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École Nationale Polytechnique
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Résumé

La prolifération rapide des logiciels malveillants présente une menace importante pour les
systèmes informatiques et la sécurité des données. La capacité à détecter et classer avec
précision les logiciels malveillants est essentielle pour atténuer les menaces cybernétiques.
Cependant, les méthodes traditionnelles de classification et d’analyse des logiciels mal-
veillants ont montré certaines limites face à l’évolution constante des malwares. Dans
cette thèse, nous proposons une approche qui exploite la puissance des techniques d’ap-
prentissage automatique et d’apprentissage profond pour une classification efficace des
logiciels malveillants et contribue à renforcer la cybersécurité et à protéger les systèmes
et les données contre les menaces constantes.
Mots-clés : Analyse des logiciels malveillants ; classification des logiciels malveillants ;
visualisation des logiciels malveillants ; extraction de caractéristiques ; apprentissage pro-
fond ; multimodal ; réseaux neuronaux convolutionnels ; apprentissage automatique.

Abstract

The rapid proliferation of malware presents a significant threat to computer systems and
data security. The ability to detect and accurately classify malware is crucial for mitigat-
ing cyber threats and preventing potential damages. However, traditional methods for
malware classification and analysis have shown some limitations in keeping pace with the
with the ever-changing landscape of malware. In this thesis, we propose a novel approach
that harnesses the power of machine and deep learning techniques for efficient malware
classification and offers real-time and automated data-driven solution, enabling proactive
measures to efficiently prevent and mitigate cyber threats.
Keywords: malware analysis; malware classification; malware visualization; feature ex-
traction; deep learning; multimodal; convolutional neural networks; machine learning
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Chapter 1

General Introduction

1.1 Problem Statement

Malware, short for malicious software, poses a serious threat to users, organizations,
and computer systems. It is specifically designed to exploit system vulnerabilities and
cause harm, ranging from stealing personal information to disrupting critical operations.
Recent data from the AV-Test 1 Institute reveals a staggering increase in the number
of malware and potentially unwanted applications. A total of 1,270 million instances
have been recorded, with an alarming 39 million new cases identified in the first half of
2023 alone [1]. These figures demonstrate the urgent need for robust methodologies in
discerning and classifying the ever-growing range of sophisticated and diverse malicious
programs.

The current approaches for identifying malware are primarily signature-based systems and
rule-based systems. Signature-based systems compare incoming traffic with a database
of known threats to detect and categorize malware. However, they face limitations when
encountering unknown threats not present in the database. Rule-based systems, on the
other hand, rely on predefined rules or policies to define acceptable network behavior.
When traffic violates these rules, an alert is triggered. However, assigning specific rules
to every type of malware proves challenging for rule-based systems. For example, deep
packet inspection (DPI), a commonly used rule-based system, analyzes data packets based
on predefined rules but struggles to effectively detect emerging or unknown threats. Con-
sequently, the constantly evolving cyber threat landscape surpasses the capabilities of
signature and rule-based systems like DPI.

Moreover, analyzing and understanding malware presents additional challenges. Attack-
ers continually employ anti-analysis techniques [2] such as obfuscation 2, polymorphism 3,
metamorphism 4, and packing to evade detection [3, 4, 5]. These techniques obscure the
true nature of malware, making it difficult to analyze and detect malicious intent. More-
over, the manual analysis process is time-consuming and struggles to keep up with the

1. An independent organization that conducts antivirus software testing and research. More infor-
mation can be found at www.av-test.org.

2. Practice of making code obscure and harder to understand using techniques like encryption and
control flow manipulation.

3. Generation of different variations of code to evade signature-based detection.
4. Active modification of code during execution to change its appearance and behavior.

10



rapidly growing number of malware instances. In an experimental study [6], a malware
classification game has been conducted, involving 110 participants with different levels
of expertise. The results show that experts took an average of 29 minutes, while novices
required around 44.5 minutes in average to classify unknown samples based on detailed
sandbox reports.

In addition to these challenges, attackers are now leveraging AI algorithms to automate
various malicious activities, contributing to the mass spread of malware. By automat-
ing the generation of convincing phishing emails, messages, or websites, AI amplifies the
potential impact of malware. Exploiting AI models like ChatGPT allows attackers to
automate the creation of obfuscated and polymorphic code, enabling them to generate a
large quantity of malware variants with a drastically reduced effort.

To combat AI-driven threats, a response beyond human expertise and manual defense
techniques is necessary. Traditional defense methods are no longer sufficient in the face of
sophisticated attacks powered by AI. Intelligent systems, powered by machine and deep
learning algorithms, provide valuable solutions to address these challenges. By leveraging
large datasets of malware, these data-driven systems can learn patterns associated with
anti-analysis techniques, hence, they can identify and classify malware even when it is
obfuscated or disguised. Furthermore, Intelligent systems automate the analysis process,
enabling real-time processing of a large volume of malware samples based on learned
patterns.

The remainder of the introductory chapter is organized as follows: In Section 1.2, we
discuss relevant published work in the area of malware classification, exploring various
approaches and techniques employed by researchers. We then highlight the gaps and
limitations of the existing approaches in Section 1.3.
Section 1.4 outlines the objectives of this study, clearly defining the goals and desired
outcomes. Finally, in Section 1.5, we describe the organization of the remaining chapters
in this thesis, providing a clear roadmap to navigate through the document.

1.2 Related Published Work

Researchers have explored various approaches within the literature, including traditional
machine learning and deep learning techniques applied to malware analysis.

Traditional machine learning approaches have been widely utilized to distinguish mal-
ware programs. Santos et al. [7] proposed a method that utilized opcode sequences as
features for malware detection. By calculating the frequency of opcode sequences and
applying mutual information, the authors identified the most relevant opcodes for ac-
curate malware classification. Masud et al. [8] trained a classifier using in addition to
n-grams: assembly instruction sequences and Dynamic Link Library (DLL) function calls
as features extracted from the executables.

API call 5 sequences have also been leveraged as features in malware analysis. Sato

5. Refer to the specific function calls made by a malware program to application programming inter-
faces.
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and Tran [9] employed techniques from Natural Language Processing, such as n-grams,
doc2vec 6, and TF-IDF 7, to convert API sequences into numeric vectors. These vectors
are then used as inputs to malware classifiers. Similarly, the authors of [10] have utilized
deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) models, to analyze and classify malware programs based on API call
sequences.

In the paper [11], word embeddings, such as HMM2Vec 8 and Word2Vec 9, have been
used to represent opcode sequences extracted from assembly files. These embeddings
captured semantic relationships between opcodes and served as features for classification
algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), and
random forest (RF) in malware analysis.

In another study done by Xie et al. [12], a similar approach has been employed, uti-
lizing word embeddings to represent opcode sequences. However, instead of traditional
classifiers, LSTM layers were used for classification. Additionally, the authors have in-
corporated a self-attention mechanism to enhance the model’s ability to capture relevant
features and dependencies within the malware data.

Several studies have explored the utilization of image-based techniques for malware clas-
sification. Nataraj et al. [13] proposed converting byte files into grayscale images and ob-
served visual similarities among malware samples from the same family. Vasan et al. [14]
extended this concept by converting raw malware binaries into color images and em-
ploying convolutional neural network (CNN) techniques for classification. Furthermore,
Narayanan and Davuluru [15] introduced an ensemble 10 classification system combining
CNNs and LSTM networks to distinguish different malware programs.

Building upon the ensemble approach of Narayanan and Davuluru, Wu et al. [16] have
introduced a sequential architecture for malware classification. Their method integrated
the temporal convolutional network (TCN) and bidirectional gated recurrent unit (Bi-
GRU) models. The TCN network extracted temporal features through one-dimensional
causal convolution, followed by the BiGRU capturing sequence information bidirection-
ally.

1.3 Limitations in Existing Research

Existing research in the field of malware classification has made significant progress, but
there are still several gaps and limitations that need to be addressed.

6. An NLP technique that generates numerical representations for documents, capturing their seman-
tic meaning and contextual information

7. A numerical statistic that quantifies the importance of a term in a document corpus
8. An NLP technique that combines Hidden Markov Models (HMMs) with the Word2Vec algorithm

to learn word embeddings
9. An NLP technique that learns vector representations for words based on contextual usage
10. A machine learning technique that combines multiple individual classifiers to make predictions

12



One major gap is the limited integration of multiple data modalities in malware classifi-
cation. Currently, many existing models either rely solely on tabular extracted features
from malware executables or employ deep learning approaches that utilize byte images
converted from the raw malware binaries. While these approaches have shown promising
results, they often focus on analyzing either the structural information of the malware or
the visual patterns captured in the byte images. There is a need for more comprehensive
approaches that combine different data modalities. Integrating diverse data sources can
provide a more holistic understanding of malware behavior and enable the identification
of unique patterns and characteristics.

Furthermore, there is a lack of comparative analysis in existing research. While individual
approaches have been explored, comparative studies that evaluate the performance of
different algorithms, feature extraction methods, or data representations on a common
benchmark dataset are valuable. Comparative analyses can provide insights into the
strengths and weaknesses of different methodologies and guide future research directions.

1.4 Objectives and Scope of the Thesis

The objectives of this thesis are as follows:

• To leverage both byte and assembly formats of malware executables to extract valu-
able information, by analyzing malware at different levels of abstraction, a more
comprehensive understanding of their behavior can be obtained. This approach
enables the identification of unique characteristics and patterns that may not be
evident when analyzing each modality seperately.

• To leverage the power of deep learning and feature engineering techniques in mal-
ware analysis, deep learning algorithms can automatically learn intricate patterns
and relationships from large datasets, while feature engineering allows for the ex-
traction of meaningful features that capture the essence of malware behavior. By
combining these approaches, the analysis can benefit from the strengths of both
methods.

• To compare the performance of the proposed model to a baseline model in terms of
accuracy, precision, recall, and other relevant evaluation metrics. This comparison
aims to assess the improved performance of the proposed approach in accurately
classifying malware family compared to existing methods.

• To achieve high performance and develop a robust model capable of accurately
classifying malware families and generalizing to new, unseen data, the effectiveness
of the approach will be evaluated through testing and validation on real-world
malware samples.

In this master thesis, we present a comprehensive approach for malware classification
that integrates two distinct data modalities: images and tabular meta-data extracted
from assembly files. Assembly features allow us to gain valuable insights into the nature
of malware samples. While, byte files are best processed when converted into images,
as images reveal clear visual patterns specific to each malware family. The extracted
features and byte images are then fed into a deep learning model with two branches,

13



enabling simultaneous processing of the data modalities for malware classification. To
provide a comparative analysis, we also evaluate the performance of our approach against
a Convolutional Neural Network (CNN) model that is trained solely on byte images.

1.5 Thesis Outline

The rest of this thesis is organized into several chapters, each addressing specific aspects
of the study. Chapter 2 focuses on explaining the employed machine and deep learning
methods in this study. Chapter 3 explains the suggested approach and describes the
implementation steps, starting from the initial data preparation stage and progressing
through the various stages, including feature extraction and model training. Chapter 4
discusses the performance of the proposed approach, evaluating its effectiveness. Finally,
the last chapter concludes with key findings, draws conclusions, and outlines suggestions
for future work.

14



Chapter 2

Theoretical Backgorund

The purpose of this chapter is to provide the necessary background knowledge and con-
textual understanding required to comprehend the proposed approach for malware classi-
fication presented in Chapter 3. It aims to present a comprehensive overview of the field
and the employed machine and deep learning methods for malware classification.

The chapter theoretical background is structured as follows: Section 2.1 provides a com-
prehensive understanding of malware and its associated risks. In Section 2.2, the concept
of malware classification is explained, highlighting the advantages of employing machine
learning techniques in this particular domain. Sections 2.3 and 2.4 delve into the methods
utilized for feature extraction and selection, while Section 2.5 focuses specifically on the
exploration of deep learning methods employed in our study. Finally, Section 2.6 offers
an in-depth explanation of the employed evaluation metrics and the loss function that
has been utilized for training the deep learning classifiers.
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2.1 Malware Overview

Malware, short for ”malicious software”, refers to any software or code designed to dis-
rupt, damage, or gain unauthorized access to computer systems, networks, or devices. It
is created with malicious intent and aims to compromise the confidentiality, integrity, or
availability of digital information. Malware can take various forms, such as viruses 1,
worms 2, trojans 3, ransomware 4, spyware 5, adware 6, or bots 7, and it often spreads
through infected files, websites, email attachments, or software vulnerabilities.

Malware can execute a wide range of malicious activities on infected systems, including:

— Data theft: refers to the malicious activity conducted by certain types of malware,
where sensitive information, such as login credentials and personal details, is stolen
from compromised systems and is transmitted to the attacker [17].

— System disruption: malware can disrupt the normal functioning of a system by
modifying or deleting files, corrupting data, or altering system configurations. This
can lead to system crashes, loss of important files, or rendering the infected system
unusable.

— Remote control: some malware are designed to provide unauthorised access to
the machine it infects. This allows attackers to control the compromised system,
use it for criminal activities, or exploit its resources to launch further attacks on
other networks or systems [18].

— Ransomware: encrypts the victim’s files and demands a ransom payment in ex-
change for the decryption key [19].

— Adware: displays unwanted advertisements or redirects users to malicious web-
sites. It can lead to a degraded browsing experience, privacy invasion, and exposure
to further malware infections [20].

These examples highlight the diverse range of malicious activities that malware can un-
dertake, and the significant risks it poses to individuals, businesses, and organizations.

2.2 Malware Classification

Malware classification refers to the process of categorizing malicious software into distinct
groups based on their characteristics, behavior, and functionalities. Malware variants be-
longing to the same family share similarities in their code, propagation methods, and
malicious intent. By grouping malware into families, security practitioners can gain in-
sights into the nature of threats and develop effective defense strategies.

1. Malicious programs that rely on human actions, such as opening an infected file or executing a
malicious code, to spread.

2. Self-replicating malicious software that spreads across networks without user intervention.
3. Malware disguised as legitimate software or files, tricking users into executing them. Once acti-

vated, they can perform unauthorized actions
4. Malware that encrypts a victim’s files or locks their system, demanding a ransom in exchange for

restoring access.
5. Collects data from the victims device and send it to a third party without their consent
6. Software that displays unwanted advertisements, often in the form of pop-ups
7. Automated programs designed to exploit the resources of the victim’s computer or network to

perform specific tasks.
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Utilizing machine and deep learning techniques for malware classification offers the fol-
lowing advantages over traditional employed approaches:

— Automation of the process: the complexity and diversity of modern malware
strains, coupled with the anti-analysis techniques employed to conceal their true
nature, present a challenge in manually defining and updating rules or signatures for
each variant. Machine learning techniques address this challenge by automatically
learning patterns and features from large-scale datasets. By training models on
labeled malware samples, machine learning algorithms can identify distinguishing
characteristics that differentiate malware families. Automating the classification
process not only saves valuable time and effort but also allows for the efficient
analysis of a vast number of malware samples.

— Real-time response: In today’s rapidly evolving threat landscape, timely detec-
tion and response to malware attacks are critical. Manual analysis of samples can
be time-consuming, averaging 30 to 45 minutes per sample. Moreover, the sheer
volume of malware samples being generated daily makes it impractical to analyze
and respond to each instance individually. By utilizing machine learning classifi-
cation techniques, security practitioners can quickly classify malware into distinct
categories, which enables real-time decision-making and response.

2.3 Feature Engineering

Feature engineering is the process of transforming raw data into informative features that
accurately capture the relevant aspects of the underlying problem.

2.3.1 N-gram Method

N-gram method is a statistical technique used to extract sequences of N items, such as
words or characters from sequential data.

Sequential Data

Sequential data refers to data in which the order of the data points holds significance and
plays a pivotal role in comprehending the context. For instance, consider the following
sentence:

”The algorithm sorts the array in ascending order”

In this sentence, the specific arrangement of the words is essential for interpreting its
meaning. Any alteration to the word order would result in a change of semantics. For
instance, if we were to reorganize the words as ”In ascending order the array sorts the
algorithm” the sentence would convey a different message. Similarly, if the word order
is changed to ”Algorithm the in array the order sorts ascending” the sentence would no
longer make sense.

In the upcoming methodology chapter, we will be extracting opcode sequences from as-
sembly executables. Opcodes are the fundamental instructions executed by a computer’s
processor. Consider the following assembly instructions:
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MOV AX, 5

ADD BX, AX

SUB CX, BX

Where MOV, ADD, and SUB represent opcodes, and AX, BX, CX are registers.

When the previous instructions are executed:

— The opcode MOV assigns the value 5 to the AX register.

— The opcode ADD adds the value of AX (5) to BX, resulting in BX = 5.

— The opcode SUB subtracts the value of BX (5) from CX, resulting in CX = −5.

Thus, the output of the original opcode sequence is AX = 5, BX = 5, and CX = −5.
If we were to change the order of the opcodes, the program’s behavior and outcome would
be completely different. For instance, if we rearrange the opcodes as follows:

ADD BX, AX

SUB CX, BX

MOV AX, 5

The resulting output of the rearranged opcode sequence is AX = 5, BX = 0, and
CX = 0. The arrangement of opcodes influences the behavior and final state of a
program. Thus, we conclude the sequential nature of opcode sequences, as a result, the
application of N-grams can extract informative features from opcode sequences.

Words Sequence to N-gram Counts

To extract n-gram counts from opcode sequences, a sliding window technique is employed.
A sliding window of size n is applied to the sequence, where n represents the desired length
of the n-grams. The window moves one opcode at a time, capturing the current n-gram.
As the window slides through the sequence, each encountered n-gram is recorded and
its frequency is counted. This process continues until the window reaches the end of
the sequence. The n-gram counts are then calculated by tallying the frequencies of each
unique n-gram. The frequencies indicate how often a particular n-gram appears in the
sequence.

Let us now outline the process of extracting n-gram counts step-by-step, using the sen-
tence ”The system logs record the system events” as an illustrative example.

0. Sliding Window: To begin, we employ a sliding window technique with a window
size of n, representing the desired length of the n-grams. In this case, we consider
bigrams (n=2). The sliding window moves through the sentence, capturing groups
of two consecutive words resulting in the following bigrams:

— ”The system”

— ”system logs”

— ”logs record”

— ”record the”

— ”the system”

— ”system events”
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0. Counting Frequencies: Next, we count the frequencies of each unique n-gram
encountered in the sentence. In other words, we count how many times each n-gram
appears.

— ”The system”: 2

— ”system logs”: 1

— ”logs record”: 1

— ”record the”: 1

— ”system events”: 1

In this example, the bigram ”The system” occurs twice in the sentence, indicating the
repetition of this word pair.

By following this process, we can extract the n-gram counts and then utilize them as
input features for further analysis or model training.

2.4 Feature Selection

To enhance the performance of our machine learning model, we employ feature selection
techniques using random forests. Feature selection reduce dimensionality, improve model
efficiency, and identify the most relevant features for prediction. Random forests, with
their ability to measure feature importance, provide a suitable approach for this purpose.

2.4.1 Random Forest

Random forests are an ensemble learning method that combines multiple decision trees
to make predictions [21]. Each decision tree in the forest is constructed using a bootstrap
sample of the training data and a random subset of features at each split. The final
prediction is obtained through aggregation, such as voting or averaging, across all the
individual trees. A key advantage of random forests is their ability to assess feature
importance, which gives information about the relevance of variables in the prediction
process. Feature importances are calculated as follows:

Step 1: Gini Impurity Calculation at Each Split

Gini impurity is a measure of impurity or disorder within a set of samples. It quantifies the
probability of incorrectly classifying a randomly selected sample based on the distribution
of class labels within the set. For a given node in a decision tree, the Gini impurity (I)
is calculated as follows:

I = 1−
∑
i

(pi)
2 (2.1)

In a random forest, each decision tree undergoes recursive splits to partition the data.
At each split, the Gini impurity is calculated for the parent node and the resulting child
nodes.

For a specific feature used for splitting, the Gini impurity of the parent node (Iparent) is
calculated using the class label distribution. Then, the Gini impurity of each resulting
child node (Ichild) is calculated in the same way.
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Step 2: Calculating Impurity Decrease

To assess the impact of a feature on reducing impurity, the impurity decrease is calculated.
It represents the difference between the Gini impurity of the parent node and the weighted
average of the child node impurities. This can be expressed as:

∆I = Iparent −
∑(

nchild

nparent

)
· Ichild (2.2)

where nchild represents the number of samples in the child node and nparent represents the
number of samples in the parent node.

Step 3: Average Impurity Decrease across Trees

To obtain the feature importance score, the average impurity decrease across all decision
trees in the random forest is calculated. This provides an overall measure of how much
each feature contributes to reducing impurity and improving predictive accuracy.

The feature importance score for a specific feature is calculated by summing up the
impurity decreases for that feature across all trees and dividing it by the number of trees.

Step 4: Normalizing Feature Importance Scores

The feature importance scores obtained from the average impurity decrease can be nor-
malized to facilitate easier interpretation and comparison. This step is optional but can
be helpful in presenting the relative importance of features.

2.4.2 Justification and Discussion

For the selection of the best features from the rest of the features we used Random Forest
due to its reliability, computational efficiency, and ease of interpretation.

Firstly, Random Forest has proven to be a highly reliable method for feature selection. It
leverages the power of an ensemble of decision trees to reduce the risk of overfitting and
provide robust results. By considering multiple trees and averaging their predictions, it
captures the collective wisdom of the forest, a concept we refer to as the wisdom of the
crowd.

Secondly, Random Forest is less computationally expensive compared to other methods
used for feature selection like wrapper-based methods.

Lastly, Random Forest offers a straightforward interpretation of feature importance. It
calculates the average decrease in node impurity (e.g., Gini impurity or entropy) caused
by a feature, providing a measure of its relevance in the classification or regression task.
This intuitive ranking of feature importance allows to identify the most influential features
easily, aiding in the selection of the best features.

20



2.5 Deep Learning

In our study (Chapter 3), we have employed different deep learning models, namely
Feed-Forward Network, CNNs, and Multimodal. These networks are trained using an
optimizer on a loss function, and the weights are updated through the backpropagation
process. The final predictions are obtained through forward propagation of inputs toward
the output. In this section, we will delve into the working mechanisms of these concepts.

2.5.1 Feed-Forward Network

A neural network is a computational model composed of interconnected layers of artificial
neurons that maps the input features X to the target variable Y. It employs activation
functions within each neuron to facilitate complex transformations of the input data and
introduce non-linearity.

A Feed-Forward network is a fundamental type of artificial neural network. It consists
of an input layer, hidden layers, and an output layer. Information flows through the
hidden layers from the input layer to the output layer without any feedback loops. In
other words, the information moves through the network in a one-way manner, passing
through the layers sequentially without any backward connections. Figure 2.1 shows an
example feed-forward network architecture.

Figure 2.1 – Feed-forward neural network.

Sequential networks like Recurrent Neural Networks (RNNs) are examples of networks
that are not feed-forward because they contain feedback connections, which enable them
to incorporate information from previous time steps and capture temporal dependencies
in sequential data. Figure 2.2 illustrates the difference between feed-forward networks
and RNNs.
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Figure 2.2 – RNN vs FNN networks.

Forward Propagation

During feed-forward, the network applies a series of mathematical operations, such as
matrix multiplications and activation functions, to transform the input data. As the
data passes through the network layers, it undergoes a hierarchical feature extraction
process, where lower layers capture simple features and higher layers capture more com-
plex features. By propagating input data through the network, the feed-forward process
generates output predictions in the final layer.

Let’s consider a simple Feed-Forward network with one hidden layer:

Figure 2.3 – FNN with one hidden layer.

The symbols in Figure 2.3 refer to:

— x: Input vector

— h: Hidden layer

— y: Output layer

— W (1): Weight matrix connecting input layer to hidden layer

— b(1): Bias vector of the hidden layer

— W (2): Weight matrix connecting hidden layer to output layer

— b(2): Bias vector of the output layer
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— σ: Activation function

The hidden layer performs calculations to transform the input. It takes the input vector,
x, and applies a weight matrix, W (1), which represents the connections between the input
layer and the hidden layer. This multiplication is followed by the addition of a bias vec-
tor, b(1), specific to the hidden layer. The result is passed through an activation function,
σ, to introduce non-linearity and generate the activations of the hidden layer neurons.

h = σ(W1 · x+ b1) (2.3)

The activations of the hidden layer neurons are further processed in the output layer.
The hidden layer activations, h, are multiplied by a weight matrix, W (2), representing
the connections between the hidden layer and the output layer. Additionally, a bias vec-
tor, b(2), specific to the output layer, is added. The resulting values are passed through
an activation function, σ, to obtain the final output activations, y.

y = σ(W2 · h+ b2) (2.4)

Backpropagation

Backpropagation is an algorithm used for training neural networks by updating the
model’s parameters to enhance the accuracy of the network’s predictions. It consists
of the following steps:

0. Forward Pass: The network generates predictions in the output layer through
forward propagation, where input data flows through the network and activations
are computed layer by layer.

0. Loss Calculation: The loss function L is then utilized to measure the discrepancy
between the predicted outputs and the true labels.

0. Backward Pass: In the backward pass, the gradients of the weights with respect to
the loss are computed. These gradients indicate how the loss changes with respect
to each weight in the network.

0. Weight Update: With the gradients calculated, an optimizer algorithm, such as
stochastic gradient descent (SGD) or Adam, is employed to update the weights.
The weights are updated according to the following equation:

Wnew = W − η · ∇W (2.5)

Here, Wnew represents the updated weight, W is the current weight, η is the learning
rate, and ∇W represents the gradient of the weight.

0. Iterative Process: Steps 1-4 are repeated for multiple iterations or epochs until
the network’s performance converges or reaches a satisfactory level. Each iteration
involves another forward pass, loss calculation, backward pass, and weight update.

By iteratively adjusting the weights based on the computed gradients, the network
gradually improves its predictions and minimizes the loss function.

2.5.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep learning algorithms widely used for an-
alyzing and processing visual data, particularly images [22, 23]. In the realm of digital
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images, visual content is often represented as matrices of pixels. Grayscale images, which
possess varying intensities of black and white, can be represented as 2D matrices, with
each pixel corresponding to a specific location and holding a value between 0 and 255.

Color images, on the other hand, are represented as 3D matrices. Each pixel in a color
image is composed of three color channels: red, green, and blue (RGB). The combination
of these channels determines the color of the pixel. For instance, a specific pixel may
have values of (255, 0, 0) in the RGB channels, representing pure red.

In Figure 2.4, we can observe a 2D matrix representation of a malware shape alongside
its corresponding grayscale image.

Figure 2.4 – An example 10 × 10 2D matrix (left) and its image representation.

CNNs consist of two main parts: the convolutional part and the fully connected layers.
The convolutional part comprises mainly two types of layers: convolutional layers and
pooling layers.

Convolutional Layers

Convolutional layers apply filters, also known as kernels, to the input images. These filters
capture local patterns and features through a mathematical operation called convolution.
Mathematically, the fully connected layers can be represented as a sequence of matrix
multiplications and nonlinear activation functions:

(f ∗ g)(i, j) =
∑
m

∑
n

f(m,n) · g(i−m, j − n) (2.6)

where f represents the input image, g denotes the filter, and (f ∗ g) denotes the result-
ing feature map. The operation involves element-wise multiplication between the filter
weights g(i − m, j − n) and the corresponding input pixel values f(m,n), followed by
summation over the filter’s spatial dimensions m and n as shown in Figure 2.5.
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Figure 2.5 – Convolution operation.

Pooling layers

Pooling layers, typically placed between convolutional layers, applied to reduce the spa-
tial dimensionality of the convolved feature maps. They achieve this by subsampling the
feature maps using operations like max pooling, or average pooling.

In max pooling, the maximum value within each pooling region is selected, capturing
the most prominent features. On the other hand, average pooling calculates the average
value within each region, summarizing the information across the pooling region. These
pooling operations help reduce computational complexity while retaining essential infor-
mation about the detected features. Figure 2.6 illustrates an example of calculations of
max and average pooling.

Figure 2.6 – Example of max and average pooling.

The output of the convolutional layers is then flattened, converting the high-dimensional
feature maps into a vector form. This vector is then fed into fully connected layers, also
known as dense layers. These layers make predictions based on the extracted information.

The general process of a CNN can be summarized as follows:

0. Apply filters to the input image, capturing local patterns and features.

0. Subsample the resulting feature maps using pooling operations in order to reduce
dimensionality.

0. Repeat the convolution and pooling steps, stacking multiple layers, to extract in-
creasingly higher-level and abstract features from the input data.
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0. Flatten the extracted features and pass them through fully connected layers to
predict the output.

Figure 2.7 – Basic CNN architecture.

2.5.3 Multimodal Networks

Unimodal deep learning approaches have their limitations, particularly when it comes to
tackling complex tasks. In the field of image classification, for instance, traditional deep
learning models solely trained on images may struggle to accurately predict the content
in intricate cases. This is due to the models’ inherent limitations in capturing sufficient
context or information from images alone.

To address these limitations, multimodal neural networks have been developed [24, 25].
These networks are specifically designed to process and integrate information from mul-
tiple modalities, such as visual, textual, and auditory data. By combining these different
modalities, multimodal deep learning can capture a more comprehensive representation
of the environment and gain access to a richer set of information, thereby enhancing
performance across various tasks.

A typical multimodal architecture consists of three essential components: unimodal en-
coders, a fusion network, and a classifier.

0. Unimodal encoders: encode each input modality separately, extracting relevant
features.

0. Fusion network:combines the extracted features from each modality to create a
unified representation of the data.

0. Classifier: utilizes the fused data to make predictions for the given task.

An example that demonstrates the effectiveness of multimodal deep learning is the diagno-
sis of COVID-19 pneumonia. In a study conducted by Hilmizen et al. [26], they proposed
a multimodal approach that combines CT scans and chest X-ray images as illustrated in
Figure 2.8. The multimodal model achieved a classification accuracy of 99.87%, outper-
forming models trained solely on CT scans (98% accuracy) or X-rays (98.93% accuracy).
This study highlights the significant improvement offered by multimodal deep learning
compared to relying on a single modality.
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Figure 2.8 – Sample multimodal for COVID-19 diagnosis.

2.6 Loss Function and Evaluation Metrics

2.6.1 Loss Function: Categorical Cross-Entropy

To achieve accurate predictions of the target variable, deep learning neural networks learn
the optimal weights through an optimization process. The selected optimization algo-
rithm iteratively updates the weights to minimize the loss function, allowing the neural
network to continually refine its predictions and improve overall performance.

In the context of malware classification, we employed the cross-entropy loss function [27].
We specifically utilized the categorical cross-entropy variant of the loss function, which
is tailored for handling multiple classes. The categorical cross entropy loss function is
defined as follows:

Loss = −
output size∑

i=1

(y(i) · log(p(i))) (2.7)

where y represents the true class labels and p represents the predicted class probabilities.

The cross-entropy loss function heavily penalizes large differences between the predicted
probabilities and the true class labels. This behavior is due to the nature of the logarithm
function used in the formulation of the loss.

As shown in Figure 2.9, when the input to the logarithm function becomes smaller and
approaches 0 from the positive side, the natural logarithm (ln(x)) becomes progressively
more negatively larger. Conversely, as the input approaches 1, the value of logarithms
approaches 0.

This implies that when the model confidently assigns a high probability to the true class,
the loss is minimized. Conversely, the loss value increases significantly as the assigned
probability to the true class decreases. This means that the model is penalized more
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for incorrect or uncertain predictions, encouraging it to strive for higher confidence and
accuracy.

Figure 2.9 – Natural logarithm function.

To further illustrate the behavior of the cross-entropy loss function, let’s consider a clas-
sification problem with three classes: A, B, and C. Suppose we have a sample instance
that belongs to class A, and the true label is denoted as [1, 0, 0], indicating the ground
truth probability distribution across the classes.

let’s assume the model confidently assigns a probability of 0.9 to class A, 0.05 to class B,
and 0.05 to class C, which means that the model’s prediction is accurate. The log loss
using the cross-entropy formula can be computed as follows:

Loss = −
output size∑

i=1

(y(i) · log(p(i)))

= −(1 · log(0.9) + 0 · log(0.05) + 0 · log(0.05)) = − log(0.9) = 0.105

(2.8)

In the given equation, ”y” represents the target class or true class label, while ”p” denotes
the probability of the class predicted by the model.

In another scenario, suppose the model assigns probabilities of 0.15 to class A, 0.4 to
class B, and 0.45 to class C. The log loss can be calculated as:

Loss = −
output size∑

i=1

(y(i) · log(p(i)))

= −(1 · log(0.15) + 0 · log(0.4) + 0 · log(0.45)) = − log(0.9) = 1.897

(2.9)

The log loss is lower (0.105) when the model’s prediction aligns accurately with the true
class, but higher (1.897) when the prediction deviates from the true label, indicating the
significance of the loss in reflecting the model’s accuracy.
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2.6.2 Evaluation Metrics

When evaluating the proposed models and for meaningful comparisons, several metrics
were utilized. These metrics include:

Accuracy

Accuracy measures the overall correctness of the model’s predictions. It calculates the
ratio of correctly classified instances to the total number of instances. The formula for
accuracy is:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(2.10)

Accuracy provides a general overview of the model’s performance in terms of correct
classification. However, it may not be the ideal metric when dealing with imbalanced
datasets [28].

Recall

Also known as sensitivity or true positive rate, measures the model’s ability to correctly
identify positive instances. It calculates the ratio of correctly identified positive instances
to the total number of actual positive instances [29]. The formula for recall is:

Recall =
True Positives

True Positives + False Negatives
(2.11)

Precision

Precision quantifies the model’s ability to accurately classify positive instances. It calcu-
lates the ratio of correctly identified positive instances to the total number of instances
predicted as positive [29]. The formula for precision is:

Precision =
True Positives

True Positives + False Positives
(2.12)

F1-Score

Also referred to as F-measure. The F1 score is calculated using the following formula:

F1 Score = 2
PrecisionRecall

Precision + Recall
(2.13)

The F1 score is particularly useful when the dataset is imbalanced which is the case for
the task at hand. It provides a single value that represents the trade-off between precision
and recall.
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2.7 Conclusion

This chapter offers an overview of the essential concepts necessary for understanding the
proposed methods for malware classification. It covers the employed feature engineering
and selection algorithms, evaluation metrics, and deep learning techniques. Additionally,
it provides the necessary context for understanding the problem of malware categoriza-
tion. In the next chapter, we will delve into the detailed explanation of our proposed
methods for classifying malware, outlining the specific approaches, algorithms, and tech-
niques utilized to address the challenge effectively.
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Chapter 3

Proposed Methodology for Malware
Classification

In this chapter, we present our approach for malware classification using deep learn-
ing techniques. We propose two different methods for malware classification. The first
method involves training a CNN on byte images extracted from malware’s byte file. For
the second method, we extract relevant features from the malware’s assembly file. These
features capture important characteristics and patterns within the code. A multimodal
is then trained using two inputs: the byte images and the extracted features from the
assembly file. By combining both the visual representations and the assembly-extracted
features, we aim to leverage the complementary information and enhance the classification
accuracy. To ensure optimal performance, both models undergo fine-tuning, including
iterative adjustments of their parameters and architectures.

Implementing these two distinct methods for malware classification allows to compare
the CNN, which is a single-modality model, with the multimodal that incorporates two
different data modalities: images and tabular data. This comparison enables the exam-
ination of the performance differences between these approaches and assess the benefits
of integrating multiple data sources for malware classification.

Throughout this chapter, we aim to provide a thorough understanding of the proposed
methods for malware family classification. We discuss the techniques and methodologies
employed in detail. Section 3.1 focuses on describing the data utilized for this classifica-
tion task. Moving forward, in Section 3.2, we provide a comprehensive overview of the
first proposed method, while in Section 3.3, we present the second method employed for
malware classification.
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3.1 Data Description

The present work utilizes a dataset provided by Microsoft [30] and acquired through the
Kaggle Platform [31], consisting of 10,868 executable malware records. Each record is
represented by two files: a binary file containing the raw bytes of the file, and an assembly
file containing the corresponding disassembly code.

Additionally, for testing the trained model, a separate dataset from Kaggle was provided,
consisting of 10,873 executables. This test dataset does not contain the corresponding
labels, as it is intended solely for evaluating the performance of the model.

Byte Files

Initially, malware is written in high-level programming languages such as C and Java and
is then compiled. The compilation process transforms the source code into machine code.
Machine code represents a low-level binary format that can be executed by the CPU. In
this context, the resulting machine code is often referred to as a byte file. As depicted
in Figure 3.1, a snippet of a sample malware machine code is illustrated in hexadecimal
format.

Figure 3.1 – Byte file.

Assembly Files

To facilitate the comprehension of the machine code, malware analysts employ disas-
sembler tools like IDA Pro [32, 33] to generate assembly files from the byte files. Since
machine code is not easily readable by humans, converting it into assembly language
becomes essential. Figure 3.2 showcases a representative example of an assembly file
snippet.
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Figure 3.2 – Assembly file.

Assembly language represents a more human-readable format that preserves the under-
lying information about the malware’s behavior. The assembly file contains instructions
and other information about the program’s execution. This conversion enables analysts
to comprehend the intricate workings of the malware. Figure 3.3 provides a visual repre-
sentation of the relationship between the byte file and its corresponding assembly file.

Figure 3.3 – Byte to assembly conversion.
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The dataset is structured as a multiclass classification problem, with each sample be-
longing to one of nine malware families: Ramnit, Lollipop, Kelihos-ver3, Vundo, Simda,
Tracur, Kelihos-ver1, Obfuscator.ACY, and Gatak. Table 3.1 summarizes the character-
istics of each of the nine malware families.

Malware
Family

Type Characteristics

Ramnit Worm/Trojan

- Spreads through various methods such as
email. attachments, drive-by downloads,
and software vulnerabilities.

- Steals sensitive information and can trans-
form infected machines into a botnet.

Lollipop Adware/Trojan

- Displays pop-up advertisements on the
browser.

- Often disguised as legitimate apps.

- Can perform various malicious activities
such as data theft or unauthorized access.

Kelihos-ver3 Botnet

- Creates a botnet network of infected com-
puters.

- Used for spam campaigns, distributing other
malware, and executing DDoS attacks.

Vundo Trojan

- Delivers pop-up advertisements..

- Modifies system files and registry entries.

- Can download and install additional mal-
ware.

Simda Trojan

- Spreads through exploit kits and infected
websites.

- Can download and execute additional mal-
ware on compromised systems.
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Malware
Family

Type Characteristics

Tracur Trojan

- Password-stealing trojans.

- Enable a malicious hacker to gain backdoor
access and control over a targeted PC.

Kelihos-ver1 Botnet

- Infected systems used for spam campaigns,
distributing malware, and carrying out vari-
ous malicious activities.

Obfuscator.ACY Trojan
- Uses obfuscation techniques to make mal-
ware code difficult to analyze and detect.

Gatak Trojan

- Targets businesses and organizations.

- Often distributed through phishing emails.

- Can steal sensitive information and perform
espionage.

Table 3.1 – Malware families characteristics.

The total size of the dataset is around 400GB with approximately 200 GB for both the
training and testing sets.

In the following sections, we present the methodology of the proposed approaches for
malware classification.

3.2 Method 1: Malware Classification using CNN

Convolutional Neural Networks have gained significant attention in recent years for their
ability to automatically learn and understand complex patterns in images. CNNs have
also found extensive use in the field of malware classification, several notable studies,
such as the work of Kalash et al. [34] and Kornish et al. [35], have demonstrated the
effectiveness of CNN-based approaches in detecting and classifying malware.
In our first proposed method, we aim to reproduce their work by employing a similar
approach. We will start by converting malware executables into image representations.
Then, we will utilize a CNN to analyze these images and classify them accordingly.

3.2.1 Malware Bytes to Image Conversion

Visualizing malware allows for better differentiation between different malware families.
Malicious programs belonging to the same family often share visual similarities and ex-
hibit distinct patterns compared to images associated with other malware families. This
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concept is supported by the work of Nataraj et al. In their paper ’Malware images: vi-
sualization and automatic classification’ [13], where they demonstrated the effectiveness
of visual representations for distinguishing between various malware families.

In what follows, we explain the conversion process of machine code (byte files) into images.
The provided byte files comprise sequences of hexadecimal values, ranging from 0 to F,
along with the character ’?’. Each consecutive pair of hexadecimal values is converted
into its respective decimal representation, which spans the range of 0 to 255, while each
pair of the character ’?’ is mapped to the value 0. These decimal values represent the
intensity or color value of each pixel.

During the conversion process of the byte file, each calculated decimal value is appended
to a list of pixel values. This accumulation of pixel values forms a sequential represen-
tation of the malware’s visual characteristics. The resulting sequence of pixel values is
reshaped into a matrix and further transformed into an image.

The dimensions of the reshaped matrix are not chosen randomly; they are determined
based on the total number of pixels. To reshape the sequence into a square matrix, the
square root of the total number of pixels is calculated. The integer part of the square root
determines one dimension of the square matrix. To determine the second dimension, the
total number of pixels is divided by the value of the first dimension, considering only the
integer part. Any remaining pixels that cannot be evenly accommodated in the matrix
are discarded.

Figure 3.4 – Illustrative example: byte file to image conversion.

In the provided example illustrated in Figure 3.4, the byte file yields a total of 14 pixels
for extraction. Consequently, the width of the resulting reshaped image is determined
as the integer value of the square root of 14, resulting in a width of 3. The height of
the image is obtained by dividing the total number of pixels by the width, resulting in a
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height of 4 and two discarded pixel values. Therefore, the size of the reshaped matrix is
(3, 4).

To maintain uniformity, the resulting image is resized to a standardized dimension of
64x64, ensuring that all images share the same shape. These images help us visualize the
patterns and structures within the malware, allowing for easier differentiation between
various malware families. Figure 3.5 shows a sample of the resulting images from each
malware family.

(a) Rammnit (b) Lollipop (c) Kelihos-ver3

(d) Vundo (e) Simda (f) Tracur

(g) Kelihos-ver1 (h) Obfuscator.DCY (i) Gatak

Figure 3.5 – Sample malware images by family.

Pixel values in an image typically range from 0 to 255, representing the intensity of gray
levels in grayscale images. We normalize the pixel values through dividing them by 255.0.
This scaling process ensures that the range of pixel values is within 0 to 1.

By dividing the pixel values by 255.0, we effectively map the original intensity values to
a normalized range where 0 represents the lowest intensity (black) and 1 represents the
highest intensity (white). This normalization [36] allows for better convergence during
training and improves the overall performance of convolutional neural networks (CNNs).
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3.2.2 Architecture of the Proposed Model

The proposed CNN architecture consists of four convolutional blocks, each consisting
of a convolutional layer followed by batch normalization, rectified linear unit (ReLU)
activation, max pooling, and dropout. These blocks progressively extract and refine
relevant features from the input image data. Additionally, the model includes two dense
layers with a decreasing number of neurons, contributing to the final classification task
with a total number of 948,169 trainable parameters. The CNN’s architecture is shown
in Figure 3.6.

Figure 3.6 – CNN’s architecture.

The initial layer is a convolutional layer with 32 filters and a kernel size of (3, 3). This
layer is followed by batch normalization and rectified linear unit (ReLU) activation, which
helps in normalizing and introducing non-linearity to the learned features, as proposed
by Nair and Hinton [37]. Subsequently, a max pooling layer with a pool size of (2, 2) is
applied to downsample the spatial dimensions. To prevent overfitting, a dropout rate of
25% is employed [38].

The subsequent layers follow a similar pattern. Another convolutional layer is added, now
with 64 filters and a (3, 3) kernel size, followed by batch normalization, ReLU activation,
max pooling, and dropout. This process is repeated for two additional convolutional
layers, each with an increased number of filters (128 and 256) and the same kernel size
of (3, 3).

After the final convolutional layer, a flattening operation is performed to transform the
3D feature maps into a 1D vector. This is followed by two fully connected dense layers.
The first dense layer consists of 512 neurons with ReLU activation and a dropout rate of
30%. The second dense layer has 64 neurons with ReLU activation and a dropout rate
of 30%.

To enhance regularization and improve training efficiency, batch normalization layers
were added after each dense and convolutional layer, and before the activation function.

Batch normalization [39] involves normalizing the outputs of intermediate layers within
a network using the mean and variance of the current mini-batch during training. By
adjusting and scaling the outputs, batch normalization stabilizes the training process and
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accelerates convergence.

The output layer is a dense layer with 9 neurons, corresponding to the number of malware
classes. It utilizes the softmax activation function to generate a probability distribution
over the classes.
Figure 3.7 illustrates the first method which consists mainly of two steps:

0. Converting byte files into images.

0. Training the proposed CNN on byte images.

Figure 3.7 – End-to-End illustration of the CNN proposed approach.

3.3 Method 2: A Multi-Modality Approach for Mal-

ware Classification

In this section, we present the second proposed method employed for classifying malware
families inspired by the work of Gessert et al. [40] in the field of medical imaging, where
they have integrated dermoscopic images and patient metadata for skin lesion classifi-
cation. We adapt their approach to the realm of malware analysis by integrating two
types of data: byte images extracted from malware’s byte code and assembly-extracted
features within a unified deep learning model.

We begin by extracting features from malware executables. Following the extraction pro-
cess, we perform feature selection to identify the most informative and relevant features.
These selected features, along with the images previously extracted from byte files for
the implementation of the first method, are combined to train the proposed multimodal.

3.3.1 Feature Extraction

We have extracted various features from each malware executable. These features include
N-gram counts [41](with N ranging from 1 to 3), byte size, assembly size, assembly-byte
ratio, opcodes size, and opcode-assembly ratio. In what follows, we will delve into a
detailed exploration of each of the extracted features.

N-gram Counts

Operation codes, also known as opcodes, are fundamental instructions in machine code
that define the operations performed by a program. For example, the opcode ”ADD”
is used to perform addition between two values, while the opcode ”JUMP” allows for
jumping to a different location within the program’s execution flow. Our objective is to
extract opcode sequences from an assembly file in order to capture the essential behavior
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and functionality of the assembly code.

To extract operation codes from each asm file within the data, we employ a regular
expression pattern. This pattern allows us to match and capture opcode instructions
from the asm files. By scanning the contents of the files, we can identify lines that contain
these opcode instructions. Figure 3.8 shows a snippet of operation codes extracted from
an assembly file.

Figure 3.8 – Opcodes sequence sample.

After obtaining the opcode sequences from the assembly files using the regular expression
approach, the subsequent step is to apply the N-Gram language modeling algorithm to
extract N-gram counts. This process involves breaking down the sequences into tokens
and then counting the occurrences of N-grams within the data.

For the purpose of malware classification, we specifically extract the unigram opcodes,
bigrams, and trigrams and count their occurrences. Unigrams represent individual op-
codes in the sequence, providing valuable insights into the individual instructions used
in the program. Bigrams capture pairs of consecutive opcodes, while trigrams represent
triplets of consecutive opcodes. This allows us to identify opcode patterns and depen-
dencies within the code.

For example, let’s consider the opcode sequence ”movzx push call add add cmp jnb inc
mov inc cmp”. By analyzing this sequence, we can extract the 1-grams, 2-grams, and
3-grams. The 1-grams would be (”movzx”, ”push”, ”call”, ”add”, ”cmp”, ”jnb”, ”inc”).
The 2-grams would be (”movzx push”, ”push call”, ”call add”, ”add add”, ”add cmp”,
”cmp jnb”, ”jnb inc”, ”inc mov”, ”mov inc”). Finally, the 3-grams would be (”movzx
push call”, ”push call add”, ”call add add”, ”add add cmp”, ”add cmp jnb”, ”cmp jnb
inc”, ”jnb inc mov”, ”inc mov inc”, ”mov inc cmp”).

By counting the occurrences of these N-grams, we can obtain valuable statistical infor-
mation about the frequency and distribution of opcodes in the program.

Figure 3.9 suggests certain N-grams, such as ”mov,” ”dd,” ”push,” ”call,” ”sub,” ”add,”
and ”pop,” are commonly and prominently present in assembly files compared to other
opcodes.
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Figure 3.9 – Opcodes cloud.

3.3.2 Size Features

In addition to extracting n-gram counts, we also extract features that describe various
size-related characteristics of the data. These features include different dimensions of the
content, including the assembly size, byte size, opcode size, the ratio between assembly
and byte sizes, and the ratio between opcodes and assembly size described in Table 3.2.

Feature Description

Size of Assembly File Represents the size (in bytes) of the assembly file corre-
sponding to a sample.

Size of Byte File Represents the size in bytes of the byte file correspond-
ing to a sample.

Assembly-Byte Size Ratio Calculates the ratio between the size of the assembly
file and the size of the byte file. Provides a measure
of the relative size of the assembly code representation
compared to the raw byte representation of the sample.

Opcode Sequence Size Represents the size (in bytes) of the extracted operation
codes sequence from each assembly file sample.

Assembly-Opcode Ratio Calculates the ratio between the size of the opcode se-
quence file and the size of the assembly file. Provides
insight into the relative size of the opcodes compared to
the assembly code representation of the sample.

Table 3.2 – Description of extracted size features.

3.3.3 Feature Selection

Motivation for Feature Selection

The number of extracted features exceeded 40,000, primarily due to the utilization of the
n-gram method. This resulted in a feature space greater than the number of rows in our
dataset, introducing the need for feature selection.
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The presence of a large number of features can lead to several challenges:

• Irrelevant information: a higher number of features may introduce irrelevant
information, hence, increasing the noise in the dataset.

• Complex models: Particularly for our study involving deep learning models, a
larger number of features translates to a higher number of weights that need to be
trained. This increases the complexity of the model, making it more demanding in
terms of input data and computational power.

Feature selection [42] eliminates redundant or irrelevant variables, identifies and isolates
the variables that contribute most significantly to the performance of the model. By se-
lecting the most informative features, feature selection can enhance accuracy and mitigate
the adverse effects of irrelevant or redundant features.

Feature Selection Process

The feature selection process employed in this study follows a progressive approach, aimed
at identifying an optimal subset of features that maximizes accuracy while eliminating
irrelevant and redundant features. The selection process is as follows:

0. Random Forest Model Training: The first step involves training a random
forest model using the dataset. This ensemble learning technique effectively cap-
tures the underlying relationships between the features and the target variable. By
leveraging the power of multiple decision trees, the random forest model provides
reliable estimates of feature importances [21].

0. Feature Importance Ranking: From the trained random forest model, feature
importances are obtained, allowing for the ranking of each feature based on their
importance scores.

0. Progressive Feature Selection:

— We train a random forest model iteratively using cross-validation, starting with
the top ten most important features. We evaluate the model’s performance
and then gradually add more features to the model, increasing the subset size
to twenty, thirty, and so on...

— In each iteration, we retrain the model and assess its accuracy. The iterative
process continues until we have considered and evaluated all features.

— Finally, we determine the optimal subset of features by choosing the one that
achieves the highest accuracy throughout the iterations.

In the Figure 3.10, it is observed that as the number of features increases too much, the
accuracy starts to decrease. This suggests that having too many features doesn’t always
improve performance and can even lead to lower accuracy. Based on this observation,
the subset of the top 350 features is chosen since it achieved the highest accuracy score
0.9883.

Figure 3.10 – Feature selection- accuracy by number of best features.

Figure 3.11 illustrates the top 20 features based on Gini impurity comprising the assembly,
byte, and opcode sequences sizes, as well as various trigram patterns such as ”call add
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pop” and ”xor retn align.” Additionally, it includes unigrams and bigrams like ”sub lea”
and ”dd.”

Figure 3.11 – Top 20 predictive features.

Standardization of Selected Features

A standardization process was applied to the selected features. Standardization involves
transforming the data in such a way that each feature has a mean of 0 and a standard
deviation of 1. This is achieved by subtracting the mean of each feature from each
element in the feature and then dividing it by the standard deviation. The formula for
standardization can be expressed as:

x̄ =
x− µ

σ
(3.1)

where x represents the original value of a feature, µ and σ are the mean and the standard
deviation of that feature, respectively. While x̄ represents the standardized value.

Standardizing the tabular features is important because it ensures that the features are on
a similar scale, allowing for fair comparison and preventing any single feature from domi-
nating the learning process. This process helps to address issues such as the bias towards
features with larger numerical values and the impact on gradient descent optimization.

3.3.4 Architecture of the Proposed Model

The second approach proposed in this thesis, is based on multimodal neural networks
trained on two data modalities images and tabular features. The image input is passed
through a convolutional block. Concurrently, the tabular input is processed through
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fully connected layers, forming Feed-Forward Network that extracts meaningful repre-
sentations from the tabular data.

After processing the image and tabular inputs separately, the outputs from both branches
are concatenated. The concatenated features are then fed into additional fully connected
layers that determine the class of the malware. A simplified model structure visualization
is represented in Figure 3.12.

Figure 3.12 – Illustration of the multimodal approach.

The architecture of the proposed multimodal consists of two parallel networks, a Convo-
lutional Network and Feed-Forward, each serving a distinct purpose. The first network
specializes in extracting high-level features from the input byte images, while the second
one extracts patterns and features from the assembly features. Figure 3.13 presents the
detailed architecture of the multimodal.
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Figure 3.13 – Architecture of the employed multimodal model.

The CNN network shares the same architecture and weights as the Convolutional part of
the pre-optimized CNN described in Section 3.3.2. However, in this network, the weights
are frozen, meaning they are not updated during training.

The Feed-Forward network receives as input the features extracted from assembly exe-
cutables. Its architecture consists of two dense layers. The first layer has 64 units and
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applies the ReLU activation function to the input. The output of this layer is then fed
into the second dense layer, which has 32 units and also uses the ReLU activation func-
tion. These layers help the network learn and extract complex patterns and features from
the tabular data.

The extracted features from both networks are combined and passed through a dense
layer with 512 units, followed by batch normalization, ReLU activation, and dropout reg-
ularization with a rate of 0.5. Then, another dense layer with 64 units is employed, along
with batch normalization, ReLU activation, and dropout regularization with a rate of 0.3.
Finally, a dense layer with 9 units and softmax activation is used for the classification
output.

The overall hybrid network architecture encompasses 979,497 trainable parameters, which
are optimized during the model training process.
The steps for the implementation of the multimodal approach are presented in Figure 3.14
and can be summarized as follows:

0. Conversion of byte malware executables into images.

0. Extraction of pertinent features from assembly files.

0. Selection of best features.

0. Training the proposed multimodal on byte images and the extracted tabular data.

Figure 3.14 – End-to-End illustration of the multimodal proposed approach.

3.4 Conclusion

To conclude, this chapter presented two distinct approaches for malware classification:
one based on CNNs and the other utilizing a multimodal network. In the next chapter,
we will delve into the results obtained from training these proposed models and engage
in a comprehensive discussion of their effectiveness and implications.

46



Chapter 4

Experiments, and Discussion

In this chapter, we conduct a thorough performance evaluation of the appraoches pro-
posed in the previous chapter, analyzing and providing a comparative analysis.

We begin by describing the experimental environment in Section 4.1, outlining hardware
and software specifications used for code implementation. In Section 4.2, we perform
data exploratory analysis on the extracted features. The performance of both models is
presented in Section 4.3, followed by a comprehensive comparative analysis in Section 4.4.
Furthermore, Section 4.5 provides valuable insights into the models’ real-world perfor-
mance and generalization abilities by discussing the results of evaluation on the test data.
Lastly, in Section 4.6, we estimate the confidence intervals at which the performance of
the evaluation metrics for the proposed models measures.
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4.1 Experimental Environment

The implementation of the proposed models and all associated code including feature ex-
traction, feature selection, and byte image conversion, have been executed on an Acer local
computer with the following specifications: an 11th Gen Intel(R) Core(TM) i7-11370H
processor running at 3.30GHz, 16.0 GB of RAM, an Intel Iris Xe Graphics GPU and Win-
dows 11 operating system. The implementation has been carried out using Python 3.9.13
and Tensorflow framework version 2.11.0, utilizing the Jupyter Notebook development
environment.

4.2 Exploratory Data Analysis

4.2.1 Data Destribution

Microsoft dataset [30] provides a valuable resource for the development and evaluation
of effective techniques for the classification of malware.

In Figure 4.1, the number of samples available in each of the nine malware families is
presented, providing a visual representation of the distribution of the dataset.

Figure 4.1 – Distribution of the dataset.

The histogram of data distribution reveals a significant data imbalance across the nine
malware classes, with only 42 samples belonging to the Simda class to the much larger
2942 samples of the kelihos-ver3 class.
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4.2.2 Boxplots Analysis

In this section we examine the boxplots representing the size features extracted from
malware executables. The boxplots provide insights into the distribution of the extracted
size features across the nine malware classes.

Size of Assembly File

Figure 4.2 presents a visual representation of the distribution of assembly sizes for the
nine different malware families. Class lollipop exhibits higher median, suggesting larger
average assembly sizes, while classes Kelihos-ver3, Kelihos-ver1, and Obfuscator.ACY
have low medians relatively, indicating smaller average assembly sizes. Additionally, the
spread of assembly sizes differs among the classes. For instance, class lollipop have a
longer box, indicating a broader range of assembly sizes and higher variability compared
to other classes that showed relatively tight clustering of assembly sizes. Furthermore,
outliers are observed in all the classes except for Vundo and Simda, signifying the presence
of larger and potentially exceptional assembly sizes within those classes.

Figure 4.2 – Boxplot analysis: Assembly size.

Size of Byte File

Figure 4.3 illustrates distinct variations in byte size among the different classes. The
boxplots reveal noticeable differences between classes in terms of their byte sizes. Classes
Kelihos-ver3 and Kelihos-ver1 exhibit narrow boxes, indicating a relatively concentrated
range of byte sizes. Furthermore, these classes demonstrate higher median byte sizes
compared to the other classes.

On the other hand, classes Ramnit, Vundo, Tracur, and Obfuscator.ACY display wider
boxes, suggesting a greater variability in byte sizes within these classes. The ranges of
byte sizes in classes Lollipop, Simda, and Gatak are particularly notable as they exhibit
the largest box spans, signifying a wide dispersion of byte sizes within these classes.
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Figure 4.3 – Boxplot analysis: Byte size.

Assembly-Byte Size Ratio

Among the different classes, Kelihos-ver3 and Kelihos-ver1 exhibit distinct behavior in
terms of the assembly/byte ratio as observed in Figure 4.4. These classes display signif-
icantly smaller assembly sizes relative to their byte sizes, approaching zero. This char-
acteristic sets Kelihos-ver3 and Kelihos-ver1 apart from the other classes. Consequently,
the assembly/byte ratio serves as a reliable metric to easily distinguish Kelihos-ver3 and
Kelihos-ver1 based on this unique characteristic.

Figure 4.4 – Boxplot analysis: Assembly-Byte size ratio.

Opcode Sequence Size

In the box plot analysis of the opcodes size presented in Figure 4.5, it can be observed
that the Lollipop class exhibits a wide range of sizes and the highest median size of
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opcode sequences when compared to the other classes. In contrast, the Kelihos-ver1,
Kelihos-ver3, and Obfuscator.ACY classes contain smaller opcode sequences compared
to the rest. The remaining classes, they demonstrate an intermediate range of opcode
sequence sizes.

Figure 4.5 – Boxplot analysis: Opcodes size.

Assembly-Opcode Ratio

Based on the boxplot of opcode-assembly size ratio shown in Figure 4.6, it can be observed
that the classes Lollipop and Gatak demonstrate a broad range of ratio values, indicating
a significant spread of values for the opcodes assembly size ratio.

Figure 4.6 – Boxplot analysis: Opcodes-assembly size ratio.

The classes Tracur and Obfuscated Malwares also have large boxes, indicating a signifi-
cant range in the opcodes assembly size ratio, but relatively smaller than the previous two
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classes. In contrast, the remaining classes exhibit narrower boxes, indicating a shorter
range in the opcodes-assembly size ratio.

The differing sizes of the boxes, and the range of values demonstrate that the malware
classes do not behave in the same manner. Some classes exhibit a wide range and greater
variability, while others display a narrower range and more consistent behavior in terms
of the assembly-size ratio.

The boxplots analysis demonstrates that the malware families exhibit different tenden-
cies and patterns, indicating that the extracted size features are relevant and allow to
diffrentiate between the classes.

The radar chart in Figure 4.7, represents the 5 extracted size features in a two-dimensional
space. we can observe that each of the nine families displays a different positioning
of data points across the extracted size features. The distinct patterns and variations
observed across the classes suggest that these features are effective in differentiating
between malware families.

Figure 4.7 – Radar chart of size features.

4.2.3 Feature Space: 2D Visualization

The Figure 4.8 illustrates a t-SNE plot of the selected features [43]. t-SNE, which stands
for t-Distributed Stochastic Neighbor Embedding, is a dimensionality reduction tech-
nique commonly used for visualizing high-dimensional data in a lower-dimensional space.
It aims to capture the underlying structure of the data preserving the relationships be-
tween samples.

In this t-SNE plot, each point represents a malware executable sample, its position in
the two-dimensional space is determined by the t-SNE algorithm, while its coloring is
determined by the class it belongs to.
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Figure 4.8 – t-SNE of the selected features.

It can be observed from the t-SNE plot that the classes exhibit a certain level of sepa-
ration. Some classes, such as ”Kelihos-ver1,” display distinct clusters, indicating a high
degree of separability in the reduced feature space. However, there is some overlap and
confusion observed, particularly with the ”Obfuscator.ACY” class, which appears to have
similarities with other classes.

4.3 Performance Evaluation

In this study, the dataset was initially shuffled to remove any inherent ordering or bias.
Subsequently, the shuffled dataset has been divided into training and validation sets,
with approximately 80% of the data allocated for training and 20% for the purpose of
validation and assessment of the model’s generalization ability.

4.3.1 Method 1: CNN-based Malware Classification

In this section, we present the performance of the Convolutional Neural Network (CNN)
model for malware classification.

Training Process

The Convolutional Neural Network model described in section 3.2.2 is trained using the
Adam algorithm for the optimization of the network’s weights [44] with a categorical
cross-entropy loss function. The learning rate of the optimizer is set to 0.001 (default).
The training is performed over 80 epochs with a batch size of 32. The validation data
is used to evaluate the model’s performance during training, ensuring generalization to
unseen data and the weights of the epoch with the least validation loss are saved to be
used when training the multimodal.

The selection of the optimal training epoch is based on the criterion of achieving the
lowest validation loss. In our study, the convolutional neural network (CNN) attained
a validation loss of 0.0764, accompanied by an accuracy of 98.29%. The corresponding
metrics on the training data were a loss of 0.0233 and an accuracy of 99.33%.
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Loss and Accuracy

During the training process, we monitored the training and validation loss to assess the
convergence and generalization capability of the CNN model. Figure 4.9 presents the loss
and accuracy curves for both the training and validation datasets. Notably, the model
consistently reduces its training loss over the course of iterations along with the consis-
tent increase of the accuracy, indicating a gradual improvement in its ability to minimize
errors and effectively learn from the training data. Concurrently, the validation loss also
demonstrates a downward trend, signifying the model’s aptitude for generalization to
previously unseen data.

(a) Categorical Cross-Entropy (b) Accuracy

Figure 4.9 – Performance evaluation- method 1.

Moreover, the absence of a significant divergence between the training and validation
loss curves demonstrates that our model did not experience overfitting. Overfitting is a
critical concern in machine learning, wherein a model becomes excessively tailored to the
training data, leading to poor performance on new, unseen data. The parallel behavior of
the training and validation loss curves in Figure 4.9 signifies a well-balanced model that
captures meaningful patterns in the training data while maintaining robust generalization
capabilities.

Confusion Matrix

To gain further insights into the CNN model’s classification performance across the dif-
ferent malware families, we present the confusion matrix of the validation data in Fig-
ure 4.10. The rows represent the true labels, while the columns represent the predicted
labels.

From the confusion matrix, we can observe that the CNN model achieved high accuracy
for the majority of the families. The model accurately classified most samples of the
’Kelihos-ver1’ and ’Gatak’ families. However, the ’Simda’ family has shown a relatively
lower accuracy 40% compared to other families due to the limited number of samples
available for training and validation.
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In addition, the class ’Obfuscator.ACY’ was occasionally confused with other classes,
this highlights the complexity of accurately distinguishing the unique characteristics of
obfuscation-based malware within the classification process likely due to Obfuscation
methods employed to the malicious code in order to conceal its true intent and function-
ality.

Figure 4.10 – Confusion matrix- method 1.

4.3.2 Method 2: Multimodal-based Malware Classification

In this section, we evaluate the performance of the Multimodal approach for malware
classification.

Training Process

In Section 3.2.3, we introduced the Multimodal Deep Network, which combines data from
different sources tabular and visual representations, resulting in improved performance
compared to the CNN model trained solely on images.

The training process is set to run for 80 epochs, each epoch the model adjusts its param-
eters to minimize the categorical cross-entropy loss. The Adam optimizer updates the
model’s weights based on the computed gradients. A checkpoint callback is included to
save the weights of the best-performing model based on the validation loss.

The model’s performance was evaluated based on the criterion of achieving the lowest
validation loss, which would enhance the accuracy in classifying malware family.
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Loss and Accuracy

Similar to the CNN model, we monitored the training and validation loss of the Multi-
modal approach during the training process. Figure 4.11 tracks the performance of the
model over 80 epochs.

On the validation dataset, the Multimodal achieved a categorical cross-entropy loss of
0.0238, accompanied by an accuracy of 99.40%. While, on the training data, the model
claimed an accuracy of 99.90% with a corresponding loss value of 0.0028.

The curves of loss and accuracy revealed no hints of overfitting, as both the training and
validation metrics decreased without a significant divergence between them.

(a) Categorical Cross-Entropy (b) Accuracy

Figure 4.11 – Performance evaluation- method 2.

Notice that the Multimodal converged quickly in the early stages of training from the
first epoch, that is due to the integration of the pre-trained CNN within the Multimodal
architecture. By freezing the weights of the previously trained CNN and utilizing it as
part of the Multimodal model, we leveraged the valuable knowledge and representations
learned from the CNN’s prior training. This initialization provided the Multimodal model
with a head start, enabling it to quickly adapt and fine-tune its parameters using the
combined information from the images and tabular features.

Confusion Matrix

To assess the multimodel’s classification performance, we present the confusion matrix
in Figure 4.12. The rows represent the true labels, while the columns represent the pre-
dicted labels.

Analyzing the confusion matrix of the validation data, we observe that the multimodel ap-
proach demonstrated further improvements compared to CNN’s confusion matrix across
all the classes.
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Figure 4.12 – Confusion matrix- method 2.

Notably, the multimodal approach has achieved a significant reduction in confusion be-
tween the ’Obfuscator.ACY’ class and other classes, indicating an enhanced capability to
recognize the distinct features of obfuscation-based malware.

4.4 Comparative Analysis

In this section, we conduct a performance comparison between the Convolutional Neural
Network (CNN) model and the Multimodal approach. Table 4.1 provides a comprehen-
sive side-by-side analysis of key metrics, including accuracy, precision, recall, and F1 score.

Method Dataset Accuracy F1 Score Precision Recall

CNN
Train 99.33 99.34 99.37 99.33

Validation 98.29 98.27 98.30 98.29

Multimodal
Train 99.90 99.90 99.90 99.90

Validation 99.40 99.41 99.41 99.40

Table 4.1 – Performance comparison of the proposed methods.

As shown in the comparison table, the Multimodal approach outperforms the CNN model.
The integration of the tabular modality significantly enhances the validation performance
of malware family prediction by more than 1%.
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4.5 Evaluation on Test Data

When evaluating the performance of the proposed methods, particular attention has been
given to assessing their ability to generalize on unseen data. To accomplish this, the test
dataset, comprising 10,873 files, has been utilized. It is important to note that the test
dataset provided by Kaggle does not include the output class. Consequently, the scores
are obtained by submitting the predictions to the Kaggle platform and the performance
evaluation relied on log-loss metric.

Table 4.2 presents a comparison of the test losses alongside the corresponding validation
and training losses of the proposed models.

Dataset Train Validation Test

CNN 0.0233 0.0764 0.1150

Multimodal 0.0028 0.0238 0.0579

Table 4.2 – Log-loss comparison of train, validation, and test sets.

Discussion:

The evaluation of the models’ performance on the test, validation, and train sets provides
insights into their generalization capabilities. The size of the test set, which consists of
10,873 malware executables, is larger compared to the train and validation sets, which
combined together are composed of 10,868 executables. This allows for a comprehensive
assessment of the models’ ability to generalize to new unseen data.

The CNN model demonstrates reasonably good generalization, with comparable log-loss
values on the validation (0.0764) and test sets (0.1150). However, the slight difference in
log-loss suggests potential for further improvement to enhance its generalization.

On the other hand, the multimodal achieved significantly lower log-loss values on both
the validation (0.0238) and test sets (0.0579). The small difference between the log-loss
values indicates that the multimodal model effectively generalizes to new unseen data.

Comparing the performance of the CNN and multimodal models sheds light on the advan-
tages of incorporating multiple modalities for malware classification. The CNN model, as
a single-modality approach, demonstrates reasonable performance. However, its log-loss
values on the validation and test sets are higher compared to the multimodal model.
This performance gap emphasizes the benefits of utilizing additional modalities, as the
multimodal outperforms the CNN model across all datasets.

4.6 Performance Confidence Estimation

When training deep learning models, it is common to observe variations in performance
across different runs. This can be attributed to the random initialization of the model’s
parameters, such as weights and biases. Each training run starts from a different set of
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initial values, leading to different trajectories of optimization and potentially different
solutions.

To address the variability and provide a more comprehensive understanding of the model’s
performance, we estimate the confidence intervals of evaluation metrics within which we
expect the true performance of the model to fall [45, 46].

4.6.1 Validation Set

We will conduct 8 training experiments. After each experiment, we will record the val-
idation scores of the evaluation metrics for both methods CNN and multimodal. By
analyzing these scores, we can calculate the mean of the 8 experiments and the standard
deviation, which quantifies the variation or spread around the mean. We then estimate
the confidence interval using the following formula:

Confidence Interval = Experiment Mean± (Critical ValueStandard Error) (4.1)

where the Critical Value represents the value obtained from the appropriate distribution
(t-distribution) corresponding to the desired level of confidence. For a 95% confidence
level and 8 experiments, the critical value is around 2.365, which estimates the range that
captures approximately 95% of the population values within the confidence interval.

The Standard Error is calculated by dividing the standard deviation by the square root
of the number of experiments .
The results of the estimation of confidence intervals for the CNN and multimodal models
are shown in Table 4.3 and Table 4.4, respectively.

Method1: CNN-based Approach

Experiment Accuracy Loss F1-Score

1 0.9829 0.0764 0.9827

2 0.9825 0.0733 0.9825

3 0.9811 0.0736 0.9809

4 0.9848 0.0734 0.9847

5 0.9806 0.0818 0.9806

6 0.9853 0.0697 0.9852

7 0.9834 0.0698 0.9831

8 0.9765 0.0847 0.9765

Range Estimate 0.98213 ± 0.00218 0.07534 ± 0.00423 0.98199 ± 0.00222

Table 4.3 – CNN confidence intervals.
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Method2: Mulitmodal-based Approach

Experiment Accuracy Loss F1-Score

1 0.9940 0.0238 0.9941

2 0.9926 0.0295 0.9926

3 0.9940 0.0282 0.9940

4 0.9931 0.0298 0.9930

5 0.9917 0.0288 0.9917

6 0.9917 0.0252 0.9916

7 0.9913 0.0285 0.9913

8 0.9885 0.0299 0.9884

Range Estimate 0.99211 ± 0.00139 0.02796 ± 0.00176 0.99208 ± 0.00143

Table 4.4 – Multimodal confidence intervals.

The estimated confidence intervals provide a measure of uncertainty for the performance
metrics: accuracy, log-loss, and f1-score on the validation set. While analyzing the results
of both CNN and multimodal proposed methods, slight variations have been observed,
the narrow range within the estimated confidence intervals suggests that the models’
performance remains closely aligned. This indicates the stability of both models in their
malware classification task.

4.6.2 Test Set

Similarly to the previous section, where we estimated the confidence intervals for the
evaluation metrics of both the CNN and multimodal models on the validation set, we
will now continue by estimating the confidence intervals for the loss on the test set for
both models. This allow us to observe the range of performance showed by the models
on the test data, providing insights into their ability to generalize to unseen data.

It can be observed from Table 4.5 that the CNN model achieved a performance of 0.10550
with a confidence interval of ±0.00615 on the test set. On the other hand, the multimodal
model showed a narrower range of 0.04310 ± 0.006.

While the loss range for both models on the test set is indeed larger than on the validation
set, it remains relatively narrow. This indicates that both models consistently perform
well and maintain a level of stability.
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Experiment CNN Multimodal

1 0.11499 0.05792

2 0.09457 0.04199

3 0.09836 0.05066

4 0.10276 0.03873

5 0.11351 0.04486

6 0.09837 0.03862

7 0.10519 0.03538

8 0.11266 0.03755

Range Estimate 0.10550 ± 0.00615 0.04321 ± 0.00600

Table 4.5 – Test confidence intervals.

4.7 Conclusion

In this chapter we conduct a comprehensive analysis of the proposed approaches, evalu-
ating their performance and making comparisons. The performance of each approach has
been thoroughly examined, and their ability to generalize has been assessed. As part of
our analysis, we have estimated confidence intervals for the models, providing a measure
of uncertainty and a range of potential values for their performance. Moving forward,
the next chapter will summarize the main findings of this study and provide suggestions
for future work.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Findings

In this master’s study, we have focused on the problem of malware classification and have
employed deep learning techniques to address this challenge. Utilizing a large publicly
available dataset, we have conducted a comprehensive evaluation of our proposed ap-
proaches, which incorporated both byte and assembly executables.

By extracting information from both byte images and assembly features, we have pre-
pared the data to train two models: a multimodal and a baseline CNN. The multimodal
has incorporated both data modalities to enhance the accuracy and effectiveness of mal-
ware family classification, while the CNN was trained solely on byte images.

The results revealed that the multimodal model achieved in average a validation accu-
racy of 99.21% with a loss of 0.0278, outperforming the single-modality CNN with an
average classification accuracy of 98.21% and a loss of 0.07534. This improvement in
accuracy demonstrates the value of incorporating assembly-extracted features alongside
byte images, allowing the model to capture a broader range of malware characteristics
and better discriminate between different malware classes.

Additionally, we evaluated the performance of the proposed models on new, unseen data
approximately five times the size of the validation set. The multimodal consistently
demonstrated good performance on this new dataset, with an average loss of 0.0278 on
the validation set and 0.0432 on the test set, respectively. The slight difference between
the validation and test set losses indicates that the model generalizes well and does not
appear to be overfitting to the training data.

These findings highlight the advantages of leveraging multimodal data sources, specifically
byte images and assembly-extracted features, for malware classification. By combining
these modalities, we provided the model with a comprehensive understanding of mal-
ware behavior, inspired by the multi-sensory nature of human perception. Similar to how
humans rely on multiple senses such as vision, hearing, and touch to navigate and compre-
hend the world, the proposed multimodal approach emulates this concept by integrating
different types of information. Byte images represent the visual aspect, capturing pat-
terns and structures within the malware executables, while assembly-extracted features
provide a deeper insight into the functional and behavioral aspects of the malware.
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5.2 Future work

To enhance the conducted work in this thesis and broaden its potential impact, there
are several potential directions for future work. These include exploring data augmen-
tation techniques, expanding the scope of malware classification to encompass a wider
range of malware families, and integrating dynamic analysis techniques into the existing
classification framework.

Data Augmentation

The dataset utilized for the task of malware classification is imbalanced, certain malware
families are underrepresented compared to others. This can pose a challenge for the
classification process as the model may struggle to accurately identify and classify the
minority classes. To address this issue, a potential avenue for improvement is to imple-
ment data augmentation techniques. Data augmentation involves generating additional
samples by applying various transformations to the existing data. By increasing the rep-
resentation of the underrepresented malware families, data augmentation can help create
a more balanced dataset. This, in turn, enables the classification model to learn from a
wider range of examples and improves its accuracy and reliability in identifying different
malware classes.

Expanding the Malware Classification to a Larger Number Families

One potential avenue for future research is to expand the behavior classification to include
a larger number of malware families. While the current study focused on nine malware
families, there are numerous other families that exhibit distinct behaviors and character-
istics. By expanding the classification to include a larger number of malware families,
we can enhance the effectiveness and applicability of the proposed approach. However,
achieving this expansion would require substantial efforts in terms of data collection,
annotation, and computational resources.

Integrating Dynamic Analysis Techniques

The work conducted in this thesis falls within the domain of static analysis, which in-
volves extracting features from malware executables without executing them. Static
analysis provides insights into the structural and behavioral characteristics of malware
by examining the code, metadata, and other attributes present in the executable file. It
allows for the identification of patterns and signatures that can be used to classify and
categorize malware based on their inherent properties.

Another avenue for future work involves incorporating dynamic analysis techniques into
the classification framework. Dynamic analysis, in contrast to static analysis, involves
executing malware samples in a controlled environment, such as a sandbox, and capturing
their runtime behaviors.

Dynamic analysis provides insights into the behavior of malware during execution. It
involves monitoring various aspects, such as memory access patterns, registry modifi-
cations, network traffic, and system interactions. By executing malware samples and
observing their behavior, dynamic analysis can reveal additional information about the
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intentions, capabilities, and potential threats posed by the malware.

Combining static and dynamic features would enable the classification model to leverage
the strengths of both approaches. Static analysis offers insights into the structural and
static characteristics of malware, while dynamic analysis provides information about the
runtime behaviors and interactions with the system. By incorporating dynamic features,
the classification model can gain a deeper understanding of the malware’s intentions,
capabilities, and potential threats, enhancing its accuracy and effectiveness in identifying
and classifying malware samples.

5.3 Conclusion

In conclusion, the work in this master thesis has addressed the task of malware classifica-
tion employing deep learning models, aiming to enhance cybersecurity measures and mit-
igate emerging digital threats. The exploration conducted in this thesis has demonstrated
the effectiveness of multimodal deep learning approaches, particularly the combination of
images and tabular features for the classification task. By integrating these diverse data
modalities, the multimodal has shown improved accuracy and robustness in classifying
malware family. These findings contribute to the field by highlighting the importance of
leveraging multiple data sources for malware classification and for further advancements
in cybersecurity.
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