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Résumé

La compression d’images joue un rôle essentiel dans le stockage et la transmission des mé-
dias numériques. En plus des méthodes de compression traditionnelles, il y a eu récemment des
avancées dans les techniques basées sur l’intelligence artificielle (IA). Ces méthodes sont conçues
dans le but d’atteindre des objectifs spécifiques, tels que la reconstruction optimisée d’images
ou l’utilisation de représentations latentes pour des tâches de vision par ordinateur. Dans cette
étude, nous explorons les variations entre ces codecs basés sur l’IA en nous attaquant à un
problème de classification. Ensuite, nous nous concentrons sur la création d’un compresseur
d’images amélioré capable d’effectuer trois tâches: la compression d’images, la vision par ordi-
nateur et le traitement d’images. Plus précisément, nous avons choisi la reconnaissance faciale
et le doublement de la résolution comme tâches secondaires, en plus de la compression d’images.
Mots clés: Intelligence artificielle, Compression d’images, Reconnaissance faciale, Traitement
d’images, Vision par ordinateur.

Abstract

Image compression plays a vital role in storing and transmitting digital media. In addition
to traditional compression methods, there have been recent advancements in AI-based tech-
niques. These methods are designed with specific objectives in mind, such as optimized image
reconstruction or utilizing latent representations for computer vision tasks. In this study, we
explore the variations among these AI-based codecs based on their objectives by tackling a
classification problem. following that we focuses on creating an enhanced image compressor
capable of performing three tasks: image compression, computer vision, and image processing.
Specifically, we chose face recognition and resolution doubling as secondary tasks alongside
image compression.
Keywords: Artificial intelligence, Image compression, face recognition, image processing,
computer vision.
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1.1 Introduction

Performing inference of deep learning models that process images on embedded devices is a
difficult task due to limited computational resources. One popular alternative is to conduct
model inference in the cloud, necessitating the transmission of images from the embedded
device. To reduce latency over low-bandwidth networks, image compression techniques are
commonly employed in cloud-based architectures. This study firstly investigate how neuronal
image compression is effected when it is optimized for machine vision tasks compared to recon-
struction only. Then it introduces a new JPEG AI model that can fulfill the 3 requirements,
i.e introducing a model that is capable of compressing and decompressing, preform computer
vision task and image processing.

1.2 Research objective

In our research, our primary objective is to explore and analyze the behavior of self-pretrained
encoders obtained from state-of-the-art models. We specifically investigate how the encoder’s
latent representation varies when it is trained for compression alone or for both compression
and computer vision tasks. Our aim is to quantify the extent of change in these latent repre-
sentations. In the context of this thesis, we select classification as the computer vision task. To
accomplish this, we simultaneously optimize the encoder and classifier together. Additionally,
we conduct a parallel optimization where we solely focus on optimizing the classifier. Upon ob-
taining the results, we observe an intriguing finding. Despite deliberately choosing two extreme
scenarios, we find that the latent representations exhibit a remarkable degree of similarity, as
measured by cosine similarity. This finding serves as a motivation to develop a new framework
adapted to JPEG AI, which possesses the ability to perform three tasks concurrently: function-
ing as a CODEC in itself, enhancing image resolution by doubling its resolution, and adapting
the latent representation to facial recognition.

1.3 Thesis outline

To begin the thesis, we will start by exploring some fundamental concepts. We will delve into
the widely known jpeg compressor and the classic loss for neural image compression. Following
this, we will delve into deep learning principles, including generative adversarial neural networks
and variational auto-encoders. We will also explain some information theory concepts, such as
Shannon’s entropy, which plays a crucial role in applying lossless encodings. In the subsequent
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chapter, we will examine state-of-the-art models that are essential for this work. Next, we
will conduct our initial experiment, which involves training an encoder and classifier for loss
accuracy. Simultaneously, we will train a classifier exclusively for loss accuracy. We will then
compare the outcomes of both approaches. Moving forward, in the following chapter, we will
develop a model that fulfills the three requirements of JPEG AI. Specifically, we will focus on
augmenting resolution and adapting latent representation for face recognition. This section
will showcase relevant results along with corresponding metrics. Concluding the thesis, we will
summarize our findings and present a general conclusion. Additionally, we will outline potential
future work that can be explored in this field.
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Fundamental Concepts and Techniques

2.1 Introduction

In this opening chapter, we will embark upon an extensive exploration of multiple preliminary
concepts that are essential for the reader to acquire a comprehensive understanding of the
subject matter presented in this thesis. We will start by delving into the foundational princi-
ples underlying classic image compression, allowing us to establish a solid groundwork for our
subsequent discussions. Subsequently, we will shift towards neural networks and information
theory, elucidating the synergistic relationship between these domains and shedding light on
pertinent topics such as Generative Adversarial Networks (GANs) variational auto-encoders
and Shannon’s entropy. Moreover, we will investigate diverse metrics that are commonly em-
ployed in the realm of image processing. Among these metrics, we will place notable emphasis
on the Structural Similarity Index (SSIM), a pivotal tool that plays an indispensable role in
the evaluation of image quality and performance of image CODECs. By examining these met-
rics and AI notions, we aim to provide a comprehensive overview of the intricate mechanisms
and quantitative measures employed in the domain of image compression, thereby enabling the
reader to develop a nuanced understanding of the subject matter at hand.

2.2 Image compression

Image compression refers to the process of compressing digital images to decrease their storage
or transmission costs and also the computational bandwidth when treating them.
Unlike generic data compression techniques used for other forms of digital data, image com-
pression algorithms can leverage both visual perception and statistical characteristics of the
image data to achieve more effective results.
The well known image compressor JPEG [1] and JPEG2000 [2] were created and optimized for
photographic images in opposition to PNG and other compression for another type of images,
JPEG is more successful compared to its predecessor since it could take a lot of color into
consideration and a better quality compression ratio. Through history image compression for
photographic images uses lossy and lossless compression techniques such as quantification of
DCT coefficients but also huffman encodings. In recent years new approaches and algorithms
are being developed using machine learning algorithms. They are known for JPEG AI, those
algorithms showed much improvement in terms of quality compression ratio but on the other
side have more computational cost.
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2.3 JPEG Joint Photographic Experts Group

JPEG is a lossy compression algorithm used for photographic images that can be modified to
achieve different reconstruction qualities with different compression ratios.

It can achieve a 1:10 compression ratio with almost invisible quality distortion. It was intro-
duced as a norm in 1992 [1] by the committee active by the same name. The most common
variant of JPEG encoding is JFIF (JPEG File Interchange Format) which consists of 5 steps
that are the following:

1 - Color Space Conversion: The first step in the JPEG algorithm is to convert the image
from its original color space (usually RGB or CMYK) to the YCbCr color space. This conversion
that can be visualized in figure 2.1 separates the brightness (Y) and color information (Cb and
Cr) of the image, which allows for more efficient compression.

Figure 2.1: Color conversion process from RGB to YCrCb.

3 - Discrete Cosine Transform (DCT): The DCT is a mathematical transformation that
converts the pixel data from the spatial domain to the frequency domain [3]. In the spatial
domain, the pixel values represent the image as it appears to the human eye. In the frequency
domain, the pixel values represent the image as a set of frequency components. The DCT is
applied to small blocks of the image data, typically 8x8 pixels in size. Each block of pixel
data is transformed into a set of DCT coefficients, which represent the contribution of each
frequency component to the block.

4 - Quantization: Quantization in the equation 2.1 is a process that reduces the precision of
the DCT coefficients by dividing them by a set of quantization values. The quantization values
are determined based on the desired level of compression, with higher values resulting in more
lossy compression.
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Bj,k = round(Gj,k

Qj,k

) (2.1)

5 -Huffman Encoding: Huffman encoding [4] is a lossless compression technique that assigns
shorter codes to more frequently occurring values. In the JPEG algorithm, Huffman encoding
is applied to the quantized DCT coefficient.

In order to decompress we use the inverse path, i.e multiply by Q matrix applying inverse DCT,
and so on, until we get the reconstructed image.

2.4 AI-based image compression (JPEG AI)

In recent years image compression algorithms that use deep learning have gained more attention
since they surpassed anchors algorithms performance for very low bitrates. The aim behind
JPEG AI is to make image compressors do additional tasks, such as computer vision ones
(Classification, Detection, . . . ) and also preprocessing ( ex: Denoising). One of the advantages
of JPEG AI is that it can be customized for specific applications. For example, the compression
algorithm can be optimized for different types of images, such as photographs, graphics, or text.
This makes it possible to create compressed images that are tailored to the specific needs of
a particular application, but they also can take advantage of the compressed representation
directly for machine vision tasks since it hold the necessary information to reconstruct the
original image, which will be the main focus of the study. Those algorithms use different
architectures to play the role of encoders and decoders such as GANs, AEs, VAEs. then
applying lossless encodings to the compact representation in order to decrease the bit per pixel
metric. The classic loss function for those models is divided into two parts, the reconstruction
loss and the entropy loss explained in the following subsection.

2.4.1 Rate-Distortion loss:

The aim of lossy image compression has traditionally been to strike a balance between reducing
the expected length of the bit-stream that represents the input image, x, and minimizing
the expected distortion between the image and its reconstructed version, x̂. This problem
is commonly referred to as the rate-distortion optimization problem in information theory
literature [5]. In the domain of learned image compression, this objective can be expressed as
a multi-task loss:
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R(Q(f(x))) + λ · D(g(Q(f(x))), x) (2.2)

where R represents the rate or bit-stream length, and D represents the distortion or reconstruc-
tion fidelity. The non-linear transform coding strategy [6] involves using an encoder to generate
a discrete latent representation, denoted as z, from an input image x. This representation is
obtained through a non-linear function, specifically z = f(x). The real-valued representation
z is then quantized using a quantization operator Q to obtain ẑ. The image decoder g(ẑ)
is responsible for generating the reconstructed input, denoted as ẑ, based on the quantized
representation ẑ. It is important to note that in order to encode the representation ẑ into a
bit-stream using a lossless compression algorithm like arithmetic coding [7], ẑ must belong to
a finite set. This requirement ensures that the encoding process can be performed without any
loss of information.

2.5 Deep Learning

Deep learning is a subfield of machine learning that uses artificial neural networks to model and
solve complex problems. It is inspired by the structure and function of the human brain and is
designed to process large amounts of data to identify patterns, classify information, and make
predictions. It can be modeled by ANNs ( artificial neural networks), the basic building block
of an artificial neural network is the neuron, which receives input signals, processes them using
an activation function, and generates an output signal. Neurons are organized into layers, with
each layer receiving input from the previous layer and producing output for the next layer.
The input layer receives the initial data, and the output layer produces the final predictions or
decisions. Between the input and output layers, there can be one or more hidden layers that
perform intermediate processing.

Deep learning models can also be seen as a complex function that is defined by a set of parame-
ters. The reason it is referred to as a "deep" model is that it typically comprises multiple layers,
where the output of each layer serves as the input for the subsequent layer. Additionally, it is
called a "learning" model since the values of the set of parameters are not predetermined but
instead learned from data automatically through the use of the back-propagation algorithm.

We can also see it as an optimization problem where we try to minimize the loss function which
is a distance between the value predicted by the model and the real value. The way to minimize
a multidimensional function is to use the gradient operator (where the name gradient descent

22



Fundamental Concepts and Techniques

comes from) in an iterative form where at each step we get closer to the minimal value of the
loss by changing the parameters in the right way.

2.5.1 Neural networks

Deep learning involves correcting errors based on the importance of the elements that actually
contributed to those errors. In the case of neural networks, the synaptic weights that con-
tribute to generating a significant error will be modified more significantly than the weights
that generated a minor error. We can see in the following figure the evolution of deep learning:

Figure 2.2: An in-depth exploration of the evolution and advancements of neural networks over
time.

2.5.2 Perceptron

A perceptron neuron (shown in figure 2.3) is a type of artificial neuron that is used in artificial
neural networks. It was developed in the 1950s by Frank Rosenblatt, and is a simple algorithm
for supervised learning of binary classifiers. It takes in multiple input values, and each input is
assigned a weight then calculates a weighted sum of the inputs, adds a bias term, and applies
an activation function to produce an output. which will be the final output of the network. [8],
and can be expressed like the following:

ŷ =
n∑
i=1

xiωi + b (2.3)
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Figure 2.3: Perceptron algorithm.

2.5.3 Multilayer perceptron MLP

The multilayer perceptron shown in figure 2.4 an extended version of the single-layer perceptron.
It is composed of an input layer, several hidden layers, and an output layer, where each neuron in
a layer is connected to all neurons in the adjacent layer, thus building a fully connected network
of at least three layers. The number of neurons in the input layer defines the dimension of the
input feature vector, while the number of neurons in the output layer defines the number of
classes. The number of neurons in the hidden layers is considered a design question. The fewer
hidden neurons, the more difficult it is for the model to learn complex decision boundaries. On
the other hand, the more hidden layers there are, the less generalized the model becomes, and
it specializes.

Figure 2.4: Multilayer perceptron algorithm.

MLPs are not designed to handle spatial information and are generally used for tasks that do
not require spatial processing, such as predicting numerical outputs from a set of input features.
In contrast, CNNs are designed to efficiently process spatial information, making them better
suited for tasks such as image classification and object detection.

24



Fundamental Concepts and Techniques

2.5.4 Backpropagation algorithm

It is a process for computing the gradient of the loss function with respect to the model’s
weights, which can then be used to update the weights to minimize the loss.

2.5.5 Gradient decent

The standard approach to train a neural network involves using gradient descent [9]. This
method relies on a loss function l(θ) that quantifies how well the network’s weights and biases
θ fit the training data. A higher loss indicates poor performance and more errors, while a lower
loss suggests better performance. To minimize the loss, the network parameters are adjusted
iteratively. In the gradient descent algorithm, the update rule is formally expressed as:

θt+1 = θt − Lr∇l(θ) (2.4)

This equation involves taking the gradient ∇ of the loss function l, which indicates the direction
in parameter space that increases the loss. To decrease the loss, the update is performed in
the opposite direction, denoted by ∇l. The step size of the update is determined by the
learning rate lr. It is typically a small fraction that ensures the model optimizes its parameters
in smaller steps, preventing overshooting of loss minima. This helps the learning algorithm
converge steadily towards reducing the error, rather than oscillating around a local minimum.
The gradient descent method forms the foundation of many modern deep learning techniques
and is widely effective in practice.

2.5.5.1 Stochastic gradient decent

Stochastic gradient descent (SGD) is an iterative optimization algorithm used in machine learn-
ing to train models. Unlike traditional gradient descent, which updates model parameters based
on the gradients computed over the entire training dataset, SGD updates the parameters using
a randomly selected subset, known as a mini-batch, at each iteration. This stochastic sampling
introduces noise and variability into the updates, but it also provides computational efficiency,
particularly for large datasets. By updating the parameters more frequently, SGD can con-
verge faster and potentially escape local minima. However, the noise introduced by stochastic
sampling can make the convergence path less smooth. To address this, variations of SGD, such
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as mini-batch SGD and momentum-based methods, are commonly used, striking a balance
between efficiency and stability.

2.5.6 Optimization

In machine learning, optimization refers to the process of finding the best set of model pa-
rameters or variables that minimize or maximize an objective function. The objective function
represents the goal or criterion that the model aims to optimize, such as reducing the error
or maximizing the accuracy of predictions. Optimization algorithms in machine learning it-
eratively adjust the model parameters based on the information obtained from the training
data. These algorithms search for the optimal values of the parameters by evaluating the
objective function and updating the parameters in a way that moves closer to the optimal
solution. The choice of optimization algorithm depends on various factors, such as the nature
of the objective function, the size of the dataset, and the complexity of the model. Common
optimization algorithms used in machine learning include gradient descent, stochastic gradient
descent, Adam, and LBFGS, among others. The goal of optimization in machine learning is
to find the best model parameters that generalize well to unseen data, thereby improving the
model’s performance and predictive accuracy.

2.5.7 Transfer learning

Figure 2.5: Transfer learning scheme.

Transfer learning is a machine learning technique that leverages knowledge gained from one task
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to improve performance on another related task it can be seen in figure 2.5. Rather than start-
ing from scratch, transfer learning utilizes pre-trained models or learned representations from
a source task and applies them to a target task. By leveraging the learned features, relation-
ships, and patterns captured by the source task, transfer learning can accelerate and enhance
the learning process on the target task, especially when the target task has limited labeled data.
This approach allows models to generalize better and achieve improved performance in situa-
tions where data availability is limited. Transfer learning has been widely adopted in various
domains, such as computer vision and natural language processing, enabling the development
of robust and effective models with less effort and data.

2.5.8 Convolutional neural networks

Convolutional Neural Networks (CNNs or ConvNets) are an extension of MLPs that effectively
overcome some of their shortcomings. They are designed to automatically extract features from
input data. They were initially inspired by the discovery made by Hubel and Wiesel in 1962,
where they noticed that specific patterns stimulated activity in specific parts of the brains of
cats and monkeys.

The first use of these networks was made by Fukushima with the self-organizing map (SOM) for
feature extraction using unsupervised learning. In the field of pattern recognition, significant
development was made by LeCun et al. where they proposed an architecture, called LeNet, for
recognizing handwritten digits.

The CNN eliminates the need for manual feature extraction. It extracts features and assigns
memorizable weights and biases describing various aspects of the image to differentiate them
from each other. Technically, each input image passes through two blocks of layers. The first
block contains the convolutional layers, which are responsible for generating the features, and
the second block is the classification block, which contains fully connected layers, similar in
architecture to the MLP. The following figure visualize the CNN as feature extractor:
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Figure 2.6: CNN With fully connected neural network.

2.5.8.1 Feature extraction

This block can play the role of feature extractor without doing it manually but also as a com-
pressor for the information in the context of image compression, since it extracts the necessary
information to reconstruct the original image with the right training. Every layer in this block
is considered as a feature map which can be used according to the needs, the more we get deeper
into the blocks the more the features get specific for a given task. The way those features are
extracted is using the convolution matrix which will be detailed in the next paragraph. [10]

Convolutions:

Figure 2.7: Convolution process for one dimensional matrice.

In the case of figure 2.7 we have two dimensional convolution with a 3x3 kernel the formula for
the convolution for a matrix x(a, b) and a kernel is the following:

xij =
m−1∑
a=0

m−1∑
b=0

kabf(i+a)(j+b) (2.5)
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And the kernel coefficients are the weights that must be trained in order to extract the right
information (ex: edge detection). And it’s not limited to only one channel or one kernel, we
can use multiple of those at the same time and we will get different feature maps at the same
layer.

Padding:

Figure 2.8: An example of same convolution with padding p = 1.

If we apply convolution directly to an image of size HxH with a kernel of WxW we will get an
image of size (H − W + 1) × (H − W + 1) which will reduce the size of the output, and we
will lose the information contained in the edges on the input. In order to overcome this we will
use padding (can be seen in figure 2.8) which consists of adding additional lines and columns
to the original matrix whether with zeros or another value.

Pooling: A downsampling operation shown in figure 2.9 that reduces the spatial dimensions
of the input feature maps. It is typically applied after convolutional layers to capture and
preserve the most important features while discarding unnecessary details.

Figure 2.9: Pooling Layer 4:2.
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2.5.9 Generative adversial networks

A novel method for training a generative model is the introduction of Generative Adversarial
Networks (GANs) [11]. These networks consist of two adversarial models, a generative model
(G) that captures the data distribution and a discriminator model (D) that estimates the
likelihood that a given sample came from the training data rather than G. Both G and D can
be non-linear mapping functions, such as multi-layer perceptrons. The following figure shown
in depth the architecture of GANs:

Figure 2.10: Generative adversial networks architecture and their respective losses.

To generate a distribution pg over data x, the generator constructs a mapping function from a
prior noise distribution pz(z) to data space as G(z; θg). On the other hand, the discriminator
D(x; θd) outputs a single scalar that represents the probability that x came from the training
data rather than pg. The two models, G and D, are trained simultaneously through a two-player
min-max game with value function V (G, D):

min
G

max
D

V (D, G) = Ex∼pdatq(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.6)

G’s parameters are adjusted to minimize log(1 − D(G(z))), while D’s parameters are adjusted
to minimize log D(X) [12].
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2.5.9.1 Conditional GANs

Figure 2.11: Conditional Generative neural networks and their training process.

By incorporating auxiliary information y, such as class labels or data from other modalities,
generative adversarial nets can be transformed into a conditional model [13]. This is achieved
by introducing y as an additional input layer to both the generator and discriminator. The
generator combines the prior input noise pz(z) and y to form a joint hidden representation,
while the discriminator takes in x and y as inputs and applies a discriminative function using
a multi-layer perceptron (MLP). The trainging processes is visualized in figure 2.11.

The adversarial training framework provides significant flexibility in how the hidden represen-
tation is composed. The objective function for this two-player minimax game is expressed
as:

min
G

max
D

V (D, G) = Ex∼pdata (x)[log D(x | y)] + Ez∼pz(z)[log(1 − D(G(z | y)))] (2.7)

2.5.10 Autoencoders

Figure 2.12: Autoencoders architecture containing encoder network on the left and decoder
network on the right for digit reconstruction.
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Autoencoders (shown in figure 2.12) are a type of neural network architecture that can be
used for unsupervised learning, dimensionality reduction, and data compression [14]. An auto-
encoder consists of an encoder network that maps an input to a latent space representation, and
a decoder network that maps the latent space representation back to the original input. During
training, the auto-encoder learns to minimize the reconstruction error between the input and
the output:

argminA,BE[∆x, B(A(x)] (2.8)

In the context of image compression, its error is a distance between the original image and its
reconstruction for example using MS SSIM since it’s not very significant to compare pixel per
pixel using MSE.

2.5.11 Variational Autoencoders

When considering the connection between auto-encoders and content generation, a common
question arises: "What role do auto-encoders play in generating new content?" Once an auto-
encoder is trained, it consists of two main components: an encoder and a decoder. However,
there is no straightforward method to produce entirely new content using the trained auto-
encoder. Instead of directly mapping the input data to the latent space, the VAE introduces
a probabilistic approach [15]. It assumes that each point in the latent space is generated from
a probability distribution. The distribution is typically assumed to be a multivariate Gaussian
distribution with a mean and variance. We can see in the figure below the VAE model:

Figure 2.13: Variational auto-encoder and its loss where x is the input and d(z) is the output.
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2.5.11.1 Loss function

The loss function of a variational auto-encoder has one additional term, so it contains two
terms:

Loss = ||x̂ − x||2 + KL[N(µx, σx), N(0, l)] (2.9)

- Reconstruction Loss: The reconstruction loss encourages the VAE to generate outputs that
closely resemble the original input. It measures the discrepancy between the reconstructed
output and the original input. In VAEs, the reconstruction loss is typically based on the
concept of maximizing the likelihood of generating the original input given the learned latent
representation. This is achieved by assuming that the reconstruction follows a probabilistic
distribution.

- Regularization Term: The regularization term, also known as the Kullback-Leibler (KL)
divergence, is used to ensure that the learned latent representation follows a specific prior
distribution, typically a standard Gaussian distribution. The regularization term encourages
the VAE to learn a latent space that is smooth and continuous, making it easier to generate
new samples by sampling from this distribution.

2.6 Metrics for evaluating image compression quality

In this section, we will explore various metrics utilized for assessing the quality of image com-
pression and employing them as loss functions during training. It is crucial to emphasize that
apart from the metrics we will discuss, there are additional information theory-based measure-
ments such as Shannon’s entropy and KL divergence that can be referenced in [5].

2.6.1 Bits per pixel

The term "bits per pixel" (bpp) is a measure of the amount of bits used to represent each pixel
in a digital image, its calculated as:

bpp = Nbits

Npixels

(2.10)
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In image compression, reducing the number of bits per pixel can significantly reduce the size
of the image file, making it easier to transmit and store. However, reducing the bpp too much
can result in a loss of image quality and detail, as the image is represented with less precision.

The appropriate bpp value for image compression depends on the specific application and
the desired level of image quality. Different image compression techniques, such as JPEG or
PNG, use different bpp values and algorithms to achieve the desired level of compression while
preserving image quality as much as possible.

2.6.2 MS-SSIM

MS-SSIM (Multi-Scale Structural Similarity Index) is a widely used objective image quality
assessment method that is based on measuring the structural similarity between two images.
It is an extension of the original SSIM index [16], which is a full reference metric that compares
the perceived image quality with the original or reference image.

The MS-SSIM index is calculated by comparing the luminance, contrast, and structure of two
images at different scales. It uses a multi-scale decomposition of the images into a set of
structural information maps, which are then compared to generate the final similarity index.
The equation for MS-SSIM can be written as:

MSSSIM(x, y) =
 N∏
i=1

Lαi
i (x, y) × Cβi

i (x, y) × Sγi
i (x, y)

]θ
(2.11)

where:

x and y: are the two images being compared.
N : the number of scales used in the decomposition.
l(i), c(i), and s(i): are the luminance, contrast, and structure similarity measures at scale i,
respectively.
αi, βi, and γi: are the weighting factors for the luminance, contrast, and structure measures at
scale i, respectively.
θ: a constant that controls the overall sensitivity of the index.

The MS-SSIM index ranges from 0 to 1, where 1 indicates perfect similarity between the two
images.[17]
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2.6.3 Peak to noise ration PSNR

Peak Signal-to-Noise Ratio (PSNR) is a commonly used metric to measure the quality of image
compression algorithms [18]. It quantifies the difference between the original image and the
compressed image by evaluating the signal-to-noise ratio in decibels. PSNR is calculated using
the following formula:

PSNR = 20. log1 0(MAX) − 10. log1 0(MSE) (2.12)

where:
- MAX is the maximum pixel value of the image (e.g., 255 for an 8-bit image).
- MSE (Mean Squared Error) is the average squared difference between the original and com-
pressed images.
A higher PSNR value indicates a smaller difference between the original and compressed im-
ages, and thus, a higher quality compression. Typically, a higher PSNR is desired, indicating
less loss of image quality during compression. However, it’s worth noting that PSNR is just one
metric to evaluate image compression quality. Other metrics, such as Structural Similarity In-
dex (SSIM) or Perceptual Quality Index (PQI), may provide a more comprehensive assessment
of perceptual image quality, taking into account factors like human visual perception.

2.7 Conclusion

In conclusion, this opening chapter of the thesis embarks on an extensive exploration of prelim-
inary concepts essential for a comprehensive understanding of this thesis. The chapter begins
by establishing a solid foundation in classic image compression principles. It then delves into
the background of neural networks, discussing topics such as variational auto-encoders. The
chapter also investigates various metrics commonly used in image processing, with a particular
focus on the Multi Scale Structural Similarity Index (MS-SSIM), a crucial tool for evaluating
image quality and codec performance. Through a thorough examination of these metrics and
AI concepts, the chapter aims to provide a nuanced overview of the intricate mechanisms and
quantitative measures employed in the domain of image compression, empowering readers to de-
velop a nuanced understanding of the subject matter. Within the forthcoming chapter entitled
"AI-based image compression", we shall investigate an array of methodologies that seamlessly
align with our predefined objectives.
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AI-based image compression techniques

3.1 Introduction

In the upcoming chapter, we will delve into an exploration of some methodologies for im-
age compression using deep learning. These methodologies can be classified into two distinct
categories: the first focuses on achieving optimal results in terms of reconstruction and the
compression ratio while maintaining quality, besides the second category that dedicates the
latent representation to computer vision tasks, particularly face recognition, which we consider
as our secondary objective. Throughout those investigations, they ensured that the aspect of
reconstruction is given due consideration, underscoring its significance in their analysis.

3.2 State of the art diagram

Since in our work we are trying to unite the computer vision and image compression we divided
the state of the art into two part, then later we will use the necessary part of each of the
following models, we can summerize those techniques in the following figure:

Figure 3.1: State of the art diagram of JPEG AI compressors.

3.3 Variational image compression using scale hyperprior

3.3.1 Introduction

Ballé et al. [19] present a comprehensive approach to image compression using variational
auto-encoders, incorporating a hyperprior to effectively capture spatial dependencies within
the latent representation. This hyperprior leverages side information, a concept widely used in
modern image codecs but largely unexplored in image compression with artificial neural net-
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works (ANNs). In contrast to existing auto-encoder compression methods, their model simulta-
neously trains a sophisticated prior alongside the underlying auto-encoder. Their experiments
demonstrate that this model achieves state-of-the-art image compression results in terms of
visual quality, as measured by the popular MS-SSIM index. Additionally, it outperforms pre-
viously published ANN-based methods in rate-distortion performance when evaluated using
the more traditional metric based on squared error (PSNR). They also provide a qualitative
comparison of models trained for different distortion metrics.

3.3.2 Compression with variational models

Figure 3.2: Transform coding using ANNs.

In the transform coding approach (shown in figure 3.2) to image compression described in [20]
the process involves an encoder and a decoder. The encoder takes an image vector, denoted as
x, and applies a parametric analysis transform :

ga(x; ϕg)

With the parameters ϕg . This transform converts the image into a latent representation,
denoted as y. The resulting y is then quantized to produce ŷ. Quantization involves approx-
imating the continuous values of y with a limited number of discrete values. Since ŷ is now
a discrete-valued representation, it can be compressed without any loss of information using
entropy coding techniques like arithmetic coding in [21]. Entropy coding assigns shorter codes
to more frequently occurring values, resulting in an efficient representation of the data. The
compressed representation is then transmitted as a sequence of bits. On the decoder side, the
compressed signal is received and processed to recover ŷ. The decoder applies a parametric
synthesis transform, gs(ŷ; θg), with the parameter θg, to reconstruct the image vector x̂. The
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synthesis transform essentially reverses the analysis transform, allowing the decoder to recreate
an approximation of the original image.

It’s important to note that quantization, the process of mapping continuous values to discrete
levels, introduces some error in the compressed representation. This error is tolerated in lossy
compression, where a certain amount of quality loss is acceptable in exchange for achieving
higher compression ratios. The trade-off between bit rate of the compressed representation
and the distortion error introduced by quantization gives rise to a rate–distortion optimiza-
tion problem. The optimization problem is formally expressed as a variational auto-encoder,
introduced by Kingma and Welling in [15]. This approach combines a probabilistic generative
model of the image with an approximate inference model, The generative model is associated
with the synthesis transform, which reconstructs an image from its latent representation. On
the other hand, the inference model is linked to the analysis transform, which infers the latent
representation from the source image. In the context of variational inference, the objective is
to approximate the intractable true posterior distribution pỹ|x(ỹ|x) with a parameterized varia-
tional density q(q̃|x) by minimizing the expectation of their Kullback–Leibler (KL) divergence
over the data distribution px:

Ex∼pxDKL
[
q∥pỹ|x

]
= Ex∼pxEỹ∼q

[
log q(ỹ | x) − log px|ỹ(x | ỹ)︸ ︷︷ ︸

weighted distortion

− − log pỹ(ỹ)︸ ︷︷ ︸
rate

]+ const.

]
(3.1)

3.3.3 Introduction of a scale hyperprior

Figure 3.3: Left: an image from the Kodak dataset Right: visualization of a subset of the latent
representation y of that image.

The figure figure 3.3 clearly illustrates the presence of substantial spatial relationships among
the elements of ŷ. Remarkably, their magnitudes seem to be interconnected in a spatial manner.
To address dependencies among a group of target variables, a commonly employed approach
is to introduce latent variables. These latent variables are conditioned upon to assume the
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independence of the target variables in [22]. In the proposal, they augment the model by incor-
porating an extra set of random variables, denoted as z̃, to capture the spatial dependencies.
The extended model is depicted in the following figure:

Figure 3.4: Compression model with extended hyperprior.

The model represents each element, ŷi, as a Gaussian distribution with a mean of zero and a
unique standard deviation,σi. These standard deviations are determined by applying a para-
metric transformation, hs to the variable z̃. Similar to before, they convolve each Gaussian
density with a standard uniform distribution:

pỹ|z̃ (ỹ | z̃,θh) =
∏
i

(
N

(
0, σ̃2

i

)
∗ U

(
−1

2 ,
1
2

))
(ỹi)

with =hs (z̃;θh) (3.2)

To expand the inference model, they incorporate an additional parametric transformation, ha,
onto the existing output, y. This combination creates a unified and factorized variational
posterior. In simpler terms, they enhance the model by adding ha to y, resulting in a joint and
factorized variational posterior, as follows:

q
(
ỹ, z̃ | x,ϕg,ϕh

)
=

∏
i

U
(

ỹi | yi − 1
2 , yi + 1

2

)
·

∏
j

U
(

z̃j | zj − 1
2 , zj + 1

2

)

with y = ga
(
x;ϕg

)
, z = ha (y;ϕh) .

(3.3)

This follows the intuition that the responses y should be sufficient to estimate the spatial
distribution of the standard deviations. As they have no prior beliefs about the hyperprior,
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they model z̃ using the non-parametric, fully factorized density model previously used for y:

pz̃|ψ(z̃ | ψ) =
∏
i

(
pzi|ψ(i)

(
ψ(i)

)
∗ U

(
−1

2 ,
1
2

))
(z̃i) (3.4)

The loss function of this model works out to be:

Ex∼pxDKL
[
q∥pỹ,z̃|x

]
= Ex∼pxEỹ,z̃∼q

[
log q(ỹ, z̃ | x) − log px|ỹ(x | ỹ) − log pỹ|z̃(ỹ | z̃) − log pz(z̃)

]
.

+ const.
(3.5)

The overall architecture of the model will be:

Figure 3.5: Network architecture of the hyperprior model.

3.4 High-Fidelity Generative Image Compression

3.4.1 Introduction

Mentzer et al, conducted an extensive study on combining Generative Adversarial Networks
(GANs) and learned compression techniques to develop an advanced generative lossy compres-
sion system [23]. Their investigation focused on various aspects, including normalization layers,
generator and discriminator architectures, training strategies, and perceptual losses. Unlike pre-
vious works, their approach achieved visually appealing reconstructions that closely resembled
the input, operated effectively at different bitrates, and could be applied to high-resolution
images.

To bridge the gap between rate-distortion-perception theory and practical implementation, the
researchers evaluated their approach through quantitative analysis using different perceptual
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metrics and a user study. The results of the study demonstrated that their method outper-
formed previous approaches even when those approaches utilized more than twice the bitrate.
In summary, the researchers successfully developed a state-of-the-art generative lossy compres-
sion system that achieved visually pleasing reconstructions, worked across various bitrates, and
surpassed previous methods in terms of user preference.

3.4.2 Losses

Lets the loss of neuronal image compression which is modeled with an auto-encoder consisting
of an encoder E and a decoder G be:

LEG = Ex∼pX
[λr(y) + d (x, x′)] (3.6)

where:
- r(y) is the rate error: r(y) = −log(P (y)).
- d(x, x′) is the distortion error in this case the SSIM MSSIM.

For the Conditional GAN loss the objective is to create a generator G that takes into account a
condition s and transforms samples y from a predetermined distribution pY to pX|S. Addition-
ally, a discriminator D is used to determine the probability of an input (x, s) being a sample
from pX|S or from the output of G. The aim is for G to deceive D by generating samples
that appear real, meaning they are from pX|S. By keeping s constant, they can optimize the
"non-saturating" loss:

LG = Ey∼pY
[− log(D(G(y, s), s)]

LD = Ey∼pY

[
− log(1 − D(G(y, s), s)] + Ex∼pX|s [− log(D(x, s))] (3.7)

3.4.3 Formulation and optimization

The augmentation of a neural image compression formulation using a conditional GAN com-
bines various equations and learns networks E, G, P , and D. The process involves using
y = E(x) and s = y. In addition, a "perceptual distortion" dP is incorporated, which
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is inspired by the work of [24] and employs a VGG-based loss (LPIPS) [25] for improved
training. dP is considered a distortion and is combined with MSE to create the overall
distortiond = kMMSE + kPdP , where kM and kP are hyper-parameters. By adjusting hyper-
parameters and , the trade-off between the different terms can be controlled, resulting in the
final outcome:

LEGP = Ex∼pX
[λr(y) + d (x, x′) − β log (D (x′, y))] ,

LD = Ex∼pX
[− log (1 − D (x′, y))] + Ex∼pX

[− log(D(x, y))].
(3.8)

3.4.4 Architecture

Figure 3.6: HiFi Architecture where E: is the encoder to compress input image. P: is the
probability model trained to calculate entropy. G: Conditional generator to decompress y. D:
Descriminator to be trained mutually with G.

The architecture shown in figure 3.6 consists of four components: encoder E, generator G,
discriminator D, and probability model P. For the probability model P, we utilize a hyper-prior
model proposed in a previous work [19]. This model incorporates side information z to represent
the distribution of y and involves simulating quantization using uniform noise U(−1/2, 1/2)
in the hyper-encoder and when estimating p(y|z). However, when y is fed to the generator
G, rounding is used instead of noise, ensuring that G encounters the same quantization noise
during both training and inference. The components E, G, and D are based on other references,
although there are some notable differences in the discriminator and normalization layers.
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3.5 Learned Image Compression for Machine Visual Per-

ception

3.5.1 Introduction

The main objectives of this thesis [26] were threefold. Firstly, the aim has been to develop an
advanced compression algorithm using neural networks that outperforms JPEG when evaluated
against standard image compression metrics. This algorithm should generate a compressible
representation. Secondly, the goal has been to investigate whether it is feasible to influence
this compressible representation in order to improve performance in downstream tasks such
as image classification, object detection, and semantic segmentation. Lastly, the objective has
been to determine whether this compressible representation provides an advantage in densely
labelled tasks, specifically semantic segmentation, as well as in the few-shot setting. Their
hypothesis suggests that it does, as the compressible representation is expected to encapsulate
all relevant image information within a smaller data structure, facilitating the extraction of
useful information for downstream tasks.

3.5.2 Rate-Distortion-Utility perspective

The representation z has various applications, including encoding it into a bit stream for storage
or transmission, as well as direct utilization for visual tasks without reconstructing the input
image. This expands the conventional rate-distortion trade-off and raises the question of the
representation’s utility for machine perception tasks, rather than solely focusing on perceptual
quality compared to the original image. They put forward the hypothesis that for any desired
rate (R) and distortion level (D), there are multiple quantized latent representations:

ẑ = Q(f(x)) (3.9)

that exhibit significant performance differences in subsequent machine vision tasks. In other
words, different representations can achieve the same rate-distortion trade-off, but some may be
more suitable for specific semantic tasks than others. In light of this, They propose that the op-
timization objective function should not only consider the classical rate-distortion paradigm but
also incorporate a measure of the representation’s usefulness for concrete machine perception
tasks:
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R(Q(f(x)), x) + λd · D(g(Q(f(x))), x) + λu · U(Q(f(x))) (3.10)

The utility function U() represents a pragmatically defined metric for machine perceptual qual-
ity. Unlike traditional metrics such as squared error that characterize human perceptual quality,
machine vision perceptual quality can be defined more pragmatically by considering a multi-
task loss:

U(Q(f(x))) =
∑
t∈T

λt [Lt (ht(f(x)), yt)] (3.11)

Where Lt denote a loss function specific to a particular task t, which measures its performance
based on labels yt. The functions ht represent task-specific decoders. They hypothesize that
optimizing learned compression models for rate R, distortion D, and utility U , will yield en-
coders f(x) that can generate quantized representations ẑ with low bit-per-pixel values.

3.5.3 Architecture

Figure 3.7: Learned Image Compression for Machine Visual Perception model. Right: Global
model containing Encoder and Decoder and ANNs for different tasks. Left: Different tasked
trained in this methode.

Their strategy for learning compressible image representations for machine perception that can
be seen in figure 3.7 can be summarized as follows. They adopt a holistic approach by train-
ing a model to simultaneously compress images and perform essential vision tasks using the
compressed representations. This integrated training methodology results in notable improve-
ments compared to conventional methods like JPEG compression or simplistic learned deep
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compression. Notably, when training new models for specific tasks directly from their learned
compressible representations, their approach demonstrates significant advantages.

3.6 Identity Preserving Loss for Learned Image Com-

pression

3.6.1 Introduction

This study introduces an end-to-end image compression framework that learns specific features
related to the domain, enabling higher compression ratios compared to standard HEVC/JPEG
techniques while preserving accuracy in downstream tasks such as recognition. Their framework
eliminates the need for fine-tuning the downstream task, allowing them to use any off-the-shelf
model without retraining. For their research, they focus on faces as the application domain
due to the abundance of available datasets and readily accessible recognition models. They
propose a novel loss function called Identity Preserving Reconstruction (IPR), which achieves
Bits-Per-Pixel (BPP) values approximately 38% and 42% of the CRF-23 HEVC compression
for low-resolution (LFW) and high-resolution (CelebA-HQ) datasets, respectively. This com-
pression ratio is achieved by teaching the model to retain domain-specific features (e.g., facial
features) while sacrificing background details. Additionally, their proposed compression model
produces reconstructed images that remain robust to changes in downstream model architec-
tures. They demonstrate comparable recognition performance on the LFW dataset using an
unseen recognition model while maintaining a lower BPP value of around 38% of CRF-23 HEVC
compression.
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3.6.2 Framewrork

Figure 3.8: Proposed framework containing the Codec’s architecture on the left and the face
recognition pretrained model on the right.

They present the proposed framework (in figure 3.8). Initially, the input images (x) undergo
encoding and quantization, resulting in a discrete latent representation (ŷ). To determine the
entropy model, we adopt the hyper-prior method [19]. The hyper encoder-decoder generates a
discrete hyper-latent representationẑ and predicts the distribution of ŷ using the entropy model
pŷ(ŷ). To achieve lossless compression, they employ an entropy encoder (EC) and an entropy
decoder (ED). The EC utilizes pŷ(ŷ) to encode ŷ into transferable bytes bŷ, while a separate
entropy modelpẑ(ẑ) with a factorized prior distribution encodes ẑ into

¯
ẑ. The combination of

¯
ŷ and

¯
ẑ forms the payload that requires transmission over the network. Upon transmission,

the ED converts these bytes back into discrete latent and hyper-latent representations. Fi-
nally, the decoder reconstructs the images (x). Traditional compression methods optimize both
reconstruction loss to maintain image quality and bit-rate loss to reduce file size where:

LR = Lrec + λrate Lrate (3.12)

Lrec = Ex∼px [d(x, x̂)] (3.13)

Lrate = Ex∼px [− log (pŷ(ŷ)) − log (pẑ(ẑ))] (3.14)

where Lrec is the reconstruction loss, Lrate is the bit-rate loss, d(x, x̂) is the distortion function,
and λrate is the weight for bit-rate loss.the total loss function LR is for Reconstruction-only
loss. When selecting the MSE function as the reconstruction loss, d(x, x̂) is defined as:
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d(x, x̂) = ∥x− x̂∥2 (3.15)

3.6.2.1 Identity Preserving Reconstruction Loss

The objective is to enhance the compression ratio while maintaining the recognition perfor-
mance. To achieve this, they employ the CurricularFace [27] pre-trained model. However, they
refrain from fine-tuning the model weights and instead keep them frozen. To ensure compat-
ibility between the compression model and the recognition model, they develop the Identity
Preserving (IP) loss function. This loss function incorporates both the bit-rate loss and identity
loss, aiming to minimize the discrepancy between e and ê (as depicted in figure 3.8) for identity
recognition while achieving a smaller file size. where:

LIP = λrate Lrate + λid Lid (3.16)

Lid = Ex∼px

[
1 − e · ê

∥e∥∥ê∥

]
(3.17)

where Lid is the identity loss. Since LIP only optimizes recognition performance, they further
derive Identity Preserving Reconstruction (IPR) loss function to jointly optimize image quality
and recognition performance:

LIPR = Lrec + λrate Lrate + λid Lid (3.18)

Using face alignment module A and a face recognition model R with shared weights θ, we
derive the embeddings by analyzing both decompressed images and their corresponding original
images, where:

e = Rθ(A(x)) and ê = Rθ(A(x̂)) (3.19)

To conclude, in this paper, the authors integrated three loss functions. The first loss function
is dedicated to reconstruction, aiming to ensure accurate image restoration. The second loss
function focuses on minimizing entropy to reduce the bits per pixel (bpp), thereby enhancing
compression efficiency. Lastly, the third term of the loss function is designed to preserve facial
features and maintain identity representation in the compressed images.
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3.7 Conclusion

In this chapter, we examined the current methods for neural image compression, focusing on two
specific approaches: [23] and [19] that use the scale hyper prior method and the trained prob-
ability model in order to minimize the latent representation while applying lossless encodings.
These methods aim to optimize compression while preserving a high-quality reconstruction.
Additionally, we explored two other techniques that trained their codecs for face recognition,
image detection, and segmentation. One of these techniques directly utilized a latent represen-
tation, while the other trained the reconstruction process to maintain the same facial feature
vector. In the upcoming chapter, we will delve into a detailed analysis of how latent repre-
sentation varies under different training criteria while aiming to achieve accurate classification
using the architecture of [23].
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Making use of the latent representation for image classification

4.1 Introduction / Motivation

The motivation behind choosing a computer vision task is to explore the potential of compressed
representations in classification problems beyond their traditional use for reconstruction pur-
poses. By investigating the compressed representation, we aimed to understand the extent to
which it preserves valuable information that can be harnessed for effective classification. Our
objective for this part is to analyze the transformation of this representation across two extreme
ends of the spectrum. While examining the compressed representation at these extremes, we
sought to gain insights into how it evolves and adapts to different requirements, and whether it
retains useful information that can aid in computer vision tasks. This investigation would help
us assess the overall utility and robustness of compressed representations in the context of com-
puter vision tasks, potentially unlocking new possibilities for efficient and effective computer
vision systems.

Further more, we noticed that all the work done before always train the decoder and the encoder
simultaneously. So in order to implement JPEG AI on a larger scale its more adequate to have
a fixed decoder on different devices. So for the following we took the the decoder in [23] and
fixed its weights than we train the encoder with the same architecture for different losses which
will be discussed in the Framework section.
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4.2 Experimental conditions

4.2.1 Material resources

During the training process we used 3 GPUs (one RTX 3070 8 Go and two RTX 2080Ti 12Go)
as main resources some training were done on the first one and others in the two 2080s.

4.2.1.1 GeForce RTX 3070

The NVIDIA GeForce RTX 3070 with 8GB of VRAM is a graphics processing unit (GPU)
that offers excellent performance for machine learning trainings. With its Ampere architecture
and advanced tensor cores, the RTX 3070 delivers good computational power and accelerated
AI capabilities. The 8GB GDDR6 memory allows for efficient data handling and faster model
training times. The card boasts a boost clock speed of up to 1.73 GHz, enabling quick processing
of complex machine learning algorithms. It supports hardware-accelerated ray tracing, which
enhances visualizations and simulations, providing realistic and immersive experiences. The
RTX 3070 is equipped with 5888 CUDA cores, ensuring high parallel processing capabilities,
which is crucial for training deep learning models. Additionally, the card supports NVIDIA’s
CUDA and cuDNN libraries, as well as popular machine learning frameworks like TensorFlow
and PyTorch, making it compatible with a wide range of software tools. Overall, the RTX
3070 8GB is a robust option for machine learning trainings, offering exceptional performance,
memory capacity, and compatibility with popular frameworks and libraries.

4.2.1.2 GeForce RTX2080Ti

The NVIDIA RTX 2080 Ti 12GB is a GPU designed for high-performance computing tasks
such as training AI models. It features a 12GB GDDR6 video memory, which provides am-
ple space for storing large datasets and model parameters. With its 4352 CUDA cores, the
GPU delivers powerful parallel processing capabilities, enabling efficient training and inference
operations. The RTX 2080 Ti also supports real-time ray tracing, allowing AI models to gen-
erate more realistic graphics and visualizations. Its memory bandwidth of 616 GB/s facilitates
fast data transfers and computations, contributing to quicker training times for AI algorithms.
Furthermore, the GPU supports multiple monitors and offers various connectivity options for
seamless integration into AI development workflows. Overall, the NVIDIA RTX 2080 Ti 12GB
provides the computational power and memory capacity necessary for training sophisticated
AI models.
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4.2.1.3 AMD Ryzen 5 5600H

The AMD Ryzen 5 5600H is a laptop processor from AMD’s Ryzen 5000 series, based on the
Zen 3 architecture. Here are its specifications:

- CPU Cores and Threads: The Ryzen 5 5600H has 6 CPU cores and 12 threads. This
means it can handle up to 6 simultaneous tasks with the support of multi-threading
technology.

- Base Clock Speed: The base clock speed of the Ryzen 5 5600H is 3.3 GHz. This is the
frequency at which the processor operates under normal conditions.

- Max Boost Clock Speed: The processor can dynamically increase its clock speed for better
performance when needed. The Ryzen 5 5600H can reach a maximum boost clock speed
of 4.2 GHz.

- Cache: It features a total of 16MB of L3 cache, which helps improve the processor’s
efficiency by providing faster access to frequently used data.

- Memory Support: The processor supports DDR4 memory with a maximum speed of 3200
MHz. The specific memory configuration and maximum capacity may vary depending on
the laptop’s design and the manufacturer’s specifications.

- PCIe Version: The Ryzen 5 5600H supports PCIe Gen 3.0, which allows for high-speed
data transfer to compatible devices such as NVMe solid-state drives and dedicated graph-
ics cards.

4.2.2 Dataset

4.2.2.1 Cifar-10

CIFAR-10 [28] is a widely used benchmark dataset in the field of computer vision and ma-
chine learning. It consists of 60,000 color images, each measuring 32x32 pixels, divided into
ten classes, with 6,000 images per class. The ten classes include common objects such as air-
planes, automobiles, birds, cats, dogs, frogs, horses, ships, trucks, and a miscellaneous category.
CIFAR-10 serves as a valuable resource for researchers and practitioners to develop and evaluate
image classification algorithms. It has become a standard dataset for testing the performance
and generalization capabilities of various deep learning models, providing a challenging task due
to the small image size and the complexity of differentiating between similar-looking objects.
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Figure 4.1: CIFAR-10 images.

With its broad applications and widespread usage, CIFAR-10 has played a significant role in
advancing the field of computer vision. We can see some samples in figure 4.3
Classes:

AIrplane automobile horse frog deer

dog bird cat ship truck

Table 4.1: CIFAR-10 Classes.

4.2.2.2 LFW Labled faces in the wild

The Labeled Faces in the Wild (LFW) dataset [29] is a widely used benchmark in the field of
face recognition. It is a comprehensive collection of facial images gathered from the internet,
capturing a diverse range of individuals under various conditions. The dataset consists of over
13,000 labeled images, encompassing more than 5,000 unique individuals. Each image is aligned
and cropped to focus on the face, ensuring consistency across the dataset. LFW has become a
standard evaluation resource for face recognition algorithms, allowing researchers to compare
and assess the performance of different methods. Its large size, diverse set of subjects, and
real-world variations make it a valuable resource for advancing the field of face recognition and
understanding the challenges associated with real-world face detection and identification tasks.
We can visualize one of LFW classes in the following figure:
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Figure 4.2: LFW face images of the same class.

4.3 Frameworks

In order to investigate how the latent representation varies when optimized on different ob-
jectives, we employed two specific protocols. These protocols were designed to explore and
analyze the changes that occur within the latent representation based on the optimization ob-
jectives employed. The purpose is to gain insights into how different optimization goals affect
the resulting latent representation. We used to protocols that are the following:

4.3.1 Framewrork 1: Encoder & Classifier joint training

4.3.1.1 Architecture

Figure 4.3: Protocol 1’s architecture containing Encoder E on the left and Decoder/Classifier
on the right.

For the current architecture seen in figure 4.3 we have our Encoder’s (based on [23]) input x

which is resized CIFAR-10 images, with the size of 64x64x3 (instead of 32x32x3). We will get
the latent representation y = E(x) with the size (220,4,4). This representation will be used for
two tasks:

- Reconstruction: Before the reconstruction of the original the latent representation
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needs to be quantified in order to limit the number of symbols to be coded later by the
lossless encoding such as Huffman, and in order to optimize this process we will need to
decrease the entropy of this source, but this will not be the focus of this thesis. After the
quantization part the quantified latent representation will be introduced in the Decoder
that contains convolution layers and residual blocks.

- Classification For the classification part we wont need the latent representation to be
quantified, we will use it directly as an input to the classifier model which contains variable
convolution layers and a fully connected layer which will be followed by a Softmax

function.

Encoder (Trainable)

- Pre-padding: The input data is padded using reflection padding with a width of 3 pixels
on each side. Reflection padding means that the values on the boundary of the input are
reflected to create the padding.

- Asymmetric padding: After the pre-padding, asymmetric padding is applied to the
input. This padding adds an extra row of padding on the top and bottom and an extra
column of padding on the left and right sides. Post-padding:

- Post-padding: After the convolutional layers, the output is again padded using reflection
padding with a width of 1 pixel on each side.

- Convolutional Block 1: This block consists of a reflection padding layer, followed by
a 2D convolutional layer with 3 input channels, 60 output channels, and a kernel size of
7x7. The output is then passed through a ChannelNorm2D layer and a ReLU activation
function.

- Convolutional Block 2: This block also starts with a reflection padding layer, followed
by a 2D convolutional layer with 60 input channels, 120 output channels, a kernel size of
3x3, and a stride of 2x2 (which downsamples the spatial dimensions by a factor of 2). The
output is then passed through a ChannelNorm2D layer and a ReLU activation function.

- Convolutional Block 3, 4, and 5: These blocks follow a similar structure to Block 2
but with different input and output channel dimensions. Each block includes a reflection
padding layer, a 2D convolutional layer, a ChannelNorm2D layer, and a ReLU activation
function. The spatial dimensions are downsampled by a factor of 2 in each block.
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- Convolutional Block Output: This block consists of a reflection padding layer followed
by a 2D convolutional layer. It has 960 input channels and 220 output channels, with a
kernel size of 3x3 and a stride of 1x1. This block provides the final output of the encoder.

Classifier (Trainable)

- Convolutional Block 1: It takes an input with 220 channels and applies 100 filters of
size 2x2.

- Batch Normalization layer: It normalizes the output of the previous convolutional
layer by subtracting the mean and dividing by the standard deviation computed over a
batch of samples.

- Same layer are multiplied with different channels (as shown in the figure 3.3). Untill the
FNN to classify all the 10 classes.

Decoder (Frozen weights)

- Initial convolutional block: The first part of the generator network consists of a series
of operations. It includes:
Channel normalization (ChannelNorm2D): This operation normalizes the input channels
of the feature map.
Reflection padding: Another reflection padding is applied.
Convolutional layer: A 2D convolution (Conv2d) is applied with a kernel size of 3x3 and
a stride of 1x1, transforming the input from 220 channels to 960 channels.
Channel normalization: The output channels are normalized again.

- Residual blocks: The core of the generator consists of multiple residual blocks (Resid-
ualBlock). Each residual block performs the following operations:
Reflection padding.
Convolutional layer (conv1): A 2D convolution is applied with a kernel size of 3x3 and a
stride of 1x1.
Convolutional layer (conv2): Another 2D convolution is applied with the same parame-
ters.
Channel normalization (norm1 and norm2): Normalization is applied after each convolu-
tional layer.
The output of the second convolutional layer is added to the input of the residual block,
creating a residual connection.
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These residual blocks allow the network to learn residual or incremental changes, en-
abling it to preserve important features from the input image while introducing necessary
modifications.

- Upsampling blocks: After the series of residual blocks, the generator includes a set
of upsampling blocks. Each upsampling block performs the following operations: Con-
volutional transpose: This operation upsamples the feature map by a factor of 2 using a
kernel size of 3x3, stride of 2x2, and padding of 1x1. The output channels decrease as the
spatial dimensions increase.
Channel normalization.
Rectified Linear Unit (ReLU): This activation function introduces non-linearity into the
network.
These upsampling blocks help to restore the spatial resolution of the feature map while
reducing the number of channels.

- Output convolutional block: Finally, the output convolutional block produces the desired
output image. It includes:
Reflection padding.
Convolutional layer: A 2D convolution is applied with a kernel size of 7x7 and a stride
of 1x1, converting the feature map from 60 channels to 3 channels, corresponding to the
RGB color channels of the output image.

4.3.1.2 Loss function

As mentioned before the quality compression ratio will not be the main focus of this thesis so
the loss function will not contain the entropy of the encoder source r(y) where:

r(Y ) = Expx [log(p(Y ))] (4.1)

So we will focus on the reconstruction part. For a first step we will use the Mean squarred
error as a reconstruction metric to evaluate the distortion between the original image and its
reconstruction:

D(x, x̂) = E[(xi − x̂i)2] (4.2)
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For the classification loss, since it is a multi-class problematic we will use the cross entropy,
where:

C(o, c) = −
M∑
c=1

yo,c log(po,c) (4.3)

So the global loss for this model will be:

L = D(x, x̂) + λC(o, c) = E[(xi − x̂i)2] + λE[−
M∑
c=1

yo,c log(po,c)] (4.4)

Were λ varies according to the importance of the desired objective (whether giving importance
to the reconstruction or to the classification).

4.3.1.3 Training

In this specific training process, the decoder’s [23] weights are fixed. It means that the param-
eters of the decoder, which determine how it transforms the latent representation back into
the reconstructed data, remain unchanged throughout the training. On the other hand, the
encoder and the classifier are trained using a loss function that is mentioned in the preceding
section. By minimizing the loss function, the model aims to improve its performance in terms
of both reconstruction and classification.

For the training and validation splits, CIFAR-10 contains 50000 labeled images for training and
10000 images for testing. And it will be the same split that we will use.

We will also leave λ = 1 to give both importance to image reconstruction and image classifica-
tion

Data augmentation

The main idea behind data augmentation is to introduce variations in the training data that
are similar to the variations that the model is expected to encounter during actual deployment
or inference. And we used it for this training since we faced an overfitting beforehand. here we
can visualize how data augmentation work:
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Figure 4.4: Data augmentation CIFAR-10.

Regularization: Weight decay

The purpose of weight decay is to control the complexity of the model by discouraging large
weight values. When the weights are allowed to grow without bounds, it can lead to overfitting,
where the model becomes too specialized to the training data and performs poorly on new,
unseen data. And it is added during the training with a value equal to: 1e-05.

Training

After conducting an extensive grid search to determine the optimal number of filters for each
layer, we proceeded to carry out multiple training iterations using different filter configurations.
Through this process, it has been revealed that the following configuration yielded the most
favorable outcomes:

Operation channels activation
conv2x2 500 relu
conv2x2 420 relu
conv2x2 250 relu
conv2x2 170 relu
FClayer 10 softmax

Table 4.2: Architecture of the Classifier used in this frame work.
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Prompting us to proceed with it. Consequently, we obtained the subsequent training results
while incorporating a variable learning rate and SGD (stochastic gradient decent) optimizer in
the following figure:

Figure 4.5: Left: Training loss by cross entropy. Right: Train accuracy. For 60 epochs.

The validation set plots are depicted in the figure presented below:

Figure 4.6: Left: Test loss by cross entropy. Right: Test accuracy.

4.3.1.4 Results

In the subsequent results provided below in table 4.6, we conducted a comparative analysis of
our classifier with several recent models that have been trained with the CIFAR dataset. That
are the following:

- Hybrid (PiN): Vision Xformers: Efficient Attention for Image Classification [30]

- Vision Nystromformer (VIN): Vision Xformers: Efficient Attention for Image Clas-
sification [30]

- SmoothNetV1: SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [31]
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Classifier Params Test Accuracy (%) Reconstruction loss (MSE)
Our Classifier 1.8M 85.12 0.12 (Where the

MSE loss= 0.249)
Hybrid (PiN) (2021) 0.99M 74 /

Vision Nystromformer (VIN)(2022) 0.53M 65.06 /
SmoothNetV1 (2022) 3.41M 73.5 /

Table 4.3: Performance comparaison with first framework where both the encoder and classifier
are trained.

4.3.1.5 Comments

The advantage of our approach lies in the fact that we achieve a reduced size of the CIFAR
dataset. Despite training the encoder, our classifier is simultaneously trained to utilize the
latent representation. This implies that during testing, a smaller dataset is required, resulting
in a reduced size of the classifier. As a result, the inference time is significantly reduced.
Essentially, our approach allows for the creation of efficient convolutional neural networks by
leveraging a compact dataset. It is worth noting that the size of the CIFAR dataset, from the
classifier’s perspective, is reduced by a factor of 3,5. Here is two exemples:

Figure 4.7: Upper row: Original images. lower row: Reconstructed with classification accuracy
of 85.12%.
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Simultaneously, it has come to our attention that the reconstruction loss has exhibited a notice-
able surge, a phenomenon that can be deemed entirely expected given our intentional disregard
for its significance within the loss function. Our primary objective, after all, revolved around
exploring the outer boundaries of the latent representation, particularly in relation to the com-
puter vision task at hand.

4.3.2 Framewrork 2: Classifier

4.3.2.1 Architecture

Figure 4.8: Protocol 2’s architecture containing Encoder E on the left and Decoder/Classifier
on the right taking the 4th layer of the encoder as input to the classifier.

To implement this framework in figure 4.8, we will utilize a pretrained encoder and decoder. The
weights of these components will be frozen to prevent further training. Subsequently, we will
extract the 4th layer from this architecture and employ it for classification purposes, leveraging
our own classifier. Our classifier will be trained using its designated loss function. The rationale
behind selecting the 4th layer lies in its ability to contain more informative features compared
to the last layer, thereby promoting effective classification.

For the architecture of this model we have the same modules of the precedent protocol, the
main difference is that the E encoder and D the decoder are already pretrained like in [23] and
the only trainable part is the classifier. Where it architecture is:

- Convolutional Block 1: It takes an input with 220 channels and applies F[0] filters of
size 2x2.

- Batch Normalization layer: It normalizes the output of the previous convolutional
layer by subtracting the mean and dividing by the standard deviation computed over a
batch of samples.

63



Making use of the latent representation for image classification

- Same layer are multiplied with different channels (as shown in the figure 4.8). Untill the
FNN to classify 10 classes

4.3.2.2 Loss function

Since we are training the classifier only where a multi class classification loss is:

C(o, c) = −
M∑
c=1

yo,c log(po,c) (4.5)

So the global loss for this model will be:

L = λE[−
M∑
c=1

yo,c log(po,c)] (4.6)

4.3.2.3 Training

The model has been trained for 30 epochs using stochastic gradient descent (SGD) and a fixed
learning rate of 0.00045. The architectural details of the model are provided in the table below.

Operation channels activation
conv3x3 480 relu
conv3x3 960 relu
conv2x2 460 relu
conv2x2 300 relu
conv2x2 150 relu
FClayer 10 softmax

Table 4.4: Classifier of the second framework architecture.
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The results are visualized in the figure below:

Figure 4.9: Training accuracy for the second framework for 30 epochs.

The validation set plots are depicted in the figure presented below:

Figure 4.10: validation accuracy of the second framework.

The following table presents the results, comparing them with the previous models:

Classifier Params Test Accuracy (%) Reconstruction loss (MSE)
Our 2nd Classifier 10.0M 83.0 0.249

Hybrid (PiN) (2021) 0.99M 74 /
Vision Nystromformer (VIN)(2022) 0.53M 65.06 /

SmoothNetV1 (2022) 3.41M 73.5 /

Table 4.5: Performance comparaison with second framework where both the encoder and clas-
sifier are trained.

Comments

As anticipated, the accuracy has declined compared to the previous framework due to the
encoder being fixed. This restriction prevents it from incorporating the essential information for
classification into the latent representation. However, it is noteworthy that the reconstruction
loss remains unchanged, similar to the findings in [23], which is equal to 0.24, it is important
to note that the model is trained on MSSIM.
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4.3.3 Comparison

In this section, our aim is to compare the latent representations obtained from two different
encoders. Firstly, we have the latent representation from encoder trained solely for reconstruc-
tion, denoted as X. Secondly, we have the latent representation from encoder trained for both
reconstruction and classification accuracy, denoted as X’. These two representations represent
the extreme ends of our comparison. To measure the dissimilarity between them, we employ
cosine similarity:

comparaison = E

1 − X · X̂ ′

∥X ′∥∥X̂∥

 (4.7)

This metric allows us to assess the extent to which each component of the latent representation
differs from other components.

Following the computation and subsequent averaging of the cosine differences within the LFW
dataset and CIFAR Data set, we derived the following table:

Data set Mean value of the Cosine loss Standard deviation of the cosine loss
CIFAR-10 0.6135 0.011

LFW 0.5931 0.004

Table 4.6: Comparison table of the two latent representations derived from different encoders
optimized for different objectives using cosine similarity.

comments

Initially, we observed that despite altering the dataset, the cosine loss exhibited minimal vari-
ations, indicating a direct correlation with the encoder weights. Moreover, we observed an
increase in accuracy from 83% to 85% and a halving of the Mean Squared Error (MSE). The
cosine similarity remained around 0.6, suggesting that even with a modified latent representa-
tion, the decoder successfully decoded the latent representation.
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4.4 Conclusion

In this chapter, we not only achieved highly satisfactory classification results using compressed
images, but we also examined and compared the impact of different representations on accuracy
and restoration metrics. We conducted experiments using two distinct protocols: one involved
freezing the encoder, while the other involved training it alongside the classifier. Through this
analysis, we observed how variations in the representation directly influenced the differences in
accuracy and restoration metrics.

In the next chapter we will see a new enhanced model that not only capable of computer vision
task, but also image processing.
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Chapter 5
Enhanced JPEG AI model with integrated face
recognition and augmented resolution

5.1 Introduction

JPEG AI aims to develop a learning-based image coding standard that provides a compact
compressed domain representation. It focuses on enhancing compression efficiency compared
to commonly used image coding standards while maintaining equivalent subjective quality for
human visualization. Additionally, it aims to deliver effective performance for image processing
and computer vision tasks, in this chapter we will adress a new image compression that do
the three main tasks firstly compression-reconstruction, augmenting the resolution as an image
processing task, and face recognition as computer vision.
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5.2 Motivation and objectives

Figure 5.1: JPEG AI learning-based image coding framework.

The aim of introducing JPEG AI is to develop an image compressor capable of effectively
performing image compression, image preprocessing, and computer vision tasks [32] presented
in figure 5.1. Given the absence of existing models that cater to all three tasks simultaneously,
our objective is to create a model that addresses each main task by focusing on a specific
subtask within them. We chose for our model the following tasks:

Compression Image Processing Computer vision
Reconstruction Augmenting image resolution face recognition

Table 5.1: Our model tasks.

Its also important to note that we will not train the decoder for such a task. Since training
all the CODEC for each task will be hard to implement on a large scale since their will be an
"infinite" numbers of CODECs for each task. So we used the one in [23] which is optimized for
image reconstruction and can go to lower BPPs. For this work optimizing the entropy to get
lower BPP is not our main focus, its the information held in the latent representation and how
to adapt to different objectives, that are the following:

- Reconstruction: The primary objective of our codec revolves around two main steps:
firstly, to meticulously reconstruct the image, and secondly, to effectively utilize the latent
representation for various additional purposes.
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- High resolution: The reason behind selecting this particular task as our computer vision
project stems from a logical progression that aligns with our future endeavors focused on
optimizing the Bpp (bits per pixel) metric.

- Face recognition: Many modern devices and services use face recognition to personalize
user experiences. For example, social media platforms can suggest tags for people in pho-
tos, and smart TVs can recommend content based on who is watching. Face recognition
enables tailored experiences and enhances user convenience.

5.3 Preliminaries

Prior to delving into the intricacies of our model’s architecture, we would like to provide an
introduction to some foundational concepts, including an overview of the traditional methods
employed in face recognition.

5.3.1 Face recongition

Face recognition can be divided into two main parts: feature extraction and classification.
These two steps are integral to the overall process of recognizing and identifying faces. Where
the feature extraction part focuses on extracting relevant and distinctive features from the
input face image. The goal is to transform the raw input image into a compact representation
( or embedding) that captures the essential characteristics of the face, making it easier for the
classification part to differentiate between different individuals. Generally in the state of the
art it a (512,1) vector.

Figure 5.2: Facial embedding extraction using Facenet.

Once the feature extraction step is complete and the face image is transformed into a feature
vector, the classification part comes into play. The goal of this step is to determine the identity
of the face based on the extracted features. One commonly used technique for face recognition
classification is the cosine similarity-based loss function, known as the Cosine Loss. The Cosine
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Loss measures the similarity between two feature vectors by computing the cosine of the angle
between them. It quantifies the degree of similarity, ranging from -1 (completely dissimilar) to
1 (identical).

5.3.1.1 MobileFacenet

MobileFacenet [33] is a facial feature extractor specifically designed for deployment on mobile
devices such as smartphones and tablets. It is optimized to achieve accurate and efficient face
recognition while maintaining a small model size and low computational requirements, making
it suitable for real-time applications on mobile platforms. The development of MobileFacenet
addresses the challenges posed by limited computational resources and power constraints on
mobile devices. It aims to provide a compact yet powerful solution for facial recognition tasks
without compromising performance. It has the following architecture:

Input Operator t c n s

1122 × 3 conv3x3 - 64 1 2
562 × 64 depthwise conv3x3 - 64 1 1
562 × 64 bottleneck 2 64 5 2
282 × 64 bottleneck 4 128 1 2
142 × 128 bottleneck 2 128 6 1
142 × 128 bottleneck 4 128 1 2
72 × 128 bottleneck 2 128 2 1
72 × 128 conv1x1 - 512 1 1
72 × 512 linear GDConv7x7 - 512 1 1
12 × 512 linear conv1x1 - 128 1 1

Table 5.2: MobileFaceNet architecture for feature embedding.

Each line describes a sequence of operators, repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer of each sequence has a stride s
and all others use stride 1. All spatial convolutions in the bottlenecks use 3 × 3 kernels. The
expansion factor t is always applied to the input size. GDConv7x7 denotes GDConv of 7 × 7
kernels.

In our research, we will employ the model as a feature extractor to promote the encoder’s
emphasis on facial features during the compression process of the original image.

Initially, we focused on comparing the features exclusively as an initial step. This approach is
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taken because obtaining similar embeddings would likely yield similar classification outcomes.
Exploring this connection further will be the focus of our future endeavors.

5.3.2 Augmented resolution

To accomplish the augmented resolution task portion of this enhanced model, we will employ
a network model described in table 5.4. This model incorporates a double sampling layer
that increases both the height and width of the 220 channels in the latent representation.
Subsequently, this augmented representation is fed into the decoder, where it reconstructs the
input by doubling its original dimensions through a multiplication by 2, followed by 16.

5.4 Global framework

Figure 5.3: Our JPEG AI model’s global architecturee, containing encoder to compress, Decoder
to decompress, Facenet to adapt latent represenation as an input to mobilefacenet and supnet
to make a bigger representation to be decoded by same decoder.

Initially, our approach shown in figure 5.3 involved reducing the dimensions of the LFW data
set X to create a modified data set X ′, which would serve as a reference for the augmented
resolution task. The reduction process entailed halving the height and width of X, resulting
in a new data set X ′ with dimensions of (3x125x125) instead of (3x250x250). The primary
objective of this reduction is to establish a ground truth for the subsequent steps.
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Figure 5.4: First path for reconstruction.

Subsequently, as seen in figure 5.4 we fed the reduced data set X ′ into the encoder E, which
generated a compressed latent representation E(X ′) with a size of 220x7x7. To evaluate the
reconstruction quality, we employed the decoder D by inputting the reduced latent representa-
tion, resulting in the reconstructed reduced data set D(E(X ′)), denoted as X̂ ′. The distance
between X ′ and X̂ ′ is then compared using metrics such as Mean Squared Error (MSE) or
multiscale structural similarity index (MSSIM/SSIM) [17].

Figure 5.5: Model’s second path for the augmented resolution.

Simultaneously, figure 5.6 shows we utilized the reduced latent representation E(X ′) and passed
it through the supnet S, a neural network specifically designed to handle augmented resolution
tasks. The output of S(E(X ′)) is a zoomed version of the latent representation, yielding
dimensions of 220x14x14. This enlarged latent representation is subsequently fed into the same
decoder whith the same frozen weights to obtain the augmented resolution output D(S(E(X ′))),
denoted as X̂. During the training process, X̂ is then compared with the original data set X
using metrics such as Mean Squared Error (MSE) or multiscale structural similarity index
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(MSSIM/SSIM) [17].

Figure 5.6: Model’s third path for facial features.

On a parallel track, figure 5.6 explicit how we took the reduced latent representation E(X ′)
and utilized the facenet F to adapt it. This adaptation resulted in a decoded latent represen-
tation F (E(X ′)), which then served as the input for the Mobilefacenet M [33]. The output of
M , denoted as ê = M(F (E(X ′))), represented an embedding produced by the modified latent
representation, in other words it facenet work as a decoder just instead of extracting all the
original information it decodes only the facial feature. This embedding ê is then compared with
the embedding e derived from the reduced data set X using the Mobilefacenet M , providing
another means of evaluation using the the cosine similarity.
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5.4.1 Modules architecture:

5.4.1.1 Encoder

We use the same architicture as the pervious experiences which will be the following:

Input filters channels
H × W × 3 conv 7x7 60
H × W × 60 conv3x3 120

(H/2) × (W/2) × 120 conv3x3 240
(H/4) × (W/4) × 240 conv3x3 480
(H/8) × (W/8) × 480 conv3x3 960

(H/16) × (W/16) × 960 conv3x3 220

Table 5.3: Encoder architecture.

Which will reduce the output by a factor of ≈ 3.5 since we down sampled 4 times, with 220
channels in the last layer.

5.4.1.2 Supnet

The architecture for our supnet can be described in table 5.4. It is of utmost importance to

Input filters channels
H × W × 220 conv 3x3 700
H × W × 700 conv3x3 500
H × W × 500 conv3x3 400
H × W × 400 upscale /

(H × 2) × (W × 2) × 400 conv3x3 300
(H × 2) × (W × 2) × 300 conv3x3 220

Table 5.4: Supnet’s architecture.

understand that following each convolutional layer, the inclusion of batch normalization plays
a crucial role in normalizing the activations. Additionally, the purpose of incorporating an
upscaling layer so in the decoding process we enhance the resolution by doubling it, resulting
in a larger output size.
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5.4.1.3 Facenet

Due to the fact that mobilefacenet is trained using actual RGB images rather than latent repre-
sentations, it became necessary for us to develop facenet as some sort of a decoder architecture.
This involved incorporating 3 channels at the end of facenet and increasing the height and width
dimensions beyond or equal to 112x112, which is the required input dimension for facenet in
order to have the correct embedding (512). Our approach, as outlined in table 5.5, effectively
implemented these modifications. Additionally, it is crucial to note that when scaling up by
multiplying the latent dimension by a power of 2, we encountered the need to perform a center
crop just before injecting it into mobilefacenet.

Input filters channels activation
H × W × 220 conv 3x3 400 relu

(H × 2) × (W × 2)400 conv3x3 360 relu
(H × 4) × (W × 4) 360 conv3x3 240 relu
(H × 8) × (W × 8) 240 conv 3x3 120 relu

(H × 16) × (W × 16) × 120 60 60 relu
(H × 32) × (W × 32) × 60 conv3x3 3 /

Table 5.5: Facenet’s architecture.

It is crucial to emphasize that we incorporated batch normalization after each layer throughout
the facenet. This technique has been applied consistently to ensure proper normalization and
stability at every stage of the facenet’s operation.

5.4.1.4 Decoder

In order to construct the decoder, we opted to employ the exact same decoder as in a previous
research study [23], leveraging its pretrained weights. The architectural intricacies of this
decoder have already been extensively elucidated earlier in this thesis.

5.5 Loss function

Given that there are three tasks to be undertaken, it is evident that there will be three distinct
losses that need to be optimized. The first loss, known as the distortion loss, involves compar-
ing the downsampled dataset, denoted as X ′, with the downsampled reconstruction obtained
through the process of encoding and decoding, represented as D(E(X ′)). This comparison is
carried out using the Mean Squared Error (MSE) metric to quantify the level of distortion:
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Lreco = E[(X ′ − X̂ ′)2] = E[(X ′ − D(E(X ′)))2] (5.1)

The second loss, referred to as the augmented resolution loss, aims to measure the dissimilarity
between the original dataset, denoted as X, and the reconstruction obtained after introducing
the downsampled dataset to the encoder and subsequently passing it through the supernet
X̂ = D(S(E(X ′))). The purpose of this loss is to assess the effectiveness of the reconstruction
in capturing the finer details of the original data. Where the loss is denoted:

LrecoHR = E[(X − X̂)2] = E[(X − D(S(E(X ′))))2] (5.2)

The third loss is determined by calculating the cosine similarity shown in equation 5.3, which
involves comparing the embedding resulting from the injection of the downsampled data set
into MobileFaceNet with the embedding obtained by decoding the reduced latent representation
using Facenet and subsequently injecting it into the same MobileFaceNet.

Lface = E
[
1 − e · ê

∥e∥∥ê∥

]
(5.3)

In summary, due to the presence of three distinct tasks, there are corresponding losses to opti-
mize: the distortion loss, which evaluates the downsampled dataset against its reconstruction
using MSE; and the augmented resolution loss, which measures the dissimilarity between the
original dataset and the reconstruction after passing through the encoder and supernet, and
the cosine loss. Resulting in the global loss being:

L = λfaceLface + λrecoHRLrecoHR + λrecoLreco (5.4)

L = λrecoE
[
(X ′ −D(E(X ′)))2

]
+ λrecoHRE

[
(X −D(S(E(X ′))))2

]
+ λfaceE

[
1 − e · ê

∥e∥∥ê∥

]
(5.5)

The purpose of incorporating λi within the loss error function is to assign varying levels of
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importance to different types of losses. However, for our specific task, where we will be engaging
in a training phase followed by a fine-tuning process (which will be elaborated upon later), we
have decided to set all the lambdas to be equal to 1/3, representing the average value of all
three losses.

5.6 Training

In order to achieve optimal convergence, we implemented a two-part training approach. Ini-
tially, we focused on training each module individually while keeping the others frozen. This
involved training the encoder to achieve a high-quality reconstruction. Subsequently, we pro-
ceeded to fine-tune all modules together to optimize the overall loss. Following the encoder
training, we proceeded to train the supnet and facenet modules separately while keeping the
previously trained encoder fixed. We trained all the modules using the LFW dataset.

5.6.1 Encoder’s training:

During the training process, we focused on training the encoder module exclusively, while
keeping all other modules frozen. This setup is maintained for a total of 30 epochs using the
stochastic gradient descent optimizer with a consistent learning rate of 0.01. As a result, we
were able to achieve a training loss, specifically Mean Squared Error (MSE), of 0.0049. Where
the MSE (5.1) can be visualised in the following figure:

Figure 5.7: Training loss for the encoder.

In order to evaluate the proficiency of the trainer, we opted to utilize images derived from two
distinct distributions: one drawn from the same distribution as the dataset being analyzed,
and another obtained from a distribution that lies outside of it. This approach enables us
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to comprehensively assess the trainer’s performance across varying data sources and ascertain
its adaptability to both familiar and unfamiliar distribution patterns. We can visualize some
exemples of reconstruction:

Figure 5.8: Upper row: Original images. Lower row: Reconstructed images with the encoder
trained with MSE
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5.6.1.1 Results and performance evaluation

To assess the quality of our model’s reconstructions, we utilized a set of nine images from the
JPEG AI test set in [34], which is the same approach during the 85th JPEG Meeting held in
San Jose, USA, in November 2019. These images, which are crucial for our evaluation, can be
visualized in the accompanying figure:

Figure 5.9: JPEG AI 9 high resolution test images.

The table 5.6 presents the MSE loss values we obtained. (The images are numbered from up
to down from right to left)

Image Loss
TE 01 0.0181
TE 02 0.0197
TE 03 0.0246
TE 04 0.0180
TE 05 0.0114
TE 06 0.0182
TE 07 0.0333
TE 08 0.0042
TE 09 0.063
mean 0.023

Table 5.6: MSE loss of the nine JPEG AI test images.
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Exemple

We can visualize TE08 :

Figure 5.10: Left: Original. Right: Reconstruction using encoder trained on MSE only.

5.6.1.2 Comments

We successfully reached an MSE of 0.023, which is considered good when considering the visual
aspect. However, during our analysis, we observed some larger losses, such as TE 09 with an
MSE of 0.06. These higher losses can be attributed to the image containing numerous intricate
details that require more intricate coding.

5.6.2 Training Facenet

In the previous section, we employed the Pretrained encoder and kept its weights fixed. Our
objective is to minimize the cosine loss, mentioned in equation 5.3. The purpose behind this
is to minimize the angle, enabling us to extract facial features from the latent representation
using the facenet. This approach allows for the direct utilization of latent representations in
future endeavors related to face recognition. We conducted model training for 100 epochs,
employing stochastic gradient descent with a fixed learning rate of 0.01. This approach enabled
us to achieve an angle difference of less than 7 degrees or a cosine loss of 0.1. We can see the
training loss plot in the following figure:

5.6.2.1 Results

Since its not the main objective we didn’t extend the model to the classifier point, so we are
currently unable to assess these outputs. Therefore, we rely solely on observing the outcomes,
anticipating a subsequent decline in the accuracy of such classifiers. Additionally, we can
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Figure 5.11: Training plot of facenet.

compare the generated output with those mentioned in [35]. The following figure shows the
original input and the facial features in the output of facenet:

Figure 5.12: Upper row: Originals. Lower row: facenet output.

Upon observation, it becomes evident that the absence of RGB colors is quite prominent in the
visual display. Instead, there is a predominant presence of the color green, which can be con-
sidered somewhat logical given that facial features do not inherently rely on color. It is indeed
possible to perform face recognition solely based on gray scale information, without the need
for color distinctions. Simultaneously, the model places significant emphasis on crucial aspects
like facial noise and the eyes, deeming them noteworthy for recognition purposes. Conversely, it
tends to overlook less significant elements such as the background and hair, which are deemed
less pertinent in the context of facial recognition.
Furthermore, the provided figure presents a comparison between the model discussed in [35]
where their CODEC is specifically designed and trained to enhance facial recognition accuracy.
the model achieved an accuracy rate of 89.48%.
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Figure 5.13: Left: output of the decoder in [33].

5.6.3 Training supnet

As previously stated, our approach involved downsampling the original dataset in order to ob-
tain the ground truth. To achieve this, we maintained the encoder that had been pretrained in
the aforementioned section. We then proceeded to optimize the loss, as described in equation
5.2. Our training process spanned 70 epochs, during which we utilized the SGD optimizer and
employed a variable learning rate. The learning rate began at 0.1 and underwent a reduction
of 95% with each epoch. This training regimen led us to attain a final loss value of 0.018. The
training loss can be visualized in the figure provided below:

Figure 5.14: supnet training loss.
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We are going to down sample the test images than compared the output of the decoded aug-
mented resolution with the original images, and the results are presented in the table below:

Image Loss

TE 01 0.0140

TE 02 0.0207

TE 03 0.0235

TE 04 0.0269

TE 05 0.0320

TE 06 0.0273

TE 07 0.0402

TE 08 0.0104

TE 09 0.0659

mean 0.023

Table 5.7: MSE_HR loss of the nine JPEG AI test images.

Comment

It is expected to have a somewhat lower resolution in the output during the initial training
step, as we kept the encoder fixed. This approach enables us to augmented the resolution but
results in a perceptibly lower quality output. Even tho it has been trained on a face data set.

We can provide an example to illustrate this concept visually:

Figure 5.15: Left : Original TE07. Middle: Downscaled TE07. Right: Output of our model
with augmented resolution.
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5.6.4 Fine Tuning

After training each model individually, we proceeded to perform a fine-tuning process involving
all three models. This fine-tuning process aimed to minimize the global loss mentioned in
equation 5.5. We trained all the models for a total of 50 epochs, utilizing stochastic gradient
descent with a learning rate of 0.002, which progressively decreased by a factor of 0.95 after
each epoch. Additionally, it is worth noting that all the λi values were set to 1

3 during this
fine-tuning stage.

In the figure 5.16, we have the ability to visually perceive both the global loss plot as well as
each individual loss value that comprises it.

Figure 5.16: Losses plot: Up right: The global loss which is a combination of the three. Up
left: cosine similarity loss. lower left : MSE loss for the reconstruction. lower right: MSE loss
for the augmented resolution.

Within the depicted figure, positioned in the upper right section, we find the mean value derived
from the combination of three distinct losses, all assigned equal weight (where lambdas are set
to 1/3). Adjacent to this mean value is the representation of the cosine similarity loss. In
the left bottom area of the figure, it represent the reconstruction Mean Squared Error (MSE)
loss. Positioned in the bottom right portion of the figure, there is the doubled resolution loss
MSE_HR.

Comments

Initially, we observe a significant decline in the overall global criteria function, a phenomenon
predominantly influenced by the cosine similarity loss. This particular metric exhibits a remark-
ably substantial decrease compared to others. Additionally, we observe that despite employing
an exceedingly minute learning rate, the MSE loss exhibits a sluggish decline. This slow de-
scent suggests that we have reached a point of optimization. Similar behavior is observed with
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the MSE_HR loss, which has remained almost constant since the inception of training and has
shown minimal fluctuations, despite not freezing the encoder this time. This outcome is to be
expected, considering that there are other crucial aspects to prioritize and emphasize.

In the meantime, it would be interesting to observe the results produced by faceNet shown in
figure 5.17, considering the observed reduction in cosine similarity. This brings us closer to
identifying the distinctive features that Mobile FaceNet considers crucial for face recognition.

Figure 5.17: Upper row: Originals. Middle row: facenet output before fine tuning. Lower row:
facenet output after fine tuning.

Upon observation, we notice that the latest iteration of the fine-tuned Facenet model places
a heightened emphasis on crucial facial attributes, namely the eyes, nose, and mouth...etc. In
stark contrast to its previous version, the updated model assigns diminishing significance to
surface-level elements such as the front of the head, cheeks, or even the presence of sunglasses,
as illustrated in the right image. Moreover, it progressively converges towards a single dominant
channel (green), suggesting a refined focus on capturing and representing the essential facial
features.
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5.7 Conclusion

In summary, the primary objective of this chapter is to address the specific requirements im-
posed by JPEG AI, necessitating the development of a codec capable of effectively compressing
and decompressing photographic images. Furthermore, we extended its functionality to en-
compass additional image processing tasks, such as the application of Supnet for doubling the
resolution. Additionally, we undertook a computer vision task focused on adapting the latent
representation for facial recognition purposes, utilizing Facenet to extract the necessary facial
features which is trained with mobile facenet. The training process for these modules involved
a two-fold approach, initially training each model independently, followed by a comprehensive
fine-tuning applied to all the models collectively.
To provide a more comprehensive summary of the final model’s process, we can refer to the
accompanying figure that encapsulates the essence of its operations:

Figure 5.18: Our CODEC process, Image as input, and resulting in 3 outputs : input’s recon-
struction, input’s augmented resolution, input’s facial features.

Emphasizing the significance of maintaining a fixed decoder, as opposed to developing and
training task-specific decoder, is crucial to promote widespread adoption of such a codec. This
approach encourages a unified implementation of the codec, eliminating the need train both
the encoder and decoder to a specific task resulting in a large amout of variants.
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6.1 Conclusion

In this research project, we initially employed a classification problem as a means to explore how
different encoders, trained for various objectives, can alter the information contained within
the latent representation. To assess these changes, we utilized the cosine similarity metric and
observed that different performance levels were obtained in both classification and restoration
tasks for a given cosine value. This finding suggests that cosine similarity could serve as a
parameter for determining the preferred task when utilizing future encoders.

Furthermore, we developed an advanced AI codec specifically designed to address three key ob-
jectives: image compression, image processing, and image compression (repeated for emphasis).
As an illustrative example, we focused on two specific tasks within the codec: face recognition
and doubling the resolution of images. Notably, we obtained satisfactory results in terms of
image reconstruction and face recognition. However, our investigation concluded at the stage
of facial feature extraction, as the effectiveness of face classification heavily relies on the specific
dataset used.

6.2 Future work

For future research, we propose considering the cosine similarity as a parameter when selecting
the desired task. Given that the codec has demonstrated its ability to fulfill the three desired
tasks of JPEG with a trade-off, future efforts can be directed towards optimizing it for vari-
ous other tasks. These may include image restoration for image processing, segmentation for
computer vision, and more. It is important to maintain a fixed decoder to enable seamless
implementation on a large scale.
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