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ملخص
في الروبوتات. في تطبيقات مع ، لي مجموعات في تتطور التي الديناميكية الانٔظمة ومراقبة تقدير على العمل هذا يركز
وحدات تصميم فإن ، ذلك ومع .(3) SE و (3) SO على طبيعي بشكل الديناميكية الانٔظمة معظم تتطور ، الواقع
صعب. امٔر هو لي مجموعات في المطلوب الموضع الٕى النظام ودفع دقيق تقدير توفير يمكنهم الذين والمراقبين التحكم
تناسبي متحكم مثل مشتركة تحكم وحدات تصميم خلال من ، المشكلتين هاتين من كل حل العمل هذا يوضح
الحالات تقدير يمكنه الذي ملاحظ انٕشاء خلال ومن لي، مجموعات على LQR و ، الانزلاقي والوضع ، تفاضلي
مساهمتي تتمثل ، اخٔيرًا كالمان. مراقب الموسع. الإصدار من لي مجموعة اصٕدار مثل لي مجموعات في الموجودة

.(2) SE على تتطور الماء تحت مستقلة مركبة على LG-EKF مراقب على تعتمد PD تحكم وحدة تنفيذ في

تلقائي. الماء تحت مركبة كالمان, مراقب , لي مجموعة تجميع : مفتاحية كلمات

Résumé

Ce travail se concentre sur l’estimation et la commande de systèmes dynamiques évoluant
sur les groupes de Lie, avec des applications en robotique. En effet, la plupart des systèmes
dynamiques évoluent naturellement sur SO(3) et SE(3). Cependant, la conception de
contrôleurs et d’observateurs capables de fournir une estimation précise et de conduire le
système à la position désirée sur les groupes de Lie est assez difficile. Ce travail élabore la
solution de ces deux problèmes, en concevant des contrôleurs communs tels que la dérivée
proportionnelle, le mode glissant, le LQR sur les groupes de Lie et en construisant des
observateurs qui peuvent estimer des états qui existent sur les groupes de Lie tels que la
version du filtre de Kalman étendu pour les groupes de Lie. Enfin, ma contribution est
l’implémentation d’un contrôleur PD basé sur un observateur LG-EKF sur un véhicule
sous-marin autonome évoluant sur SE(2).

Mots clés : Théorie de Lie, Filtre de Kalman étendu, Robot sous-marin autonome

Abstract

This work focuses on the estimation and control of dynamical systems evolving on Lie
groups, with applications in robotics. Indeed, most dynamical systems evolve naturally
on SO(3) and SE(3). However, designing controllers and observers which can provide
precise estimation and drive the system to the desired position on Lie groups is quite
challenging. This work elaborates on the solution of both of these problems, by designing
common controllers such as Proportional Derivative, Sliding Mode, LQR on Lie groups
and by constructing Observers which can estimate states that exist on Lie groups such as
the Lie Group version of the Extended Kalman Filter. Finally, My contribution is the im-
plementation of An LG-EKF observer-based PD-controller on an autonomous underwater
vehicle evolving on SE(2).

Keywords : Lie Group, Extended kalman filter, Autonomous underwater Vehicle.
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Chapter 1. General Introduction

Lie theory,is a fundamental area of mathematics emerged and inspired from the idea of
continuous transformations at the end of the 19thcentury. After many years, its impact
has expanded to other technical and scientific sectors. More particularly, the robotics
community has made a considerable effort in recent years to correctly describe estimate
issues[1], where the need of reliability and precision are in high demand. Accurate state
and measurement modeling is achieved by representing the dynamical system as an ele-
ment in ”Manifold” ,which, are smooth topologic surfaces of the Lie groups on which the
state representations evolve, a simple example of this is representing the attitude of the
system as an SO(3) element, providing us with a non-singular unique representation of
the body’s attitude contrary to the classical representations such as Euler angles represen-
tation or quaternion representation. Furthermore, Once the estimation has been properly
described on the lie group of the dynamical system, a control scheme which drives the
system to the desired state on the lie group is required. And so a generalization of the
classical control methods such as Proportional derivative, Sliding mode, LQR control is
vital [2].

In This work, we overcome the difficulty of designing controllers and observers on lie
groups, delivering accurate estimates and controlling the system to the desired state, by
introducing the lie group version of the kalman filter and the particle filter, and by Dis-
cussing controllers that evolve on the lie group, alongside with a practical implementation
of observer-based controller on autonomous underwater vehicle on SE(2)

This report consists of four chapters. The first, giving general introduction about the
Lie theory and providing explanation about how other calculus ideas can be extended
to the manifold. The second chapter, delves deeper into how can control methods apply
in systems evolving on lie groups such as SO(2), SO(3), SO(3)XR3. PD,Sliding mode
and LQR control on lie groups are discussed alongside with numerical simulation results.
The third chapter, tackles the problem of estimation on lie groups, and provides the lie
version of extended kalman filter and particle filter, an example simulation is given with
results and their discussion . The fourth chapter, we try to apply the developed ideas on a
concrete robotic system, the chosen application is autonomous underwater vehicle ,AUV,
and finally implementing An LG-EKF observer-based PD-controller on an autonomous
underwater vehicle evolving on SE(2).
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Chapter 2. The theory of lie groups

2.1 Introduction :

Lie theory, the theory of Lie groups, and lie algebra are an essential part of mathematics,
which date back to the 19 century, it has been investigated by the mathematician Sophus
Lie, who laid the foundation of continuous transformation groups. Many years later, its
effect has spread across various fields in science and engineering. Recently,We’ve seen a
significant increase in its use in robotics, in control but also in estimation which require the
manipulation and estimation of 3D geometry and especially of euclidean transformation
matrices .This has pushed the robotics community to properly characterize estimation
problems. Which necessitate solutions that are precise, consistent, and stable. Indeed,
fulfilling these objectives necessitates accurate modeling of states and measurements, as
well as the functions that connect them and their uncertainty. This has resulted in de-
signs which involve mathematical objects which are called manifolds which are smooth
topological surfaces. We may build a rigorous calculus based on the lie theory to han-
dle these uncertainties, derivatives and integrals without losing any precision whatsoever.
These efforts have been concentrated on the well-known two manifolds which are SO(3)
and SE(3)
Lie groups, on the other hand, are by no means simple and represent very abstract cre-
ations for the vast majority of roboticists, making them difficult to understand and em-
ploy.

In contrast,in lie theory for robotics it is frequently not necessary to use the theory
to its full potential, and therefore an effort of selection of materials is required which
is the goal of this first chapter. The recent research on Lie groups provides a handful
introduction to lie group theory such as [1] ,[3] and also [4], [5], [6] which provide a good
introduction to the topic. In this chapter we will discuss the necessary tools that the lie
group theory provides and its powerful utility in expressing rigid body rotations SO(3),
and rigid body motion SE(3), we will also elaborate more on the tangent space related
to the Lie group, along with the relationship between them, calculus and uncertainty are
also expressed in this chapter

2.2 Lie groups :

Before we define what a Lie Group is we should first define two mathematical concepts
which are groups and manifolds
Group : Mathematicians invented the concept of a group to capture the essence of sym-
metry. The collection of symmetries of any object is a group, and every group is the
symmetries of some object.More formally, a group is a set equiped with an operation or
algebraic structure where every element whithin it obeys a certain rules which are :

Intern Law :a, b ∈ G→ a ∗ b ∈ G

Associativity : a, b, c ∈ G→ (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity element : ∃e ∈ G tel que pour a ∈ G a*e = e*a = a
Inverse element : ∀a ∈ G ∃ un b tel que a ∗ b = b ∗ a = e

17



Chapter 2. The theory of lie groups

Lie groups:
Lie groups are elements which perserve the structure of a group, but are also a differen-
tiable manifold, a manifold means that it is a topological space which locally resembles
the eucledian space near each point
Action of a Lie group : Importantly, Lie groups have the potential to transform ele-
ments of other sets, producing e.g. rotations, translations, scalings, and combinations of
them. These are extensively used in robotics, both in 2D and 3D. The formal definition
of action of a lie group is as follows :
we define the action of a group G on another set V if it satisfies the next properties :

••••• identity : e.v = v

• Compatibility: (g ∗ g′).v = g.(g′.v)

2.3 Examples of Lie groups :

Figure 2.1: a geometric view of a lie group and its tangent space ”Lie algebra”

Common examples of Lie groups include Rotation matrices SO(3) and the group of rigid
motion SE(3) which will be cited here :

2.3.1 Complex numbers :

Our first example of Lie group, which is the easiest to visualize, is the group of unit
complex numbers under complex multiplication with the form : z = cos(θ) + isin(θ)

which is in fact a group which could be verified by the proporties cited above
Action : the group action is that it rotates other complex numbers by an angle θ
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Figure 2.2: complex numbers Lie group

2.3.2 Special Orthogonal groups SO(3) :

the Special Orthogonal group is defined as :

SO(3) = {R|RT ∗R = I} (2.1)

However, SO(3) is not a valid vectorspace, despite the fact that the set of all matrices
may be demonstrated to be a vectorspace. Because SO(3) is not closed under addition,
adding two rotation matrices does not yield a valid rotation matrix:

and
R1 +R2 /∈ SO(3) (2.2)

This set however can be proven to have the structure of a Lie group, which again
proves the utility of the theory.

2.3.3 Special Eucledian group SE(3):

Another important example in robotics is the set of rigid motion transformation which is
defined as :

SE(3) = {
[
R p

0 1

]
|R ∈ SO(3)} (2.3)

This group presents the rigid body motion since it presents both the attitude and the
position of the system at the same time, this description proves to be very useful in
robotics.
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2.4 Lie Algebra :

To be able to visualize the idea of Lie Algebra, one has to regard the concept of a manifold
as a smooth surface or hyper-surface with no edges or spikes in it , In robotics, we say
that our state vector evolves on this surface meaning that the surface is determined by
the state constraints. From this, one can deduce that since the lie group is manifold which
looks the same at each point then the tangent space at any point is the same.A special
tangent space is the tangent space at the identity point which is also called Lie Algebra.
More formally, given X(t) a point moving on a manifold M, its velocity Ẋ = ∂X

∂t
belongs

to the tangent space at that point which we denote TXM

Lie Algebra :
Lie algebras can be defined locally to a point X, establishing local coordinates for

TXM . We shall denote elements of the Lie algebras with a ‘hat’ decorator. To be more
precise, a lie algebra is a vector space ,which means that there exists a vector space Rm

with m ∈ N to which the lie algebra is isomorphic to. This vector space has Lie Brackets,
which is governed by a law, which must meet the following criterias:

Bilinearity :[ax+ by, z] = a[x, z] + b[y, z]et[x, by + cz] = b[x, y] + c ∗ [x, z]
alternativity : [x, x] = 0

Jacobian identity : [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

anti-commutativity: [x, y] = −[y, x]

Figure 2.3: The lie algebra

The utility of a tangent space is that it is a vector space so that we can use all the linear
algebra developed but also its potential is that it can fully represent the lie group.
The Lie Algebra’s elements have nontrivial structures(Skew-Symmetric), but the most
important property for us is that they can be written as linear combinations of some
base elements and are isomorphic to Rn . It is then convenient to manipulate only the
coordinates as vectors in Rm which we will simply refer to as τ

Hat : Rn → m
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V ee : m→ Rn

Vectors in Rn are handier since they just require less memory to store which means less
computaion and hence it is preferred in our simulation over the lie algebra m.
in the next sections we’ll investigate the relationship between the Lie group and the Lie
algebra.

2.5 Exponential Map:

The exponential map has to be thought intuitively as the lie algebra wrapping the lie
group, and it allows us to precisely transfer elements of the Lie algebra to the group
which wrap the tangent element around the manifold in a large arc or geodesic. The
inverse operation of this is the log() ,the unwrapping operation. more formally :

••••• m : is the lie algebra

• M : is the lie group

exp : m→M

log : M → m

The totally convergent Taylor series is used to obtain closed forms of the exponential
in multiplicative groups.

exp(τ̂) = ϵ+ τ̂ + 1
2!
τ̂ 2 + 1

3!
τ̂ 3 + ...

From this, noting that this is the convenient exponential for matrices, one can deduce the
following key properties of the exponential map drived from [1]:


exp((t+ s)τ̂) = exp(tτ̂)exp(sτ̂)

exp(tτ̂) = exp(τ̂)t

exp(−τ̂) = exp(τ̂)−1

exp(Xτ̂X−1) = Xexp(τ̂)X−1

which represent powerfull properties which we will make use of later

2.5.1 The capitalized Exp and Log :

the capitalized Exp and Log are convenient shortcuts to map vector elements τ ∈ Rn

directly to elements X ∈M we have :
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Figure 2.4: The relationship between the lie algebra and its lie group

Exp : Rm →M ; τ → X = Exp(τ)

Log : M → Rm; X → τ = Log(X)

Note: It should be noted that the exponential operation is surjective-only meaning
that we can obtain the same element G ∈M from different elements from the lie algebra
g ∈ m, this property is important because it allows us to define the inverse mapping which
is the logarithmic map. To analyse this more concretely we will use the following from
[7]:

exp(Φ̂) = exp(ϕâ) (2.4)

= 1 + ϕâ+
1

2!
ϕ2ââ+

1

3!
ϕ3âââ+ ... (2.5)

= aaT + (ϕ− 1

3!
ϕ3 +

1

5!
ϕ5)− (1− 1

2!
ϕ2 +

1

4!
ϕ4) (2.6)

= cos(ϕ)1 + (1− cos(ϕ))aaT + sin(ϕ)â = C (2.7)

and since
ââ = −1 + aaT (2.8)

âââ = −â (2.9)

showing the last proposition that the exponential map is surjective only and so :

C = exp((ϕ+ 2πm)â) (2.10)

if we limit the angle of rotation to : |ϕ| < π we can define the logarithmic map as
follows :

ϕ = cos−1(
tr(C)− 1

2
) + 2πn

we should also mention the Rodriguez formula for calculating the exponential mapping :

R = I + (sin(θ)K) + (1− cos(θ))K2 (2.11)
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2.6 Plus and Minus operators :

In order for us to define derivatives on matrix lie groups, we first have to inverstigate
the operators plus and minus, first we define a plus operator which operates between
an element X in the lie group and a vector in Rm, intuitively speaking this operator
when projected to the rotation matrices group it propagates the rotation according to
the angular velocity (the lie algebra) while the minus operator represents the actual
difference between the two matrices since the operation R2 − R1 doesn’t signifie any
meaning information about the closessness of those two matrices. These operators are
used in the discrete case because they keep the new generated matrix in the same lie
group and thus it is perserving the structure of the lie group
The plus and Minus operators: are defined as follows X,Y ∈M and τ ∈ Rm:

X ⊕ τ = X ∗ exp(τ̂) (2.12)

X ⊖ Y = X−1 ∗ Y (2.13)
Note: It should be noted that there are two versions of this operators, the precedent
being the left Plus-Minus Operator and the next one is the right Plus-Minus Operator :

X ⊕ τ = Exp(ετ̂) ∗X (2.14)

X ⊖ Y = Y ∗X−1 (2.15)

It must also be noted that the left operator is expressed in the global frame(the lie
algebra) while the right operator is expressed in the local frame (the tangent space at
that perticular point X ∈ M), the link between the global and the local tangent spaces
and the relationship between the two operations is what leads us to the concept of the
Adjoint .
We will use the adjoint matrix often as a way to linearly transform vectors of the tangent
space at X onto vectors of the tangent space at the origin, Adx, and the adjoint matrix is
the following :

Adx(τ) = XτX−1 (2.16)
A more elaboration on adjoints can be found on the [1]

2.7 Derivatives and integrals on Lie groups :

We focus on derivatives defined as Jacobian matrices translating vector tangent spaces
among the various approaches to express derivatives in the context of Lie groups. This is
sufficient in this case because uncertainties and increments can be accurately and simply
defined in these spaces. The formulas for uncertainty management in Lie groups will
resemble those in vector spaces if these Jacobians are used.The derivative form is derived
from the classical definition of a derivitive with a slight difference in the plus and minus
operators:

XDf(X)

DX
= lim

h→0

f(x⊕ h)⊖ f(x)

h
(2.17)
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which can be simplified to the following form :
XDf(X)

DX
= lim

τ→0

∂Log(f(X)−1 ∗ f(x ∗ Exp(τ))

∂τ
(2.18)

This definition obviously doesn’t seem intuitive at first, and so an example is provided :
Example : Calculating the jacobian of this simple function [1]

f : SO(3)→ R3 (2.19)

f(R) = Rp (2.20)
XDf(X)

DX
= lim

θ→0

f(x⊕ θ)⊖ f(x)

θ
XDf(p)

DX
= lim

θ→0

(R⊕ θ)p⊖Rp

θ
XDf(p)

DX
= lim

θ→0

(RExo(θ))p−Rp

θ
XDf(p)

DX
= lim

θ→0

(R(I + [θ]x)p−Rp

θ
XDf(p)

DX
= lim

θ→0

R[θ]xp

θ

and taking into consideration that :

[a]xb = −[b]xa ifa, b ∈ R3 (2.21)

from this we can conclude that :
XDf(p)

DX
= lim

θ→0

−R[p]xθ

θ

and so :
XDf(p)

DX
= −R[p]x

And if we were to choose the right plus-minus one can make of the next property:
εDf(X)

DX
AdX = Adf(X)

XDf(X)

DX
(2.22)

Discrete integration in manifolds :
The continuous-time integral of constant velocities v ∈ TX0M onto the manifold is per-
formed by the exponential map X(t) = X0Exp(vt). Non-constant velocities v(t) are
usually segmented into piecewise constant bits v ∈ TXk−1

M , of short length δtk, and the
discrete integral is written. as

Xk = X0 ◦ Exp(v1δt2) ◦ Exp(v2δt3).... (2.23)

or it can be obtained recursively using :

Xk = Xk−1 ◦ Exp(vkδtk) (2.24)

This recursive integration method is proved to keep the next k state within the manifold.
This integration method will be used in discrete simulation via Matlab.
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2.8 Uncertainty

In robotics, many estimation algorithms such as Kalman filter or Particle filter use prob-
ability concepts which are based on uncertainty in the vectorspace Rn. To build an
equivalent structure on the Matrix Lie group, a rigorous mathematical framework should
be built .
Local perturbations at a certain point X ∈ M in the tangent space TXM using Right ⊕
and ⊖ :

τ = X̄ ⊖X ∈ TX̄M (2.25)

Defining the perturbation around a point on the lie group allows us to define covariance
matrices which can be properly defined through the expectation operator E[.]

E(ττT ) = E((X ⊖ X̄)(X ⊖ X̄)T ) ∈ Rm∗n (2.26)

defining covariances allows us to define gaussian distribution on Lie groups

Figure 2.5: uncertainty of lie group elements

2.9 Conclusion :

Lie theory is a complicated subject, however, in robotics, it is frequently the case that
we only need to explore a small subset of material that covers the essential parts of the
theory which we can use later on. This chapter provides exactly this, by introducing what
lie groups are ,and what are the the most common examples, and by developing calculus
and probability concepts on lie groups. This helps us to be equipped for the next chapter.
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Chapter 3. Control Design On Lie groups :

3.1 Proportional Derivative Control on the Eucle-
dean group :

3.1.1 Introduction :

In this section, we will study the stabilization problem for control systems which evolve
on the SE(3) and SO(3) Lie groups based on lyapunov stability in the aim of generalizing
the classical Propotional derivative (PD) Control to the lie group Version. The analysis
presented here will focus on systems of first and second order with one actuator for each
degree of freedom, the geometric properties of Lie groups and lie algebras is used to
generalize the classical approach. The compactness of the lie groups SO(3) and SE(3)
(meaning that the space that they exist whithin have no holes) results in a natural metric
structure. However, the definition of a metric is not unique which gives more freedom in
the control design.
We here consider the problem of controlling a mechanical system whose configuration
space is a matrix Lie group, an analysis of the stabilization problem is provided for the
fully actuated case, in the hope of yielding a more advantageous results by using the
geometric approach. Recent research shows that this is the case and that control schemes
that use Lie theory outperforms conventional control methods in terms of response time
and complex maneuver behaviors such as in [8]. [9] shows a robust attitude controller
based on SO(3).
In this chapter we will introduce classical control methods on Matrix lie group for SO(3),
SO(2). Such as [10] and for sliding mode, [11], but most importantly the following article
which subsliding surfaces and control on them [2]for LQR :[12], [13], another general
purpose control articles has also been useful for the derivation of the following such as:
[14],[15] [16],[17]

3.1.2 First order systems and second Order systems on SO(3) :

We have to construct the mathematical background behind the metric concepts on Lie
groups :
Metric properties on compact Lie groups :
On any Lie group C, the Killing form ⟨X,Y ⟩k is defined as the bilinear operator on gg:

⟨X,Y ⟩k = tr(adX , adY ) ∀X,Y ∈ g. (3.1)

An inner product on the Lie algebra g is defined based on the Killing form,above so that
it satisfies the property of Ad-invariance which is:

⟨X,Y ⟩ = ⟨adgX, adgY ⟩ ∀g ∈ G. (3.2)

This gives the additional structure of a Riemannian manifold to the group G, Although
this ad-invariance property doesn’t seem intuitively useful at first but it is fundemantal
to adress the following propositions which will be used to analyse the stability of the 1st

and 2nd order systems
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Proposition 1[4] :

Regarding the Ad-invariant metric, the distance between the element g and the identity
eG = I ∈ G is given by the norm of the logarithmic function :

||g||G = ⟨log(g), log(g)⟩
1
2 (3.3)

Theorem [4]:

Let G be a compact Lie group
with bi-invariant metric ⟨., .⟩ . Consider a smooth trajectory g(t) ∈ G, such
that g(t) never passes through a singularity of the exponential map. then :

d

dt
||g||2G = ⟨log(g), V b⟩ = ⟨log(g), V s⟩ (3.4)

where V s and V b are the angular velocity described in the local and global frame
respectively
Once these two theorems are established, We start our analysis for stabilization of systems
which evolve on a compact, semi-simple Lie group. We will focus our attention first on
systems which evolve on SO(3) described as in the equation :

Ṙ = RV b (3.5)

Consider the natural candidate Lyapunov function

W (g) =
1

2
||g||2SO(3) (3.6)

Vb is our control quantity which should be within the lie algebra so(3) , this allows us to
define a proportional control law similar to the case of classical proportional control :

V b = −kplog(g), kp > 0 (3.7)

which leads to
Ẇ (g(t)) = ⟨log(g),−kplog(g)⟩ = −2kpW (3.8)

by using the lyapunov second theorem one can conclude that the exponential stability
is assured for all initial conditions g0, a simulation of this system is provided after the
analysis of the second order system .

3.1.3 Second Order systems :

The first order system utilizes the speed as the control input and not the torques and
forces, while dynamical systems and standard control problems such as problems in
robotics and mechanics require a representation which is more rich to consider the dynam-
ics of the system and to include the forces which is the goal of representation of second
order systems which has the next form :
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{
Ṙ = RV b

V̇ b = f(g, V b) + U

The system is fully actuated by U ∈ so(3) where f(g, V b) ∈ so(3) is the internal drift
which depend often on the rotational inertia.
, A Proportional Derivative control can be used on the Lie group, and so in addition to
the last control input used in V b a derivative term must be added which is proportional
to the velocity V b

Theorem 2: [4]
Given the second order system equations, and let Kp and Kd be symmetric, positive
definite gains. then the control law :

U = −f(g, V b)−Kplog(g)−KdV
b (3.9)

exponentially stabilizes the state g at I ∈ SO(3) taking into consideration the initial
conditions in the following equation :

λmin(Kp) >
||V b(0)||2

π2 − ||g(0)||2SO(3)

(3.10)

where λmin(Kp) is the minimus eigenvalue of Kp

Proof :
Taking the next Lyapunov Candidate :

We =
1

2
⟨
[
log(g)

V b

]
,

[
idSO(3) ϵidSO(3)

ϵidSO(3) K−1
p

] [
log(g)

V b

]
⟩SO(3)SO(3) (3.11)

The closed loop system satisfies the next equations :{
Ṙ = RV b

V̇ b = −Kplog(g)−KdV
b

substituting the X = log(g) ∈ so(3), we obtain{
Ẋ =

∑∞
n=0

(−1)nBn

n!
adnX(V

b) = BXV

V̇ = −KpX −KdV

Differentiating the lyapunov function gives:

d

dt
We = ⟨X,BxV ⟩+ ⟨V,K−1

p V̇ ⟩+ ϵ⟨BxV, V ⟩+ ϵ⟨X, V̇ ⟩ (3.12)

= ⟨X,V ⟩+ ⟨V,K−1
p (−KpX −KdV )⟩+ ϵ⟨BxV, V ⟩+ ϵ⟨X,−KpX −KdV ⟩ (3.13)
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= -ϵ⟨X,KpX⟩ − ⟨V,K−1
p KdV ⟩ − ϵ⟨X,KdV ⟩ + ϵ⟨BxV, V ⟩(3.14)The last term can be

upper bounded by ϵ⟨V, V ⟩ using lemma 11 in [10] and hence the proposition becomes :

d

dt
Wϵ ≤ −

1

2
⟨
[
X

V

]
, Qϵ

[
X

V

]
⟩SO(3)SO(3) (3.15)

where
Qϵ =

[
ϵKp ϵKd

2

ϵKd

2
K−1

p Kd − ϵidSO(3)

]
(3.16)

therefore local exponential stability is proven.
we’ll show that the condition cited above about the minimum eigenvalue provides a suf-
ficient condition to avoid singularities in the logarithmic map .

W (g) =
1

2
||g(t)||2SO(3) ≤ W0(t) ≤ W0(0) (3.17)

=
1

2
||g(0)||2SO(3) + ⟨V b(0), K−1

p V b(0)⟩SO(3) (3.18)

1

2
||g(0)||2SO(3) + λmax(K

−1
p )||V b(0)||2 (3.19)

1

2
||g(0)||2SO(3) +

1

λmin(Kp)||V b(0)||2
<

π2

2
(3.20)

which means that g(t) can never reach π and hence the logarithmic function can never be
sigular completing the proof

3.1.4 Algorithms and simulation :

First Order system A library containing the operations discussed in Chapter 1 in lie
groups has been built for SO(3),SO(2),SE(3),SE(2) via matlab :

Algorithm 1 Control of a first order system on SO(3) :
Data: u, θd, wd, Xdes

Result: X̂k

1 dt← 0.1

N ← 500

kp ← 0.1

initializing the first orientation X0 = eye(3)

2 while iteration <= N do
3 X ← exp(û) ∗X;

u← −dt ∗ kp ∗ log(Xdes
′ ∗X)

k ← k + 1

Results : The numerical simulation via Matlab is shown here
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Figure 3.1: Angle :θ Figure 3.2: Control effort u

Second Order system In the first order system, the desired orientation is sufficient
to design the controller, however this is not the case for the second order system, which
needs both desired orientation and desired angular velocity:

Algorithm 2 Control of a Second order system on SO(3) :
Data: u, θd, wd, Xdes, wd, J

Result: X̂k

4 dt← 0.1

N ← 500

kp ← 0.2

kd ← 0.3

X0 = eye(3)

w0 = [0, 0, 0] initializing the first orientation and angular velocity
5 while iteration <= N do
6 R← exp(û) ∗R

w ← J−1((Jw)w + u)

Re = R′
d ∗R

we = w −R′
e ∗ wd

u← −(Jw)w + J(−kplog(Re)− kdwe)

k ← k + 1

Results : The numerical simulation via Matlab is shown here

Figure 3.3: Theta Error Figure 3.4: Angle θ
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Figure 3.5: the control effort U

3.2 Sliding Mode control on SO(3) :

Sliding mode control is an efficient and robust tool to cast for the uncertainties in the
model of the plant and to reject disturbances which are known feature that has been ex-
tensively documented in the literature. The design of such a controller is well understood
and it is based on constraining the trajectories of the system to a specified linear surface
which would reduce the order of the system and granting it to exist on the desired surface
by making it attractive. In contrast, Manifold are, in mathematics, a generalization of
the notion of a curved surface, so one can think that this notion can be easily extented
to systems which exist on Lie groups.
There are some systems which do not evolve naturally on the euclidean space. It is possi-
ble that the state space isn’t linear but have another key algebraic features. SO(3) which
is discussed earlier, representing the attitude of rigid bodies, among other representations
such as Euler angles, quaternions, and rotational matrices. Singularities can be found in
euler angle parametrization, that is, points where the Jacobian of the coordinate chart
loses rank, another inconvenience is that euler angles are not unique which leads to the
unwinding phenomenon. Quaternion representation for the atittude are global with no
singularity but they are still non-unique which makes SO(3) matrices a very interesting
example. In such a case, it is necessary to create a more sliding surface which perserves
the Lie group structure, that is a sliding surface that is a Lie subgroup rather than just
a linear subspace. In this section a sliding surface is suggested.

3.2.1 Atittude dynamics :

The state space M of the attitude dynamics consists of the set of possible attitudes,
SO(3), together with all possible angular velocities, R3, so that M = SO(3) X R3, we
suppose that the system has a resisting inertia which we denote as J = JT > 0

definition : Here we refer to wx as equivalent to the hat operator on w and so wx = ŵ{
Ṙ = Rwx

Jẇ = (Jw)w + u+ d
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where u, d ∈ R3 are the control and disturbance torques.
the dynamics of the desired attitude is :

{
Ṙd = Rdw

x
d

we = w −RT
e wd

the attitude and angular velocity error are as follows :

{
Re = RT

dR

we = w −RT
e wd

Dynamics of the error :

Ṙe = Rew
x
e

Jẇe = J(ẇ − ṘT
e wd −RT

e ẇd)

Jẇe = (Jw)w + JRT
e ((Rewe)

xwd − ẇd) + u+ d

and hence the control law can be extracted as follows :

u = −JRT
e ((Rewe)

xwd − ẇd) (3.21)

which results in the following system :

Jẇe = (Jw)w + u+ d (3.22)

Stability analysis : A refinement of the LaSalle invariance principle for systems
specified on manifolds will be used to prove almost global stability, we can refer to [10].
we can conclude that the system is almost global asymptotically stable.

3.3 Sliding-Mode control on SO(3)XR3 :

Figure 3.6: The sliding surface
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First of all we should prove that SO(3)XR3 is a lie group provided the following opera-
tions:

(R1, w1).(R2, w2) = (R3, w3) (3.23)

are defined as follows :
R3 = R1R2 (3.24)

wx
3 = Pa(R1w

x
2 +RT

2w
x
1 − 1/2[R1, R

T
2 ])

where Pa(R) = 1/2(R−RT ) is the projection on the anti-symmetric matrices.
The proof that this is in fact a Lie group is done simply by verifying the group axioms
since M is already a smooth manifold
The sliding mode surface :
The sliding surface is introduced in the following proposition. Consider the sliding variable
δ : M → R3 this sliding variable is extracted from [5] and is defined as :

δ(Re, we) = we + vee(Pa(Re)) (3.25)

where vee stands for :
vee : m→ Rm

and the surface is the set which contains the following points

D = (Re, we) ∈M |δ(Re, we) = 0 (3.26)

Proof : The smoothness of D is inherited from the smothness of both Pa and vee operator.
We now verify the group axioms.

D = δ(I, 0) = 0 + vee(Pa(I)) = 0 (3.27)

D is closed under multiplication , and it can be verified using the lie bracket properties
D is closed under inversion :

δ(RT ,−w) = −wx + Pa(R
T ) = −wx − Pa(R) = 0 (3.28)

Stability of the Reduced-Oder System : When we constrain the system to the
constraint in the surface δ(Re, we) = 0, we obtain the reduced-Order system :

Ṙe = −RePa(Re) (3.29)

The identity Re = I is an almost globally stable equilibrium.
Proof : We will use the lyapunov candidate developped in [2] which is :

VR(Re) =
1

2
tr(I −Re) (3.30)

This function is obviously a a lyapunov function since VR(Re) ≥ 0 and so the time
derivative of it is :

V̇R(Re) =
1

2
tr(RePa(Re)) (3.31)

V̇R(Re) =
1

2
⟨RT

e , Pa(Re)⟩ (3.32)

V̇R(Re) =
1

2
⟨−Pa(Re) + Ps(Re), Pa(Re)⟩ (3.33)

34



Chapter 3. Control Design On Lie groups :

V̇R(Re) = −
1

2
⟨Pa(Re), Pa(Re)⟩ (3.34)

which leads finally to :

V̇R(Re) = −
1

2
⟨vee(Pa(Re)), vee(Pa(Re))⟩ (3.35)

V̇R(Re) = −||vee(Pa(Re))||2 ≤ 0 (3.36)

and hence proving the stability of Re = I

The Reaching Law :
The control law which enforces the system to the desired surface δ(Re, we) = 0 is

v(Re, we, w) = −K(we, w)
δ(Re, we)

||δ(Re, we)||
(3.37)

with :
K(we, w) ≥ ||J ||2||w||2 + ||we||+ d+ δ (3.38)

in this case we suppose the states are bounded.
Proof :
The lyapunov candidate function :

Vδ(δ) =
1

2
δTJδ (3.39)

The time derivative :
V̇δ(δ) = δTJ(ẇe + vee(Pa((̇Re)))) (3.40)

V̇δ(δ) = δT ((Jw)w + vee(Pa(Rew
x
e )) + d+ v) (3.41)

since :
||(Jw)w|| ≤ ||J ||2||w||2 (3.42)

and since :
⟨v, w⟩ = 1

2
⟨vx, wx⟩ (3.43)

we have :
||vee(Pa(Rew

x
e ))|| = ||we|| (3.44)

and so we conclude that :

V̇δ(δ) ≤ −||δ||(K(we, w)− ||J ||2.||w||2 − ||we|| − d̄ (3.45)

and taking into consideration the previous condition on K we finally have :

V̇δ(δ) ≤ −c

√
Vλ(λ)

λmax(J)
(3.46)

which implies that the system using this control law converges in finite time to the desired
state.
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3.4 Algorithms and Simulation :

Algorithm 3 Control of a Second order system on SO(3) :
Data: u0, θd, wd, Xdes, wd, J

Result: X̂k

7 dt← 0.1

N ← 500

K ← 50

X0 = eye(3)

w0 = [0, 0, 0] initializing the first orientation and angular velocity
8 while iteration <= N do
9 R← exp(û) ∗R

w ← J−1((Jw)Xw + u)

Re = R′
d ∗R

we = w −R′
e ∗ wd

if iteration == [N
2
]: change desired vector to w = [0; 0;−π

2
]

S = we + vee(1
2
Re −RT

e )

V = −K ∗ S/norm(S)

u = −J ∗RT
e ∗ ( ˆRe ∗ wd ∗ wd + V )

k ← k + 1

Results : The numerical simulation via Matlab is shown here

Figure 3.7: theta θ
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Figure 3.8: the control effort U

Figure 3.9: the error

3.4.1 Discussion :

It shall be noted that this sliding mode controller which is based on rotational matrices
which are singularity free and unique.In contrast, designs which use quaternions suffer
from being non-unique, while singularity still occurs in the euler angle representation,
which makes designs that include rotation matrices better. This controller helped get rid
of the unwinding phenomenon, and although this controller since it is based on the sliding
mode concept then it has its own inconveniences as we can see the shattering phenomenon
appearing in this case.
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3.5 LQR Control on SO(2) :

3.5.1 Introduction :

Since we have explored the traditional Proportional derivativa Controller, alongside an-
other robust controller such as sliding Mode control, the right next thing to explore is
an optimal controller which is in this case LQR control on SO(2). In this section we are
concerned with the optimal control scheme for controlling a linear system.
One of the oldest and most researched topics in control theory is the optimum regulation
of a continuous time process.In this section an optimal linear controller is derived on the
SO(2) manifold using a modelization of point mass system with rotational damping on the
SO(2) manifold, formulated for optimal control, although the literature for analysing and
discussing optimality in the lie Group is properly established and developped. Here we
will discuss a practical and simple example as to show once again the powerfull extention
to which Lie group theory can reach

3.5.2 System Dynamics :

Since we have established the Mathematical background for the Lie group theory for all
SO(2), we’ll model a basic SO(2)-defined system for optimum control. It is customary to
modify the state x and the input u by substracting off a desired, trajectory xref ,
The point mass particle that will be used in this section is a particle constrained on the
unit circle, its state on the circle can be described completely by two parameters which
are : orientation θ and angular velocity w, based on [13] we will express the state as the
following instead of regular mechanical modelization on R3 :

x =

[
Φ

w

]T
u = Γ (3.47)

Instead of θ we will express the orientation of the particle as the rotation matrix Φ ∈ SO(2)

to avoid problems such as angle wrapping, and since Φ is not an element of a vectorspace,
we will be using the operators on the lie group, therefore the difference between the desired
state and the current state will be as follows :

x̃ = x⊖ xdes =

[
log(ΦΦ−1

ref
v

w − wref

]
(3.48)

where as discussed earlier the term log(ΦΦ−1
ref ) represents the difference between the de-

sired and the actual state.
Dynamics of the error :
as it is shown here [13], it is quite obvious that

Φ̇ = ŵ ∈ so(2) (3.49)

Φ̇ =

[
0 −w
w 0

]
∈ so(2) (3.50)
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and hence the state and its derivative is as follows :

ẋ =

[
˙̃Φ
˙̃w

]
=

[
w

− b
J
w + Γ

J

]
(3.51)

the equations of the rotational acceleration are obtained by using Newton’s second
law to a rotating system with an angular velocity damping

3.5.3 LQR Control :

Based on [13],The LQR control method here operates on a dynamic control system by By
minimizing an appropriate cost function. which is the following :

C =
1

2

∫ ∞

0

xTQx+ uTRudt (3.52)

where u = −Kx(t)

K = R−1BTP (3.53)

and P a matrix which satisfies :

−PA+ ATP + PBR−1BTP −Q = 0 (3.54)

with Q and R are matrices which are positive definite[
˙̃Φ
˙̃w

]
=

[
w − wd

− b
J
w +

J
− (− b

J
wd + d

J
)

]
[

w̃

− b
J
w̃ + τ

J
− τ̃

J

]
= f(x, u)

Linearizing the system by : A = ∂f
∂x

, B =∂f
∂u

3.6 Algorithm and Simulation :

K is derived from [13]
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Algorithm 4 LQR Tracker on SO(2) :
Data: Q,R, b, J, θd, A,B, x0, w0, Td, wd

Result: X̂k

10 dt← 0.1

N ← 500

K ←
[
10 5.378

]
X0 =

[
1 0

0 1

]
w0 = 0 initializing the first orientation and angular velocity

11 while iteration <= N do
12 Φd = exp(θ̂d)

13 x̃ =

[
log(ΦΦ−1

d )v

w − wd

]
Γ1 = −Kx̃

Γ = Γ1 + Γd

Φ(t+∆t) = exp(w(t)∆t)Φ(t)

w(t+∆t) = w(t) + ( 1
J
Γ− b

J
w(t))∆t

k← k + 1

Results : The numerical simulation with matlab has provided the next results :

Figure 3.10: The angular velocity
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Figure 3.11: Theta θ

Figure 3.12: The Torque Γ

3.6.1 Conclusion :

Traditional control methods has the potential to be converted to their lie group version,
this can be done by using various methods. In this chapter, we discussed precisely that
by introducing three fundemantal classical methods the proportional derivative, sliding
mode, and LQR control.
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4.1 Introduction :

State estimate is useful in almost every field of engineering and research. Any subject
concerned with mathematical modeling of its system is a plausible (if not unavoidable)
candidate for state estimation.The sole limit to the uses of state estimation theory is the
engineer’s creativity, which is why it has become such an extensively investigated and
applied topic in recent decades.
Estimation is the dual problem of control, and many robotics applications rely on the
ability to estimate the system properly, such as pose estimation, object tracking, vision
based estimation ...etc. because of the expanding usage of potentially fault, low-cost
sensors, and an ever growing deployment of robotic algorithms in consumer products
which operate in potentially unknown environments. It has become a necessity to de-
sign algorithms which can withstand strong non linearities, high uncertainty levels, and
numerous outliers. However, particularly in robotics, the Gaussian assumption is widely
spread across areas in reseach because of its applicable utility, the optimal problem for
estimation is also taken into consideration which gave rise to the famous Kalman filter
describing a recursive solution to the discrete-data linear filtering problem for linear sys-
tems, The Kalman filter has been extensively studied and applied, notably in the field of
autonomous or assisted navigation, due to its efficiency both in performance and com-
puationally. Many variations of the Kalman filter has been introduced into the world of
estimation such as the extended Kalman filter for Non linear systems, Unscented kalman
filter a suboptimal non-linear filtration algorithm and many others. However, the kalman
filter only treats estimation problems with possess errors that are gaussian distributed,
this problem is solved with introducing another filter which is called the Particle filter.
Although these estimation methods are useful, they have the disadvantage of only evolv-
ing on linear vector spaces, in this section we will treat all the algorithms cited above
with the addition of discussing filters which evolve on Matrix Lie groups. This chapter is
constructed with the help of the following [18] ,[19],[20],[21], [22], [23],[24], [25],while for
particle filtering the following are used : [26],[27],[28],[29]

4.2 Kalman Filter :

The Kalman filter addresses the problem of estimating the state x ∈ Rn of a discrete time
process which is governed by a linear stochastic difference equation

xk+1 = Akxk +Buk + wk (4.1)

The measured outputs are also stochastic with a measurement z ∈ Rm with noise vk

zk = Hkxk + vk (4.2)

the noises vk and wk are both process noise with the next normal distribution with co-
variance E(wkw

′
k) = Q and E(v′kvk) = R :

p(w) = N(0, Q)

p(v) = N(0, R)
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the intuitive idea behind the Kalman Filter is that it estimates the state with optimal
confidence between the measurements or the model of the state space. The kalman filter
provides good estimation properties and is optimal in the special case when the process
is linear and measurement follows a Gaussian distribution The filter evaluates the state
of the process at a given point in time and subsequently receives feedback in the form
of (noisy) measurements. This procedure makes the discrete filter a two step algorithm
which start by propagating the state and the probability covariance at time xk to the
state at time step xk+1 using the model, this step is called prediction and the second step
is correcting the estimated state given the measurements obtained by the noisy sensors
in an optimal way which is called correction

4.2.1 Algorithm:

the Algorithm below covers both the steps denoted before

Algorithm 5 Kalman filter :
Data: Ak, B, Uk, vk, wk

Result: X̂k

ˆXk+1
−
= AkX̂k +Buk

ˆPk+1 = AkP̂kA
T
k +Qk

Kk = P−1
k HT

k (HkP
−1
k HT

k +Rk)
−

X̂k = ˆXk+1
−
+K(zk −Hk)X̂k

−

Pk = (I −KkHk)P
−
k

4.3 Extended Kalman filter :

The Non Linear Process:
one of the inconveniences of a kalman filter, is that it only works with linear systems,
but most real world applications are non-linear which make the kalman filter useless in
such situations. However, such an inconvenience is tackeled by introducing the extended
kalman filter which has produced one of the most successful applications .
In Extended Kalman Filter, we can linearize the estimation around the current estimate
using the partial derivatives of the process and measurement functions to compute the
estimates. This time our process is driven by the non-linear stochastic difference equation
which has a state vector x ∈ Rn.

xk+1 = f(xk, uk, wk) (4.3)

zk = h(xk, vk) (4.4)
First we need to linearize the system around the specified point in order to work with a
system akin to the linear system discussed above :

A[i,j] =
∂f

∂x
(x̂k, uk, 0)

B =
∂f

∂u
(x̂k, uk, 0)
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W[i,j] =
∂f

∂w
(x̂k, uk, 0)

H[i,j] =
∂h

∂x
(x̂k, 0)

V[i,j] =
∂h

∂v
(x̂k, 0)

xk+1 = ˜xk+1 + A(xk − x̂k +Wwk

zk = z̃k +H(xk − x̃k) + V vk

4.3.1 Algorithms :

Algorithm 6 Extended Kalman filter :
Data: Ak, B, Uk, vk, wk

Result: X̂k

ˆXk+1
−
= f(xk, uk, wk)

Ak =
∂f
∂x
(x̂k, uk, 0)

Hk =
∂H
∂x

(x̂k, uk, 0)
ˆPk+1 = AkP̂kA

T
k +Qk

Kk = P−1
k HT

k (HkP
−1
k HT

k +Rk)
−1

X̂k = ˆXk+1
−
+K(zk −Hk)X̂k

−1

Pk = (I −KkHk)P
−
k

4.4 Extended Kalman filter on Matrix Lie group:

4.4.1 Introduction :

Throughout the previous chapters we have seen how elements on matrix lie group do not
satisfy the basic operation that we take for granted. This theme continues when working
with random variables, which are typically of the form

x ∼ N(µ, σ) (4.5)

or an equivalent way to represent this is by spliting it into the central or the mean
component and a noisy component which are :µ , ϵ respectively

x = µ+ ϵ, ϵ ∼ N(0, σ) (4.6)

And since all of the components are vectors which are closed under the + operation
forming a vectorspace, this arrangement works. However, in Matrix Lie Groups, this is
not the case since it is not closed under addition and so a new method should be developed
in order to define random variables on Matrix Lie Group
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4.4.2 Gaussian Random Variables and probability density func-
tions On Lie Groups :

The first step to define random variables on a lie group is to exploit the vectorspace
properties of the Lie Algebra, this way we can utilize all the developed concepts from
probability and statistics rather than just building all the theory from scratch. Knowing
this, we can define a variable on SO(3) for example as follows :

C = exp(ϵ̂l)C̄ (4.7)

where ϵ is a random variable in the usual sense and C̄ = exp(Φ) and this simply means that
a probability distribution function on R3 will induce a probability distribution function
on SO(3)

p(ϵ)→ p(C)

we will be mostly interested by the gaussian distribution because it is used for the kalman
filter
the gaussian distribution has the next form for the multivariable case :

p(ϵ) =

∫
1√

(2π3)det(
∑

)
exp(−

1
2
ϵT

∑−1 ϵ)

p(ϵ) is a valid PDF by definition and so :

∫
p(ϵ)dϵ = 1

referring to the first chapter, we have the next property:

dC = |det(J(ϵ))|dϵ

this property leads to :

1 =

∫
p(ϵ)dϵ

=

∫
1√

(2π3)det(
∑

)
ex(− 1

2
ϵT

∑−1 ϵ)dϵ

=

∫
1√

(2π3)det(
∑

)
exp−

1
2
ln(CC̄T )vT

∑−1 ln(CC̄T )v 1

|det(J)|
dC
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Figure 4.1: Probability Distribution on Lie groups

4.4.3 Discrete Extended kalman filter on lie groups :

We utilize the previously developed theory on gaussian distribution on Lie groups in
oreder to develop the next LG-EKF :

4.4.4 System Model :

Since many systems utilize rotation matrices, we can think of the following model as a
rotation matrix controlled by an angular velocity . More formally, the system evolves on
a manifold satisfying the following equations :

Xk = Xk−1expG([Ω(Xk−1, Uk−1) + nk−1]G)

where :
Xk ∈ G, uk−1 ∈ Rm (4.8)

nk−1 is white gaussian noise, Ω : a non linear function
the mesurement model also evloves on Lie group :

zk = h(Xk)expG′([wk]G′)

4.4.5 The D-LG-EKF :

As for the EKF, the D-LG-EKF also has two steps, the first is to propagate the state
obtaining the posterior state , and the second is to update the distribution parameters,
which are µk−1|k−1 and Pk−1|k−1 where µ represents the mean and P is the covariance
matrix.
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4.4.6 Propagation :

The aim of this part is to show how to propagate µk−1|k−1 and Pk−1|k−1 between two
consecutive sensor readings.

4.4.7 mean Propagation :

the mean is updated according to the next equation :

µk|k−1 = µk−1|k−1expG([Ω]G)

4.4.8 Covariance propagation :

Studying the Lie algebraic error propagation yields that the state error on G is expressed
as follows:

expG([ϵk|k−1]) = µ−1
k|k−1Xk

= exp(−[Ω]G)expG([ϵk−1|k−1])

and given the properties cited in the first chapter this leads to the following equation :

= exp([Ω(Xk−1, uk−1) + nk−1]

which results finally by using equations 1 and 2 to the following update :

ϵk|k−1 = Fk−1ϵk|k−1 + Φ(Ωk−1)nk−1

where :
Fk−1 = ad(exp(−Ω)) + Φ(Ωk−1)k−1

Zk−1 =
∂

∂ϵ
Ω(µk−1|k−1exp([ϵ]), uk−1)|ϵ=0

completing the prediction step

4.4.9 Correction :

In this stage, the information coming from the measurement should be used to update or
to correct the posterior estimate of the state X

z̄k = [log(h(µk|k−1)
−1)zk]

z̄k = [log(exp(Hkϵk|k−1)exp([xk])]

where
Hk =

∂

∂ϵ
[log(h(µk|k−1)

−1h(µk|k−1exp([ϵ])))]

and
zk = Hkϵk|k−1 + wk
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we use classical update equations of the Kalman filter to update ϵkk − 1 giving the next
steps :

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Qk)

−1

m−
k|k1 = 0p1 +Kk(zk −Hk) 0p1

P−
k|k = (Id−KkHk)Pk|k−1

mk|k = 0p1
Pk|k = Φ(mk|k)Pk|kΦ(mk|k)

T

4.5 Algorithm and Simulation :

Algorithm 7 D-LG-EKF Algorithm :
Input :µk−1|k−1, Pk−1|k−1, Uk−1, zk
Output : µk|k, Pk|k
Propagation
µk|k−1 = µk−1|k−1expG([Ω]G)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Φ(Ωk−1)Rk−1Φ( ˆΩk−1)

T

Kk = P
k|k−1H

T
k (HkPk|k−1H

T
k +Qk)−

m−
k|k = Kk([Log(h(µ

−1
k|k−1zk))])

µk|k = µk|k−1exp([mk|k])

Pk|k = Φ(m−
k|k)(IdI −KkHk)Pk|kΦ(m

−
k|k)

4.5.1 Simulation :

The targeted problem here is Kalman filter for landmark-based localization for a robot in
2D.
We consider a rigid body or a robot in a 2D plane surrounded by a small number of
punctual landmarks. We suppose that the robot has the capacity to measure the location
of the landmarks with respect to its own reference frame. The robot has to estimate its
state based on the noisy measurements of the landmarks, axial and angular velocities are
the control actions that affect the robot. The pose of the robot is modeled as SE(2) since
the problem considered is in 2D and landmark positions are bk ∈ R2

X =

[
R t
0 1

]
∈ SE(2), bk =

[
xk

yk

]
∈ R2 (4.9)

The control input is made up from only longitudinal velocity v and angular velocity w.
Both inputs are supposed to be noisy, with gaussian noise ϵ ∼ N(0,

∑
) accounting for

wheel slippages.

u =

uv

us

uw

 =

 vδt

0

wδt

+ ϵ ∈ se(2) (4.10)

∑
=

σ2
vδt 0 0

0 σ2
sδt 0

0 0 σ2
wδt

 ∈ R33 (4.11)
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The robot pose is updated using the control input:

Xj = Xi ⊕ uj (4.12)

We suppose that there are 3 landmarks noisy measurements that the robot can estimate
at the same time with gaussian noise n ∼ N(0, N)

yk = X−1.bk + n (4.13)

N =

[
σ2
xδ 0

0 σ2
yδ

]
∈ R22 (4.14)

the landmarks positions are being calculated with reference to the robot frame and hence
the multiplication with X−1 The landmarks position in the global frame are as follows

b1 =

[
2

0

]
b2 =

[
2

1

]
b3 =

[
2

−1

]
(4.15)

We use the LG-EKF prediction at each time step for the 3 landmarks given above :

X̂j = X̂i ⊕ uj

Pj = FPiF
T +G

∑
j

GT (4.16)

with
F = AdExp(uj)−1

G = Jr(uj)
(4.17)

and then we apply the algorithm given in the previous section :

z = yk − X̂−1.bk ...innovation

Z = HPHT +N ...Covarianceinnovation

K = PHTZ−1 ...KalmanGain

δx = Kz ...Observederror

X̂ ← X̂ ⊕ δx ...stateupdate

P ← P −KZKT ...Cov.update

(4.18)

with
H = −[I RT [1]x(bk − t)] (4.19)

the equations given above are very similar to the common kalman filter. However, It
should be noticed that The matrices F , G,H are not the same and they are calculated
with help of lie group theory

4.5.2 Results :

The initial conditions are as follows :

X̂0 =
[
x̂ = 5 ŷ = 2 θ̂ = π/3

]
X0 =

[
x0 = 0 y0 = 0 θ0 = 0

]
(4.20)
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also we suppose there is a constant control input that controls the 2D robot:

u =
[
0.1 0 0.05

]
(4.21)

Here we show the position and the orientation of the robot along with the unfiltered
position and orientation :

Figure 4.2: θ and eθ
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Figure 4.3: X position Figure 4.4: X position error

Figure 4.5: Y position Figure 4.6: Y position error

4.5.3 Discussion and Conclusion :

We can see from the three previous graphs, that the Lie group Extended kalman fil-
ter follows the true position in a finite time despite the inconveniences that the system
evolves on a manifold and the measurements are noisy as shown in green. The estimation
converges for the three degrees of freedom, the X position, the Y position and the angle θ

4.6 Particle Filter :

4.6.1 Introduction :

Particle filter was popularized in the early 1990s, and has been utilized for the purpose,
and its superiority comes from the fact that it can handle non linear and non-Gaussian
systems which justifies its widespread usage in many fields such as global positioning of
robots, self driving cars and so much more.The particle filtering technique refers to the
procedure of finding a collection of random samples propagating in the state space to
approximate the probability density function and substituting the integral operation with
the sample mean to achieve the state lowest variance distribution.
the particles here can approximate any form of probability density distribution when
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the number of particles is big enough. Intuitively, Particle filter, as its name indicates,
constructs a lot of particles representing our guesses of a car’s location and try to modify
its guess as well as it can take into account the sequence of measurements obtainted.
Moreover, particle filter methods are very flexible, easy to implement, parallelizable and
applicable in very general settings.

4.6.2 Steps of the Particle Filter :

There are four essential steps in order to estimate the state x ∈ Rn using the particle
filter

1. Generating a set of particles from a certain distribution

2. Spread the particles with the dynamics of the system

3. Update the probability of choosing a particle according to its closessness to the
measurements

4. Resample the particles based on the new probability distribution

we begin explaining the first step :

1. Sampling :
The first step is to sample from an initial probability distribution which is generaly
gaussian , a set of N particles are initialized by a mean position or a mean state
and specified deviation. The number N is chosen as a trade off between accuracy
and speed of execution.
it is presented here in this figure :

Figure 4.7: sampling

2. Prediction :
Each particle represents a potential state of our system, using a model of the system,
we can propagate the state of the system, which predicts the future states. The
result of this is that the particles have moved to new locations and have spread out.
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Figure 4.8: Prediction

3. Weight Update :
We update the probability of picking up those particles using the difference between
the particle and the observation and according to the closeness of the measurement

Figure 4.9: Weight Update

4. Resampling :
If we pick a random element form the commulative probability distirbution which
results in choosing the particles which have a higher weight more often than those
that don’t, this method is called resampling wheel which uses uniform distribution

Figure 4.10: Resampling
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4.7 Algorithm and Simulation :

Algorithm 8 Particle Filter Algorithm :
Initialization :X0 ∼ P (X0)

for i = 1, ... , N : sample Xi ∼ P (Xt, X
(i)
t−1)

endfor
for i = 1, ... , N :
evaluate importance weight wi = (Yt, X̃t)

endfor
normalization of the importance weight for it to constitute a probability distribution
Resample :
for i = 1, ... , N :
Draw N with probability proportional to wt

4.7.1 Simulation :

The particle filter has been simulated and tested on the following example :{
x = 1

2
x+ 25x

1+x2 + 8cos(1.2(t− 1)) + Vn

z = x2

20
+WR

using the same model{
x = 1

2
x+ 25x

1+x2 + 8cos(1.2(t− 1))

z = x2

20

Using N = 10 samples we get the following performance:

Figure 4.11: estimated using Particle filter N=10
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Figure 4.12: estimated using Particle filter N = 10

We will change the number of particle to see the advantages given by increasing the
number of particles .

Figure 4.13: estimated using Particle filter N = 500
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Figure 4.14: estimated using Particle filter N=500

4.7.2 Result discussion and constraints :

We can see that it behaves generally in the same way. However, the estimation is wrong
at some points, this problem can be solved by increasing the number of particles used
during the estimation.

By increasing the number of particles, the filter performance improves, by decreasing
the error value from 25 when the number of particles was 10 to 15 when the number of
particles increased to 500, this shows the efficiency of increased number of particles. The
inconvenience to improving the performance by increasing the number of particles is that
the computational cost also increases which limits its applicability for low cost microchips
.

4.8 Particle Filter on Matrix Lie group :

The particle filter cited above can only be used for systems which evolve on Rn, because
the update equations tend to quickly leave the manifold, these equations do no hold and
an extension of particle filter to systems evolving on lie groups is necessary.
Since we don’t know the dynamics of the system, we can model the system mechanics
evolving on a lie group as a stochastic differential equations (SDE).
Stochastic differential equations of the system evolving on a manifold :
First we must note that an ODE is written in the following form :

dx

dt
= a(t)x(t)

When the function a(t) is not known, we consider that the function have a noisy compo-
nent ϵ(t) and so a(t) = f(t) + ϵ(t) where f(t) is known, which gives rise to the following
equation of Stochastic differential equation :

Dx(t) = f(t)x(t)dt+ x(t)dW (t)

We suppose this system as a discrete system and we denote the state Xk as the state of
the system at time step tk, X(tk) = Xk, and a measurement noise Yk = C(Xk)+E where
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E is a noise on RnXl.
The objective of the particle filter is that it estimates the best possible candidate ˆX(t)

to the actual state X(t) that is done by choosing the estimate which minimizes the next
criteria :

E(d(X,XN)) =

∫
d(X,Xk)

2p(Xk|Y1:k)dGXk

where d is the distance between two elements in the lie group, minimizing this integral
which is a Mean Squared Error criteria, leads to finding the best possible element and
hence the goal of the estimation is verified. However, calculating this integral and mini-
mizing it is not simple, and so we use the tool of Monte Carlo methods to simplify this
problem by sampling a set of N samples and using the theorem of large numbers that if
N is big enough then we can approximate the expected value as follows:

E(x) =
1

N

N∑
i=1

Xi

E(d(X,XN)) =
1

N

N∑
i=1

d(X,XN)

Another thing to take into account is that the samples that we have to take from must
be from the p(Xk|Y1:k) distribution, thus, a recursive procedure is needed which takes the
samples from P (Xk−1|Y1:k−1), so first we have to obtain the relationship between these
two quantities which is given with the help of [27] by :

4.8.1 Particle filtering :

Let S1
k ...S

N
k denote the N samples drawn from the p(Xk−1|Y1:k−1) how to sample from

p(xk|Y1:k−1) such that the samples remain on the manifold is discussed earlier
The next step is to normalize this probability distribution,

pk,s =
p(yk|Xk = Sk)∑

i=1 Np(Yk|Xk = Sk)

The resampling algorithm is done by constructing the cumulative distribution PN (a stair-
case function with steps at each s with height pk,s ), choosing a uniformly random point
between
The state estimator X̂k

X̂k = argminX∈G(E(d(X,Xk)))

argminX∈G
1

N

N∑
i=1

d(X,Sk)
2

Sampling p(xk|Xk−1)

X(t) = Xk−1e
Ω(t)Ω(t) ∈ g
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Algorithm 9 PF-LG Algorithm :
Initialization :X0 ∼ P (X0)

for i = 1, ... , N : sample Xi ∼ P (Xt, X
(i)
t−1)

endfor
for i = 1, ... , N :
evaluate importance weight wi = (Yt, X̃t)

endfor
normalization of the importance weight for it to constitute a probability distribution
Resample :
for i = 1, ... , N :
Draw N with probability proportional to wt
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5.1 Underwater vehicles and autonomy :

A UUV/AUV is an unmanned/autonomous underwater vehicle, which is a marine robot
which has the capability of executing autonomous tasks without assistance. The need
for such marine robots is that they help in many fields such as oceanography, military
searching for downed airplanes, laying undersea cables. In terms of shape, the AUV can
have a torpedo-like shape or a glider shape, or even bio-inspired AUVs in some cases.
AUVs are given a certain mission to perform which require energy and power and High
energy and high power source make missions with longer duration possible. However,
these missions often reveal more problems because of the environmental changes that
occur, such as the current waves, wheather conditions, and topography variation, the
appearance of obstacles, and in some cases the UUV itself changes: such as instrument
parameters, losing signal with a collaborative robot and so forth. All these problems show
the necessity of more efficient and robust autonomous vehicles particularly to perform
successful intelligent behaviours and adapt to unknown circumstances and respond to
dynamic environments and achieve the assigned task whenever possible. This chapter
is done with the help of the following articles: [30], [31],[32],[33],[34],[35],[36], [37],it has
focused more throughtly on [38],[25],[39],[40],[41] The simulation is done with the help of
the manifpy library constructed by Joan Sola

5.2 Types of underwater vehicle :

5.2.1 ROV :

ROV refers to Remotely Operated vehicles, which are remotely controlled vehicles, they
are linked to a host ship and the communication is done by a neutrally buoyant long tether
cables or, often when working in rough conditions or in deeper water, a load-carrying
umbilical cable is used along with a tether management system (TMS), that transmits
real-time video observations and environmental readings (e.g., depth, compass heading),
they are used in survey and are devided into two categories, Class 1 for Observation
Only and, Class 2: for observation with payload, but also in military use for ROVs have
been used by several navies for decades, primarily for minehunting and minebreaking.
Furthermore, the scientific community makes considerable use of ROVs to investigate the
ocean, a number of deep sea animals and plants have been discovered or studied in their
natural environment through the use of ROV. ROVs also are used for intervention by
possessing manipulator arms adapted to the application for which ROV is destined to
achieve.

Figure 5.1: ROV

62



Chapter 5. Application : Modeling and Control of an AUV

5.2.2 HROV

HROV refers to Hybrid Remotely operated vehicles which are vehicles that can be au-
tonomous due to integrated batteries but also have the caracteristics of a ROV

5.2.3 Bio-inspired vehicles

The Bio-inspired vehicles are vehicles in which their design and motion mechanism is
influenced by animals and biology such as turtles, These types of vehicles are less common
in the industrial world and they are found more in laboratories though they display a great
efficiency in power consumption.

Figure 5.2: U-CAT

5.3 Modeling :

In reality, there are several techniques to modeling underwater vehicles, full-scale ex-
periments, scaled experiments, empirical formula approximations and computational ap-
proaches.The robust control design depends on the mathematical description of under-
water vehicle dynamics. To analyze the dynamic and hydrodynamic behaviour of UUVs,
a model is required, meaning the interactive physics between the underwater vehicle and
fluid.
Modeling of underwater vehicles involves two parts of study: kinematics and dynamics.
The kinematics part describes the motion of the body without the forces and torques
acted upon it but only describing the geometrical property of the system. In contrast,
dynamics consider the torques and the forces acted on the body, there are many modeling
techniques and articles but we will use those of [38]
Position, velocity v , force and torque vectors are expressed as follows :

η = [x, y, z, , θ, ϕ]T

v = [u, v, w, p, q, r]T

τ = [X,Y, Z,K,M,N ]T

η ∈ R6 which represent both position and orientation, velocity v ∈ R6 represent both
linear and angular velocity, τ ∈ R6 represent the force and the torques.

Figure 5.3: Caption
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5.3.1 Kinematics of AUVs :

The fundemantal branch of mechanics known as kinematics treats geometrical aspects of
underwater vehicles. Which usually happens in 6 degrees of freedom, and the 6 different
motion components are conveniently defined as: surge, sway, heave,roll, pitch and yaw.
The NED frame and body-fixed frame are defined in the convential way as shown in figure.
It is known that kinematic relation of velocity vector and position vector is expressed as
the vectorial equation :

v = J(θ)η̇ (5.1)
Where J(θ) is the transformation between the Body fixed frame and the inertial frame
which relates the times derivative of underwater vehicle position and angle to the trans-
lational and rotational velocities.

J(θ) =

[
R(θ) 033
033 T (θ)

]
(5.2)

where R(θ) ∈ R33 is the linear velocity transformation matrix, and T (θ) ∈ R33 is the
angular velocity transformation matrix.
From [38], we can see that :

T (θ) =

1 stθ ctθ

0 cϕ sϕ

0 sϕ
cθ

cϕ
cθ

 (5.3)

R(θ) =

 ccθ −scϕ+ csθsϕ ssϕ+ csϕsθ

scθ ccϕ+ sϕsθs −csϕ+ sθscϕ

−sθ cθsϕ cθcϕ

 (5.4)

Here we note that T (θ) is not defined at the pitch angle of π
2
which is called the singu-

larity problem of euler angle representation. An alternate way is to use rotation matrices
representation. a figure from [42] shows a more comprehensive illustration :

Figure 5.4: AUV kinematics

5.4 Rigid body dynamic of underwater vehicles:

Without the hydrodynamics forces which are caused by the water flowing against and
around it. The underwater vehicle can be considered as a 6-DOF rigid body which obeys
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the Newton-Euler Equations. It is shown that the 6-DOFs underwater vehicle motion can
be expressed as vectorial form as in the following :

MRB ḃ+ CRB(v)v = τenv + τpro (5.5)

The above vectorial forces and torques are considered to act on the vehicle’s center of
gravity, and they are balanced, Rigid-body mass inertia Matrix MRB ∈ R66 is symmetric
and positive definite, I33 is the identity matrix, and it is equal to the following :

MRB = MT
RB =

[
mI33 −mS(rbg)

mS(rbg) I0

]

MRB =



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Ixz
mzG 0 −mxG −Iyz Iy −Iyz
−myG mxG 0 −Izx −Izy Iz


I0 is the inertia matrix and it is defined as follows:

I0 =

 Ix −Ixy −Ixz
−Iyz Iy −Iyz
−Izx −Izy Iz


defining MRB as the following helps us find a definition of the CRB matrix :

MRB =

[
M11 M12

M21 M22

]
which makes the corolios matrix as the following :

C(v) =

[
033 −S(M11v1 +M12v2)

−S(M11v1 +M12v2) −S(M21v1 +M22v2)

]
with v1 = [u, v, w]T , v2 = [p, q, r]T

5.5 Hydrodynamics of underwater vehicles :

Hydrodynamics are important in the control design of underwater vehicles because of
the complexity of the ocean environment. The hydrodynamic factors really make control
design more challenging, which distinguishes underwater control design from air and land
robots, and the types of hydrodynamic forces and torques which we can encounter in the
ocean are as follows :

• Radiation Induced forces

• External disturbances: currents and waves

• Thruster propulsions
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here we will add the hydrodynamic force to the principle equation added above :

MRB ḃ+ CRB(v)v = τenv + τhydroτpro (5.6)

the total acting hydrodynamic of the underwater vehicle can be expressed according to []
as follows:

τhydro = −MAv̇ − CA(v)v −D(|v|)v − g(η) (5.7)

5.6 Gravitational and buoyant forces :

Generally a floating equalibrium is achieved by W which is the weight force and B which is
the buoyancy force being equal on the same vertical line, designers of underwater vehicles
take this into account, and so it is standard practice to design vehicles to be neutrally
buoyant, which keeps the vehicle from sinking, and so their goal is also to balance between
the center of gravity which is the point in which the gravity acts on, and the center of
buoyancy, These two forces are here denoted as g(η) and they are usually called restoring
forces, because these forces are designed such as when an external force is applied to
the vehicle, g(η) can provide the torques to return to the equilibrium state, acting like a
spring. g(η) is as follows :

g(η) =



0

0

0

−BGyWcos(θ)cos(ϕ) + BGzWcos(θ)sin(ϕ)

−BGzWsin(θ) + BGzWcos(θ)sin(ϕ)

−BGzWcos(θ)sin(ϕ)− BGyWsin(θ)

 (5.8)

5.7 Added Mass :

Added mass forces and moments, i.e., e induced by the surrounding fluid inertia.Generally,
the added mass matrix MA ∈ R66 is positive definite (fully sub- merged), and the diagonal
elements of the matrix are positive. And experience has shown that MA = MT

A is actually
a good approximation [], For most practical applications, the off-diagonal elements of MA

will be small compared to the diagonal elements. Therefore, in most of the underwater
vehicles, we can use the diagonal form of the added mass matrix MA

M full
A = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 (5.9)

and so :
MA = −diag(Xu̇, Yu̇, Zu̇, Ku̇,Mu̇, Nu̇)

It is common to separate the added mass forces and mo- ments in terms which belong to
an added mass matrix .However, the coriolis matrix MA of the added mass is neglected
in front of CRB and it is only mentionned for high speed underwater vehicles.
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5.8 Damping :

Hydrodynamic damping matrix, D(|v|) ∈ R6X6 , should be carefully involved in the un-
derwater vehicle model, which is a function of linear and angular velocities, the effects
of damping on complex shaped underwater vehicles is difficult to be accurately mod-
eled. In modeling damping for AUVs as in [38], damping generally consists of 4 parts
: Po- tential damping DP (v) ∈ R3X3, skin frictionDs(v) ∈ R3X3, wave drift damping
Dw(v) ∈ R3X3,nd vortex shedding damping Dm(v) ∈ R3X3, ,According to [114], if the
underwater vehicle’s velocities are suf- ficiently high D(v) can be neglected. Assume
the damping elements is not coupled, i.e., off-diagonal elements are negligible, then, the
damping matrix DP (|v|) ∈ R3X3,can be simplified into a diagonal matrix:

MA = −diag(Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|)

5.8.1 Environmental Disturbances :

Actually, the wind, waves and current of the ocean are really complex, including additive
and multiplicative types of random disturbances. However, in practice a good assumption
according to [38] are, the wind, wave and currents are considered to be linearly superposed
for marine vehicles, which separates the effects into linear components.

5.9 6 DOFs Underwater vehicle Model [38] :

The dynamic and hydrodynamic underwater vehicle model in the principal equation are
equations which are expressed in the body-fixed frame, here we express the previous model
in the earth-fixed frame based on the inverse jacobian as follows :

M∗η̈ +D∗(|v|)(η̇) + g∗(η) = τ ∗pro + τ ∗env (5.10)

where :
M = MRB +MA

M∗ = J−T (θ)MJ−1(θ)

D∗(|v|) = J−T (θ)D(|v|)J−1(θ)

g∗(η) = J−Tg(η)

τ ∗pro = J−T τ ∗pro

τ ∗env = J−T τ ∗env

these equations will later be used to do a numerical simulation of an AUV on a Matlab

5.10 Discussion :

In this chapter, Based on the Fossen marine vehicle formulas, a mathematical description
of the dynamic and hydrodynamic underwater vehicle model is provided.The discussion
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of kinematics, or the principles for transforming between body-fix reference and inertial
reference, comes first.Then, on the assumption that all components may be linearly super-
posed, the kinetics with classical rigid-body dynamic and hydrodynamic components is
described Finally, environmental disturbance are provided. Finally, the inertial reference
presents the six degrees of freedom underwater vehicle model.

5.11 Control of an autonomous underwater vehicle :

In recent years, the majority of research has been devoted to the control strategy of
autonomous underwater vehicles which is very important, different control strategies are
: path following, way point tracking, trajectory and localization. The control strategy is
chosen based on the given mission, and very often instead of single AUV multiple AUVs
are employed to achieve higher efficieny and more complex missions.
In order to achieve the path following control of an AUV, the error between the path
parameters and AUV position and orientation should be reduced to zero.
This is a difficult problem since the complete dynamics is a nonlinear 6DOF equation of
motion with coupled and nonlinear terms which are generally hard to model accurately
depending on the shape and the structure of the AUV itself as discussed earlier,

This makes it hard for linear controllers to provide an efficient performance, and
although some investigations employing the [27] feedback linearization method for path
following control but they are only suitable for some operating points. Another problem
occurs, when we consider the underactuated case which is even harder than the problem
of controlling fully actuated systems, meaning that the number of control inputs are less
than the degrees of freedom, and due to external disturbances, such as currents and waves,
it is difficult to achieve the path following control strategies,
a control strategy using a nonlinear PID of a L2ROV using the standard modelisation of
AUVs, and another control strategy using modelisation on lie groups is provided in this
chapter

5.12 Non linear PID control of AUV

In this section, we will control a type of HROV using a non linear PID controller based on
saturation function and varying parameters, this controller is based on set point regulation
and the proof of the stability is given via lyapunov stability. The control scheme is
validated using numerical simulation with matlab.

5.12.1 Control of a L2ROV :

The L2ROV is a remotely operated vehicle built at the university monpellier 2 and here we
will discribe its dynamic model. To simplify our simulation of this vehicle we will assume
that the vehicle is moving at low speeds, leading to a more simplified dynamics The
L2ROV is a tethered underwater vehicle, whose size is about 75cm long, 55cm width, and
45cm height. The propulsion system of this underwater vehicle consists of six thrusters,
there are two kinds of motion the translational motions which are surge,sway, and heave,
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while the rotational motions are roll, pitch, and yaw
The L2ROV has 6 propellers which makes it a fully actuated underwater vehicle. The
surge motion is generated by the sum of the forces created by T4 and T5 , sway movement
is actu- ated by T6 , and heave is produced by the sum of thrusts of T1 , T2 and T3 .
The roll movement is actuated through differential force of the thrusters T2 and T3 ; the
pitch motion is obtained similarly using thrusters T1, T2 and T3 , and the yaw motion
is generated by T4 and T5 the technical properties which are used for the simulation via
matlab are obtained with the help of [38] :

• Mass 28 kg

• Floatability 9N

• Maximal depth 100m

• Thrusters 6 Seabotix BTD150

• cont. bollard thrust = 2.2kgf each with Devantech MD03 drivers

• Power 48V - 600W

• Light 2 x 50W LED

• Attitude sensor Sparkfun Arduimu V3 Invensense MPU-6000 MEMS 3-axis gyro
and accelerometer 3-axis I2C magnetometer HMC-5883L Atmega328 microproces-
sor

• Camera Pacific Corporation VPC-895A CCD1/3” PAL –25–fps

• Depth sensor Pressure Sensor Breakout-MS5803-14BA

• Sampling period 50ms

• Surface computer Dell Latitude E6230 - Intel Core i7 - 2.9GHz Windows 7 Profes-
sional 64 bits Microsoft Visual C++ 2010

• Tether length 150m
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Figure 5.5: U-CAT

5.13 dynamic modeling :

the dynamics of the vehicle is obtained from the last chapter which has the next equation
:

M∗η̈ +D∗(|v|)(η̇) + g∗(η) = τ ∗pro + τ ∗env (5.11)

where M ∈ R66 is the inertia matrix ,C(v) ∈ R66 is the Coriolis-centripetal Matrix.
Since we are assuming that the vehicle is moving at low speeds then this matrix is ne-
glected, D(v) ∈ R66 is the damping matrix g(η) describes the vector of restoring forces
and moments, J(η) ∈ R66 is the transformation matrix mapping from the body-fixed-
frame to earth-fixed-frame

5.14 Inertia and damping matrices :

M = MRB +MA and

M = diagm(−Xu̇,m− Yv̇,m− Zu̇, Ixx −Kṗ, Iyy −Mq̇, Izz −Nṙ)

for this type of vehicle and from [38] we have obtained the following values for the inertia
matrix :

I0 =

 0.35 −0.02 −0.04
−0.02 0.69 −0.02
−0.04 −0.02 0.65


we consider the following modelisation of damping for low-speed underwater vehicles :

D(v) = diag(x, y, z, k,m, n)

for this type of vehicle and according to the following article [38] we have that:

D(v) = diag(30, 70, 80, 1.4, 2.5, 2.9)
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5.14.1 The restoring forces and moments :

The restoring forces and moments are generated by the weight and buoyancy force :
fB = −[00B]T and the weight force : fW = [00W ]T once these two forces are ob-
tained, which are with respect to the earth fixed frame, using the transformation matrix
J1(η2) = Rz,Ry,θRx,ϕ it can be expressed with respect to the body-fixed frame :
FB = J1(η2)

−1fB 15mm FW = J1(η2)
−1fW

thus the total force is :

fg =

 (B −W )sin(θ)

(W − B)cos(θ)sin(ϕ)

(W − B)cos(θ)cos(ϕ)

 (5.12)

on the other hand the total torque depends on the position of center of gravity and the
center of buoyancy :

mg = rwFw + rbFB

rb and rw represent the positions of CG and CB respectively. The design of L2ROV
makes the buyoancy force greater than the weight force obtaining the equation below for
the restoring forces :

g(η) =

[
fg
mg

]
=



fbsin(θ)

−fbcos(θ)sin(ϕ)
−fbcos(θ)cos(ϕ)
−zbBcos(θ)sin(ϕ)

−zbBsin(θ)

0

 (5.13)

5.14.2 Total forces and torques of the propulsions :

Given the design of the L2ROV vehicle the forces that can be generated from the propul-
sions are as follows :

τ1 =

τxτy
τz

 =

 f4 + f5
f6

f1 + f2 + f3

 (5.14)

The torques however have different set of equations since they rely on the position the
force is applied on.

τ2 =
6∑

i=1

lii (5.15)

τ2 =

 τk
τM
τN

 =

 l2yf2 + l3yf3
l2xf2 + l3xf3 + l1xf1

l4yf4 + l5yf5


71



Chapter 5. Application : Modeling and Control of an AUV

and the vector of control inputs is the following :

τ =



f4 + f5
f6

f1 + f2 + f3
l2yf2 + l3yf3

l2xf2 + l3xf3 + l1xf1
l4yf4 + l5yf5

 (5.16)

5.14.3 Non linear PD control of L2ROV :

The dynamics equations for the system as developped in the previous chapter is as follows:

Mv̇ + C(v)v +D(v)v + g∗(η) = τ ∗pro + τ ∗env (5.17)

η̇ = J(η)v (5.18)

The non linear PD controller that we will be interested in is :

τ = g(η)− JT τPD (5.19)

τPD = Kpe(t) +Kd
de(t)

dt
(5.20)

here Kp and Kd are diagonal positive definite matrices, and e(t) = η − ηd

the saturation function is applied to the control law giving us a control law of the form
:

τNLPD = σbpKpe(t) + σbdK de(t)
dt

(5.21)

in here we will modify the saturation function as to become slightly more efficient in
our case just like in [38]:

σb(h) =


b̂, h > b̂

h, |h| ≤ b̂

−b̂, h < −b̂
(5.22)

ui =


b̂i, kihi > b̂i

kihi, kihi > b̂i

−b̂i, kihi < −b̂i

(5.23)

ui =

{
sign(hi)b̂iif |hi| > di

b̂id
−1
i hiif |hi| ≤ di

(5.24)

developing even further gives the following
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ui =

{
bi|hi|−1hiif |hi| > di

b̂id
−1
i hiif |hi| ≤ di

(5.25)

In Some cases, the control law can’t bring the state to the desired one because of its
boundedness property and that’s why we introduce the following variation of the satura-
tion function:

ui =

{
bi|hi|−1hiif |hi| > di

b̂id
−1
i hiif |hi| ≤ di

(5.26)

In short, the modified non linear PD controller is the following :

τNLPD = kpf (.)ej(t) + kdf (.)
dej(t)

dt
(5.27)

where :

Kpj(.) =

{
bpj|ej(t)|µp−1if |ej(t)| > dpj

bpjd
µp−1
pj if |ej(t)| ≤ dpj

(5.28)

and

Kdj(.) =

{
bdj| ˙ej(t)|µd−1if |ej(t)| > ddj

bpjd
µd−1
dj if |ej(t)| ≤ ddj

(5.29)

Theorem :
the control law : τ = g(η) − JT (η)(Kp(.)e + Kd(.)ė) if kp and kd are defined as in the
previous equations, the system is asymptotically stable
Proof :
for set-point regulation η̇d = 0 and ė = η̇, knowing this the equation of the control law
τbecomes:

τ = g(η)− JT (η)(Kp(.)e+Kd(.)η̇)

applying the control law to the dynamics equation gives:

Mv̇ + C(v)v +D(v)v + g∗(η) = −JT (η)(Kp(.)e+Kd(.)η̇)

Mv̇ + C(v)v +D(v)v = −JT (η)(Kp(.)e+Kd(.)J(η)v) (5.30)

we define : Kdd(.) = JT (η)Kd(.)J(η) and hence the equation becomes :

Mv̇ + C(v)v +D(v)v = −JT (η)Kp(.)e−Kdd(.)v) (5.31)

The closed loop system is then :

d

dt

[
e

v

]
=

[
J(η)v

M−1(−JT (η)Kp(.)e−Kdd(.)v − C(v)v −D(v)v)

]
the lyapunov candidate : from [38] we can propose the next lyapunov candidate :

V (e, v) =
1

2
vTMv +

∫ e

0

ϵTKp(ϵ)dϵ
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according to lemma 2 from [38] we have :∫ e

0

ϵTKp(ϵ)dϵ > 0∀e ̸= 0 ∈ Rn

Therefore the lyapunov function is globally positive definite and unbounded

˙V (e, v) = vTMv̇ + eTKp(e)J(η)v

˙V (e, v) = −vTJT (η)Kp(e)e− vTKdd(η, ė)v − vTC(v)v − vTD(v)v + eTKp(e)J(η)v

since Kp is symmetric and C(v) is antisymmetric then :

˙V (e, v) = −vT (Kdd(η, ė) +D(v))v

since Kd > 0 therefore Kdd = KT
dd > 0 and since our assumption about D makes it

D(v) > 0 then ˙V (e, v) is a globally negative semidefinite.
finally, we use LaSalle theorem to conclude that the equilibrium point is asymptotically

stable :
Ω =

[
e

v

]
: ˙V (e, v) = 0

introducing v = 0 and v̇ = 0 into the equation leads to the unique invariant point e = 0

completing the proof .

5.15 Simulation :

We have deleppoed a simulated equivalent of the L2ROV with Matlab, using the equations
The simulation has reveled the following results : The desired state is :

Xd =
[
1 0 0 pi/4 0 0

]
(5.32)

Figure 5.6: The state X

Xd =
[
0 0 0 0 0 0

]
(5.33)
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Figure 5.7: The state X for a different desired state

5.15.1 Discussion :

We see that the nonlinear PD controller is efficient and takes the Autonomous Under-
water Vehicle to the desired state, a comparison between this and control based on lie
group is difficult to accomplish since each of them evolve on different spaces. However,
experimental results could show us which method is more efficient which is most likely
the manifold representation .

5.15.2 LG-PD control on SE(2) based on EKF on Matrix Lie
group of Autonomous Underwater Vehicle :

In the following section, we propose a controller design based on proportional derivative
on Lie group based on an Lie group EKF observer. In here we treat the problem of
controling the position and orientation of an AUV on the plane . First of all, we suppose
that the AUV system evolves on the following lie group SE(2), such that the modeliaztion
is goverened by the following equation : Ẋ = Xŵ

Since the measurements are frequently not reliable, and for industrial applications that
need inexpensive sensors, the estimation problem is obligatory. We treat the problem of
estimation based on matrix Lie Group using the same procedure as the EKF on Lie Group
discussed in the previous chapter, by using the measurements of the landmarks given by
the system’ sensors, we can estimate the AUV position and orientation, we utilize this
information to control the AUV by the twist and linear velocity which are supposed in
this case to be our control inputs,

5.15.3 Scheme :

The scheme of the simulation is given in the following figure :
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Figure 5.8: Observer based controller on lie groups

5.15.4 Results :

Figure 5.9: X position and ex
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Figure 5.10: Y position Figure 5.11: ey

Figure 5.12: orientaion θ Figure 5.13: eθ

5.15.5 Discussion :

The performance of the observer-based controller is well, by converging of the estimated
state to the actual state and eliminating all the noisy measurements which are shown in
green. From the regulation side, we see that the observer-based controller converges to
the desired state in finite time with a dynamic of a first order system. this validates the
performance of the proposed controller and shows the potential of the Lie Group theory
application in practical situations .

5.16 Conclusion :

Throughout this chapter, we provided a classical modelization of autonomous underwater
vehicle, along with regulation of its position and orientation with a nonlinear PD controller
which brings the state to the desired position. Secondly, the dynamical system has been
modeled on Matrix Lie group in SE(2) and another controller has been provided which is
the observer-based controller based upon the extended kalman filter on matrix lie group
using 3 landmarks, this controller also showed its performance compared to the other
NLPD control validating the power of Lie groups on Control and estimation .
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Chapter 6

General Conclusion :

In this work, we have discovered the potential of Lie Theory. The necessity of describing
systems as objects evolving on lie groups have made the working with lie groups very
interesting and pushed the robotics community to make a considerable effort to correctly
describe estimate issues. Many advantages can be accomplished. For example, SO(3)
representation of attitude is very useful since it removes singularity and uniqueness prob-
lems. To fully grasp the potential given by Lie group theory, one has to analyse different
ascpects from it such as control and estimation.

In this project, we presented a EKF on Matrix Lie groups based PD controller for
the autonomous underwater vehicle . We first provided a more thorough mathematical
derivation of the concepts of Lie theory and Lie groups. We then introduced the control
problem on lie groups by proposing three different control schemes : PD controller, Sliding
mode controller, LQR controller. We then brought our attention to observers on Matrix
lie group such as the extended kalman filter, we also provided simulation and discussion
of such an observer.Finaly, we proposed an observer-based controller for the control of an
AUV on SE(2).
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1 dt = 0.1
2 N = 500
3 %
4 u = [0;0;0] %% initializing the control vector
5

6 theta_des = pi/2
7 w = [0;0;theta_des] %%% desired orientation (the length of the

vector is the angle)
8 X_des = expm(hat(w)) %%% desired orientation matrix
9 X = eye(3) %%% Initial Value

10

11 kp = 0.1
12 zero_3d = [0;0;0]
13 thet =[]
14 erreur = []
15 U = []
16 for i=1:N
17 u = -dt*kp*Lie_log(X_des'*X)
18 U = [U u];
19 X = expm(hat(u))*X %% updating the matrix
20 inter = Lie_log(X)
21 thet = [thet inter(3)]
22 end
23 t=0:dt:dt*(N-1);
24 plot(t,thet)
25 legend('theta')
26 figure(2)
27 plot(t,U,'--r')
28 legend('u')

1 dt = 0.1;
2 N = 2000;
3 %
4

5 u=[0;0;0];
6

7 %% desired attitude and angular velocity
8 theta_des = pi/3 ;
9 w = [0;0;theta_des] ; %%% desired orientation (the length of the

vector is the angle)
10 R_d = expm(hat(w)) ; %%% desired orientation matrix
11

12 w_d = [0;0;0];
13

14 %% initial conditions
15 X = eye(3) ; %%% Initial Value
16 Wx = hat(w); %%% deriving wx from w
17 R = X;
18

19 K = 50;
20 J = [3 0 0;0 4 0;0 0 5];
21

22 Theta=[];
23 W = [];
24 U = []
25

26 k_p = 0.2
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27 k_d = 0.3
28

29 for i=1:N
30 %% system dynamics
31 Wx = hat(w);
32 R = R*expm(dt*Wx);
33 w = w+dt*inv(J)*(cross(J*w,w)+u)
34 %% the attitude and velocity error
35 R_e = R_d'*R
36 w_e = w-R_e'*w_d
37

38 % %% the control law based on the sliding mode controller
39

40 u = -cross(J*w,w) + J*(-k_p*Lie_log(R_e) - k_d*w_e) ; %% the control
law

41 U = [U u];
42 W = [W w];
43 Theta=[Theta Lie_log(R)];
44 end
45 %
46 t=0:dt:dt*(N-1);
47 figure(1)
48 plot(t,Theta,'b')
49 legend('Theta')
50 vect = zeros(3,N);
51 vect(3,:)=theta_des;
52 error = Theta - vect;
53 figure(2)
54 plot(t,error,'r')
55 legend('Error')
56 %
57 figure(3)
58 plot(t,U)
59 % legend('control effort ')

1 Q= [10 0;0 1]; R=0.1; b=0.1;J=1.0 %% initializing Q,R of the system
2 theta_d = pi/2 %% desired theta
3 A=[0 1;0 -b/J]
4 B=[0;1/J]
5 K = [10 5.378]
6 %% initializing x
7 Phi = eye(2)
8 w= 0
9

10 Td = 0;wd=0 %% desired torque and angular velocity
11

12 N=500
13 dt=0.1
14

15 Theta = []
16 W = []
17 TORQUE = []
18 for i=1:N
19 Phi_d=expm(hat(theta_d))
20 x_tilt = [Lie_Log_so2(Phi*inv(Phi_d));w-wd]
21 T_tilt = -K*x_tilt
22 T = T_tilt + Td
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23 w_hat = hat(w)
24 Phi = Phi*expm(w_hat*dt)
25 w = w+dt*(T/J-b*w/J)
26

27 if(i ==250)
28 theta_d = -pi/2 %% second desired theta
29 end
30

31 Theta = [ Theta Lie_Log_so2(Phi)]
32 W = [W w];
33 TORQUE = [TORQUE T];
34 end
35 t=0:dt:dt*(N-1)
36 figure(1)
37 plot(t,Theta)
38 legend('Theta')
39 figure(2)
40 plot(t,W,'r')
41 legend('angular velocity w')
42 figure(3)
43 plot(t,TORQUE,'g')
44 legend('Torque ')

1

2

3

4 %% clear everything
5 clear all
6 close all
7 clc
8

9

10 %% initialize the variables
11 set(0,'DefaultFigureWindowStyle ','docked ') %dock the figures..just a

personal preference you don't need this.
12 x = 0.1; % initial actual state
13 x_N = 1; % Noise covariance in the system (i.e. process noise in the state

update, here, we'll use a gaussian.)
14 x_R = 1; % Noise covariance in the measurement (i.e. the Quail creates

complex illusions in its trail!)
15 T = 75; % duration the chase (i.e. number of iterations).
16 N = 10000; % The number of particles the system generates. The larger this

is, the better your approximation , but the more computation you need.
17

18

19

20 V = 2; %define the variance of the initial esimate
21 x_P = []; % define the vector of particles
22

23 % make the randomly generated particles from the initial prior gaussian
distribution

24 for i = 1:N
25 x_P(i) = x + sqrt(V) * randn;
26 end
27

28 %{
29 %show the distribution the particles around this initial value of x.
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30 figure(1)
31 clf
32 subplot(121)
33 plot(1,x_P,'.k','markersize ',5)
34 xlabel('time step')
35 ylabel('flight position ')
36 subplot(122)
37 hist(x_P,100)
38 xlabel('flight position ')
39 ylabel('count')
40 pause
41 %}
42

43

44

45 z_out = [x^2 / 20 + sqrt(x_R) * randn]; %the actual output vector for
measurement values.

46 x_out = [x]; %the actual output vector for measurement values.
47 x_est = [x]; % time by time output of the particle filters estimate
48 x_est_out = [x_est]; % the vector of particle filter estimates.
49

50

51

52 for t = 1:T
53

54 x = 0.5*x + 25*x/(1 + x^2) + 8*cos(1.2*(t-1)) + sqrt(x_N)*randn;
55 z = x^2/20 + sqrt(x_R)*randn;
56

57 for i = 1:N
58

59

60 z_update(i) = x_P_update(i)^2/20;
61

62 P_w(i) = (1/sqrt(2*pi*x_R)) * exp(-(z - z_update(i))^2/(2*x_R));
63 end
64

65

66 P_w = P_w./sum(P_w);
67

68 %{
69 figure(1)
70 clf
71 subplot(121)
72 plot(P_w,z_update ,'.k','markersize ',5)
73 hold on
74 plot(0,z,'.r','markersize ',50)
75 xlabel('weight magnitude ')
76 ylabel('observed values (z update)')
77 subplot(122)
78 plot(P_w,x_P_update ,'.k','markersize ',5)
79 hold on
80 plot(0,x,'.r','markersize ',50)
81 xlabel('weight magnitude ')
82 ylabel('updated particle positions (x P update)')
83 pause
84

85
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86 %plot the before and after
87 figure(1)
88 clf
89 subplot(131)
90 plot(0,x_P_update ,'.k','markersize ',5)
91 title('raw estimates ')
92 xlabel('fixed time point')
93 ylabel('estimated particles for flight position ')
94 subplot(132)
95 plot(P_w,x_P_update ,'.k','markersize ',5)
96 hold on
97 plot(0,x,'.r','markersize ',40)
98 xlabel('weight magnitude ')
99 title('weighted estimates ')

100 %}
101 %% Resampling: From this new distribution , now we randomly sample from

it to generate our new estimate particles
102

103 for i = 1 : N
104 x_P(i) = x_P_update(find(rand <= cumsum(P_w),1));
105 end
106

107 %The final estimate is some metric of these final resampling , such as
108 %the mean value or variance
109 x_est = mean(x_P);
110

111 %{
112 %the after
113 subplot(133)
114 plot(0,x_P_update ,'.k','markersize ',5)
115 hold on
116 plot(0,x_P,'.r','markersize ',5)
117 plot(0,x_est,'.g','markersize ',40)
118 xlabel('fixed time point')
119 title('weight based resampling ')
120 pause
121 %}
122 % Save data in arrays for later plotting
123 x_out = [x_out x];
124 z_out = [z_out z];
125 x_est_out = [x_est_out x_est];
126

127 end
128

129 t = 0:T;
130 figure(1);
131 clf
132 plot(t, x_out, '.-b', t, x_est_out , '-.r','linewidth ',3);
133 set(gca,'FontSize ',12); set(gcf,'Color','White ');
134 xlabel('time step'); ylabel('Quail flight position ');
135 legend('True position ', 'Particle filter estimate ');
136 figure(2)
137 plot(t,x_out-x_est_out ,'b')
138 xlabel('time step'); ylabel('the error');
139 legend('the estimation error')

1
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2

3

4 from manifpy import SE2, SE2Tangent
5 import matplotlib
6 import matplotlib.pyplot as plt
7 # %matplotlib inline
8 import numpy as np
9 from numpy.linalg import inv

10

11

12 Vector = np.array
13

14

15 def Covariance():
16 return np.zeros((SE2.DoF, SE2.DoF))
17

18

19 def Jacobian():
20 return np.zeros((SE2.DoF, SE2.DoF))
21

22

23 if __name__ == '__main__':
24

25 # START CONFIGURATION
26

27 NUMBER_OF_LMKS_TO_MEASURE = 3 # to change back to 3
28

29 # Define the robot pose element and its covariance
30 X_simulation = SE2.Identity()
31 X = SE2.Identity()
32

33 X_unfiltered = SE2.Identity()
34 P = Covariance()
35

36 u_nom = Vector([0.1, 0.0, 0.05])
37 u_sigmas = Vector([0.1, 0.1, 0.1])
38 U = np.diagflat(np.square(u_sigmas))
39

40 # Declare the Jacobians of the motion wrt robot and control
41 J_x = Jacobian()
42 J_u = Jacobian()
43

44 # Define five landmarks in R^2
45 landmarks = []
46 landmarks.append(Vector([2.0, 0.0]))
47 landmarks.append(Vector([2.0, 1.0]))
48 landmarks.append(Vector([2.0, -1.0]))
49 landmarks.append(Vector([2.0, 2.0]))
50 landmarks.append(Vector([2.0, 4.0]))
51

52 # Define the beacon's measurements
53 measurements = [Vector([0, 0])] * NUMBER_OF_LMKS_TO_MEASURE
54

55 y_sigmas = Vector([0.01, 0.01])
56 R = np.diagflat(np.square(y_sigmas))
57

58 # Declare some temporaries
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59 J_xi_x = Jacobian()
60 J_e_xi = np.zeros((SE2.Dim, SE2.DoF))
61

62 # CONFIGURATION DONE
63

64 # pretty print
65 np.set_printoptions(precision=3, suppress=True)
66

67 # DEBUG
68 print('X STATE : X Y Z TH_x TH_y TH_z ')
69 print('-------------------------------------------------------')
70 print('X initial : ', X_simulation.log().coeffs())
71 print('X_est initial : ', X.log().coeffs())
72 print('-------------------------------------------------------')
73 # END DEBUG
74

75 # START TEMPORAL LOOP
76

77 # com = Vector([1,2,5])
78 # com_tg = SE2Tangent(com)
79 # X = X.plus(com_tg, J_x, J_u)
80

81 # building the desired state
82 X_des = SE2.Identity()
83 v_des = Vector([5, 0, 1.57]) # the desired position is [1,0] with

orientation [pi/2]
84 v_des_hat = SE2Tangent(v_des)
85 X_des = X + v_des_hat
86 kp = 0.02 #defining the gain kp
87

88 # for ploting
89 XX_des = np.array([]) # desired x
90 XX = np.array([])
91 XX_est = np.array([])
92 XX_unf = np.array([])
93 YY_des = np.array([]) # desired y
94 YY = np.array([])
95 YY_est = np.array([])
96 YY_unf = np.array([])
97 Th_des = np.array([]) # desired Theta
98 Th = np.array([])
99 Th_est = np.array([])

100 Th_unf = np.array([])
101 u_test = Vector([5, 2.0, 1.04])
102 UUU = SE2Tangent(u_test)
103 X = X + UUU
104

105

106 # Make 10 steps. Measure up to three landmarks each time.
107 for t in range(10):
108 # I. Simulation
109 # this is all for ploting later ***********************
110

111 # X
112 L = X_simulation.log().coeffs().transpose()
113 XX = np.append(XX,L[0])
114 YY =np.append(YY,L[1])
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115 Th =np.append(Th,L[2])
116 print("here is the initial estimate:")
117 print(X)
118 print("hello there")
119 NN = X.log().coeffs().transpose()
120 print(NN)
121 # X_est
122 L_est = X.log().coeffs().transpose()
123 XX_est = np.append(XX_est,L_est[0])
124 YY_est =np.append(YY_est,L_est[1])
125 Th_est =np.append(Th_est,L_est[2])
126

127 L_unf = X_unfiltered.log().coeffs().transpose()
128 XX_unf = np.append(XX_unf,L_unf[0])
129 YY_unf =np.append(YY_unf,L_unf[1])
130 Th_unf =np.append(Th_unf,L_unf[2])
131

132 # L_des = X_des.log().coeffs().transpose() # for the desired
trajectory

133 # XX_des = np.append(XX_des,L_des[0])
134 # YY_des =np.append(YY_des,L_des[1])
135 # Th_des =np.append(Th_des,L_des[2])
136

137 # Plotting ends here**********************
138

139 # simulate noise
140

141 u_noise = u_sigmas * np.random.rand(SE2.DoF) # control noise
142 u_noisy = u_nom + u_noise # noisy control
143

144 u_simu = SE2Tangent(u_nom)
145 u_est = SE2Tangent(u_noisy)
146 u_unfilt = SE2Tangent(u_noisy) # control noise u_noise =

u_sigmas * np.random.rand(SE2.DoF)
147 print(type(u_nom))
148 print(type(u_noise))
149 print(type(Vector(u_nom)))
150 # u_noisy = np.array([u_nom]) + Vector(u_noise)

# noisy control u_noisy = u_nom + u_noise
151 print("THE RESEARCHED u_nom TYPE IS FINALLY HERE :*************")
152 print(type(u_nom))
153 # u_simu = SE2Tangent(Vector(u_nom))
154 # u_est = SE2Tangent(Vector(u_nom))
155 # u_unfilt = SE2Tangent(Vector(u_nom))
156 print("THE RESEARCHED TYPE IS FINALLY HERE :*************")
157 print(type(u_simu))
158 # first we move
159 X_simulation = X_simulation + u_simu # overloaded X.

rplus(u) = X * exp(u)
160

161 # then we measure all landmarks
162 for i in range(NUMBER_OF_LMKS_TO_MEASURE):
163 b = landmarks[i] # lmk

coordinates in world frame
164

165 # simulate noise
166 y_noise = y_sigmas * np.random.rand(SE2.Dim) # measurement
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noise
167

168 y = X_simulation.inverse().act(b) # landmark
measurement , before adding noise

169

170 y = y + y_noise # landmark
measurement , noisy

171 measurements[i] = y # store for the
estimator just below

172

173 # II. Estimation
174

175 # First we move
176

177 X = X.plus(u_est, J_x, J_u) # X * exp(u),
with Jacobians

178

179 P = J_x * P * J_x.transpose() + J_u * U * J_u.transpose()
180

181 # Then we correct using the measurements of each lmk
182 for i in range(NUMBER_OF_LMKS_TO_MEASURE):
183 # landmark
184 b = landmarks[i] # lmk

coordinates in world frame
185

186 # measurement
187 y = measurements[i] # lmk

measurement , noisy
188

189 # expectation
190 e = X.inverse(J_xi_x).act(b, J_e_xi) # note: e = R.

tr * ( b - t ), for X = (R,t).
191 H = J_e_xi @ J_xi_x # Jacobian of

the measurements wrt the robot pose. note: H = J_e_x = J_e_xi * J_xi_x
192 E = H @ P @ H.transpose()
193

194 # innovation
195 z = y - e
196 Z = E + R
197

198 # Kalman gain
199 K = P @ H.transpose() @ inv(Z) # K = P * H.tr

* ( H * P * H.tr + R).inv
200

201 # Correction step
202 dx = K @ z # dx is in the

tangent space at X
203

204 # Update
205 X = X + SE2Tangent(dx) # overloaded X.

rplus(dx) = X * exp(dx)
206 P = P - K @ Z @ K.transpose()
207

208 # III. Unfiltered
209

210 # move also an unfiltered version for comparison purposes
211 X_unfiltered = X_unfiltered + u_unfilt
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212

213 # IV. Results
214

215 # DEBUG
216 print('X simulated : ', X_simulation.log().coeffs().transpose())
217

218 print(X_simulation)
219 print('X estimated : ', X.log().coeffs().transpose())
220

221

222

223 print('X unfilterd : ', X_unfiltered.log().coeffs().transpose())
224 print('X desired : ', X_des.log().coeffs().transpose())
225

226 print('-------------------------------------------------------')
227

228 # u_simu = kp*X_des.lminus(X)
229 # print("THE TYPE IS : *************************")
230 # print(type(u_nom))
231 # print("here you can see the type:")
232 # print(type(u_nom))
233 # u_nom = Vector(u_nom)
234 # print(type(u_nom))
235 # print(u_nom)
236 # END DEBUG
237 tt = np.arange(0,1,0.1)
238 print(np.size(tt))
239 print(np.size(XX))
240 #PLOTING
241 #the x
242 plt.plot(tt,XX,label = "X : True_Position")
243 plt.plot(tt,XX_est,'r--',label = "X_est: Estimated_position")
244 plt.plot(tt,XX_unf,'g',label = "X_unf: Unfiltered_Position")
245 # plt.plot(tt,XX_des,'k',label = "X_des: desired position and

orientation")
246 plt.legend()
247 plt.title("The difference between actual,estimated and unfiltered x

position")
248 plt.xlabel("Time")
249 plt.ylabel("The position")
250 # plt.figure(0)
251 plt.show()
252 #the e_x
253 plt.figure(1)
254 plt.plot(tt,XX-XX_est,'r--',label = "e_x")
255 plt.legend()
256 plt.title("the estimation error : X - X_est")
257 # plt.plot(tt,XX-XX_des,'k--')
258 plt.xlabel("Time")
259 plt.ylabel("The x_error")
260 plt.show()
261

262 # #the y
263 plt.plot(tt,YY,label = "Y : True_Position")
264 plt.plot(tt,YY_est,'r--',label = "Y_est: Estimated_position")
265 plt.plot(tt,YY_unf,'g',label = "Y_unf: Unfiltered_Position")
266 # plt.plot(tt,YY_des,'k',label = "Y_des: desired position and

88



Chapter 6. General Conclusion :

orientation")
267 plt.legend()
268 plt.title("The difference between actual,estimated and unfiltered y

position")
269 plt.xlabel("Time")
270 plt.ylabel("The position")
271 plt.figure(0)
272 plt.show()
273 print(5)
274 #the e_y
275

276 plt.figure(1)
277 plt.plot(tt,YY-YY_est,'r--',label = "e_y")
278 plt.legend()
279 # plt.plot(tt,YY-YY_des,'k--')
280 plt.title("the estimation error : Y - Y_est")
281 plt.xlabel("Time")
282 plt.ylabel("The y_error")
283 plt.show()
284 # #the theta
285 plt.plot(tt,Th,label = "Th : True_Position")
286 plt.plot(tt,Th_est,'r--',label = "Th_est: Estimated_position")
287 plt.plot(tt,Th_unf,'g',label = "Th_unf: Unfiltered_Position")
288 # plt.plot(tt,Th_des,'k',label = "Th_des: desired position and

orientation")
289 plt.legend()
290 plt.title("The difference between actual,estimated and unfiltered

orientation theta")
291 plt.xlabel("Time")
292 plt.ylabel("The position")
293 plt.figure(0)
294 plt.show()
295 print(5)
296 #the e_th
297 plt.figure(1)
298 plt.plot(tt,Th-Th_est,'r--',label = 'e_theta')
299 plt.legend()
300 plt.title("the estimation error : Theta - Theta_est")
301 # plt.plot(tt,Th-Th_des,'k--')
302 plt.xlabel("Time")
303 plt.ylabel("The th_error")
304 plt.show()
305

306

307 # print(dir(manifpy))
308 # plt.show();
309

310 # plt.plot(tt,X.log().coeffs().transpose());
311 # plt.show();

1

2

3

4 from manifpy import SE2, SE2Tangent
5 import matplotlib
6 import matplotlib.pyplot as plt
7 # %matplotlib inline
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8 import numpy as np
9 from numpy.linalg import inv

10

11

12 Vector = np.array
13

14

15 def Covariance():
16 return np.zeros((SE2.DoF, SE2.DoF))
17

18

19 def Jacobian():
20 return np.zeros((SE2.DoF, SE2.DoF))
21

22

23 if __name__ == '__main__':
24

25 # START CONFIGURATION
26

27 NUMBER_OF_LMKS_TO_MEASURE = 3 # to change back to 3
28

29 # Define the robot pose element and its covariance
30 X_simulation = SE2.Identity()
31 X = SE2.Identity()
32

33 X_unfiltered = SE2.Identity()
34 P = Covariance()
35

36 u_nom = Vector([0.1, 0.0, 0.05])
37 u_sigmas = Vector([0.1, 0.1, 0.1])
38 U = np.diagflat(np.square(u_sigmas))
39

40 # Declare the Jacobians of the motion wrt robot and control
41 J_x = Jacobian()
42 J_u = Jacobian()
43

44 # Define five landmarks in R^2
45 landmarks = []
46 landmarks.append(Vector([2.0, 0.0]))
47 landmarks.append(Vector([2.0, 1.0]))
48 landmarks.append(Vector([2.0, -1.0]))
49 landmarks.append(Vector([2.0, 2.0]))
50 landmarks.append(Vector([2.0, 4.0]))
51

52 # Define the beacon's measurements
53 measurements = [Vector([0, 0])] * NUMBER_OF_LMKS_TO_MEASURE
54

55 y_sigmas = Vector([0.01, 0.01])
56 R = np.diagflat(np.square(y_sigmas))
57

58 # Declare some temporaries
59 J_xi_x = Jacobian()
60 J_e_xi = np.zeros((SE2.Dim, SE2.DoF))
61

62 # CONFIGURATION DONE
63

64 # pretty print
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65 np.set_printoptions(precision=3, suppress=True)
66

67 # DEBUG
68 print('X STATE : X Y Z TH_x TH_y TH_z ')
69 print('-------------------------------------------------------')
70 print('X initial : ', X_simulation.log().coeffs())
71 print('X_est initial : ', X.log().coeffs())
72 print('-------------------------------------------------------')
73 # END DEBUG
74

75 # START TEMPORAL LOOP
76

77 # com = Vector([1,2,5])
78 # com_tg = SE2Tangent(com)
79 # X = X.plus(com_tg, J_x, J_u)
80

81 # building the desired state
82 X_des = SE2.Identity()
83 v_des = Vector([5, 0, 1.57]) # the desired position is [1,0] with

orientation [pi/2]
84 v_des_hat = SE2Tangent(v_des)
85 X_des = X + v_des_hat
86 kp = 0.02 #defining the gain kp
87

88 # for ploting
89 XX_des = np.array([]) # desired x
90 XX = np.array([])
91 XX_est = np.array([])
92 XX_unf = np.array([])
93 YY_des = np.array([]) # desired y
94 YY = np.array([])
95 YY_est = np.array([])
96 YY_unf = np.array([])
97 Th_des = np.array([]) # desired Theta
98 Th = np.array([])
99 Th_est = np.array([])

100 Th_unf = np.array([])
101 u_test = Vector([5, 2.0, 1.04])
102 UUU = SE2Tangent(u_test)
103 X = X + UUU
104

105

106 u_noise = u_sigmas * np.random.rand(SE2.DoF) # control noise
107 u_noisy = u_nom + u_noise # noisy control
108

109 u_simu = SE2Tangent(u_nom)
110 u_est = SE2Tangent(u_noisy)
111 u_unfilt = SE2Tangent(u_noisy)
112 # Make 10 steps. Measure up to three landmarks each time.
113 for t in range(500):
114 # I. Simulation
115 # this is all for ploting later ***********************
116

117 # X
118 L = X_simulation.log().coeffs().transpose()
119 XX = np.append(XX,L[0])
120 YY =np.append(YY,L[1])
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121 Th =np.append(Th,L[2])
122 print("here is the initial estimate:")
123 print(X)
124 print("hello there")
125 NN = X.log().coeffs().transpose()
126 print(NN)
127 # X_est
128 L_est = X.log().coeffs().transpose()
129 XX_est = np.append(XX_est,L_est[0])
130 YY_est =np.append(YY_est,L_est[1])
131 Th_est =np.append(Th_est,L_est[2])
132

133 L_unf = X_unfiltered.log().coeffs().transpose()
134 XX_unf = np.append(XX_unf,L_unf[0])
135 YY_unf =np.append(YY_unf,L_unf[1])
136 Th_unf =np.append(Th_unf,L_unf[2])
137

138 L_des = X_des.log().coeffs().transpose()
139 XX_des = np.append(XX_des,L_des[0])
140 YY_des =np.append(YY_des,L_des[1])
141 Th_des =np.append(Th_des,L_des[2])
142 # Plotting ends here**********************
143

144 # simulate noise
145 # control noise u_noise = u_sigmas * np.random.rand(SE2.DoF)
146 print(type(u_nom))
147 print(type(u_noise))
148 print(type(Vector(u_nom)))
149 # u_noisy = np.array([u_nom]) + Vector(u_noise)

# noisy control u_noisy = u_nom + u_noise
150 print("THE RESEARCHED u_nom TYPE IS FINALLY HERE :*************")
151 print(type(u_nom))
152 # u_simu = SE2Tangent(Vector(u_nom))
153 # u_est = SE2Tangent(Vector(u_nom))
154 # u_unfilt = SE2Tangent(Vector(u_nom))
155 print("THE RESEARCHED TYPE IS FINALLY HERE :*************")
156 print(type(u_simu))
157 # first we move
158 X_simulation = X_simulation + u_simu # overloaded X.

rplus(u) = X * exp(u)
159

160 # then we measure all landmarks
161 for i in range(NUMBER_OF_LMKS_TO_MEASURE):
162 b = landmarks[i] # lmk

coordinates in world frame
163

164 # simulate noise
165 y_noise = y_sigmas * np.random.rand(SE2.Dim) # measurement

noise
166

167 y = X_simulation.inverse().act(b) # landmark
measurement , before adding noise

168

169 y = y + y_noise # landmark
measurement , noisy

170 measurements[i] = y # store for the
estimator just below
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171

172 # II. Estimation
173

174 # First we move
175

176 X = X.plus(u_est, J_x, J_u) # X * exp(u),
with Jacobians

177

178 P = J_x * P * J_x.transpose() + J_u * U * J_u.transpose()
179

180 # Then we correct using the measurements of each lmk
181 for i in range(NUMBER_OF_LMKS_TO_MEASURE):
182 # landmark
183 b = landmarks[i] # lmk

coordinates in world frame
184

185 # measurement
186 y = measurements[i] # lmk

measurement , noisy
187

188 # expectation
189 e = X.inverse(J_xi_x).act(b, J_e_xi) # note: e = R.

tr * ( b - t ), for X = (R,t).
190 H = J_e_xi @ J_xi_x # Jacobian of

the measurements wrt the robot pose. note: H = J_e_x = J_e_xi * J_xi_x
191 E = H @ P @ H.transpose()
192

193 # innovation
194 z = y - e
195 Z = E + R
196

197 # Kalman gain
198 K = P @ H.transpose() @ inv(Z) # K = P * H.tr

* ( H * P * H.tr + R).inv
199

200 # Correction step
201 dx = K @ z # dx is in the

tangent space at X
202

203 # Update
204 X = X + SE2Tangent(dx) # overloaded X.

rplus(dx) = X * exp(dx)
205 P = P - K @ Z @ K.transpose()
206

207 # III. Unfiltered
208

209 # move also an unfiltered version for comparison purposes
210 X_unfiltered = X_unfiltered + u_unfilt
211

212 # IV. Results
213

214 # DEBUG
215 print('X simulated : ', X_simulation.log().coeffs().transpose())
216

217 print(X_simulation)
218 print('X estimated : ', X.log().coeffs().transpose())
219
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220

221

222 print('X unfilterd : ', X_unfiltered.log().coeffs().transpose())
223 print('X desired : ', X_des.log().coeffs().transpose())
224

225 print('-------------------------------------------------------')
226

227 u_simu = kp*X_des.lminus(X)
228 # print("THE TYPE IS : *************************")
229 # print(type(u_nom))
230 # print("here you can see the type:")
231 # print(type(u_nom))
232 # u_nom = Vector(u_nom)
233 # print(type(u_nom))
234 # print(u_nom)
235 # END DEBUG
236 tt = np.arange(0,50,0.1)
237 print(np.size(tt))
238 print(np.size(XX))
239 #PLOTING
240 #the x
241 plt.plot(tt,XX,label = "X : True_Position")
242 plt.plot(tt,XX_est,'r--',label = "X_est: Estimated_position")
243 plt.plot(tt,XX_unf,'g',label = "X_unf: Unfiltered_Position")
244 plt.plot(tt,XX_des,'k',label = "X_des: desired position and orientation

")
245 plt.legend()
246 plt.title("The difference between actual, estimated , unfiltered and

desired x position")
247 plt.xlabel("Time")
248 plt.ylabel("The position")
249 # plt.figure(0)
250 plt.show()
251 #the e_x
252 plt.figure(1)
253 plt.plot(tt,XX-XX_est,'r--',label = 'the estimation error ')
254 plt.plot(tt,XX-XX_des,'k--',label = 'the regulation error ')
255 plt.legend()
256 plt.xlabel("Time")
257 plt.ylabel("The x_error")
258 plt.show()
259

260 # #the y
261 plt.plot(tt,YY,label = "Y : True_Position")
262 plt.plot(tt,YY_est,'r--',label = "Y_est: Estimated_position")
263 plt.plot(tt,YY_unf,'g',label = "Y_unf: Unfiltered_Position")
264 plt.plot(tt,YY_des,'k',label = "Y_des: desired position and orientation

")
265 plt.legend()
266 plt.title("The difference between actual,estimated , unfiltered and

desired y position")
267 plt.xlabel("Time")
268 plt.ylabel("The position")
269 plt.figure(0)
270 plt.show()
271 print(5)
272 #the e_y
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273 plt.figure(1)
274 plt.plot(tt,YY-YY_est,'r--',label = "the estimation error")
275 plt.plot(tt,YY-YY_des,'k--',label = "the regulation error")
276 plt.legend()
277 plt.xlabel("Time")
278 plt.ylabel("The y_error")
279 plt.show()
280 # #the theta
281 plt.plot(tt,Th,label = "Th : True_Position")
282 plt.plot(tt,Th_est,'r--',label = "Th_est: Estimated_position")
283 plt.plot(tt,Th_unf,'g',label = "Th_unf: Unfiltered_Position")
284 plt.plot(tt,Th_des,'k',label = "Th_des: desired position and

orientation")
285 plt.legend()
286 plt.title("The difference between actual,estimated , unfiltered and

desired orientation theta")
287 plt.xlabel("Time")
288 plt.ylabel("The position")
289 plt.figure(0)
290 plt.show()
291 print(5)
292 #the e_th
293 plt.figure(1)
294 plt.plot(tt,Th-Th_est,'r--',label = "the estimation error")
295 plt.plot(tt,Th-Th_des,'k--',label = "the regulation error")
296 plt.legend()
297 plt.xlabel("Time")
298 plt.ylabel("The th_error")
299 plt.show()
300

301

302 # print(dir(manifpy))
303 # plt.show();
304

305 # plt.plot(tt,X.log().coeffs().transpose());
306 # plt.show();
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