accuracy . 

VMD is a new decomposition technique used to decompose the signal into time subseries 

called intrinsic mode functions (IMF). However, the VMD performances depend 

specifically on the constraint parameters which must be predetermined for the VMD 

method, in particular the number of modes. Model development based on 1D-CNN and 

BiLSTM is selected using MFIs as inputs. The performance of the proposed approach is 

further improved using the combined method. In addition, the universal method can 

also be applied to other prognosis systems. Comparisons with traditional learning 

techniques and adopted in previous work highlight the superiority of the proposed 

prognostic method. Among all models, the VMD-CNN-BiLSTM achieves the best 

modeling performance in terms of efficiency and effectiveness.
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5.2 Variational Mode Decomposition (VMD)

As above-mentioned in the state of the art review, signal processing is the step of choice to 

handle the issue of acquired signals corrupted by noise and harmonics. This is particularly 

the case of vibration signals related to mechanical components generating low amplitudes 

pulses [177]. Signal processing techniques are therefore used to isolate these components 

[178, 179]. The VMD technique has been introduced to improve the EMD and become a 

technique for the analysis choice of nonlinear data for detection in a wide range 

applications [180]. VMD has the advantageous ability to decompose complex signals into 

several stationary signals, regardless of their origin, using Wiener filter [181].

xn (t) =
k∑
i=1

uk (t) + res (t).[177]. (5.1)

Where xn is the acquired signal, {uk} = {u1,u2, ...,un} are decomposition modes, and is the 

residual signal after optimization. the decomposition process lies in solving an 

optimization problem formulated as:

min
{uk},{ωk}

∑
k

∥∥∥∥∥∂t [(δ (t) +
j

πt

)
.uk (t)

]
e−jωkt

∥∥∥∥∥2

2

[].[179]. (5.2)

subject to
∑
k
uk = f Where f is the original signal, {ωk} center frequencies of each {uk},

δ (t) is an impulse function, and k is modal component number. The new formulation of

the variational constrained problem is an augmented Lagrangian equation formulated as

follows [181]:

L ({uk} , {ωk} ,λ) = α
∑
k

∥∥∥∥∥∂t [(δ (t) +
j

πt

)
.uk (t)

]
e−jωkt

∥∥∥∥∥2

2

+

∥∥∥∥∥∥∥f (t)−
∑
k

uk (t)

∥∥∥∥∥∥∥
2

2

+
〈
λ (t) , f (t)−

∑
k

uk (t)
〉 .[179]. (5.3)

where α is quadratic penalty factor and λ is Lagrange multiplier. Resolution is done by 
iterative techniques allows estimating modes uk and their central frequencies ωk as well as 

the Lagrangian operator λ (t) , formulated iteratively in(Eq5.4, Eq5.5, Eq5.6), respectively 

[182]

ûn+1
k (ω)←

f̂ (ω)
∑
i〈k û

n+1
k (ω)−

∑
i〉k û

n
k (ω) + λn(ω)

2

1 + 2α
(
ω −ωnk

)2 .[182] (5.4)
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ωn=1
k ←

∫∞
0
ω
∣∣∣ûn+1
k (ω)

∣∣∣2dω∫∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω .[182] (5.5)

Where, ûn+1
k are obtained by Wiener filtering.

λn+1 (ω)← λ̂n (ω) + τ

f̂ (ω)−
∑
k

ûn+1
k (ω)

.[182] (5.6)

The stopping criterion is formulated as follows:

∑
k

∥∥∥ûn+1
k − ûnk

∥∥∥2
2∥∥∥ûnk ∥∥∥2

2

〈ε.[182] (5.7)

Where, τ is noise tolerance, and ε is convergence error.

9.2.1 Pearson Correlation Coefficient

Correlation between two signals A and B of size is the measure of their linear dependence.

It is positively or negatively assessed if the correlation coefficient is close to 1 or -1, respec-

tively [183]. Pearson correlation coefficient is calculated as:

ρ (A,B) =
1

N − 1

N∑
i=1

(
Ai −µA
σA

)(
Bi −µB
σB

)
.[183]. (5.8)

where µA , µB , σA and σB are mean and standard deviations of A and B, respectively.

5.3 Deep learning

The conventional ML models are typically shallow. In ANNs, the conventional neural 

networks (NNs) usually have a maximum of two hidden layers with limited data 

processing capability in their raw form. In many applications, analyzing big or high-

dimensional data with conventional NNs requires feature engineering as a priori. Data are 

usually processed through dimensionality reduction methods such as principal 

component analysis (PCA) or data mapping methods like SOM [184]. Thus, two or 

more models should be linked together to form a hybrid intelligent system capable of 

analyzing complex data. While the term deep learning refers to employing numerous 

hidden layers in the structure of an ANN, it is mainly different from the traditional ML 

models in how representations are learned
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from the raw data. A deep model learns representations of data with multiple levels of 

abstraction. In other words, the learning process yields a high-level meaning in data 

through employing a high-level data abstraction [185]. DL models have more hidden 

layers than ML ones; however, what makes DL unique and different from traditional ML 

is the high-level feature engineering capabilities of deep models, where complex feature 

construction and abstraction are performed in the model structure during the learning 

process.

The high-level abstract representation and feature engineering capabilities make DL 

models robust to data variation [186]. Also, the deep networks’ hierarchical structure 

enables them to model the complex nonlinear relationship in big data. On the other hand, 

ML models typically face difficulty in analyzing very big and high-dimensional datasets. 

Thus, feature selection serves as a dimensionality reduction approach enabling MLs to 

process big datasets. The challenge is those big datasets acquired in real industrial 

applications are typically polluted by noises and include outliers and different types of 

anomalies, making the feature selection a challenging task. Table 2 compares the typical 

characteristics of ML and DL models [187].The most commonly used DL networks in 

intelligent manufacturing are autoencoders and their variants, deep belief networks 

(DBNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) 

[186].
5.3.1 Auto encoder

Auto encoders (AEs) are unsupervised feed-forward neural networks, where their output 

tries to return the input data (Figure9.1). It comprises encoder and decoder steps, in which 

the former transport the input data into a latent representation, and the latter reconstructs 

the input from this representation. Gradient-descent-based algorithms are usually 

employed to tune the model’s hyper parameters by minimizing the reconstruction error. 

The main variants of AE are de-noising and sparse auto encoders (SAEs) [186, 187].

5.3.2 Deep Belief Network

Deep Belief Network (DBN) comprises a stacking of multiple restricted Boltzmann 

machines (RBMs) [188]. There is a connection between the layers in DBN but not between 

the neurons within a layer. The layer-by-layer structure of the network provides a 

hierarchical feature representation, which is used to construct a high-level representation 

of input data. During the unsupervised training process, the DBN reconstructs its input 

through learn-
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Output
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Input
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Figure 5.1: Schematic of an autoencoder network showing the encoder, decoder, and code layer used 
for dimensionality reduction and feature selection. [186]

ing a probability distribution. RBM is a generative stochastic feed-forward ANN that is 

an effective tool for feature engineering. Training a DBN includes training multiple RBMs, 

where the hidden layer of the lower RBM is deemed the model training data, and the RBM 

output is used as the training data of the upper RBM. After training all RBMs, fine-tuning 

process is performed by applying a back propagation algorithm with the training data as 

output [187].

5.3.3 Recurrent neural network

Recurrent neural network (RNN) is a class of feed-forward ANNs, with the capacity to 

update the current state based on the current input data and past states. Thus, it is ideal 

for dealing with sequential and time-series data or unsegmented signals through capturing 

information stored in sequence in the previous elements. RNNs benefit from supervised 

learning, and model training is performed using Back propagation.
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5.3.4 1D-Convolutional neural networks

The design of CNN is mainly based on the inputs convolution with filters to generate more 

discriminating features output, and will be used as inputs in the next layer. Pooling layers 

(Mean,Max,L2-norm or Average) allow information complexity reduction [189], in addition 

to overfitting control ensuring a better learning [190]. Typical CNN consists of 

Convolutional Layers, Pooling Layers, Activation Layers, and Fully-Connected Layers 

As can be seen from (Figure5.2) At present, CNNs have the architecture characteristics of 

fast training speed and high accuracy. Convolution between input features u and Kernel 

filters k is provided by:

First feature map 
after convolution

First feature map 
after pooling

Second feature map 
after convolution

Output Layer

-Acceleration
-Force
-Acoustic-Emission

Input Data

First pooling layer

second pooling layer

Figure 5.2: Convolutional Neural Network (CNN) structure diagram. [190]
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f = ϕ (u ∗ k + b).[191] (5.9)

Where f represents the obtained new features, ∗ denotes the convolution operator, b is 

the bias, and ϕ is the activation function [191]. Feature extraction convolution and pooling 

layers are followed by feature learning layers (fully connected layers), which are traditional 

neural networks with an input, hidden layer, and classification layers [ 190]. The 1DCNN 

model used in this study enhances the model’s learning ability by adding conventional 

ReLU activation functions to the convolution and Fully- Connected Layers [192].

9.3.5 Bidirectional long short-term memory networks

The architecture of LSTM node is shown in (Figure8.9), and equations managing the flow 

of information within are formulated from (Eq5.10) to (Eq5.15):

Output
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Figure 5.3: LSTM bloc. [193]
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Figure 5.4: Bidirectional process. [193]

Input gate

it = σ (WIxt +Uiht−1 + bi) (5.10)

Forget gate

f t = σ
(
Wf xt +Uiht−1 + bi

)
. (5.11)

Output gate

ot = σ (Woxt +Uoht−1 + bo). (5.12)

Candidate state of the memory unit

c̃t = tanh(Woxt +Ucht−1 + bc) (5.13)
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Updated internal state

ct = ftoct−1 + itoc̃t.zheng2017long[24] (5.14)

LSTM unit’s final output

ht = oto tanh(ct).zheng2017long (5.15)

Where W , U , and b represent the network parameters to be learned, o is Hadamard 

product, and two types of activation function were used, σ (x) as logistic sigmoid and g (x) , 

h (x) as hyperbolic tangent.

In the same context of improving time-series monitoring, a new variant of LSTM named 

BiLSTM, the first one ensures the dependency from the past towards the future, but BiL-

STM network ensures a double dependency of the past towards the future and the inverse, 

as in (Figure8.10), by keeping the same architecture as unidirectional LSTM with a 

difference in the flow of information in the layer.

The equations are presented in the following for describing this aspect[24]:

~ht = LSTM
(
xt,~ht−1

)
(5.16)

←
ht = LSTM

(
xt,

←
ht+1

)
.[24] (5.17)

yt =W~hy
~ht +W←

hy

←
ht + by .[24] (5.18)

Knowing that ~ht and 
←
ht represent forward and backward hidden state respectively, LSTM is 

the application of equations from (Eq5.5) to (Eq5.3), and represent forward and backward 

LSTM weights.

5.4 Applications of deep learning in machining and Tools

monitoring

The applications of DL in machine health monitoring are rapidly growing [194]. It can 

be seen that the majority of researches focused on monitoring the tool wear condition and 

prediction of the flank wear and the remaining useful life (RUL) of the tool. Few studies 

have also been performed on employing DL for chatter detection and surface roughness 

monitoring.
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5.4.1 Autoencoders

An unsupervised condition monitoring approach using AE is to define a nd e mploy an 

anomaly threshold using the AE reconstruction error. This monitoring technique’s core 

concept is that the reconstruction error can reveal whether the tool condition is changing 

or not. In this case, the AE is trained with reference data indicating the base condition 

(the typically stable situation with no damage and anomaly), and the reconstruction error 

is calculated. In the monitoring phase, the same AE is fed with new observations, and the 

reconstruction error is computed again. The basic assumption is that as long as the system 

condition is not experiencing a major change, the reconstruction error should be stable and 

small. However, if the reconstruction error goes beyond a defined threshold, then the state 

of the tool is changing, and it may experience damage such as tool wear. Dou et al. [195] 

used this approach for tool wear monitoring using the vibration and force signals in the 

milling process. They directly fed the segments of signals to the SAE model and showed 

that as tool wear increased, the reconstruction error became more unstable. They could 

identify four tool wear states using the proposed monitoring model. When more than two 

states are to be monitored, each state should be used as a base condition to train an AE 

and define another threshold to show the next state’s border. For example, three thresholds 

should be defined to identify the borders between the healthy, initial wear, steady wear, and 

extreme wear states. Kim et al. [196] also used the AE thres holding based method to differ-

entiate the new and used tool using the cutting force and current sensors. However, instead 

of directly using the signal segments, they manually extracted 36 features from the signals. 

AE was trained using 80 samples collected from machining with a new tool. The testing 

data included 20 samples corresponding to the new tool and 218 samples associated with 

the used tool. Kim et al. [196, 187] showed that the code size and the network architecture 

impacted the classification performance.

A unique characteristic of an autoencoder is that the neurons in its code layer can be 

used as a low-dimensional representation of the data. Thus, the feature selection can be 

achieved through dimensionality reduction in the model. The challenge with employing 

autoencoder for feature selection is finding the optimal model architecture (number of 

hidden layers and neurons), especially when dealing with big data. Moldovan et al. [198] 

de-termined the state of the tool wear using extracted features from the tool image having 

an input vector with a dimension of 11,844. The dataset was combined with an 

autoencoder, and it was shown that the model testing success rate increased by 60% when 

increasing the number of neurons in the 1st hidden layer to 150.
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INPUT FOR 
CLASSIFICATION OR 

REGRESSION MODELS 

Figure 5.5: A sample architecture of stacked AEs for data reduction and feature selection. In this 
approach, the neurons in each autoencoder code layer are used as the next encoder’s input layer. 

The last code layer could be linked to a softmax or regression layer for machin-ing and tool 
condition monitoring . [197]

   Fine-tuning the autoencoder structures can be challenging and may require trial and 

error or grid-search techniques for optimizing the model hyper parameters. An approach 

for feature selection by dimensionality reduc-tion is using stacked AE. In this method, 

the dimensionality reduction is achieved using stacked autoencoders, in which the code 

layer of each autoencoder forms the input layer of the subsequent encoder (Figure9.5). 

Ocha et al. [199] used stacked sparse autoencoders (SSAEs) for tool wear classification in 

the milling process of aluminum using force, vibra-tion, and acoustic emission sensors. 

The study considered four classes of tool conditions, and the input dataset comprised a 

total of 441 sensory data. In this study, seven sensory features were extracted from the 

signals as the input of data. Thus, the SSAE did not directly analyze the high-dimensional 

raw signal.
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 Proteau et al. [200] discussed that AE is effective for dimensionality reduction and 2D 

visualization of data and showed a better dimension reduction capability compared to 

PCA for cutting state monitoring using vi-bration and current signals. AEs have also 

been used for tool wear monitoring in milling using the current signals [201] and yielded 

higher monitoring accuracy than methods such as ANN, SVM, or KNN. Ou et al. [202, 

187] showed that introducing noise and using a stacked denoising autoencoder 

improved tool condition monitoring performance. Figure 12 shows their adopted 

methodology for AE-based tool wear monitoring using. The AE concept can be 

integrated with feature fusion to better extract the meaningful features of signals. Shi et 

al.[187] employed this approach for flank wear prediction using the vibration data acquired 

during the milling process of aluminum and stainless steel. The sensory data can be 

augmented using the Fourier and/or wavelet transforms. The time, frequency, and time-

frequency data were then separately fed into SAE for feature selection. The selected 

features in different single domains were then combined and fed into a final AE to yield the 

input of a nonlinear regression model for tool wear prediction. It was shown that such a 

model outperformed the conventional machine learning models, however, at the expense of 

more training and testing time. When a series of AEs are stacked, other than feature trans-

fer learning, weight transfer can also be performed between the AEs to enhance the model 

performance by improving the weight initialization process. Sun et al.[203] investigated 

deep transfer learning based on sparse AE for the tool’s remaining useful life prediction. 

AE combined with a hybrid clustering method was used for chatter detection [204, 187].

5.4.2 Deep belief neural networks

Yu and Liu [205] employed DBN combined with symbol and classification rules for surface 

roughness prediction and showed that DBNs effectively model complex nonlinear 

relationships between the machining process variables. DBN was successfully employed 

to build a feature space for cutting state monitoring (idling, stable cutting, and chatter) 

using the vibration data collected during the end milling process. The vibration signals 

were seg-mented into signals with a dimension of 256. Besides, manual feature 

extraction was em-ployed in the frequency (12 features) and wavelet (2 features) domains. 

The performance of DBN was compared with those obtained from ANN, SVM, and k-

means clustering. It was shown that while feature reduction generally improved the 

performance of ANN and SVM, DBN was more robust to the manual feature extraction 

and yielded lower error than other
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models. It was also revealed that comparing to the PCA, the output of DBN could better 

separate the three monitoring states with a relatively large margin and thus capable than 

PCA in feature engineering from the sensory data [205].

Chen et al. used DBN for tool wear prediction during the high-speed CNC milling 

process using the cutting force, accelerometer, and acoustic emission signals. Maximum, 

minimum, average, standard deviation, and the time stamp indicating the tool wear 

evolution and wear rate were chosen as the sensory features and were fed into the DBN. 

Four DBN layers were used, and for simplicity, every hidden layer was set with the same 

number of hidden neurons ranging from 10 to 15. The DBN was compared with the 

support vector regression (SVR) and MLP NN. They showed that while there was no 

significant difference between the three studied models’ performance in terms of 

coefficient of determination (R2), ANNs and DBNs required 60% shorter prediction time 

than the SVR model. Moreover, while the performance of ANN was fluctuating with 

changing the number of hidden neurons, epochs, etc., DBN was more robust to 

hyperparameter variation, which thus outperformed the other models[187].

5.4.3 Convolutional neural networks

Compared to the autoencoders and DBNs, more research has been conducted on CNNs for 

intelligent machining, focusing on tool wear monitoring [206]. It has also been used for 

chatter detection [207] and surface roughness prediction [187, 208]. CNNs are ideal for 

handling image-based data; however, time-series data or extracted sensory features can be 

directly fed to 1D CNN. Xu et al. [209] employed a 1D CNN to extract features from the 

vibration data for tool wear monitoring. Lee et al. [210] also used a 1D CNN for tool 

condition monitoring in the grinding process using sound signals. The authors identified 

the most critical frequency range of the signals (using Fourier transform analysis) and 

trained the 1D CNN using the audio signals in the time domain, preserving the critical 

frequency segment. During the machining process, the acquired sensory data can be 

combined with the experience and physics-based features from the process to build low-

cost models for process monitoring. Li et al. [187, 211] developed a model, which relies on 

physical analysis to extract useful features to establish a reliable health indicator for tool 

condition monitoring utilizing the vibration and acoustic signals. Then, they developed a 

deep CNN model using 20 low-cost processes and cut variables to replace the physics 

based model.

The manually extracted features from different signal channels can be combined to form
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a multi-domain feature matrix. Huang et al. [212] extracted nine features from force and 

vibration signals in three directions to form a multi-domain feature matrix for wear 

prediction in the milling process using CNN.

Thus, for each sample data, a total of 54 multi-domain features were extracted to form a 

column of the original feature matrix. Zhang et al. [213] showed that feature optimization 

(using recursive feature elimination and cross-validation (RFECV)–based and Isomap-based 

methods) on themanually extracted features enhanced the performance of CNN for tool 

wear prediction.Motivated by the similarity between the pixel matrix of high-dimensional 

image and the raw data matrix of multisensory time-series signal, Huang et al. [214] 

introduced a reshaped time series stage to represent the multisensory raw signals. 

Accordingly, the multi-sensory raw signal data were re-shaped and then fed into CNN for 

tool wear prediction. The method based on reshaped time series convolutional neural 

network (RTSCNN) was shown to outperform some of the other advanced ML and DL 

models for tool wear prediction. In many applications, the time series sensory data were 

used to construct image-based input data before training the CNN.

Reformatting time-series features as images would let the model learn the temporal de-

pendencies on data. Cao et al. [215] discussed that compared to the 1D CNN, the 2-D signal 

matrix retains more information than a single reconstructed sub-signal. Its associated CNN 

resulted in higher accuracy than 1D CNN for tool wear state identification. Thus, some 

research emphasized training CNN using constructed images from the time series sensory 

data [215, 216]. Song et al. [217] used the spindle current clutter signal for tool wear state 

identification using CNN. They used the Fourier series and the least square method to fit and 

remove the signal components corresponding to the cutting parameter and extracted the 

current clutter signal with little dependency on the processing conditions that could best 

reflect the tool wear condition. Then, they applied image binarization and used the image of 

the signals as the input of the DL model. Other researchers used mathematical techniques 

such as Gramian Angular Summation Fields (GASF) to convert the sensory into image data 

[214]. Martınez-Arellano et al. [20] applied time series imaging on 3-channel force signals 

using GASF and fed the obtained images to CNN for tool wear classification and achieved 

classification accuracy above 90% .

Another approach to obtain image-based dataset from time series sensory data is through 

time-frequency analysis and imaging using techniques such as the wavelet transform. Zheng 

and Lin [218] constructed an image from the 1D force signals using the wavelet and short-

time Fourier transform. They designed a CNN using the obtained images and discussed
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that higher network accuracy was obtained when using wavelet transform for image con-

struction from the force signals. Tran et al.[207] utilized continuous wavelet transform 

(CWT) on the force signals for chatter detection in the milling process. They applied CWT 

to the segments of force signals acquired during the stable, transitive, and unstable cutting 

states. The time-frequency images obtained using CWT were used to train the CNN, and 

classification accuracy of 99.97% was a chieved. Wavelet packet decomposition [216] and 

Hilbert envelope analysis [215] have also been used to convert the 1-D signal into a 2-D 

signal matrix. The general finding is that folding the 1-D spectra into 2-D spectral maps 

enhances the learning ability of the 2-D CNN [216].

Another approach to train CNN is by directly feeding the machining processes. 

Images of machined surface textures were successfully trained CNNs for chatter 

detection and surface roughness prediction [208]. Tool wear imaging was also used to 

train CNN for automatic wear state identification in the face milling process. The network 

model was pretrained using an automated convolutional encoder (ACE), and its output 

was set as the initial value of the CNN parameters for tool breakage identification.

5.4.4 Recurrent neural networks

There has been increasing attention to using RNNs, specifically L STMs, for TCM during 

machining processes [7, 219]. Recently, LSTM was used for chatter detection [220] and 

surface roughness prediction [221]. For tool wear classification, t he h idden s tate i n the 

model that is the learned representation of input data can be connected to a softmax layer. 

In contrast, for tool wear prediction or remaining useful life (RUL), prediction regression 

layers can be linked to the RNNs. Zhao et al. [222] used a deep LSTM network using three-

layer LSTMs with dropout on raw signal and obtained a higher performance for tool wear 

prediction using deep LSTMs comparing to a basic LSTM. They showed that the prediction 

accuracy is sensitive to the LSTM architectures, which should be defined by trial and error. 

They also discussed that when better task-specific LSTMs are desired, the acquired signals 

can be processed using the wavelet transformation method to obtain better meaningful 

or noise-free signals to be fed into the model. Aghazadeh et al. [223] employed wavelet 

transformation on the sensory data and fed the extracted features from the time-frequency 

domain to LSTM for tool wear prediction. They reported that LSTM outperformed MLP 

with above 10% in prediction accuracy. Cai et al. [23] developed deep LSTMs for tool wear 

prediction in milling. They combined the temporal features extracted by LSTMs with the
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process information to form a new input vector. Examples of process information are the 

material, feed, depth of cut, etc. [210].

They discussed that having the process information combined with the collected sen-

sory data can significantly improve the prediction accuracy when the machining process 

runs under various operating conditions. They also reported a higher prediction accuracy 

using deep LSTMs compared to SVR, MLP, and CNN. Combining the process information 

(working conditions) with the sensory signals was practiced by Zhou et al. [224] for RUL 

prediction. Int J Adv Manuf Technol Hybrid and novel RRN-based networks have been de-

signed to better extract the meaningful feature for process health and condition monitoring. 

For example, Gugulothu et al. developed an RNN based autoencoder to learn more robust 

embeddings from the multivariate input time series. Yu et al. [225] applied bidirectional 

RNNs to the RNN-based autoencoder network for RUL prediction in the milling process 

and showed the competitiveness of the proposed method. Vashisht and Peng [220] showed 

that using a low-cost current sensor and LSTM, chatter detection can be achieved with an 

accuracy of 98%. LSTM was also used to predict the surface roughness in the grinding 

process using the grinding force, vibration, and acoustic emission signals [221, 187].

5.4.5 LSTM-CNN

It has been discussed that while LSTMcaptures the long-term dependency in sequential 

data, its feature extraction capability is still lower thanCNN [226, 227]. This may be an 

obstacle for LSTM to directly analyze the raw time series data polluted by noise. Xu et al.

[228] discussed that, unlike the CNNs, the inherent structure of LSTM does not consider 

spatial correlation. On the other hand, CNN does not consider the sequential and temporal 

dependency [228].

Therefore, to overcome the mentioned challenge, combined CNN-LSTM networks were 

used [229, 230]. In these models, the CNN was used for local feature extraction from the 

original sequential sensory data. The combined CNN-LSTM model was shown to yield 

superior performance than many other baseline models for tool wear monitoring [231]. 

An et al. [226][127] combined CNN with a stacked bidirectional LSTM (BLSTM) and 

unidirectional LSTM (ULSTM) for RUL prediction in the milling process.

CNN was first used for local feature extraction and dimension reduction from raw data. 

Then two layers of BLSTM and one-layer ULSTM were employed to encode the temporal 

information. The output of LSTM was connected to regression layers and predicted the RUL
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with an average prediction accuracy of up to 90%. Such a hybrid model could obtain more 

in-depth feature engineering with minimal need for expert knowledge for feature selection. 

A similar approach has been practiced for RUL and tool wear prediction [232, 233]. Niu et 

al. [232] used a 1D-CNN LSTM network architecture for RUL prediction.

The sensory data were decomposed using discrete wavelet transform for denoising, and 

statistical features were extracted from each sample. It was then fed into the 1D CNN-LSTM 

network for feature engineering, connected to a fully connected and dropout layer for RUL 

prediction. Zhao et al. [233] also showed that the performance of RNNs is improved when 

combined with CNN for local feature extraction. Different network architectures can be 
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Figure 5.6: A feature-fusion-based CNN-LSTM model for flank wear prediction. [228]

disigned to address the process complexity and extract more meaningful features for 

process and tool monitoring. Qiao et al. [231] discussed that the features learned by 

lower layers of a deep learning model are the general features, while the features learned 

by higher lay-ers are more task-specific and more suitable for tasks such as TCM. 

Accordingly, they built a BLSTM network on top of a multi-scale convolutional long 

short-term memory model (MCLSTM) to further extract features related to the tool wear 

prediction tasks. It should be noted that the input data frommulti-sensors encompasses 

multi-scale features, which can-not be captured by the traditional LSTM or traditional 

CNN due to their lack of multiscale
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feature extraction ability [231, 234, 235]. To address that, Qiao et al. [231] employed a 

multiscale convolutional long short-term memory model that consisted of different 

parallel CNN layers. Xu et al. [228] designed a feature fusion- based deep model for flank 

wear prediction. Accordingly, they converted the signals from multiple sensors to images 

with multi-channels as the model input data. The input data were then fed into different 

CNNs to extract features in parallel from the multi-source data. The extracted features 

were then concatenated for multi-sensor information fusion (Figure9.6). The outpour of 

this process was then linked into BLSTMs and fully connected layers for tool wear 

prediction.

5.5 Proposed prognostics methodology

Prognostics and Health Management is an important task for maintenance cost reducing, 

equipment reliability increasing and dynamically maintain their critical engineering assets 

[236]. In (Figure9.7), the proposed methodology contains three key components: (1) sen-

sors measurements, (2) feature extraction and selection, and (3) monitoring models for the 

health states classification in the decision-making step. A new engineering approach al-

lows a real-time health assessment of the state of a tool and its future state (Figure9.7). The 

acronym PHM mainly comprises two elements [83].

1- Prognosis refers to health prediction by modeling the progression of faults severity, 

based on current state assessment and the future operating conditions;

2- Health management provide remote decision-making support for operators in 

unattended conditions and refers the capacity to intelligently carry out maintenance 

based on diagnostic / prognostic information.

Recently, several researches have been developed the deep learning approaches for PHM 

due to their great potentials applications [237] . Generally, the traditional applications of 

PHM have a fairly high practical barrier, as they need always human expertise in statistical 

analysis, signal processing, etc. The most important task for deep learning compared with 

traditional techniques is the automation of feature selection without extraction manually. 

This task reduces the height of the technical barrier of PHM applications and extract 

automatically the most representative features. The proposed approach is part of the 

PHM activities by using deep learning, more precisely the monitoring of cutting tool 

health status for RUL estimation. Based on data-driven approach and health indicator to 

provide a decision support tool for the industry.
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In this study, an original prognostic approach is proposed based on PHM steps sequence, 

starting by signal acquisition. These latter are exploited to extract necessary information’s, 

by the construction of HI on one side, and on the other signals processing to extract 

information related to degradation using VMD. Finally, design an expert system to learn 

and automatic assess tool health state based on 1D-CNN and BiLSTM network , and 

finally as shown in (Figure9.7).

   

            

            

              

                  

             

           

Figure 5.7: Proposed methodology.

In (Figure9.7), the proposed methodology contain four steps in the monitoring of ma-

chining process; The data acquisition step for data collection; preprocessing step consists 

of acquired and analyzing the collected signals. The processing step used the VMD values 

over time in order to facilitate the prognostics of time to failure for cutting tool. In the last 

step, englobing the RUL estimation with the proposed methodology based on the useful 

variables of VMD. (Figure5.8) shows this rough phenomenon of the degradation compo-
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nent’s performance as it reaches entire failure point. Point tP  is the start of a component 

degradation where it is observed in the data. And point tEoL or the End Of Life (EOL) 

indicates a complete failure of component. The time between when the failure is detected 

and the complete failure of components is the hole life of component.

PHM aims the assessment of the current state of physical system and predict its RUL 

before the failure. The objective is to maximize the operational safety and availability of 

the Cutting tool, and improved health management. An illustration of a remaining useful 

life is shown in (Figure9.8).

The predicted RUL can be obtained by estimating the time between the current time tc 

and the time tf related to the wear threshold. Therefore; the equation of the RUL is given 

by:

RUL(t) = 1−HI−1(t) (5.19)

After this step, the proposed network can be trained to estimate HI, after, RUL can be 

calculated with a simple temporal inversion as in (Eq.5.19), unfortunately, the obtained 

results contain several fluctuations that do not have a physical meaning and can be reduced 

with a simple smoothing using moving average window. In the end, a comparison with 

traditional methods using average accuracy.
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Figure 5.8: Illustration of remaining useful life.
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5.6 Results and discussion

5.6.1 Description of NASA Ames milling data set

The data conducted on a milling machine under different operating conditions, including 

16 cases, the description of the experimental conditions are shown in (Figure5.9) and (Ta-

ble5.1). [238] The signals collected during the milling of cast-iron and stainless steel under

Acous�c Emission  
Spindle

Acous�c Emission 
Table

Acceleration
Spindle

Acceleration
Table

Spindle Motor 
Current Sensor

Preamplifier

Charge Amplifier

RMS

RMS

RMS

RMS

LP/HP Filter

LP/HP Filter

Recorder

Figure 5.9: experimental setup for NASA Ames milling data set. [238]

the spindle speed of 826 rpm using the Matsuura MC-510 V machining center. Vibration, 

Acoustic emission and current sensors are mounted in the table and spindle. Sixteen cases 

with varying number of runs.

Taking the vibrations data of spindle and table as an example for the first and last 

machining cycle, the decomposition results are shown in (Figure9.10). The original signal 

is decomposed into 5 subseries with their corresponding frequencies, which are named 

from IMF1 to IMF5 with increasing frequency. The lowest frequency of the series IMF1 

reflects the variation trend of original signal, while the highest frequency signal in IMF5.

5.6.2 Results for NASA Ames data set

igure.(5.11a).Figure(5.11b).Figure(5.11c) and Figure(5.11d) shown the predicted value and 

the actual value of the health index tool wears using the proposed approach for four tests 

of cutting tools from the good state of cutter up to the end of life of cutter wear values.

The results of different methods for NASA Ames milling machine runs under various 

operating conditions are shown in (Table5.2).
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Table 5.1: Description of milling data set. [238]

Case Depth of cut Feed Material

1 1.5 0.5 1-cast iron

2 0.75 0.5 1-cast iron

3 0.75 0.25 1-cast iron

4 1.5 0.25 1-cast iron

5 1.5 0.5 2-steel

6 1.5 0.25 2-steel

7 0.75 0.25 2-steel

8 0.75 0.5 2-steel

9 1.5 0.5 1-cast iron

10 1.5 0.25 1-cast iron

11 0.75 0.25 1-cast iron

12 0.75 0.5 1-cast iron

13 0.75 0.25 2-steel

14 0.75 0.5 2-steel

15 1.5 0.25 2-steel

16 1.5 0.5 2-steel

The proposed approach achieves the best performance. To illustrate the effectiveness, a 

difference between the proposed model and other methods are shown in (Table5.2), which 

shows that our proposed model is capable of predicting the tool wear with a reasonable 

prediction value and with a small error.

(Table9.2) Shown the results and the performances evaluation of tool wear estimation 

for different methods. Based on the results, the proposed approach has the highest average 

accuracy and with minimum of RMSE. It can be observed that relatively big difference 

between the accuracy of the other methods and the proposed approach by processing the 

signals using VMD method.
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Figure 5.10: Variational mode decomposition of vibration spindle (left) and table (right).

5.6.3 Description of 2010 PHM Data set

The evaluation of the proposed approach, tool wear task prediction conducted on a high-

speed CNC machine tool Figure(5.13). The milling process experiments were carried out 

on a Roder CNC machining centre. The work piece is made of a hard material (Inconel 718)

[242].

The piece used in this study is of square shape with a width a dimension of (112.5×78 

mm). The number cutters are six made of tungsten carbide, round nose and with three 

cutting edges. They cutter speed is 10360 rpm, and with an advance of 1.555 m / min. 

The passes made are 0.125mm wide and 0.25mm deep. The signals collected (force in XYZ 

dimensions, acceleration in XYZ dimensions and acoustic emission) Figure(5.13). In this 

study 315 cuts were achieved using the cutting tools C1, C4 and C6, respectively. The 

cutter C4 taking as an example for learning.

5.6.4 RUL estimation for PHM data challenge

In this study, tool wear prediction method of cutting tool based on the structure of 1DCNN-

LSTM is proposed. Firstly, the information’s data is obtained by 1D convolution network. 

Then the temporal information of data is obtained by BiLSTM, which fully used the features
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Figure 5.11: Health Indicator Prediction.

space-time of VMD shown in Figure(5.14).

The framework of the proposed approach for RUL prediction based on the VMD pro-

cess is illustrated in Figure(5.14), and includes the training phase model and RUL phase 

prediction. Here, the parameters of the VMD model are determined in the model training 

phase in conjunction with a tool wear degradation process training dataset, while the RUL 

value and 95% confidence interval for the cutting tool are predicted in the RUL prediction 

phase.

At this stage, it’s necessary to use signal processing technique allowing to appear useful 

information’s, this framework propose to use VMD. Now, move to the construction of the 

health indicator, by the use of RMS as a statistical indicator, which is often used in prognosis 

frameworks, given that it is sensitive to degradation.
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Methods
Average accuracy RMSE

case 1 case 2 case 3 case 4 case 1 case 2 case 3 case 4

LSTM [23] 0.8512 0.9050 0.9108 0.9045 0.1512 0.1050 0.1108 0.1045

CNN [239] 0.9319 0.9733 0.8982 0.8820 0.2319 0.0733 0.0982 0.0820

IELM [240] 0.8853 0.8652 0.8731 0.8619 0.2147 0.1152 0.1068 0.0954

TCN [241] 0.9158 0.9249 0.9144 0.8891 0.1958 0.0749 0.1144 0.0891

Proposed 0.9567 0.9747 0.9611 0.9432 0.1141 0.0564 0.0718 0.0521

To show more the evolution over time, Figure(5.15) present different samples of 

degraded cutter, and makes it possible to conclude that this signal processing technique 

can provides useful information about the evolution of degradation.

To handle the extraction of useful features for the tracking of tool degradation, the pro-

posed methodology uses CNN. This network uses two convolution filters of different sizes 

64×5 and 32×5 to display features that evolve with degradation. Another type of layer is 

called Max Pooling with pooling size equal to 4, to compresses the information in the vector.

In the activity of prognosis, we often manipulate time-series, which represents a 

dependency in time and requires the use of deep neural networks with memory effect, 

which justifies the use of BiLSTM network, to benefit from the double temporal 

dependency. The proposed network in (Figure9.3), consists of input layer stacked with two 

layers of BiLSTM with 200 and 150 nodes respectively, and separated by two dropout 

layers with a rate of 0.2 to avoid overfitting, and finalized by two fully connected layers 

of 135 nodes each one, followed by a regression layer for RUL estimation.

By arriving at this step, HI can be predicted by training the proposed network and 

specify training options, in this paper, Adam optimizer is used, with a learning rate of 

0.00001, minibatch size of 12, and using GPU execution, given at the end, a good learning 

progress-ing without overfitting.

After the training of the proposed model, the obtained results are shown in Figure(5.17), 

Figure(5.20), and Figure(5.22) for the prediction of HI, remarkably, the two curves are 

almost pasted, which shows the performance of the proposed methodology.

The wear evolution of the cutter C1 are shown in Figure(5.16). Firstly, the using data for 

cutters selected in this study (C1, C4 and C6) to build up a reference which can be utilized 

for tool wear prediction for cutters (C2,C3 and C5). Finally, the proposed model based on
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Figure 5.12: Remaining useful life estimation (NASA Ames data set).
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Figure 5.15: Variational mode decomposition of vibration signal (Cycle N◦ 150 ) (2010 

PHM Data set) .

VMD-1DCNN-BiLSTM used to predict the tool wear and check the accuracy of each cutter.

The flank wear of three flutes shown in Figure(5.16) was measured in the experiment 

for each cut. The flank wears of the cutting tool C1 are shown in Figure(5.16). The 

recommendation of the ISO 8688–2 (1989), the cutter life limit is obtained by the mean 

wear of three flutes.

The output wear values shown in Figure(5.17), Figure(5.20) and Figure(5.22) of the three 

flutes w ere p rovided ( in 1 0-3 m m). t he t raining c utters ( C1, C 4 a nd C 6) w ere u sed for 

estimating the wear for the cutter (C2,C3 and C5). The value of the wear was predicted by 

the optimal input parameters of separation and the level of decomposition (L=7)and the 

signal from three dimension.

By a temporal projection, allows to estimate RUL in Figure(5.17), Figure(5.20), and 

Figure(5.22) from HI in Figure(5.17), Figure(5.19) and Figure(5.21), which present true 

and predicted values. Figure(5.17), Figure(5.19) and Figure(5.21), shows that the 

prediction have a tendency very close to the actual RUL.

In tool conditions monitoring in milling process, the threshold of wear depth in cutting 

tool is defined in ISO8668 - 2 :  1989 as a criterion of the health index or equivalent in this
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Figure 5.16: Three flutes wear for the cutter C1.
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Figure 5.17: Health Index for cutter C1.
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Figure 5.18: RUL prediction for cutter C1.

study of (0.4mm).

When selecting the models for the proposed approach, another important step is the 

model’s complexity. The ResNet 50 architecture given a high level accuracy by comparing 

with other networks architectures (Alexnet and SqueezeNet). The proposed approach were 

chosen based on their regression performances tasks shown in (Table5.3).

5.6.5 Comparison of prediction performance with other methods

In this study three criteria are adopted for the performance evaluation of the proposed ap-

proach: The average accuracy, with an average length of 95% confidence interval. Here, The
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Figure 5.19: Health Index for cutter c4.
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Figure 5.20: RUL prediction of cutter C4.
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Figure 5.21: Health Index for cutter c6.

0 50 100 150 200 250 300 350

Cycle 

0

0.2

0.4

0.6

0.8

1

RU
L(

%
)

Predicted RUL
Actual RUL

Figure 5.22: RUL prediction cutter C6.

indicators used to evaluate quantitatively the prediction quality was shown in (Table5.3). 

The calculations are given by the equation (Eq.5.20)

Ā =
1
m

m∑
i=1

∣∣∣ŷi − yi ∣∣∣
ȳ

(5.20)

In the end, the average accuracy were used to compare the performance of the proposed 

model with other machine learning methods, like BPNN, SVR, LSSVM, MLP. As shown in 

(Table5.3), the proposed model outperforms the aforementioned ML techniques in terms of 

all metrics by achieving the smallest values of average accuracy.

The training errors (Average accuracy) of the proposed model are calculated under dif-

ferent numbers of wear states. The results are shown in (Table5.3).When the number of 

wear states reaches 6, the training error decreases slowly. When the number of wear states
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Algorithm
Average accuracy

c1 c4 c6

BPNN [175] 0.7872 0.8441 0.8975

LSSVM[176] 0.8522 0.7302 0.9201

SVR [243] 0.9136 0.7539 0.8046

LSTM [23] 0.7800 0.6847 0.8083

VMD-CNN-BiLSTM 0.9188 0.9281 0.9221

is too large, the sample points in each wear state will also decrease.

Therefore, the least tool wear state is selected within the allowable error range. From 

this, it is determined that the number of tool wear states is 6. The failure threshold of VB 

wear is set to 150 µm in this study. Firstly, using the tools 1 and 2 as the training set, the 

tool 3 as the test is set to predict the RUL sequence of the tool at the current moment. 

The prediction results of the proposed model are validated using cross validation method 

verifies the average accuracy of the above models.

In the view of all results of health indicator evolution shown in Figure(5.17), Figure(5.19), 

Figure(5.21), the average accuracy of the dataset presents significant improvement by 

comparing with traditional techniques shown in (Table5.3), and it illustrates the RUL of 

milling cutter’s prediction has the potential and higher performance.

5.7 Conclusion

In this chapter a new hybrid deep learning approach for laser RUL estimation have been 

proposed. The proposed approach is coupled via fusion and a fully connected neural net-

work to improve the performance based on the integration of a deep CNN LSTM model. A 

prediction method using data-driven approach of tool wear monitoring built by the struc-

ture of 1DCNN-BiLSTM is proposed in this study. At first, the VMD information of cutting 

tool is extracted by 1DCNN, and then the temporal information of tool wear is used to fed 

BiLSTM, which fully used the space-time features of cutting tool. The results obtained by 

this experiment show that the prediction value obtained by the proposed approach adopted 

in this paper has a small error and high average accuracy. VMD for signal processing and
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1D-CNN-BiLSTM for learning dependencies of the degradation process. This proposed 

methodology is based on the steps of PHM, starting with signals from an experimental 

dataset of Intelligent Maintenance Systems, after the construction of the Health Indicator 

expressing the degraded state of the cutter and on the other hand, signal processing by 

the use of VMD, to be able after training an expert system using BiLSTM, in the end, to 

make this framework useful, different metrics evaluation are used to estimate the quality 

of prediction and compare with other traditional techniques.

From the obtained results, it is expected that the proposed approach gave higher 

prediction accuracy of RUL estimation than other existing approaches. Therefore, the 

proposed approach is very promising to the success of smart manufacturing operations for 

intelligent decision making. In the future scope, the other prediction methods

Laboratory of Green and Mechanical Development155 National Polytechnic School



Conclusion & future scope



CONCLUSION

CONCLUSION & FUTURE SCOPE

6 Conclusion

The 4th Industrial Revolution (Industry 4.0) necessitates implementing the prognostics and 

health management (PHM) practices in manufacturing processes. The traditional machine 

learning approach has well assisted the PHM practices within the same data distributions. 

However, when a high noise environment, versatile operating conditions, and cross-domain 

machining is considered, it still lacks key steps of generalizing unknown tool faults. In an 

attempt to address PHM practices under such domains, a generic Deep Learning-based 

scheme is gaining significant a ttention. In this thesis, an inclusive review is presented in 

order to provide an insight into the application of DL in tool condition monitoring (TCM), 

particularly in milling. Commonly used DL algorithms and their applications toward TCM 

are initially discussed and number of illustrative DL models applied for TCM is presented. 

Later, emergent DL themes and their computational techniques are summarized with an 

intention to provide framework for domain generalization. Finally, challenges in further 

exploration and futuristic trends in TCM are discussed.

As size of data increases the performance of models using classical artificial intelligence 

increases. There are many machine learning approaches available for tool condition 

monitoring for milling process. The shortcomings of machine learning are accuracy, 

speed, ro-bustness etc. These are overcome with deep learning approach. The 

comparative study of different deep learning techniques are rigorously discussed. 

Depending of the nature of signals one can select appropriate technique for tool condition 

monitoring. The software and hardware are listed for deep learning. The comparison of 

different software used for deep
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learning is discussed. The comprehensive review shows that to meet emergent demands to 

successfully implement industry 4.0 deep learning approach plays an important role which 

overcomes the shortcomings offered by machine learning approach at some extent.

Data-driven prognosis has transformed machining monitoring by adopting machine 

learning and deep learning techniques to develop intelligent systems for monitoring the 

health and condition of cutting tools. Machine learning, in general, and deep learning, in 

particular, have had a significant impact on feature engineering and expert decision making 

by enabling automated feature selection, big data management and of large dimension, and 

avoiding the redundancy of the sensors. It also facilitates optimal data fusion and 

development of intelligent hybrid models that can be used for descriptive analysis for 

changing cutting tools before failure to inspect product quality. Despite its enormous 

opportunities, a data-driven industrial approach still faces challenges, particularly with 

regard to the size and quality of the data acquired. The concept of deep learning, its 

opportunities and limitations should be further investigated and compared to traditional 

machine learning models.

Comparative studies between different basic deep models and more complex hybrid 

models should be carried out. Small data challenges should be investigated by practicing 

data fusion methods and comparative studies between machine learning and deep learning. 

The concept of fusion at different sensor, functionality and decision levels needs to be 

evaluated and compared. The discrepancy between laboratory-scale results and real-world 

conditions should be emphasized by studying process uncertainty and applying cloud 

computing. Incremental and transfer learning can play a crucial role in bridging the gap 

between lab and industry. To fully understand the power of data-driven methods, smart 

machining must focus on big data acquisition. Additionally, the crucial role of feature 

engineering should be recognized in developing an attitude that incorporates feature 

selection and expert decision making to better uncover hidden patterns in data for 

intelligent monitoring.

This proposed research method based on data fusion enhanced deep learning to estimate 

tool wear value under different cutting conditions. Firstly, the original signals are 

decomposed and transformed to obtain high-dimensional feature series set through 

EMD, VMD and wavelet packet decomposition, and then CNN is employed to select 

useful features and Prediction results of LSTM and RNN and SVR Vibration signal Tool 

Spindle reduce the feature dimension, in order to reduce operational burden and improve 

the accuracy of regression. 
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     Finally, these selected feature series are input into bidirectional LSTM network to estimate 

tool wear value. Hence, applications of the proposed method to milling TCM experiments 

demonstrate it outperforms significantly SVR- based and RNN- based methods under 

different cutting conditions.

Data-driven methods have transitioned machining monitoring into embracing machine 

learning and deep learning techniques for developing intelligent systems for process health 

and condition monitoring. Machine learning, in general, and deep learning, in particular, 

have significantly impacted feature engineering and expert decision making by allowing 

for automated feature selection, handling big and high-dimensional data, and avoiding 

sensor redundancy. It also facilitates optimal data fusion and the development of 

intelligent hybrid models that can be used for descriptive analytics for product quality 

inspection, diagnostic analytics for fault assessment, and predictive analytics for defect 

prognosis. Despite its huge opportunities, there are still challenges facing a data-driven 

industrial approach, especially concerning the size and quality of the acquired data. The 

deep learning concept and its opportunities and limitation should be further investigated 

and compared with the traditional machine learning models. Comparative studies among 

different basic deep models and more complex hybrid models should be performed. Small 

data challenges should be studied by practicing data fusion methods and comparative 

studies among machine learning versus deep learning. The fusion concept at different 

levels of sensor, feature, and decision should be assessed and compared. The gap between 

the laboratory scale results and real-life conditions should be emphasized by 

investigating the process uncertainty and applying cloud computing. Incremental and 

transfer learning can play a crucial role in bridging the gap from the laboratory to the 

industry. To fully comprehend the power of data-driven methods, intelligent machining 

should focus on big data acquisition. Also, the crucial role of feature engineering should 

be acknowledged by developing an attitude that integrates feature selection and expert 

decision-making to better unveil the hidden patterns in data for intelligent monitoring.
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A-Extreme learning 2010 PHM Data set:

CWT before separation (Force signal ):
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Figure 7.1: Energy Level evolution before 

separation Fxyz (C1)
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Figure 7.2: Energy Level evolution before 

separation Fxyz (C2)
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Figure 7.3: Energy Level evolution before 

separation Fxyz (C3)
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Figure 7.4: Energy Level evolution before 

separation Fxyz (C4)
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Figure 7.6: Energy Level evolution before 

separation Fxyz (C6)

Figure 7.5: Energy Level evolution before 

separation Fxyz (C5)

CWT after separation (Force signal ):
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Figure 7.7: Energy Level evolution After 

separation Fxyz (C1)
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Figure 7.8: Energy Level evolution After 

separation Fxyz (C2)
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Figure 7.9: Energy Level evolution After 

separation Fxyz (C3)
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Figure 7.10: Energy Level evolution After 

separation Fxyz (C4)
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Figure 7.11: Energy Level evolution After 

separation Fxyz (C5)

0 50 100 150 200 250 300 350

N° Cycle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
 (

%
)

Energy Level evolution After separation Fxyz (C6)

RMS1
RMS2
RMS3

Figure 7.12: Energy Level evolution After 

separation Fxyz (C6)

Health Indicator (Force signal ):
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Figure 7.13: Health indicator (signal force) cutting tool C1,C2,C3,C4,C5,C6. 
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Figure 7.14: Remaining Useful Life (signal force) cutting tool C1,C2,C3,C4,C5,C6.
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Figure 7.15: Energy Level evolution before 

separation Vxyz (C1)
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Figure 7.16: Energy Level evolution before 

separation Vxyz (C2)
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Figure 7.17: Energy Level evolution before 

separation Vxyz (C3)
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Figure 7.18: Energy Level evolution before 

separation Vxyz (C4)
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Figure 7.19: Energy Level evolution before 

separation Vxyz (C5)
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Figure 7.20: Energy Level evolution before 

separation Vxyz (C6)

Health Indicator (Acceleration signal ): RUL (Acceleration signal ):

Laboratory of Green and Mechanical Development164 National Polytechnic School



Appendix

0 50 100 150 200 250 300 350

Cycle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M

S
 (

%
)

Energy Level evolution After separation Vxyz (C1)

RMS1
RMS2
RMS3

Figure 7.21: Energy Level evolution After 

separation Vxyz (C1)
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Figure 7.22: Energy Level evolution After 

separation Vxyz (C2)
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Figure 7.23: Energy Level evolution After 

separation Vxyz (C3)
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Figure 7.24: Energy Level evolution After 

separation Vxyz (C4)
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Figure 7.25: Energy Level evolution After 

separation Vxyz (C5)
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Figure 7.26: Energy Level evolution After 

separation Vxyz (C6)
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Figure 7.27: Health indicator (Acceleration 

signal) cutting tool C1
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Figure 7.28: Health indicator (Acceleration 

signal) cutting tool C3
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Figure 7.29: Health indicator (Acceleration 

signal) cutting tool C5
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Figure 7.30: Health indicator (Acceleration 

signal) cutting tool C246
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Figure 7.31: Remaining Useful Life ( Accel-

eration signal) cutting tool C1
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Figure 7.32: Remaining Useful Life ( Accel-

eration signal) cutting tool C3
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