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صخلم

فرعتلاوققحتلالاجميفاًريبكاًمامتهاةيحزقلاىلعفرعتلاةمظنأتراثأدقف،ةيرشبلانيعلاةيحزقيفةدوجوملاةتباثلاوةزيمملاتامسللاًرظن

ةقداصملللحىلإلوصولافدهب،ةيحزقلاىلعفرعتلاماظنلAGPFمكحتمىلعاًيلمعاًذيفنتوًالماشاًقيقحتعورشملااذهمدقي.يرتمويبلا

اًركتبماًجهنمدقتيهف.ةيحزقلاىلعفرعتلالاجميفةظوحلمتامهاسمعورشملااذهيفةارجملاةساردلامدقت.قوثومولاعفةيرتمويبلا

يفامب،ةعونتمتاقيبطتيفةدعاوتاناكمإبحرتقملاماظنلاعتمتي.ايجولونكتلاهذهبةطبترملاةمساحلاتايدحتلاةهجاوموماظنلاءادأنيسحتل

يفمدقتللعورشملااذهنماهيلعلوصحلامتيتلاةميقلاراكفألاعفدتنأعقوتملانم.ةيوهلانمققحتلاوةبقارملاولوصولايفمكحتلاكلذ

رثكألاةيرتمويبلاةقداصملاةمظنأريوطتيفاًمساحاًرودراكفألاهذهبعلت،كلذىلإةفاضإلاب.لبقتسملايفةيحزقلاىلعفرعتلاايجولونكت

.ةيقوثومواًنامأ

AGPF.,ةيحزقلاىلعفرعتلاةمظنأ,ةيرتمويبلاةقداصملا:ةيحاتفمتاملك

Résumé

En raison des caractéristiques distinctes et cohérentes présentes dans l’iris humain, les systèmes

de reconnaissance de l’iris ont suscité une attention considérable pour l’identification biométrique

et l’authentification. Ce projet présente une enquête approfondie et une mise en œuvre pratique

sur FPGA (Field-Programmable Gate Array) d’un système de reconnaissance de l’iris, ayant

pour objectif principal de créer une solution d’authentification biométrique à la fois efficace

et fiable. L’étude menée dans ce projet apporte des contributions notables au domaine de la

reconnaissance de l’iris. Elle introduit une approche novatrice qui améliore non seulement

les performances du système, mais qui aborde également les défis critiques associés à cette

technologie. Le système proposé présente un potentiel prometteur pour diverses applications,

telles que le contrôle d’accès, la surveillance et la vérification d’identité. Les connaissances

précieuses obtenues grâce à ce projet devraient stimuler les avancées futures dans la technologie

de reconnaissance de l’iris. De plus, elles jouent un rôle crucial dans le développement continu

de systèmes d’authentification biométrique plus sécurisés et fiables.

Mots clés : FPGA, Les systèmes de reconnaissance de l’iris, L’authentification bio-métriques.

Abstract

Due to the distinct and consistent traits found in the human iris, iris recognition systems

have garnered significant attention for biometric identification and authentication purposes.

This project presents an extensive investigation and practical implementation on FPGA of

an iris recognition system, with the primary objective of creating a biometric authentication

solution that is both efficient and dependable.The study conducted in this project makes notable

contributions to the field of iris recognition. It introduces an innovative approach that not

only improves system performance but also tackles critical challenges associated with the

technology. The proposed system holds promising potential for diverse applications, including

access control, surveillance, and identity verification.The valuable insights obtained from this

project are expected to drive future advancements in iris recognition technology. Additionally,

they play a crucial role in the ongoing development of more secure and trustworthy biometric

authentication systems.

Keywords : FPGA, Iris recognition systems, Biometric authentication.
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General Introduction

Iris foot print refers to the distinctive patterns and characteristics found in an individual’s

eye iris. These patterns are utilized by iris recognition systems for biometric identification

and authentication purposes. However, despite the widespread adoption and benefits of iris

recognition technology, there are challenges and issues associated with utilizing them.

The algorithms used in iris recognition involve intricate image processing and pattern

matching techniques. These algorithms can be computationally demanding, requiring significant

processing and memory resources Efficiently implementing these algorithms to achieve real-time

performance is a challenging task. Optimization techniques like hardware acceleration, or

algorithm simplification may be necessary to meet the computational requirements of iris foot

print recognition. Developing algorithms that are both efficient and robust, capable of handling

variations in iris patterns, occlusions, and noise, poses an additional challenge. Optimizing these

algorithms for accuracy, speed, and scalability is crucial for achieving real-time performance

and effective identification.

In summary, while iris recognition technology offers unique advantages, challenges remain

in implementing and utilizing iris foot prints. These challenges include addressing the

computational complexity of the algorithms, optimizing them for accuracy and scalability.

Overcoming these challenges requires expertise in areas such as image processing, deep learning,

algorithm optimization, and system design.

Motivation and objectives

The motivation behind conducting a study and implementing a human recognition system

via iris based on deep learning on an FPGA stems from the increasing demand for accurate

and reliable biometric identification solutions. Iris recognition has emerged as a highly secure

and robust biometric modality, offering unique advantages such as uniqueness, stability, and

resistance to tampering. Deep learning techniques have shown remarkable success in various

computer vision tasks, including iris recognition. By implementing this system on an FPGA, we

aim to leverage the parallel processing capabilities and hardware acceleration to achieve real-time

performance and efficient deployment in resource-constrained environments.
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General Introduction

The objectives of this project

• Algorithm Development : Design, test and develop efficient and accurate Image

Processing and Deep Learning algorithms for iris recognition. Explore different

architectures and techniques, such as segmentation, convolutional neural networks

(CNNs) to extract features from eye images and identify the person.

• Hardware-Software Co-design : Optimize the developed Deep Learning algorithms for

Feild Programmable Gate Array (FPGA) implementation. Explore hardware acceleration

techniques and algorithmic optimizations to minimise the utilization of FPGA resources.

• Deployment and Validation : Validate the implemented system using a large-scale iris

database and real-world scenarios. Assess its effectiveness in accurately recognizing and

identifying individuals.

Work structure

The problematic is tackled following the steps :

• literature Overview :

– Conduct an in-depth review of the existing literature on iris recognition, deep

learning techniques, and FPGA implementation.

– Identify key concepts, algorithms, and methodologies relevant to the study.

– Analyze the strengths and limitations of previous works to establish a foundation for

the project.

• Preprocessing and Segmentation :

– Preprocess the dataset to remove noise, normalize the images, eliminate reflections

and handle any artifacts or variations in image quality.

– Edge detection and segmentation of the pre-processed dataset.

• Features extraction and Classification :

– Study the suiatible Deep Learning and statistical methods for textural features

extraction such as Local Binary Patterns (LBP).

– Study the suitable deep learning architectures for texture recognition, such as

Convolutional Neural Networks (CNNs).

– Implement and train the deep learning models using the acquired dataset, test the

different architectures.

– Design a better and a new architecture.

• System Requirements and Design :

– Define the specific requirements and objectives of the project, considering factors

such as recognition accuracy, real-time performance, power efficiency, and resource

utilization.

– Design the overall architecture of the system, including the hardware components

(FPGA, interface, memory, etc.).

– Determine the interfaces and protocols for seamless integration with other system

components.
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Chapter 1. State of The Art - Literature Review

1.1 Introduction

This chapter focuses on three main aspects : the typical structure of an iris recognition system,

a review of significant contributions in each stage of the system and a summary of the proposed

method.

Firstly, we will discuss the commonly employed structure of an iris recognition system,

highlighting its key components and their respective functions.

Secondly, we will provide an overview of noteworthy research conducted in each stage of the

system. This includes advancements made in preprocessing techniques to enhance iris images,

features extraction algorithms to capture distinctive iris features, template generation methods

for creating compact representations of these features, matching algorithms to compare iris

templates, and decision-making strategies based on similarity scores.

Lastly, we will summarize the proposed method put forward in this study. This summary

will encompass any novel approaches or enhancements introduced in comparison to existing

techniques, as well as a brief explanation of the evaluation methodology and performance metrics

used to assess the proposed method.

By exploring these aspects, this chapter aims to provide a comprehensive understanding of

the structure and advancements in iris recognition systems, while also presenting a concise

summary of the proposed method.

1.2 Iris Recognition System - Related Work

Similar to other recognition systems, the iris recognition system comprises two main stages :

iris detection and iris identification (matching). The initial stage includes preprocessing, edge

detection, segmentation and normalization. The subsequent stage involves features extraction

and classification. Extensive research and advancements have been carried out in each sub-stage

of the system and a collection of these studies is outlined below.

1.2.1 Image Preprocessing

As mentioned earlier, the first sub-stage of detection is preprocessing, which involves various

operations aimed at eliminating noise, improving contrast and serving other segmentation

purposes. This phase enhances the image quality, making it more informative and better

prepared for the features extraction phase.

In this stage, notable works have been conducted. For instance, Kumar and al. [1] focused on

image enhancement techniques to improve system accuracy. They proposed a novel approach

that combines both Top and Bottom Hat filters for image enhancement.

Another interesting work by Chang and al. [2] aimed to isolate the pupil and locate the

inner boundaries of the iris. They proposed a preprocessing method consisting of three stages :

Gaussian filtering with a sigma value of 0.9, binary thresholding with a threshold of 0.18 and

a subsequent Gaussian filter with a sigma value of 2. This method effectively detected the pupil
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and isolated it from the rest of the eye.

In the work of Ming Liu [3], a Fuzzy method was employed to enhance images. Unlike other

approaches, this method focused on addressing the image non-linearities that are commonly

ignored by commonly used filters such as Median, Gaussian, and others. These filters typically

assume the image characteristics to be Gaussian, which is often not the case.

1.2.2 Edge Detection

Following the preprocessing phase, which ensures the quality of the images, the subsequent

stage of edge detection becomes crucial in highlighting the boundaries of the iris. Several

researchers, including Tahir [4], Omran [5] and Samitha [6], have utilized the Canny edge

detector for this purpose, given its efficiency and effectiveness. The Canny edge detector has

been widely adopted by these researchers in iris recognition systems to detect and enhance the

edges of the iris region.

1.2.3 Segmentation

Once the edges of the image are detected, the next stage is segmentation, where the localization

of iris boundaries takes place, retaining only the iris region (the region of interest) by eliminating

other areas. Various approaches have been employed for this purpose, as mentioned in the review

[7], including K-Means Clustering, Active Contour Models, Edgeless Active Contour, Gradient

Vector Flow Snake, Statistical Learning Methods, Least Median of Square Differential Operator,

and Linear Basis Function.

In particular, Yinyin Wei [8] and Guo Qiaoli [9] utilized the Integro-Differential Operator

to detect the inner boundaries of the iris, while the Hough Transform was employed to detect

the outer boundaries. These methods have demonstrated effective segmentation results.

However, the most commonly used method is the Circular Hough Transform, which has

been extensively employed by numerous researchers in various works, including [10], [11],

[12], [13]. This method assumes that the inner and outer boundaries of the iris are circular,

enabling accurate detection and segmentation.

1.2.4 Normalization

Normalization plays a crucial role in iris recognition as it transforms the circular iris region

into a rectangular shape, making it suitable for further processing. Among the most prominent

and widely used methods for iris normalization, Daugman’s Rubber Sheet model stands out.

Despite being an older technique, it remains highly efficient and continues to be employed in

current research.

Numerous recent articles, including [1], [2], [3], [4], rely on Daugman’s Rubber Sheet model

for iris normalization. This model offers a reliable and effective approach to transform the

iris region into a rectangular representation, ensuring compatibility with subsequent feature

extraction and matching algorithms. Despite the emergence of newer techniques, Daugman’s
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Rubber Sheet model is still favored due to its robustness and well-established performance in

iris recognition systems.

1.2.5 Features Extraction

After normalizing the image, we proceed to the next step, which involves extracting the most

important features from the resulting rectangle obtained during the normalization sub-stage. It

is important to note that both features extraction and features selection are dimension reduction

methods employed for this purpose.

Features extraction aims to identify and extract the most relevant features from the input

data while reducing its dimensionality. On the other hand, features selection involves choosing

a subset of the original features to decrease dimensionality. Both techniques aim to enhance the

performance of the Machine Learning model by reducing the complexity of the data.

In this discussion, we will primarily focus on Features Extraction, which takes a mixture of

independent components as input data. Its objective is to accurately identify each component by

eliminating any unnecessary noise, thus generating a reduced dataset that is more manageable

for processing and manipulation without sacrificing accuracy.

To achieve this, various mathematical algorithms have been implemented for feature

extraction, including Principal Component Analysis based on Discrete Wavelet, Haar and

Biorthogonal Wavelet Transform, Gabor and Log Gabor filters, Local Binary Patterns, Discrete

Cosine Transform, Gray Level Co-occurrence Matrix [10], Residual Pooling layer introduced in

the Convolutional Neural Networks [14], Joint Bayesian Formulation and Supervised Discrete

Hashing [15].

1.2.6 Classification

Once the most significant features are extracted, we proceed to the final stage of our system,

which is the Classification. In iris classification, a variety of approaches are utilized, including

classical methods and Machine/Deep Learning-based techniques.

The Hamming Distance, a classical method widely employed in several articles such as [13],

[16] and [17], is frequently used for classification.

Convolutional Neural Networks, as seen in [3], [5], [8], [15] and [18], K-Fold Cross-

Validation, K-Nearest Neighbor [18] and Support Vector Machine, utilized in [8], [9], [10]

and [14], are examples of newer Machine/Deep Learning-based approaches for classification.

In addition, a hybrid approach is mentioned in [19], where both the Hamming Distance and

a Neural Network are employed for the matching process
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1.2.7 Performances

We present here a recapitulating table of the performances of the methods seen in the state

of art in Table 1.1 :

Article Dataset Seg. Feat.Ext Classif Accuracy %

Method Method Method

[1] IITD / DWT-DCT ED 94.59

Casia-Iris-Thousand 83,10

[3] IITD HT CNN - CapsNet 86,80

ATVS-Flr 88.4

[4] Casia-V1 96.48

Casia-V4-Lamp / HD 95.10

SDUMLA-HMT 93.60

[5] IITD HT IRISNet 96.43

Casia-V4-Distance 10.83

[8] ND-LG4000 HT ResNet 61.41

Casia-V4-Lamp 49.78

Casia-M1-S2 36.65

[9] Casia-V4-Thousand HT WT HD 97.80

[18] IITD HT DWT SVM 98.92

[19] Casia-V4 HT DWT SVM 95.40

JluIrisV3.1 99.37

[12] JluIrisV4 / DNN based on CapsNet 98.88

Casia-V4-Lamp 92.27

[13] Casia-V4-Thousand HT DenseNet-201 97.30

[16] Casia-V4-Interval HT Box Counting KNN 92.63

Table 1.1 : Summary of the different models and their performances

1.3 Implementation - Related Work

Convolutional Neural Networks (CNNs) have garnered significant attention among

researchers due to their impressive accuracy in various cognitive tasks. However, CNNs typically

require substantial computational resources, prompting the need for improved performance

through custom hardware accelerators. In this context, FPGA (Field-Programmable Gate

Array) platforms have emerged as a promising solution, offering advantages such as high energy

efficiency, powerful computing capabilities, and reconfigurability. These features make FPGAs

well-suited for accelerating CNNs, driving increased interest in their utilization for efficient

CNN processing.

Numerous studies and advancements have been conducted in each specific stage of the system,

we will now highlight a few notable examples.
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1.3.1 CNN Optimization Techniques

CNNs contain significant redundancy and are used for error-tolerant applications [20]. These

facts allow significant simplification of CNN model which reduces its hardware implementation

overhead.

Several techniques for reducing hardware overhead of CNNs were discussed in [21], such

as Pruning, Quantization, Data Compression, Encoding and Binarized CNNs.

For instance, Page et al. [22] present five CNN sparsification techniques for boosting CNN

accelerator efficiency. First, they divide convolutional layers with large filters into multiple layers

with smaller filters, which effectively maintains the same receptive field region. For instance, a

layer with 5x9x5 filters can be replaced with two successive layers, each with 3x9x3 layers. This

reduces the number of parameters from 25 to 18, without much loss in accuracy.

Moreover, Qiu et al. [23] present a dynamic quantization approach and a data organization

schema for improving CNN efficiency. To boost Fully Connected layers, they use singular value

decomposition which reduces the number of weights. They use dynamic quantization schema

where fractional length is different for different layers and features maps (fmaps) but fixed in a

single layer to avoid rounding-off errors.

1.3.2 CNN Accelerator Architectures

Several CNN Accelerator architectures were used in the literature of implementation. Firstly,

Alwani and al. [24] note that processing the neighboring CNN layers one after another leads

to high amount of off-chip transfers. They propose changing the computation pattern such

that multiple convolutional layers are computed together, which provides better opportunity of

caching the intermediate feature maps and avoids their off-chip transfer.

In the other hand, in the study conducted by Moss and al. [25], they aimed to speed up a

Binary Neural Network on a platform that combines a CPU and an FPGA. They used a design

called a systolic array, which consists of multiple Processing Elements that perform multiplication

operations using XNOR (Exclusive NOR) and bit-count operations.

1.3.3 Implementation Methods

The implementation of a Convolutional Neural Network model on an FPGA is indeed a

popular approach for accelerating deep learning inference tasks so we present in this section the

commonly used methods to.

A. Using High-Level Synthesis Method

One of the initial approaches we encountered involves the conversion of the model into a

High-Level Language such as C/C++ before implementing it in an FPGA.

Bing Liu and al. employed the HLS (High-Level Synthesis) technique as described in

their work [26]. The researchers specifically focused on the utilization of a Hybrid CNN-

25



Chapter 1. State of The Art - Literature Review

SVM architecture on the Zynq-7020 accelerator. Additionally, they introduced a universal

deployment methodology that automates the selection of accelerator design parameters based

on the target platform and algorithm requirements.

The HLS technique is a process that transforms High-Level Code into Hardware Description

Language (HDL) code, which can be used to program the FPGA. The procedure involved in

this approach is as follows :

• Initially, the functions to be deployed on the FPGA are programmed using the C or C++

programming languages.

• Subsequently, these functions are synthesized into VHDL (or Verilog) to generate an IP

Block specifically tailored for those functions.

• Finally, the entire system is designed by creating a block design that incorporates the

previously generated IP blocks of the required functions. This block design is then

synthesized and implemented in the FPGA to complete the process.

B. Using Matlab

One other interesting recent approach is Matlab. Using the Deep Learning Toolbox [27] and

Deep Learning HDL Toolbox [28] which are part of the MATLAB environment, can aid in the

design and deployment of CNN models on FPGAs.

Here’s a general overview of the process involved in implementing a CNN model on an FPGA

based on their official documentation [29] :

1. CNN Model Design or importing from python,

2. Fixed-Point Conversion[30],

3. Code Generation [31],

4. IP Core Generation [32],

5. Bitstream file Generation [33],

6. FPGA Deployment and Inference [34].

C. Using HDL from scratch

Another common approach is using HDL directly for coding Pre-trained Deep Leaning

applications (training off-chip). Hossam and al. [35] present a design methodology related

to the implementation of a Multiply-Accumulate (MAC) unit using VHDL. This MAC unit

is specifically designed to support Deep Learning Networks on FPGA platforms. The authors

may discuss the concurrent nature of the MAC unit, highlighting its ability to perform multiple

multiply-accumulate operations simultaneously.

D. Using Vitis AI

Another new approach we came across is to use Vitis AI whereWang and al.[36] discussed the

implementation of an Object Detection Accelerator on an FPGA using the Vitis-AI development
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framework. The authors may present their methodology, design, and optimization techniques

employed to accelerate object detection algorithms on FPGA.

The focus of the paper is on leveraging the Vitis-AI framework, which provides a High-

Level development environment for AI applications targeting FPGAs. The authors discuss

the advantages and challenges of using this framework for implementing Object Detection

algorithms and provide insights into the performance, efficiency, and accuracy of their

FPGA-based accelerator.

1.3.4 Performances

We present here a recapitulating table of the performance of the methods seen in the State of

The Art in Table 1.2 :

Article Arch. FPGA
Frequency

(MHz)

Optimization

techniques

Implemen-

tation

techniques

Data

precision
Metric Results

[21] / / /

Pruning -

Quantization -

Data

compression -

Encoding -

Binarized

CNNs

HLS / / /

[37] VGG16
Altera

Stratix V
200

Winograd

convolution

engine

/
32 bits

fixed

Overall

Latency

(ms)

142.30

[38] Alexnet
Virtex7

VX485T
100

Loop

Pipelining -

Binarized

CNNs

HLS
32bits

float
LUT 186251

[39] VGG
Arria-10

GX 1150
150

Loop

Pipelining
/ /

Overall

Latency

(ms)

47.97

[39] /
Stratix-V

GXA7
100 / HLS

8-16 bits

fixed

Logic

Utilization
112K

Table 1.2 : Summary of previous implementation results
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1.4 Proposed Method

After conducting extensive research and thorough testing of various methods, we have

made a deliberate decision to incorporate the following techniques in each sub-stage of the iris

recognition system. Moreover, we have introduced our own contributions that aim to improve

the overall performance of the system presented in the Figure 1.1 :

Figure 1.1 : Proposed Method

1.4.1 Proposed Model

A. Image Preprocessing

As mentioned earlier, the primary objective of this phase is to enhance the quality of the

image. This can be accomplished through the following methods :

• Enhancement of the image : in order to improve the contrast, we considered a modified

form of the method used in article [1] ;

• Denoising the image : in order to reduce reflections and the usual types of noise, namely

the Gaussian and the impulsive. For reflections reduction, we proposed a new approach

that will be discussed in the next chapter.
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B. Edge Detection

So far, the Canny edge detector has proven to be one of the most effective edge detection

algorithms, as it allows a precise edge detection without thickening the edges or excessively

blurring the image, thus preserving important information. This quality has greatly influenced

our decision to employ the Canny edge detector in this particular sub-stage. It is important to

note that the Canny edge detector requires binary images as input. Therefore, as part of our

process, we apply a thresholding technique prior to applying the Canny edge detector. We will

provide a detailed explanation of this process in the subsequent chapter.

In addition to the Canny edge detector, we have also considered the Sobel filter as a reliable

alternative. The Sobel filter serves as a backup option in cases where the threshold used for

detecting the outer boundary is not appropriately adapted to the intensity level of the iris in

a given image. By incorporating the Sobel filter, we can ensure robust edge detection even in

challenging scenarios.

By incorporating these filters into our system, we aim to achieve precise edge detection while

maintaining the integrity of the image information.

C. Segmentation

In this phase, once the crucial edges of the image representing the iris and pupil boundaries

have been detected, we proceed to isolate the iris region. To accomplish this, we utilize the

Hough Transform, which is the most commonly used method for iris segmentation. This choice

is motivated by the Hough Transform’s favorable characteristics, such as its low computational

cost and its effectiveness in accurately segmenting the iris region.

By employing the Hough Transform in our segmentation process, we aim to precisely extract

the iris region from the input image to facilitate subsequent analysis and the features extraction.

D. Normalization

Due to its efficiency and computational simplicity, we have opted to utilize the Rubber Sheet

method for normalizing the iris zone. The Rubber Sheet method is a well-established technique

that transforms the circular iris region into a rectangular shape, making it easier to process and

analyze.

E. Dataset Used

To ensure comparability with results from other articles, we decided to utilize the widely used

iris datasets for evaluating our findings. The datasets used are :

• CASIA-Iris V-4 that includes 8 sub datasets [40].

• IIT Delhi Iris Database [41].

• Multimedia University (MMU) Database [42].

• Phoenix Database [43].
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We preprocessed all the images of each dataset and finally stored them with their respective

label (identifier of the person) in order to feed them to the classifier.

F. Dataset Preparation and Data Augmentation

After preparing the segmented images, it is crucial to ensure that we only include the most

representative ones, thus, we eliminate those that lack sufficient information.

After completing the cleansing process, it is important to ensure that our model is fed with a

sufficient number of images. To achieve this, we employ Data Augmentation techniques which

help us increase the number of images per class.

H. Features Extraction

As mentioned before , the features extraction is as important as the classification, and

based on the most effective algorithms and methods that we tested on the normalized images :

Convolutional Layers of different CNN architectures, Local Binary Patterns, Gabor filter,

GLCM, and Biorthogonal Wavelet ; we considered using Convolutional Layers because of their

effectiveness with the textural images.

I. Classification

After testing different classifiers, we considered using a Random Forest Classifier. Our choice

was motivated by the effectiveness of this Machine Learning method besides the reduced number

of computations required when using it.

1.4.2 Implementation

• Model Optimization

After selecting the model, our focus shifted to the implementation stage. We considered

employing in it the following optimization techniques :

Pruning

To eliminate less prominent connections in our model, we implemented a Low

Magnitude Pruning technique. This involved removing connections with the lowest

weights in each layer, which not only helped reduce their impact on the overall

model, but also minimized the computational resources required for implementing

our model.

Quantization

To minimize resource usage, our approach involves implementing quantization from

32-float to 16-float and 8-float. This technique was evaluated using both Python

(32-f to 16-f) and Matlab (32-f to 16-f and 8-f).

• Model Implementation

We extensively studied various methods and approaches feasible for implementing Deep
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Learning models during the last step of our solution. After careful consideration, we chose

to focus on two specific approaches :

– Using High-Level Synthesis,

– Using Matlab Deep Learning toolbox and Deep Learning HDL Toolbox.

We made this decision based on the availability and effectiveness of these two approaches.

1.5 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the current State Of

The Art of iris recognition systems. We have presented the overall structure of the system and

highlighted significant advancements made in each sub-stage. Furthermore, we have discussed

the different approaches utilized for implementing the final system on FPGA.

Moreover, we have introduced the specific method adopted in our project, emphasizing

our novel contributions. One noteworthy contribution is the development of a new approach

for reflection reduction. Our approach builds upon the works cited as [1], [5], [10] in the

Iris Detection stage, which includes Image Pre-processing, Edge Detection, Segmentation, and

Normalization sub-stages. In the Iris Matching stage, we have drawn inspiration from [5] and

[8]. These references have played a crucial role in shaping our methodology and have contributed

significantly to the advancements achieved in our research.
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2.1 Introduction

Before proceeding with the detailed presentation of our proposed approach, it is crucial to

have a solid understanding of key concepts in Image Processing, Machine/Deep Learning and

FPGA implementation.

Therefore, in this chapter, we will provide an overview of the essential terminology associated

with Iris Recognition Systems. This will not only enhance comprehension of our approach but

also facilitate a better understanding of the subsequent discussions.

2.2 Preprocessing and Segmentation

2.2.1 Filtering

Filtering is passing or rejecting a certain frequency component. Spatial filtering consists

of applying a predefined operation to a neighborhood in order to create a new pixel having

the coordinates of the center of that neighborhood and its value is the result of the filtering

operation. When the filter (also called a mask or kernel) passes through all the pixels of the

image, a new image (the filtered image) is generated [44].

In the frequency domain as well as the spatial domain, noise is considered as high frequencies,

and rejecting this band is a key to reducing it. For this purpose, multiple filters are introduced,

such as the Gaussian filter and Median filter that will be defined next.

A. Gaussian Filter

It is a 2D convolutional operator used to remove Gaussian noise and it’s more effective at

smoothing images. The degree of smoothing is determined by the standard deviation of the

Gaussian distribution.

The Gaussian distribution in 2D has formula 2.1 [44] :

G(x, y) =
1

2Πσ2
exp−x

2 + y2

2σ2
(2.1)

Where :

σ : the standard deviation of the distribution.

(x,y) : the coordinates of the pixel in question.

We have also assumed that the distribution has a mean of zero.

B. Median Filter

The Median filter is one of the order-statistic filters. It attributes to the new pixel the median

of the intensity levels in the neighborhood, thus it has Equation 2.2 [44] :
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f(x, y) = medianI(s, t) : (s, t) ∈ Sxy (2.2)

Where :

(x,y) : the coordinates of the pixel in question,

Sxy : the neighborhood of the center pixel,

(s,t) : the coordinates of the pixel in the neighborhood Sxy ,

I : the intensity level of the pixel having (s,t) coordinates.

Compared to the Gaussian filter and other known filters with similar kernel size, the Median

filter effectively reduces both bipolar and uni-polar impulse noise with considerably less blurring

the image.

C. Top and Bottom Hat Filters

Before defining this filters, we need to introduce two important morphological operations :

Erosion and Dilation.

It is crucial to know that morphological operations are a set of mathematical tools used to

extract the pertinent components of an image to represent and describe a region’s shape. They

are based on a structuring element (kernel) and two ideas, fit and hit [44] :

Fit : when all on pixels in the structuring element put at a determinate position, cover all

on pixels in the image.

Hit : if any on pixel in the kernel covers an on pixel in the original image

Based on this two ideas, we can define :

• Erosion : Mathematically, the erosion of an image by a structuring element is given by

Equation 2.3 :

G(x, y) =

{
1 if s fits f

0 Otherwise
(2.3)

Where f is the image, s is the structuring element and (x,y) are the coordinates of the

center pixel.

In other terms, the operation consists of eliminating the pixel that is not surrounded from

all sides by white pixels.

• Dilation : It is the opposite of erosion ; it expands the boundaries of an object. When f

is the original image and s is the structuring element, the dilation is defined by Equation

2.4 :

G(x, y) =

{
1 if hits f

0 Otherwise
(2.4)

Where f is the image, s is the structuring element and (x,y) are the coordinates of the

center pixel.
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In other words, the dilation adds pixels that have at least one white pixel in their

neighborhood.

Now that we have an understanding of what dilation and erosion are, we can proceed to

define the Top Hat and Bottom Hat filters.

• Top-hat filtering computes the morphological opening of the image, which consists of

erosion that shrinks the foreground objects and enlarges foreground holes, followed by

dilation that adds pixels to the boundaries of objects. Thus, opening generally smooths

the contour of an object, breaks narrow isthmuses, and eliminates thin protrusions. The

Opening of an image by a structuring element is defined by formula 2.2.1 [44] :

A ◦B = (A 	B) ⊕B (2.5)

where :

⊕ and 	 : erosion and dilation, respectively,

A : the image and B is the structuring element,

◦ : the opening of an image with a structuring element.
The Figure 2.1 is a 2D and 3D representations of Top Hat filter :

Figure 2.1 : Top Hat Filter

• A bottom-hat filter computes the morphological closing of an image in order to eliminate

the holes present in that last. A morphological closing is a dilation followed by an erosion.

It tends to smooth sections of contours but it generally fuses narrow breaks and long thin

gulfs, eliminates small holes, and fills gaps in the contour [44]. It is given by the Equation

2.6 :

A •B = (A⊕B)	B (2.6)

where :

⊕ and 	 : erosion and dilation, respectively,

A : the image and B is the structuring element,

• : the closing of an image with a structural element.
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D. Sobel Filter

Sobel filter is a derivate mask used to extract horizontal and vertical edges in an image. It

calculates the gradient of image intensity at each pixel within the image. Its kernels are the

followings (Figure 2.2) [44] :

Figure 2.2 : Sobel Filter Kernels

E. Canny Filter

Besides achieving a low error rate, the Canny filter is an analytic edge detection operator that

aims to have a well-localized edge point and a single edge point response. It is based on, first,

a Gaussian filter, followed by applying a Gradient with Non-maxima Suppression, and finally, a

Dual-threshold Segmentation and edge stitching where [44] :

• Gradient with Non-Maxima Suppression :

It is the stage where the smoothed image is filtered with Sobel kernel in both horizontal

and vertical directions to get first derivatives Gx and Gy. From these two images, we can

find edge gradient (Equation 2.7) and the direction equation (Equation 2.8) for each

pixel as follows :

EG =
√
G2

x +G2
y (2.7)

θ = tan−1(Gy/Gx) (2.8)

where :

Gx and Gy : the first derivatives of the intensity function,

EG : the edge gradient,

θ : the angle of the pixel in question.

After getting gradient magnitude and direction, a full scan of image is done to remove

any unwanted pixels which may not constitute the edge. For this, at every pixel, the center

pixel is checked if it is a local maximum in its neighborhood in the direction of gradient.

The Figure 2.3 [45] illustrates this step :
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Figure 2.3 : Non-maximum Suppression

Point A is on the edge (in vertical direction). Gradient direction is normal to the edge.

Point B and C are in gradient directions. So point A is checked with point B and C to

see if it forms a local maximum. If so, it is considered for next stage, otherwise, it is

suppressed.

Finally, the result we get is a binary image with thin edges.

• Dual-threshold segmentation :

It decides which are all edges are really edges and which are not. For this, we need two

threshold values, minVal and maxVal. Any edges with intensity gradient more than maxVal

are sure to be edges and those below minVal are sure to be non-edges, so discarded. Those

who lie between these two thresholds are classified edges or non-edges based on their

connectivity. If they are connected to ”sure-edge” pixels, they are considered to be part of

edges. Otherwise, they are also discarded. The Figure 2.4 illustrates the Dual-Threshold

Segmentation [45] :

Figure 2.4 : Dual-Threshold Segmentation

The edge A is above the maxVal, so it is considered as ”sure-edge”. Although edge C is

below maxVal, it is connected to edge A, so that also considered as valid edge and we get

that full curve. But edge B, although it is above minVal and is in same region as that of

edge C, it is not connected to any ”sure-edge”, so that is discarded. So it is very important

that we have to select minVal and maxVal accordingly to get the correct result.

• Edge Stitching with Hysteresis Thresholding :

The algorithm known as ”Edge Stitching with Hysteresis Thresholding” can be

described as follows :

- Set two thresholds, denoted as τlow and τhigh,

- From the result of the Non-Maxima Suppression step, identify a point q0 where a

local maximum occurs,

- Initiate edge chain tracking at pixel location q0, selecting one of the two available

directions,

- Continue tracing the edge chain until the gradient magnitude falls below τlow.
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In other words, we use the high threshold to start the edge curves and the low threshold

to maintain their continuity. The Figure 2.5 illustrates this step :

Figure 2.5 : Edge Stitching with Hystheresis Thresholding

By employing this approach, we establish a connection between the different points along

the edges.

2.2.2 Histogram Equalization

As it is known, the histogram of an image is the distribution of the intensity levels present

in the image. When the distribution is not quite good, i.e. intensity levels are not equally

distributed but are compact in a certain region, resulting in a bad image brightness, we need to

transform the histogram in order to improve the image quality.

One of the transformations that we can use is Histogram Equalization, also called Histogram

Linearization Transformation. Histogram Equalization consists in attributing an output intensity

to the new pixel for each input pixel based on the Equation 2.9 :

sk =
(L− 1)

MN

k∑
j=0

nj k = 0, 1, 2, . . . , L− 1 (2.9)

where :

sk : the histogram’s values,

MN : the total number of pixels in the image,

nj : the number of pixels that have intensity rk of which we are calculating the new

histogram value,

L : the number of possible intensity levels in the image.

The Figure 2.6 shows an example of applying an Histogram Equalization :
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Figure 2.6 : Histogram Equalization example

2.2.3 Contrast

The amount of variation between the intensity levels of pixels in an image is called contrast.

As a result, images with high contrast display a greater number of gray-scale levels than images

with low contrast [44].

2.2.4 Gamma Correction (Power Low transformation)

One other transformation used to adjust the brightness of an image, in addition to Histogram

Equalization, is the Gamma Transformation. It is generally used to manipulate contrast [44]. It

is defined as Equation 2.10 :

s = crγ (2.10)

where :

s : the intensity level of the new pixel.

r : the intensity level of the input pixel.

c : a constant.

γ : the transformation constant.

The curves representing the Gamma Correction function with different γ values are shown

below (Figure 2.7) [44] :
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Figure 2.7 : Curves of Gamma Correction

2.2.5 Thresholding

Thresholding is a binarization technique used to separate objects present in an image from

the background when the intensity distributions of these lasts are sufficiently distinct.

The main idea of this technique is to choose a threshold according to which, the pixels of the

image will be transformed to zero (black), if the input intensity is lower than the threshold, and

one (white) if it is greater than that threshold.

Depending on the way this threshold is determined, we define two types of thresholding :

static and adaptive. When the threshold is global (unique), applicable over the entire image and

fixed from the beginning, we talk about the static thresholding ; otherwise, i.e. if it is dynamically

fixed (threshold automatically estimated), the thresholding is adaptive [44].

2.2.6 Hough Transform

The Hough Transform is a technique that can be used to isolate features of a particular shape

within an image. It requires that the desired features be specified in some parametric form.

The classical Hough Transform is most commonly used for the detection of regular curves

such as lines, circles, ellipses, etc. Despite its domain restrictions, the classical Hough Transform

retains many applications, as most manufactured parts contain feature boundaries that can be

described by regular curves.

The main advantage of the Hough Transform technique is that it is tolerant of gaps in feature

boundary descriptions and is relatively unaffected by image noise [44].
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2.3 Features Extraction

2.3.1 Gabor Filter

A Gabor filter is a linear filter used in image processing for edge detection, texture

classification and features extraction.

It is a band-pass filter, i.e. it passes frequencies in a certain band and attenuates the other

frequencies outside such band. A Gabor filter is a Gaussian modulated by a plane wave [46].

Thus it is given by formula 2.11 in spatial domain :

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
exp

[
i

(
2π
x′

λ
+ ψ

)]
(2.11)

x′ = x cos θ + y sin θ

y′ = y cos θ − x sin θ

Where :

(x,y) : the coordinates of the pixel,

λ : the wavelength of the plane wave,

θ : he orientation of the normal to the parallel stripes of the Gabor function,

σ : the standard deviation of the Gaussian component,

γ : the aspect ratio that defines the ellipticity of the function support,

ψ : the phase of the plane wave.

Several filters can be defined by changing the parameters λ, θ, σ, ψ and γ. A Gabor filter bank

is a set of Gabor filters with different parameters. Different low-level features can be extracted

from the original image via the convolution operation by varying the Gabor parameters,Making

the gabor filter a powerful tool for features extraction [46].

2.3.2 Wavelet Transform

Wavelet transforms are mathematical tools for analyzing data where features vary over

different scales. For images, features include edges and textures [47].

Wavelet analysis is based on decomposing signals/images into shifted and scaled versions of

wavelets. A Wavelet is a rapidly decaying, wave-like oscillation that is localized in time. The

equations representing the Wavelet Transform are (Equation 2.3.2) :

x(t) ≈
∑
k

sJ,kφJ,k(t) +
1∑

j=J

∑
k

dj,kψj,k(t) (2.12)
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Where :

x : the input signal,

φJ,k, ψj,k : the Father and Mother Wavelets respectively,

sJ,k, JJ,k : the coefficients of the Father and Mother Wavelets respectively.

Wavelets have two basic properties : scale and location. Scale (or dilation) defines how

stretched a wavelet is. This property is related to frequency as defined for waves. Location

defines where the wavelet is positioned in time (or space) because wavelets are only non-zero

in a short interval [48]. The Figure 2.8 shows some common wavelets :

Figure 2.8 : Examples of different types of wavelets

Overall, wavelets can represent data across multiple scales and different wavelets can be used

depending on the application [47].

2.3.3 Local Binary Patterns

Local Binary Pattern (LBP) is a prevalent method employed in the field of texture

recognition. It involves the computation of binary patterns within digital images. These

resulting features, derived from the input images, are subsequently represented through a binary

image visualization.

To compute the Local Binary Pattern, the technique analyzes the intensity of a rectangular

region. It compares each pixel in a 3x3 window (which consists of 9 pixels) with the center

pixel [49].

When comparing, if a neighboring pixel has a value greater than or equal to the center pixel, it

is assigned a value of 1, otherwise, it is assigned a value of 0 as the following Equation (2.3.3) :

s′(x) =

{
1, if s(x) ≥ spc
0, otherwise

(2.13)

Where :

x : the pixel of the neighborhood,

s, s’ : the old and new pixel value respectively,

spc : the center pixel value,
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By treating the 3x3 matrix as a histogram, we can create a descriptive representation of

the Local Binary Pattern. This technique enables us to capture and analyze the frequencies of

different patterns observed within the 3x3 window.

By converting the pixel values into histogram bins, we can visualize the distribution of patterns

and gain insights into the texture characteristics of the image. The Figure 2.9 illustrates the

computation of the local binary pattern on the 3x3 matrix, showcasing the transformation from

pixel values to a histogram representation :

Figure 2.9 : LBP Computation

2.3.4 Gray Level Co-occurrence Matrix

The Grey Level Co-occurrence Matrices (GLCM) is a pioneering technique in Texture

Features Extraction, which has found extensive applications in various texture analysis fields.

Despite the emergence of newer methods, it continues to hold significance as a crucial feature

extraction technique.

The GLCM is a matrix that represents the frequency of occurrence of different sets of pixel

gray levels in an image. It is computed for a selected pair of distance and angle. For each pixel

and its neighboring pixels, relative recurrences of the specified pair are calculated, as illustrated

in Figure 2.10 [50] :
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Figure 2.10 : GLCM Matrix Calculation

The resulting matrix is then normalized by dividing it by the sum of all its elements to obtain

a normalized matrix.

Through the analysis of GLCM, we can extract crucial texture features that offer

valuable insights into the image’s characteristics. These features encompass contrast, energy,

homogeneity, and entropy. Contrast measures the disparities in gray levels, energy denotes the

local homogeneity and entropy, homogeneity gauges the frequency of non-zero values, while

entropy quantifies the randomness or uncertainty within the GLCM [50].

The four features : Contrast, Entropy, Homogeneity, and Energy, extracted from GLCM are

summarized as follow :

• Contrast in the GLCM matrix is manifested as the difference in gray levels. It calculates

the intensity between a pixel and its neighbor. Its formula is Equation 2.14 :

Contrast =
N−1∑
i,j=0

Pij(i− j)2 (2.14)

• Entropy Feature represents the quantity of energy. It is given by Equation 2.15 :

Entropy =
N−1∑
i,j=0

− ln (Pij)Pij (2.15)

• The Energy feature computes the local homogeneity, which is closely related to entropy.

Its value ranges from 0 to 1, indicating the level of homogeneity present in the analyzed

region. It follows Equation 2.16 :

Energy =
N−1∑
i,j=0

(Pij)
2

(2.16)

• The Homogeneity feature calculates the presence of non-zero elements in the GLCM,

representing the inverse of the contrast weight. Its value ranges from 0 to 1, indicating

the degree of uniformity or homogeneity in the analyzed area. It is defined by Equation

2.17 :

Homogeneity =
N−1∑
i,j=0

Pij

1 + (i− j)2
(2.17)
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where :

Pij : Element i,j of the normalized symmetrical GLCM.

N : Number of gray levels in the image as specified by Number of levels in under

In summary, GLCM is a powerful tool for texture feature extraction, allowing us to capture

valuable information about the texture patterns present in the image.[51]

2.4 Convolutional Neural Network

2.4.1 Convolution Filters

The 2D convolution layer, commonly abbreviated as conv2D, is the most frequently used

type of convolution in neural networks. In a conv2D layer, a filter consists of a set of kernels,

with each kernel corresponding to an input channel in the layer. Each kernel is distinct and

serves a specific purpose in the convolution process.

A conv2D layer in a neural network performs a 2-dimensional convolution operation on

input data. Here’s a brief explanation of how it works [49] :

• Input : The conv2D layer takes as input a 3-dimensional tensor representing an image or

a feature map. The dimensions are typically (height, width, channels).

• Filters : The layer consists of multiple filters, each comprising a set of kernels. The number

of filters determines the number of output channels.

• Convolution operation : The layer applies convolution by sliding each kernel across the

input tensor. At each position, an element-wise multiplication is performed between the

kernel and the corresponding input patch. The results are summed up to produce a single

value.

• Activation : An activation function is applied to the summed value, introducing non-

linearity to the architecture. One of the common activation function is ReLU (Rectified

Linear Unit) which is defined by Equation 2.18 :

ReLU(x) = max(0, x);∀x ∈ R. (2.18)

• Output : The conv2D layer generates a new tensor called the feature map, which represents

the output of the convolution operation. It has dimensions determined by the number of

filters and the spatial dimensions of the input.

The Figure 2.11 [52] summarizes the concept of Convolutional filters :
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Figure 2.11 : Convolution Operation

2.4.2 Pooling

The pooling layer is generally applied after each convolutional layer. It performs a down-

sampling operation based on the spatial dimensions , specifically width and height, and the stride.

This layer helps reduce the number of parameters and computational power required while

preserving the most important features. In practice, the image is divided into small adjacent

square cells, spaced apart by a stride, to avoid losing too much information. The number of

output images remains the same as the input images, but each image has a reduced number of

pixels.

There are two main types of pooling : max-pooling and average pooling. Max-pooling returns

the maximum value within the part of the image covered by the pooling window, while average

pooling returns the average of all the values in that region. In practice, max-pooling is more

commonly used and tends to work better than average pooling [49].

The Figure 2.12 [52] illustrates the Max Pooling operation :

Figure 2.12 : Pooling Operation
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2.4.3 Flatten Layer

The flatten layer is typically used as a transition layer between convolutional layers and the

prediction block in deep learning models. It reshapes the input tensor into a one-dimensional

vector. It takes the multidimensional input, such as an image or a feature map, and flattens it

into a single continuous vector without changing the content [49].

The purpose of the flatten layer is to convert the spatial information present in the input

tensor into a format that can be passed to the neural network for further processing. The Figure

2.13 [52] shows the Flattening operation :

Figure 2.13 : Pooling Operation

2.4.4 Stride and Padding

The Convolution operation as well as the Pooling or any other operation based on a kernel,

are influenced by parameters like Stride and Padding.

The Stride determines the step size of the kernel while sliding over the input, affecting the

size of the output, in other words Stride is the number of pixels shifts over the input matrix

[49].

The Padding which refers to the addition of extra elements (typically zeros) around the

edges of an input tensor or image, can be added to the input to preserve spatial dimensions or

avoid border effects. The Figure 2.14 [52] illustrates the effect of the Padding on the output

image size after applying a filtering :
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Figure 2.14 : Padding effects on Output Image Size

2.4.5 Dropout

Dropout is a regularization method employed during the training phase to address overfitting

by randomly deactivating a specified number of neurons. This strategy guarantees that no

individual neuron excessively influences the learning process [49].

2.4.6 Adam Optimizer

Adam is an adaptive learning rate method, which means, it computes individual learning

rates for different parameters. Its name is derived from adaptive moment estimation, and the

reason it’s called that is because Adam uses estimations of first and second moments of gradient

to adapt the learning rate for each weight of the neural network [49].

2.4.7 Sparse Categorical Cross Entropy Loss

In the classification problems that have a multi-class single label, the Sparse Categorical Cross

Entropy (SCCE) can be used. It produces a category index of the most likely matching category.

It is defined by the next equation 2.19 :

SCCE = −
n∑

i=1

Ti.log(Si) (2.19)

where Si are the Softmax probabilities and Ti the labels.

Note :

If we have an input image of size W x W x D, an operation, like pooling or convolution, then

the size of output volume can be determined by the following formula 2.20 :

Wout =

[
W + 2P − F

S

]
+ 1 (2.20)
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Where :

F : size of the kernel,

S : stride,

P : padding.

2.5 Machine Learning Methodes

2.5.1 Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised learning methods used for

classification, regression and outliers detection.SVM finds the best possible line or boundary

(called a hyperplane) that separates different classes of data points.

Here’s a brief explanation of how SVM works :

Classification : In classification tasks, SVM aims to divide data points into different categories

by finding an optimal hyperplane. The hyperplane is chosen to maximize the margin, which is

the distance between the hyperplane and the nearest data points of each class.

Support Vectors : SVM identifies a subset of data points called support vectors that are

closest to the hyperplane. These support vectors play a crucial role in defining the hyperplane

and determining the decision boundary.

Non-linear Separation : SVM can handle non-linearly separable data by transforming

the original input space into a higher-dimensional feature space. This allows SVM to find

non-linear decision boundaries by implicitly projecting the data into a higher-dimensional space

[49].

The figure 2.15 is an example that can explains the SVM :

Figure 2.15 : SVM example

The main advantages of support vector machines are the effectiveness in high dimensional

spaces and the memory efficienty.
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2.5.2 Random Forest Classifier

Random Forest is a highly popular supervised learning algorithm based on decision trees,

known for its flexibility and user-friendliness. It is capable of tackling classification problems.

To build a Random Forest, numerous decision trees are combined, with each tree trained

on a different subset of observations. To make predictions, the Random Forest aggregates the

individual predictions from each tree by averaging them [14].

The Figure 2.16 [14] provides a explanatory illistration of the method :

Figure 2.16 : Random Forest Classifier

Random Forest offers several advantages, we can mention some :

- It addresses the issue of overfitting by averaging predictions from multiple trees. As a result,

Random Forest achieves higher predictive accuracy compared to a single decision tree.

- Moreover, the Random Forest algorithm aids in identifying important features within a

dataset, providing valuable insights [14].

2.5.3 Accuracy

Accuracy is a common metric used yo quantify the extent to which a model makes correct

predictions. The formula for calculating accuracy is provided below 2.21 [49] :

Accuracy =
TP + TN

FP + FN + TP + TN
(2.21)
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Where :

TP, FP : True and False Positives predictions respectively,

TN, FN : True and False Negatives predictions respectively,

2.5.4 Epochs

An epoch represents a complete iteration through all the training data during the training

process of a machine learning model [49].

2.6 Implementation

2.6.1 IP Block

An Intellectual Property (IP) block, also known as an IP core, is a pre-designed and reusable

module or component that serves a specific function or implements a specific feature in an FPGA

design.

An IP block can be a complete subsystem, such as a microprocessor or a memory controller,

or it can be a smaller functional unit, such as an Arithmetic Logic Unit (ALU) or a Digital

Signal processor (DSP).intended for integration into larger designs [53].

2.6.2 Function Call Graph

A Function Call Graph is a graphical representation of the relationships between different

function calls within a program. It shows how the functions in a program interact with

each other, allowing developers to understand the flow of the program and identify potential

performance issues [54]. Here’s an example of a Call Graph (Figure 2.17) :
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Figure 2.17 : Call Graph Example

2.6.3 AXI Protocol

AXI, which means Advanced eXtensible Interface, is an interface protocol defined by ARM as part

of the AMBA (Advanced Microcontroller Bus Architecture) standard. It is especially prevalent in

Xilinx’s Zynq devices, providing the interface between the processing system and programmable

logic sections of the chip, in other terms, it ensures the communication between the different IP

Cores of the FPGA [55].

There are 3 types of AXI4-Interfaces [55] :

- AXI4 (Full AXI4) : For high-performance memory-mapped requirements, it is used to

transfer large amount of data such as arrays and pointers.

- AXI4-Lite : For simple, low-throughput memory-mapped communication, so it is mainly

used for transfer of small data like scalars (for exemple, to and from control and status registers,

flags etc).

- AXI4-Stream : For high-speed streaming data, thus used when we have a data flow (Data

tranfers from an IP block to another without the involvment of the CPU of the Memory Block).

2.6.4 Netlist

A Netlist is a structural representation of a digital design of a specific system at the gate level,

capturing the connectivity and relationships between the logic elements in the design [49].
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2.7 Conclusion

In conclusion, this chapter served as an introduction to the detailed presentation of our

proposed approach for Iris Recognition Systems. We highlighted the key concepts in Image

Processing, Machine/Deep Learning, and FPGA, needed as a prerequisite to exploring the specific

details of our approach.

By providing an overview of the necessary terminology, we aimed to enhance understanding

and facilitate comprehension of the subsequent discussions. With this foundational knowledge

in place, we can now proceed to the comprehensive presentation of our approach, covering each

sub-stage of the system and addressing implementation aspects.
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3.1 Introduction

In this chapter, we aim to offer a thorough and detailed presentation of our proposed

approach. Our focus will be on presenting a comprehensive overview of each sub-stage of the

system, starting from the initial phase and progressing towards the final stage. Furthermore, we

will delve into the results obtained, providing in-depth explanations and valuable insights along

the way.

3.2 Iris Detection

In our system, the pre-processing sub-stage marks the crucial initial phase of both Image

Processing and Deep Learning solutions. It plays a vital role in improving the quality and

suitability of the images for subsequent usage. This sub-stage involves filtering, enhancing, and

resizing the images to meet the fixed image dimension requirement of the model to which they

will be fed. In this section, we will outline the primary methods we employed to fulfill these

objectives.

3.2.1 Preprocessing - Reflections Reduction

In iris detection, reflections pose a significant problem that can impact the iris recognition.

Therefore, to mitigate information loss, we have proposed a contrast manipulation-based

method. This method aims to extract the valuable information that is obscured by reflections,

ensuring that it is not overlooked.

The approach adopted consists of :

• Isolate the reflections from the iris : since the reflections have high intensity levels, we

apply a binary thresholding with a threshold of 230. Then we use the output as a mask

that isolates reflections in the original image.

• Adjust the brightness of the isolated reflections using Histogram Equalization : this

technique helps to balance the distribution of pixel intensities and enhance the hidden

textures within the reflections.

Here’s an example that shows the difference between an input image and the image with

reduced reflections (Figure 3.1) :

(a) Original image (b) Reduced Reflections

Figure 3.1 : Comparison between an original image and image got after reflections reduction
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Our new proposed approach preserves the entire iris region, even the parts affected by

reflections.

3.2.2 Edge Detection

In order to recognize the iris and match it with a person, we need to detect its placement, but

first, we detect its outer and inner edges in a full eye image as follows (Figure 3.2) :

Figure 3.2 : Iris boundaries detection

Once the images are preprocessed, we propose to use the Canny edge detection algorithm or

Sobel filter.

The Canny edge detection algorithm is Gaussian-based operator that detects a wide range

of edges in images, it is composed of 5 steps : Noise reduction ; Gradient calculation ; Non-

maximum suppression ; Double threshold and finally Edge Tracking by Hysteresis.

This algorithm is known for its ability to extract image features without affecting or altering

the information and its non-susceptibility to noise. However, it has a complex computation and

it is time-consuming.

However, edge detection using Canny filter may not provide perfect results, some edges may

not be accurate edges due to noise in the image. To address this issue, we added a crucial step

to improve the image for further use, which is applying double threshold to convert the image

from gray-scale to binary. This step allows the classification of each pixel as either background

(lashes, eyelids, skin and white of the eye) or useful pixels (the iris). The threshold values of

35 and 110 were set for the inner and outer iris edges, respectively, enabling us to successfully

detect edges for the whole dataset with approximately the same ratios.

To mitigate potential information loss caused by thresholding, it is crucial to choose an

appropriate threshold value tailored to the specific image. This ensures that valuable details

are not inadvertently discarded. If the selected threshold value is unsuitable for a particular

image, an alternative approach is to utilize a Sobel filter for edge detection. By employing the

Sobel filter in such cases, we can detect edges without relying solely on thresholding, thereby

preserving more information from the iris.

As well as Canny filter, Sobel filter is a well known method to detect edges. It calculates

the partial derivatives of the function I(x,y) that evaluates the pixel intensity I at pixel location

(x,y). Due to its ability to detect all edges without the need for thresholding, the Sobel filter

increases the likelihood of detecting iris boundaries in an image. However, this advantage comes

at the expense of computational resources during the subsequent stage of applying the Hough
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Transform. Therefore, in comparison to the Canny filter, we prioritize using the Sobel filter in

the second position.

We can see the output of this step in the Figure 3.3 :

(a) Outer edge (b) Inner edge

Figure 3.3 : Outer and Inner Boundaries Edge detection

3.2.3 Iris Isolation

Now that we have determined what strong edges and weak edges are, we need to determine

and locate the inner and outer boundaries of the iris. Considering the iris to be circular in shape,

localizing the iris zone involves detecting the circles present in the image and selecting the two

most prominent circles.

Unlike detecting squares or rectangles in images, detecting circles is significantly harder

because we cannot rely on approximating the number of points in a contour. That is why

we propose using the Circular Hough Transform (CHT) to predict the existence of circular

shapes in the provided image.

The CHT consists of :

• First, identify all the probable circles in the image,

• Then, a filtering process is applied to remove any incorrectly detected circular-shaped

edges that fall outside the range of the maximum and minimum iris radius,

• After that, the highly linked edges are selected as the edges of the iris, and the rough iris

boundary is recognized.

The Figure 3.4 shows the circles found using the CHT on an iris image :
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Figure 3.4 : CHT Output Example

The next process after detecting the inner and outer circles of the iris is segmentation. As

mentioned earlier, image segmentation can be an extensive and a time consuming process.

Therefore, to reduce the complexity of this operation, we utilize the results of the Circular

Hough Transform to create a custom mask that can effectively segment the iris. This approach

avoids the need for other resource-intensive methods such as utilizing a pre-trained model,

which may take several minutes to complete the segmentation of a single image.

The approach followed consists of :

1. Creating a mask A of a circle with the center and radius of the outer circle previously

calculated out of the CHT, i.e. creating a binary image that respects (z < ExtRadius) =

1 with z = x2 + y2.

2. Creating a mask B of a circle with the center and radius of the inner circle previously

calculated out of the CHT, i.e. creating a binary image that respects (IntRadius < z) = 1

with z = x2 + y2.

3. Multiplying A and B and the input image to get the iris segmented.

The Figure 3.5 represent the created mask used for segmentation :

Figure 3.5 : Final Mask
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The outcomes of this step are now visible in Figure 3.6 :

Figure 3.6 : Segmented iris of person 224 of IITD dataset

3.2.4 Normalization

The Normalization phase, as mentioned, consists on transforming the circular zone of the iris

into a rectangular one. For this, we use the Rubber Sheet Transformation, which is an efficient

Cartesian to Polar coordinates system transformation. The transformation equation is given as

follow formula 3.1 :

Inew(r, θ) = Iold(x0 + (ri+ r).cos(θ), y0 + (ri+ r).sin(θ)) (3.1)

Where :

(r,θ) : coordinates of the new pixel

(x0, y0) : the coordinates of the center of the inner boundary.

ri : radius of the inner boundary.

I : intensity level of new or old pixel.

We note that the Normalization process ensures that the iris region has consistent dimensions.

Normalization encompasses the adjustment of iris size caused by alterations in pupil size resulting

from changes in external lighting conditions. Additionally, it facilitates the alignment of iris

images from different individuals to a standardized size and format, allowing two photographs

of the same iris captured in different environments to exhibit identical characteristic features.

The process of normalization enhances the quality of the images by reducing degradation

effects, thereby improving clarity and enabling the extraction of precise features for accurate

recognition. By transforming the iris region into a rectangular block of fixed dimensions

measuring 128x128 pixels, we have successfully unwrapped and standardized its representation

using Rubber Sheet method.

For the Rubber Sheet method, it basically extracts the localized circular iris and yields the

polar form image of the iris circular ring region as shown in Figure 3.7 :
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Figure 3.7 : Normalized iris of person 224 of the IITD dataset

3.2.5 Preprocessing - Enhancement

Having a good image quality is one of the necessary requirements we need to ensure. . Thus,

in order to improve it, we worked on adjusting its brightness. We applied the method proposed

in [1] which consists of four steps :

• First, applying Histrogram Equalization.

• Second, reducing eventual unipolar noise due to the previous operation, using a Median

filter.

• Furthermore, we apply Gamma Correction to further improve the brightness adjustment.

The selection of the Gamma value is based on an analysis of the image’s histogram.

Depending on the distribution of intensity levels, different Gamma values are applied to

achieve the desired correction :

• 1.1 if the max of brightness is shifted to dark side (index less than 60).
• 0.8 if the max of brightness is shifted to bright side (index less than 160).
• 1 if the max of brightness is in between, so that no correction will be applied.

• Finally, we apply Top Hat and Bottom Hat filters to reduce any imperfections that may be

present in the image, such as holes caused by imperfect boundary detection or noise. These

filters help to refine the image by effectively removing unwanted artifacts and enhancing

the overall quality of the iris segmentation.

The Figure 3.8 illustrates the enhancement of one of the normalized images that we have :

(a) Before enhancement

(b) After enhancement

Figure 3.8 : Comparison of before and after enhancement

It is crucial to note that performing enhancement after normalization ensures that, when

enhancing the contrast of the iris, the intensity levels of background pixels, which are considered

noise, do not impact the newly generated pixels in our enhanced region of interest.
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3.2.6 Iris Detection Evaluation

In order to thoroughly evaluate the effectiveness of the preceding steps shown in Figure 3.9,

it is imperative to conduct a comparison between the number of images available in each dataset

both before and after the iris detection process.

Figure 3.9 : Iris Detection Process

The detailed information regarding each dataset, prior to any preprocessing or segmentation

procedures, can be found in Table 3.1.

Datasets Classes Images/Class Images/Dataset After Segmentation Effectiveness %

IITD 224 R : 5 L : 5 2240 2240 100,00

MMU 45 R : 5 L:5 450 420 93,33

Phoenix 64 R : 3 L : 3 384 384 100,00

Casia V-4 1000 R : 10 L : 10 20000 11784 58,92

Table 3.1 : Our datasets before and after proceeding with the substage described earlier.

3.2.7 Dataset Preparation

After the process of iris detection, certain images may still lack informative content and have

the potential to mislead our model during training. Consequently, we opt to exclude images that

consist of more than 70% black pixels, as these pixels do not contribute valuable information.

After proceeding this step, the description of our processed datasets will be as shown in table

4.43 :
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Datasets Images/Dataset After Data preparation Effectiveness %

IITD 2240 2240 100,00

MMU 450 399 88,66

Phoenix 384 332 86,45

Casia-Iris V-4 20000 10084 50,42

Total 23084 13055

Table 3.2 : Our datasets before and after proceeding data preparation

The effectiveness of different datasets can vary significantly. For instance, when considering

the Casia-Iris V-4 dataset, the results are not optimal due to the challenges posed by Asian eyes

and the difficulty in accurately localizing the iris.

Based on these previous results, we have made the decision to proceed with our project using

the Phoenix and IITD datasets, which offer more favorable conditions.

3.2.8 Data Augmentation

Initially, all classes within the various datasets had an equal number of images. However,

after preprocessing them (particularly segmentation) and Dataset Preparation, certain images

were eliminated due to the absence of iris detection, resulting in an imbalanced dataset with only

a few images per specific classes. To tackle this problem and ensure a more balanced dataset

and an important amount of data to be fed to the model, we employed Data Augmentation

techniques. These techniques allowed us to increase the number of images and achieve a more

equitable distribution among the classes.

Regarding the shifting scenario, the human head could rotate a maximum of 45 degrees, which

accounts for approximately 12.5% of the total head rotation and is equivalent to a maximum of

15 pixels in terms of image displacement. Additionally, the cropping method can simulate the

tolerable lack of data in the images. Through the application of these augmentation methods,

we successfully generated additional images that provided a more comprehensive representation

of the various classes.

Ultimately, this process resulted in a dataset containing 20 images per class, addressing the

initial issue of data imbalance.

An example of person 224 of the IITD dataset is shown in Figure 3.10 :

(a) Shifting (b) Original (c) Cropping

Figure 3.10 : Different Data Augmentation Techniques
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The results of the data augmentation, including the details of the number of images per dataset

and the total are in table 3.3 :

Datasets Number of Classes Images/Classe Images/Dataset

IITD 224 20 4480

MMU 45 20 900

Phoenix 64 20 1280

Casia v-4 1000 20 20000

Total 26660

Table 3.3 : Our datasets after proceeding data augmentation

3.3 Features Extraction

Once the dataset has been preprocessed and the final versions of the images are obtained, the

next step is to extract relevant information from them. However, it’s crucial to acknowledge

that in Machine Learning, particularly in Deep Learning classification problems, there are often

numerous features that contribute to the final classification. As the number of features increases,

visualizing and effectively working with the training set becomes progressively challenging.

Additionally, many of these features are frequently correlated. This is where Dimensionality

Reduction techniques come into play to address this issue.

Dimensionality Reduction involves reducing the number of features in a dataset while

preserving as much information as possible. It can be achieved through features selection or

features extraction.

Features extraction aims to identify and separate independent components from a mixture

of inputs, effectively removing unnecessary features. It reduces the initial set of raw data into

more manageable groups for further processing. On the other hand, features selection focuses

on determining the importance of existing features in the dataset and discarding less significant

ones, without creating new features. As a result, the first step is Features Extraction.

3.3.1 Deep Learning based Methods

DL-based techniques are widely utilized for features extraction. We encounter various

architectures that incorporate the features extraction component. In our experiments, we tested

the following architectures, each paired with its respective classifier :

A. IRISNet

IRISNet is a Convolutional Neural Network first proposed by Maryim Omran and Ebtesam

N. AlShemmary for the iris features extraction and classification in 2020. It is composed of

four Convolution layers, six activation Relu layers, three Pooling layers and two fully connected

layers to classify and extract features from image automatically without any domain knowledge.

The architecture of the model is shown in Figure 3.11 :
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Figure 3.11 : IRISNet Architecture

The most remarkable aspect of this architecture is its ability to achieve high accuracy in iris

recognition despite its simplicity and shallow depth. This leads to significant savings in both

training time and computational resources during both the training and inference phases.

B. ResNet

Launched in 2015 by Microsoft Research Asia, the ResNet architecture, with its three

achievements ResNet-50, ResNet-101 and ResNet-152, obtained very good results in the

ImageNet and MS-COCO.

It turns out that the central idea exploited in these models, namely, the residual connections,

greatly improves the gradient flow, thus allowing training creation of much deeper models, with

tens or even hundreds of layers. However, increasing the depth of the network is not done

simply by piling it up.

Deep Networks are difficult to train due to the famous problem of the evanescent gradient :

when the gradient is back-propagated towards the preceding layers, the repeated multiplication

can make the gradient infinitely small. Therefore, the deeper the network is, the more its

performances are saturated, even degrading quickly. The central idea ResNet’s task is to

introduce what is known as an ”identity shortcut connection” or ”residual connection”, which

skips one or more layers, as shown in Figures 3.12[56] and 3.13[56] :

Figure 3.12 : Residual learning : a building block

The authors of the article [56] claim that layer stacking should not degrade network

performance, because we could just stack the identity mappings on the current network, and
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the architecture resulting would have the same performance. This indicates that the deepest

model should only not produce higher learning error than its shallower counterparts.

They assume it is easier to let stacked layers fit a map residual than letting them adapt directly

to the desired underlying mapping. This is precisely what the residual block above does.

We then have the various ResNet Layers used from 18 to 152 layers of which we can describe

the constitution in the following figure 3.13 :

Figure 3.13 : Details About ResNet Layers

C. AlexNet

AlexNet is a Convolutional Neural Network that is eight layers deep trained on the ImageNet

database. The pretrained network can classify images into 1000 object categories, such as

keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature

representations for a wide range of images. The network has an image input size of 224-by-224

[47]. The architecture of the network is shown in the Figure 3.14 [49] :

Figure 3.14 : AlexNet Architecture
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Multiple previous works used this architecture and had excellent results, that’s what motivated

us to test it.

D. Siamese Architecture

Siamese architecture refers to a type of Neural Network architecture that is commonly used

for tasks such as image recognition, object tracking, and similarity matching. The term ”Siamese”

is derived from the famous thought experiment known as ”Siamese Twins,” where two individuals

are physically connected. In the context of Neural Networks, the Siamese architecture typically

consists of two or more identical sub-networks that share the same weights and architecture.

In a Siamese network, the input data, such as images or feature vectors, are fed into each

sub-network simultaneously. The sub-networks process the inputs independently and produce

embeddings or feature representations of the inputs. These embeddings are then compared or

combined to determine similarity or dissimilarity between the inputs.

The basic structure of a Siamese network consists of parallel sub-networks that process

separate input data. These sub-networks are typically identical in terms of architecture and

have shared weights, meaning they learn and update their parameters together.

The Figure 3.15 is a basic example of a Siamese Network :

Figure 3.15 : Example of Siamese Architecture

During training, a Siamese network is presented with pairs of inputs, usually representing

similar or dissimilar instances. For example, in facial recognition, a pair could consist of two

images of the same person (similar) or two images of different people (dissimilar). The sub-

networks process each input independently, transforming them into high-dimensional feature

representations.

The representations generated by the sub-networks are then compared using a similarity

metric, such as Euclidean distance or cosine similarity. The network learns to minimize the

distance between similar pairs and maximize the distance between dissimilar pairs through a

loss function.
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The advantage of Siamese architecture is that it can learn powerful representations by

leveraging shared weights and jointly optimizing the sub-networks. This makes it particularly

useful when dealing with tasks that involve measuring similarity or finding patterns in pairs of

inputs.

E. Capsule Network

One of the recent architectures suggested for iris recognition is Capsule Networks.

Capsule Networks, also known as CapsNets, are a novel and promising approach in the field

of Deep Learning. They were introduced by Sara Saboor and her colleagues in 2017 as an

alternative to traditional CNNs in order to overcome some of their limitations, such as their

sensitivity to variations and differences in positions and rotations in the input images, inability

to capture long-range dependencies and the lack of Spatial Hierarchies.

As its name indicates, CapsNets uses capsules instead of using only scalar outputs, i.e,

instead of only considering neurons and the relationship between each two to represent specific

characteristics of an object, we consider each group of neurons, that we call a capsule, and the

connetions between each group and another for identifying different features of the object we

search in the image.

More explicitly, each layer of the architecture is composed of a set of capsules that each

one represents a specific property of the object. These capsules capture not only the presence of

features but also their spatial relationships and pose, providing richer information than individual

neurons in CNNs. The overall architecture of the model is shown in the Figure 3.16 :

Figure 3.16 : CapsNet Architecture

Unlike CNNs, in CapsNets we find two types of weights :

1. the classical weights W relating each neuron of a layer i with the neurons of the layer i-1.

As known, these weights are updated by the Backpropagation algorithm ;

2. the Routing Coefficients C relating each capsule of a layer i with the capsules of layer

i-1. For the update of Routing weights, a new algorithm is introduced called the Dynamic

Routing.
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Dynamic routing refers to the iterative process of determining the routing coefficients

between capsules during the forward propagation of data through the network. The routing

weights indicate the strength or agreement between capsules, determining how much information

is passed from one capsule to another.

in a simpler way, Dynamic routing ensures that each capsule contributes the best in the prediction

of the output and helps the capsules of the next layer make accurate predictions as well. For

example, if the capsule A in layer 2 contributes in the determination of the shape property which

will be used next by capsule B in layer 3, then the coefficient between capsule A and B will be

strengthened during training since caps A and B are in agreement.

This ensures that capsules work together effectively to improve the accuracy of predictions.

This new algorithm helps to establish meaningful connections between capsules and enables

the network to learn hierarchical structures and pose relationships. By iteratively updating

the routing coefficients, capsule networks can better capture complex variations in objects and

improve their ability to recognize objects (the Iris in our case) from input data.

3.3.2 Hybrid Method (Features Fusion)

As part of our project’s experimentation, we conducted tests on the Hybrid method. This

approach involved providing the classifier with a combination of features extracted through a

classical method and features extracted through a Deep Learning based method. Once we have

built our main feature extractor based on DL which will be explained in details later on, we

combine the features obtained from this architecture with those extracted using other classical

techniques : : Wavelet Transform, Gabor filter, LPB, and GLCM. We will provide detailed

explanations of these statistical methods.

It is necessary to mention that for our application, it is optimal to use texture descriptors

since the normalized iris image represents the texture of the iris itself. Texture features in image

analysis are derived from the observed groups of intensity in specific locations and their statistical

distribution relative to each other [2], [7], [31].

These are the most used methods in the State of The Art for Texture Analysis :

A. Local Binary Patterns

Local Binary Patterns, also known as LBP, is a gray-scale texture descriptor measure for

classification. The idea behind it is to generate, at each pixel, a binary pattern by thresholding

its neighboring pixels to either 0 or 1 based on the value of the center pixel.

The steps to find the Local Binary Patterns of an image are the following :

.1 Set a pixel value as a center pixel.

.2 Collect its neighborhood pixels.

.3 Threshold its neighborhood pixel value to 1 if its value is greater than or equal to center

pixel value otherwise threshold it to 0. The Figure 3.17 illustrates this step :
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Figure 3.17 : Thresholding the center pixel neighbors

.4 After thresholding, collect all threshold values from the neighborhood. The collection

operation is shown in Figure 3.18 :

Figure 3.18 : Collecting the threshold values

.5 Replace the center pixel value with resulted decimal (the previous collection will give you

8 digit binary code and convert it to the binary code into decimal). The Figure 3.19

shows this step :

Figure 3.19 : Replace the center pixel’s value

by the threshold values from the neighborhood

.6 Do the same process for all pixel values present in image.

Figure 3.20 is an example of the features extracted from an image using LBP :

69



Chapter 3. Proposed Approach and Results

(a) Original

(b) LBP on Phoenix

Figure 3.20 : Example of LBP on Pheonix’s image

B. Grey Level Co-occurrence Matrices

The Grey Level Co-occurrence Matrices (GLCM) is among the initial techniques employed

for Texture Feature Extraction. Over the years, it has gained significant popularity and

widespread utilization in various texture analysis applications. It continues to be a vital method

for extracting features in the field of texture analysis.

Given the significance of texture as a descriptor in our application, we recognized the need

to test and implement GLCM in our project. By incorporating GLCM as a texture feature

descriptor, we aim to extract valuable texture information that could further enhance our

classification task. First phase of texture feature extraction is summarized as shown in the

following :

• Find GLCM values for Four Angles (0◦, 45◦, 90◦, and 135◦). The process is described

in Figure 3.21 :

Figure 3.21 : GLCM’s four angles

• Compute The four Features values, by Compute each feature (Eq. 1, 2, 3 and 4) with

result of GLCM from step two, that we have four values (features) for each input medical

image.

• Compute the feature values for each image.
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C. Wavelet Transform

Wavelet analysis involves decomposing a signal or image into a set of wavelet coefficients

through a process called Wavelet Transform. This transformation captures both local and global

information of the signal or image, allowing for a detailed and flexible analysis.

Wavelet transforms can be classified into two broad classes 3.22 :

• The Continuous Wavelet Transform (CWT) : it can be used to analyze transient behavior,

rapidly changing frequencies, and slowly varying behavior.

• The Discrete Wavelet Transform (DWT) : it is useful for compressing and denoising

signals and images while preserving important features that’s what motivated us to use it

[47].

In the wavelet transform, a serie of Low and High Pass filters are applied on the image so

that low and high frequencies will be separated as shown below in Figure :

Figure 3.22 : Wavelets filters

Based on the spectrum of the images, we consider using the LL results, i.e, the result images

after passing by two Low Pass filters. The LL results preserve the low frequencies that contain

the useful information, and get rid off the high frequencies which are considered as noise.

Among Haar, Biorthogonal, Dubechee and Discrete Mayor Wavelet forms, Biothogonal

Wavelet was, so far, the best one, the result of each one is shown in the Figure 3.23 :
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Figure 3.23 : Haar, Biorthogonal, Dubechee and Discrete

Mayor wavelet app on iris image

In addition to features extraction, the Wavelet Transform offers the advantage of

dimensionality reduction by generating characteristic images with half the dimensions of the

input images. Given these advantages, we decided to experiment with the Discrete Wavelet

Transform (DWT) with Biorthogonal form to extract the most significant features from the

normalized images. We can see in the Figure 3.24 the output of the WT applied on Phoenix’s

image :

Figure 3.24 : Example of WT on Pheonix’s image

By applying the DWT, we aim to identify and capture prominent features in the image.

This transformation allowed us to analyze the image at multiple levels and extract relevant

information in a more compact representation. The resulting wavelet coefficients provided

valuable insights into the image’s frequency content and variations, enabling us to effectively

reduce the dimensionality of the feature space while preserving important image characteristics.
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D. Gabor Filter

The Gabor filter is a classical method widely utilized for feature extraction and texture

analysis. Given that our focus was on capturing the texture of the iris, the Gabor filter emerged

as an intriguing choice.

The Gabor filter combines the concepts of frequency and orientation selectivity, making it

particularly effective in capturing textural details in an image. It uses a set of sinusoidal functions

modulated by a Gaussian window to analyze an image at different frequencies and orientations.

By convolving the Gabor filter with the iris image, we can extract texture features that are

sensitive to local variations and patterns. The Figure 3.25 illustrates the output of GB applied

on a IITD’s image :

Figure 3.25 : Features of GF applied on IITD’s image

In the context of iris texture analysis, the Gabor filter has demonstrated its efficacy in capturing

intricate and unique texture information that can be used for iris recognition and classification

tasks. Its ability to extract relevant features from iris images makes it a valuable tool in our

pursuit of accurately representing and distinguishing different iris textures.

We experimented with several methods to accomplish this task of feature extraction in the

chart in Figure 3.26 :
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Figure 3.26 : Experimented Features Extraction Methods

3.3.3 Results of Feature Extraction methods

We showcase the result of each technique that is the number of features in Table 3.4 :

Method Features Number

IRISNet 2304

AlexNet 43264

DL based ResNet 51210

methods Siamese 512

CapsNet 160

Our architecture 384

Ours + LBP 25067

Hybrid Ours + GLCM 22510

Method Ours + WT 160+90h

Ours + GF 160 + 360.h

Table 3.4 : Results of Features Extraction Methods

Where h is the high of the input image which depends on the radius of the iris detected.

Up until now, both CapsNet and our suggested architecture stand out as the most efficient

options in terms of resource utilization and computational requirements due to their minimal

number of features comparing to the other architectures and methods.

However, solely considering the number of features is insufficient for determining which

method to use. The optimal choice of a Features Extraction method can be made based on the
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results obtained from the classification sub-stage. By evaluating these results, we can make an

informed decision regarding the most suitable Features Extraction method.

3.4 Classification

After completing the Features Extraction step, the next sub-stage involves performing the

matching process, which entails evaluating various types of classifiers. We are contemplating

testing the following classifiers (Figure 3.27), taking into account their effectiveness in

classification tasks.

Figure 3.27 : Classifier - Explanatory Schema

3.4.1 Deep Neural Network Classifier

A Deep Learning classifier is a type of Machine Learning model that uses Deep Neural

Networks to perform classification tasks. It is specifically designed to learn patterns and

relationships in complex data by leveraging multiple layers of interconnected neurons.

The DNN used in this section as classifiers are mainly the ones defined with the architectures

previously used in Features Extraction sub-stage :

• IRISNet : Two dense layers of 4096, 2048 neurons respectively, and finally softmax layer

with a number of neurons depending on the number of classes that we have.

• ResNet : Unconstract of other archtectures , ResNet have only one dense layer of 1000

neurons.

• AlexNet : Tw ءء zZwo fully connected layers of each 4096 neurons and finally a Sotfmax

layer with 1000 neurons.

• Siamese : One fully connected layer of 4096 neurons additionaly to segmoid, L1 siamese

distance.

• CapsNet : Two dense layers of 512, 1024 and Sigmoid layer of 784 neurons then

determining the similarity between the input image of a certain class and the reconstructed

image (output image) using the Margin Loss function.
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Results of the DL-based classification

The table 3.5 shows the different results obtained when using the different DL-based

architectures for Features Extraction and Classification, including the architecture that we

proposed :

Architecture Dataset Accuracy (%) Loss Epochs

ResNet IITD 62.21 1.0900 32

IRISNet Phoenix 36.67 3.4500 32

AlexNet Phoenix 88.81 1.0400 32

CapsNet Phoenix 15.43 0.0080 20

Siamese Net IITD 32.65 0.0021 32

Our Architecture Phoenix 95.05 0.3100 32

Table 3.5 : Comparaison of Deep Learning based Methods

Among the various architectures we experimented with, our proposed architecture has

demonstrated the highest accuracy thus far with a low loss.

For CapsNet, even if the loss is low but the accuracy is low as well, but this is not due to

overfitting because the training accuracy is equal to 11.83.

3.4.2 Machine Learning Based Classifier

Due to the time, energy, and resource-intensive nature of DNN classifiers, it was deemed

necessary to utilize alternative classifiers, such as SVM and Random Forest, which are

comparatively less resource-consuming.

3.4.3 Support Vector Machine

The objective of this algorithm is to find a hyperplane in an n-dimensional space that separates

the data points to their potential classes. The hyperplane should be positioned with the maximum

distance to the data points. The data points with the minimum distance to the hyperplane are

called Support Vectors.

The following formula 3.2 poses the optimization problem that is tackled by SVMs :

min
ω,b,ζ

1

2
wTw + C

n∑
i=1

ζiyi
(
wTφ (xi) + b

)
≥ 1− ζi (3.2)

where :

ζi denotes the distance to the correct margin with ζi ≥ 0, i = 1, . . ., n

C denotes a regularization parameter were wTw = ‖w2‖ denotes the normal vector
φ (xi) denotes the transformed input space vector
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b denotes a bias parameter where yi denotes the i-th target value

The objective is to correctly classify as many data point as possible by maximizing the margin

from the Support Vectors to the hyperplane while minimizing the term wTw means finding the

optimal w and b that most samples are predicted correctly.

When it comes to our case, we will use SVM for multi-class classification. It utilizes the same

principle as binary classification.The multi-classes problem is broken down to multiple binary

classification cases, which is also called one-vs-one.

The number of classifiers necessary for one-vs-one multi-class classification can be retrieved

with the following formula 3.3 :

n ∗ (n− 1)

2
(3.3)

With n being the number of classes.

In the one-vs-one approach, each classifier separates points of two different classes and

comprising all one-vs-one classifiers leads to a multi-class classifier.

3.4.4 Random Forest Classifier

Random Forest is a highly popular algorithm in the field of Machine Learning due to its

versatility in handling various types of problems, including classification tasks and other problem

domains.

As its name suggests, it is comprised of numerous individual decision trees that work together

as an ensemble. Each tree in the Random Forest produces a prediction for a specific class, and

the prediction with the highest number of votes among the trees becomes the final prediction of

the model[49].

Random Forest is constructed based on the fundamental concept of the ”wisdom of crowds,”

which is both simple and powerful. This concept suggests that combining the predictions of

multiple decision trees can yield more accurate and robust results compared to relying on a single

tree. In a Random Forest, each decision tree contributes its unique knowledge and perspective

to the overall prediction.

An essential aspect to consider is that each tree in the Random Forest is trained on a subset

of the entire dataset, where it excels in making accurate predictions. This technique, known

as Bootstrap, ensures that each tree focuses on specific subsets of the data. By aggregating the

predictions through voting or averaging, the Random Forest leverages the collective wisdom of

these individual trees. This process enhances the model’s accuracy and its ability to generalize.

The diversity of opinions and perspectives among the trees plays a crucial role in minimizing

biases and errors. Consequently, the Random Forest becomes a more reliable and effective

model, benefiting from the combined knowledge and insights of its constituent trees [49].

Here is a explanatory example of the method (Figure 3.28 ) :
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Figure 3.28 : Random Forest Algorithm

• Note : Results of the ML-based classification

Given that our proposed architecture achieved the best result when compared to other DNN-

based architectures, and considering its lightweight nature, we made the decision to evaluate

Machine Learning-based classifiers using its Features Extraction part. The outcomes of this

combination will be presented in the following section.

3.5 Proposed Model

Within this section, we will present the conclusive model for Iris Features Extraction and

Classification, alongside a detailed account of its training process.

3.5.1 Proposed Architecture

The structure of the proposed model is composed of :

• Three Convolution layers having : kernels of dimensions 11x11, 3x3 and 5x5, number
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of kernels 96, 16 and 8, a padding of 0x0, 2x2 and 1x1 and a stride of 4x4, 1x1 and 1x1

respectively with ReLU as an activation function.

• Three Max Pooling layers of kernel 2x2 and a stride of 2x2, one after each convolution

layer.

• One Flatten layer.
• Random Forest Classifier with a tree’s depth of maximum of 30.

The following figure 3.29 gives a comprehensive and more representative idea about the

architecture :

Figure 3.29 : Proposed Architecture

3.5.2 Training of the Architecture

It is important to know that the Features Extraction part that includes the Convolutions layers

was trained using the following architecture :

• three Convolution layers having kernels of dimensions 11x11, 3x3 and 5x5, number
of kernels 96, 16 and 8, a padding of 0, 2x2 and 1x1m and a stride of 4, 1 and 1 respectively

with ReLU as activation function.

• Three Max Pooling layers of kernel 2x2 and a stride of 2, each one after each

Convolution layer.

• One Flatten layer.
• Two Dense layers having 4096, 2048 neurons respectively with a Dropout of 50%

applied during the training.

• Finally, a Softmax layer for classification with N neurons (N depends on the number

of classes in the dataset).

The training process utilized the Back-propagation algorithm along with the Adam

optimization technique. The Sparse Categorical Cross Entropy Loss function was employed as

the training loss, and the training metric used was Accuracy.

To assess the performance of the Features Extraction Layers, the database is divided into

two separate parts : the design set (D set) and the test set (T set). The design set is further
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divided into training and validation subsets, allowing for model training and evaluation during the

development phase. This separation ensures that the model is tested on unseen data, providing

a reliable measure of its generalization performance.

Subsequently, for the training of the classifier, the generated data from the previously trained

Features Extraction Layers were utilized as input for training the Random Forest Classifier.

Ultimately, the entire architecture is interconnected and dependent on each other.

3.6 Results of the proposed architecture

The different results we got when testing the different combination of the modified

architecture of IRISNet, the four classical features extraction methods and the classifier are

shown in the table bellow (Tab 3.6).

Discussion of the Results

• Initially, we observed improved performance across all four datasets by transitioning from

a DNN classifier to a ML-based classifier. This improvement can be attributed to the

well-documented effectiveness of SVM and Random Forest classifiers when provided with

high-quality features.

• Furthermore, during the fusion of features, we observed lower performance when

incorporating Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM)

and Gabor filter compared to other methods.

This can be attributed to the fact that although LBP and GLCM are texture descriptors,

they do not perform well in capturing the intricate texture patterns present in iris images,

which are more complex in nature.

• Concerning the Gabor filter, the selection of parameters for generating the Gabor filter

kernel is not universally applicable and suitable for all images, even within the same dataset.

This is primarily due to the variations in the spectral characteristics of different images.

Consequently, using the same parameters across all images leads to suboptimal results, as

the Gabor filter fails to effectively capture the desired features and textures present in each

image.

• Moreover, when considering the performance of Wavelet Transform (WT), we observed

that it generally yields satisfactory results, although its effectiveness varies depending on

the dataset. Specifically, we noticed that WT does not produce favorable outcomes when

applied to the IITD dataset. This can be attributed to the nature of the images in this

dataset, which exhibit significant variations and high frequencies. As WT typically focuses

on the low-frequency (LL) part of the image, it filters out the high-frequency components

containing valuable information. Consequently, the loss of such crucial details leads to a

decrease in model performance on the IITD dataset.

• We also observed that feeding a machine learning (ML) based classifier with a features

vector of 4096 elements derived from the first Dense layer yielded better results compared

to using two Dense layers or none. It appears that a single Dense layer was sufficient to

refine the features extracted from the preceding layers. However, it is worth noting that

the Dense layer contains a significantly larger number of parameters (approximately 8
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million parameters). While we experienced only a marginal 1% loss in accuracy when

using the three Convolutional layers (without the Dense layer), we deemed it more

advantageous to omit the Dense layer due to the considerable computational resources

required. This compromise allowed us to achieve a satisfactory level of accuracy while

optimizing resource utilization.

• We note that we didn’t explicitly mention the training accuracy because the test accuracy

was sufficiently high, and we did not encounter any overfitting issues.

Finally, when taking into consideration all the previous discussed points, we can confidently

state that the optimal architecture for our needs involves utilizing three Convolutional Layers for

the Features Extraction sub-stage, combined with the Random Forest Classifier. This particular

configuration yields the highest accuracy while minimizing resource consumption.

Note :

It is important to mention that all sub-stages of the system were programmed using Python

Language, except the Data Augmentation where we used Matlab to generate augmented data.

3.7 Conclusion

In conclusion, we have provided a comprehensive overview of our proposed system, covering

each sub-stage from the initial one, the Preprocessing subs-tage, to its final one, the Classification

sub-stage. Additionally, we conducted thorough tests to refine this architecture and obtained

notable results.

While our performance did not reach the level of the State of the Art, our results are quiet

satisfying. We achieved a commendable accuracy of 97.20% on the Phoenix dataset while

optimizing resource utilization, particularly in terms of memory where we decreased by half the

size of the model and in term of computational requirements which are critical when moving to

the implementation phase.
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Proposed approach \Dataset IITD % MMU % Phoenix % Casia v-4 %

IRISNet modified 90.11 74.05 86.88 61.54

None 78.79 84.28 93.76 69.80

LBP 60.90 72.13 61.25 29.01

WT 32.14 75.23 79.35 47.21

GF 67.52 69.79 85.80 62.06

Two Dense Layers

GLCM 42.61 39.86 45.98 22.16

None 84.93 67.85 79.57 64.07

LBP 55.69 48.26 60.65 26.54

WT 28.02 70.71 78.27 35.10

GF 66.74 65.47 84.51 59.18

One Dense Layer

GLCM 45.52 40.95 50.32 30.52

None 82.03 60.95 67.74 49.88

LBP 67.90 70.35 69.09 26.68

WT 36.38 83.34 79.56 32.18

GF 67.74 74.28 87.52 59.99

SVM

None

GLCM 51.37 45.64 60.12 50.65

None 91.40 92.14 97.42 60.21

LBP 90.06 89.99 94.89 30.82

WT 89.50 91.58 97.42 40.63

GF 89.73 93.50 97.20 65.18

Two Dense Layers

GLCM 52.60 50.99 54.80 47.46

None 91.07 95.15 96.56 66.06

LBP 89.77 89.02 92.34 30.20

WT 85.71 93.55 97.63 36.87

GF 86.72 90.88 96.34 63.05

One Dense Layer

GLCM 52.87 54.64 60.88 40.33

None 93.42 91.58 96.34 51.03

LBP 62.50 81.32 76.99 65.85

WT 57.03 80.16 90.32 60.00

Random

GF 59.26 55.64 92.68 70.07

CNN

Forest

None

GLCM 56.23 50.80 59.04 34.69

Table 3.6 : Results of the different tests using the proposed architecture
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4.1 Introduction

After successfully evaluating the model with high accuracy in Chapter 3, the next step is to

implement the model on an FPGA. In this chapter, we will focus on optimizing the model to

reduce resource usage, followed by implementing it with two different approaches and comparing

their performance.

The first task is to optimize the model to minimize the utilization of FPGA resources.

This involves analyzing the model architecture, identifying redundant operations or parameters,

and applying techniques such as pruning and quantization. By reducing the model’s size and

complexity, we can effectively decrease the resource requirements while maintaining satisfactory

performance.

Next, we will proceed with the implementation of the optimized model using two different

approaches. The first approach involves utilizing HLS, a high-level design methodology that

allows us to describe the model using a higher-level programming language. With HLS, we will

be able to specify the model’s functionality and optimizations at a more abstract level, enabling

automated synthesis of the hardware implementation. By leveraging HLS, we will be able to

take advantage of its optimizations to reduce resource utilization and enhance performance.

The second approach involves utilizing the MATLAB Deep Learning Toolbox, which provides

a comprehensive set of functions and tools for developing and deploying deep learning models.

Once both implementations are ready, we will thoroughly evaluate their performance and

compare the results. Metrics such as resource utilization, execution time, power consumption,

and accuracy will be considered. The goal is to identify the strengths and weaknesses of each

approach and determine the most suitable implementation for the specific requirements and

constraints of the project.

By implementing the model on an FPGA using HLS and the MATLAB Deep Learning

Toolbox, this chapter aims to provide insights into the trade-offs between resource utilization,

performance, and accuracy. The findings will guide the selection of the optimal implementation

strategy, ensuring efficient utilization of FPGA resources while maintaining reliable and

high-performance operation.

4.2 Optimization of the model : Pruning and Quantization

Algorithmic optimization strategies used in hardware architectures for Convolutional Neural

Networks (CNNs) focus on improving the efficiency and performance of CNN computations

on specialized hardware platforms. These strategies aim to exploit the inherent parallelism and

spatial locality present in CNNs to accelerate the computation and reduce power consumption.

Network Pruning and Compression, Quantization, Data Reuse, Memory Optimization,

Parallelism and Pipelining are some commonly employed algorithmic optimization strategies in

CNN hardware architectures [21].

These algorithmic optimization strategies are often combined with architectural

optimizations, such as custom memory hierarchies, specialized computation units, and

efficient interconnect architectures, to further enhance the performance and efficiency of CNN
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hardware implementations. By leveraging these techniques, CNN hardware architectures can

achieve high throughput, low power consumption, and real-time processing capabilities, making

them well-suited for various applications like image recognition [21].

In our project, we decided to employ two optimization techniques, namely pruning and

quantization. We chose these techniques based on our assessment that they would be adequate

for implementing the proposed architecture on the FPGA. Since our architecture is not

excessively deep or complex, we concluded that pruning and quantization would provide

sufficient optimization to achieve our desired implementation goals. By leveraging these

techniques, we aim to reduce the computational complexity, memory requirements, and overall

resource utilization of our architecture, while still maintaining acceptable performance and

accuracy levels.

4.2.1 Pruning

Since the Neural Network consumes considerable resources, especially memory, multiple

pruning techniques can be applied in order to compress the network by reducing its complexity.

There are two main pruning categories : Weights Pruning and Neurons Pruning.

• Weights pruning consists in eliminating the less relevant weights i.e. the weights that do

not contribute enormously in the network. For this, multiple techniques are introduced,

such as Low Magnitude Based Pruning and Low Gradient Based Pruning through which

we remove weights having magnitude and gradient respectively, smaller than a determined

threshold [52].

• Neuron pruning removes entire neurons or layers in the network, it can be achieved by

Low-Density Pruning which enable the removal of neurons with low activity, and Filter

Pruning which involves eliminating filters with low importance [52].

The next Figure (4.1) shows the difference between Weights Pruning and Neurons Pruning :

Figure 4.1 : Visualization of pruning weights/synapses vs nodes/neurons
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4.2.2 Quantization

Model quantization is a technique used to reduce the memory footprint and computational

requirements of deep learning models. By quantizing a model, the precision of its parameters

is reduced. This compression technique allows for efficient storage and faster inference on

hardware with limited resources, such as FPGAs. Quantization methods include post-training

quantization, where a pre-trained model is quantized, and quantization-aware training, which

incorporates quantization considerations during the training process.

In our scenario, we employed a post-training quantization technique to decrease the size of the

model’s Weights and Biases. Specifically, we reduced their precision from float-32 to float-16.

Given that the model was constructed and trained using TensorFlow, we leveraged TensorFlow

Lite quantization. This framework provides an efficient solution for deploying Machine and

Deep Learning models on devices with limited resources like FPGAs. It encompasses a range of

techniques aimed at reducing model size and enhancing inference speed while ensuring acceptable

levels of accuracy. TensorFlow Lite supports multiple quantization approaches, including post-

training quantization.

4.2.3 Model Optimization Results

The results of the optimization techniques, namely Pruning (Prun.) and Quantization

(Quant.), including : Accuracy, Loss, Model Size and Compression Ratio (Comp. Ratio), are

shown in the Table 4.1 :

Prun. Accuracy (%) Loss Size(MB) Compr.

Ratio Before After Before After Before After Ratio

Prun. 0.2 95.05 97.20 0.31 0.15 33.79 33.79 1

0.5 95.05 94.62 0.31 0.22

Quant. 0.2 97.204304 97.204301 – – 33.79 16.88 2

0.5 94.6236551 94.6236559

Table 4.1 : Results of Pruning and Quantization of the model

• While practically pruning reduces computations, it may affect the performances of the

model (accuracy in our case) either positively or negatively. In our case, when applying a

Low Magnitude Pruning on the network with 20% of pruned weights, the performance rises

from 95.05% to 97.20%, but when applying Prunig with 50% ratio for pruned weights, the

performence decreses to 94.62 but the loss gets better. We can notice that the size of the model

doesn’t change when applying pruning, this is due to the nature of pruning used in Tensorflow,

where the weights are not deleted or eliminated, but just put to 0 value.

• When we apply Quantization to the model, which typically leads to a decrease in accuracy,

we observed that the accuracy decreases by approximately 2.10−6% when the pruning ratio is

20%, and it increases by approximately 9.10−7% when the pruning ratio is 50%. These results are

excellent for us because our application does not require high precision. Since the quantization

did not degrade the accuracy beyond a 5% threshold, it is considered suitable for our needs.
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4.3 High Level Synthesis Approach

The first approach we consider to use is the High Level Synthesis approach which is used

when the description of the Hardware architecture is quiet challenging to realize with VHDL

directly.

HLS is a design methodology that enables the transformation of high-level programming

languages (such as C, C++, or SystemC) into hardware descriptions. HLS tools analyze

the behavior and algorithms described in high-level languages and automatically generate

optimized hardware designs. This approach allows us to focus on algorithmic development and

productivity, while still achieving efficient and high-performance hardware implementations.

The approach consists of seven main steps :

• Programming the function or the subsystem we want to implement on the FPGA in a High

Level Language (C in our case),

• Running the simulation to ensure that the program written before works well,

• Synthesize, exporting in RTL and generating the Bitstream of the previous function. This

step allows us to generate an IP Block for the function needed,

• Creating a Block Design for the main system that will be deployed on the FPGA and

includes the IP Block generated previously,

• Validating the Block Design, creating then an HDL Wrapper which converts the schema

of the architecture into an HDL program,

• Running the simulation in order to ensure that the architecture is working well,

• Synthesizing the project, exporting in RTL and then running the implementation and

generating the Bitstream file,

• Finally, programming the device.

We note that some additional steps may be needed according to the FPGA and the peripherals

used in the system. The Figure 4.2 represents a simplified synoptic schema of the approach :

Figure 4.2 : Simplified Synoptic Schema of the HLS Approach
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4.3.1 Subsystem in C language

Considering the computationally intensive nature of Convolutional Neural Networks, we have

identified the Features Extraction substage, encompassing the Convolution Layers, as a critical

component in our system. To address this, we have opted to implement this substage on the

FPGA and the rest of the sub-stages of the system on a CPU.

Since the Convolution Layers have already been trained off-chip and we possessed the

respective layer weights and biases, we have chosen to implement this sub-stage as a set of

functions that work with each other to emulate a pre-trained model. By implementing it as a set

of functions rather than a complete model, we can optimize resource utilization and achieve

significant savings in time and energy consumption.

Totally, there are three main functions, each one represents one layer of the Features

Extraction sub-stage. All the functions are written in C language. Here are the algorithms used

for each functions :

• Padding Layer function :

1. Create a sub-function that computes the padding of one image. This sub-function

receives as input the input image and the number of padding and gives as output the

padded image.

2. Create the top function that computes the padding of multiple images, using the

sub-function previously created.

• Convolutional Layer function :

1. Create a sub-function that computes the convolution of one image. This sub-function

receives as input the input image, the weights of the kernel and its bias as well as

some additional variables, like stride and dimension of the kernel.

2. Create a function that computes the convolution of one image with multiple kernels,

using the sub-function previously created. It takes the weights and bias of each

kernel, and the stride and kernels dimensions as attributes.

3. Create the top function that computes the convolution of multiple images with

multiple kernels, using the sub-function previously created as well.

• Maxpooling Layer function :

1. Create a sub-function that computes the Maxpooling of one image. This sub-

function receives as input the input image and some additional variables, like stride

and dimension of the kernel.

2. Create a function that computes the Maxpooling of one image with multiple kernels,

using the sub-function previously created. It takes the dimension of the kernels and

the stride and kernels dimension as attributes.

3. Create the top function that computes the convolution of multiple images with

multiple kernels, using the sub-function previously created as well.

Once the functions of the generalist layers are written, we use them to generate the layers

we need in our architecture. Here’s is an example of the function generated for the third

Convolutional Layer (Figure 4.3) :
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Figure 4.3 : C code of CONV3

Note :

Initially, we developed a single function encompassing the entire architecture,

incorporating the previously introduced functions as sub-functions within the main function,

representing the entire sub-stage. Our objective was to create a single IP Block for the Features

Extraction sub-stage. However, due to limitations in both the software and hardware resources,

we decided to construct the system using separate blocks, with each block representing a specific

layer.

4.3.2 Vitis HLS

The High-Level Synthesis consists of converting the program from a High Level Language

into an HDL program that can be synthesized and implemented in an FPGA.

The Vitis HLS Software is utilized to perform the High-Level Synthesis for all the functions

within the Features Extraction sub-stage. We present here the interface of the software with

same example of the previous function (Figure 4.4) :
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Figure 4.4 : Vitis HLS Interface

The simulation with Vitis HLS of all the layers is necessary, here’s a result example when

conducting a TestBench on the zero padding layer (Figure 4.5) :

Figure 4.5 : Padding of an image having 5-by-5 dimension (pad=1)

When running the C Synthesis, we obtain a Synthesis Summary in which numerous

information are given such as Timing, Performances and Resources estimation. The Figure 4.6

shows an example of Synthesis summary of the CONV3 layer :
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(a) Synthesis summary of the CONV3 layer Part 1

(b) Synthesis summary of the CONV3 layer Part 2

Figure 4.6 : Synthesis summary of the CONV3 layer

We can also see the Function Call Graph with the option of a Heat Map of a Specific Metric

such as Block RAM (BRAM) and Latency. It is useful in visualizing the different subroutines of

the program and their pipeline. Here is an example of the Function Call Graph of the CONV3

layer with BRAM Heat Map (Figure 4.7) :
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(a) Call Graph of the CONV3 layer with BRAM Heat Map

(b) Call Graph of the CONV3 layer with BRAM Heat Map with Zoom on a Block

Figure 4.7 : Call graph of the CONV3

Once the synthesis is complete, we run the Register Transfer Level (RTL) export and then

the Implementation. The RTL code specifies the logic gates, registers, and interconnections that

comprise the digital circuit. During the implementation stage, the RTL code generated is further

refined and optimized for the target hardware platform. This includes various transformations

and optimizations to improve the design’s performance, area utilization, power consumption,

and timing. The Figure 4.8 shows the Implementation Summary of the CONV1 layer where we

have the actual information like final resources that will be used for this block :
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Figure 4.8 : Summary of RTL export and implementation

Once all the synthesis and the RTL export of all the functions we have created is done, we

move to the creation of the Block Design of the total architecture.

4.3.3 IP Block Interfacing - Data Transfer

In anticipation of the implementation of the Block Design, it is crucial to familiarize

ourselves with certain concepts that will greatly facilitate the comprehension of the next steps.

These concepts include Block interfacing and data transfer, which will be explored to ensure a

comprehensive understanding of the upcoming explanations.

We observe that in the previous code of the CONV3 layer depicted in Figure 4.4, when

utilizing HLS, there are a few additional instructions within the main function (CONV3).

These instructions, denoted by #pragma HLS INTERFACE which are shown in Figure 4.9, serve

as interfacing directives that specify the data transfer protocol utilized by the input or output

ports of generated IP Core.

Figure 4.9 : Interfacing Directives for CONV3

The INTERFACE pragma or directive specifies how RTL ports are created from the function

arguments during interface synthesis. The Vitis HLS tool automatically determines the I/O

protocol used by any sub-functions. Each function argument can be specified to have its own

I/O protocol [57].

The port protocol establishes the mechanisms for managing data flow within the data channel,

determining when the data is valid and can be read or can be written. It is determined by the

manner in which data is transferred between blocks and its origin.
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The protocol used by many SoC today is AXI, or Advanced eXtensible Interface. It is part

of the ARM Advanced Microcontroller Bus Architecture (AMBA) specification. It is especially

prevalent in Xilinx’s Zynq devices, providing the interface between the processing system and

programmable logic sections of the chip [58].

AXI Protocol

The protocol establishes a set of rules governing the communication between different

modules within a chip. It mandates a handshake-like procedure prior to any transmission,

ensuring a coordinated exchange of data. This protocol facilitates the creation of a

comprehensive ”system” rather than a mere collection of modules, as it serves as an effective

medium for data transfer between the chip’s components[58].

The specifications of the protocol can be summarized as follows :

- Prior to transmitting any control signal, address, or data, both the master and slave modules

engage in a handshake using ready and valid signals.

- The transmission of control signals and addresses occurs in separate phases, each with its

dedicated channel.

- Data transmission also utilizes a separate channel distinct from control signals and addresses.

- The protocol supports burst-type communication, enabling continuous data transfer [58].

The Figure 4.10 [55] represents the channel connections of the AXI protocol :

Figure 4.10 : Channel Connections between Master and Slave Interfaces

In the AXI protocol, a channel refers to a distinct set of AXI signals that includes the VALID

and READY signals. Each channel operates independently. When both the VALID and READY

signals are high, and there is a rising edge of the clock, a piece of data is transmitted on that

specific channel. This data transmission event is referred to as a transfer [55].
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For instance, in the given Figure 4.11 [55], the transfer is occurring at T3, indicating that

on that specific clock cycle, both the VALID and READY signals are active, allowing the data to

be successfully transmitted on the channel :

Figure 4.11 : Valid Transfer of Data

The AXI protocol encompasses three main types : AXI Memory Mapped, AXI Stream, and

AXI Lite. Each type serves specific purposes and is designed to address different communication

requirements.

• AXI Memory Mapped :

The AXI Memory Mapped protocol is used for communication between a master and

a slave device in a memory-mapped system. This type of communication is based on

addressing specific memory locations for read and write operations. The protocol supports

burst transfers, allowing for efficient data transfer across multiple memory locations. It

utilizes separate channels for read address, write address, read data, write data, and write

response. The protocol incorporates handshaking using VALID and READY signals to

ensure synchronized data transfers.

• AXI Stream :

The AXI Stream protocol is intended for high-speed, unidirectional data streaming

applications. It is commonly used for transferring large amounts of data between

modules or processing elements. Unlike the memory-mapped protocol, AXI Stream does

not involve explicit addressing of memory locations. Instead, it relies on a continuous

stream of data without separate channels for address or response. The communication

occurs via a single channel using a flow control mechanism based on READY and VALID

signals. Data transfers happen continuously as long as both the sender (VALID signal)

and receiver (READY signal) are ready for the next transfer.

• AXI Lite :

The AXI Lite protocol is a simplified version of the AXI Memory Mapped protocol. It is

specifically designed for low-bandwidth applications with reduced resource requirements.

AXI Lite supports basic read and write operations to memory-mapped registers. AXI

Lite uses a single address channel for both read and write operations, along with separate
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channels for read data and write response, reducing this way the number of signals and

complexity.

As previously stated, the selection of the protocol type depends on the nature of the data to

be transmitted as well. The following table (4.2) illustrates the recommended protocol type for

different variable types :

C-argument type Paradigm Interface protocol (I/O/Inout)

Scalar(pass by value) Register AXI4-Lite (s_axilite)

Array Memory AXI4 Memory Mapped (m_axi)

Pointer to array Memory m_axi

Pointer to scalar Register s_axilite

Reference Register s_axilite

hls::stream Stream AXI4-Stream (axis)

Table 4.2 : AXI protocol according to the variables types

Overall, the AXI protocol provides flexibility and scalability by offering these three types,

enabling efficient and reliable data communication across various system architectures and

application requirements.

Protocol Type Selection

Since the Features Extraction system follows a data flow architecture in which each IP Block

within the system receives data from a preceding IP block, performs specific computations such

as convolutions, max pooling, or padding on the received data and subsequently, the output data

is transferred to the next IP block ; and given that the data being transferred between IP blocks is

in the form of arrays, the primary protocol utilized for this data transfer is AXI-Stream, denoted

as ”axis”.

We also use the AXI-Memory Mapped protocol denoted ”m_axi” in the Convolution Blocks

where besides receiving and sending data to the previous and next blocks respectively, we read

the Weights needed that are stored in the Memory Block. Additionally to the Convolution

Blocks, we use the m_axi in the blocks that communicate with the Memory Block which are the

first and the last blocks in the chain : the first one (CONV1) reads the input image from the

memory and the last block (MAX3) write its results in the memory as well.

The s_axilite protocol is used in all the blocks for control signals and to generate an interrupt

that can be used if needed.

In summary, Figure 4.12 illustrates the data flow diagram of the system, along with the

corresponding protocols employed :

96



Chapter 4. Implementation

Figure 4.12 : Data Flow of the Features Extraction Sub-stage

4.3.4 Block Design of the Architecture

Block Design Methodology

In FPGA design, a block design refers to a modular approach of designing digital circuits

using pre-defined blocks or modules. These blocks are often referred to as Intellectual Property

(IP) cores and can be either provided by the FPGA manufacturer or created by the designer.

In a block design, the overall circuit is divided into functional blocks, where each block

represents a specific functionality or subsystem of the design. These blocks can include

components such as processors, memory controllers, interfaces, mathematical operations, or

custom logic circuits.

The blocks are interconnected using standardized interfaces, such as buses or point-to-point

connections, enabling communication and data flow between the different blocks. This modular

approach offers several advantages, including ease of design, reusability, and efficient utilization

of FPGA resources.

Block designs can be created through graphical design tools provided by FPGA development

environments such as Vivado Design Suits. These tools allow us to visually arrange and connect

the blocks, configure their parameters, and generate the necessary HDL code or configuration

files required to program the FPGA.

Overall, block designs simplify the FPGA design process by promoting modularity, reusability,

and ease of integration, ultimately leading to efficient and scalable FPGA implementations.

Creation of the Block Design of Our System

For our system, once we synthesized and generated all the functions of the different layers

using Vitis HLS, we move to the creation of the Block Design for our system.
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For this purpose, we follow the next steps :

• First, we create a new project for our system in Vivado Design Suit, specifying in it

the FPGA (SoC or Board) that we will use. Once the project is created we will see this

interface (Figure 4.13) :

Figure 4.13 : Vivado Interface

• Second, we add all the repositories of the different IP Blocks previously created with

Vitis HLS to the ”IP Repositories” in ”Project Manager Settings” (Figure 4.14) :

Figure 4.14 : IP Repositories

• After this, we create a new Block Design for our project and we add all the necessary

blocks which are : the IP blocks of the different layers, and the Processor that will control

the Memory Block and contain the rest of the sub-stages of the system, as follows (Figure

4.15) :

We can notice that there are a DDR and a FIXED_IO outputs of the processor, they

were automatically generated by Vivado when running the Block Automation of the Zynq

processor. We will provide in the next section a detailed description of the FPGA used

and its specification but the important thing to know for now is that the Zynq IP Core is

our processor.
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Figure 4.15 : Addition of the different IP Cores to the new Block Design

We can see as well that each IP block previously generated has different ports, we take the

example of the CONV3 block that is shown in the Figure 4.16 :

Figure 4.16 : CONV3 IP Block

This block has seven ports :

- s_axi_control : used for the control signals or the variables declared with s_axilite

protocol,

- input_r : used for the input variables declared with axis protocol,

- m_axi_gmem : attributed to the variables that needs a memory access (the ones declared

with m_axi protocol),

- output_r : used for the output variables declared with axis protocol,

- ap_clk : for the clock signal,

- ap_rst_n : for the reset signal,

- interrupt : used for the interrupt generated by the IP Block, using the port return that is

triggered when the computation performed by the specific IP block is completed.
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• After incorporating all the essential blocks and configuring the Processor to establish

communication with the FPGA, the next step involves executing the ”Connection

Automation” process to facilitates the interconnection of all the blocks, ensuring their

seamless integration, as follows (Figure 4.17) :

Figure 4.17 : Block Design of the Features Extraction sub-stage

Note :

1- In case there are some missing connections after running the ”Connection Automation”,

we need to add them manually.

2- We can see that there are some other blocks that have been added after the Connection

Automation process. These blocks are :

- Processor System Reset : which is responsible for initiating system-wide resets that

specifically involve the processor.

- two blocks of AXI Interconnect : used to adapt the clock, width or protocol used by

the different ports of the different IP Blocks and the clock, width or protocol used by

the processor. There are two blocks since we use two different protocols : m_axi and

s_axilite.

• After establishing all the necessary connections, the next step is to check our design.

When the design is validate, we can check and edit the addresses that have been attributed

to each Slave and Master in the architecture in the window ”Address Editor” as follows

(Figure 4.18 ) :
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Figure 4.18 : Address Editor in Vivado Design Suit

It is worth emphasizing that the presence of assigned addresses exclusively for ports with

m_axi or s_axilite interfaces is directly related to the inherent characteristics of the AXI

Memory Mapped protocol. As this protocol operates on a Master-Slave architecture, it

necessitates the allocation of addresses for both the Masters and Slaves within the system.

Consequently, only ports that employ the m_axi or s_axilite interface are designated with

addresses in the system.

• Following this, we proceed with the generation of the HDL wrapper. The primary

objective of this wrapper is to transform the design into a hardware description format

that can be subsequently synthesized and implemented in the designated FPGA device.

• Once the HDL Wrapper is generated we can synthesize our system. The synthesis

converts an HDL design into a gate-level representation. This gate-level representation

consists of interconnected logic gates, flip-flops, and other digital components that can be

physically implemented in the target FPGA device.

During synthesis, Vivado analyzes the RTL description of the design and performs various

transformations to optimize it for the target FPGA. These transformations include :

- Technology mapping : The RTL design is mapped to specific logic elements available

in the target FPGA, taking into consideration the device’s architecture and resources.

- Combinational logic optimization : Vivado optimizes the combinational logic by

minimizing the number of logic gates and reducing unnecessary logic operations. This

helps to improve the overall performance and minimize resource utilization.

- Sequential logic optimization : The sequential logic elements, such as flip-flops and

registers, are optimized to reduce the number of clock cycles required for data processing

and improve the timing characteristics of the design.

- Resource allocation : Vivado assigns physical resources of the FPGA, such as lookup

tables (LUTs), flip-flops, block RAM, and DSP slices, to different parts of the design to

ensure efficient resource utilization and meet the design constraints [57].
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When the synthesis is finished, we can analyze the different reports that we get, such

as Utilization Report, a detailed and a summary report(Figure 4.19) and Power Report

(Figure 4.20), as well :

(a) Summary of Utilization Report

(b) Detailed Utilization Report

Figure 4.19 : Utilization Report
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Figure 4.20 : Power Report

• The final step is to implement the system and generate its Bitstream file. In Vivado,

implementation refers to the process of mapping and physically placing the synthesized

design onto the target FPGA device. It involves several stages and tasks to transform the

gate-level netlist generated during synthesis into a configuration bitstream that can be

loaded onto the FPGA.

The main steps involved in the implementation process in Vivado are :

- Placement : it determines the physical location of each logic element in the FPGA’s

programmable fabric. It aims to find an optimal placement that minimizes delays,

optimizes performance, and satisfies constraints.

- Routing : it establishes the physical connections between the logic elements based

on the design’s interconnections specified in the netlist.

- Clock Planning : it identifies clock domains, applies clock constraints, and optimizes

clock routing to ensure proper synchronization and timing.

- I/O Planning : it maps the design’s input/output signals to the appropriate physical

pins on the device and applying I/O constraints for proper signaling and voltage levels.

- Bitstream Generation : The bitstream file contains the necessary instructions and

configuration data to program the FPGA, enabling it to behave according to the desired

functionality specified in the design.

- Timing Analysis and Closure : to ensure that the design meets the specified timing

constraints.

- Design Rule Check (DRC) : to ensure that the design adheres to the manufacturing

rules and guidelines specified by the target FPGA device. It checks for any violations such

as short circuits, excessive congestion, or overlapping components[57].

Once the implementation process is complete, the resulting Bitstream file can be loaded

onto the FPGA, configuring it to operate based on the desired functionality defined in the

original design.

Similar to the synthesis stage, the implementation process in Vivado produces various

reports that offer valuable insights into the resource utilization of our system on the

FPGA. These reports serve as crucial sources of information, enabling us to analyze and

understand how the FPGA resources are utilized by our design. The most important ones

for us are the Utilization Report (Figure 4.21) and the Power Report (Figure 4.22) :
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(a) Table Summary of Resources Usage - Detailed Report

(b) Graph Summary of Resources Usage

Figure 4.21 : Resources Usage Report

Figure 4.22 : Summary of Power Report
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4.3.5 CPU Programming

After generating the Bitstream file, the next step is to deploy it on the FPGA. However, prior

to that, we must program the CPU within the design to establish communication with the FPGA.

To proceed, it is essential to familiarize ourselves with the board we are working with. This

involves understanding the CPU programming procedure and conducting simulations to verify

the proper functioning of our architecture. By introducing the board, we can gain the necessary

knowledge to program the CPU and execute simulations for quality assurance.

A. PYNQ-Z1 Board

The PYNQ-Z1 board is a Xilinx Zynq All Programmable SoCs (APSoCs). The AMD-

Xilinx® Zynq® All Programmable device is a SOC based on a dual-core ARM® Cortex®-A9

processor (referred to as the Processing System or PS), integrated with FPGA fabric (referred

to as Programmable Logic or PL). The PS subsystem includes a number of dedicated peripherals

(memory controllers, USB, Uart, IIC, SPI etc) and can be extended with additional hardware IP

in a PL hardware libraries [59]. The Figure 4.23[59] gives sn overview of the architecture of

the board :

Figure 4.23 : Architecture of the PYNQ-Z1 Board

The PYNQ-Z1 can be programmed using Python and the Jupyter Notebook, which is

a sotfware that allows interactive computing. The programmable logic circuits that are

implemented in the FPGA are imported as hardware libraries called ”Overlays” and controlled

through their APIs, mirroring the process of importing and programming software libraries

[59].
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Overlays

Overlays, or hardware libraries, are programmable/configurable FPGA designs that extend

the application of the Zynq processing system to the programmable logic. These overlays can

be used to accelerate a software application or customize the hardware platform for a specific

application.

PYNQ provides a Python interface to allow overlays in the PL to be controlled from Python

running in the PS. The pynq.Overlay module is used to manage the state and content of a PYNQ

overlay. This module adds additional functionality to the programmable logic (PL) module.

4.3.6 Programming Approach

We included a CPU in our design primarily because the Memory Block can only be controlled

by the CPU. Since we require the Memory Block to store essential data such as the input image,

model weights and biases, and the output vector, it became necessary to incorporate the CPU.

Consequently, we had to follow the following essential steps for programming the CPU in our

application :

.1 Create a project for our system (a folder in which we create a Notebook file),

.2 Upload the Bitstram file, the Tool Command Language (TCL) file as well as the Metadata

file (having the .hwh extension) to the folder of our project. It is primary to know that

the TCL file is a script for controlling and extending software applications, it helps in

building the sytem (design or architecture) from sources. In other hand, the HWH file

includes a complete set of register values, interfaces, and connections of the design. This

file is generated automatically by Vivado during implementation. This two files helps the

CPU recognize the architecture implemnted in the FPGA and how it works.

.3 Moving to the code now, we need first to create the overlay of our architecture using the

”Overlay” module and make sure that all the IP Blocks of our system figure in the list of

IP Blocks recognized by the CPU. The Figure 4.24 shows the list of IP Blocks for the

created overlay :

Figure 4.24 : Description of The Overlay created and the IP Blocks of this last
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Before moving forward, we can check the details of the different IP Blocks. The Figure

4.25 shows a part of the description of the CONV1 Block, its registers and the fields of

each one :

Figure 4.25 : Details of the CONV1 Block

.4 After that, we need to map each IP Block to addresses using the MMIO class. This class

allows Python objects (like IP Blocks of an Overlay) to access to the System Memory

Mapped. The Figure 4.26 is an example of the mapping of the CONV1 block :

Figure 4.26 : Mapping of CONV1 Block Using MMIO Class

We can check the Register Map as well to identify the registers of Control Signals that we

have, the Figure 4.27 is the Register Map of CONV1 Block :

Figure 4.27 : Register Map of CONV1

.5 Once the mapping is done, we allocate the memory for our weights and biases as well as

the input and output using the Allocate module and assign the allocated memory to each

variable we have which are : input image, output features vector, three weights vectors

and three biases vectors (Figure 4.28) :
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Figure 4.28 : Memory Allocation for all the IP blocks

It is worth noting that we allocate Buffers to our variables due to their significant size, as

they are in vector form. In contrast, if we were working with scalars, we would allocate

registers, resulting in a considerably different program structure.

• Once the Buffers are allocated, we proceed to write our inputs into them. This includes

the weights, biases, which have been saved after the model training process, as well as the

input image. It is of utmost importance to guarantee the proper update of these Buffers

by executing the ”flush” function. Neglecting to do so can lead to erroneous outputs.

• Now having the input data stored in the Memory Block, we can launch the computations

by setting the control signal START of each IP Block to 1 and waiting until all the

computations of each block are accomplished as follow (Figure 4.29) :
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Figure 4.29 : Strating the computation’s code

The Control Signals. also called Hanshake Signals, of the blocks works as follows (Figure

4.30) so we need to make sure to respect this behavior when running the computations :

Figure 4.30 : The Behavior of the Block-Level Handshake Signals

Note : The detailed explanation of the handshake signals is described in the Vitis HLS

User Guide in the Block-Level Control section [60].

• Once all the IP Blocks finish their respective computations, the output will be written

in the Buffer 8 since we mapped it to the output of the last layer which is MAX3. So

by printing this vector, we can check if our architecture gives the desired results and it’s
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working of not. The Figure 4.31 is the output of a random image generated, with weights

all equals to 1 and null biases just to test the architecture :

Figure 4.31 : Output Buffer

We can ensure this way that our architecture is working well since the output that we got

matches the one we calculated ourselves.

Now since the architecture is working we can move to evaluate the results obtained.

4.3.7 Results

Given that our primary focus is on implementing the Features Extraction sub-stage on an

FPGA and closely monitoring its resource utilization ; the PYNQ-Z1 board with its combination

of programmable logic (PL) and processing system (PS) proved to be an excellent choice.

Overall, the capabilities offered by the PYNQ-Z1, with its PL and PS components, perfectly

aligned with our project requirements.

In order to discuss our results regarding resource usage and power consumption of the Features

Extraction sub-stage implemented in the PL of the board, let’s consider some of the pertinent

specifications of the Pynq-Z1 board that are relevant to our project :

• Processing System (PS) :

- Xilinx Zynq-7000 SoC (XC7Z020-1CLG400C),

- Dual-core ARM Cortex-A9 processor,

- 512 MB DDR3 RAM,

- 16 MB Quad-SPI Flash memory,

- MicroSD card slot for additional storage.

• Programmable Logic (PL) :

- Xilinx 7-series FPGA (XC7Z020-1CLG400C),

- 13,300 logic slices, each with four 6-input LUTs and 8 flip-flops,

- 220 DSP slices,

- 630 KB of fast block RAM,

• Power :

USB or external power supply (7V to 15V DC)

• Software Support :

- PYNQ framework for Python-based development,
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- Vivado Design Suite for FPGA synthesis and implementation,

- Vitis for embedded software development.

Now, we present a summary of the resources consumed by the Features Extraction sub-stage

(Table 4.3) :

Resources LUT LUTRAM FF DSP BRAM

Available 53200 17400 106400 220 140

Usued 10536 412 13491 72 125.5

Consumption (%) 20 2 13 33 90

Table 4.3 : Resources Consumption of the Features Extraction sub-stage on PYNQ Z1

With the exception of BRAM (Block RAM) usage, which is necessary due to the storage of

weights and biases, we clearly see that the utilization of other resources is deemed acceptable.

4.4 Matlab appraoch

The Deep Learning on FPGA solution provides with an end-to-end workflow to compile,

deploy, profile and debug our custom pretrained deep learning networks. It also generates

a custom deep learning processor IP core that we can integrate into our custom reference design.

The implementation of a CNN model on an FPGA is indeed a popular approach for

accelerating deep learning inference tasks. One of the methodologies out there is Matlab by

using Deep Learning Toolbox [27] and Deep Learning HDL Toolbox [28] which are part of

the MATLAB environment and can aid in the design and deployment of CNN models on FPGAs.

The figure 4.46 shows the MATLAB based deep learning on FPGA solution

Figure 4.32 : Matlab solution for Deep learning on FPGA

Here’s a general overview of the process involved in implementing a CNN model on an FPGA

based on the doccumentation of their offcial website [29] :

• CNN Model Design : We star by designing and training our CNN model using

frameworks like TensorFlow, PyTorch, or MATLAB’s Deep Learning Toolbox. This step
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involves selecting appropriate network architectures, configuring layers, and training the

model on a suitable dataset.

• Fixed-Point Conversion : Since FPGAs typically operate using fixed-point arithmetic, it

is necessary to convert the floating-point parameters of the trained model into fixed-point

representation. This conversion is crucial to ensure numerical accuracy during inference.

• Code Generation : Once the model is trained and converted to fixed-point representation,

we can use MATLAB’s Deep Learning HDL Toolbox to generate synthesizable Verilog or

VHDL code for the FPGA implementation. The toolbox assists in generating optimized

HDL code tailored for the target FPGA platform.

• IP Core Generation : The generated HDL code is then used to create an Intellectual

Property (IP) core, which is a reusable hardware component representing the CNNmodel.

The IP core encapsulates the functionality and connectivity of the CNN layers and can be

instantiated multiple times within the FPGA design.

• Bitstream Generation : After generating the IP core, the next step is to integrate it into

the overall FPGA design and create a bitstream—a binary file that configures the FPGA

with the desired functionality. The bitstream contains the necessary instructions for the

FPGA to implement the CNN model.

• FPGA Deployment and Inference : Finally, we can load the generated bitstream onto

the FPGA and perform CNN inference on input data. The FPGA executes the CNN

model in a highly parallel manner, leveraging the inherent parallelism of the FPGA fabric

to accelerate the computation.

4.4.1 Quantisation for FPGA Target

The core idea behind quantization is the resiliency of neural networks to noise ; deep neural

networks, in particular, are trained to pick up key patterns and ignore noise. This means that

the networks can cope with the small changes in the weights and biases of the network resulting

from the quantization error and there a growing number of works indicating the minimal impact

of quantization on the accuracy of the overall network. This, coupled with significant reduction

in memory footprint, power consumption, and gains in computational speed, makes quantization

an efficient approach for deploying neural networks to embedded hardware.

The Deep Network Quantizer app presented by matlab typically provides the following

functionalities :

A. Model analysis : allows the loading of pre-trained deep neural network model and

analyze its structure, layer-wise configurations, and parameter sizes.

.1 Save the model : The .h5 file format is commonly used to save Keras models in

Python. It is a hierarchical data format HDF5 that allows for efficient storage and

retrieval of large amounts of numerical data, including deep learning models.

By loading the .h5 file into MATLAB, we added the layers, weights, and other

attributes of the Keras model. This allows us to perform various operations on the

model, such as making predictions, extracting intermediate layer outputs.

So, in order to import the model to the Matlab Workspace, the model needs to be

converted and saved to the .h5 format as shown in figure 4.34
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Figure 4.33 : Model saved

.2 Loading the Keras model in MATLAB : MATLAB provides a function called

”importKerasNetwork” to load our Keras model. We used this function to load

the .h5 file containing our Keras model.

Figure 4.34 : Architecture of our model imported to Matlab

.3 Define calibration and validation data : In the context of deep learning,

calibration and validation data are commonly used for quantization which are

previously explained. It is important to note that the calibration and validation

data should be chosen carefully to ensure they are representative of the real-world

scenarios our model will face during inference. Biases or inadequacies in the

calibration and validation datasets can affect the quantization process and the

accuracy of the quantized model. Therefore, it is recommended to carefully curate

and validate these datasets to achieve reliable and accurate quantization results.

.4 deepNetworkQuantizer : The ”deepNetworkQuantizer” function in MATLAB

is a part of the Deep Learning Toolbox, we used it for quantizing deep neural

network. It allowed us to quantize the weights and activations of our pretrained

network to lower precision in order to reduce memory footprint and computational

requirements. The quantizable layers is shown in the Figure 4.35
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Figure 4.35 : Quantifiability of each layer
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When it comes to the alocation for each variable, we have figure 4.36 :

Figure 4.36 : Dynamic Range of Calibration Layers

B. Quantization options : The application offers various quantization options, allowing us

to choose the precision and bit-width for weights and activations. It may provide options

for fixed-point or integer quantization, specifying the number of bits for each value.

C. Quantization performance evaluation : We evaluated the performance of a quantized

model by measuring its accuracy on a validation dataset. It provides metrics such as

top-1 and top-5 accuracy, loss, and other relevant performance indicators but we choose

accuracy because its the best metric to evaluate image classification.

D. Exporting quantized models : Once the quantization process is complete, the application

allows us to export the quantized model in a format suitable for deployment on various

platforms or devices, in our case, an FPGA.

4.4.2 Prototype Deep Learning Networks on FPGA and SoC Devices

To accelerate the performance of deep learning tasks, specialized hardware accelerators called

deep learning processors have emerged. These processors are designed to efficiently handle the
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complex computations required by deep neural networks. In order to tailor these processors

to the specific requirements of a custom board, the generation of a deep learning processor IP

core becomes crucial. By creating a custom IP core, we can optimize the hardware architecture

to maximize performance, power efficiency, and flexibility for their custom board. In this sub-

stage, we will explore the process of generating a deep learning processor IP core, covering the

key steps involved in designing, implementing, and integrating the IP core into a custom board.

The figure 4.37 shows the process of deploying a network to a custom board and retrieving

a prediction from the deployed network.

Figure 4.37 : The process of deploying a network to a custom board

A. egister Custom Board

Define the interface and attributes of a custom SoC board. To register the Xilinx® Kintex®

UltraScale� zc102 board.

• Create a board registration file : We define a function that returns a list of board plugins

as a cell array of character vectors. the following figure 4.38 defines a board registration

function :

116



Chapter 4. Implementation

Figure 4.38 : board registration function

• Create the board definition file : this step consist of creating an hdlcoder.Board object

and specify its properties and interfaces according the characteristics of our FPGA.

B. Register Custom Reference Design

To define and register a reference design, we must have a reference design definition, a

reference design plugin, and a reference design registration file.

• Reference Design Definition : A reference design definition is a file that defines the

characteristics of a reference design, including its associated board and interfaces. We can

define multiple custom reference designs per board. To generate a deep learning processor

IP core, we must define these three AXI4 Master Interfaces :

– AXI4 Master Activation Data :AXI4 Master Interface for the layer activation data

with max data bit-width of 512

– AXI4 Master Weight Data : AXI4 Master Interface for the layer weight data with

max data bit-width of 512 hRD.addAXI4MasterInterface(...

– AXI4 Master Debug : AXI4 Master Interface for the debugger with max data bit-

width of 512

• Reference Design Plugin : A reference design plugin is a package folder that contains :

– The reference design definition.

– Files that are part of the embedded system design project, and are specific to our

third-party synthesis tool, including Tcl, project, and design files.

• Reference Design Registration Function : A reference design registration function

contains a list of reference design functions and the associated board name.

to do that, we must define function that returns the associated board name, specified as a

character vector, and a list of reference design plugins, specified as a cell array of character

vectors. as shown in figure 4.39.

117



Chapter 4. Implementation

Figure 4.39 : Reference Design Registration Function

C. Performance Estimation

We reduce the time required to design and deploy a custom deep learning network that meets

performance requirements by analyzing the layer-level latencies before deploying the network.

• Generating a calibration bitstream

– Create a Processor Configuration object.

– Specify the TargetPlatform

– Reduce the number of parallel convolution processor kernel threads for the conv

module

– Set the Xilinx Vivado toolpath to our design tool. Set the Xilinx Vivado toolpath

to our design tool using the hdlsetuptoolpath function, then build the calibration

bitstream.

• Deploying the calibration bitstream to the target custom board Deploy the bitstream to the

hardware and obtain the external- to-internal memory transaction latencies. We can use

these values to get better estimates for the layer-level latencies.as shown in figure 4.40

Figure 4.40 : Calibration bitstream

• Retrieving the external to internal memory transaction latencies Estimate the performance

of the network for the custom processor configuration. as shown in figure 4.41
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Figure 4.41 : Internal memory transaction latencies

D. Resource Estimation

To estimate the resource utilization for our custom board that has a Kintex® Ultrascale� chip

family. The resource utilization is as shown in figure 4.42 :

Figure 4.42 : Resource Estimation of original model

Compared to the quantified model in figure 4.43

Figure 4.43 : Resource Estimation of quantified model

Based on our study, we observed a significant reduction in resource usage of over 80% after

applying quantification, which was our primary goal. This remarkable decrease can be attributed

to the implementation of dynamic quantization in MATLAB. Dynamic quantization, a specific

type of quantization that dynamically adjusts quantization levels based on the characteristics of

the input data, optimizes resource utilization and enhances overall efficiency.
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E. IP Core Generation

The figure 4.44 shows the deep learning processor IP core architecture :

Figure 4.44 : Custom Bitstream for Custom Processor Configuration

We describe the architecture of the deep learning processor IP core using an image

classification as following :

1. DDR Memory : The external DDR memory serves as a storage space for input images,

weights, and output images. The processor incorporates three AXI4 master interfaces to

communicate with the external memory. One of these interfaces is utilized to load input

images into the processing modules. The compile method generates weight data, and the

activation data can be retrieved from DDR using the External Memory Data Format. To

initialize the deep learning processor, the weight data can be written to a deployment file,

which eliminates the need for a MATLAB connection during deployment. For detailed

information, refer to the ”Initialize Deployed Deep Learning Processor Without Using a

MATLAB Connection” documentation.

2. Memory Access Arbitrator Modules : The activation and weight memory access

arbitrator modules utilize the AXI Master interface to read and write weights and

activation data to and from the processing modules. The profiler AXI Master interface

handles reading and writing profiler timing data and instructions to the profiler module.

3. Convolution Kernel : The Conv Kernel is responsible for implementing layers with a

convolution layer output format. It receives weights and activations for the layer through

two AXI4 master interfaces. The Conv Kernel performs the necessary operations on the

input image according to the implemented layer. This kernel is designed to be generic,

supporting tensors and shapes of various sizes.

4. Top-Level Scheduler Module : The top-level scheduler module plays a vital role in
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determining which instructions to execute, which data to read from DDR, and when to

read that data. It acts as the central computer in a distributed computer architecture,

distributing instructions to the processing modules. For example, if the network includes

a convolution layer, fully connected layer, and a multiplication layer.

5. Fully Connected Kernel : The fully connected (FC) kernel is responsible for

implementing layers with a fully connected layer output format. It receives weights and

activations through two AXI4 master interfaces and performs the fully connected layer

operation on the input image. Similar to the Conv Kernel, this kernel is also designed to

be generic, supporting tensors and shapes of various sizes.

6. Custom Kernel : The custom kernel module is responsible for implementing layers that

have been registered as custom layers using the ”registerCustomLayer” method. Examples

of such layers include addition layer, multiplication layer, resize2dlayer, and more. To

learn about creating, registering, and validating custom layers, refer to the ”Register,

Validate, and Deploy CustomNatural Logarithm Layer Network to FPGA” documentation.

The custom kernel supports various layers.

7. Profiler Utilities : When the Profiler argument of the predict or predictAndUpdateState

methods is set to ”on,” the profiler module collects information from the kernel, such as

start and stop times for the Conv Kernel, FC Kernel, and more. This information is used

to generate a profiler table with the collected results.

This figure 4.45 shows the generated deep learning processor IP core :

Figure 4.45 : Custom Bitstream for Custom Processor Configuration

Where it contains the following blocks :

1. One DDR4 SDRAM offers faster data transfer rates compared to previous generations,
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enabling quicker access to memory and improved overall system performance.

2. AXI DMA is designed to handle large amounts of data efficiently, providing high-speed

transfer rates and reducing system latency. It is capable of moving data between memory

and peripherals or between different memory locations.

3. Five blocks of AXI Interconnect : used to adapt the clock, width or protocol used by

the dffierent ports of the dffierent IP Blocks and the clock, width or protocol used by the

processor.

4. Four Processor System Reset : which is responsible for initiating system-wide resets

that specfi- ically involve the processor.

5. One concat : responsible of concatinate the 8 inputs for one output.

6. One DUT-IP : responsabile for stimulus or test vectors to observe its behavior and verify

that it performs as expected.

F. Generate Custom Bitstream for Custom Processor Configuration

Figure 4.46 : Custom Bitstream for Custom Processor Configuration
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G. Deploy the Custom Bitstream and Run Predictions on the Network

• Create Target Object : Create a target object with the vendor name of the target device.

Specify the interface to connect the target device to the host using the Interface name-value

pair. in our case it connects to the target using the JTAG interface.

• Create Workflow Object for our network : Create an object of the dlhdl.Workflow

class. Specify the network, the bitstream name, and the target object.

• Compile the Network : Run the compile function of the dlhdl.Workflow object.

• Deploy the Bitstream to the FPGA : To deploy the network on the Xilinx Zc102 Kintex

hardware, run the deploy function of the dlhdl.Workflow object.

4.4.3 Results and evaluation

The results of our image classification task after implementation are highly promising,

showcasing the effectiveness of the employed methodology. We achieved an impressive

accuracy rate of 97,20% in correctly classifying images into their respective categories,

demonstrating the robustness of our classification model. An exemple test of our implimented

model in figure 4.47

Figure 4.47 : Final result of the Matlab approach

4.5 Results Comparison

After implementing the system using the two approaches, it is important to note that the

proposed architecture and application have not been previously implemented, which means there

is no benchmark available for comparison. Therefore, the focus of our evaluation will be on

comparing the performance of the two approaches directly.

In Figure 4.4, we present a comparative analysis of the two approaches based on various

performance metrics. Since we don’t have a benchmark to reference, our evaluation will

primarily rely on the relative performance between the two approaches rather than absolute

values.

Although lacking a benchmark for comparison, this evaluation of the two approaches will

allow us to gain insights into their relative advantages and limitations. By analyzing the
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performance metrics, we can determine which approach exhibits better resource utilization and

execution time for our specific architecture and application.

Matlab Approach HLS Approach

Resources Utilization Available Utilization Available

LUT 32302 274080 10536 53200

BRAM 50 912 125,5 140

DSP 33 2520 72 220

Table 4.4 : Resources utilization comparision between the two appraochs

Upon analysis, we observe that the hls method outperforms the MATLAB approach for several

reasons. Firstly, one notable distinction lies in the type of quantization utilized in each method.

In the MATLAB approach, dynamic quantization is employed, which means that the

quantization process adapts dynamically to the input data. This approach ensures that no

informative variables are discarded during quantization. While this adaptability may seem

advantageous at first, it can potentially lead to a larger memory footprint and slower execution

due to the need for additional processing to handle varying precision requirements.

In contrast, the hls method we used python for quantization which adopts a static pre-

defined width of 16 bits for quantization. This fixed-width approach provides several benefits.

Firstly, it allows for more efficient memory utilization since each variable is allocated a consistent

number of bits. Additionally, the static nature of the quantization process simplifies hardware

implementation, as the FPGA can be optimized specifically for the fixed-width representation.

By employing static quantization with a predefined width of 16 bits, the Python method

achieves a more streamlined and efficient implementation compared to the MATLAB approach.

This static approach eliminates the need for additional processing to handle varying precision

requirements, resulting in improved execution time and reduced resource utilization.

Another key advantage of the HLS (High-Level Synthesis) approach is that it offers more

efficient resource utilization compared to the MATLAB method. This can be attributed to a

specific design choice we made in the HLS implementation.

In the HLS approach, we choose to encapsulate the model as a function, effectively considering

the model itself as a function. This decision has several benefits, including reduced resource

requirements. By treating the model as a function, we eliminate the need for redundant metadata

and minimize the overhead associated with managing and coordinating information between

different functions.

In contrast, MATLAB treats the model as a separate entity with distinct functions. As a

result, additional resources are consumed due to the necessary inclusion of metadata and the

communication overhead required between these functions.

The HLS approach’s decision to consider the model as a function allows for more efficient

resource allocation on the FPGA platform. By minimizing the metadata and communication

overhead, the HLS approach optimizes resource utilization, leading to improved efficiency and

reduced resource requirements.

Overall, the HLS approach outperforms MATLAB in terms of resource optimization. By
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treating the model as a function, the HLS approach minimizes the need for additional resources,

such as metadata and communication overhead. This resource optimization is a logical

choice that contributes to an efficient and dependable biometric authentication solution when

implemented on an FPGA platform.

4.6 Conclusion

In conclusion, the final stage of our system implementation focused on developing an iris

recognition system on an FPGA with the aim of creating an efficient and reliable biometric

authentication solution. The study began with optimizing the model and architecture, resulting

in impressive outcomes. After pruning and quantization techniques were applied, the model

achieved an impressive accuracy rate of 97.20%.

Furthermore, significant efforts were made to reduce the FPGA resource utilization, resulting

in notable improvements. The resource utilization was successfully optimized to utilize only

20% of Look-Up Tables (LUT), 2% of Random Access Memory (LUTRAM), 13% of Flip-Flops

(FF), 90% of Block RAM (BRAM), and 33% of Digital Signal Processors (DSP).

These achievements demonstrate the successful integration of the iris recognition system on

the FPGA platform, ensuring high accuracy while efficiently utilizing the available resources.

The reduced resource usage not only enhances the overall performance of the system but also

offers potential cost savings and scalability benefits.

By achieving these outcomes, the project has contributed to the advancement of biometric

authentication solutions and their practical implementation on FPGA technology. The optimized

system’s efficiency and reliability make it suitable for a wide range of applications, including

access control, surveillance, and identity verification.

In conclusion, the successful implementation of the iris recognition system on an FPGA,

coupled with the achieved accuracy rate and optimized resource utilization, provides a strong

foundation for further advancements in biometric authentication systems. The findings of this

project contribute to the development of more efficient and dependable solutions in the field of

iris recognition, paving the way for enhanced security and reliability in various domains.
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Iris footprints refer to the distinct patterns and characteristics present in a person’s eye

iris, which are used by iris recognition systems for biometric identification and authentication.

Despite the benefits of this technology, there are several challenges associated with its

implementation. The iris recognition algorithms employ intricate image processing and pattern

matching techniques, imposing significant computational demands. Attaining good performance

presents a challenge that necessitates efficient implementation of these algorithms, often through

strategies such as algorithm simplification or hardware acceleration, which were the focal points

of our project.

In addition to successfully implementing an End-to-End iris recognition system from scratch,

this project has made several significant contributions, which can be summarized as follows :

• New approach for reflections reduction :

Unlike existing methods in the literature that handle reflections by either setting affected

pixels to black or replacing them with a statistical value, our proposed approach aims

to reduce reflections by adjusting the brightness of the reflective areas using Histogram

Equalization. Our method focuses on minimizing information loss by extracting valuable

details that may be obscured by high intensities in the presence of reflections.

• New architecture for iris matching :

After conducting numerous tests, we successfully developed a modified CNN architecture

based on IRISNet. Our architecture incorporates three convolutional layers with filter

sizes of 11x11x96, 3x3x16, and 5x5x8 respectively, followed by max pooling layers with

a 2x2 kernel after each convolutional layer. For classification, we employed a random

forest classifier. This optimized and lightweight architecture demonstrates excellent

performance, achieving an accuracy of 97.20% on the Phoenix dataset.

• Accelerating the system on a SoC FPGA : We successfully implemented the Features

Extraction sub-stage, which involves the convolutional layers, on a PYNQ-Z1 platform

using the HLS (High-Level Synthesis) approach. The implementation consumed

acceptable resources on the platform. Additionally, we explored the implementation

using Matlab and its dedicated toolbox for Machine and Deep Learning.

It is worth noting that our work represents the pioneering implementation of an iris

recognition system, as there were no prior works in this specific area. Therefore, we did

not have existing benchmarks to compare our results against.

These contributions collectively contribute to the advancement of iris recognition

technology, addressing challenges such as reflections, optimizing architectures, exploring FPGA

implementations and setting a baseline for future research in the domain. Our work also

opens up exciting perspectives and potential future directions for research and application.

Building on our achievements, we can explore various avenues to further enhance the field of

iris recognition and its practical implications such as :

• Refining Reflection Handling Techniques :

While our approach of using Histogram Equalization to mitigate reflections in iris images

has shown promising results, there is room for further improvement. Exploring advanced

image processing techniques, such as deconvolution algorithms or adaptive brightness

adjustment methods, could lead to even more effective reflection removal strategies.

Additionally, investigating deep learning-based approaches specifically designed for

handling reflections may offer new insights and improved performance in this area.

• Multimodal Biometrics and Privacy Considerations :
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Exploring the integration of iris recognition with other biometric modalities, such as

face or fingerprint, holds potential for improving authentication systems’ accuracy and

security. Investigating fusion techniques and developing multimodal biometric systems

can provide enhanced identification capabilities while considering privacy concerns and

ensuring compliance with data protection regulations.

• Software and Hardware Optimization : Utilizing advanced software techniques for

computation optimization, particularly in the Features Extraction sub-stage that involves

convolutional layers, becomes crucial.

In conclusion, iris footprints play a vital role in iris recognition systems for biometric

identification and authentication. While this technology offers numerous benefits, its

implementation presents several challenges. The complex image processing and pattern

matching techniques used in iris recognition algorithms require substantial computational

resources. Overcoming these challenges and achieving optimal performance requires efficient

implementation strategies such as algorithm simplification and hardware acceleration.

Our project focused on addressing these issues, emphasizing the importance of finding

effective solutions to ensure the successful integration of iris recognition technology in various

applications.
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