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Résumé
Dans un environnement où plusieurs personnes enregistrées parlent en même temps, il est
difficile de discerner chaque voix. De ce fait, extraire chaque signal de parole à partir de
ce mélange convolutif est primordial et possède plusieurs applications. Ce travail a pour
objectif de procéder à la séparation de sources aveugles d’une manière adaptative. Nous
avons, en premier lieu, étudié l’algorithme Independent Vector Analysis (IVA) afin de
bien assimiler son principe. Ensuite, nous avons modifié l’algorithme afin d’obtenir une
version adaptative et ajouté à ce dernier un blanchiment de données adaptatif. Enfin,
nous avons comparé les effets de ce blanchiment sur les performances de notre algorithme
et implémenté cette méthode en utilisant des signaux réels enregistrés grâce à un dispositif
de microphones.

Mots clés : IVA, séparation de sources aveugle, blanchiment.

Abstract
In an environment where multiple recorded individuals are speaking simultaneously, it
is difficult to discern each voice. Therefore, extracting each speech signal from this
convoluted mixture is crucial and has several applications. The objective of this work is to
perform blind source separation in an adaptive manner. First, we studied the Independent
Vector Analysis (IVA) algorithm to fully understand its principle. Then, we modified
the algorithm to obtain its adaptive version and added adaptive data whitening to it.
Finally, we compared the effects of this whitening on the performance of our algorithm
and implemented this method using real signals recorded through an array of microphones.

Key words: IVA, Blind source separation, whitening.
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Introduction

Human beings are endowed with a multitude of senses. One of them is hearing, which is
one of the most essential sensing systems that provide crucial inputs for one’s perception.

Real-world sound signals are in most cases a mixture of different sound sources and luckily
for us, human beings have a tremendous ability to locate, identify, separating each source
and focus on one desired sound while eliminating the unwanted ones in real-time while
receiving them simultaneously.

Machines however, are less successful at doing that, although some audio systems do a
good task for studio recordings with a small number of sources, their performance drops
massively when dealing with a large number of sources in a real-world environment that
contains many signal reflections and background noise.

Signal processing-based methods have been used in the audio field in order to obtain good
audio systems with the best possible sound quality.

Much effort over the past decades has been devoted to understanding the capabilities of
humans. The aim of these studies is to mimic this behaviour onto an artificial system for
source separation. However, the performance of the machines is poor compared to human
performance.

In the following work, we consider the problem of separating different audio sources
within a reverberant environment where mixtures are recorded from several
microphones. Hereafter, we present an outline of the different chapters within the thesis.

- In the first chapter, we formulate the Blind Source Separation (BSS) problem while
giving its mathematical model.

- In the second chapter, we give a structured presentation of an offline blind frequency-
domain speech source separation algorithms, particularly on the Independent Vector
Analysis (IVA) giving a detailed state of art starting from its origin the Independent
Component Analysis (ICA) then two the frequency domain ICA which extends to
speech signals by IVA.
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- Then, in chapter 3, we give a structured presentation of adaptive (online) speech
speech source separation algorithms which is natural gradient based adaptive IVA
and we propose to add to it an adaptive whitening. Afterwards we analyse the
algorithm performances using synthetic mixtures

- In chapter 4, we give a detailed technical review of the 16 microphone array and use
it for real world tests and show the obtained results.
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Chapter 1

Background and Related Literature Survey

Blind Source separation was first considered in the 80s after a simple discussion
between Bernard Ans, Christian Jutten, and Jeanny Hérault with Jean-Pierre Roll, a
neuroscientist, about motion decoding in vertebrates [1].

Blind source separation (BSS) is a technique used to separate a set of mixed
signals into their individual sources. The main idea behind BSS is to find an estimate of
the original sources from the mixed signals, even when the sources are not known and
are only observed through their mixtures. This is a challenging problem because the
sources are typically correlated and their number is usually unknown. BSS algorithms
use various techniques, such as statistical signal processing and machine learning, to
separate the sources. In the past decade, the field of BSS has achieved tremendous
development, and BSS has become one of the most promising and exciting topics with
solid theoretical foundation and potential applications In the fields of neural computing,
advanced statistics, and signal processing. BSS has been successfully applied in various
fields such as speech enhancement, recognition, biomedical imaging, image processing,
remote sensing, communications systems, exploration seismology, geophysics,
econometrics, data mining, and neural networks.
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Chapter 1. Background and Related Literature Survey

1.1 The cocktail party problem

One well-known example of the BSS problem is the cocktail party problem illustrated
in figure 1.1, which involves separating the sounds of individual speakers at a party, where
multiple sources of sound are present and interfere with each other. This problem was first
introduced by Colin Cherry in 1953 [2] and it has various applications, such as in speech
recognition systems, hearing aids, and audio signal processing. The goal of the cocktail
party problem is to separate the sounds of each speaker from the mixture of sounds,
similar to how the sources in a BSS problem are separated from the mixed signals. The
question is, how can we recover the individual speaker?

Figure 1.1: Cocktail party problem.

1.2 Adaptive Blind Source Separation

Adaptive Blind Source Separation consists of separating the sources vector
adaptively that is when having access only to the current samples only and not the
whole signal. The term "adaptive" in adaptive blind source separation signifies that the
separation algorithm can adapt and update its parameters or estimates based on the
observed signals, allowing it to dynamically adjust its processing to improve the
separation performance.
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1.3 The BSS Model

It is assumed that a number of M microphones are being used. An electrical
microphone signal is denoted as xm[n], where n: n ∈ N denotes a sample index, and the
index m : m ∈ N, m ≤ M is used to designate the mth microphone signal. In vector
notation the array vector is x[n] =

(
x1[n] x2[n] . . . xM [n]

)T

.

Let L speech sources be in a source vector at discrete time [n] after sampling,

s[n] =
(

s1[n] s2[n] . . . sL[n]
)T

. sl[n] denotes the lth source signal at discrete time [n]

and the index l: l ∈ N, l ≤ L.

One can assume that there is some unknown mixing model F such that x[n] = F(s[n]).
This unknown mixing system may depend on a variety of things, like the geometry of
the array, the physics model involved, the nature of emitted waves, etc.

BSS aims to invert the model (if possible) in order to recover the original signals i.e:
identify F−1 such that y[n] = F−1(x[n]) = ŝ[n], where the ˆ subscript denotes an
"estimate". All this while having no a priori knowledge of the mixing system and thus
the term "blind".

BSS issue can be divided into three categories depending upon the number of sources L

and the number of sensors M used to detect the same.

(1). Over-determined mixing: Number of sources L < number of sensors M .
(2). Determined mixing: Number of sources L = number of sensors M .
(2). Under-determined mixing: Number of sources L > number of sensors M .

1.3.1 The instantaneous model

In instantaneous mixing, L unknown source signals {sl[n]}1≤l≤L are combined to
yield the M measured sensor signals {xm[n]}1≤m≤M as:

xm[n] =
L∑

l=1
amlsl[n] + vm[n] m = 1, .., M (1.1)

Where aml are the coefficients of the linear time-invariant mixing system represented by
the matrix A ∈ RM +L, called the mixing matrix. It is assumed that M noise signals are
present, i.e., one noise signal {vm[n]}1≤m≤M per microphone element. In matrix form:
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x[n] = As[n] + v[n] (1.2a)

=
L∑

l=1
alsl[n] + v[n] (1.2b)

where al is the lth column of matrix A.
BSS for instantaneous mixtures aims to recover the original sources by estimating the
coefficients of a filter matrix called separation matrix (or unmixing matrix) W ∈ RM +L:

yl[n] =
M∑

m=1
wlmxm[n] l = 1, .., L (1.3)

where {yl[n]}1≤l≤L represents an estimate of a single original source (i.e y[n] = ŝ[n]) and
wlm are the entries of matrix W. In matrix form:

y[n] = Wx[n]

=
M∑

m=1
wmxm[t]

(1.4)

where wm is the mth column of matrix W as seen in figure 1.2.

s[n] =



s1[n]
s2[n]

...
sL[n]

 A

Mixing system

+

v[n] = [v1[n] v2[n] . . . vm[n]]T

W

Separating system

x[n]
ŝ[n] =



ŝ1[n]
ŝ2[n]

...
ŝL[n]


Figure 1.2: Block diagram for instantaneous BSS mixing and demixing processing.

1.3.2 The convolutive model

The received signal for mth microphone, due to the spatial propagation of a source
signal related to the lth spatial source, is denoted as xm,l[n]. Due to the linearity of the
wave equation [11], the propagation of a spatial source signal to a microphone is modeled
according to a linear causal convolution:

xml[n] =
P −1∑
p=0

aml[p]sl[n− p]. (1.5)
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The received microphone signal for a set of L spatial sources, with an additive noise signal
vm[n], is constructed by a linear superposition of all signals:

xm[n] =
L∑

l=1
xml[n] + vm[n] (1.6a)

=
L∑

l=1

P −1∑
p=0

aml[p]sl[n− p] + vm[n] (1.6b)

The coefficient aml[p] here is an impulse response function that describes the acoustical
propagation path between the spatial source number l and microphone m. The length
of a propagation path is here assumed to be finite and restricted to P samples, or P

fs
seconds, where fs is the sampling frequency. In matrix form we get:

x[n] =
P −1∑
p=0

A[p]s[n− p] (1.7)

where A[p] ∈ RM +L is the transfer function matrix/ multichannel FIR filter representing
the room impulse response (RIR) for the pth delay, whose elements are denoted aml[p] as
illustrated in figure 1.3.

s1[n] am1[p] +

vm[n]

s2[n] am2[p] +
•
•
•

sL[n] amL[p] + xm[n]

Figure 1.3: Block diagram for convolutive BSS mixing processing.

Convolutive BSS algorithms must exploit both spatial and temporal signal
characteristics to function properly, which is why they are sometimes referred to as
spatio-temporal BSS algorithms.
Unmixing process shown in figure 1.4 consists of estimating an inverse multichannel
separation FIR filter {W(q)}0≤q≤Q−1 ∈ RL +M .
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The estimated source signal is:

yl[n] =
M∑

m=1

Q−1∑
q=0

wlm[q]xm[n− q] (1.8)

wlm[q] is the inverse filer response of the lth source to the mth microphone at qth delay.
Here Q

fs

represents the inverse filter’s length in time in seconds. In matrix notation:

y[n] =
Q−1∑
q=0

W[q]x[n− q] (1.9)

x1[n] wl1[q]

x2[n] wl2[q] +
•
•
•

xM [n] wlM [q] + yl[n]

Figure 1.4: Block diagram for convolutive BSS demixing processing.

1.3.3 Why are speech signals convolutive?

Speech signals are inherently convolutive due to the physical mechanisms involved
in sound propagation. When a person speaks, their vocal cords produce vibrations that
generate sound waves that propagate through the air. These sound waves then reach the
listener’s ears after undergoing reflections, diffractions, and scattering due to the
interaction with the environment, such as walls, ceilings, and objects [3]. These
interactions cause the sound waves to propagate through different paths with different
delays and attenuations, resulting in a convolutive mixture of the speech signal as shown
in figure 1.5.

In addition to the environmental factors, the shape of the human head, mouth, and
throat also contributes to the convolutiveness of speech signals. The human vocal tract
acts as a filter that shapes the speech signal, resulting in a unique spectral signature
for each speaker [4]. This spectral signature changes over time as the speaker changes
the shape of their mouth and throat to produce different sounds. These changes in the
spectral signature, known as formant transitions, are essential for speech recognition and
make the speech signal even more convolutive [5].
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The convolutiveness of speech signals presents a significant challenge for speech
processing applications such as speech recognition, speaker identification, and speech
enhancement. Blind source separation (BSS) algorithms aim to separate the original
speech signals from their convolutive mixtures. To achieve this goal, BSS algorithms
exploit the statistical independence of the speech sources and the sparsity of the speech
signal in some transformed domains.

Figure 1.5: A propagation model from a spatial source l, with source signal sl[n], to a
microphone m with signal xml[n] according to a linear filter aml[p] for three propagation
path components, one line-of-sight component, and two reflection components.

1.3.4 Time-Frequency domain processing

Algorithms that operate in the time domain may suffer from a heavy computational
load. This problem is significant even for a moderately advanced task such as computing
a matrix multiplication between a square matrix and a vector, which is the case in, e.g.,
the Recursive Least Squares (RLS) algorithm [6]. The number of operations required for
this task is proportionally quadratic to the number of filter coefficients. In addition, the
rate of convergence for adaptive filters is generally reduced for long filters since the step-
size is often inversely proportional to the number of filter taps [7]. A popular approach
in modern signal processing taken in order to circumvent the drawbacks associated with
time domain processing, is to introduce a time-frequency representation of the observed
signal.
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1.3.4.1 Non-stationarity and characteristics of speech signals

It is fortunate that speech signals are feature-rich and possess certain characteristics
that enable BSS systems to be developed. Despite the wide-band nature of the voiced
speech spectrum, it is well-known that band-limiting speech to frequencies between 300 Hz
and 3500 Hz does not significantly harm its intelligibility [8]. The spectrum of unvoiced
speech is not inherently band-limited but instead tends to fall off rapidly at the upper
and lower frequency edges of human hearing.

Speech is inherently a non-stationary signal, and amplitude modulations are
largely responsible for this characteristic. Additional properties of speech signals that
are relevant to speech separation include the following:
1. Speech signals originating from different talkers at different spatial locations in an
acoustic environment can be considered to be statistically independent.
2. Each speech signal typically has a unique temporal structure over short time frames
(less than 1 second).
3. Speech signals are quasi-stationary for small time duration (≈ 10 ms) but
non-stationary over longer periods.

Theoretically, all of the above properties can simultaneously be exploited by a separation
system [9], although it is possible to design systems that use only one of these features to
achieve adequate separation.

1.3.4.2 The Short-Time Fourier Transform

The short-time Fourier transform (STFT) is the classical method of time frequency
analysis. The concept is very simple as illustrated in figure 1.6. We multiply x(t), which is
to be analysed, with an analysis window γ∗(t−τ) and then compute the Fourier transform:

X(τ, f) = ⟨x(t), γ(t)τ ;f⟩ =
∫ ∞

−∞
x(t)γ∗(t− τ)e−j2πftdt (1.10)

Figure 1.6: Short-time Fourier transform.
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Because the STFT usually complex-valued in, we often use the so-called spectrogram for
display. That is the squared modulus of the STFT:

Sx(τ, f) = |X(τ, f)|2 =
∣∣∣∣∫ ∞

−∞
x(t)γ∗(t− τ)e−j2πftdt

∣∣∣∣2 (1.11)

(a).Time representation (b).Frequency representation (c).Time-frequency representation

Figure 1.7: STFT and spectrogram of a chirp signal.

Fourier transform cannot provide information about both time and frequency – i.e. cannot
provide simultaneous time and frequency localisation. And since speech signals are Non-
stationary signals (as mentioned before) they may contain varying frequency content at
different times, one considers using the STFT instead to capture more information about
the signal. Figure 1.7 illustrates an example of a STFT for a chirp signal.

STFT for discrete time signals
Consider a multichannel signal, that is a vector of M observed signals at discrete

time t = nTs by the microphones x[t] = (x1[t] x2[t] . . . xM [t])T . For discrete time signals
the integral in equation (1.10) turns into a summation.

xT F (f, n) =
T −1∑
t=0

x[t]γ[t− nR]e−j2π ft
F (1.12)

• n = 1, . . . , N is the current time frame index where N is the total number of time
frames.
• f = 1, . . . , F indicates the current frequency bin index where K is the total number of
frequency bins.
• t = 0, . . . , T − 1 is a sample in the frame and T is the total number of samples within
the same frame.
• R represents the shift in the window or the number of advances in samples between
the previous and next frame and T −R is the number of overlapped samples.
• γ[n] is the Analysis window which should be zero outside of the time interval
t ∈ [0, T − 1].
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The choice of the window

There is a trade-off between time and frequency resolution depending on the choice
of the window. Basic requirements for γ∗(t) to be called a time window are γ∗(t) ∈ L2(R)
and tγ∗(t) ∈ L2(R). However, the uncertainty principle applies, giving a lower bound for
the area of the window:

∆t∆f ≥ 1
4π

(1.13)

Equation (1.13) translates as follows: Choosing a short time window leads to good time
resolution ∆t and, inevitably, to poor frequency resolution ∆f . On the other hand, a
long time window yields poor time resolution, but good frequency resolution.

For Discrete STFT, if F is chosen to be a power of 2 and is generally equal to T and If
F is larger than the frame length T , we have to extend x[t] with zeros on both sides
before applying the DFT (zero padding).

1.3.4.3 Inverse Short-Time Fourier Transform

The ISTFT can be calculated by several methods. We will describe the weighted
overlap- add method [10] in the following: For each time frame n, the IDFT is computed:

yn[t] =
F∑

f=1
xT F (f, n)ej2π ft

F (1.14)

In order to remove the artifacts effects which are more remarkable at the edges of the
frames, another window is applied called the reconstruction window g[t] which also has
values zero outside of the time interval [0, T−1]. Those IDFT are then added and weighted
by the reconstruction window:

y[t] =
N−1∑
n=0

yn[t− nR]g[t− nR] (1.15)

In order to have perfect reconstruction (i.e y[t] = x[t]), the perfect reconstruction
condition is given by:

N−1∑
n=0

g[t− nR]γ[t− nR] = 1 (1.16)

Generally, a good choice for the windows is the Hann window shown in figure 1.8, as
it removes the discontinuities effects at the edges caused by framing, since the window
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tapers down to zero at the boarders. It is given by equation:

γ[t] ≜


1
2

(
1− cos

(
2πt
T

))
0 ≤ t ≤ T − 1

0 elsewhere
(1.17)

Figure 1.8: Hann window.

1.3.5 The BSS ambiguities

Ideally, BSS algorithms assume as little knowledge as possible about the mixing
system or the sources being mixed. This lack of knowledge leads to several ambiguities
regarding the possible solutions provided by a BSS algorithm. As most of the information
is carried by the shape of the waveform [11], these amplitude and permutation ambiguities
do not impact significantly the separation problem in practice.

1.3.5.1 Scaling ambiguity

One cannot recover the exact amplitudes of the original sources, this ambiguity
arises from the fact that we can always introduce then cancel out a multiplicative factor
without changing the observation vector:

x[n] =
L∑

l=1

(
al

αl

)
(αlsl[n]) (1.18)

In matrix form this can be written as

x[n] = D−1DAs[n] (1.19)
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where D is a square diagonal non singular matrix D = diag(α1, α2, . . . , αL) that contains
the variance (energy) scaling of the sources. To be precise the unmixing model can be
formally written as:

ŝ[n] ⊜ Ds[n] (1.20)

1.3.5.2 Permutation ambiguity

We cannot determine the order of the estimated sources, this is because re-arraging
the sources in the mixture process leaves the observation unchanged. To be precise the
unmixing model can be formally written as:

ŝ[n] ⊜ Ps[n] (1.21)

where P is a permuation matrix which is a square matrix with binary enteries which is:

[Pσ]ij = δi,σ(j) =

1 if i = σ(j)

0 otherwise.
(1.22)

for any permutation {σ(i)}i∈(1,2,...,L) where δ is the Kronecker delta.

1.4 Literature survey and related work

J. Hérault et al. were the pioneers in addressing the blind source separation problem,
as evidenced by their seminal work in [1] [12]. Their contributions marked the inception of
a new field in signal processing, which has since been extensively studied by the research
community.

In 1989, Cardoso [13] and Comon [14] made significant breakthroughs by proposing
Independent Component Analysis (ICA) as a solution to the blind source separation
problem. ICA aims to separate signals by maximizing their independence. Their work
laid the foundation for subsequent advancements in blind source separation, with
researchers refining and expanding upon the ICA framework. Comon further extended
ICA in 1994 with the minimum mutual information approach [15], while Bell et al.
proposed the Infomax approach in the following year by maximizing entropy [16]. It was
later established that these two approaches were equivalent. Additionally, Amari et al.
introduced a natural gradient-based learning rule in 1995 to enhance the ICA algorithm
[17]. Aiming to improve the computational efficiency of ICA, Hyvärinen et al. presented
the Fixed Point ICA or Fast ICA method in 1997 and 1999 [18] [19].
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Other notable algorithms addressing instantaneous mixture blind source separation
include Joint Approximate Diagonalization of Eigenmatrices (JADE) by Cardoso et al.
in 1993 [20] and 1998 [21], Second Order Blind Identification (SOBI) by Belouchrani et
al. in 1997 [22], and the Algorithm for Multiple Unknown Signals Extraction (AMUSE)
proposed by Tong et al. in 1990 [23].

Considering speech signals as convolutive mixtures, the problem falls within the domain of
Convolutive Blind Source Separation (CBSS). In 2004, Sawada [24] addressed Frequency-
Domain Blind Source Separation (FDBSS) by transforming mixtures into the frequency
domain and treating each frequency bin as an independent complex-valued ICA problem.
However, his approach encountered the permutation problem across frequency bins, which
required post-processing solutions. In 2006, Kim [25] proposed an elegant algorithm
that tackled the permutation problem by introducing a multivariate probability density
function, enforcing dependencies between frequency bins and treating sources as random
vectors. To enhance the computational efficiency of this algorithm, Lee et al. introduced
FastIVA in 2007 using the Newton method [26]. Berrah and Mendjel proposed a Single
Input Multiple Outputs (SIMO) equalization method in [27] to improve the performance
of Fast-IVA, which was later published in a conference paper by Belouchrani et al. [28].
Non-Negative Matrix Factorization (NMF), introduced by Lee et al. in 1999 [29], is
another well-known algorithm for FDBSS, predominantly used in music. NMF aims to
capture the spectral structure of sources by factorizing the observation matrix into the
product of two positive definite matrices [29]. Furthermore, an emerging FDBSS method
called Independent Low-Rank Matrix Analysis (ILRMA) [30] provides a unified framework
that combines IVA and NMF techniques.

In the context of adaptive blind source separation (BSS) of speech signals, notable
advancements have been made by several researchers. Parra et al. conducted early work
in 2000, where they introduced online BSS techniques for non-stationary signals utilizing
decorrelation methods [31]. Building upon this foundation, Kim proposed an adaptive
variant of the Independent Vector Analysis (IVA) algorithm in 2010 [32]. In 2014,
Taniguchi et al. proposed an adaptive IVA-based algorithm using the auxiliary functions
method [33]. However, this algorithm was found to suffer from substantial
computational costs. To address this issue, Nakashima et al. subsequently proposed an
inverse-free version of the aforementioned algorithm, which significantly reduces the
computational burden [34].
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1.5 Conclusion

In the first chapter, we have presented a comprehensive introduction to blind source
separation and examined various mixing models. We have emphasised the inherent
limitation in blind scenarios, where it is impossible to fully identify the mixing matrix.
Instead, the identification is achieved up to scaling and permutation. We presented the
short time Fourier transform which will be used in the next chapters for frequency
domain BSS of speech signals. We also provided the related works and algorithms in
blind source separation.
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Chapter 2

Independent Vector Analysis state of art

In this chapter, we present the most widely used algorithm for blind source
separation of speech signals that is Independent Vector analysis (IVA), but before this
we introduce the Independent Component Analysis (ICA) which is at the origin of IVA

2.1 Independent Component Analysis

The concept of independent component analysis (ICA) was first introduced by the
researcher J. C. Comon in his 1994 paper "Independent Component Analysis, a new
concept?" published in Signal Processing [15]. However, the application of ICA to blind
source separation (BSS) was first introduced by A. J. Bell et al. in the 1995 paper "An
Independent Component Analysis Framework for Blind Signal Separation." [16]

One of the most widely used techniques for BSS is independent component analysis
(ICA), which separates signals based on their statistical independence. ICA is a linear
technique that transforms the original mixture of signals into a new representation,
where the sources are as statistically independent as possible. This makes it possible to
separate signals even when the sources are highly correlated, which is a common
scenario in many real-world applications.
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2.1.1 ICA model

Assume that there is an L-dimensional zero mean vector
s[n] =

(
s1[n], s2[n] . . . , sL[n]

)T

, whose components are mutually independent. The
vector s corresponds to L independent scalar valued source signals sl[n]. A data vector

x[n] =
(

x1[n] . . . xM [n]
)T

is observed at each time point t, such that:

x[n] = As[n] + v[n]

where A is an M + L scalar matrix. The mixing is assumed to be instantaneous so
there is no time-delay between the source l mixing into channel m. Once the sources are
mixed, the observed signals at each channel are no longer independent, so the goal is to
find a demixing matrix W which when applied separates the mixtures in the sense of
miximizing an independance criterion (contrast function) such as information
maximization, negenentropy maximization and likelihood maximization.

The goal of ICA is to find a linear transformation W of the dependent sensor signals x

that makes the outputs as independent as possible:

y[n] = W x[n] = W As[n],

where y is an estimate of the sources. The sources are exactly recovered when W is the
inverse of A up to a permutation and scale change.

W A = PD

2.1.2 The ICA assumptions

Independent compenent analysis has four assumptions:

(1). Mutually Independent sources.
(2). Overdetermined mixing scenario.
(3). Non Gaussian sources.
(4). Additive noise.
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2.1.2.1 Mutually independent sources

Independence of random variables is a more general concept than decorrelation.
Roughly speaking, we say that random variables yi and yj are statistically independent if
knowledge of the values of yi provides no information about the values of yj.

Mathematically, the independence of the sources s[t] =
(

s1[t], s2[t] . . . , sL[t]
)T

, means
that we can write the multivariate probability density function, of the vector as the
product of marginal independent distributions i.e:

p(s) =
L∏

i=1
pi(si) (2.1a)

p(s1, s2, . . . , sL) = p1(s1)p2(s2) . . . pL(sL) (2.1b)

This assumption is essential for ICA and everyrthing is based on it.

2.1.2.2 Overdetermined mixing scenario

The number of sensors is greater than or equal to the number of sources M ≥ L, this is
needed to make A full rank.

2.1.2.3 Non Gaussian sources

ICA uses high order statistics, hence it allows at most one source signal to be Gaussian
since a Gaussian process is fully described by second order statistics.

2.1.2.4 Additive noise

No sensor noise or only low additive noise signals are permitted.

2.1.3 The Contrast function

A contrast function is a functional C : EM → R, that measures the independence
between N random variables of a random vector x ∈ EM . For ICA, the maxima or
minima of these contrast functions correspond to a successful separation of all sources.
It should satisfy the following properties:
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(1). C is invariant under a permutation P:

C(Px) = C(x)

(2). C is invariant under a scaling D:

C(Dx) = C(x)

(3). C decreases under a linear combination M:

C(Mx) ≤ C(x)

If the equality holds i.e C(Mx) = C(x) then the matrix M is a separating (demixing)
matrix.

2.1.4 Data Whitenning

A whitening or sphering transformation is a type of linear transformation that
takes a set of random variables with a known covariance matrix and converts them into
a new set of variables that are uncorrelated and each has a variance of 1. The
transformation is known as "whitening" because it results in the input variables
becoming a white noise vector.

The first step is to "center" the data, that is to substract the mean along the time axis
that is:

x[n] := x[n]− µ ∀n (2.2)

An estimate for the mean vector is:

µ̂ = 1
N

N−1∑
n=0

x[n] (2.3)

where N represents the total number of samples.

Next, the goal is to find a whitening transformation matrix Q ∈ CL +M such that when
applied to x(t) results on a unit covariance matrix.

E[QxxHQH ] = IL (2.4)
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2.1.4.1 Determining the whitenning matrix

The aim is to force the covariance of the white processes to be unity, meaning:

E[x[n]x[n]H ] = QE[xxH ]QH = QRxxQH = IL (2.5)

An estimate for the covariance matrix for the pre-whitened data is:

R̂xx = 1
N

N∑
n=1

x[n]x[n]H = 1
N

XXH (2.6)

Where X ∈ CM +N is the data matrix containing N samples of the process:

X =
(

x[1] x[2] . . . x[N ]
)

(2.7)

One can decompose Rxx using Eigenvalue Decomposition (EVD):

Rxx = EDEH =
[
Ẽ Ẽ⊥

] D̃ 0

0 σ2I


 ẼH

Ẽ⊥H


where:
• Ẽ =

[
e1, e2, . . . eL

]
∈ CM +L is an isometry contains the column basis of the L sources

subspace such that ẼHẼ = I whereas Ẽ⊥ ∈ CM +(M−L) is the orthogonal
complementary matrix, its columns form a basis for the noise subspace. the matrix E is
unitary.

• D̃ = diag(λ1, λ2, . . . , λL) ∈ RL +L are the L largest eigenvalues of Rxx which
correspond to the L signals power.

Just like for the Principal Component Analysis (PCA) we choose the L most significant
basis vectors of E this yields:

Rxx ≈ ẼD̃ẼH = (ẼD̃
1
2 )(ẼD̃

1
2 )H (2.8)

Now determining the whitening matrix Q

Q(ẼD̃
1
2 )(ẼD̃

1
2 )HQH = IL (2.9)
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Since Ẽ is an isometry, a choice for Q that verifies equation (2.9) is:

Q̂ = (ẼD̃− 1
2 )H =

(
λ

− 1
2

1 e1 λ
− 1

2
2 e2 . . . λ

− 1
2

L eL

)H

(2.10)

The last step is then to project the data and to perform dimension reduction:

Xp = QX (2.11)

The new projected matrix Xp ∈ CL +N , this turns estimating the separating matrix W

into a square matrix problem W ∈ CL +L.

2.1.5 Information maximization

As the components of the observed vectors are no longer independent, the
multivariate probability density function, will not satisfy the product equality in
equation (2.1a). The mutual information I(x) of the observed vector is given by the
Kullback-Leibler (KL) divergence KL(.||.) of the multivariate density from the density
written in product form:

I(x) =
∫

p(x) log p(x)∏L
i=1 pi (xi)

dx = KL
(

p(x)∥
L∏

i=1
pi (xi)

)
(2.12)

The mutual information is a contrast and is positive and is equal to zero (minimum)
only when the components xi are independent.

The KL divergence can be thought of as a measure of "distance" between two different
pdf’s, the more the two pdf’s are similar the less the distance between them. Of course
it is not really a distance in the mathematical sense as it doesn’t verify the symmetry
property since:

KL(p(a)∥p(b)) ̸= KL(p(b)∥p(a)) (2.13)

Nadal et al. [35] showed that in the low-noise case, the minimum of the mutual
information between the inputs x and outputs y of a neural processor implied that the
output distributions were factorial. So in order to estimate the source vector y = W x

so that its components yl are independent, one should maximize the mutual information

I(y) which would imply that p(y) =
L∏

l=1
pl(yl) and thus sources are mutually

independent.

Roth et al. [36] and Bell et al.[37] independently derived stochastic gradient learning
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rules for this maximization and applied them, respectively, to forecasting, time series
analysis, and the blind separation of sources. Bell et al. [37] proposed a simple learning
algorithm for a feedforward neural network that blindly separates linear mixtures x of
independent sources s using information maximization. They show that maximizing the
joint entropy H(y) of the output of a neural processor can approximately minimize the
mutual information among the output components ui = g(yi) where g(yi) is an invertible
monotonic nonlinearity and y = W x. The joint entropy at the outputs of a neural
network is:

H(u) = H(u1, u2, . . . , uL) =
L∑

l=1
H(ul)− I(u) (2.14)

where:

H(x) = −
∫

p(x) log(p(x))dx (2.15a)

H(xi) = −
∫

p(x) log(p(xi))dx (2.15b)

The maximal value for H(u1, . . . , uL) is achieved when the mutual information among the
bounded random variables u =

(
u1 . . . uL

)
is zero and their marginal distribution is

uniform. As we will show below, this implies that the nonlinearity g(yi) has the form of
the cumulative density function (cdf) of the true source distribution si [16]. Bell et al.
choose the nonlinearity to be a fixed logistic function. This is equivalent to assuming a
prior distribution of the sources to be a super-Gaussian distribution with heavy tails and
a peak centred at the mean. The relationship between ui and yi is

p(ui) = p(yi)∣∣∣∣∣∂g(yi)
∂yi

∣∣∣∣∣
(2.16)

For a uniform distribution of ui, it follows that

p(yi) =
∣∣∣∣∣∂g(yi)

∂yi

∣∣∣∣∣ (2.17)

2.1.6 Deriving the gradient of the entropy

The probability density function of u = g(y) and y are related by:

p(g(y)) = p(y)
|det(J(y)| (2.18)
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where J(y) is the Jacobian matrix of the transformation between g(y) and y which is a
diagonal matrix of the form 

∂g1
∂y1

0 . . . 0
... ∂g2

∂y2
. . .

...
... ... . . . ...

0 . . . . . . ∂gL

∂yL


(2.19)

And the probability density function of y and x are related by

p(y) = p(x)
| det(W )| (2.20)

The expression of the entropy is therefore

H(g(y)) = −E[log p(g(y))] = E[log | det(W)|] + E[log | det(J(y))|]− E[log p(x)] (2.21)

Taking the derivative with respect to W

∂H(g(y))
∂W

= ∂

∂W
log | det(W )|+ ∂

∂W
log

L∏
l=1

∣∣∣∣∣∂gl

∂yl

∣∣∣∣∣ (2.22)

= ∂H(g(y))
∂W

= ∂

∂W
log | det(W )|+ ∂

∂W

L∑
l=1

log (pl(yl)) (2.23)

For the first term in equation (2.22): ∂
∂W

log | det(W )| =
(
W H

)−1
. In the second term,

the product splits up into sums of log-terms, in which only one is dependent on a particular
W ij, and hence,

∂

∂W
log

L∏
l=1

∣∣∣∣∣∂gl

∂yl

∣∣∣∣∣ = −φ(y)xH (2.24)

where φ(y) is the gradient vector of the log likelihood called the score funcion

φ(y) = −∂ log (p(y))
∂y

=
(

φ1(y1) φ2(y2) . . . φL(yL)
)T

(2.25)

The final expression for the gradient is therefore:

∇H(y) =
(
W H

)−1
−φ(y)xH (2.26)

Since entropy is equal to mutual information up to a constant term as shown in equation
(2.14) they have the same gradient as in equation (2.26).In what follows we use the mutual
information as an objective function and we won’t need to derive the gradient again.
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2.1.7 Deriving the natural gradient learning rule

Consider the loss function to be this time the mutual information I(y) of the output
sources

I(y, W ) = − log | det(W )| −
L∑

l=1
log (pl(yl)) + const (2.27)

We can then apply the stochastic gradient descent learning method to derive a learning
rule. In order to calculate the gradient of I, we derive the total differential dI of l when
W is changed from W to W + dW . In component form,

dI = I(y, W + dW )− I(y, W ) =
∑
i,j

∂I

∂wij

dwij (2.28)

where ∂I

∂wij

dwij represents the gradient of I. Simple differential calculus yields

dI = −tr(dW W −1) + φ(y)Hdy (2.29)

From y = W x, we have
dy = dW x = dW W −1y (2.30)

We set dX = dW W −1, the gradient dI in equation (2.28) is expressed in the differential
form:

dI = −tr(dX) + φ(y)HdXy (2.31)

This leads to the stochastic gradient learning algorithm,

∆X(k) = X(k + 1)−X(k) = −η(k) dI

dX
= η(k)

[
I −φ(y(k))y(k)H

]
(2.32)

in terms of ∆X(k) = ∆W (k)W −1(k) this is rewritten as

∆W (k) = W (k + 1)−W (k) = η(k)
[
I −φ(y(k))y(k)H

]
W (k) (2.33)

This yields
W (k + 1) = W (k) + η(k)

[
I −φ(y(k))y(k)H

]
W (k) (2.34)

The last step is to use the expectation value E of the natural gradient with respect to y
for the batch (offline) processing. This yields the following well known ICA learning rule

W (k + 1) = W (k) + η(k)
[
I − E[φ(y(k))y(k)H ]

]
W (k) (2.35)

Here the index k denotes the kth iteration of the batch mode natural gradient descent.
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2.2 Independent Vector Analysis (IVA)

Independent vector Analysis first proposed by Kim et all in [25], it extends the
work done on Frequency Domain Independent Component Analysis FDCICA where the
whole frequency spectrum is exploited to separate the sources from the convolutive
mixtures. The IVA model assumes a linear mixing scenario in each frequency bin
separately. However, the sources are not simply single variables as in ICA but rather
multidimensional random vectors where all frequency components of each source signal
are considered together. This solves the permutation problem across the frequency bins
and that’s by assuming dependency between the elements of a source vector by
appropriate choice of the probability density function.

2.2.1 Batch IVA model

By applying the STFT to the linear model, and by assuming that the window length
is sufficiently larger than the filter’s length. One gets at frame index n:

xT F (f, n) = A(f)sT F (f, n) (2.36)

In matrix form for all N time frames one gets:

XT F (f) = A(f)ST F (f) (2.37)

where XT F (f) =
(

xT F (f, 1) . . . xT F (f, N)
)

∈ CM +N and

ST F (f) =
(

sT F (f, 1) . . . sT F (f, N)
)
∈ CL +N

One can treat this problem as several numbers (F ) of ICA problems, because (2.35) can
be rewritten as:

XT F (1) = A(1)ST F (1) , . . . , XT F (F ) = A(F )ST F (F ) (2.38)

In order to separate the source signals from their mixtures, an unmixing matrix must be
estimated for each frequency bin. As seen in the first chapter, the separation model is
given as:

yT F (f, n) = W(f)xT F (f, n) (2.39)
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2.2.2 Permutation ambiguity and scaling ambiguity in FDICA

One approach to address the challenge of convolutive mixtures in blind source
separation is to work in the frequency domain. An initial strategy could be to estimate
the unmixing matrix separately for each frequency bin, treating them as independent
instantaneous problems. While this may seem promising, it becomes apparent that the
permutation ambiguity, a common issue in ICA, has a significant impact and this would
require post processing to solve permutation misalignement as shown in figure 2.2.

When solving the problem independently for each frequency bin, it is highly unlikely
that the estimated mixtures at different frequency bins will be consistently ordered.
This inconsistency is illustrated in Figure 2.1, where source s2 is erroneously positioned
as source s1, and source sL is placed incorrectly as well.

Figure 2.1: Permutation problem in frequency domain ICA (FDICA).

And this also of s2 and s1 is in the position of sL . The estimated source’s order would
likely be different in each frequency bin. This is an inherent problem to ICA and the
permutation is not known at each frequency bin (illustrated by the pink ‘slices’ in Figure
2.1). The instantaneous model is not suited to realistic mixing environments due to time
delays in the convolutive mixing model.
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Early attempts to address this challenge involved canceling 4th-order cross cumulants to
estimate sources, as described in [38]. However, the frequency domain is often preferred for
convolutive mixtures, as represented in Equation (2.35) for the associated mixing model.
Early methods, such as those presented in [39] and [40] introduced feedback networks
based approaches [37].

Parra and Spence’s method, introduced in 2000 [31], imposed restrictions on filter lengths
in the time domain to enforce "smoothness" across frequency bins. In 2004, another robust
approach combined direction of arrival with interfrequency correlation [24].

An attempt to model multidimensional ICA was made in [21], which considered
dependencies between frequency bins. This method utilizes independent subspace
analysis (ISA) [41], which does not require independence between sources but relies on
independence in the projections onto subspaces to model dependencies found in
frequency domain speech signals.

However, the idea of independent vector analysis (IVA), introduced in [25], explicitly
models dependencies between frequency bins. It formulates the algorithm by considering
dependencies within vector sources and independence between vector sources, using a
multivariate probability density function (pdf). IVA is currently the most promising
method within the ICA-style framework, addressing the permutation problem in
frequency domain blind source separation (FD-BSS).

Figure 2.2: Solving the permutation ambiguity with post processing [42].

As for the scaling ambiguity, one way to take advantage of it, is in pre-processing. That
is by keeping the output signal vectors yT F l

zero-mean and white, and by constraining
the whitening matrix W(f) to be orthogonal [43]:

E[xT F (f)xH
T F (f)] = IM f = 1 . . . F (2.40)

W(f)WH(f) = IL f = 1 . . . F (2.41)
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2.2.3 Multivariate Probability Density Function

As seen in the previous section, in order to perform separation based on the ICA
algorithm, one needs to assign a good approximation for the p.d.f of the sources p(yT F l

)

where yT F l
=
(

yT F l
(1) yT F l

(2) . . . yT F l
(F )

)T

is the lth source estimate vector across
all F frequency bins. Here the time structure n is omitted for convenience, as it is
treated as an observation of the random vector yT F l

.

The chosen pdf should force the inter-frequency dependency in order to overcome the
permutation ambiguity across frequency bins. Previous research such as the work by
Brehm and Stammler [44] has identified the spherical symmetry characteristic of speech
signals, leading to the introduction of spherically invariant random processes (SIRP) as
a modeling framework for band-limited speech. This is done by introducing a spherically
symmetric pdf for the sources that is a function of the norm of the random vector

p(yT F l
) ∝ f(||yT F l

||2) = f


√√√√√ F∑

f=1
|yT F l

(f)|2
 (2.42)

where ||yT F l
||2 is the 2-norm of the vector.

In the literature [25] [45], an usual choice for the spherically symmetric pdf is the Laplace
distribution.

p(yT F l
) = ρ exp

−

√√√√√ F∑

f=1
|yT F l

(f)|2

 (2.43)

The score function of the lth source at frequency bin f can therefore be immediately
obtained by:

φ
(f)
l = −∂ log p(yT F l

(f))
∂yT F l

= yT F l
(f)√√√√√ F∑

f=1
|yT F l

(f)|2
(2.44)

And the score function vector for all sources φ(f) =
(

φ
(f)
1 φ

(f)
2 . . . φ

(f)
l

)T

In matrix form for all N time observations:

Φ(f) =
(

φ(f)(1) φ(f)(2) . . . φ(f)(N)
)

(2.45)

Another common choice for the pdf is the derivative of the sigmoide function [37]:

p(yT F l
(f)) = ∂

∂yT F l

σ(yT F l
(f)) = σ(yT F l

(f))(1− σ(yT F l
(f))) (2.46)
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where σ(yT F l
(f)) = 1

1 + e−yT F l
(f) is a cdf and widely used for neural networks. The

corresponding score function is therefore:

φ
(f)
l = 1− 2σ(yT F l

(f)) (2.47)

2.2.4 Cost function

As derived previously for ICA, the cost function to be optimized is either the mutual
information I(yT F ) or the entropy H(yT F ) since minimizing the first is equivalent to
maximazing the second:

JIV A =I(W(f), yT F ) = KL
(

p(yT F )∥
L∏

l=1
pi (yT F l

)
)

(2.48a)

=
∫

p(yT F 1 , . . . , yT F L
) log

(
p(yT F 1 , . . . , yT F L

)∏L
l=1 p(yT F l

)

)
dyT F 1 . . . yT F L

(2.48b)

=
∫

p(xT F 1 , . . . , xT F M
) log

(
p(xT F 1 , . . . , xT F M

)∏L
l=1 p(xT F l

)

)
dxT F 1 . . . xT F M

(2.48c)

−
∑

f

log |det(W(f)| −
L∑
l

log p(yT F l)

JIV A = −
∑

f

log |det(W(f)| −
L∑
l

log p(yT F l) + const (2.49)

When the estimated sources yT F 1, yT F 2, . . . yT F L are mutually independent, the joint pdf

should be the product of the marginal pdfs, i.e., p(yT F 1, . . . , yT F L) =
L∏

l=1
p(yT F l)

and:
Ŵ(f) = argminW(f)JIV A (2.50)

2.2.5 Update rule

The same update rule derived for the ICA is used for the IVA across each frequency bin
f using the natural gradient:

W(f) = W(f) + η
(
I− E[φ(f)yT F (f)H ]

)
WH(f) (2.51)
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The expectation value can be estimated over the N time observations:

E[φ(f)yH
T F (f)] = 1

N

N−1∑
n=0

φ(f)(n)yH
T F (f, n) = 1

N
Φ(f)YH

T F (f) (2.52)

2.2.6 Re-scaling

In order to fix the scaling ambiguity due to the separation process that is we
cannot determine the scales of the sources exactly, one uses a rescaling method, in IVA
the Minimal Distortion Principal (MDP) [46] is used, the MDP uses the following
transformation to correct the scaling of the sources:

Ws(f) = diag(Â(f))W(f) (2.53)

where Â(f) = W(f)#.

The MDP consists of the following: In a set of valid separators, choose W such that it
minimises E[||y − Px||2] for some permutation matrix P. One can show that this leads
to equation (2.53) in the case were we do not consider any permutation i.e P = I.

In this case the proof can be derived easily. Recall that the separation process is
achieved up to a diagonal matrix D(f):

W(f)A(f) = D(f) (2.54)

which yields:

diag(W#(f)) = diag(A(f)D−1(f)) = diag(A(f))D−1(f) (2.55)

and one gets:

Ws(f)A(f) =diag(A(f))D−1(f)D(f) (2.56a)
Ws(f)A(f) =diag(A(f)) (2.56b)

Equation (2.54) shows that the scaling ambiguity is therefore solved using the MDP.

2.2.7 Algorithm summary

Here below the pseudo-code for the batch Independent vector analysis algorithm.
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Algorithme 1 : IVA algorithm
input : Observed mixtures X = [x1, ..., xM ]T , number of sources L , number

of iterations NIter, learning rate η, NDFT, window
output : Estimated sources y1, ..., yL

1 Compute thr STFT XT F ∈ CM +F +N of the mixtures data X
2 for f ← 1 to F do
3 // Data whitening
4 XT F (f) = XT F (f)− µ(f) ∗ ones(1, N) // µ(f): along the time axis

5 RXX(f) = 1
N

XT F (f)XH
T F (f)

6 [E(f), D(f)] = Eig(RXX(f))
7 Q(f) = D− 1

2 (f)ET (f)
8 Xp(f) = Q(f)XT F (f)
9 // Initialize of Wp

10 Wp(f) = I

11 end
12 // Learning rules
13 for iter ← 1 to Niter do
14 for f ← 1 to F do
15 YT F (f) = Wp(f)Xp(f)
16 Calculate the score function φ

(f)
l = yT Fl

(f)√∑F

f=1 yT Fl
(f)|2)

for all l

17 Define φ(f)(n) = [φ(f)
1 (n), ..., φ

(f)
L (n)]

18 Concatenate N frames Φ(f) =
[
φ(f)(1) . . . φ(f)(N)

]
19 Estimate E

[
φ(f)yH

T F

]
≈ 1

N
Φ(f)YH

T F (f)

20 Compute the gradient ∆Wp(f) =
{
I− E

[
φ(f)yH

T F (f)
]}

Wp(f)
21 Update Wp(f): Wp(f) = Wp(f) + η∆Wp(f)
22 end
23 end
24 // Rescaling
25 for f ← 1 to F do
26 W(f) = Wp(f)Q(f) // Go back to original dimension
27 W(f) = diag(W#(f))W(f) // Apply minimal distortion principle
28 YT F (f) = W(f)XT F (f)
29 end
30 Calculate the ISTFT of YT F (f)
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2.3 Conclusion

In this chapter, our focus was on the exploration of the renowned Independent
Component Analysis (ICA) algorithm and its extension to the frequency domain using
the Short-Time Fourier Transform (STFT). Subsequently, we delved into the realm of
offline Independent Vector Analysis (IVA) and provided a comprehensive discussion on
its mathematical model and iterative update rule. Notably, we highlighted the elegant
solution offered by IVA for addressing the permutation problem encountered across
frequency bins, due to the sources multivariate priors. Additionally, we elucidated the
utilization of the MDP to correct the scaling of the output signal. This will be useful for
the next chapter when deriving the adaptive version of the Algorithm.
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Chapter 3

Adaptive Independent Vector Analysis

In this chapter we study the adaptive version of natural gradient based Independent
Vector Analysis mainly the one introduced by Kim in [32] which we in addition propose an
adaptive whitening to it in addition. The block index (n) is introduced to the unmixing
model to highlight the iterative nature over time of the adaptive version. We afterwards
generate synthetic mixtures in different scenarios (two and three speakers of the two
different genders) using Python and measure the separation performance and also test it
in noisy environment.

3.1 Natural Gradient based adaptive Independent
Vector Analysis

In order to implement a real-time BSS system, it is necessary to extract the outputs
before the next inputs come in. Thus, the learning process must be an adaptive algorithm.
In an adaptive algorithm, the coefficients of the separation-filter matrices are updated at
every frame [32].

3.1.1 Mathematical Model

Recall that the time domain convolutive model is given by:

x[n] =
P −1∑
p=0

A[p]s[n− p] (3.1)
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where x[n] is the signal mixture, s[n] is the sources signal and the matrix A[p] represents
the room response.

After receiving each portion of the mixture signal, we proceed to compute the STFT in
the current frame:

xT F (f, n) =
T −1∑
t=0

γ[t]x[t− nR]e−j 2πft
F (3.2)

thus, the convolutive model becomes an instantaneous one at each frequency bin f :

xT F (f, n) = A(f, n)sT F (f, n) (3.3)

3.1.2 Adaptive Whitening

Since the separation is online, we cannot apply (PCA) since we would need the
whole data overtime which we don’t have access to in real time. Therefore, one needs
to perform whitening in an adaptive manner, hence the need to compute both the mean
vector µ and the covariance matrix. Thus, we propose an adaptive whitening which is
our main contribution.

3.1.2.1 Mean vector

The mean vector at frame n can be estimated by:

µ(f, n) = 1
n

n−1∑
n′=0

xT F (f, n′) (3.4)

one can easily obtain the following recursive formula:

µ(f, n) = n− 1
n

µ(f, n− 1) + 1
n

xT F (f, n) (3.5)

as n grows the value of the mean won’t get updated as the second term goes to 0. In
order to avoid that we opt for an exponential window:

µ(f, n) = αµ(f, n) + (1− α)xT F (f, n) (3.6)

Where 0 < α < 1 is a smoothing factor. Then we subtract the mean from the data:

xT F (f, n) := xT F (f, n)− µ(f, n) (3.7)
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3.1.3 Covariance matrix

In order to whiten the data, we need to compute the covariance matrix Rxx(f, n)
which has as expression the following:

Rxx(f, n) = 1
n

n−1∑
n′=0

xT F (f, n′)xT F (f, n′)H (3.8)

which can be computed using the recursive formula:

Rxx(f, n) = n− 1
n

Rxx(f, n− 1) + + 1
n

xT F (f, t)xT F (f, n)H (3.9)

A good choice would be to use an exponential window:

Rxx(f, n) = αRxx(f, n− 1) + (1− α)xT F (f, n)xT F (f, n)H (3.10)

Using EVD we obtain:

[
D(f, n), E(f, n)

]
= Eig(Rxx(f, n)) (3.11)

where D(f, n) is the diagonal matrix which contains the L largest eigenvalues of
Rxx(f, n) and E(f, n) is the matrix containing the corresponding eigenvectors.

The whitening matrix is Q(f, n) at each new time frame n is:

Q(f, n) = D(f, n)− 1
2 E(f, n)H (3.12)

Then, the whitening data xT Fp(f, n) will be:

xT F (f, n) := Q(f, n)xT F (f, n) (3.13)

3.1.4 Updating the separation filter

Each output signal will be computed in real-time using the following equation:

yT F (f, n) = W(f, n)xT F (f, n) (3.14)

Our purpose here, is to update the separating filter using an adaptive natural gradient
descent.
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To do so, we calculate the new filter at each frame with the learning rule:

W(f, n) = W(f, n− 1) + η(f, n)∆W(f, n) (3.15)

where η(f, n) = η√
ξ(f, n)

is an adaptive learning rate.

The normalisation factor ξ(f, n) is defined as:

ξ(f, n) = βξ(f, n− 1) + (1− β)
L∑

i=1
|xi(f, n)|2 /L (3.16)

β is a forgetting factor. Introducing a normalisation factor not only enhances the
algorithm’s robustness but also increases its ability to withstand abrupt changes in
input signal energy. This is achieved by dividing the input signal’s sample Root Mean
Square (RMS). To prevent the occurrence of a scenario where ξ(f, n)−1 becomes infinite,
a small constant ϵ is added to the term ξ(f, n) to prevent division by zero.

∆W(f, n) denotes the natural gradient at the current frame which has for expression:

∆W(f, n) =
(
I− E[φ(f)(n)yT F (f, n)H ]

)
W(f, n) (3.17)

where I is the identity matrix and φ(f, n) is the score function which is given by:

φ(f)(n) =
(

φ
(f)
1 (n) . . . φ

(f)
L (n)

)T

(3.18)

where:
φ

(f)
l (n) =

yT F l
(f, n)√√√√√ F∑

f=1
|yT F l(f, n)|2

(3.19)

In order to estimate the expectation we need the whole ensemble of N time frames.

R(f) = E[φ(f)yT F (f)H ] = 1
N

N−1∑
n=0

φ(f, n)yT F (f, n)H (3.20)

In online IVA this is not suitable, so we use an instantaneous stochastic gradient.
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Here, the online version of the expectation becomes:

R(f, n) = E
[
φ(f)(n)yT F (f, n)H

]
≈ φ(f)(n)yT F (f, n)H (3.21)

And thus one obtains the following:

W(f, n) = W(f, n− 1) + η(f, n)
(
I−φ(f)(n)yT F (f, n)H

)
W(f, n) (3.22)

3.1.4.1 Nonholonomic constraint

In many applications, such as speech signals, when a source signal becomes very
small suddenly, the corresponding coefficients of separation filters tend to be large in the
learning process to compensate for this changes and to emit the output signal larger. In
particular, when one source signal becomes silent, the separation filters diverge. Therefore,
we adopt a nonholonomic constraint[47] to avoid this phenomenon.

It was shown that the diagonal term in equation (3.22) can be set arbitrarily [48],[49],[50] .
The problem has been analysed also based on the information geometry of semi-parametric
statistical models ([51] [52] [53]). Therefore, the above algorithm can be generalised in a
more flexible and universal form as:

W (t + 1) = W (t) + η(t)
[
Λ(t)−φ(y(t))yH(t)

]
W (t),

where Λ(t) is any positive definite scaling diagonal matrix. By determining Λ correctly
depending on y, we have various algorithms. Amari et al. proposed in [47]:

Λ(t) = diag(φ(y(t))yH(t))

The new constraints lead to a new learning algorithm, written as:

W(t + 1) = W(t) + η(t)F[y(t)]W(t) (3.23)

where all the elements on the main diagonal of the L + L matrix F(y) are put equal to
zero, that is:

fii = 0 (3.24)

and:
fij = φiyl i ̸= j (3.25)
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The learning rule in equation 3.23, is called the orthogonal nonholonomic natural
gradient descent algorithm. In consequence, we obtain the following gradient with the
constraint by simply replacing the identity matrix I in (3.17) with Λ(f, n).

Where:
Λ(f, n) = diag(R(f, n)) (3.26)

Then, the natural gradient becomes:

∆W(f, n) = (Λ(f, n)−R(f, n))W(f, n) (3.27)

3.1.5 Rescaling

The last step in the separation process is to adjust the scaling of the sources and
that is using the MDP principle discussed previously.

Ws(f, n) = diag(W′(f, n)#)W′(f, n) (3.28)

Where W′(f, n) = W(f, n)Q(f, n) denotes the separation filter projected back into the
original dimension (L + M).

3.1.6 Signal reconstruction

Once the output signals are estimated in frequency domain, we convert back to time
domain by calculating the inverse short time Fourier transform:

y[n] = ŝ[n] = ISTFT(Ws(f, n)xT F (f, n)) (3.29)

3.1.7 Algorithm summary

Herein, we present a concise pseudo-code (algorithm summary) for the adaptive
natural gradient based IVA (NG IVA) with whitening process. The pseudo code captures
and summarises every equation and step given at the beginning of this chapter.
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Algorithme 2 : Adaptive IVA
input : T samples of observed mixtures x1[t], ..., xM [t] t = 1 . . . T , number of

sources L, NFFT,window, learning rate η, forgetting factors β, α
output : T samples of estimated sources y1[t], ..., yL[t] in time domain t = 1 . . . T

1 Initialize Rx(f, 0) with IM for all f
2 Initialize R(f, 0) and W(f, 0) with IL for all f
3 Calculate the M-channel forward FFT; xT F (f, n) = FFT (x{1,...,M})
4 Whitening

5 for f ← 1toF do
6 compute the mean recursively: µ(f, n) = αµ(f, n− 1) + (1− α)x(f, n)
7 xT F (f, n) = xT F (f, n)− µ(f, n)
8 compute covariance matrix recursively

Rx(f, n) = αRx(f, n− 1) + (1− α)xT F (f, n)xH
T F (f, n)

9

[
D(f, n), E(f, n)

]
= Eig(Rx(f, n)) // Eigenvalue decomposition

10 xT F (f, n) = D(f, n)− 1
2 E(f, n)HxT F (f, n) // dimension reduction

11 yT F (f, n) = W(f, n)xT F (f, n)
12 for l ← 1toL do

13 Perform separation
14 for f ← 1toF do
15 compute the sources priors φ

(f)
l (n) = yl(f,n)√∑F

f=1 |yl(f,n)|2

16 Concatenate φ(f, n) =
(
φ1(f, n) . . . φL(f, n)

)T
// score function

17 R(f, n) = φ(f, n)y(f, n)H // Correlation matrix

18 ∆W(f, n) =
(
diag(R(f, n))−R(f, n)

)
W(f)[n] // natural gradient

19 ξ(f, n) = βξ(f, n− 1) + (1− β)
L∑

i=1
|xi(f, n)|2 /L // normalization

20 W(f, n) = W(f, n) + η√
ξ(f, n) + ϵ

∆W(f, n− 1) // separation matrix

21 Rescaling (for all f)

22 W(f, n) = W(f, n)D(f, n)− 1
2 E(f, n)H // Back to original dimension

23 W(f, n) = diag(W(f, n)#)W(f, n) // Apply MDP to correct scaling

24 yT F (f, n) = W(f, n)xT F (f, n) // Estimate output signal

25 Compute ISTFT (for all l)
26 n = n + 1 // increment time block (n)

27 yl[t] = IFFT (yT F l
(f, n)) t = 1 . . . T // T samples of estimate sources

28
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3.2 Experimental results

3.2.1 Softwares

3.2.1.1 Data generation Python

Python is an interactive, high-level, object-oriented scripting language that is widely
used for various applications, including mathematical computation and audio processing.
It offers extensive support and a diverse range of libraries, making it well-suited for
tasks related to Blind Source Separation (BSS). In our project, we utilized Python 3.9 to
generate synthetic speech mixtures. The Library used is outlined down below.

Pyroomacoustics [54] is audio simulation software that includes a quick Room Impulse
Response (RIR) generator and reference implementations of common algorithms like
beamforming, Direction Of Arrival (DOA) estimation, and adaptive filtering. We
utilized Pyroomacoustics’ RIR generator in our code to generate synthetic mixtures.

3.2.1.2 Reverberation time RT60

The reverberation time (RT) refers to the duration it takes for the energy of an
impulse response to decrease below a specific threshold, typically expressed in decibels.
A commonly used threshold is -60 dB, denoted as RT60. In this report, the calculation of
reverberation time is performed using the Schroeder integral method [55]. This method
defines a continuous decay curve (E) to quantify the decay characteristics.

E(t) =
∫ ∞

t
a2(t′)dt′ (3.30)

Another discrete normalised version is

E[n] =
∑∞

n′=n a2[n′]∑∞
n′=0 a2[n′]

To estimate a line that intersects the horizontal axis at -60dB, linear regression analysis
can be employed. A MATLAB implementation of this approach can be found in [56]. For
more comprehensive information on measuring reverberation time and analysing decay
curves, refer to [57].
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3.2.1.3 MATLAB

MATLAB, short for Matrix Laboratory, is a programming platform extensively used
in engineering applications like signal processing and data science. It features a high-
performance matrix programming language developed by MathWorks, enabling efficient
data analysis, algorithm optimization, and model design. MATLAB’s toolboxes, including
the BSS Eval Toolbox, enhance its functionality, with the latter being distributed online
under the GNU Public License. We used an HP core i5-2035G4 with a CPU 1.5 GHz.

3.2.2 Performance parameters

The Signal-to-Distortion-Ratio (SDR), Signal-to-Interference-Ratio (SIR) and
Signal-to-Artefact-Ratio (SAR) defined in [58] are used throughout this thesis to
evaluate the separation performances.

Based on the following model, the decomposition of an estimated signal is:

ŝl(t) = starget(t) + einterf (t) + eartif (t) (3.31)

where starget = F(sl(t)) represents the original signal modified by an allowed distortion
F , einter is an allowed deformation of the sources which accounts for the interferences of
the unwanted sources whereas eartif is an “artifact” term that may correspond to artifacts
of the separation algorithm such as musical noise, etc. or simply to deformations induced
by the separation algorithm that are not allowed [59].

SDR is usually considered to be an overall measure of how good a source sounds. It
measures how well the desired source has been extracted while suppressing unwanted
components. It is computed as follows:

SDR = 10 log10
||starget||2

||einter + eartif ||2
(3.32)

SIR is usually interpreted as the amount of other sources that can be heard in a source
estimate. This is most close to the concept of “bleed”, or “leakage”. It quantifies the
ability of the separation algorithm to suppress unwanted sources and isolate the desired
source. SIR is computed as follows:

SIR = 10 log10
||starget||2

||einter||2
(3.33)
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SAR is usually interpreted as the amount of unwanted artifacts a source estimate has
with relation to the true source. The formula for SAR is:

SAR = 10 log10
||starget||2

||eartif ||2
(3.34)

these measures provide a quantitative assessment of the separation quality, allowing for
comparisons and evaluations of different BSS algorithms. While they don’t directly
correspond to physical phenomena, they serve as useful indicators of the quality of the
separated sources based on their power characteristics. Of course, the higher the values
are the better are the performances.

||a||2 = ⟨a, a⟩ is the energy of a and ⟨a, b⟩ =
T −1∑
t=0

a[t]b∗[t] denotes the inner product between

two complex valued signals of length T .

The terms in the right hand side of equation (3.29) are estimated using the
decomposition method. The decomposition is based on orthogonal projections. Let
Π {y1, . . . , yk} denote the orthogonal projector onto the subspace spanned by the vectors
y1, . . . , yk. The projector is a T + T matrix, where T is the length of these vectors. We
consider the two orthogonal projectors:

Psl
:= Π {sl} (3.35)

PS := Π
{
(sl′)1≤l′≤L

}
(3.36)

and we decompose ŝl as the sum of the three terms:

starget := Psl
ŝl (3.37)

einterf := Psŝl − Psl
ŝl (3.38)

eartif : = ŝl − starget − eartif (3.39)

if the sources are mutually independent, then the last step is straightforward and the
terms are computed using inner products are projectors as follows:

starget = ⟨ŝl, sl⟩
||sl||2

sl (3.40)

einterf =
∑
l′ ̸=l

⟨ŝl, sl′⟩
||s′

l||2
sl′ (3.41)
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3.2.2.1 Experimental setup

In our simulation, we generated Room Impulse Responses (RIRs) using
Pyroomacoustics with an RT60 of 150ms for a room measuring 5.5 + 3.5 + 2.75 meters.
A circular microphone array consisting of one central microphone and six equidistantly
spaced microphones was used.

We conducted two mixing scenarios: a two-source scenario and a three-source scenario.
The two-source scenario involved different combinations of male (M) and female (F)
speakers, while the three-source scenario included two females with one male and two
males with one female.

For the two-source scenario, the speech signals had a duration of 27 seconds. We evaluated
the performance of the classic online Natural Gradient-based Independent Vector Analysis
(online NG IVA) algorithm and the proposed online NG IVA algorithm with whitening.
We measured SIR, SDR and SAR values at one-second intervals using BSS eval toolbox
[58]. Interpolated graphs were generated to visualize the temporal evolution of SIR, SAR,
and SDR, and their average values after convergence (around 7 seconds and 4 seconds
respectively) were represented using bar diagrams.

To accommodate the classic online NG IVA algorithm without whitening, we used two
symmetrically placed microphones and deactivated the remaining ones. The learning
rate (η) was initially set to the largest value before divergence, and then reduced by 50%
after each additional 25% of the total number of frames (N). The signals were sampled
at a rate of 16000kHz, and a 256-point FFT with a 75% overlap (shift size of 64
samples) was employed. The forgetting factors (β and α) were set to 0.5 and 0.985,
respectively.

Figure 3.1: Room Impulse Response from source 1 to mic 1.

Figure 3.1 shows the generated RIR from source 1 to microphone 1.
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The experiment setup for two sources scenario are resumed in the table 3.1 down below:

Reverberation time 150 ms

Room dimensions 5.5m + 3.5m + 2.75 m

Positions of microphones [2.75, 1.75, 1.4], [2.795, 1.75, 1.4] [2.705, 1.75, 1.4]
, [2.773, 1.788, 1.4],[2.773, 1.711, 1.4], [2.72, 1.78, 1.4], [2.72,
1.71, 1.4]

Sources positions [2.9, 2.183, 1.5], [4.2, 2, 1.5]

Signal duration 27 s

Sampling rate 16 000 Hz

Learning rate η IVA with whitening 3 then 1.5 then 0.75 then 0.375
IVA without whitening 2.5 then 1.25 then 0.625 then 0.3125

NFFT 256 samples

Window 2 Hanning(t)/NFFT

Shift size 64 samples

Forgetting factors β = 0.5, α = 0.985

Initalisations W(f, 0) = IL, Rx(f, 0) = IM , R(f, 0) = IL and µ(f, 0) = 0
for all frequencies F

Table 3.1: Experiment parameters

Figure 3.2: Two sources configuration.

Figure 3.2 illustrates the microphones and sources positions for two sources scenario.
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The experiment setup for three sources scenario are resumed in the table 3.2 down below.

Reverberation time 150 ms

Room dimensions 5.5m + 3.5m + 2.75 m

Positions of microphones [2.75, 1.75, 1.4], [2.799, 1.75, 1.4], [2.5, 1.79, 1.4], [2.81, 1.8,
1.4]
, [2.69, 1.711, 1.4], [3.1, 1.58, 1.4],[3.2, 1.78, 1.4]

Sources positions [3.21, 1.921, 1.5], [2.36, 2.07, 1.5], [2.66, 1.25, 1.5]

Signal duration 27 s

Sampling rate 16 000 Hz

Learning rate η IVA with whitening 2.5 then 1.25 then 0.625 then 0.3125
IVA without whitening 2 then 1 then 0.5 then 0.25

NFFT 256 samples

Window 2 Hanning(t)/NFFT

Shift size 64 samples

Forgetting factors β = 0.5, α = 0.985

Initalisations W(f, 0) = IL, Rx(f, 0) = IM , R(f, 0) = IL and µ(f, 0) = 0
for all frequencies F

Table 3.2: Experiment parameters for three sources scenario

Figure 3.3: Three sources configuration.

Figure 3.3 illustrates the microphones and sources positions for three sources scenario.
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3.2.3 Results

3.2.3.1 Two sources scenario

Two females case: Here below, we present the performances in the case of two female
speakers.

Figure 3.4: SIR of source 1 (dB)
evolution in time (s) 2F.

Figure 3.5: SIR of source 2 (dB)
evolution in time (s) 2F.

Figure 3.6: Mean values of SIR in the case of two female speakers.

Figures 3.4, 3.5 and 3.6 show SIR values (both over time and mean values in bars with
and without whitening respectively) for two female speakers case, show that whitening
increases SIR of the estimated signals. Both algorithms converge over time to
approximately 16 dB and 14 dB for source 1 and to 14 dB and 8 dB for source 2.
However, there are some fluctuations because the learning rule is stochastic.
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Figure 3.7: SDR of source 1 (dB)
evolution in time (s) 2F.

Figure 3.8: SDR of source 2 (dB)
evolution in time (s) 2F.

Figure 3.9: Mean values of SDR in the case of two female speakers

Figures 3.7, 3.8 and 3.9 show SDR values (both over time and mean values in bars with
and without whitening respectively) for two female speakers case, show that whitening
increases SIR of the estimated source 1 while classic NG IVA outperforms slightly NG
IVA with whitening. Both algorithms converge over time to approximately 21 dB and 15
dB for source 1 and to 20 dB and 19 dB for source 2. However, there are some fluctuations
because the learning rule is stochastic.
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Figure 3.10: SAR of source 1 (dB)
evolution in time (s) 2F.

Figure 3.11: SAR of source 2 (dB)
evolution in time (s) 2F.

Figure 3.12: Mean values of SAR in the case of two female speakers.

Figures 3.10, 3.11 and 3.12 show SAR values (both over time and mean values in bars with
and without whitening respectively) for two female speakers case, show that whitening
increases SAR of the estimated sources (although just slightly for the second source).
Both algorithms converge over time to approximately 16 dB and 15 dB for source 1 and
to 15 dB and 10 dB for source 2. However, there are some fluctuations because the
learning rule is stochastic.
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Two males case: Here below„ we present the performances in the case of two male
speakers.

Figure 3.13: SIR of source 1 (dB)
evolution in time (s) 2M.

Figure 3.14: SDR of source 2 (dB)
evolution in time (s) 2M.

Figure 3.15: Mean values of SIR in the case of two male speakers.

Figures 3.13, 3.14 and 3.15 show SIR values (both over time and mean values in bars
with and without whitening respectively) for two male speakers case, show that whitening
increases SIR of the estimated sources (although just slightly for the second source). Both
algorithms converge over time to approximately 18 dB and 15 dB for source 1 and to 16
dB and 15 dB for source 2. However, there are some fluctuations because the learning
rule is stochastic.
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Figure 3.16: SDR of source 1 (dB)
evolution in time (s) 2M.

Figure 3.17: SDR of source 2 (dB)
evolution in time (s) 2M.

Figure 3.18: Mean values of SDR in the case of two male speakers.

Figures 3.16, 3.17 and 3.18 show SDR values (both over time and mean values in bars
with and without whitening respectively) for two male speakers case, show that whitening
increases SDR of the estimated sources (although just slightly). Both algorithms converge
over time to approximately 20 dB and 19 dB for source 1 and to 21 dB and 19 dB for
source 2. However, there are some fluctuations because the learning rule is stochastic.
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Figure 3.19: SAR of source 1 (dB)
evolution in time (s) 2M.

Figure 3.20: SAR of source 2 (dB)
evolution in time (s) 2M.

Figure 3.21: Mean values of SAR in the case of two male speakers.

Figures 3.19, 3.20 and 3.21 show SAR values (both over time and mean values in bars
with and without whitening respectively) for two male speakers case, show that
whitening increases SAR of the estimated sources. Both algorithms converge over time
to approximately 21 dB and 15 dB for source 1 and to 20 dB and 15 dB for source 2.
However, there are some fluctuations because the learning rule is stochastic.
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One male and one female case: Here below, we present the performances in the case
of one male and one female speakers.

Figure 3.22: SIR of source 1 (dB)
evolution in time (s) 1M+1F.

Figure 3.23: SIR of source 2 (dB)
evolution in time (s) 1M+1F.

Figure 3.24: Mean values of SIR in the case of two male speakers.

Figures 3.22, 3.23 and 3.24 show SIR values (both over time and mean values in bars with
and without whitening respectively) for one male and one female speakers case, show that
whitening increases SAR of the estimated sources. Both algorithms converge over time
to approximately 16 and 11 dB for source 1 and to 13 and 10 dB for source 2. However,
there are some fluctuations because the learning rule is stochastic.
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Figure 3.25: SDR of source 1 (dB)
evolution in time (s) 1M+1F.

Figure 3.26: SDR of source 2 (dB)
evolution in time (s) 1M+1F.

Figure 3.27: Mean values of SDR in the case of two male speakers.

Figures 3.25, 3.26 and 3.27 show SDR values (both over time and mean values in bars with
and without whitening respectively) for one male and one female speakers case, show that
whitening increases SAR of the estimated sources. Both algorithms converge over time
to approximately 20 and 15 dB for source 1 and to 17 and 15 dB for source 2. However,
there are some fluctuations because the learning rule is stochastic.
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Figure 3.28: SAR of source 1 (dB)
evolution in time (s) 1M+1F.

Figure 3.29: SAR of source 2 (dB)
evolution in time (s) 1M+1F.

Figure 3.30: Mean values of SAR in the case of one male and one female speakers.

Figures 3.28, 3.29 and 3.30 SAR values (both over time and mean values in bars with
and without whitening respectively) for one male and one female speakers case, show that
whitening increases SAR of the estimated sources. Both algorithms converge over time
to approximately 20 and 15 dB for source 1 and to 17 and 15 dB for source 2. However,
there are some fluctuations because the learning rule is stochastic.
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The table below provides the overall average-values of SIR SDR and SAR for all three
cases of two speakers’ scenario for NG online IVA with (w) and without (w/o) whitening.

SIR (dB) SDR (dB) SAR (dB)

Case Methods S1 S2 S1 S2 S1 S2

2 females
NG IVA w whitening 14.20 12.31 20.10 17.88 16.05 14.67

NG IVA w/o whitening 11.60 8.34 15.30 19.51 14.38 8.85

2 males
NG IVA w whitening 16.23 14.85 18.75 19.79 20.62 16.86

NG IVA w/o whitening 13.90 13.28 17.43 18.11 17.14 15.28

1 male

1 female

NG IVA w whitening 12.7 11.41 15.78 14.36 16.37 13.91

NG IVA w/o whitening 11.80 9.86 17.10 15.01 14.65 11.67

Table 3.3: Two sources: the algorithms’ performances (average SIR SDR and SAR).

Comment:

The results in table 3.3 demonstrate that both algorithms performed well in
separating the sources in the two-speaker scenario, with the majority of values exceeding
10 dB for all three performance criteria (Average SIR, SDR and SAR values). Notably,
the NG IVA algorithm with whitening consistently outperformed the NG IVA algorithm
without whitening, except on two occasions where the performance was comparable.

The highest recorded values for SIR, SDR, and SAR were 16.23 dB, 20.10 dB, and 20.62
dB, respectively, while the lowest values were 8.34 dB, 14.36 dB, and 8.85 dB, respectively.
It is worth mentioning that the adaptive NG IVA algorithm with whitening achieved the
highest values, whereas the adaptive NG IVA algorithm without whitening attained the
lowest values among the evaluated configurations.

These findings indicate that the algorithms exhibit satisfactory performance in
separating sources in the two-speaker scenario with different male and female
combinations, as evidenced by the high SDR, SAR, and SIR values.
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3.2.3.2 Three sources scenario

Two females and one male case: Here below, we present the performances in the case
of two female and one male speakers.

Figure 3.31: SIR of source 1 (dB)
evolution in time (s) 2F+1M.

Figure 3.32: SIR of source 2 (dB)
evolution in time (s) 2F+1M.

Figure 3.33: SIR of source 3 (dB)
evolution in time (s) 2F+1M.

Figure 3.34: Mean values of SIR in the case
of two females and one male speakers.

Figures 3.33, 3.32, 3.33 and 3.34 show SIR values (both over time and mean values in
bars with and without whitening respectively) for two females one male speakers case,
show that whitening increases SIR of the estimated sources. Both algorithms converge
over time to approximately 15 and 12 dB for source 1, to 15 and 1 dB for source 2 and to
8 and 6 dB for source 3. However, there are some fluctuations because the learning rule
is stochastic.
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Figure 3.35: SDR of source 1 (dB)
evolution in time (s) 2F+1M.

Figure 3.36: SDR of source 2 (dB)
evolution in time (s) 2F+1M.

Figure 3.37: SDR of source 3 (dB)
evolution in time (s) 2F+1M.

Figure 3.38: Mean values of SDR in the case
of two females and one male speakers.

Figures 3.33, 3.32, 3.33 and 3.34 show SDR values (both over time and mean values in
bars with and without whitening respectively) for two females one male speakers case,
show that whitening increases SDR of the estimated sources. Both algorithms converge
over time to approximately 20 and 16 dB for source 1, to 20 and 10 dB for source 2 and
to 15 and 13 dB for source 3. However, there are some fluctuations because the learning
rule is stochastic.
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Figure 3.39: SAR of source 1 (dB)
evolution in time (s) 2F+1M.

Figure 3.40: SAR of source 2 (dB)
evolution in time (s) 2F+1M.

Figure 3.41: SAR of source 3 (dB)
evolution in time (s) 2F+1M

Figure 3.42: Mean values of SAR in the case
of two females and one male speakers.

Figures 3.39, 3.40, 3.41 and 3.42 show SAR values (both over time and mean values in
bars with and without whitening respectively) for two females one male speakers case,
show that whitening increases SAR of the estimated sources. Both algorithms converge
over time to approximately 19 and 15 dB for source 1, to 18 and 0 dB for source 2 and
to 11 and 6 dB for source 3. However, there are some fluctuations because the learning
rule is stochastic.
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Two males and one female: Here below, we present the performances in the case of
two female and one male speakers.

Figure 3.43: SIR of source 1 (dB)
evolution in time (s) 2M+1F.

Figure 3.44: SIR of source 2 (dB)
evolution in time (s) 2M+1F.

Figure 3.45: SIR of source 3 (dB)
evolution in time (s) 2M+1F

Figure 3.46: Mean values of SIR in the case
of two males and one female speakers.

Figures 3.43, 3.44, 3.45 and 3.46 show SIR values (both over time and mean values in
bars with and without whitening respectively) for two males and one female speakers case,
show that whitening increases SIR of the estimated sources. Both algorithms converge
over time to approximately 16 and 12 dB for source 1, to 15 and 5 dB for source 2 and
to 16 and 10 dB for source 3. However, there are some fluctuations because the learning
rule is stochastic.
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Figure 3.47: SDR of source 1 (dB)
evolution in time (s) 2M+1F

Figure 3.48: SDR of source 2 (dB)
evolution in time (s) 2M+1F.

Figure 3.49: SDR of source 3 (dB)
evolution in time (s) 2M+1F

Figure 3.50: Mean values of SDR in the case
of two males and one female speakers.

Figures 3.47, 3.48, 3.49 and 3.50 show SDR values (both over time and mean values in
bars with and without whitening respectively) for two males and one female speakers case,
show that whitening increases SDR of the estimated sources. Both algorithms converge
over time to approximately 20 and 18 dB for source 1, to 18 and 14 dB for source 2 and
to 20 and 15 dB for source 3. However, there are some fluctuations the learning rule is
stochastic.
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Figure 3.51: SAR of source 1 (dB)
evolution in time (s) 2M+1F

Figure 3.52: SAR of source 2 (dB)
evolution in time (s) 2M+1F.

Figure 3.53: SAR of source 3 (dB)
evolution in time (s) 2M+1F

Figure 3.54: Mean values of SAR in the case
of two males and one female speakers.

Figures 3.51, 3.52, 3.53 and 3.54 show SAR values (both over time and mean values in
bars with and without whitening respectively) for two males and one female speakers case,
show that whitening increases SAR of the estimated sources. Both algorithms converge
over time to approximately 15 and 13 dB for source 1, to 15 and 5 dB for source 2 and
to 18 and 10 dB for source 3. However, there are some fluctuations the learning rule is
stochastic.
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The table 3.4 below provides the overall average-values of SIR SDR and SAR for all two
cases of three speakers’ scenario for NG online IVA with (w) and without (w/o) whitening.

Table 3.4: Three sources: the algorithms’ performances (average SIR SDR and SAR).

Comment:

The obtained results in table 3.4 demonstrate the effectiveness of both algorithms
in the task of source separation, with the majority of values surpassing the threshold of
10dB for all three performance criteria, namely SDR, SAR SIR.

Notably, the algorithm incorporating whitening in adaptive NG IVA consistently
outperforms the algorithm without whitening, demonstrating superior separation
performance in the majority of cases. This observation suggests that incorporating
whitening into the NG IVA algorithm enhances its ability to discriminate and separate
sources in a more robust manner.

Although the performance of the algorithms slightly declined when confronted with the
scenario involving three speakers, they still exhibited noteworthy separation capabilities.
The highest recorded values for SIR, SDR, and SAR were 14.12dB, 18.32dB, and 17.00dB,
respectively, while the lowest values were -0.21dB, 10.68dB, and 0.56dB, respectively. It
is worth noting that the adaptive NG IVA algorithm with whitening achieved the highest
values, while the adaptive NG IVA algorithm without whitening attained the lowest values
among the tested configurations.
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3.2.3.3 Noise effect

Next on, we evaluated the algorithm’s performance in a noisy environment, for that
we generated white noise with SNR values ranging from -20 to 30 dB and plotted average
values over time for SIR, SDR and SAR with Monte-Carlo realization (NMC=20).

Figure 3.55: Effect of SNR on the SIR of
separated signals (2 males) using MC runs.

Figure 3.56: Effect of SNR on the SDR of
separated signals (2 males) using MC runs.

Figure 3.57: Effect of SNR on the SAR of the separated signals (2 males) using MC runs.

Figures 3.55, 3.56 and 3.57 show that the algorithm’s performance increases when the
noise level decreases.
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Finally to prove the convergence of the algorithm over time blocs indexes (n), we computed
the MSSG (Mean Squared Sum of Gradient) of instantaneous natural gradient matrix:

MSSG(n) = 1
NFL

∑
i,j,f

|∆wi,j(f, n)|2 (3.42)

Figure 3.58: MSSG of adaptive NG IVA convergence for the case of two female speakers.

As shown by figure (3.58) the sum convergence to zero over the adaptation, which confirms
the algorithm convergence, however the convergence was a bit erratic especially in early
stages but afterwards it settles quickly.

3.3 Conclusion

In this chapter we presented at the mathematical formulation for the adaptive
version of natural gradient IVA and proposed an adaptive whitening which allows us to
have more microphones than sources unlike the standard adaptive Natural Gradient IVA
in [32] where the number of sources was forced to be equal to the number of
microphones.

Adaptive NG IVA was evaluated with both whitening and without whitening. The results
show that the algorithm achieves good separation in both cases. Although adaptive NG
IVA with whitening outperforms adaptive NG IVA without whitening, it comes with a
computational cost since adaptive NG IVA takes twice the time the standard adaptive
NG IVA whcih is due mainly to eigenvalue decomposition at each frame.
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Real world tests using UMA-16 v2

To validate the algorithm’s efficacy in real-life scenarios, we conducted experiments
using recorded mixtures of multiple speakers captured with a UMA-16 v2 microphone
array. In this context, we provide a comprehensive description of the UMA-16, including
its technical specifications, physical characteristics, and detailed operating mode
guidelines. By extending the evaluation to real-life mixtures, we aim to assess the
algorithm’s performance under more realistic conditions and validate its suitability for
practical applications.

4.1 UMA-16 v2

4.1.1 Who are miniDSP

miniDSP, a prominent manufacturer in the field of Digital Audio Signal Processors,
has established itself as a leader in providing solutions for various markets including Home
Theater, HiFi, headphones, and the automotive industry. Founded in 2009, miniDSP is
a technology company that specializes in developing Digital Signal Processing (DSP)
platforms for audio applications. Headquartered in Hong Kong, a bustling and vibrant
city, miniDSP benefits from its close proximity to Shenzhen, China’s largest electronic
manufacturing hub, allowing the company to actively engage in the dynamic industry.
The company’s growth and success are driven by a passion for technology and an agile
product development approach, which has enabled the development of valuable in-house
intellectual property. [60]
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4.1.2 UMA-16 v2 USB

Figure 4.1: UMA-16 front.

The Uniform Microphone Array
(UMA)-16 v2 shown in figure 4.1 is
the latest Digital Audio Signal Processor
device developed by miniDSP it is a
sixteen-channel microphone array with
plugplay USB audio connectivity. With its
onboard XMOS interface, the UMA-16 is
the perfect fit for the development of beam-
forming algorithms or for DIY acoustic
camera. Its system architecture consists of
two core elements:

• A microphone PCB with 16 x Knowles
SPH1668LM4H MEMS microphones in a
uniform rectangular array (URA). A center
hole fits an optional USB camera for
applications such as acoustic cameras. The
microphone PCB is a simple 2-layer design
that can easily be customized to your needs
by following the schematics included in the
user manual.

• Stacked on top of the mic array is the MCHStreamer Lite USB interface. This XMOS
XCORE interface allows for a high quality PDM to PCM conversion and presents all 16
channels of raw audio to the USB interface.

Features

① Multichannel USB microphone array for voice command.

② 16 channels of RAW audio for development of custom beamforming algorithms

③ High quality MEMS from Knowles SPH1668LM4H.

④ USB to PDM conversion for up to 16 x PDM MEMS microphones. Center Hole for
USB camera (not provided).

⑤ Sample Matlab code to get started.
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Technical specifications
Below in table 4.1 the technical specifications of UMA-16 v2 USB [61].

Item Description

USB audio input XMOS Xcore200 asynchronous USB audio up to 48 kHz, USB
Audio Class 2 compliant

❍ ASIO driver for Windows

❍ Driverless for macOS

PDM inputs Up to 16 x MEMS microphone connections (8 x stereo PDM
data lines)

MEMS microphone 16 x SPH1668LM4H - Acoustic Overload @ 120dBSPL / High SNR
of 65dB / RF shielded

ADC/DAC Sample rate Sample rate: 8, 11.025, 12, 16, 32, 44.1 or 48 kHz

Resolution Resolution: 24 bit

USB port USB port type Mini-B for audio streaming and firmware upgrade

Power supply USB powered

Dimensions 132 x 202 x 18 mm (H x W x D)

Mounting 4 x M3 holders for front panel mounting / CAD drawings available
on demand.

Table 4.1: Key technical features of the UMA-16 v2.

Discovering the UMA-16 with Matlab

Inside MATLAB, we can define our recording interface using the device reader object
1 fs = 48000;
2 audioFrameLength = 1024;
3 deviceReader = audioDeviceReader (...
4 ’Device ’, ’miniDSP ASIO Driver ’ ,...
5 ’Driver ’, ’ASIO ’, ...
6 ’SampleRate ’, fs , ...
7 ’NumChannels ’, 16 ,...
8 ’OutputDataType ’,’double ’ ,...
9 ’SamplesPerFrame ’, audioFrameLength );

Listing 4.1: Recording interface code in MATLAB.
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Microphone array mechanical drawing

Down below the microphone array mechanical drawing, the inter-element spacement
between two microphones along the x-axis is dx = 42mm and the distance along the y-axis
is dy = 42mm, these distances are chosen as to avoid spatial aliasing in both direction.
This known as the Nyquiest spatial criterion:

dx ≤
λ

2 (4.1a)

dy ≤
λ

2 (4.1b)

where λ = c

fmax

is the wavelength of the greatest frequency component fmax. In audio
processing the bandwidth allocated for a single voice-frequency transmission channel is
usually 4 kHz [62], c = 343ms−1 is sound speed in the air. Under those conditions

λ = 343
4000 = 85.75mm (4.2)

half this wavelength is equal to 42.875mm. And thus a value of interelement spacement
dx = dy = d = 42mm is well less than, half this wavelength. This is shwon in Figure 4.4

Figure 4.2: Front.
Figure 4.3: Back

Figure 4.4: Uma-16 mechanical drawing.
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Circuit Schematics

Figure 4.5: PDM-Microphone schematic.

An example of a PDM (Pulse Density Modulation) microphone is shown in figure
4.5. PDM microphones are digital microphones that produce a bitstream, or stream of
single-bit digital data. The digital representation of the analog sound signal is what the
PDM microphone outputs. A MEMS (Micro-Electro-Mechanical System) microphone
sensor and an integrated circuit (IC) that transforms the sensor’s output into a PDM
signal are both included in the PDM microphone. The circuit is composed of an LC

the inductance is 500mH and the first capacitor is 1000pF and the second is 100nF. The
microphone used is SPH1668LM4H (figure 4.8) . And it has the following features
• Low Distortion of 1.6% at 120dB SPL and High SNR of 65.5dB
• Flat Frequency Response and RF Shielded
• Supports Dual Multiplexed Channels and Omnidirectional.

Figure 4.6: Front. Figure 4.7: Back.

Figure 4.8: SPH1668LM4H-1 microphones.
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Each microphone is made of silicon by knowless electronics has a voltage VDD in range
1.62V ∼ 3.6V and a clock that works on a frequency fclock in range 100Hz ∼ 10 kHz. The
circuitry is given down below in figure 4.9:

Figure 4.9: Microphone’s circuit diagram.

The timing diagram for the microphone is the shown in figure 4.10. [63]

Figure 4.10: Microphone’s timing diagram.
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4.2 UMA-16 v2 operating mode

After providing a detailed physical description of the UMA-16 v2 array, the
subsequent section will focus on elucidating its operating mode. This section is intended
to serve as a comprehensive manual, offering instructions and guidelines on effectively
utilising the microphone array.

4.2.1 Connectivity and USB Driver

The initial step involves the installation of the USB driver specifically associated with
the Windows operating system. This driver installation can be accomplished redeeming
the coupon received together with UMA-16 v2 and following the provided instructions.
Subsequently, the microphone array is connected to the computer via a USB type A to
type B cable (figure 4.11). Once the connection is established, the computer system should
be capable of detecting the presence of the microphone array, which is visually indicated
by the initiation of a blinking blue LED light on the array as shown in figure 4.12.

Figure 4.11: USB type A to type B
cable.

Figure 4.12: UMA-16 successfully
connected.

4.2.2 Control panel

To configure the parameters of the UMA-16 v2 array, one should navigate to the
control panel menu on the system, open the control panel, select Hardware and Sound,
and choose Manage Audio Devices. In the list of audio devices, locate "MCHStreamer
Multi-channels" as shown in figure 4.13 which represents the UMA-16 v2 array. Selecting
this option provides access to a range of configurable parameters for the array. These
parameters allow adjustments to settings such as input/output levels, sample rates, audio
formats, buffer sizes, and more, tailored to specific needs.
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Figure 4.13: Control Panel UMA-16 v2.

4.2.2.1 Sampling rate and bit depth

The input signal of the UMA-16 v2 array is characterised by a flexible sampling
rate that spans from 8kHz to 48kHz accommodating a wide range of audio applications as
shown in figure 4.14. This flexibility in the sampling rate can be easily configured through
the control panel, enabling users to adapt it based on their specific usage scenarios and
requirements. Similarly, the UMA-16 v2 array provides users with the flexibility to select
the desired audio depth. The audio depth refers to the number of bits used to represent
each audio sample. With the UMA-16 v2 array, users can choose between two options:
16 bits or 24 bits.

Figure 4.14: Sampling rate and depth adjustment for UMA-16 v2.
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4.2.2.2 Adjusting the volume

In order to adjust the volume levels of the UMA-16 v2 array, users can utilise the
control panel interface. By navigating to the designated "volume" window within the
control panel as shown in figure 4.15. One can also deactivate any microphone by clicking
down below at the two brackets.

Figure 4.15: Volume adjustment for UMA-16 v2.

4.2.2.3 Buffer settings

The UMA-16 v2 array allows users to optimise latency by adjusting the buffer size
using the ASIO (Audio Stream Input/Output) protocol [64]. While it is recommended to
keep the default buffer settings for non-professional audio applications, professionals can
fine-tune the buffer size to meet specific latency requirements as illustarted in figure 4.16.

Figure 4.16: Buffer settings for UMA-16 v2.

4.2.3 Data acquisition

To record sound signals using the UMA-16 v2 array, users need to ensure that all
relevant parameters have been properly configured. Once the necessary parameters are
verified, the acquisition of data can be initiated using MATLAB.

95



Chapter 4. Real world tests using UMA-16 v2

1 deviceReader = audioDeviceReader (...
2 ’Device ’, ’miniDSP ASIO Driver ’ ,...
3 ’Driver ’, ’ASIO ’, ...
4 ’OutputDataType ’,’double ’);
5 setup( deviceReader )
6 fileWriter = dsp. AudioFileWriter (’ raouf_samy_zahra .wav ’,’ FileFormat ’,’

WAV ’, ’DataType ’, ’int16 ’);
7 disp(’Speak into microphone now .’)
8 tic %the timer start counting the recording time %
9 while toc < 27 %this is to specify the duration of the recording %

10 acquiredAudio = step( deviceReader );
11 step(fileWriter , acquiredAudio );
12 end
13 release ( deviceReader );
14 release ( fileWriter );
15 disp(’ Recording complete .’)

Listing 4.2: Acquisition code on MATLAB.

In this code, the audioDeviceReader function is used to create an audio device reader
object with the appropriate settings. The ’Device’ parameter specifies the UMA-16 v2
array as the audio device, and the ’Driver’ parameter sets the driver to ASIO.
The code then creates a dsp.AudioFileWriter object named fileWriter to save the
recorded audio. The file name and format are specified within the user. The recording
process starts with the disp function displaying a message to indicate that the user
should start speaking into the microphone. The tic function starts the timer to measure
the recording time.
Inside the while loop, the acquired audio is read using step(deviceReader) and
converted to int16 data type using int16(acquiredAudio). This is done to match
the data type expected by the dsp.AudioFileWriter object. The step(fileWriter,
scaledAudio) writes the scaled audio data to the .WAV file.
The while loop continues until the desired recording duration, specified by the toc<27
(here 27 corresponds to 27 seconds which is the duration of our recorded signals for the
tests) condition, is reached.
After the loop, the device reader and file writer objects are released using the release
function, and a message is displayed to indicate that the recording is complete as shown
in figure 4.17.

Figure 4.17: Mixture successfully recorded on MATLAB using UMA-16 v2.
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4.3 Real world tests

4.3.1 Experimental setup

The experiment was conducted in a room with dimensions of 7.5 m x 5 m x 3
m, where the UMA-16 v2 array microphone was placed on a table in the middle of the
room. About 50 cm from the sensor array, two or three people were sitting and talking
simultaneously. The UMA-16 v2, connected to a computer, records the data at a sampling
rate of 16 kHz for 27 seconds. All real-world signals used in our work were recorded using
the RAW mode of the UMA-16 v2 with all the 16 MEMS microphones. The separation is
then performed using NG IVA (both with whiening and without whitening process) using
MATLAB , with the same parameters as in the previous chapter.

Figure 4.18: Two speakers case. Figure 4.19: Three speakers case.

Figure 4.20: UMA-16 v2 and MATLAB setup.

Figures 4.18, 4.19 illustrate real life mixtures experiments for the case of two speakers (one
male and one female) and Three speakers case (two males and one female) respectively.
Figure 4.20 show the microphone array along with MATLAB software for data acquisition.
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4.3.2 Experimental results

Hereafter, two cases were considered. The first is a simultaneous discussion between
one woman and one man, the second is a simultaneous discussion of three speakers two
of which are men, and the third is a woman.

Case 1: One male speaker and one female speaker mixture
Figure 4.21 shows the 4th channel’s signal recorded at the UMA-8 microphones and

the two separate speech signals using: NG IVA with whitening and NG IVA without
whitening. In this case, the standard NG IVA algorithm took 78 seconds to run, while
the whitened version took twice that time 150 seconds.
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Figure 4.21: 1st experiment with real-world acoustic recordings: two sources mixture
recorded by the 4th UMA-16 v2 microphone array, the separation results of NG IVA with
whitening and without whitening algorithm.

From a subjective perspective, the algorithm demonstrates successful separation of the
source speech signals by listening to the outputs. these observations can be made:

- When listening to the outputs; one can notice that NG IVA with whitening takes
less to separate the sources (after about 4 seconds) whilst the standard adaptive
NG IVA takes longer to start separating (after about 8.5 seconds). However this
comes at the cost of processing time as mentioned at the beginning.

- From the figure 4.21, we can distinguish the sources’ signature from the mixture,
and one can see that the sources have been estimated with the correct scaling.

- Whitening improved sound quality and achieved better separation by listening to
both of them.
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Case 2: Three speakers, two male and one female: Down below the mixtures and
separated signals for Three speakers case.
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Figure 4.22: 2nd experiment with real-world acoustic recordings: three sources mixture
recorded by the 4th UMA-16 v2 microphone array, the separation results of NG IVA with
whitening and without whitening algorithm.

Again the algorithm separated the signals fairly well, one can distinguish which source is
the heard audio, however when dealing with three sources case, the algorithm suffered a bit
and one can hear the other two sources in the background. Unlike when using generated
mixtures where it did successfully separate each one of them without background
interference (or too little to be noticed). The signals waveforms are shown in figure
4.22.
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4.4 Conclusion

In this chapter, our focus was on the UMA-16 v2 microphone, emphasizing its
capabilities and highlighting its significance in our work. We provided a comprehensive
overview of its physical characteristics and electronic components, shedding light on its
advanced features and functionalities.
Furthermore, we presented a detailed operating mode guide for the UMA-16 v2
microphone, offering step-by-step instructions on how to utilize it effectively for recording
real-world tests. By conducting experiments using real-life signals, we aimed to validate
and reinforce the findings obtained in the previous chapter, this time in a practical setting.
The results obtained from the real-life signal recordings once again affirmed the
effectiveness of the separation algorithm. The algorithm demonstrated its ability
to successfully separate and distinguish sources in complex and dynamic acoustic
environments, as observed in the recorded signals using the UMA-16 v2 microphone.
The successful application of the separation algorithm to real-life signals underscores its
practical viability and robustness. It highlights the algorithm’s adaptability and reliability
in various scenarios.
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Conclusion

In this finale project, we have assessed the Blind Source Separation problem. At
first, we gave a brief introduction to the BSS problem with its mathematical formulation
and its ambiguities along with related work on BSS for speech signals both non adaptive
and adaptive versions.

We studied the adaptive natural gradient based Independent Vector Analysis and
proposed a modification to the classic adaptive NG IVA, that is an adaptive data
whitening which allows us to use more microphones than sources which allows us to
exploit spatial diversity of the array we afterwards implemented both of them writing
the codes from scratch as they are not available in open source, the results show that
whitening improves separation performances noticeably and speeds up convergence of
the separation as shown experimentally. However, this effects heavily the computational
cost of the algorithm, as it takes longer to run the code (twice the time of the standard
adaptive NG IVA).

Finally we got to use and see how powerful is the UMA-16 v2 array and to test it
in real world scenarios which resulted in good results.

Future work

Despite the encouraging results shown by the algorithm, however, one major problem
which the introduction of whitening causes is the computational cost (the run time of the
algorithm) which mainly due to the eigenvalue decomposition at each frame. for the
future we will be working on the two following point.

- Reduce the run time of adaptive NG IVA with whitening, that is by working on
adaptive eigenvalue decomposition.

- Implement the algorithm on an embedded system which will allow us to have an
independent system that can serve as a pre-processing for several applications.
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