
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET
POPULAIRE

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA
RECHERCHE SCIENTIFIQUE

École Nationale Polytechnique
Département de Génie Mécanique

Laboratory of Green and Mechanical Development

Final year project dissertation

For obtaining State Engineer degree in Mechanical Engineering

Development and validation of a CFD code based on
the finite volume method with a graphical user

interface: Application to laminar, incompressible and
two-dimensional flows

Mohamed SEMMAD

Supervised by: Dr. A BOUHELAL Pr. A SMAILI

Publicly presented and defended on Sep 15, 2022

Committee board:

President : Said RECHAK Prof (ENP)
Supervisor : Abdelhamid BOUHELAL Dr, MCB (ENP)
Co-Supervisor : Arezki SMAILI Prof (ENP)
Examiner : Mohammed Amokrane MAHDI Dr, MCB (ENP)

ENP 2022

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET
POPULAIRE

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA
RECHERCHE SCIENTIFIQUE

École Nationale Polytechnique
Département de Génie Mécanique

Laboratory of Green and Mechanical Development

Final year project dissertation

For obtaining State Engineer degree in Mechanical Engineering

Development and validation of a CFD code based on
the finite volume method with a graphical user

interface: Application to laminar, incompressible and
two-dimensional flows

Mohamed SEMMAD

Supervised by: Dr. A BOUHELAL Pr. A SMAILI

Publicly presented and defended on Sep 15, 2022

Committee board:

President : Said RECHAK Prof (ENP)
Supervisor : Abdelhamid BOUHELAL Dr, MCB (ENP)
Co-Supervisor : Arezki SMAILI Prof (ENP)
Examiner : Mohammed Amokrane MAHDI Dr, MCB (ENP)

ENP 2022

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET
POPULAIRE

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA
RECHERCHE SCIENTIFIQUE

École Nationale Polytechnique
Département de Génie Mécanique

Laboratory of Green and Mechanical Development

Mémoire de projet de fin d’études

Pour l’obtention du diplôme d’ingénieur d’état en Génie Mécanique

Développement et validation d’un code CFD basé sur la
méthode des volumes finis avec une interface graphique

: Application aux écoulements laminaires,
incompressibles et bidimensionnels

Mohamed SEMMAD

Encadrants: Dr. A BOUHELAL Pr. A SMAILI

Présenté et soutenue publiquement le 15 Septembre 2022

Composition du Jury:

Président : Said RECHAK Prof (ENP)
Encadrant : Abdelhamid BOUHELAL Dr, MCB (ENP)
Co-Encadrant : Arezki SMAILI Prof (ENP)
Examinateur : Mohammed Amokrane MAHDI Dr, MCB (ENP)

ENP 2022

�
	
jÊÓ

)
�
éJ
K. A�mÌ'@ ©

K @ñÖÏ @ ½J
ÓA

	
JK
YË l .

×A
	
KQK. QK
ñ¢

�
� ñë ÉÒªË@ @

	
Yë 	áÓ ú

æ�J

KQË @

	
�Q

	
ªË@

Computational

Finite Volume Method)
�
éJ
î

�
D
	
JÖÏ @ Ðñj. m

Ì'@
�
é
�
®K
Q£ ÈAÒª

�
J�AK. ½Ë

	
X ð (Fluid Dynamic

. ¡
	
ª
	
�Ë@ ÉÓA« úÎ«

�
éK
ñ

�
JjÖÏ @

�
HBXAªÖß.

�
é�A

	
mÌ'@ (SIMPLE)

�
éJ
Ó

	PP@ñ
	
k Ð@Y

	
j
�
J�@ð (

úÍ@

	
¬YîE
ð .(Graphical User Interface) ÐY

	
j
�
J�ÖÏ @

�
éêk. @ð úÎ« l .

×A
	
KQ�. Ë @ @

	
Yë ø

ñ
�
Jm�'

©

K @ñÖÏ @ ½J
ÓA

	
JK
Xð ©

K@ñÖÏ @ ½J

	
K A¾J
Ó ú

	
¯

�
éK
YJ
êÒ

�
JË @ �ðPYË@ ú

	
¯ ÉÒª

�
J�

�
�
�
éJ
ÒJ
Êª

�
K
�
è @X

@
	
àñºK

	
à

@

, A
	
ª
	
�
	
�CË

�
éÊK. A

�
¯ Q�

	
« ,(

�
éJ

	
JÓ 	P Q�

	
«)

�
èQÒ

�
J�ÖÏ @

�
HBAmÌ'@ ÉmÌ ÕÔ�Ó l .

×A
	
KQ�. Ë @ .(CFD)

�
éJ
K. A�mÌ'@

	áÓ ÐY
	
j
�
J�ÒÊË 	áºÖß
 . XAªK.

B@ ù

KA
	
J
�
K ú

�
GPA¾K
X H. A�k ÈAm.

× ú

	
¯ ú

m�

'A
	
®�Ë@

	
àAK
Qm.

Ì'@
�
H@

	
X

,
�
éJ
K. A�mÌ'@

�
éºJ.

�
�Ë@

�
HCÓAªÓ ,ÉÒª

�
J�ÖÏ @ ©

KAÖÏ @ �

�A�

	
k YK
Ym

�
�
' 	áÓ

�
éJ

KQÖÏ @

�
éêk. @ñË@ ÈC

	
g

.
�
ém.
�
�
'A
	
JË @

�
�
	
¯Y

�
JË @ Èñ

�
®k Pñ�

�
�ð ,H. A�mÌ'@ l .

×A
	
KQK.

�
HCÓAªÓð

ú

�
æË@ð ,

�
éJ
K. A�mÌ'@ ÐñÊªË@ ÈAm.

× ú

	
¯

�
èQ�

	
ª�

�
éJ
Ëð

@
�
èñ¢

	
k

�
�J

�
®m�

�
' ú

	
¯ ¨ðQå

�
�ÖÏ @

�
é
	
®�Ê

	
¯ É

�
JÒ
�
J
�
K

. ù

�
®J
J.¢

�
JË @ ÕÎª

�
JÊË @ �QÒ

�
J�Ó A

�
«ðQå

�
�Ó AêÊªm.

Ì H. C¢Ë@
	áÓ

�
éÓXA

�
®Ë @ ÈAJ
k.

B@ AëA

	
JJ.
�
�
�
K

	
à

@ Z ÉÓ

A
	
K Z

�
é
�
®K
Q£ , ÐY

	
j
�
J�ÖÏ @

�
éêk. @ð , ù

ÒJ
Êª

�
K l .

×A
	
KQK. ,

�
éJ
K. A�mÌ'@ ©

K @ñÖÏ @ ½J
ÓA

	
JK
X :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

. SIMPLE �
IJ
Ó

	PPñ
	
k ,

�
éJ
î

�
D
	
JÖÏ @ Ðñj. m

Ì'@

Résumé

L’objectif principal de ce travail est de développer un code de calcul de la dy-
namique des fluides (CFD) basé sur la méthode des volumes finis (FVM) et
utilisant la méthode SIMPLE (Semi-Implicit Method for Pressure Linked Equa-
tions). Ce logiciel a une interface graphique (GUI) et il est destiné à être un
outil pédagogique dans les cours d’introduction à la mécanique des fluides et
à la CFD. Le logiciel est capable de résoudre des problèmes laminaires incom-
pressibles en régime permanent sur des grilles cartésiennes bidimensionnelles.
L’interface graphique permet à l’utilisateur de définir les propriétés du fluide,

les caractéristiques du maillage, et les paramètres du l’algorithme du calcule, et
de visualiser les champs d’écoulement résultants.

La philosophie du projet est de faire un petit pas dans la science compu-
tationnelle, qui sera - espérons-le - poursuivi par les prochaines générations
d’étudiants pour en faire un projet d’apprentissage continu.

Mots clés : CFD, Logiciel Pédagogique, Interface Graphique, Méthode des
Volumes Finis, Algorithme SIMPLE.

Abstract

The main purpose of this work is to develop a Computational Fluid Dy-
namic (CFD) code based on the Finite Volume Method (FVM) and using the
Semi-Implicit Method for Pressure Linked Equations(SIMPLE algorithm). This
software has a Graphical User Interface (GUI) and it is intended to be an edu-
cational tool in introductory-level fluid mechanics and CFD courses. The soft-
ware is capable of solving steady-state, incompressible, Laminar problems on
two-dimensional Cartesian grids. The GUI enables the user to define the fluid
properties, the mesh parameters, the solver settings, and a visualization of the
resulting flow fields.

The philosophy of the project is to make an initial, small leap into compu-
tational science, that will be –hopefully- carried out by the next generations of
students to make it a continuous learning-by-doing project.

Keywords: CFD, Software-Based Education, Graphical User Interface, Fi-
nite Volume Method, SIMPLE Algorithm.

Acknowledgements

First and foremost, I thank ALLAH, for all his blessings, and
for the causes he gave me to accomplish this work.

Secondly, I would like to place a special thanks to my parents, I
am grateful for your support throughout my whole life. Sincerely, I
found Writing those words for you the most appreciable part of this
work.

Also, I am grateful to my supervisors, Pr. A. BOUHELAL
(MCB, ENP, Algiers) and Pr. SMAILI (Professor, ENP, Algiers),
for having entrusted me with this research work.

I also avail myself of this opportunity to thank members of my
thesis committee: Pr.Säıd RECHAK (Professor, ENP, Algiers),
and Pr. M. A. MAHDI (Professor, ENP, Algiers). I appreciate
your time and efforts to evaluate this thesis.

Last but not least, an enormous thanks to all my colleagues at
the ENP school, in particular to my friends Macil TAMAZIRT
and Hani MEHABA. I am grateful to them for their help and
valuable support.

I thank all those who helped me and supported me from near or
far,

Thank you very much to all.

Dedication

I would like to dedicate this modest work:
To my dear father: Toufik and To my dear mother: Zohra.
To my brothers: Abdelkarim, and Walid and To my sister: Fella
To all members of my family and To all my dear and faithful

friends

Contents

List of Figures

List of Tables

General Introduction 13

1 Overview 15
1.1 Introduction . 16
1.2 CFD Overview . 16
1.3 Components of a Numerical Solution 17
1.4 Mathematical Classification of Flows 19

1.4.1 Equations Types Significance 19
1.4.2 Classification Method For Simple PDEs 19

1.5 Numerical Grid . 20
1.5.1 Structured (Regular) Grid 20
1.5.2 Block-structured Grid . 20
1.5.3 Unstructured Grid . 24

1.6 Discretization methods . 24
1.6.1 Finite Difference Method 24
1.6.2 Finite Volume Method . 26
1.6.3 Finite Element Method 26

1.7 CFD Techniques . 26
1.8 Solution of Linear Equations System 27

1.8.1 Point-iterative Methods 28
1.8.2 Multigrid Techniques . 28

1.9 Incompressible Flow . 29
1.10 Motivation: Educational Software 29
1.11 Conclusion . 30

2 Numerical Method 31
2.1 Introduction . 32
2.2 Governing Equations . 32
2.3 Finite Volume Method . 32

2.3.1 The Diffusion Term . 34

2.3.2 The Source Term . 34
2.3.3 The Convective Term . 34
2.3.4 The General Discretized Form 35

2.4 Geometry Discretization: Staggered Grid 36
2.5 The Pressure Correction Method: SIMPLE Algorithm 37

2.5.1 Descretized Momentum Equation on a Staggered Grid . . 38
2.5.2 The SIMPLE Algrithm 41
2.5.3 The Assembly of the Complete Method 43

2.6 Boundary Conditions . 44
2.6.1 Inlet . 45
2.6.2 Outlet . 46
2.6.3 Wall . 47

2.7 Iterative Solver: Gauss Seidel . 48
2.8 Conclusion . 48

3 The Code’s Implementation 50
3.1 Introduction . 51
3.2 The Computation Code: ico ns solver 51

3.2.1 Phases of Implementation 51
3.2.2 Code Structure . 51
3.2.3 The Code’s Working Principle 52

3.3 The Graphical User Interface and its Features 53
3.4 Conclusion . 56

4 Results And Discussion 57
4.1 Introduction . 58
4.2 Validation of the First Stage: Convection-diffusion 1D 58
4.3 Validation of the Second Stage: 1D SIMPLE 59
4.4 Validation of the Third Stage: The Complete Algorithm 59

4.4.1 Pipe Flow: Entry Length Plots 61
4.4.2 Pipe Flow: Contours Plots 61

4.5 Conclusion . 63

General Conclusion 65

References 68

The Code’s repository 69

List of Figures

1.1 A shematic diagram representing the components of a numerical
solution. [1] . 18

1.2 Example of a 2D, structured, non-orthogonal grid, designed for
calculation of flow in a symmetry segment of a staggered tube
bank. [2] . 21

1.3 Example of an O-type grid: Streamlines in cylinder vicinity at
Re = 20. [3] . 21

1.4 C-grid around a NACA 0012 airfoil. [4] 22
1.5 Example of a Block-structured grid, designed for calculation of

flow around an airfoil. [5] . 23
1.6 Example of a 2D block-structured grid which does not match

at interfaces, designed for calculation of flow around a hydrofoil
under a water surface. [2] . 23

1.7 A composite 2D grid, used to calculate flow around a cylinder in
a channel. [2] . 24

1.8 Three examples of unstructured grids: tetrahedral (upper), poly-
hedral (middle) and trimmed hexahedral (lower) with prism lay-
ers along walls and local grid refinement. [3] 25

2.1 The arrangement for a two-dimensional flow calculation, using a
staggered grid [6]. 38

2.2 A ‘checker-board’ pressure distribution.[6] 39
2.3 The SIMPLE algorithm.[6] . 44
2.4 Three emphasized u momentum cells in the vicinity of the inlet,

outlet, and wall boundaries in a pipe flow configuration. [7] . . . 45
2.5 Three emphasized v momentum cells in the vicinity of the inlet,

outlet, and wall boundaries in a pipe flow configuration. [7] . . . 46
2.6 Three emphasized p momentum cells in the vicinity of the inlet,

outlet, and wall boundaries in a pipe flow configuration. [7] . . . 47

3.1 The principal window of CFDENP 54
3.2 Residuals printing in the command line window for a given sim-

ulation. 55
3.3 Visualization of the vector plot of a flow field in a pipe, Re ≈ 1100. 56

4.1 A schematic figure of the treated convection-diffusion problem. [6] 58
4.2 Comparison of the the numerical result with the analytical solu-

tion for the transported property for a convection-diffusion problem. 59
4.3 A planar two-dimensional nozzle. [6] 60
4.4 comparison of the converged pressure and velocity field after 19

iterations to the analytical solution for the nozzle flow case. . . . 60
4.5 A comparative figure for a pipe flow where plots of the normalized

u velocity component at the pipe centerline versus the normalized
distance from the inlet for three Re numbers: (a) Re=1000, (b)
Re=1500, (c) Re=2000 were presented 61

4.6 Contours plots for Pressure, u velocity, and v velocity fields for
three Re number: (a) Re=1000, (b) Re=1500, (c) Re=2000. The
plots are arranged so that the first row (top), second and third
represent: u-velocities, v-velocities, and Pressure contours respec-
tively . 62

4.7 Contours plots for Pressure, u velocity, and v velocity fields for
Re=2000 in a pipe flow simulation done using OpenFoam. 63

List of Tables

1.1 The type of the characteristic equation based on the descriminant
value. [6] . 20

2.1 The neighbor coefficients for common schemes. [6] 37

General Introduction

Background

Fluid flow applications are ubiquitous, to the point that it is even irrelevant
to mention examples. Interestingly, most flows and related phenomena can
be described by a small set of partial differential equations. Although dating
from the 9th century, those equations cannot be solved analytically to this day
1, except for special cases. Part of that difficulty comes from the fact that
the solution of the Navier-Stokes equations often includes one of the greatest
unsolved problems in physics, namely turbulence. Yet, turbulence has immense
importance in science and engineering.

In virtue of that, scientists found the urge to develop a reliable method for
tackling fluid flow problems. The goal is to derive results that can be con-
fidently used in engineering calculations where the smallest error can lead to
catastrophic ramifications, all with making those methods affordable even with
limited resources.

Numerical simulation was the most promising candidate. Relying on the
growing power of computer performances and an active community of algorithm
developers, numerical approximations of the governing equations of fluid flows
were constantly enhanced. Both in the quality of the approximating and the
cost in terms of time and resources, the new branch of numerical approximation
applied to flow problems gained a reputation in the name of Computational
Fluid Dynamics (CFD).

From the early days of CFD, new numerical simulation software (or CFD
software) was massively developed. From in-house codes to famous commer-
cial software, CFD is made accessible and ready for use without requiring the
re-development of a computer program, hence shortcutting the way for industri-
als, and tool-users wanting to focus on the development of their project instead
of the development of the CFD solution. Mainly, Two types of CFD codes are
available for the large public: (i) Commercial software and (ii) Open-source soft-
ware. Although both have great performances they present some disadvantages

1To this day, no one has proved that a smooth solution for the Navier-Stokes equations
three-dimensional system, and given some initial conditions always exist, nor has anyone found
a counter-example. This fact has urged the Clay Mathematics Institute [8] in May 2000 to
make the Navier–Stokes existence and smoothness problem one of its seven Millennium Prize
problems in mathematics.

13

for some particular users. First, commercial software are well documented and
provides expert assistance, but comes for a very expensive price making them
accessible only to large companies and institutions. On the other hand, open-
source programs are freely available. However, they present a steeper learning
curve for new users, because of their relatively small documentation and assis-
tance.

For educational purposes, generally, resources are limited, making commer-
cial software hardy affordable (if not unaffordable), In addition, Open source
software mostly demands larger learning time, which make them a bad choice
for educational activity focusing on the understanding of physical phenomenon
rather that mastering the software itself.

Objective

In the present work, we aim to develop the building block of a CFD code
designed for educational purposes. We restrain our application to laminar, in-
compressible, and isothermal flow (without energy equation) for a Cartesian
uniform grid. The code is based on the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm. Where we opted for a staggered grid
arrangement for geometry discretization. Moreover, the finite volume method
(FVM) is used for the discretization of the equations. Finally, since the simple
mesh we are using does not require a multi-grid solver we opted for the Gauss-
Seidel algorithm as a linear solver. The different solution components are coded
in C++ to construct a single compact solver.

Since the project is intended for educational use, it comprises a Graphical
User Interface (GUI). The GUI is simplified to one window that contains all
the needed inputs, and some basic post-processing features. It is developed in
Python using The Tkinter library.

The whole Project is made Open Source, where every interested person can
be a contributor to upgrade the project along the targeted development path.

14

Chapter 1

Overview

15

1.1 Introduction

In this introductory chapter, we will conduct a brief presentation of the CFD
as a scientific research field, then talk about the major components of a CFD
study, and finally, we will focus on our theme which concerns only incompressible
flows. Also we will present the motivations of this project.

The information given in this chapter pertain to the CFD field in its general
picture, and are not specific to our current study. Therefore, we will present
information like they are found in books and we will not be restrained to the
elements that we will use in the present project.

1.2 CFD Overview

Nowadays numerical simulation is commonly described as the third branch
of scientific research, next to the experimental development and mathematical
theory [9]. Computational fluid Dynamic is the numerical approach for solving
the governing equations of fundamental phenomea present in most engineering
applications namely, transport phenomena related to flow motion. In the more
general case, the governing equations are the continuity, the momentum, and
the energy equations, which are commonly called in the CFD literature as the
Navier-Stokes equations 1 do not have an analytical solution nor a proof about
its existence except for some special, enough simplified cases.

The first use of CFD, although this statement depends on the definition of
a CFD study, can be traced back to the 1940s [7]. However, it was utile the
development of digital computers in the mid-1950s and early 1960s that the
common knowledge uses of CFD had seen light, and flourished since then. It
is a logical fact that the development era of computational resources in terms
of storage resources and execution speed has been a catalyzer for the CFD
research community for enabling new capabilities in the numerical simulation
field. Indeed, a wide range of complex study cases presenting geometrical (e.g.
crane of a ship, fuselage of an aircraft, automobile body), or physical (e.g.
combustion, multiphase) difficulties becomes feasible after the hardware barrier
was removed.

Although CFD was initially developed by some sections within the aeronau-
tic and aerospace industries [9], it is today a crucial tool in many other sectors
such as the automotive, power generation, chemical, nuclear, biomedical, and
marine industries, to cite a few. The ranks of heavy CFD users have witnessed
great growth over the past decades, as a general rule every product that is im-
pacted by a fluid motion, heat transfer, or a phenomenon with similar governing
equations, CFD presents a promising tool for the product’s development cycle.

To give a brief idea about the power of CFD in contrast to the other dimen-
sions of fluid dynamics (namely, theoretical and experimental approaches), The

1Historically, the equation obtained by the two scientists (working independently) was the
momentum equation. But in the CFD community the resolution of the complete closed system
is described as the resolution of the Navier-Stokes equations.

16

following aspect of CFD are highlighted:

Accessibility As wind, tunnels have been used to obtain sets of data for
given flow configuration CFD can be used to give analogous results. However,
Computational Fluid Dynamic has the advantage of being a computer program
that can be moved anywhere. Or, for a better case, a source program is accessed
remotely.

Facility Limitation The physical world has drawbacks compared to CFD,
that is nature is not perfectly controlled. For instance, studying a turbulent
versus a laminar case using a CFD code is as straightforward as switching the
model on and off, whereas in a wind tunnel it’s not so simple to control things
if it is not impossible in many cases.

Visualization Using preprocessing software, CFD results can be presented in
a fashion that is impossible to obtain in an actual laboratory experiment. This
advantage allows scientists to draw observations and conclusions more easily
and reliably.

Finally, it is wise to note that even if the use of CFD as a design phase
tool becomes abundant due to the aforementioned advantages, However, some
applications still require a great deal of human and computer resources.

1.3 Components of a Numerical Solution

The numerical solution of a partial differential equation consists of finding
the values of a dependent variable ϕ at specified points from which the distri-
bution over the domain of interest can be constructed [1]. Solving a partial
differential equation numerically, is finding the values of the dependents vari-
ables at some locations of the solution domain. The complete solution can be
subsequently obtained by interpolating those points. These points are called
grid elements, or grid nodes, and result from the meshing process, which is the
discretization of the problem’s geometry. These nodes are generally positioned
at cell centroids or vertices depending on the adopted discretization procedure
[1]. Domain discretization is essential for converting the governing equations
to an algebraic system (Equation discretization), written for the variable of in-
terest ϕ. This algebraic system is solved using a linear solver for obtaining the
discrete solution of the governing equation. In the following subsections, we will
dive into each of the aforementioned steps, which are illustrated in Figure 1.1.

17

Figure 1.1: A shematic diagram representing the components of a numerical
solution. [1]

18

1.4 Mathematical Classification of Flows

1.4.1 Equations Types Significance

For solving a CFD problem, not only the governing equation have to be
known, but also its physical behavior. This condition is a requirement because
the initial and boundary conditions –along the governing equation- are manda-
tory to construct a well-posed problem, and setting those conditions depends
on the physical behaviors of a fluid flow. In general, two categories of problems
may be encountered:

Equilibrium Problems Those problems are characterized by their steadi-
ness. In the next subsection we will put the equations governing this type of
phenomena in the elliptic type. The most representative equation for this cat-
egory is the Laplace’s equation, which describe potential, incompressible flows
for instance.

Marching Problems In this category, the solution can be marched along the
flow direction. These problems are governed by parabolic or hyperbolic equa-
tions, which arises not only from time-dependent phenomena (like unsteady
flows and wave propagations) but in seady flow described by parabolic or hy-
perbolic equations.

ere, a probe at any point of the solution domain can be only influenced by
events at later times. For obtaining a well-posed problem initial and boundary
conditions must be specified.

1.4.2 Classification Method For Simple PDEs

A general second order PDE in two co-ordinates x and y have the following
form:

a
∂2ϕ

∂x2
+ b

∂2ϕ

∂x∂y
+ c

∂2ϕ

∂y2
+ d

∂ϕ

∂x
+ e

∂ϕ

∂y
+ fϕ+ g = 0 (1.4.1)

Note that we are assuming that the equation is linear, and a, b, c, d, e, f, and
g are constants. This classification method is based on searching for the roots
of the characteristic equation. And it also applies to quasi-linear second-order
partial differential equations.

For establishing our classification, we should consider the coefficients of the
highest order derivatives. Based on those coefficients, we search for simple wave
solutions. This is done by solving the characteristic equation bellow:

a

(
∂y

∂x

)2

− b

(
∂y

∂x

)
+ c = 0 (1.4.2)

Based on the discriminant of equation 1.4.2, table 1.4.2 will distinguish be-
tween three cases.

19

b2 − 4ac Equation type characteristics
> 0 Hyperbolic Two real characteristics
= 0 Parabolic one real characteristics
< 0 Elliptic No characteristics

Table 1.1: The type of the characteristic equation based on the descriminant
value. [6]

It is important to note that the equation may have more the one type, and
that is in dependence to the considered regions of the solution domain.

1.5 Numerical Grid

Before calculations are carried out, the calculation domain must be dis-
cretized, i.e. an amount of location is defined throughout the domain where
flow variables will be evaluated. Many Meshing families exist depending on the
treated geometry. Each family has its specific challenges, but the shared princi-
ple is that the calculation domain is divided into a finite number of subdomains.

1.5.1 Structured (Regular) Grid

Regular or structured grids are constructed by respecting the propriety that
two lines of one single-family: (i) do not cross each other, and (ii) cross each
line of the other families exactly once. This structure allows the numbering of
the grid point by the mean of indices just like in a Cartesian grid.

Based on the shape of the grid line we can distinguish H-, O-, or C-type
grids. Figure 1.2 shows an H-type grid, it has the property that when mapped
into a rectangular grid, one cell will have distinct boundaries (four in the 2D
case). An O-type grid is shown in figure 1.3, which corresponds to an flow
around a cylinder. In the airfoil flow configuration of Figure 1.4, a C-type grid
is used, we note that, in this case, an “artificial cut”, as commonly known is
introduced, to allow the grid lines around the airfoil jumping from infinity to 0.

An important remark is that: to be able to map a structured grid into
a rectangular one, the mathematical expression of the grid’s lines should be
known.

1.5.2 Block-structured Grid

Many flow problems do not require mesh refinement throughout the calcu-
lation domain, but only in the area of interest. For this application a coarse
level and a fine level are used, therefore the domain will contain two level (or
more) of subdivisions. Certainly, special treatment is needed for the interfer-
ences. Figure 1.5 is an example of a block structured grid it contains six block
with differents grid type, block number 3 has a C-type grid, while the other
blocks have an H-type grid.

20

Figure 1.2: Example of a 2D, structured, non-orthogonal grid, designed for
calculation of flow in a symmetry segment of a staggered tube bank. [2]

Figure 1.3: Example of an O-type grid: Streamlines in cylinder vicinity at Re
= 20. [3]

21

Figure 1.4: C-grid around a NACA 0012 airfoil. [4]

22

Figure 1.5: Example of a Block-structured grid, designed for calculation of flow
around an airfoil. [5]

Figure 1.6: Example of a 2D block-structured grid which does not match at
interfaces, designed for calculation of flow around a hydrofoil under a water
surface. [2]

23

Figure 1.7: A composite 2D grid, used to calculate flow around a cylinder in a
channel. [2]

1.5.3 Unstructured Grid

For arbitrary geometries, more flexibility for fitting the body shape is needed.
This this the cause for using unstructured grids. In principle, such grids have
no restriction on term of the descretizition method, however the Finite Volume
Method is clearly the best suited option.

Because the fluxes being the important quantity, no constraint is placed on
the cells shape nor on the neighboring faces. Despite that any cell shape can be
used, the commonly used 2D grid are made of triangles (tetrahedron in 3D), or
quadrilaterals (hexahedra in 3D).

Unstructured Grids generation is research field in it self, many computer
programs are developed specifically for that purpose with an uneven reliability.
The aims for development is present because Unstructured Grids complicate
the solving process. For instance since the corresponding matrix of the alge-
braic equations system no longer has a regular, diagonal structure, the solvers
are usually slower than those for regular grids. In Figure 1.8 a set of three
unstructured grids is presented.

1.6 Discretization methods

1.6.1 Finite Difference Method

Finite Difference Method was introduced by Euler in the 18th century. It
has a basic mathematical foundation, and it is more adapted for simple geome-
tries. Its mathematical foundation relies on replacing differentiation with finite
differences, therefore, the differential form of the conservation equation is more
suited for the FDM formulation. The general idea of the method is about ap-
pearing the nodes’ values of the approximation field as unknown in a system of
algebraic equations. Many finite difference representations of derivatives exist,

24

Figure 1.8: Three examples of unstructured grids: tetrahedral (upper), poly-
hedral (middle) and trimmed hexahedral (lower) with prism layers along walls
and local grid refinement. [3]

25

with variations in the accuracy order and the number of the implicated grid
point, known as the stencil. Two main approaches exist that are used for ob-
taining an FDM representation, (i) the Taylor Series Expansion, and the (ii)
Polynomial Approach.

The first approach is the basic one; it allows an explicit evaluation of the
accuracy order, which is defined as the order of the term of the highest mag-
nitude in Taylor’s series truncation error. The second approach is more suited
for elaborating FDM representation of higher order of accuracy, which usually
involves a larger stencil. The basic idea of this approach is to write the deriva-
tive in question as a linear combination of the chosen grid points and determine
those coefficients subsequently.

Commonly, FDM is applied only to structured meshes; however, FDM is
applicable to any type of network, but with more complexity. This is due to the
simplicity and effectiveness of the method on structured meshes. The principal
disadvantage of the method is the non-enforcement of conservation (unless with
special treatment), furthermore, the restriction to simple geometry prevents the
method from the use in complex flow.

1.6.2 Finite Volume Method

In contrast to the FDM, the discretization of the integral form of fluid flow
governing equations is called finite volume. Most of the commercial solvers use
this technique [7] (e.g Fluent, STAR-CD, CFX). One of the main advantages of
FVM is that it can be used for unstructured grids without any transformation.
Another advantage is related to a fundamental principle contained behind the
integral form, which is the ability to handle discontinuities (most commonly
induced by shock waves) in the flow field. The other form of the governing
equations (the differential form) supposes the continuity of the solution letting
the FDM formulation fundamentally not appropriate for such slows.

1.6.3 Finite Element Method

The method was initially developed in the structural analysis, and then gen-
eralized to the whole continuum mechanics [7]. It is based on the approximation
of the solution with simple (linear or quadratic) functions each one valid only in
one sub-region of the domain. This will reduce the complex partial differentials
to simple piecewise functions. As stated earlier, most CFD packages use FVM,
However, some FVM-based packages exist (e.g Ansys Flotran, CFdesign) [7].

1.7 CFD Techniques

CFD is about approximating fluid flow with the best available precision. And
since flow phenomena are very diverted, fluid researchers have been continuously
seeking more efficient methods to perform that approximation. Their work has
conducted to a diverse classification of CFD techniques, where each method

26

has its own strength, weaknesses, and range of applicability. In the present
discussion, We will focus on CFD techniques adapted for solving incompressible
flow problems.

It is worth noting that an exhaustive review of all the techniques –if it is not
an impossible task- is out of our present discussion (such reviews can be found
in [10], [11]. However, a brief review of some techniques developed in the era of
viscous incompressible flows is provided below, with more detail given on the
pressure correction technique in section 2.5. There are two main categories of
approaches for solving incompressible Navier-Stokes equations:

• Primitive Variable Approaches;

• Primitive Variable Approaches.

In the first formulation, the system of equations is written with pressure and
velocity components as independent variables, and the resolution is based on
pressure or on density [7]. For the second formulation, the governing equation is
written in function of derived quantities such as the vorticity-stream function,
and the primitive variables (i.e. pressure and velocity) are calculated later as
dependent variables [7]. Some examples of methods using the first formulation
are as follows:

• Pressure based

– The Marker and Cell (MAC) method

– Fractional Step Method

– Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

– Density Based

∗ Artificial Compressibility Method

In pressure-based approaches, the incompressibility is satisfied directly by
using the pressure as a mapping parameter. The density-based approach is
based on compressible flow formulation; by taking advantage of the fact that
equations are coupled through density, and recovering incompressibility as a
limiting case [7].

1.8 Solution of Linear Equations System

Solving linear systems is a crucial part of a CFD analysis; indeed, it is alike
for all numerical analysis in general. This is why numerical resolution of linear
system has ever been an active research field.

In CFD, the discretization process approximates the analytical formulation
of the physical phenomenon by a system of algebraic equations. Which are linear
or non-linear according to the nature of the original PDE(s). Non-linear linear
algebraic equations follow a three steps resolution method, which is about: i)

27

Guessing, ii) linearizing the solution about the guessed solution, iii) applying
corrections, until convergence is achieved. Therefore, even non-linear algebraic
equation need a linear solver, and depend on its performances.

Sparsity 1. is what characterize the matrices of the linear systems. If the
used grid is structured, the matrix will have a favorable form for the resolution
process, in which the non-zero elements lie on a small number of well-defined
diagonals. For the general case, more sophisticated and adapted method should
be used for reaching a reasonable resolution time.

In the present section, we will restrict ourselves to iterative techniques, which
have the advantage of requiring a lower storage overhead 2 , making them pre-
ferred over their counterpart: the direct techniques, especially for large systems.
Moreover, we will just give a brief presentation of the most common iterative
linear solver algorithms. For a more thorough and deep review, the reader is
directed to the specialized bibliography.

1.8.1 Point-iterative Methods

The name Point-iterative come from the fact that the solution is updated
sequentially node by node. A general rule in point-iterative methods is that the
degree of explicitness is inversely proportional to the order or convergence. This
is important to keep in mind when trying to make a compromise between these
two factors.

Jacobi Method

In the Jacobi 3 update process, all off-diagonal (neighboring) terms are
treated explicitly (i.e. their values are taken from the previous iteration). Since
the method is a point wise method, it can be applied to both structured and
unstructured meshes.

Gauss–Seidel Method

It is founded on the basis of the Jacobi method by adopting an important
modification; at each iteration whenever an updated value is calculated, it will
be use for the upcoming calculations. This implies an increase in the degree of
implicitness and hence, an improvement in the convergence rate in expected.

1.8.2 Multigrid Techniques

Multigrid concept is designed to take advantage of the inherent differences
of the error behavior by using iterations on meshes of different size. [6]

1A sparse matrix is a matrix which most of its elements are zero.
2Storage overhead is the memory needed for performing a specific task. [12]
3Carl Gustav Jacobi (1804–1851) was a German mathematician. He is best known for his

development of the theory of elliptic functions, and their applications to solving inverse prob-
lems involving periodicity. He also made significant contributions to the theory of differential
equations and number theory[5]

28

1.9 Incompressible Flow

The compressibility of a fluid is related to the change in its density. The
assumption of an incompressible flow implies a constant density throughout
all the flow fields. It turns out that this assumption is justified not only for
liquids but also for gases under certain conditions. This condition is explicitly
derived from the relation of compressibility to the flow’s Mach number. It is
demonstrated that as the Mach number approaches zero, the compressibility
becomes negligible (i. e. a constant flow density). In engineering the common
limit for a flow to be incompressible is M = 0.3. It is important to note that
most natural flows, and engineering applications flows fall under this condition.

From a CFD perspective, this assumption has both a positive and a negative
effect on the numerical solution. By admitting constant density; (i) problems
involving energy transfer will require a separate resolution of the energy equation
on one side and the Navier Stokes equations on the other side, this is what we call
decoupling.; On the other hand, (ii) Another decoupling is induced between the
pressure and the velocity field, this is because no time evolution for the pressure
is present in the continuity equation. This presents a major difficulty for the
numerical resolution; as a result, many algorithms addressing this difficulty were
developed.

In the present work, we have adopted a pressure correction technique based
on the SIMPLE algorithm.

1.10 Motivation: Educational Software

In the majority of engineering curriculum, CFD is limited to graduate-level
courses. This is because a mathematical background is needed to write a CFD
programs. Although recent undergraduate-level fluid mechanics books involve
CFD-related chapters, references indicating the use of CFD as a teaching aid
are limited [7]. The aim of the present work is to develop a CFD code to be
used as i) an educational support in fluid mechanics courses and ii) a practicing
tool in CFD related courses.

Fluid mechanics in the National Polytechnic School is taught as a on semester
course in the preparatory classes. After that, in the second cycle each depart-
ment has a different approach for taking this course, with the Mechanical En-
gineering Department being the department which takes the courses in much
details and for a longer period. Some related courses like Turbomachinery, flows,
are made a separate courses that are taught over one semester or a half of a
semester.

Due to the inherent complexity of fluid motion, fluid flow problems require
a different viewpoint compared to solid mechanics problems. Understanding
topics like continuum assumption and its validity, proper comprehension of the
field concept such as the velocity or the pressure field, making the switch from
the classical Lagrangian approach -which is taught in earlier statics and dy-
namics courses-, to the Eulerian approach, establishing the link between these

29

two different view points, developing mathematical and physical understanding
of the convective derivatives; are some of the challenges that the students face
with when they begin studying fluid mechanics [7].

Other than the aforementioned challenges facing the beginner students is;
the fact that fluid mechanics phenomenon are hardly observed in everyday life in
comparison to solid mechanic problem. For example, a deflected beam is a very
common observation that the student can builds upon when studying bending,
on the other hands, the control volume analysis may not find a concrete common
phenomenon that the student uses as a visualization of the theoretical founda-
tion. Other issues my arise when talking about space and time variability of
fluid properties, or the presence of turbulence in most of fluid flow applications.

As a rule of thumb, visualization always facilitate the understanding of the
physical phenomenon. In this respect, an educational experiment is very impor-
tant. That is why most of the Fluid mechanics courses are scheduled to comprise
a laboratory time. Unfortunately, this option depends on the equipment avail-
able in the lab, which is in most cases scares and not reliable. Educational
videos for laboratory experiment are available for the large pubic, and are very
helpful, such as the ones prepared by NCFMF [13] and IIHR [14], but learn-
ing by doing remains the best option. Obviously, CFD is the state of the art
alternative. Although experimentation remains valuable for understanding the
physical phenomena and deriving mathematical models, CFD can give satisfy-
ing results to mathematical models that are impossible to solve. This is a great
tool to put in the hand of student for pushing the boundary of their thinking
beyond the analytical solutions. In addition, One simple advantage of this is its
power in attracting the attention of today’s computer oriented students [15].

1.11 Conclusion

CFD is a powerful tool that can be integrated not only in the industry sector
but also as an educational tool in the engineering field. It helps the beginner stu-
dent to understand complex phenomenon, and to widen their thinking beyond
the analytical methods.

A user friendly CFD code is a valuable tool to put in the hand of engineering
student, especially if it is a open source code that every interested individual
can be part of it, by making it more reliable and multi-function.

30

Chapter 2

Numerical Method

31

2.1 Introduction

In the present chapter, the mathematical foundation of the flow solver will be
presented. Starting by presenting the governing equations, and then discussing
the discretization method of those equations, Next the geometric grid will be
specified, also the SIMPLE algorithm will be presented and assembled, finally,
we will talk about the implementation of the boundary conditions and the linear
solver that we will use in our code.

2.2 Governing Equations

As described in the introduction CFD is about solving flow equations nu-
merically, therefore it is necessary to state the governing equations of our study
case clearly before getting into the resolution procedure. Here we are interested
in the steady, incompressible, flow with constant viscosity and uniform temper-
ature. The constant viscosity assumption is well justified since we are dealing
with a uniform temperature flow. Also, under the last assumption, the energy
equation is not a part of our governing equation system since no temperature
field needs to be determined. A flow under the aforementioned assumption is
governed by the Navier-Stokes and continuity equations are given by:

∂

∂x
(ρuu) +

∂

∂y
(ρvu) =

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
− ∂p

∂x
+ Su (2.2.1)

∂

∂x
(ρuv) +

∂

∂y
(ρvv) =

∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
− ∂p

∂y
+ Sv (2.2.2)

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (2.2.3)

2.3 Finite Volume Method

The discretization scheme adopted for the present work is the Finite Volume
Method (FVM). In the present subsection, we will derive a general expression for
FVM discretization that can be applied subsequently to our governing equations.
To obtain a general expression, we need to start from the generic form of the
transport equation for a scalar quantity ϕ, this equation is given by equation
(2.3.1),:

∂(ρϕ)

∂t
+ div (ρϕu) = div (Γ grad ϕ) + Sϕ (2.3.1)

The transport equation for any flow variable is obtained from the substitu-
tion of ϕ by the corresponding term, for example for obtaining the u-momentum
equation, ϕ is replaced by the u component of the velocity. The source term Sϕ,

32

the diffusion coefficient Γ, need also to be replaced appropriately to obtain the
desired equation. It is important to note that in this section we suppose that
the velocity field is known, which is not true for real problems. However, the
complete technique for solving a CFD problem that takes care of the velocity
field will be presented in the next section.

In our study case, the governing equations correspond to steady-state, diffusion-
convection with a source term, therefore we will focus on that particular case
for the derivation of the discretized equation. To that end, we will start from
the following equation obtained from equation (2.3.2) by omitting the transient
term.

div (ρϕu) = div (Γ grad ϕ) + Sϕ (2.3.2)

For any space discretization, a computation grid must be predefined, for our
example, we will use the grid presented in figure 2.1. The figure illustrates the
convention adopted for noting the neighboring nodes of point P, which is the
node of interest. The equation (2.3.2) will be integrated over the control volume
represented by the shaded area in figure 2.1. The control volume boundaries are
positioned midway between the adjacent nodes. Each adjacent node is noted
with the capital letter of the first letter of its direction, the same is applicable
for the control volume faces but using lowercase latter. The distances between
each node can be noted as δxpoint1 point2 but since our control volume faces are
well centered between the nodes, we can simply denote the horizontal distance
as ∆x and the vertical distance as ∆y.

After the computation domain is defined, an integration over a control vol-
ume of a nodal point P is performed as follows:∫

∆V

div (ρϕu) dV =

∫
∆V

div (Γ grad ϕ) dV +

∫
∆V

SϕdV (2.3.3)

The application of the divergence theorem, which states that:∫
CV

div (a) dV =

∫
A

n . adA (2.3.4)

Yields:∫
A

n . (ρϕu) dA =

∫
A

n . (Γ grad ϕ) dA+

∫
CV

SϕdV (2.3.5)

Here ∆V is the volume, A is the cross-sectional area of the control volume
face, and S is the average value of source S over the control volume.

For simplicity’s sake, we will perform the integration for a one-dimensional
case; the result can be straightforwardly extended to a multidimensional case.
By calculating the integral, the following expression is obtained:

The last step in the derivation is the calculation of the value of transported
property ϕ at control volume faces and the convective fluxes across these bound-
aries. Also, the diffusion term and the source term need to be differentiated to
obtain the discretized equation. Each term will be discussed in the following
subsections.

33

2.3.1 The Diffusion Term

The derivatives of the diffusion term and the interface diffusion coefficient Γ
are generally evaluated using a linear approximation between the neighboring
nodes. This practice is called the central difference scheme. In a uniform one
dimensional grid (equivalent to the one presented in figure 2.1 with ignoring the
second dimension) the linear interpolation of Γe and Γw is given by:

Γw =
ΓW + ΓP

2
(2.3.6)

Γe =
ΓP + ΓE

2
(2.3.7)

And the diffusive fluxes are evaluated as:(
ΓA

dϕ

dx

)
e

= ΓeAe

(
ϕE − ϕP

δxPE

)
(2.3.8)

(
ΓA

dϕ

dx

)
w

= ΓwAw

(
ϕP − ϕW

δxWP

)
(2.3.9)

2.3.2 The Source Term

For many situations, the source term may be a function of the dependent
variable. In a finite volume method formalism, this situation is handled by
approximating the source term in a linear form:

S∆V = Su + SpϕP (2.3.10)

2.3.3 The Convective Term

The principal problem of FVM discretization arises from the convective term.
This problem is encountered when evaluating the transported property ϕ at con-
trol volume faces and the convective fluxes across these boundaries. It seems a
logical intuition that the difference scheme adopted for the diffusion term can
also be applied here, however, diffusion influence the distribution of the trans-
ported quantity in all direction along its gradient, whereas convection spreads
influence only in the flow direction [6]. This fact presents a fundamental differ-
ence between the two transport modes and manifests itself in a stringent upper
limit to the grid size leading to stable calculation with central differencing. This
limit is dependent on the relative strength between convection and diffusion in
the flow.

For that reason, many alternatives for the discretization of the convective
term are developed. Each one has its order of accuracy, stability condition, and
level of complexity. We represent here the central difference scheme and the
upwind scheme which is the basic first-order difference base on the upstream
node.

34

For the central difference scheme:

ϕe =
ϕP + ϕE

2
(2.3.11)

ϕw =
ϕW + ϕP

2
(2.3.12)

For the Upwind scheme: For the positive direction uw > 0, uw > 0 we set:

ϕe = ϕP (2.3.13)

ϕw = ϕW (2.3.14)

For the negative direction uw < 0, uw < 0 we set:

ϕe = ϕE (2.3.15)

ϕw = ϕP (2.3.16)

It is important to note that regardless of the used discretization scheme,
the total convection-diffusion equation is arranged in a general form (equation
2.3.24) that its coefficient takes different expressions depending on the used
scheme, we will present this form in the next subsection.

2.3.4 The General Discretized Form

We will derive the general discretized equation in details for a Central Dif-
firence evaluation of the convective term. After the general expression is derived,
a summarizing table will be presented for the different coefficients values for the
other schemes (Table 2.1). By replacing the discretized form of all the three
terms in in equation 2.3.5 the above expression is obtained:

Fe

2
(ϕP + ϕE)−

Fw

2
(ϕW + ϕP) = De (ϕE − ϕP)−Dw(ϕP − ϕW) (2.3.17)

Where F and D, are two defined variables that represent the mass flux per
unit area and diffusion conductance at cell faces respectively. Their value at the
cell faces can be written as:

Fe = (ρu)e (2.3.18)

Fw = (ρu)w (2.3.19)

De =
Γe

δxPE
(2.3.20)

Dw =
Γw

δxWP
(2.3.21)

The equation 2.3.17 can be rearranged to give:

35

[(
Dw − Fw

2

)
+

(
De +

Fe

2

)]
ϕP =((

Dw +
Fw

2

))
ϕw +

((
De −

Fe

2

))
ϕE (2.3.22)

[(
Dw +

Fw

2

)
+

(
De −

Fe

2

)
+ (Fe−Fw)

]
ϕP =(

Dw +
Fw

2

)
ϕw +

(
De −

Fe

2

)
ϕE (2.3.23)

Setting the coefficient of ϕW , and ϕE equal to aW and aE respectively, the
central differencing expression for the discretized convection-diffusion equation
can be written as:

aPϕP = aWϕW + aEϕE + Su (2.3.24)

Where:

aP = aW + aE + (Fe−Fw)− Sp (2.3.25)

aw =

(
Dw +

Fw

2

)
(2.3.26)

ae =

(
De −

Fe

2

)
(2.3.27)

In the same vein, the discretized expression for the other schemes can be
derived. Furthermore, it can be shown that they all take the same form as
equation 2.3.24. The only difference is in the values of the coefficients. The ta-
ble 2.1 summarizes the values of the corresponding coefficient for some common
schemes.

2.4 Geometry Discretization: Staggered Grid

The principle of discretization discussed in the introduction needs some pre-
set points in the calculation domain, where the flow-fields values are calculated
and stored. This system of points is called a grid (or a mesh). Here, for our two-
dimensional problem a uniform Cartesian grid is adopted as shown in figure 2.1.

This grid is of a particular type called a staggered grid, which means that
the velocities and pressure fields are stored at different grid points. A staggered
grid is obtained by considering a separate control volume of each of the velocities
components (u and v in 2D) and the scalar field (pressure field in our context).

36

Scheme aW aE
Centrale differ-
encing

Dw + Fw/2 Dw − Fw/2

Upwind differ-
encing

Dw +max(Fw, 0) De +max(0,−Fe)

Hybrid differ-
encing

max[fw, (Dw + Fw/2), 0] max[−fe, (De −Fe/2), 0]

Power law Dwmax[0, (1 −
0.1|Pew|)5]
+max(Fw, 0)]

Demax[0, (1−0.1|Pee|)5]
+max(-Fe, 0)]

Table 2.1: The neighbor coefficients for common schemes. [6]

these considerations allow us to address each node (filled or open nodes) by two
coordinate systems. The first corresponds to the scalar field nodes, shown as
filled points, linked by solid lines in the figure 2.1, these locations are addressed
by the capital letter indices (I, J, I-1...etc). The second coordinate system
corresponds to the velocity field nodes, shown as open points and placed at cell
faces of the scalar grid, these locations are addressed by the lower letter indices
(Namely: i, j, i-1...etc). A point situated on the intersection of two lines from
different grids is simply addressed by a combination of the two notation (exp.:
(I, j-1), (i,J)...etc). Two types of staggered grids can be adopted; a forward or a
backward staggered grid. The one shown in fig. 2.1 is a backward one. Because
the i-th row of the second grid is below the I-th row of the first grid, and the
j-th column of the second grid is below the J-th column of the first grid.

The mean reason for introducing such a grid system is for avoiding the non-
physical behavior of non-uniform fields in an ordinary grid where all flow fields
are stored at the same nodes. This problem is illustrated by a checkerboard
distribution (See Fig. 2.2) in an ordinary grid. In this case, the difference equa-
tions for pressure/velocities gradients give a uniform, null distribution, which is
a non-physical behavior.

2.5 The Pressure Correction Method: SIMPLE
Algorithm

In 1972 Patankar and Spalding introduce an iterative method based on pres-
sure correction, for the calculation of the pressure field on a staggered grid [6].
SIMPLE stands for ”Semi-Implicit Method for Pressure Linked Equations”. It
is called ”semi-implicit” because the pressure correction formula -as introduced
shortly- does not involve the pressure values at all grid nodes, but only at some
neighboring nodes.

It is important to note that the FVM discretization scheme presented earlier,
presents only a tool that can be used in a complete CFD technique as the one
presented here. This is because in our derivation of the FVM discretization we

37

Figure 2.1: The arrangement for a two-dimensional flow calculation, using a
staggered grid [6].

supposed a known velocity field, which is not the case for real problems. For
that reason, the SIMPLE algorithm is set to solve the complete set of governing
equations for all the independent variables.

2.5.1 Descretized Momentum Equation on a Staggered
Grid

The algebraic equation 2.3.24 can be re-expressed in the staggered grid coordi-
nate system. Here we replace the transported variable ϕ by u, and the pressure
term is taken out of the source term and discretized by the mean of a linear
interpolation between the pressure nodes on the u-control volume boundaries.
This yields:

ai,Jui,J =
∑

anbunb +
(PI,J − PI−1,J)

δxu
∆Vu + S∆Vu (2.5.1)

Or
ai,Jui,J =

∑
anbunb − (PI−1,J − PI,J)Ai,J + bi,J (2.5.2)

Where ∆Vu is the volume of the u-cell, bi,J = S∆Vu is the momentum

38

Figure 2.2: A ‘checker-board’ pressure distribution.[6]

source term, Ai,J is the (east or west) cell face area of the u-control volume.
The coefficients ai,J , and anb may be calculated with any of the differencing
methods (see table 2.1). The calculation of ai,J , and anb involves the variables
F and D, therefore the values of these two variables in the new coordinate
system are given below:

Fw = (ρu)w =
Fi,J + Fi−1,J

2

=
1

2

[(
ρI,J + ρI−J,J

2

)
ui,J +

(
ρI−1,J + ρI−2,J

2

)
ui−1,J

]
(2.5.3)

Fe = (ρu)e =
Fi+1,J + Fi,J

2

=
1

2

[(
ρI+1,J + ρI,J

2

)
ui+1,J +

(
ρI,J + ρI−1,J

2

)
ui,J

]
(2.5.4)

Fs = (ρv)s =
FI,j + FI−1,j

2
=

1

2

[(
ρI,J + ρI,J−1

2

)
vI,j +

(
ρI−1,J + ρI−1,J−1

2

)
vI−1,j

]
(2.5.5)

39

Fn = (ρv)n =
Fi,J+1 + Fi−1,J+1

2

=
1

2

[(
ρI,J+1 + ρI,J

2

)
vI,j+1 +

(
ρI−1,J+1 + ρI−1,J

2

)
vI−1,J+1

]
(2.5.6)

Dw =
ΓI−1,J

xi − xi−1
(2.5.7)

De =
ΓI,J

xi+1 − xi
(2.5.8)

Ds =
ΓI−1,J + ΓI,J + ΓI−1,J−1 + ΓI,J−1

4(yJ − yJ−1)
(2.5.9)

Dn =
ΓI−1,J+1 + ΓI,J+1 + ΓI−1,J + ΓI,J

4(yJ+1 − yJ)
(2.5.10)

The values of the F and D are calculated based on the previous iteration of
the velocity field. By analogy the discretized v-momentum equation becomes:

ai,Jvi,J =
∑

anbvnb − (PI−1,J − PI,J)Ai,J + bi,J (2.5.11)

Similarly, The calculation of ai,J , and anb are combinations of the variables F
and D, therefore the values of these two variables in the new coordinate system
are given below:

Fw = (ρu)w =
Fi,J + Fi,J−1

2
=

1

2

[(
ρI,J + ρI−1,J

2

)
ui,J +

(
ρI−1,J−1 + ρI,J−1

2

)
ui,J−1

]
(2.5.12)

Fe = (ρu)e =
Fi+1,J + Fi+1,J−1

2
=

1

2

[(
ρI+1,J + ρI,J

2

)
ui+1,J +

(
ρI,J−1 + ρI+1,J−1

2

)
ui+1,J−1

]
(2.5.13)

Fs = (ρv)s =
FI,j−1 + FI,j

2
=

1

2

[(
ρI,J−1 + ρI,J−2

2

)
vI,j−1 +

(
ρI,J + ρI,J−1

2

)
vI,j

]
(2.5.14)

Fn = (ρv)n =
FI,j + FI,j+1

2
=

1

2

[(
ρI,J + ρI,J−1

2

)
vI,j +

(
ρI,J+1 + ρI,J

2

)
vI,J+1

]
(2.5.15)

40

Dw =
ΓI−1,J−1 + ΓI,J−1 + ΓI−1,J + ΓI,J

4(xI − xI−1)
(2.5.16)

De =
ΓI,J−1 + ΓI+1,J−1 + ΓI,J + ΓI+1,J

4(xI+1 − xI)
(2.5.17)

Ds =
ΓI,J−1

yi − yi−1
(2.5.18)

Dn =
ΓI,J

yi+1 − yi
(2.5.19)

Again these values are calculated from the u and v velocities components of
the last iteration.

2.5.2 The SIMPLE Algrithm

The algorithm uses a guess-and-correct procedure. The derivation of the
building blocks equations of the algorithm will be presented below, and a sum-
marizing assembly is provided in the next subsection.

Derivation of the Guessed Velocities Expressions

The calculation of the guessed velocities fields: u∗and v∗ based on the
guessed pressure value are carried out using the equations:

ai,Ju
∗
i,J =

∑
anbu

∗
nb +

(
P ∗
I−1,J − P ∗

I,J

)
Ai,J + bi,J (2.5.20)

aI,jv
∗
I,j =

∑
anbv

∗
nb +

(
P ∗
I,J−1 − P ∗

I,J

)
Ai,J + bI,j (2.5.21)

Derivation of the Pressure Correction Formula

First, the pressure, and velocities corrections are defined as follows:

p = p∗ + p′ (2.5.22)

u = u∗ + u′ (2.5.23)

v = v∗ + v′ (2.5.24)

By substituting the correct pressure field into the discretized momentum equa-
tions, we get equations linking the correct pressure field to the correct velocities
fields (u, v), those are equations (2.5.2) and (2.5.11). By subtracting equation
2.5.20, 2.7.2 (guessed fields) from equations 2.5.2, 2.5.11 (correct field), and us-
ing equations 2.5.22-2.5.24 for writing the resulting equations in terms of the
pressure , and velocities corrections p′, u′, and v′, we get:

ai,Ju
′
i,J =

∑
anbu

′
nb −

(
p′I−1,J − p′I,J

)
Ai,J (2.5.25)

41

ai,Jv
′
J,i =

∑
anbv

′
nb −

(
p′I,J−1 − p′I,J

)
AI,j (2.5.26)

The SIMPLE algorithm as introduced in [6], use an approximation at that stage:∑
anbu

′
nb,

∑
anbv

′
nb are set to be zero. This is the approximation that allows

the discretized equation to be semi-implicit. We obtain:

u′
i,J = di,J

(
p′I−1,J − p′I,J

)
(2.5.27)

v′I,j = dI,j
(
p′I,J−1 − p′I,J

)
(2.5.28)

Where di,J = Ai,J/ai,J and dI,j = AI,j/aI,j

Thus the velocities correction formulae 2.5.23 and 2.5.24 become:

ui,J = u∗
i,J + di,J

(
p′I−1,J − p′I,J

)
(2.5.29)

vI,j = v∗I,j + dI,j
(
p′I,J−1 − p′I,J

)
(2.5.30)

Writing those equations for ui+1,J and vI,j+1, we get:

ui+1,J = u∗
i+1,J + di+1,J

(
p′I,J − p′I+1,J

)
(2.5.31)

vI,j+1 = v∗I,j+1 + dI,j+1

(
p′I,J − p′I,J+1

)
(2.5.32)

Where di+1,J = Ai+1,J/ai+1,J and dI,j+1 = AI,j+1/aI,j+1

The second part of the derivation of the pressure correction formula is the
application of the continuity constraint for the velocity field. In the discretized
form, continuity is expressed for the scalar control volume (control volume of
node p in figure 2.1) by:[

(ρuA)i+1,J − (ρuA)i,J

]
+

[
(ρvA)I,j+1 − (ρvA)I,j

]
= 0 (2.5.33)

By substituting the corrected velocities of equations 2.5.29-2.7.1, rearrang-
ing, and identifying the coefficients of p′, we get:

aI,Jp
′
I,J = aI+1,Jp

′
I+1,J + aI−1,Jp

′
I−1,J+

aI,J+1p
′
I,J+1 + aI,J−1p

′
I,J−1 + b′I,J (2.5.34)

Where aI,J = aI+1,J + aI−1,J + aI,J+1 + aI,J−1. The other coefficients are
given as:

aI+1,J aI−1,J aI,J+1 aI,J−1 b′I,J
(ρdA)i+1,J (ρdA)i,J (ρdA)I,j+1 (ρdA)I,j (ρu∗A)i,J −

(ρu∗A)i+1,J +
(ρv∗A)I,j −
(ρv∗A)I,j+1

42

The equation 2.5.34 represents the discretized continuity equation as an
equation for pressure correction p

′
. The term b′ can be used as a convergence

criterion because it represents the continuity imbalance arising from the incor-
rect velocity field u∗, v∗. The approximation introduced in the derivation does
not affect the final result because the velocities corrections will converge to zero.

To avoid the divergence of the pressure correction equation, an under-relaxation
is introduced during the iterative process [6], thus, the following formula can be
used:

pnew = p∗ + αpp
′ (2.5.35)

Similarly, an under-relaxation step is introduced for the velocity’s components:

unew = αuu+ (1− αu)u
(n−1) (2.5.36)

vnew = αvu+ (1− αv)v
(n−1) (2.5.37)

Where αu and αv are the u- and v-velocity under-relaxation factors. The
aim is to take the pressure and velocities under relaxation factor αp, αu, and
αv between 0 and 1, in a sense that the added fraction will be small enough
to stabilize the computations, and large enough to accelerate the convergence.
Unfortunately, the optimum choice must be sought on a case-by-case basis.

2.5.3 The Assembly of the Complete Method

The CFD procedure that employs the SIMPLE algorithm is given by the
sequence of operations given below:

43

Figure 2.3: The SIMPLE algorithm.[6]

2.6 Boundary Conditions

The solution of the discrete form of the governing equations needs proper
implementation of the boundary conditions and initial conditions. Although
the initialization of the flow field variables is straightforward and is not critical
for the solution results, the boundary conditions on the other hand need more
attention. The implementation of the boundary condition begins with the choice

44

Figure 2.4: Three emphasized u momentum cells in the vicinity of the inlet,
outlet, and wall boundaries in a pipe flow configuration. [7]

of the appropriate boundary condition type, which correctly models the physical
world. Then, the discrete form of the governing equations for the boundary
node must be treated separately to consider the boundary condition. In this
subsection, the most important boundary conditions, namely: inlet, outlet, and
wall are discussed in detail.

2.6.1 Inlet

At the inlet, u and v have to be prescribed. In our study, we are using a
staggered grid system, which implies that the three flow variable are stored in
different locations. We will illustrate our grid system by 3 figures: 2.4, 2.5, and
2.6.

Figure 2.4 represents the location where u velocities are stored: Non-boundary
locations are represented by arrows, and three boundary nodes are highlighted.
The first (labeled 1) is an inlet node it is represented as its neighboring nodes by
solid squares; the second node type (labeled 2) is an outlet node, it is represented
as its neighboring nodes by solid diamonds, the third node type is adjacent to
the wall it is represented as for its neighboring nodes by solid triangles. The
figures 2.5, and 2.6 are drawn for v and p nodes respectively following the same
principle. The nodes laying in along the physical boundary (i.e. i=0) are used

45

Figure 2.5: Three emphasized v momentum cells in the vicinity of the inlet,
outlet, and wall boundaries in a pipe flow configuration. [7]

to store the inlet values of the flow variables. It is also important to note that
for the v grid we have placed the inlet and outlet columns at columns i=1 and
i=5 respectively, i.e. from a distance dx/2 from the succeeding and preceding
columns respectively. This is done to make the boundary conditions applied di-
rectly to the grid nodes. It is clear that since the values of the boundary nodes
will not change as the solution proceed, no velocity correction will be applied
to these nodes i.e:

ui=0,J = u∗
i=0,J (2.6.1)

2.6.2 Outlet

The region far enough downstream does not present any disturbance in the
flow fields. This physical fact is intuitively modeled by a zero gradient in the
direction of the flow for u and v velocities. The condition is known as a Neuman
condition (because it is set on the gradient of the variable). Numerically, this
boundary condition is implemented by setting the variable laying in the exit
column equal to the values of the variables of the preceding column. i.e. the
diamond cells at the extreme right of the domain will take the value of the
diamond cell labeled 2 before the calculation of the guessed field for the next
iteration. The following expression summarizes the explained procedure:

46

Figure 2.6: Three emphasized p momentum cells in the vicinity of the inlet,
outlet, and wall boundaries in a pipe flow configuration. [7]

ui=5,J = ui=4,J

vI=6,j = vI=5,j

pI=6,j = pI=5,j

(2.6.2)

The choice of the dimensions of the calculation’s domain has to be valid with
the boundary condition. In another word, the domain must be set so that the
exit will lay in the fully developed region far away from any disturbances. The
pressure correction solution is solved with a zero gradient boundary condition at
the inlet. Moreover, since the outlet node is directly deduced from the preceding
nodes, no velocity correction is required.

2.6.3 Wall

The wall boundary is of special interest in fluid applications, particularly
in viscous flows where the physical property of adherence, or more commonly
named no-slip condition is observed [7]. This property is modeled by setting all
the velocity components at the boundary equal to zero. Here, the added rows
of u-velocity on the wall conditions become useful, because no special treatment
is needed for the triangle cell labeled 3, we will just set the adjacent south cell
equal to zero and take into account that the distance of this cell is dy/2 in the
diffusive coefficient. For the v, we only set the south adjacent cell equal to zero.

47

2.7 Iterative Solver: Gauss Seidel

In our code, we have used the Gauss-Seidel method which is a point-wise
stepping method. The interesting feature of this algorithm is that it is uncon-
ditionally stable for the coefficients matrix because this latter is always positive
and definite. The algorithm for the Gauss-Seidel method is given as follows [5]:

Algorithm 1: Gauss Seidel Algorithm

1 Guess values of ϕ at all nodes. We denote these values as ϕ(0). The
guessed solution for Dirichlet boundary conditions must be set equal
to the prescribed value.

2 Set ϕn+1ϕn and apply the Gauss-Seidel update formula, Eq. 2.7.1 for
interior nodes. Special treatment mest be done to non- Dirichlet BCs
(i.e. calculation of the link coefficients based on the nodal equation at
that boundary)

3 Compute the residuals using ϕ(n+ 1), and then compute the norm for
monitoring the overall residuals.

4 Monitor convergence, by comparing the residuals to the tolerance. if it
is achieved go to Step 5. If not, then go to Step 2.

5 Quit the loop and post-process results.

The Gauss-Seidel update formula for interior nodes is given by:

ϕ
(n+1)
i,j =

Si,j − aEϕ
(n)
i+1,j − aWϕ

(n+1)
i−1,j − aNϕ

(n)
i,j+1 − aSϕ

(n+1)
i,j−1

aP
(2.7.1)

Where the link coefficients are given by:

ak = aP = −
(

2
(∆x)2

+ 2
(∆y)2

)
ak+1 = aE = 1

(∆x)2

ak−1 = aW = 1
(∆x)2

ak+N = aN = 1
(∆y)2

ak−N = aS = 1
(∆y)2

(2.7.2)

It is important to note that it is not necessary to store values of ϕ for both
previous and current iterations. The same array may be used to store both and
the update formula will take the new values as soon as they become available.

2.8 Conclusion

In the present chapter, we have built the foundation of our CFD code. For
each component of the numerical solution, we have chosen one method. For
the discretization, the finite volume method was chosen, and the geometry was

48

discretized uniformly using a staggered grid configuration. For the solution
technique, the SIMPLE algorithm was selected, and finaly the Gauss-Seidel
method is implemented for the iterative solver.

49

Chapter 3

The Code’s Implementation

50

3.1 Introduction

So far we have presented the building blocks of our software, but we haven’t
talked yet about the implementation of those blocs and their interactions, this
will be the subject of the present chapter. In addition, the other part of the
software will be presented here, which is the graphical user interface (GUI).
Therefore, this chapter will be divided into two sections the first one is about the
computation code, named ico ns solver, and the second is about the Graphical
user interface.

3.2 The Computation Code: ico ns solver

3.2.1 Phases of Implementation

The code development was divided into multiple stages, where at each stage
a piece of complexity is added. This method is more suited for writing long
codes, it allows the validation of each piece of the aggregate separately, thus
facilitating debugging and maintenance. We will talk more about those stages
in the next sub-section:

One-Dimension Transport Equation

The first stage consisted of solving the general one-dimension transport equa-
tion. The results given in example 5.1 of [6], and the analytical solution was
used for the code validation. In this stage, the structure of the software was
clarified, and some parts of the code were validated, for instance: The linear
solver, and the upwind scheme (for 1d).

Pressure Coupling

The second stage consisted of pressure coupling; unlike the previous stage,
here the velocity field is unknown. For that purpose, the SIMPLE algorithm was
implemented to solve the planar two-dimensional nozzle problem presented in
example 6.2 of [6]. Although the governing equations of the treated problem are
different from the Navier-Stokes equations, our purpose here was to understand
the logic of the SIMPLE algorithm and to be more comfortable when treating
our actual 2-dimensional Navier-Stokes problem.

Two-dimention

In the third stage, the 2-dimensional Navier-Stokes equations were treated,
this task was considerably facilitated by taking advantage of the previous stages.

3.2.2 Code Structure

The computation code was written in c++, using standard libraries and the
jsoncpp library for manipulating a JSON file. The JSON file is used as the

51

data transfer main between the GUI and the computation code, The project
structure is as follows:

CFD1.1.cpp: is the main() function file, it comprises a section for input
data reading, and an outer iteration loop (SIMPLE iteration).

SIMPLE 2d.h: a header file, which executes one outer iteration (or SIM-
PLE iteration), by taking input data from the main file and returning the new
values of u, v velocities, the pressure field, and the residual for that iteration.

util 2d NS.h a header file containing all the function used in one itera-
tion of the SIMPLE algorithm. For example, the construction of linear system
u, v-momentum equations and the pressure correction is done by the func-
tions conv diff2d momentum eqs u, conv diff 2d momentum eqs u, and pres-
surre correction eqs 2d respectively. The iterative solution of that system is
done by the function gauss seidel 2d. The update operation and mass con-
servation residual are done by the functions update 2d, and mass conservation
respectively.

utilities.h: contains general utilities like functions for arrays printing in the
screen and writing them in files.

nutril.h: this is part of the Numerical Recipe book’s [16] library . It is used
for the dynamic allocation and de-allocation of matrix and vector throughout
the code.

3.2.3 The Code’s Working Principle

The code takes the input data from a JSON file (named solver setup.json)
and reads the following input values:

rho: The fluid density.

mu: The dynamic viscosity of the fluid.

nx: The streamwise number of cells.

ny: The number of cells perpendicular to the streamwise direction.

length: The streetwise domain length.

breadth: The distance between horizontal boundaries.

inlet u: The u velocity at the inlet boundary.

inlet v: The v velocity at the inlet boundary.

top u, top v : The u, v velocity at the top boundary.

bottom u, bottom v: The u, v velocity at the bottom boundary.

p relax, u relax, v relax: p, u, v under relaxation factors.

outer itr: Number of outer iterations.

52

outer tol: Stop criterion of outer iterations.

gs itr: Gauss-Seidel solver number of iterations.

gs tol: Gauss-Seidel solver tolerance.

Themain() function located in the CFD1.1cpp file feeds the SIMPLE 2d iteration
function with the input data by calling it in an outer loop and monitors its resid-
uals at every iteration.

The SIMPLE 2d iteration function contains a succession of function calls
similar to the SIMPLE procedure, each function has an essential role in the
SIMPLE algorithm for instance: The mumuntum eqs u call will construct the
linear system for u component. Then, Gauss seidel 2d call will solve the pre-
vious system. And the same is repeated for the v component and the pressure
correction equation.

In the end, the mass imbalance is calculated (for convergence monitoring)
and we update the variable fields by calling the following functions respec-
tively: mass conservation, and update 2d. All the used functions in the SIM-
PLE 2d iteration function are present in the util 2d NS Solver.h file.

After the program exit the outer loop in the CFD1.1cpp file, either by ex-
ceeding the iteration number, or if the residuals fall below the tolerance, the
results are saved in a form of CSV files, where the:

P.csv: Contains the pressure distribution.

U.csv: Contains the u-velocity distribution.

V.csv: Contains the v-velocity distribution.

3.3 The Graphical User Interface and its Fea-
tures

The GUI is a principal component of the present project, that is because it is
designed for educational purposes. The GUI is aimed to be simple and suitable
for an untrained user. It should contain input fields and a graphical window for
basic post-processing plots. To that end, we have chosen the Tkinter Python
library for developing the CFDENP GUI. In addition to Tkinter, some other
python libraries were used for manipulating data and plotting, for instance, the
JSON library was used for reading/ writing JSON files, the NumPy, and pandas
libraries for handling and basic manipulation of data, and the matplotlib library
for plotting different graphics.

Once the program is executed, a command line window and the principle
CFDENP window (shown in Figure 3.1) will open. The command line is used for
printing some messages from the computation code, and the principal widows
contain all the other functionalities.

The left half of the window consists of the different input fields. The user
should enter all the inputs manually, except for the fluid properties section,

53

Figure 3.1: The principal window of CFDENP

where the program has a JSON file named “properties db” that plays the role
of a fluid properties database. The user can modify this file (with any text
editor) to include/delete any element where he just needs to respect the file
structure given as the example below:

{
”water ” :

{
” rho ” : 997 .05 ,
”mu” : 0 .89 e−3

}
,
” a i r ” :

{
” rho ” : 1 .1845 ,
”mu” : 1 .8444 e−5

}

}

After an element is added to the database, it can be accessed by typing its
name in the “Fluid’s name” input field after checking the “use saved properties”
check button.

After filling in all the inputs, the user needs to press the “Generate Setup”
button to create the setup file (discussed in section 3.2.3). That file remains
saved and can be reused for running other simulations with the same parameters.

Next, the user needs to press the “SIMULATE” button, here the code ex-
ecutes the computation program named ico ns solver.exe, which will plot the

54

residuals and other messages in the Command Line Window that automatically
opens with the GUI.

Figure 3.2: Residuals printing in the command line window for a given simula-
tion.

After the simulation finishes, the user can post-process the results by plot-
ting u, v, and pressure contours, which are directly done via the corresponding
buttons, also, the user can plot the velocities vectors by pressing the plot vectors
button.

A toolbar is positioned below the plotting window. It allows the user to
perform basic operations on the graphs. It contains the following buttons:

• The home button: it allows the user to return to the initial view after
zooming or shifting the graph.

• Back to previous view/ Forward to next view buttons: They allow the
user to return to a given state after modifying the graph.

• Graph displacement button: It allows the user to shift the graph in the
axis frame.

• Zoom to rectangle button: It allows the user to zoom into a sub-rectangular
area in the graph.

• Configure subplots button: It allows the user to modify the axis scale.

• Save the figure button: It allows the user to save the plots in a PNG
format.

55

Figure 3.3: Visualization of the vector plot of a flow field in a pipe, Re ≈ 1100.

3.4 Conclusion

This chapter discussed the code structure, the working principle, and the
general organization of the code. That information is important not only for
the users of the code but also for any person wanting to resume this work so
that he can easily understand the code, and follow the same conventions.

56

Chapter 4

Results And Discussion

57

4.1 Introduction

Our project is divided into two sub-project, the first is (i) the computation
code, and the second is (ii) the implementation of a Graphical User Interface
(GUI). The GUI was tested and works properly, but the computation code, al-
though complete has an issue that we can not fix due to the time constraint.
However, many elements of the code were tested separately and worked as ex-
pected, therefore the future contributors willing to resume this work will be able
to build upon the present code. The comments and coding style used to develop
the code were also made to make it readable and easy to understand by another
person.

In this section, we will present the results of our codes at a different stage
of the implementation and compare them to the simulations made using Open-
Foam. Due to the erroneous flow field obtained by the final developed solver
(named ico ns solver), we will not present many comparisons of the obtained
results (at the third stage of the development), since a complete verification is
not relevant only for a solver validation.

4.2 Validation of the First Stage: Convection-
diffusion 1D

In this stage, we have considered a one-dimensional convection-diffusion
problem. Where a property ϕ is transported through convection and diffusion
through the one-dimensional domain sketched in Figure 4.1. The governing
equation is given by equation 4.2.1.And the boundary conditions are ϕ0 = 1
at x = 0 and ϕL = 0 at x = L, finaly, the velocity is constant throughout the
domain and equal to u = 0.1m/s. Using five equally spaced cells and the central
differencing scheme for convection and diffusion we have obtained the results
presented in Figure 4.2.

d

dx
(ρuϕ) =

d

dx

(
Γ
dϕ

dx

)
(4.2.1)

Figure 4.1: A schematic figure of the treated convection-diffusion problem. [6]

From figure 4.2 we see that the results are in full agreement, so we can say
that our code for the one-dimensional convection-diffusion equation is validated.
From this validation, we have ensured that the implementation of the central
difference scheme and the linear solver is correct.

58

Figure 4.2: Comparison of the the numerical result with the analytical solution
for the transported property for a convection-diffusion problem.

4.3 Validation of the Second Stage: 1D SIMPLE

In this stage, we have considered the frictionless, incompressible flow through
a planar, converging nozzle represented in figure 4.3. For making the problem
exhibit the same pressure-velocity coupling issues encountered in the Navier-
Stokes equations, we assume that the flow is unidirectional, and the flow vari-
ables are constant throughout every cross-section perpendicular to the nozzle
symmetry axis.

We have tested our code by solving this problem and checking the accuracy
of the computed solution against the well-known Bernoulli equation, the results
represented in figure 4.4 were obtained. The presented results show an accept-
able correlation after only 19 iterations. For a large number of grid points,
we have found that the computed solution converges to the analytical solution
given by the Bernoulli equation. From the above elementary validation, we can
conclude that the SIMPLE outer loop is correctly implemented inside the code.

4.4 Validation of the Third Stage: The Com-
plete Algorithm

In this stage, we are dealing with the complete solver, i.e. 2-dimensional
incompressible flow solver.

59

Figure 4.3: A planar two-dimensional nozzle. [6]

Figure 4.4: comparison of the converged pressure and velocity field after 19
iterations to the analytical solution for the nozzle flow case.

60

4.4.1 Pipe Flow: Entry Length Plots

Figure 4.5: A comparative figure for a pipe flow where plots of the normalized u
velocity component at the pipe centerline versus the normalized distance from
the inlet for three Re numbers: (a) Re=1000, (b) Re=1500, (c) Re=2000 were
presented

Figure 4.5 shows that the results of the two simulations do not correlate
except at the inlet, where both plots start from the inlet velocity. Next to the
inlet the red plot (ico ns solver results) drops to zero. this drop is sharper for
larger Re as it can be shown if figures (b), and (c).

The comparative study between various Re numbers suggests that the issue
does not depend on the fluid properties or the inlet velocity, but it is an issue
in the code.

4.4.2 Pipe Flow: Contours Plots

Figure 4.6 shows the contour plots for the computed flow field, namely:
pressure P, and the two velocity components u, and v. Those results were ob-
tained using ico ns solver code for three different Reynolds Numbers, Re=1000,
Re=1500, and Re=2000.

61

Figure 4.6: Contours plots for Pressure, u velocity, and v velocity fields for three
Re number: (a) Re=1000, (b) Re=1500, (c) Re=2000. The plots are arranged
so that the first row (top), second and third represent: u-velocities, v-velocities,
and Pressure contours respectively

62

Figure 4.7: Contours plots for Pressure, u velocity, and v velocity fields for
Re=2000 in a pipe flow simulation done using OpenFoam.

Those results did not pass the sanity check. Here, the flow is stagnating
next to the inlet, and at the rest of the pipe, the fluid does not flow.

As it is well known in a pipe flow we get a developed u velocity field after an
entry length, which means that due to shear forces the velocity profile changes
next to the inlet and remains constant after a distance from the pipe’s entry
called The Entry Length. The resulting profile is a parabolic profile which
has a maximum value in the pipe’s centerline (slightly greater than the inlet
velocity), and a null velocity due to the boundary layer effects at solid walls,
this is shown in Figure 4.7 (d.1) obtained using OpenFoam (icoFoam solver).
For the v velocity field, it should be almost null everywhere in the domain since
the inlet has a pure horizontal velocity as shown in Figure 4.7 (d.2). For the
pressure field, the right result will be a decreasing pressure gradient in the x
direction and constant in the y direction, as it is presented in Figure 4.7 (d.3).

4.5 Conclusion

The present project has two separate sub-projects, the first is the GUI, and
the second is the computation code ico ns solver.

The GUI was tested and works as expected. However, the results of the
computation code were not validated yet due to an error in the code. we expect

63

that the error is in the implementation: of the outlet boundary condition; or
the matrix construction.

Although the computational solver is not validated yet, the project can still
be useful since the GUI is separated from the solver, and one needs just an
executable file (after adding some line of code in the solver for reading the
setup file and writing the results in a CSV format) of a validated solver to be
able to use the GUI to simulate and post-process study cases.

64

General Conclusion

Conclusion

This works aimed to develop a basic CFD code with a graphical user interface
for educational purposes. The computational code called ico ns solver is based
on the SIMPLE algorithm that uses the FVM discretization on a staggered grid
arrangement, and the Gauss-Seidel algorithm as a linear solver. The code is
implemented in C++, where each element of the code is separated from the
main body and used by a function call, this clean structure makes the code
readable and easy to extend without the owner’s help.

The Graphical User Interface is the second part of this project, it was written
in python using the Tkinter library. It facilitates feeding the simulation data
into the code, executing the simulation, and performing basic post-processing
options. The GUI is independent of the solver and can be used with another
solver with minor modification, for data reading and writing.

In the first part of the project, although all the solver parts were accom-
plished, the solver results were not valid due to an unexpected bug in the code.
This problem could not be fixed before the graduation date due to the encoun-
tered technical difficulties. However, the second part of the project, namely the
GUI was tested and validated. It is worth noting that an interesting feature is
that the GUI can works with any other solver with minor modifications in the
source code of this later.

Future Work

As stated earlier, this project is an initiation, that invites every interested
student to add his contribution to this Open-Source code. Although the targeted
outcome was not achieved, this project -as it was initially intended- remains
open to further development. We suggest that this future development will be
targeting the following features:

• Implementing an optimized Incompressible Flow solver.

• Implementing the Energy Equation in a new solver.

• Model for Turbulent flow (RANS).

65

• Three-dimensional flow.

• Multiphase Flow.

66

Bibliography

[1] F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method
in Computational Fluid Dynamics: An Advanced Introduction with Open-
FOAM and Matlab. Springer Publishing Company, Incorporated, 1st ed.,
2015.

[2] J. H. F. . P. . L. Street, Computational Methods for Fluid Dynamics.
Springer-Verlag Berlin Heidelberg NewYork, 3th ed., 2002.

[3] J. H. F. . P. . L. Street, Computational Methods for Fluid Dynamics.
Springer Publishing Company, Incorporated, 4th ed., 2020.

[4] A. Silva and J. Barata, “Grid generation with boundary point distribution
control on heterogeneous parallel architectures,” International Review of
Aerospace Engineering, vol. 4, p. 48, 02 2011.

[5] S. Mazumder, Numerical Methods for Partial Differential Equations Finite
Difference and Finite Volume Methods. Elsevier Inc, 2016.

[6] W. M. H. K. Versteeg, An Introduction to Computational Fluid Dynamics
THE FINITE VOLUME METHOD, Secon edition. Pearson Education,
England, 2007.

[7] G. N. IBOGLU, “Development of an educational cfd software for two di-
mensional incompressible flows,” 2007.

[8] “Clay mathematics institute web page.” Last accessed 02 August 2022.

[9] J. D. Anderson, Computational Fluid Dynamics: The Basics with Applica-
tions. New York: McGraw-Hill, 1995.

[10] Computational Techniques for Fluid Dynamics. Springer-Verlag, Berlin,
1988.

[11] C. A. Fletcher, “Computational techniques for fluid dynamics,” Springer-
Verlag, Berlin, vol. vol. II: Specific Techniques for Different Flow Cate-
gories, 1988.

[12] “Overhead (computing).” Last accessed 26 October 2022.

67

[13] “Ncfmf fluid mechanics films.” Last accessed 04 September 2022.

[14] “Hunter rouse (iihr) fluid mechanics films.” Last accessed 04 September
2022.

[15] D. Pines, “Using computational fluid dynamics to excite undergraduate
students about fluid mechanics,” ASEE Annual Conference and Exposition,
Session: 1055, 2004.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipes in C. Cambridge, USA: Cambridge University Press, sec-
ond ed., 1992.

68

The Code’s repository

The Developed codes can be accessed via the following GitHub repository:
https://github.com/smdmohamed/CFDENP.git

69

	List of Figures
	List of Tables
	General Introduction
	Overview
	Introduction
	CFD Overview
	Components of a Numerical Solution
	Mathematical Classification of Flows
	Equations Types Significance
	Classification Method For Simple PDEs

	Numerical Grid
	Structured (Regular) Grid
	Block-structured Grid
	Unstructured Grid

	Discretization methods
	Finite Difference Method
	Finite Volume Method
	Finite Element Method

	CFD Techniques
	Solution of Linear Equations System
	Point-iterative Methods
	Multigrid Techniques

	Incompressible Flow
	Motivation: Educational Software
	Conclusion

	Numerical Method
	Introduction
	Governing Equations
	Finite Volume Method
	The Diffusion Term
	The Source Term
	The Convective Term
	The General Discretized Form

	Geometry Discretization: Staggered Grid
	The Pressure Correction Method: SIMPLE Algorithm
	Descretized Momentum Equation on a Staggered Grid
	 The SIMPLE Algrithm
	 The Assembly of the Complete Method

	Boundary Conditions
	Inlet
	Outlet
	Wall

	Iterative Solver: Gauss Seidel
	Conclusion

	The Code's Implementation
	Introduction
	The Computation Code: ico_ns_solver
	Phases of Implementation
	Code Structure
	The Code's Working Principle

	The Graphical User Interface and its Features
	Conclusion

	Results And Discussion
	Introduction
	Validation of the First Stage: Convection-diffusion 1D
	Validation of the Second Stage: 1D SIMPLE
	Validation of the Third Stage: The Complete Algorithm
	Pipe Flow: Entry Length Plots
	Pipe Flow: Contours Plots

	Conclusion

	General Conclusion
	References
	The Code's repository

