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ملخص
Pride KIA نموذج تحويل على المشروع هذا يركز وبالتالي، .(EVs) الكهربائية المركبات الٕى تركيزها الحكومات حولت ،2030 عام بحلول
في الدقيق التحكم لتحقيق الكهربائية. للمركبة فعال دفع نظام تطوير هو الهدف الإلكترونية. التحكم وحدة تحسين خلال من EV الٕى 2000
نظرًا ذلك، .ومع SHE PWM التوافقية المركبات حذف بتقنية المصحوبة الدفع تغييرعرض خوارزمية استخدام يتم الالمتزامن، المحرك سرعة
على للتغلب الفعلي. الوقت في للتطبيقات عملية غير SHE PWM خوارزمية فإن التبديل، زوايا لحساب طويلاً وقتًا تستغرق التي التقنيات لطبيعة
وكلاهما ،PI الحدود متعدد استيفاء حول والاخٓر ANN الاصطناعية العصبية الشبكات باستخدام احٔدهما نهجين، مقارنة تتم التحدي، هذا
الطريقتين. كلتا وسرعة دقة لتقييم دقيق متحكم في الخوارزميتين كلا برمجة وتظهر الاطٔروحة، هذه .تصف SHE PWM خوارزمية مع بالاشتراك
على المقترحة الطريقة برمجة ومناقشة تقديم يتم الفعلي، الوقت في تطبيق في الخوارزمية صحة من للتحقق .ANN نهج تفوق النتائج تظهر
PWM خوارزمية انٔ الٕى عليها الحصول تم التي النتائج تشير السرعة. متغير متزامن لا محرك تجارب بمنصة التطبيق اختبار يتم .FPGA بطاقة

السرعة. لتغيرات الكامل النطاق عبر الفعلي الوقت في المطلوبة التوافقيات يلغي مما الاسٔاسي، الجهد في بكفاءة ANNSHEتتحكم
الالمتزامن. المحرك الكھربائية, ,السيارة FPGA , بطاقة , الحدود متعدد ,استيفاء العصبية الشبكات , SHE PWM : مفاتيح كلمات

Résumé
En 2030, plusieurs gouvernements se sont tournés vers les véhicules électriques (EV). Par conséquent, Ce
projet vise à transformer un modèle KIA Pride 2000 en EV en optimisant l’unité de commande électron-
ique. L’objectif est de développer un système de propulsion efficace et fiable pour l’EV. Pour obtenir un
contrôle précis de la vitesse du moteur asynchrone, un algorithme connu sous le nom de modulation de
largeur d’impulsion avec élimination harmonique sélective (SHE PWM) est utilisé. Cependant, en raison
de la lenteur des techniques numériques requises pour calculer les angles de commutation, l’algorithme
SHE PWM est peu pratique pour les applications en temps réel. Pour surmonter ce défi, deux approches
sont comparées, l’une utilisant les réseaux neuronaux artificiels (ANN) et l’autre sur l’interpolation poly-
nomiale (PI), les deux en combinaison avec l’algorithme SHE PWM. Cette thèse décrit et implémente les
deux algorithmes dans un microcontrôleur pour évaluer la précision et la vitesse des deux méthodes. Les
résultats démontrent la supériorité de l’approche ANN. Pour valider l’algorithme dans une application
en temps réel, une implémentation FPGA est présentée et discutée. L’application est testée sur un banc
d’essai à moteur à induction à vitesse variable. Les résultats obtenus indiquent que l’algorithme ANNSHE
PWM contrôle efficacement la tension fondamentale, éliminant les harmoniques souhaitées en temps réel
sur toute la gamme des variations de vitesse.
Mots clés: SHE PWM, Réseaux Neuronaux Artificiels, Interpolation Polynomiale, FPGA, Véhicule
Electrique, Moteur asynchrone.

Abstract
By 2030, many governments have shifted their focus to electrical vehicles (EVs). Consequently, this
project focuses on transforming a KIA Pride 2000 model to an EV by optimizing the electronic control
unit. The objective is to develop an efficient and reliable propulsion system for the EV. To achieve
precise speed control of the induction motor, an algorithm known as Pulse Width Modulation with
Selective Harmonic Elimination (SHE PWM) is used. However, due to the time-consuming nature of the
numerical techniques required for calculating switching angles, the SHE PWM algorithm is impractical
for real-time applications. To overcome this challenge, two approaches are compared, one using Artificial
Neural Networks (ANN) and the other on Polynomial Interpolation (PI), both in combination with the
SHE PWM algorithm. This thesis describes, and implements both algorithms into a microcontroller to
evaluate the accuracy and speed of both methods. The results demonstrate the superiority of the ANN
approach. To validate the algorithm in a real-time application, an FPGA implementation is presented and
discussed. The application is tested on a variable speed induction motor test bench. The obtained results
indicate that the ANNSHE PWM algorithm efficiently controls the fundamental voltage, eliminating the
desired harmonics in real-time across the entire range of speed variations.
Key words: SHE PWM, Artificial Neural Networks (ANN), Polynomial Interpolation (PI), FPGA,
Electric Vehicle, Asynchronous Motor.
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General Introduction

The automotive industry is at a crucial crossroads, driven by the pressing need to
address the alarming issues of excessive energy consumption, fossil resource depletion,
pollution, and global warming. Some of these issues are directly attributed to combustion-
engine vehicles.Many Governments have set targets to phase out the production of Internal
Combustion Engine Vehicles (ICEVs) by 2030 [1, 2, 3]. In response, both researchers and
automakers have intensified their efforts towards electric vehicles (EVs). These vehicles
offer a promising alternative to build a safer, cleaner, more sustainable and intelligent
mode of transportation.

The main objective of this research is the development of an EV that encompasses
these desirable characteristics. By advancing existing technologies, aiming to create an
innovative solution that addresses the challenges posed by traditional vehicles. This end
of studies project thesis focuses on the study, modelling, design and transformation of
an ICEV, specifically a KIA Pride 2000 model, into an electric vehicle with the intention
of contributing to the advancement of EVs within our school. The project represents
a collaborative effort, with mechanical engineering students undertaking the mechanical
modifications, while our team, the electronic engineering team, takes responsibility for
the electrical propulsion system. As part of this pursuit, our focus lies specifically in the
field of power electronics and motor drive, which plays a pivotal role in enhancing the
overall performance of EVs, including their range [4, 5].

The heart of the EV propulsion system lies in the engine drive, comprising an electric
motor, a power converter, and an electronic control unit [6]. It is this electronic control
unit that serves as the central focus of this thesis, as we aim to develop and optimise its
functionality. By doing so, we seek to improve the efficiency, precision, and reliability of
the EV’s propulsion system.

When considering the choice of an electric motor for the transformed vehicle, we eval-
uated various options and ultimately decided to use an asynchronous motor over a DC
motor. This decision was driven by the asynchronous motor’s notable advantages, includ-
ing its robustness, lower maintenance, higher power to weight and lower cost to power that
made it a more suitable choice for our application [7, 8]. However, for the asynchronous
motor to effectively compete with the DC motor, it is necessary to use an efficient and
low-cost voltage inverter. Furthermore, to control the speed of this asynchronous motor,
a three-phase inverter with a variable sine output in voltage and frequency is required.

Numerous control strategies are available but when they are implemented in practical
applications, harmonics can arise in the variable output of the three-phase inverter [9, 10,
11]. Harmonics are unwanted frequencies that deviate from the fundamental frequency
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of the system. These harmonics have various effects on the asynchronous motor. They
lead to increased heating, potentially reducing motor lifespan. Furthermore, they cause
torque ripple, leading to vibrations and noise, while also increasing losses in the motor
and reducing its efficiency.

To ensure efficient control and optimal performance of the asynchronous motor, we
have employed the Selective Harmonic Elimination Pulse Width Modulation (SHE PWM)
algorithm, which was originally developed by Patel and Hoft [12, 13]. This algorithm
utilises switching moments to adjust the duration of pulses in the output waveform of
the inverter, aiming to closely resemble a desired sinusoidal waveform with an amplitude
A and a frequency f . By carefully selecting the pulse widths, specific harmonics can be
targeted for removal, ensuring smooth and efficient motor operation, particularly when
employed in an EV.

However, the equations involved in determining the appropriate switching instants are
non-linear, This necessitates the utilisation of a numerical calculation technique like the
Newton-Raphson method; but in cases where the initial values are not chosen accurately,
this can result in multiple iteration cycles, and in some instances, the solution may not
converge at all, making real-time implementation for the SHEPWM command computa-
tionally demanding, impractical and time consuming. As a result, the SHE PWM control
strategy is primarily limited to offline use.

In our application, the speed of EVs experiences significant variations, requiring fre-
quent adjustments in frequency and voltage. Consequently, it is essential to develop a
command system that is both fast and reliable, also capable of performing on-line calcu-
lations of the switching angles. This system should operate in real-time and offer precise
control over the motor’s operation and speed.

To achieve this objective, as mentioned in [14] numerous researchers have explored
alternative solutions. Following the same approach, in this work, we explored two distinct
approaches. The first approach is an ANNSHE PWM algorithm, which is based on the
theory of Artificial Neural Networks (ANN) developed by [14]. The second approach is a
novel algorithm that we have developed utilising Polynomial Interpolation theory. Both of
these approaches propose the utilisation of SHE PWM control to calculate the switching
angles and generate on-line, real-time PWM control signals. To compare the performance
of these algorithms, we have implemented them on a microcontroller.

By conducting a comprehensive comparison between the two methods, we determined
that the Artificial Neural Network approach offered superior high-speed performance with
good precision, making it as the most suitable for our work, ensuring the desired level
of accuracy and responsiveness. To validate the effectiveness of the ANNSHE PWM
algorithm, we have implemented it on an FPGA circuit.

In order to achieve our objectives, this work is divided into five chapters:
The first chapter provides a general history of EVs and their definition, along with

an overview of the electric propulsion system. It discusses the fundamental concepts and
components of EVs, including their general configuration.

In the second chapter, the focus is on asynchronous machines and voltage inverters. It
explores the principles and workings of asynchronous machines, as well as the function and
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operation of voltage inverters. Then, we detail the principle of the SHE PWM command
and the database generation.

The third chapter introduces both algorithms based on Artificial Neural Network
(ANN) and Polynomial Interpolation (PI). It provides the foundations of both techniques
and describes the development steps for each algorithm. Furthermore, a comparison is
made between the two algorithms to determine the preferred choice for implementation.

Chapter four focuses on optimising the implementation of the ANNSHE PWM algo-
rithm on an FPGA circuit. It details each part of the VHDL code and explains how it
contributes to improving the performance of the system.

In the fifth chapter, the functionality of the system is verified, ensuring that it meets
the specified requirements for the EV propulsion system. The performance of the system
is then validated in real-world conditions by linking the command unit, the three-phase
inverter, and the asynchronous motor. This chapter provides a practical assessment of
the system’s performance and its effectiveness in a real-world setting.
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Chapter 1. Electric Vehicles

1.1 Introduction

Environmental protection and energy conservation are the main concerns of the 21st cen-
tury which has now accelerated the pace to plan and develop electric vehicles technology.
The EVs offer a zero emission, new automobile industry establishment, and economic
development, an efficient and smart transportation system compared to conventional ve-
hicles.

The continual development of EV technologies is the crucial factor to improve EVs
performance and ensure its competitiveness, and with the push toward EVs, many predict
that by 2030 electronics could account for up to 50 percent of a vehicle’s value. EV
have increasingly become popular in the automotive market to reduce the dependence of
transport on oil, as in less than a decade, the market for electric vehicles has grown by
almost a factor of twenty [2, 3].

Although electric vehicles offer numerous benefits, there are still some challenges to
overcome. Even with the increased autonomy of EVs, this problem is still important and
the limited driving range of electric vehicles needs to be increased to match the range
of conventional vehicles. The cost of electric vehicles needs to be reduced to make them
more accessible to consumers. There is also a need for more charging infrastructure to
support the growing number of electric vehicles on the road [15].

In fact, the major concerns facing the electric vehicle industry are range, top speed, and
cost. Ultimately the challenging technology is the battery or energy storage in general,
which requires more attention to increase the range of EVs [16]. On the other hand,
power electronics and controlling motor drive in particular, which are the subject of the
application part of this final study project represent the fundamental technology of the
EPS, which should be taken into account in order to improve the entire performance of
EVs including autonomy and efficiency [4, 5].

In this chapter, we will provide an overview of the present status of EVs, starting with
a brief history of electric vehicles. Subsequently, we will outline some of the advantages
and limitations of EVs. We will then talk about its different characteristics such as its
constitution and its operating principle.

1.2 History of EVs

While electric vehicles are often considered a modern technology, they have actually been
around for quite a long time [2]. The history of electric vehicles began in Europe at the
beginning of the 19th century. After the invention of the primary battery by Volta in
1800 and the demonstration of the principle of the electric motor in 1821 by Faraday,
The first practical electric vehicle was developed by Scottish inventor Robert Anderson in
1830. The small vehicle operated on a non-rechargeable battery and managed to travel a
short rail journey [6].
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In 1859, the Frenchman Gaston Planté invented the secondary lead/acid rechargeable
battery and in 1869 Gramme built the first electric DC motor with direct current having
a power of more than one horse. Twelve years later, in 1881, Gustave Trouvé built the
first electric vehicle powered by a secondary battery 1.1. The vehicle was powered by
a 0.1 horsepower DC electric motor and weighed 160 kg with its driver. According to
[6] it was preceded by Sir David Salomons who built an EV with a rechargeable battery
in 1874. In 1881, Camille Faure improved the model of Gaston Planté. In 1884, newly
unearthed photos show Thomas Parker sitting in what appears to be an electric vehicle
which could be the first in the world.

Figure 1.1: First electric vehicle built by Gustave Trouvéc

Later, in 1885, the Germans Daimler and Benz invented the first gasoline car. The
early achievements did not attract public attention due to their still immature technology
that could not compete with horse cars. But things changed quickly and in the years that
followed the race was launched, electric vehicles competed with thermal vehicles but also
with steam vehicles. The people, caught between the irresistible pull of gasoline-powered
vehicles and the allure of environmentally friendly EVs.

Undoubtedly, the beginning of the 20th century was the golden age of EV. Indeed, it
is an EV that for the first time crossed the limit of 100 km/h, on April 29, 1899, with the
Belgian Camille Jenatzy in his car called «La Jamais Contente» (“The Never Satisfied”)
in the shape of shells 1.2. This EV had two engines driving the rear wheels directly, with
a total maximum power of 50 kW (67 horsepower), powered by the 80 elements of the
Fulmen battery weighing almost half the total weight of the 1.5-tonne vehicle [2].

Two years later, on October 12, 1901, the French engineer Louis Krieger made, without
charging, the Paris-Châtellerault trip, 307 km at an average speed of 17.5km/h. This
performance earned him a status among the most important electric vehicle manufacturers
of the early century.
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Figure 1.2: La Jamais Contente EV

The electric vehicle was therefore present in the world of the automobile. However,
the continuous improvement of internal combustion engine vehicle performance, the emer-
gence of cheap gasoline, and the persistence of battery capacity limitations did gradually
remove EVs from the market. Thus, in the early 1930s, the production of electric vehicles
was almost completely interrupted, the period 1921-60 being dominated by vehicles with
a thermal engine. Therefore, EVs have had only specific uses.

New possibilities appeared in electric traction after 1945, when the Bell labs invented
transistors and later, when thyristors were able to switch currents and high voltages.
These discoveries led to the development of power electronics that allow the replacement
of rheostats and the control of variable frequency AC motors [2].

At the same time, in the 1960s and 1990s, because of air pollution and especially the oil
shocks of the 1970s and 1980s, many countries began to take an interest in EVs. Searches
are repeated and the EV begins to reappear in small numbers. The modern era of EVs
culminates between the 80’s and 90’s with a few vehicles made like the EV1 produced by
General Motors 1.3. The next year, Toyota introduced the world’s first commercial hybrid
electric vehicle (HEV), Prius in Japan and 18,000 units were sold in the first production
year [6].

Figure 1.3: Electric vehicule EV1 produced by General Motors
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Despite progress, in the 1990s it became clear that electric vehicles could not compete
with conventional vehicles because of their insufficient range and performance. As at the
beginning of the 20th century, the brake on their development is, and remains, the source
of energy storage i.e the battery.

As the oil price kept increasing, more automakers were committed to vehicle electri-
fication. From 2010 onwards, pure electric vehicles (PEVs) and hybrid electric vehicles
(HEVs), such as Nissan Leaf, Chevrolet Volt and Tesla Model S have started to enter into
the automotive industry. In 2020, there were 27 different models of PEVs available from
11 different manufacturers [5].

The progression towards more efficient and feasible electric vehicles has been also heav-
ily reliant on the advancement of sophisticated motor drives and their control techniques.
Motor drives are responsible for managing the speed and torque of the motor, rendering
them an indispensable component of EVs. During the initial stages of EVs development,
DC motors were a common choice. Nevertheless, due to their elevated efficiency and
dependability, AC motors have pervaded in contemporary times.

Contemporary technological advancements and governmental support have sparked a
resurgence in electric vehicle interest as a greener and more sustainable transportation
mode. With ongoing advancements in battery technology and motor drives, the prospects
of electric vehicles look extremely promising, and they are guaranteed to assume a pro-
gressively indispensable role in the transportation sector in the years ahead.

1.3 What is an EV

1.3.1 Definition of EVs

An EV is a road vehicle based on modern electric propulsion which is it’s main organ,
powered by one or more electric motors using electrical energy, it has its own distinct
characteristics with an intelligent system that can readily be integrated with modern
transportation networks [6].

1.3.2 EV Propulsion System Overview

The EPS of EVs has a general architecture which simply consists of an electric actuator,
a transmission device and wheels. The drive, which is the assembly of the electric motor
and static converters associated with an electronic drive, is the core of the propulsion
system in EVs.

The figure 1.4 shows the block diagram of an EV system with its main components
including the controller, power converter, electric motor, and energy source as long as the
mechanical transmission.
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Figure 1.4: Block diagram of general architecture of an EV system

The transmission device sometimes is optional. In fact, the motor drive, comprising
of the electric motor, power converter and electronic controller, is the core of the EV
propulsion system.

The development of electric propulsion systems has advanced alongside various tech-
nologies, particularly in the realms of electric motors, power electronics, microelectronics,
and control strategies [17]. Figure 1.5 provides an overview of the EV propulsion system,
illustrating the different motor types, power converter devices, and topologies, as well
as the hardware, software, and strategies for control. Currently, induction motors and
DC motors are the preferred choices for motor technology. Similarly, PWM GBT invert-
ers1 have gained significant popularity for power converter technology. As for control
technology, DSP-based vector controls or VVVF systems are very common.

Table 1.1: Comparison of different EV propulsion system technologies

Software Devices Type

VVVF Variable voltage
variable frequency GTO Gate turn-off

thyristor DC Direct current
motor

FOC Field oriented
control BJT Bipolar-junction

transistor IM Induction motor

MARC Model reference
adaptive control MOSFET Metal oxide

field effect SRM Switched reluctance
motor

STC Self-tuning
control IGBT Insulated-gate

bipolar transistor PMSM Permanent magnet
synchronous motor

VSC Variable structure
control MCT MOS controlled

thyristor PMBM Permanent magnet
brushless motor

NNC Neural network
control PMHM Permanent magnet

hybrid motor
Fuzzy Fuzzy control

1Note that we didn’t mention Silicon carbide (SiC) and gallium nitride (GaN) which are two wide-
bandgap semiconductors that have recently gained significant attention in the field of power electronics for
EVs. These materials are more promising options for high-performance and efficient EV power systems.
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Figure 1.5: EV propulsion system technologies [17]

1.3.3 Classification of EVs

In general, EVs are classified as the PEV, HEV, and FCEV types on the basis of their
energy sources and the propulsion devices [15].

The table 1.2 summarises the differences between those types :

Table 1.2: Comparison of different EV types

Types PEV HEV FCEV

Drive section Electric machine Electrical machine,
ICE Electrical machine

Energy sources Battery, Ultracapacitor Battery, ICE unit,
Ultracapacitor Fuel cell

Energy
supplements

Electricity and power
system

Electricity and
power system,
Gasoline statione

Hydroge-nide

With independence of the vehicular architecture which all compete with ICE vehicles,
the development of next generation green vehicles based on advanced electric drives re-
quires focus on power converters, electric machines and control drives [18]. Throughout
this thesis, we focus specifically on the Control Drive block of the Electric Motor in EVs.
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1.3.4 Advantages and limitations of EVs

1.3.4.1 Advantages

EV has several advantages that makes the difference between it and thermal vehicles :

• Zero Emissions : Electric vehicles bring an environmentally friendly mode of
transportation as they run on electric motors that don’t release any emissions while
in operation.

• Cost-effective : Generally they are cheaper to operate than conventional vehicles
as they have fewer moving parts which means they have a lower risk of mechanical
failure, require less maintenance and have a longer overall lifespan. Also electricity
costs are generally more stable than gasoline costs [19].

• Energy Efficiency : They are more energy-efficient than conventional vehicles
because they convert more of their stored energy into usable power. In contrast,
internal combustion engines lose a significant amount of the energy they produce as
heat, which decreases their overall efficiency.

• Ease of Driving : As they have instant torque, which means that they can accel-
erate quickly and smoothly without the need for a traditional transmission as the
engine never stalls (no clutch) [16].

1.3.4.2 Limitations

The weight of these vehicles, the safety issue of it’s silent engine since it is not always well
heard by road users, the long recharging time as refuelling the car with gasoline requires
only minutes, limited driving range which is estimated to be less than 480 km and the
high prices of those EV’s reduced their ability to gain a long-term market presence.

It should also be noted that the development of these vehicles poses other types of
environmental challenges like emissions of pollutants related to the extraction of raw
materials (e.g. lithium) without forgetting the difficulty of recycling, especially Li-ion
batteries [20].

1.4 Overall EV system configuration

The conventional ICEVs employs a combustion engine for propulsion. Its energy source
is liquid petrol or diesel. In contrast, the EV employs an electric motor and the corre-
sponding energy sources are batteries. The key difference between the ICEV and EV is
the device for propulsion [6].

There are many alternatives for configuring EVs. Compared with the ICEVs, the con-
figuration of the EV is particularly flexible, it generally consists of three major subsystems:
electric propulsion, energy source and auxiliary as shown in the figure 5.1.
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Figure 1.6: EV system configuration [6]

1.4.1 The electric propulsion system

Responsible for converting electrical energy into mechanical energy to propel the vehicle
forward. This system consists of several crucial components, each playing a unique role in
the overall functioning of the vehicle. Comprises the electronic controller, power converter,
electric motor, mechanical transmission and driving wheels.

1.4.1.1 Electronic controller

Serves as the central command unit that provides proper control signals to switch on or
off the power devices of the power converter block depending on the control inputs of the
systems which represent the brake and accelerator pedals of the EV.

1.4.1.2 Power converter

Functions to modulate the power flow between the electric motor and energy source. In
EVs, the power electronic converters are of two types, the DC-DC converters used in the
case of DC motors and the DC-AC converters for AC motors.

• Chopper :
DC-DC converter, it allows for the control and regulation of DC voltage levels,
to obtain controlled voltages and currents, adjustable and adapted to the needs
necessary for the supply of the various receivers. It is also known as a DC-DC
buck-boost converter. In EVs systems, choppers are used because :

– They are indispensable in supplying propulsion engines when they are DC
motors.
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– They enable the conversion of high-voltage direct current (DC) from the bat-
tery to a lower voltage level that can be efficiently used by various vehicle
subsystems.

• Inverter :
DC–AC converter, an electronic device that converts DC power from the battery
into AC power. It provides alternating voltages or currents with variable frequency
and amplitude. In EVs, these inverters are used to power alternating current motors
to be rotated with variable speed, allowing for precise control of the electric motor’s
speed and enabling smooth acceleration and deceleration.

1.4.1.3 Electric motor

The current stored in the batteries of the energy source is directed to the electric motor
which rotates through its rotor under the action of a magnetic field generated in the stator,
it converts the electrical energy into mechanical energy, enabling the wheels to turn and
propel the vehicle forward. Unlike traditional internal combustion engines, electric motors
are known for their high efficiency and instant torque. Several types of motors are used
depending on the application, but both DC motors and asynchronous motors are the most
common for EVs.

• DC motor :
Short for direct current motor, operates using a direct current power source where
the interaction between a magnetic field and an electric current flowing through the
motor’s windings generates rotational movement.

• Asynchronous motor :
Also called induction motor, is an alternating electric machine that operates through
the induction principle, where the rotating magnetic field is created by electromag-
netic induction between the stator and rotor windings. It is used today in many
applications, especially in transport (metro, trains, EVs) and in industry (machine
tools).

1.4.1.4 Mechanical transmission

There are several mechanical configurations of the vehicle that transmit the power from
the electric motor to the wheels. EVs typically employ a simple transmission system.
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1.4.2 Energy source subsystem

Involves the energy source, energy management unit and energy refuelling unit.

1.4.2.1 Energy source

Responsible for storing and supplying the required electrical energy to both the electric
motor for propulsion needed for the vehicle’s operation and also for the auxiliary com-
ponents. This is typically a high-capacity rechargeable battery pack, such as lithium-ion
batteries.

1.4.2.2 Energy management unit

Works with the energy refuelling unit to control refuelling and to monitor usability of
the energy source. It controls and optimises the flow of electrical energy between the en-
ergy source (battery pack) and the various components of the vehicle, such as the electric
motor and auxiliary systems. The EMU ensures efficient utilisation of the available en-
ergy, manages power distribution, and monitors the battery’s state of charge to maximise
performance, range, and overall efficiency of the vehicle.

1.4.2.3 Refuelling unit

Works on replenishing the energy source (battery) when it becomes depleted. This typi-
cally involves connecting the EV to an external power source, such as a charging station
or an electrical outlet, to recharge the battery pack.

1.4.3 The auxiliary subsystem

Consists of the power steering unit, temperature control unit and auxiliary power supply.
The auxiliary power supply provides the necessary power with different voltage levels for
all EV auxiliaries, especially the temperature control and power steering units. Besides
the brake and accelerator, the steering wheel is another key control input of the EV. Based
on its angular position, the power steering unit can determine how sharply the vehicle
should turn.
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1.5 Conclusion

In this chapter, we provided a comprehensive account of the historical evolution of EVs.
Subsequently, we presented a general overview on EVs and the architecture of their propul-
sion system, we then included the EVs classification based on energy sources and motor-
ization. We also discussed the advantages and disadvantages associated with electric cars,
highlighting their unique characteristics. Finally, we presented a detailed examination of
the overall system configuration found in modern and advanced EVs, starting from the in-
put pedals and steering wheel and extending to the mechanical transmission that transfers
the electrical power to the vehicle’s wheels.

In the next chapter, we will start with an overview of asynchronous machines and
mention some of their different characteristics. Then we will explain the type of the control
command employed in this project for the electric propulsion system. Subsequently, we
will introduce the principle of the SHE PWM command and the methodology used for
generating the necessary database and conclude with some examples of illustration and
interpretations.
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2.1 Introduction

Selecting the appropriate electric propulsion systems for electric vehicles primarily relies
on three key factors: driver expectations, vehicle limitations, and energy sources. Driver
expectations are determined by various elements such as acceleration, top speed, climbing
ability, braking performance, and range [17].

For a modern EV, the preferred choice for propulsion is a three-phase induction mo-
tor. Accompanying this motor is a three-phase PWM inverter, serving as the suitable
power converter [6]. By aligning the propulsion system with the driver’s anticipated re-
quirements, we can say that an ASM with appropriate control will response largely to the
driver’s expectation [7, 8]. In practice, control methods produce undesirable harmonics
that have many unacceptable effects on the operation of the ASM, such as heating and
other factors that lowers the motors lifespan and efficiency.

To ensure smooth and precise control of the ASM, an advanced modulation technique
called Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) command
has emerged as a promising solution [12, 13].

The SHE-PWM command technique offers numerous advantages, including enhanced
motor performance, reduced harmonic distortions, and improved power quality. By strate-
gically selecting and eliminating specific harmonics, this technique optimizes the motor
drive signal, leading to efficient motor operation and reduced energy losses. Consequently,
it contributes to the overall energy efficiency of EVs and extends their driving range.

In this chapter, we will start with an overview of asynchronous machines. we will talk
about the various characteristics of the latter, such as its constitution and its operating
principle. Next, we will explain the type of control and the inverter we will use in this
project. Then, we will present the fundamental concept of the SHE PWM technique and
the approach employed for generating PWM signals. Additionally, Lastly, we will provide
a collection of illustrative examples, interpretations and a conclusion.

2.2 Asynchronous Motor

ASM is an AC machine powered by sinusoidal voltages and currents, widely used in in-
dustrial applications, particularly in two primary configurations: single-phase1 and three-
phase 2 motors. ASM is highly favored in EPS of EVs due to its numerous advantages
including its simplicity, low cost, reliability, robustness, low torque ripple, low mainte-
nance requirements and the ability to function effectively in harsh operating conditions.

1The number of phases refers to the number of AC signals needed for the ASM to work and those
signals are phased between each others.

2It is worth noting that while there is a theoretical existence of a two-phase motor, it offers no
advantages compared to the other configurations.
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As shown in figure 2.1 The ASM consist of two parts:

• The stator is the stationary part of the motor and typically comprises a set of
laminated iron cores with evenly spaced windings called ”Poles”, in typical motor
we will find 2p poles which are responsible for generating the rotating magnetic field
necessary for the motor’s operation.

• The rotor is the movable part of the motor. It is composed of a set of laminated
iron cores with conductive bars or conductors arranged in a cylindrical shape. The
rotor’s design allows it to interact with the rotating magnetic field generated by the
stator, enabling the motor to convert electrical energy into mechanical motion.

Figure 2.1: A three phase asynchronous motor

When an AC voltage is applied to the stator, it produces a rotating magnetic field that
interacts with the conductive bars of the rotor. This interaction induces a current in
the rotor, creating a magnetic field. As a result, the rotor initiates rotation at a speed
slightly below the synchronous speed of the stator represented by N. The rotor also has
an angular speed denoted by Ω. The direction of rotation is determined by the slip, which
is the difference between the synchronous speed of the stator and the actual speed of the
rotor.

N =
120×f

p
=

w

2πp
, Ω =

w

p
=

2×π×N

60
(2.1)

where :

• N is the synchronous speed RPM [revolutions/minute]

• Ω 3 is the angular speed [rad/s].

• f is the powering AC signal’s frequency [Hz].

• w = 2πf is the angular frequency[rad].

• p is the number of poles in the motor.

3The rate at which the rotor of an asynchronous motor rotates.
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The coupling between magnetic flux and motor torque4 can be explained by Faraday’s
law. Whenever there is a variation in the magnetic flux traversing a coil, an electromotive
force (EMF) is induced.

The EMF initiates the flow of electric current, resulting in the generation of torque
which directly proportional to the magnetic flux. By regulating the magnetic flux the
motor’s torque and speed can be finely adjusted.

However, the nonlinear coupling between magnetic flux and motor torque and the
dependency on other parameters makes its control difficult. Despite this limitation, to-
day’s widespread use of ASM can be attributed to significant technological advancements
in automotive electronics leading to semiconductor-based transistorized power inverters
(such as MOSFETs and IGBTs), also overtime the programmable electronic circuits made
their way into drive controls (including FPGAs and DSPs). These advancements have
enabled more efficient and sophisticated control of Asynchronous Motors, overcoming the
previous challenges and unlocking more potential.

According to the comparative study about the different types of motors used in an
EV done by [7, 8] and shown in the table 2.1, IM can achieve a large speed range with ap-
propriate control. The well-known technology and existing manufacturing infrastructure
makes IM today’s leading motor technology in EV application.

Table 2.1: Electric motor drives comparison

Motor drives Brushed DC IM PMSM5 SRM6

Adapted from [7]
Efficiency 2.0 4.0 5.0 4.5
Weight 2.0 4.0 4.5 5.0
Cost motor 5.0 4.0 3.0 4.0
Total 9.0 12.0 12.5 13.5

Adapted from [8]
Power density 2.5 3.5 5.0 3.5
Efficiency 2.5 3.5 5.0 3.5
Controllability 5.0 5.0 4.0 3.0
Reliability 3.0 5.0 4.0 5.0
Technol. maturity 5.0 5.0 4.0 4.0
Cost 4.0 5.0 3.0 4.0
Total 22.0 27.0 25.0 23.0

As discussed earlier we have two options: single phase and three phase motor.
Single phase motor is used for light applications and features a simple design and is
relatively inexpensive compared to the three phase motor, but they are less powerful
and less efficient. In the other hand, three phase motors handles heavy loads, efficient,
reliable, and capable of delivering higher torque compared to one-phase motors. Thus for
our application a three phase motor is the most appropriate for EV design.

4Torque is a measure of the force that can rotate an object about an axis.
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2.2.1 ASM configuration

The coils of the motor has two different configurations known as delta configuration ∆

and star configuration Y , each present a specific wiring pattern of the motor’s coils.

(a) (b)

Figure 2.2: The two motor’s connections

• The Delta Configuration figure 2.2.(a) involves connecting the coils in a triangu-
lar configuration, forming a closed loop. This setup enables enhanced initial torque
and is commonly employed in applications that demand a high level of torque at
the start. Moreover, the delta configuration shows a good performance when we
have an unbalanced load conditions.

• The Star Configuration figure 2.2.(b) connects the coils in a star or Y pattern.
This pattern offers a lower current rating compared to the delta arrangement. It is
frequently utilized in situations where a balanced load is expected during regular
operation.

From the above we can say that the star configuration can contribute to improved
efficiency and reduced voltage stress. But, the decision to opt for either the ∆ or Y con-
figuration depends on the specific requirements of the motor application. Various factors
must be taken into account, such as starting torque, current levels, voltage conditions,
and load characteristics.

2.3 Control of Asynchronous Motors

Different speed and torque control techniques are being applied and developed. We can
find two types of command algorithms, Scalar Command algorithms which controls
amplitude quantities and Vectorial Command algorithms that controls amplitude and
phase quantities. In our case we will go for Scalar Command mainly because of the
simplicity of its implementation and also its low cost comparing to the vectorial command
that needs expensive resources. This make the scalar command relatively a great choice
[21, 9, 10].

Another essential thing is the ability to go reverse, in three phase motor it can be
achieved by reversing the direction of rotation of the stator flux. To do this, we simply
swap the inputs of two phases [9].
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2.3.1 Scalar Command

As mentioned in [17] high torque at low speeds for starting and climbing, as well as high
power at high speed and very wide speed range including constant-torque and constant-
power regions are among the major requirements of EV’s motor drive.

The scalar command ”V
f

constant” align with these requirements as it maintains the
torque constant at its maximum value for all speed spectrum.

2.3.1.1 Constant V
f

Command

The constant torque is given with the equation :

Te =
3pV 2

4πf(Rs +
√

R2
s + [2πf(Ls + Lre)]

(2.2)

Where, Rs and Ls respectively are the resistance and the inductance of the stator, Lre is
the inductance equivelent of the rotor to stator, p number of poles, V is the rms input
voltage to one motor’s phase and f is the frequency of the alimentation source.

From the equation 2.2 we notice that the resistances, inductances and the number of
poles are characteristics of the motor and are constants, the only variables that is variable
and we can actually control are the voltage V and the frequency f .

The synchronous speed mentioned in equation 2.1 is controlled by the frequency just
like the torque. As result, if we wish to hold the torque constant at its maximum value
Tmax, we need to maintain the ratio V

f
= Cte which is equivalent to saying that the

frequency varies lineally with the voltage (f = Cst.V ).
In the event where the voltage V remains constant and only the frequency f that

varies, we will face the situation of excessive flux induction. This occurs when the flux
exceeds the rated capacity which leads to increased eddy current and hysteresis losses.
This increased losses cause the heating of the core of the motor and as a result of this the
insulation of core will get damaged.

A quite interesting thing is that the outcome of this command is a special square
signal called PWM, that we will fairly speak about in section 2.5. Historically, in analog
electronics, it is an outcome of a modulation technique [22] which is based on comparing a
triangular carrier signal with amplitude (Vc) and frequency (fc), and a sinusoidal reference
signal with amplitude (Vr) and frequency (fr).

As a technique of modulation we shall define the indexes of modulation as follows

• Amplitude index of modulation ima =
Vr

Vc
.

• Frequency index of modulation imf = fc
fr

In our case imf can be written as

f = im.fnom (2.3)
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Where f is the motor’s input signal frequency (i,e the PWM’s frequency) and fnom is the
rated frequency or the nominal frequency7 at which the speed is at its peak value, and
because V

f
constant than ima = imf = im.

This result is interesting because earlier we were speaking about speed control with
frequency drive. Here the modulation index is the variable that describes the speed of the
ASM. For instance, if im = 1 than f = fnom, here we are at full speed (100% of maximum
speed) and if im = 0.5 than we are at 50% of the maximum speed.

In situations where the frequency of the motor’s input signal is low, resulting in low
speeds, the motor encounter statoric losses that may prevent it from turning. To address
this issue, a potential solution is to fix the frequency at a certain value and increase the
voltage supplied to the motor. The speed at which the motor turns will correspond to
that particular frequency and this approach allows for controlling the motor’s speed in
the low-frequencies range.

Figure 2.3: Motor’s torque as a function of frequency with constant V
f

ratio then with
constant V.

As we spoke about the command of the motor, we shall also note that we are talking
about three phase motor which means it takes as input three phased signals with an exact
phase of 120◦. If the motor was meant to roll with a constant speed we could just use three
oscillators with fixed frequency but for our work on EVs, we need to have instantaneous
variation of the speed and that’s why we need to think about another solution, this
solution is the use of a 3 phase inverter.

2.4 Three Phase Inverter

An inverter, in simple words is a circuit that turns the continuous signal (DC) into alter-
nating signal (AC).

In our case, and as we discussed in section 2.2 the EV’s motor needs an AC to produce
the rotating electromagnetic field while the energy source would likely be some installed
batteries. The need to convert the batteries DC output into a proper AC is typically done
by the use of a 3-phase inverter.
In a three phase inverter shown in figure 2.4 we will find 6 switches, typically those
switches are IGBTs, Thyristors or in our case MOSFETs.

7The fnom is indicated by the constructor
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Figure 2.4: Three phase inverter schema

The control of those switches gives us the power to create a three phased signals that
modulate the sine wave signal with a great flexibility specially in matter of the frequency
and the phase.

The performance of the inverters depends on the structure of the inverters, the tech-
nique used for generating the control signals and the intended application. A remarkable
effort has been made to introduce efficient orders, which has been reflected in the large
number of works published in this context. There are many controlling algorithms that
were widely mentioned in the literature explaining the different approaches and techniques
developed by researchers to control the inverter [9, 10, 11].

2.5 Pulse Width Modulation

This technique consists of determining the switching moments of the inverter to meet
certain criteria. This operating behavioral is generally stored and restored cyclically.

Figure 2.5: Pulse Width Modulation signal [23]

Generally the criteria is relating to the frequency spectrum of the wanted output
signal, among those we can find the following criteria:

• The elimination of harmonics of specified ranks.

• The elimination of harmonics in a specified frequency band.

• The elimination of harmonics to a specific order.
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Achieving particular requirement as mentioned in [17] and discussed in the beginning
of this chapter defines the choice of particular PWM algorithm.

The PWM signal modulates a sinusoidal signal thus it will be convenient that it has
the main characteristics of a sine wave which are periodicity and symetry, half wave
symmetry and quarter wave symmetry (HWS and QWS respectively).

We will held a specific interest to the last mentioned criterion. The one based on
eliminating a bench of harmonics. The technique that does that is called Selective
Harmonics Elimination Pulse Width Modulation.

2.5.1 Selective Harmonics Elimination Pulse Width Modulation

The SHE PWM is based on the understanding of the frequency behavior of an ASM. In
matter of fact, the motor behaves as low pass filter, thus it is sensitive to a specific range
of frequencies depending on its speed.

The idea, is to eliminate a large amount of harmonics until we approach the limit of
the sensitivity zone [12, 13].

Additionally, the presence of the harmonics specially the high order ones generate
vibrations that reduces significantly the lifespan of the motor and attaching parts, beside
that they contribute also to the statoric losses and thus power losses and heating.

Here SHE technique is a powerful tool to create a sustainable system. We can thor-
oughly discuss this technique in frequency domain as we said above that this special
PWM signal noted f(t) is periodic in time, it means that it can be viewed as fourier series
defined by the chopping (switching) angles α1, α2, α3...α2M as shown in the figure 2.6

Figure 2.6: SHE PWM signal with 2M angles [11]

If we can write f(t) as sum of only sines (or cosines) and applying the LPF8 propriety
of the ASM than we will end with a system described with a finite sum of sines where
each one of them is multiplied by a factor (fourier coefficient).

8The low pass filter will eliminates the frequencies higher than the cutoff frequencies thus the only
ones left are f < fcutoff
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Now, if we consider this finite sum and than cancel out all the sines except one, then
f(t) indeed is now a sine wave signal, we can do that by equating the fourier coefficients
to zero without changing the PWM form as a square signal by introducing the chopping
angles, the α’s. This is the hard core of Hasmukh S. Patel and Richard G. Hoft’s work
[24].

2.5.1.1 The Fourier Series of SHE PWM

Let f(t) be the signal SHE PWM, inverters output, a 2π periodic function. The Fourier
series of f(t) is given by the general form:

f(t) =
a0
2

+
∞∑
n=1

(an sin(nwt) + bn cos(nwt)) (2.4)

where a0, an, bn are the fourier coefficients calculated using the following formulas:

a0 =
1

π

∫ π

−π

f(x) dx

an =
1

π

∫ π

−π

f(x) sin(x) dx

bn =
1

π

∫ π

−π

f(x) cos(x) dx

In the frequency domain the terms a0/2, an cos(nx) and bn sin(nx) are called the harmonics
of the Fourier series and n is the order of the harmonics. n = 1 represents the first
harmonic which is called the fundamental frequency.

As mentioned in [12], by substituting f(t) in an, bn where the amplitude of the SHE
PWM was normalized. We should get:

an =
2

π

2M∑
k=0

(−1)k
∫ αk−1

αk

sin(nwt)d(wt) (2.5)

where α0 = 0, α2M+1 = π and α1 < α2 < α3... < α2M+1

After computing the integral and similarly computing bn the coefficients of fourier would
become:

an =
2

nπ
[ 1− (−1)n + 2

2M∑
k=1

(−1)k cosnαk] (2.6)

bn =
4

nπ
[−

2M∑
k=1

(−1)k sinnαk] (2.7)

If we apply the symmetries mentioned in section 2.5 we will end with a0 = 0, and the
even coefficients will also be zero, so we will left with n = 1, 3, 5....

Using the half-wave symmetry property in 2.6 will reduce to

an =
4

nπ
[ 1 +

2M∑
k=1

(−1)k cosnαk] (2.8)
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The next step is to use the QWS symmetry and than bn = 0 and the sum of the 2M
cosines in an

9 will also simplifies to its finale form:

an =
4

nπ
[ 1 + 2

M∑
k=1

(−1)k cosnαk] (2.9)

Now, we proved that the SHE PWM signal f(t) is just a sum of cosines with coefficients
that depends on the chopping angles as follows

f(t) =
∞∑
n=1

an(α1, α2, α3, ..., αM) cosnwt, n = 1, 3, 5... (2.10)

Refering to 2.10, if we equate a1 to an amplitude A, and then by eliminating all the
other harmonics to the limit of the sensitivity zone, by this the motor will sense at each
phase only the input f(t) ≃ A sin(wt) + ϕ without the presence of other harmonics. The
elimination process is done by equating an = 0 for n > 1 and then finding the proper
angles.

2.5.1.2 Computing Chopping Angles

When we computed the fourier series of the SHE PWM signal we normalized the rated
voltage E

2
(i,e E

2
= 1) to simplify the calculation, when we did that the input voltage

A now is defined by 0 < A < E
2

which means two things. First we have 0 < A < 1

and second im = A
E
2

= A. Rigorously, the fundamental’s amplitude a1 is assigned to the
modulation index but as mentioned in section 2.3 the modulation index im describes the
ASM’s speed as a portion of the maximum speed.

As a result, to cover the whole spepd range from 0% (stop) to 100% (full speed) we
need to find the suitable angles for each im value until we cover all speed’s range.

Now, computing the angles can be done by solving a non linear system where we will
neglect the harmonics multiples of 3, because the three phase motor will eliminates them
automatically while it’s running.

To solve 2.12 we will use the Newton-Raphson non linear method defined by the
general form

Ak = Ak−1 − J [F ]−1F (2.11)

9All detailed calculations were mentioned in [12]
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Where A = [α1α2...αM ]T , J is the jaccobian matrix and F = [f1f2...fM ] as following:

f1 =
4

π
[ 1 + 2

M∑
k=1

(−1)k cosnαk] + im = 0

f2 =
4

5π
[ 1 + 2

M∑
k=1

(−1)k cosnαk] = 0

f3 =
4

7π
[ 1 + 2

M∑
k=1

(−1)k cosnαk] = 0

...

fM =
4

nπ
[ 1 + 2

M∑
k=1

(−1)k cosnαk] = 0

(2.12)

As mentioned in [25],So the Newton-Raphson iterative method converges, we need to:

• Assign a negative value to im and the sign (-) corresponds to a π phase shift of the
fundamental that has no effect on the motor.

• Choose a good initial guess because Newton-Raphson method is highly sensitive to
initial values.

Besides to the enormous number of equations needed to be solved, another problem is
that the number of angles is not fixed. The sensitivity zone of the ASM changes according
to the speed of the motor, the lower the speed the higher number of angles is needed.

For that, we have developed a MATLAB program that calculate the angles across all
values of im and consequently it generates the angles data base.

2.6 Finding the Chopping Angles using MATLAB

Before discussing the way to find the good initial guess A0 = [α0
1α

0
2, ...α

0
M ], we shall

determine the number of angles M.
When we refer back to the expression of the coefficients an as depicted in equation 2.9,

we observe that the harmonic order n appears in the denominator. This implies that as
the order increases, the amplitude of the harmonic decreases. Hence, practically, beyond a
certain order l, the amplitudes an≥l becomes significantly small, rendering the harmonics
negligible and treating it as noise.

If the amplitude of the fundamental harmonic is significantly larger than that of other
harmonics, we can achieve a sinusoidal waveform (representing the fundamental) with
minimal noise by eliminating a small number of harmonics. However, if the amplitude of
a1 is relatively low, we would need to eliminate a greater number of harmonics thus we
need more chopping angles to distinguish the fundamental from the others, in order to
maintain the same level of noise tolerance. Therefore, if the value of a1 = im is relatively
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large, the number of angles needed M , will be smaller. Conversely, if a1 is smaller, the
number of angles M needs to be larger.

To measure the noise tolerance, we shall refer to IEEE 519 norm that sets no more
than 5% total harmonic voltage distortion10 with the largest single harmonic being no
more than 3% of the fundamental voltage.

The number of angles M was chosen based on experimental results [14] by considering
the THD and the implementation on an FPGA device as shown in Table 2.2.

Table 2.2: Number of chopping angles as a function of im

Modulation index (im) Switching angles number (M)
0.001 < im ≤ 0.159 23
0.16 < im ≤ 0.319 19
0.32 < im ≤ 0.559 15
0.56 < im ≤ 0.759 07
0.76 < im ≤ 0.919 05
0.92 < im ≤ 1 03

Now, we know that we have M equations to solve where we will eliminate M-1 har-
moics. The next thing is to find the proper initial values.

Taufik, Mellitt and Goodman’s work [24] grants a proper way to find the initial value
A0 as shown in the figure 2.7

Figure 2.7: The process of Taufik, Mellitt and Goodman’s algorithm to choose the initial
guess of Newton-Raphson

Finally, to proper end the code we need a stopping criteria. In our case, we set
the error tolerance to 10−12 and the maximum number of iterations to 200. During the
code execution, it was consistently observed that the error criterion was satisfied before

10total harmonic distortion or THD is the ratio of the sum of the powers of all harmonic components
to the power of the fundamental frequency.
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reaching the maximum number of iterations. Specifically, the highest number of iterations
achieved was 6.

We ran the code and we solved the system of equations 2.12 for im ∈ [0; 1] with step
of 0.001 each time.

2.7 The Angles’ Data Base

The set of solutions is now our data base as shown in Figure 2.8 saved in Excel sheets, it
gives us an overview on how the data base looks like.

(a) M = 3 (b) M = 5 (c) M = 7

(d) M = 15 (e) M = 19 (f) M = 23

Figure 2.8: Samples from the data base depending on the number of angles M

Another figure that’s quite important is the angles trajectory with respect to im, the
Figure 2.9 shows that property

Figure 2.9: Angles(in deg) trajectory with respect to im

From Figure 2.8 we can say that the number of angles involved is exceedingly large.
Consequently, implementing the Newton-Raphson algorithm on hardware becomes im-
practical as it requires a significant amount of time to approximate the solutions in an
on-line application process. Another alternative is to store the angles in a memory device.
However, this approach is also unrealistic due to the substantial memory allocation re-
sources it demands, making it inefficient and incompatible with our objective of developing
an industrial automobile.
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Figure 2.9, on the other hand, confirms that dividing the angles into six sets was a wise
decision. As depicted, within each range of im angles, a linear pattern can be observed.
However, when considering all values of im, the behavior becomes nonlinear and shows
discontinuity. This makes it challenging to describe the entire system using a continuous
linear function that might have been simple tp deploy it on hardware with minimal cost.

Recognizing the significance of financial cost in projects like these, we are driven to
explore alternative options which we will discuss further more in 2.10. For now, we will
focus on generating the SHE PWM signal.

2.8 Generating SHE PWM Signal in Time Domain

The analysis performed in this chapter until now are not given in time basis. At beginning
in section 2.5, we refered to PWM signal angles in degrees. In real world applications,
PWM signals are time’s based functions, thus we need a time adaptor bloc that generates
the switching instants from the switching angles.

This bloc that transforms the angles to instants. It can be described as fellows{ 3600 → T

αi → ti

Where T is the period of the SHE PWM signal. The adaption can be described as follows

ti =
αi

360f
(2.13)

Now if we replace the SHE PWM frequency f by im×f0 as we explained in section
2.3, f0 arbitrary is set to 50 Hz and im is in percent we will end with

ti =
αi

180im
(2.14)

Using MATLAB, we can load the angles from an Excel file, convert them into time
instants, assuming a nominal frequency of f = 50 Hz. We can then generate SHE PWM
signal as depicted in the Figure 2.10.

Figure 2.10: SHE PWM signal for im = 0.52
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To verify the suppression of harmonics, we will perform a Fast Fourier Transform
(FFT) and examine the frequency spectrum of the SHE PWM signal.

Figure 2.11: Frequency Spectrum of SHE PWM Presented in figure 2.10

2.9 Interpretation

As shown in Figure 2.11, the frequency spectrum demonstrates that only multiples of
3 are present, indicating the successful suppression of other frequencies. The first non-
eliminated harmonic occurs at the 47th harmonic. Additionally, the fundamental fre-
quency is observed at f = 26Hz, which aligns with the theoretical expectation of im×f0 =

0.52×50 = 26Hz. This consistency between the theoretical prediction and the observed
fundamental frequency confirms the accuracy of the analysis.

If we apply the FFT across all intervals of im, we can approximate the minimum non-
suppressed frequency within each interval. The table below illustrates the frequencies
obtained

Table 2.3: Minimum first harmonics not eliminated with respect to im

Index of modulation (im) Minimum first harmonic not eliminated (Hz)
0.001 < im ≤ 0.159 355
0.16 < im ≤ 0.319 472
0.32 < im ≤ 0.559 752
0.56 < im ≤ 0.759 644
0.76 < im ≤ 0.919 646
0.92 < im ≤ 1 506
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2.10 Conclusion

In this chapter, we provided a comprehensive account of the ASM for EV propulsion
system use, we then included the main approaches to control the ASM. We also discussed
the advantages of choosing the scalar command over the vectorial command, highlighting
the V

f
= constant scalar command as a proper variable frequency drive method to control

an EV’s AS motor. Finally, we thoroughly discuss the SHE PWM technique as our
preferred method for motor control. We begin by examining the three-phase inverter as
the interface between the ASM and the batteries, and subsequently explore the system
of equations derived from the SHE PWM signal, which effectively governs the motor’s
speed regulation by adjusting the modulation index im and computing the appropriate
switching (chopping) angles.

Nonetheless, determining the precise values of the switching angles when employing
the SHE PWM technique involves solving a system of M nonlinear equations with M
unknowns. To address this challenge, we have used the Newton-Raphson method in this
chapter. However, it is important to note that implementing this method requires a
significant amount of computational time and necessitates the estimation of initial values
to ensure convergence. Therefore, we used the algorithm proposed by Taufik, Mellitt, and
Goodman to effectively handle this requirement [24].

Even thought using Newton-Raphson method gives high precision of switching angles
ϵ < 1.0−15. However, it is crucial to acknowledge that this comes at the expense of exten-
sive computation time, which prevents real-time speed control in an ”on-line” scenario.
Consequently, the SHE PWM technique is suitable for ”off-line” applications where the
chopping angles are stored in a memory for a limited inputs range. Such process de-
mands substantial memory capacity to store all the calculated angles and achieve optimal
precision.

To address this limitation, our next chapter will introduce two distinct approaches that
we have adopted to develop an efficient ”on-line” SHE PWM technique for real-time cal-
culation of switching angles. These approaches aim to provide a more suitable algorithm
for controlling the ASM of an EV propulsion system. The first approach is an algo-
rithm based on Artificial Neural Networks (ANN) modeling, while the second approach
introduces an innovative method utilizing polynomial interpolation (PI) techniques.
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3.1 Introduction

In the realm of EVs propulsion systems, achieving efficient control of the power electronics
is essential to ensure optimal performance and driveability. One critical aspect that
significantly influences the overall performance of an EV is the latency of acceleration and
the rate of speed change. As discussed in chapter 2, solving the Patel and Hoft’s equation
system to eliminate specific harmonics using the iterative Newton-Raphson algorithm
gives accurate results but requires extensive computational time, preventing real-time
speed control.

Our primary focus centers around the implementation of an on-line SHE PWM al-
gorithm with acceptable real-time response. All measurements and considerations must
be aligned with this objective. However, it is essential to prioritize simplicity of the
implementation and cost-effectiveness, as increased complexity would lead to inefficient
resource utilization and higher expenses.

Using Newton-Raphson method, we have constructed a database that provided us with
two potential approaches. The first approach is an algorithm based on Artificial Neural
Networks (ANN), proposed by [14], which aims to calculate the switching moments of the
PWM signal with high speed and with a precision that is very close to those calculated
by the Patel and Hoft algorithm. Another algorithm worth exploring is Polynomial In-
terpolation, which utilizes similar principle of employing a database to generate various
polynomials that calculate the switching angles in real-time with very high precision.

This chapter focuses on exploring two On-Line SHE PWM algorithms. To begin with,
we will provide an overview of Artificial Neural Networks (ANNs). Subsequently, we will
delve into the learning process employed and discuss the design of its topology. This will
lead us to unveil the architecture for the operational ANNSHE PWM. Additionally, we will
demonstrate the implementation of this architecture using MATLAB and offer insightful
interpretations. Following this, we will adopt a similar approach to examine Polynomial
Interpolation. Lastly, we will conclude by conducting a comparative analysis between
the real-time implementation of both PISHE PWM and ANNSHE PWM algorithms on
a micro-controller. By evaluating their respective advantages and limitations, we will
determine the most suitable algorithm for our specific application.

47



Chapter 3. On-Line SHE PWM Algorithm

3.2 Artificial Neural Network ANN

A neural network is a computational model that draws inspiration from the structure and
functioning of the human brain. It serves as a powerful tool within the field of artificial
intelligence and machine learning, enabling the processing of intricate data and facilitating
predictions or decision-making.

3.2.1 Overview of ANN

At its core, a neural network comprises interconnected artificial neurons, also referred to
as nodes or units, which are organized into layers. The initial data is received by the
input layer, after which it traverses through hidden layers before ultimately reaching the
output layer. Neurons within a layer establish connections with neurons in adjacent layers
through weighted and biased connections, which enable the network to learn and adapt
over time.

(a) Diagram of an ANN (b) Diagram of one neuron

Figure 3.1: ANN’s Schematic

During the learning process, a neural network adjusts the weights and the biases
of its connections based on a given dataset, which contains input examples and their
corresponding desired outputs. This adjustment, known as training, is achieved through
a process called backpropagation1, the network progressively refines its predictions by
comparing them to the desired outputs and iteratively updating the connection weights
and biases accordingly. The predicted output Ypredicted of a single neuron, as illustrated
in Figure 3.1.b, can be mathematically described as the result of a linear combination of
the input vector X passed as an argument to an activation function.

Ypredicted = f(
∑

WXinput +B)

Where Y is the output vector, f the activation function, W the weights vector and B the
biases vector.

The comparison between the predicted value and the exact value is done using an error
function. Many error function were presented in literature, the use of any of them depends

1backpropagation is an algorithm for training feedforward ANNs or other parameterized networks
with differentiable nodes based on gradient descent.
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on the study case. The simplest one and the most used one is the Mean Squared Error,
which is defined by 3.1.

EMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.1)

Where n is the number of the desired outputs, yi represents the actual value of the ith
output, and ŷi represents the predicted value of this output.

The equations to update the weights and biases can be expressed as shown in 3.2, 3.3.

wnew
ij = wold

ij − η · dEMSE

dwold
ij

(3.2)

bnew
i = bold

i − η · dEMSE

dbold
i

(3.3)

Where wnew
ij and bnew

i are the updated weight and bias connecting the ith input neuron
to the jth output neuron, wold

ij and bold
i are the previous weight and bias values, η is the

learning rate,2 ∂EMSE

∂wold
ij

is the error gradient of the jth output neuron.

The learning rate η determines the impact of each weight and bias update on the
overall learning process. A higher learning rate may lead to faster convergence, but it
can also cause instability or overshooting. On the other hand, a lower learning rate may
result in slower convergence but increased stability.

Neural networks have demonstrated remarkable success across various applications,
including tasks such as image and speech recognition, autonomous systems, and predictive
analytics. They possess the ability to unveil intricate patterns and relationships within
vast amounts of data, making them valuable tools for solving complex problems and
generating accurate predictions with high speed ratio.

3.2.2 Activation function

The neurons process data through weighting the input’s sum and further adding bias to
it, then we apply a non-linear transformation called the activation function as shown in
figure 3.1.

The backpropagation is possible due to the non-linearity aspect of the activation func-
tion since the gradients are supplied along with the error to update the weights and biases.
In other words, without it a neuron would not be activated, we would loose the capacity
to learn and the whole model would be simplified to another linear regression model.

Through literature and academic papers, multiple activation functions have been pro-
posed [26], but for the time being, we will present a figure that shows a selection of wide
used activation functions, including sigmoid the most widely used activation function.

2η is a hyperparameter that determines the step size of weight and biases updates
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Figure 3.2: List of usual activation functions

3.2.3 Training the ANN

The ability to exhibit the same behavior on elements that are quite different in comparison
to those in the data base is what makes ANNs so popular this days, at this point we can
say that the model learned about that particular subject or in other words the model is
well trained.

In typical training algorithms, the initial step involves finding the right weights and
biases of the neural network, then the network’s performance is evaluated to determine
its validity. This iterative process continues until the validation error falls within an
acceptable range. There exist various methods for training neural networks [27]. But
mainly there is three types of learning, one approach involves explicitly setting the weights
using prior knowledge or predetermined values, another approach involves training the
neural network by providing it with teaching patterns and allowing it to modify its weights
based on a specific learning rule and the third one is about receiving feedback in the form
of rewards, the goal is to find the optimal strategy that maximizes the cumulative reward
over time.

The figure below refers to the different methods of learning and the application of
every method in real world application.

The types of learning depicted in figure 3.3, namely decision-making and skills acqui-
sition, are not our primary focus of interest. Thus, we will explore the other two methods
that mainly deals with data processing and modeling.
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Figure 3.3: Main types of training (learning)

3.2.3.1 Supervised training

Supervised training is a method where the neural network is trained by supplying it
with a set of inputs along with their corresponding expected outputs while learning the
ANN undergoes multiple iterations, or epochs, until its output aligns with the anticipated
output, with a relatively low error rate. Each epoch represents one complete cycle through
the training samples.

3.2.3.2 Unsupervised training

Unsupervised training does not involve providing anticipated outputs. This type of train-
ing is commonly employed when the neural network is tasked with classifying inputs into
multiple groups. Similar to supervised training, unsupervised training entails numerous
epochs. As the training proceeds, the neural network ”discovers” the classification groups
through its learning process.

3.3 Multi-Layer Perceptron ANN algorithm for SHE
PWM Application

The Multi-layer Perceptron (MLP) is a supervised learning algorithm designed to learn
a function F through training on a dataset. Such that if the data exhibit a pattern
modulated by the function F the MLP will learn the pattern and map it to the Network’s
parameters represented essentially by its weights and biases and other parameters [25]
including learning rate, the number of inputs, outputs, neurons, hidden layers and so on.
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3.3.1 Data Base

In order to train the MLP network, we start by the data. Our data sets represent the angles
data base mentioned in section 2.7, which is primarily a function of three parameters:

• The modulation index (im).

• The chopping angles α for each im.

• The number of angles (M), referring table 2.2.

Considering that our problem is that we want to construct a function noted F that
gives us the angles for each value of im. Naturally, the input of this function is im and
the output is the M angles as shown below.

Figure 3.4: Schematic of ANN SHE PWM

Referring to Table 2.2, we have six data sets of angles, each one with different number
of angles that correspond to the different intervals of im. So, it would be suitable to divide
the database into six smaller datasets, assigned to train a particular MLP. We need six
Fs just like the F shown in the figure 3.4. Those functions together construct the ANN
SHE PWM model or ANNSHE PWM algorithm. For each ANN we will distribute the
dataset into three sets

• Training set 95%, These elements are presented to the network during training.

• Validation set 5%, These elements are used to measure the generalization of the
network, and finding the right parameters.

• Test set 5%, These elements provide an independent measure of network perfor-
mance.

3.3.2 Training ANNSHE PWM model

The dataset consists of a pair (x, y). Here, x represents the im value, while y corresponds
to the respective angles Ai = [α1, α2, α3..., αM ], i = 1...6 and M = 3, 5, 7, 15, 19, 23.
Initially as discussed in section 3.1, the weights and biases of ANNSHE PWM are as-
signed with random values. Through the process of backpropagation, these values are
continuously adjusted until the network’s output y∗ approximates the desired value y,
within an acceptable tolerance.
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3.3.3 ANNSHE PWM architecture

The last thing to do is designing the network’s topology, this process often considered a
complex and intricate process, for some complex problems it can be consuming to finally
achieve a functional and effective network topology. The design consist of finding the
best parameters for optimum approximation to the original values. There is no particular
algorithm or specific method to choose this parameters, all what we can do is trying
until we get the best results. In our case, numerous studies have already addressed this
challenge [11, 25, 14, 28], and therefore we will not delve into the process of finding the
hyper parameters again. Instead, we will utilize the established parameters that have
proven to be suitable for our purposes.

Figure 3.5: Overall ANNSHE PWM algorithm’s architecture [25]

The parameters were found are as fellows

• For all six ANNs, the input layer has a single input (im).

• For all six ANNs, The output layer has a different number of neurons (3,5,7,15,19
and 23).

• For all six ANNs, The output layer’s activation function is a linear function.

• For all six ANNs, a single hidden layer with a single neuron.

• For all six ANNs, the activation function of the hidden layer is the Hyperbolic
Tangent tanh.

• Number of iterations = 100000.

• Learning error tolerance 10−5

In relative work [26], a three-layer neural network with sigmoid activation function in the
hidden layer and a linear activation function in the output layer, has the capability to
approximate our non linear system described by the equation ??. This approximation
can be achieved with a certain level of accuracy. However, when aiming to incorporate
various types of non-linearity within the network using only three layers, a substantial
number of neurons becomes necessary. This requirement can lead to the creation of an
excessively large neural network architecture.
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In order to optimize the architecture of a neural network in terms of hardware resource
consumption, it is essential to minimize the number of layers, neurons, and non-linear
functions while still achieving the desired precision.

The parameters above ensure an optimal network design that utilizes resources effec-
tively without compromising accuracy.

3.4 ANNSHE PWM using MATLAB

The database was stored in Excel format, consisting of six distinct sheets categorized based
on the number of angles. MATLAB loads each sheet individually, and subsequently, each
model is trained using the examples provided within the respective sheet.

In the learning phase, in order to improve the performance and efficiency of the network
and at the same as mentioned in 3.1, to keep the capacity of the network to learn we
must use a non linear activation function which generally demandes normalized inputs,
Consequently, we normalized all the data in a standard range, it means that we added
two blocs one for normalization(equation 3.3) and the other to the de-normalization.

3.4.1 Normalsation

The normalisation equation used is the following

imnorm =
imnorm,max − imnorm,min

immax − immin

(im− immin) + imnorm,min (3.4)

Her, because the normalization range is [1 ; 0] naturally we will have imnorm,max = 1

and imnorm,min = 0. by replacing in 3.4 we find

imnorm =
im− immin

immax − immin

(3.5)

3.4.2 De-Normalisation

The de-normalisation equation would as fellow

α =
αmax − αmin

αnorm,max − αnorm,min
(αnorm − αnorm,min) + αmin (3.6)

where αmax and αmin are the max and min values respectively of each angle in the dataset.
In the learning stage αnorm,max = 1 and αnorm,min = 0 were used, with replacing in 3.9 we
find

α = (αmax − αmin)×αnorm + αmin (3.7)

3.4.3 Time Adaptation

Now we proceed with time adaptation, following a similar approach as in section 2.8.
Additionally, we compare the obtained results with the theoretical ones mentioned in 1.5.
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We can take advantage of MATLAB’s Neural Network Toolbox to simplify our work.
This toolbox provides various functions and tools for designing, training, and implement-
ing neural networks. It offers a user-friendly interface and a wide range of functionalities
that can assist us in tasks such as network architecture design, training data prepara-
tion, training algorithm selection, and performance evaluation. By utilizing the Neural
Network Toolbox, we can streamline our workflow and leverage the capabilities of neural
networks effectively.

Figure 3.6: MATLAB’s Toolbox interface while training

3.4.4 ANNSHE PWM Interpretation

The figure 3.7 displays the output angles of the ANN models for the ANNSHE PWM
algorithm along with their error compared to the theoretical results discussed in section
2.7.

(a) ANNSHE PWM output for im = 52% (b) Error Between Predicted vs Actual α

Figure 3.7: ANNSHE PWM signal and the error committed for im = 52%

In order to assess the accuracy of the proposed ANNSHE PWM, the obtained results
demonstrate that the error between the theoretical angles and the predicted angles using
the Neural Network algorithm is on the order of 10−3. This indicates a high level of
accuracy and confirms the effectiveness of the ANNSHE PWM approach in approximating
the desired angles.
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3.5 Polynomial interpolation

As discussed in section 2.7, the six datasets exhibit an interesting behavior. For each
dataset we can create M row vectors where each row presents the angle αM ’s values for
all range of im in the dataset.

Figure 3.8: An example on the M row vectors, hier M = 3

But, As we mentioned in section 2.8, we can not store all values for all angles. But
what if we reduce the size of this vectors while preserving the information content, we
can compress the values into a smaller set of parameters. This can be achieved through
polynomial interpolation.

By utilizing polynomial interpolation, we can significantly reduce the dimensionality
of the dataset while preserving the essential information.

3.5.1 Overview on the Polynomial interpolation

Polynomial interpolation is a mathematical technique used to approximate a function or a
set of data points using a polynomial equation. The objective of polynomial interpolation
is to find a polynomial function that passes through a given set of data points, enabling
us to estimate values at intermediate points within the range.

Figure 3.9: Interpolation example

There are several commonly used methods for polynomial interpolation, each with
its own advantages and applications. While polynomial interpolation allows us to find a
polynomial that passes through a given set of data points, it is important to note that in
general, the resulting polynomial is not unique. The freedom to choose the coefficients of
the polynomial can lead to different interpolating polynomials that fit the data equally
well.

However, it is crucial to highlight that the uniqueness of the interpolation polynomial
is guaranteed when the degree of the polynomial is equal to the number of data points
minus one. In such cases, there exists a unique polynomial that passes through all the
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given data points. This property, known as the Uniqueness Theorem for Interpola-
tion Polynomials 3, provides confidence in the accuracy and reliability of polynomial
interpolation when applied correctly.

Polynomial interpolation finds applications in various fields such as mathematics,
physics, engineering, and computer science. It allows us to estimate unknown values,
fill in missing data points, and approximate functions. However, it is important to note
that polynomial interpolation may introduce errors or inaccuracies, especially when ex-
trapolating beyond the range of the given data or when dealing with noisy or sparse
data.

3.6 Our original approach : Polynomial Interpola-
tion Image Compression for asynchronous motor
speed control

In reference to section 2.7, it has been noted that the database has been segregated into six
distinct datasets, each of which displays a linear pattern. This observation has spurred nu-
merous researchers to seek alternative methods of approximation. Some researchers have
attempted to approximate the cosine functions within the non-linear system equations
using a linear sinusoidal approximation, followed by re-solving the system [24]. While
this approach significantly reduces the response time required to generate the angles, it
is still impractical for online applications due to its considerable duration.

Another approximation involves approximating the trajectories of angles in two steps.
The first step entails approximating the linear portion of each angle trajectory within one
of the six data sets, followed by approximating the non-linear part for each angle [22].
However, this approach necessitates the use of loops, select cases4, and divisions, which
heavily consume hardware resources.

To address these challenges and overcome these limitations, we have developed our
own approach based on polynomial interpolation and image compression that we named
PISHE PWM.

3.6.1 PISHE PWM using MATLAB

In our approach, we can consider each dataset as a digital image with dimensions of m×n,
where m is the number of the row vectors and n is the number of im’s values in the data
set. This allows us to apply image processing techniques to the dataset. Specifically, we
will use Polynomial Interpolation Image Compression.

The concept behind this technique is to transform discrete data into continuous data,
enabling compression. This means that instead of needing to know the entire database
to generate the SHE PWM signal, we only require knowledge of the coefficients of the

3If we have two interpolation polynomials, P(x) and Q(x), of degree at most n, and both polynomials
pass through the same set of n+1 data points, then P(x) and Q(x) must be identical.

4it depends on the index of the angles
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polynomials. With these coefficients, we can regenerate every value in the database. By
employing this technique, we can effectively approximate the angles within the dataset.

Figure 3.10: The dataset as a m×n image

Now, mathematically we can write each row vector as follows

αi = Pi(im), i = 1...M (3.8)

To perform the interpolation, we will utilize the Cubic Spline interpolation method.
It is a commonly employed technique that involves fitting a piecewise cubic polynomial
to the given data. Unlike polynomial interpolation, where a single polynomial is used to
approximate the entire dataset, Cubic Spline interpolation breaks the dataset into smaller
intervals and fits a cubic polynomial to each interval.

Pi =
3∑

k=0

aik(im)k = ai3(im)3 + ai2(im)2 + ai1(im) + ai0 (3.9)

It offers several advantages like flexible and visually appealing approximation that avoids
excessive oscillations often encountered in interpolations using high-degree polynomials.
The piecewise5 nature of cubic splines makes it suitable for our case.

In MATLAB, interpolation becomes easy and straightforward with the built-in func-
tion polyfit. This function facilitates polynomial interpolation by fitting a polynomial
to a given set of data points 3.1. It is important to note that, due to the satisfaction of the
conditions outlined in the Uniqueness Theorem for Interpolation Polynomials, regardless
of the interpolation method employed, we will always obtain the same polynomial.

5A piecewise function is a function defined by multiple sub-functions, where each one applies to a
different interval in the definition domain
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As example the table 3.1 represents the polynomials for 3 angles dataset.

Table 3.1: Calculated polynomials angles for 92% < im ≤ 100% using PISHE PWM

Pα1 = −21.3165×im3 + 52.7283×im2 − 60.5146×im+ 43.9551

Pα2 = −168.1964×im3 + 441.4259×im2 − 382.5502×im+ 146.9253

Pα3 = −160.3138×im3 + 418.5186×im2 − 385.1841×im+ 171.0610

At this point, we can conclude that for the original 3×80 values stored in the database
representing the 3 angle SHE PWM signal, we have successfully reduced it to only 3×4

parameters (polynomial coefficients) that represent the compressed version of the original
image.

This significant reduction in the number of parameters demonstrates the effectiveness
of the compression techniques applied.

3.6.2 PISHE PWM Interpretation

To evaluate the performance of PISHE PWM, we compared the angles obtained from
polynomial substitution with the theoretically calculated angles using Newton Raphson.
We then created an error diagram to visualize the discrepancies between the two sets of
angles as seen in 3.11.

Figure 3.11: The absolute error of the predicted angles for im = 52%

By utilizing MATLAB and plotting error diagrams similar to the one mentioned in
3.11, we can construct the tables presented below:
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Table 3.2: The absolute error of the predicted angles for all intervals of im

Modulation index (im) Maximum absolute error in degrees
0.001 < im ≤ 0.159 8×10−7

0.16 < im ≤ 0.319 1.8×10−6

0.32 < im ≤ 0.559 3.5×10−5

0.56 < im ≤ 0.759 1.5×10−4

0.76 < im ≤ 0.919 6×10−4

0.92 < im ≤ 1 4×10−4

And to summarize the method performances we have

Table 3.3: PISHE PWM compression results

Data Base size : 12691 information (angle values)
Number of angles Original quantity of informaion quantity of informaion after compression Compression ratio Absolute error of compression

23 3657 92 97.48% 8×10−7

19 3021 76 97.48% 1.8×10−6

15 3585 60 98.32% 3.5×10−5

7 1393 28 97.98% 1.5×10−4

5 795 20 97.48% 6×10−4

3 240 12 95% 4×10−4

New data base size : 288 information

Instead of storing 12,691 values, we will now store only 288 values, which correspond
to the coefficients of the polynomials. This significant compression of almost 97.73 %
allows for a much more efficient utilization of memory while still retaining the necessary
information for accurate reconstruction of the original dataset.

3.7 PISHE PWM VS ANNSHE PWM

For the sake of comparison we consider that ANN approach6 is also a method of com-
pressing the data in the dataset, we can proceed with the following comparison.

Table 3.4: ANNSHE PWM vs. PISHE PWM quantity of information needed to recon-
struct the database

Data Base size : 12691 information (angle values)
Number of angles Original quantity of informaion quantity of informaion after PI compression quantity of informaion after ANN compression

23 3657 92 48
19 3021 76 40
15 3585 60 32
7 1393 28 16
5 795 20 12
3 240 12 8

New data base size : 156 + 1 = 157 information

The addition of 1 in the new data size refers to the inclusion of information about the
activation function used in all six ANNs.

Referring to the original work by Dr. Guellal [14], we can state that the average
absolute error of ANNSHE PWM is, on average, in the order of 10−2.

6Actually, the ANN approach is a method based on predicting the angles
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When comparing the two algorithms, it is evident that interpolation is significantly
more accurate than the Neural Network, with a minimum difference of 100 times in terms
of accuracy.

However, as we discussed, our main interest lies in the implementation of the algo-
rithm that functions in real time. Therefore, to make a fair comparison, we will evaluate
both algorithms in a real-world application from the hardware perspective. This involves
implementing 3-angles SHE PWM of both methods on the same Arduino UNO and then
comparing their performances.

Figure 3.12: Output of arduino uno in both cases

At this stage, the error difference between the two methods for our application is
negligible, and practically the output signals are the same. However, what we have
observed is the difference in response time when changing the value of im within the
3-angle interval.

The execution time shown in Figure 3.13 clearly demonstrates that the response time
and execution time of implementing ANNSHE PWM are significantly smaller compared to
PISHE PWM, by approximately 100 times. This difference is more understandable when
considering that for the same dataset, the neural network has fewer parameters and far
fewer arithmetic operations needed compared to the polynomial interpolation approach
as demonstrated in table 3.4.

However, when comparing the accuracy of the angles between the two algorithms, as
shown in Figures 3.7 and 3.11, it is evident that the PISHE PWM method outperforms
the ANNSHE PWM method. The error committed by the PISHE PWM algorithm for
the same value of im is approximately 100 times smaller than that of the ANNSHE PWM
algorithm. This indicates that the PISHE PWM method is more accurate and precise in
approximating the desired angles.
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(a) PISHE Time Response

(b) ANNSHE Time Response

Figure 3.13: Comparison of Time Responses using Arduino Uno for im = 95%

The indications shows that the ANN approach is more efficient and requires less com-
putational overhead, making it a superior choice in terms of execution time, performance
and most importantly hardware implementation.

In our specific application, achieving an accuracy of 10−4 (or more) is not necessary and
can result in increased latency and resource consumption. From a driver’s perspective, a
precision of 10−2 offered by the ANNSHE PWM method is widely acceptable and requires
relatively less hardware resources. Therefore, considering the trade-off between accuracy
and resource consumption, the ANNSHE PWM algorithm will be the preferred choice for
implementation on an FPGA.
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3.8 Conclution

To address the challenge of real-time speed control of ASM for an EV, our focus in
this chapter has been on the discussion of an on-line SHE PWM algorithm with real-
time characteristics. We explored two potential approaches ANNSHE PWM and PISHE
PWM.

The ANN-based algorithm, proposed by [14], demonstrated high-speed calculation
of switching moments for the PWM signal with a speed that is 100 times faster then
PI algorithm, and with an acceptable precision with a maximum error ϵ ≤ 6×10−3.
Considering our application, which prioritizes real-time control, achieving precision to
two decimal places is deemed sufficient.

On the other hand, our work based on image compression with polynomial interpola-
tion excelled in achieving a high level of precision, reaching values close to the exact angles
with a minimum factor of 100 times greater precision compared to the ANN algorithm.

In making our decision, we considered the primary objective of real-time control for
ASM in an EV. While both ANNSHE PWM and Polynomial Interpolation offer commend-
able precision, we concluded that the ANNSHE PWM algorithm meets our requirements,
considering its significantly faster calculation speed and the sufficient precision it provides
even thought it demands high implementation complexity.

In the following chapter, This algorithm will be implemented on an FPGA circuit to
generate the PWM signal in real time, we will exhibit the different steps that we followed
to develop and test the ANNSHE PWM Algorithm.
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4.1 Introduction

Taking into account the accuracy and resource consumption, we embarked on imple-
menting the ANNSHE PWM algorithm for EV propulsion system. Initially, we used a
micro-controller for this purpose. However, despite the algorithm not demanding signifi-
cant resources as we only implemented one of the six ANN models, the micro-controller
proved inadequate in handling the task effectively. Recognizing the need for a better
approach, we set out to explore alternative hardwares that could meet our requirements.

The common approaches to the implementation of ANNs are using Digital Signal Pro-
cessors (DSPs), Application Specific Integrated Circuits (ASICs), Field Programmable
Logic Arrays (FPGAs) or a combination of them. DSP-based implementation is sequen-
tial and hence does not preserve the parallel architecture of the neurons in a layer. ASIC
implementations are used whenever the application requires performance beyond the abil-
ities of current DSPs but they do not offer reconfigurability by the user. FPGA is the
most suitable hardware for ANN implementation as it preserves the parallel architecture
of the neurons and can be reconfigured by the developer [29].

The programmable logic (FPGA approach) provides a solution that combines the
best of both DSP and ASIC technology, without their respective limitations. FPGAs
are programmable and changeable (like DSPs); the designer can make changes quickly,
without the additional cost and time of an ASIC design. On the other hand, FPGA
implemented algorithms can process information faster than a general purpose DSP.

However, implementation of ANNs in an FPGA has some challenges, as ANN hardware
implementation requires large resources because of the nonlinearity of activation function
and enormous number of arithmetic operations.

In this chapter, we will present the architecture that minimises the complexity of the
hardware’s implementation and is appropriate for our application as mentioned in 1.5 low
latency response is vital for modern EVs. This architecture comprises 6 crucial steps to
effectively implement the ANNSHE PWN algorithm on fpga with its six different ANN
models 2.10, using minimum resources, and ensuring a fast and efficient response.
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4.2 Development method of the ANNSHE PWM Im-
plementation

We consider it unnecessary to dedicate an entire section to introducing FPGA circuits or
the VHDL hardware description language for the implementation of our algorithm. These
topics are not the primary focus of our work and can be readily found and studied on the
internet.

In our project, we aim to use FPGA hardware for the implementation of ANNSHE
PWM to control the Induction Motor’s speed for EVs. Specifically, we will employ the
ANNSHE PWM algorithm proposed by [11] to achieve this goal. The algorithm does not
require a learning algorithm to be implemented, as the necessary parameters, weights, and
thresholds are computed offline. To develop the overall structure for implementing the
ANNSHE PWM algorithm on the FPGA, we refer to the general architecture of ANNs
depicted in Figure 3.5, we see that we have six distinct ANNs corresponding to different
im intervals, as outlined in Table 2.2. By following the flow chart presented in Figure 4.1,
we can obtain a more detailed description of how the entire algorithm will be executed
on the FPGA, enabling precise control of the electric motor speed in the EV.

Figure 4.1: Flowchart of the proposed ANNSHE PWM algorithm [11]

The VHDL code serves the purpose of designing a circuit that can generate the six
PWM signals from two inputs, the modulation index im and a clock. The detailed flow
chart of the ANNSHE PWM algorithm used to deploy the VHDL code is shown in
Figure 4.2.

Examining the structure of the ANNSHE PWM algorithm, as displayed in Figure
4.2, it is evident that there are six modules with a distinct role and crucial steps. In the
subsequent subsections, we will see the role and specific details of each module, as well as
outline the step-by-step process from the input parameters to the output signals within
this structure.
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Figure 4.2: Detailed architecture of the proposed ANNSHE PWM algorithm

4.2.1 Top block

This block represents the global entity depicted to facilitate the interconnection of all
internal blocks within the ANNSHE PWM algorithm. It serves as a central unit that
enables communication and coordination between the various components, including the
normalization block, ANN generator, frequency range variator, internal frequency regu-
lator, and the PWM generator.

4.2.2 Select Net

As we have already stated earlier, the im interval has been divided into 6 sub-intervals.
For each sub-interval, ANN-i is attributed in the structure.

Therefore, the purpose of the ”Select Net” module, shown in the figure 4.3, is to select
the appropriate ANN-i network which is suitable for the input im.

Figure 4.3: Synoptic Diagram of the Select Net Module
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During the off-line learning phase, the modulation index (im) was expressed as a
percentage value ranging from 0% to 100%. In our design, we allocated 14 bits for the
input im, with seven bits dedicated to the integer part and seven bits allocated for the
fractional part. As a result, the variation pitch of im is set at 0.0078%. It is worth noting
that this variation pitch can be adjusted depending on the desired number of fractional
bits for im. This entry has been adapted to the entry of our different ANNs by another
module that we will introduce in the next step.

To simplify the selection of each interval based on im, we have defined the boundaries
of each interval, as outlined in Table 4.1. This approach effectively minimizes the FPGA
circuit’s space consumption.

Table 4.1: The Intervals for the Variation of im of each ANN-i

ANN
Interval of variation
of im in percentage
immin ≤ im < immax

The lower limit
in binary (neuron)

RNA-6 01% ≤ im < 16% 00000000000000 101
RNA-5 16% ≤ im < 32% 00100000000000 100
RNA-4 32% ≤ im < 56% 01000000000000 011
RNA-3 56% ≤ im < 76% 01110000000000 010
RNA-2 76% ≤ im < 92% 10010000000000 001
RNA-1 92% ≤ im < 100% 10111000000000 000

Based on the information provided in Table 4.1, a VHDL code is developed for the
Select Net module using combinatorial logic. This module’s purpose is to determine and
select the suitable ANN-i network based on the input value im.

4.2.3 Component Manager

The block given in figure 4.4 is the second element which is called in the Top block, it
allows to manage the external environment of the chosen ANN-i according to the input
neuron attributed from step one.

Figure 4.4: Synoptic diagram of the COmponent Manager module

Each internal ANN-i network possesses its own unique structure and data represen-
tation, including the size of the integer and fractional parts. The primary function of the
Component Manager block is to associate the appropriate normalization block with each
internal ANN.
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Another crucial role of this block is to address the challenge of managing changes in
the size of the input im for each block where it is utilized. Such changes can lead to
compatibility issues in the connection of these blocks. There are two types of inputs:
one consisting of 15 bits with a dynamic representation, which serves as the input for the
normalization block to be used later by the ANN block, and the other representing inputs
are injected into the blocks specific to the SHE PWM application. The block ensures that
each input is adapted to its respective format based on the selected ANN-i network.

The advantage of employing a dynamic input for each ANN-i network becomes evident
when considering an example with neuron=”101” corresponding to ANN-6. In this case,
the input im ranges from 1% to 16%, necessitating only 4 bits to represent the variation
range within this interval. Consequently, the remaining bits can be utilized to increase the
precision of the input, enabling more accurate computations, particularly for low-speed
variations.

Additionally, this block plays a crucial role in determining the appropriate number d
of switching angles. The value of M varies for each ANN-i network based on the input
im.

4.2.3.1 Normalisation Component Block

The normalization block serves the purpose of centralizing and normalizing the inputs of
the ANN block according to the principal explained in 3.3 with the equation 3.8.

A significant challenge we encountered is the management of input sizes for each block
related to the Normalization Component Block. Without proper management, this can
lead to significant problems and incorrect results. It is crucial to carefully handle the sizes
of inputs to ensure compatibility and accurate processing throughout the algorithm.

In the case of the ANNSHE algorithm, the input is represented by 15 bits in two’s
complement format. When using a fixed size for both the integer and fractional parts,
there can be a loss of precision. While, if the input is dynamic, the product used for
normalization is also dynamic. This is where the importance of this block comes into play,
as it allows for choosing the appropriate number of bits for each case. By adjusting the
number of bits used for normalization, we can ensure that the precision of the algorithm
is maintained and that the dynamic input values are properly handled. this can be
noticed when we compare having an input im of 1% with 99%, if we used the same data
representation for both inputs we gonna have a problem of precision. In the first case we
would need only 4 bits for integer part, but for 99% the full 7 bits are used, the difference
between the bits used is managed by the normalization component block to adapt the
output with other portions of the code.

To ensure its functionality with minimum surface consumption 1, data normalisation
block was designed using a strategy that makes the data dynamic, it assigns properly the
size of the integer part and the fractional part for the next bloc.

1Surface consumption is a measure of how much of the available resources are being used by a
particular design or configuration.
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4.2.4 ANN Generator

The ANNs as dicussed in 3.1 have several aspects to take into account when designing
ANNs’ circuits, these include data representation, products and sum of products compu-
tations, and activation functions implementations.

The most important and challenging to implement are the inner-products and non-
linear activation function, the complex that exhibit is the main reason behind the massive
FPGA resources’ consumption.

4.2.4.1 Data representation

A neural network operates with real numbers, it can be represented in many ways. How-
ever, Getting relatively good numeric precision is important for accuracy, convergence
and resources conserving. Choosing the floating point representation is ideal, since it
offers the greatest amount of precision (i.e. minimal quantization error), however using
it in ANN implementation is not quite a good choice since it consumes huge amounts of
resources which are very limited in this case.

Instead, fixed point with dynamic representation is used. Even though this means less
precision, its benefits compromise its inconveniences. It is more area-efficient than floating
point, much simpler in arithmetic operations and even From a driver’s perspective, at this
precision level, the encountered issues is totally tolerable.

In relative work [30], it was mentioned that several studies have shown that selecting
16 bits for weights and 8 bits for the input and output of the activation function yields
excellent results. However, in the development of ANNSHE PWM [14], they opted to use
15 bits for weights and 9 bits for the activation function. This choice was made based
on their specific requirements and considerations. After careful evaluation, it has been
determined that this particular configuration yields favorable outcomes in their endeavors.
Consequently, we have decided to adopt this approach.

4.2.4.2 Inner products

Multipliers has been identified as the most surface consumption arithmetic operators used.
To do a such arithmetic operation, we used direct full parallel bit multipliers called

DSP slices. In FPGAs we have a limited number of these special multipliers, they must
be used wisely. In the architecture of the ANN Generator, only 6 multipliers have been
used in parallel. This architecture causes more latency in computation, but in the other
hand it is more surface efficient and benefices the FPGA’s parallelism. Hence, the other
FPGA resources can be used for future needs like adding different control commands that
modern EVs consists of, for example a Battery Management Unit or an Object Detection
Control Unit.

In this architecture we will use multiplier per neuron at a time, it receives the neuron’s
associated inputs and multiply them by their appropriate weight in a sequential way.
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4.2.4.3 Implementation of the Activation Function

Many efforts have been made to efficiently implement non-linear activation functions
in hardwarilization of an ANN systems, aiming to maximize efficiency caused by the
various arithmetic operations involved in the computation. Using polynomial expansion,
researchers have been actively working on developing conventional arithmetic circuits that
can deal with this problem more efficiently.

Within our architecture, we hold a specific interest in utilizing the Hyperbolic Tan-
gent and Linear Activation functions. In a related study, the linear function has been
successfully implemented, as documented in [26]. As for the tanh function, we have
chosen to adopt an approach heavily influenced by the work of Promod Kumar Meher,
who proposed an optimized addressing scheme for the LUT-based implementation of the
hyperbolic tangent function in his article [31].

1. Implementation of the Hyperbolic Tangent

The Hyperbolic Tangent is defined by the following equation:

tanh(x) =
ex − e−x

ex + e−x
(4.1)

It produces an S-shape curve as shwon in the figure 4.5

Figure 4.5: The Hyperbolic Tangent activation function

As presented in [31], the approach involves dividing the tanh curve into distinct in-
tervals and constructing a Lookup Table (LUT) with the minimum number of elements
while minimizing the associated error by using the various characteristics of the function.
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1.a. Characteristics of tanh and strategy of implementation

• Property 1

tanh(−x) = −tanh(x) (4.2)

Considering the mirror symmetry property about Y-axis, we need to store only
the right half of the curve in 4.5 where x > 0. We can handle the negative side
by reversing the stored positive values, this is done by using the 2’s complement
operation if the input is negative.

• Property 2

lim
x→0

tanh(x) = x (4.3)

Equation 4.3 implies that when the input is small, the tanh is approximately linear.
As a result, there is no need to store values in the LUT for this particular range,
as the required values can be directly derived from the input values. This could be
implemented by a simple Multiplexer.

• Property 3

lim
x→∞

dtanh(x)

dx
= 0 (4.4)

lim
x→∞

tanh(x) = 1 (4.5)

According to the two equations 4.4 and 4.5, tanh is approximately constant for big
input values, for |x| ≥ 3 the variation is less than 0.00015 and we can store a value
of +1 in the LUT for all values above 3.

By using these properties all together, we are left to find the other LUT’s values.
Within the range of δmin < x < δmax, where δmin and δmax represent the boundaries of
the non linear interval, where the tanh is approximated using LUT. This approximation
maintains a permissible error threshold, ensuring accurate representation of the function
within the specified interval. We can measure the error committed as the following{ | tanh(δmin)− (δmin)| ≤ ϵ

| tanh(δmax)− (1)| ≤ ϵ

Where ϵ is the maximum allowable error. Naturally, for a specific ϵ we must choose δmin

and δmax accordingly.

• δmax
It is the upper bound such that ”x ≥ δmax =⇒ tan(x) = 1”, this particular x is as
+1.
if we consider the case of δmax = 3 we will have | tanh(x) − tanh(3)| < 0.00015, a
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very high accuracy than what is required for many applications including ANN’s
applications, from the Figure 4.6 we can also notice{ for x = 2.0, tanh(x) > 0.96

for x = 2.4, tanh(x) > 0.98

for x = 2.7, tanh(x) > 0.99

It means, tanh can be approximated by +1 for x > δmax where δmax is 2, 2.4, or 2.7
if the maximum allowable errors are 0.04 , 0.02 , or 0.01 respectively.

Figure 4.6: Saturation region of Hyperbolic Tangent Sigmoid

• δmin
Using the same approach, the determination of δmin depends on the accuracy that
we need for our application.
Using the Taylor expansion, we get

tan(x) = x− x3

3
+

x5

15
− 17x7

315
+ ... (4.6)

For x → 0 high order terms can be ignored. by assuming tanh(x) = x we can find
δmin using the equation 4.7∣∣∣∣δmin −

(
δmin −

δ3min

3
+

δ5min

15

)∣∣∣∣ < ϵ (4.7)

By simplifying 4.7 we find
δ3min

3
− δ5min

15
≤ ϵ (4.8)

Based on the above equation 4.8 we have that δmin = 0.390625 for an error ϵ = 0.02.

As shwon in Figure 4.5, the rate of variation of tanh(x) when δmin < x < δmax is not
uniform, therefore not all the input values correspond to a different LUT value for a given
accuracy. By knowing this, one single value can be stored for several input values forming
sub-domains.
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1.b Optimized Lookup table design for the tanh

Unlike conventional lookup tables where each input value (address) corresponds to one
location of the LUT which represent the memory unit, Maher used in his work [31] what is
so called range addressing which like an addressing scheme, where one address corresponds
to a range of input values that have the same value of tanh stored in the LUT, reducing
by that the number of stored words.

The methodology for the addressing scheme used in [31] is that for a given sub-domain
the value stored is the mean of the boundary values of the function in that sub-domain.
This is unlike other works where they stored the function value corresponding to the
lower-boundary address, and here the difference between the maximum and the minimum
values of the function could be the double of the allowable error.

Designing the LUT is then done by following the steps that [31] proposed, which are:

1. Determination of the Lower and Upper Limits of the LUT Input
For ϵ = 0.02, δmin = 0.390625 and δmax = 2.4.

2. Selection of the Address Width (precision)
By simulations in Matlab [31], it was found that a width of 9 bits for the input
values represented in 2’s complement allow to have tanh(x2)− tanh(x1) ≤ ϵ = 0.02

where x1 and x2 are two consecutive inputs.

3. Selection of Domain Boundaries
The range of tanh(x) for 0.3906250 < x < 2.4 is divided into n sub-domains
Ri (xi1, xi2) such that |tanh (xi1)− tanh (xi2)| ≤ 2ϵ.
With 1 ≤ i ≤ n, given that n is the smallest integer where xn2 ≥ 2.4 then all
(xi1, xi2) should be determined.
In our case we have n ≥

⌈
tanh(2.4)−tanh(0.3906250)

2ϵ

⌉
, which gives us n = 15.

4. LUT Assignment
The stored word is the mean of the boundary values of the function which means
tanh (xi) = [tanh (xi1) + tanh (xi2)] /2.

We have successfully implemented a series of steps to create a straightforward LUT
words. The outcomes of the efforts can be observed in table 4.2. It is worth noting
that our approach differs from Meher’s work in one crucial aspect. Instead of simply
storing the exact mean value, we opted to store the value closest to the mean of the
boundary range. This decision was made due to the inherent limitations of binary repre-
sentation, which can result in errors within sub-domains surpassing the error criterion of
|tanh (xi1)− tanh (xi2)| ≤ 2ϵ. Upon examining the table, we can see that the maximum
error achieved is ϵ = 0.033.

It is also important to note that we only used 15 words for the LUT, while in other
works it would require 1024 words for same error limit.
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Table 4.2: LUT for the hyperbolic tangent activation Function [26].

LUT No xi1 xi2
Mean

tanh(x)
Stored
value

Stored value
in binary

Maximal
error

. . . 0.390625 x N/A N/A N/A
1 0.390625 0.453125 0.398182 0.390625 00011001 0.0338394
2 0.453125 0.515625 0.44939 0.453125 00011101 0.0286606
3 0.515625 0.578125 0.497809 0.5 00100000 0.0256837
4 0.578125 0.640625 0.543313 0.546875 00100011 0.0255737
5 0.640625 0.703125 0.585836 0.578125 00100101 0.0282226
6 0.703125 0.78125 0.629886 0.625 00101000 0.0284236
7 0.78125 0.859375 0.67468 0.671875 00101011 0.0240605
8 0.859375 0.9375 0.715003 0.71875 00101110 0.0228145
9 0.9375 1.048675 0.757681 0.75 00110000 0.0312907
10 1.048675 1.171875 0.803082 0.796875 00110011 0.0279973
11 1.171875 1.328125 0.846831 0.84375 00110110 0.0250403
12 1.328125 1.53125 0.889714 0.890625 00111001 0.0218347
13 1.53125 1.859375 0.93163 0.9375 00111100 0.0268617
14 1.859375 2.90625 0.973329 0.96875 00111110 0.0252879
15 2.90625 . . . NA 1 01000000 NA

2. LUT structure for evaluation of Hyperbolic Tangent

The LUT structure used is shown in figure 4.7. It is evident that the LUT receives a
9-bit input word represented in two’s complement format. The input word then traverses
through various blocks within the structure before giving the final output.

Figure 4.7: Hyperbolic Tangent LUT block structure
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2.1 Sign Converter
It is implemented both before and after the LUT block simply to person the two’s
complement operation. Its primary function is twofold. Firstly, the first Sign Con-
verter calculates the magnitude of the input to provide it as input to the LUT. Since
the LUT only operates on positive numbers. Secondly, when the input is negative,
the second Sign Converter negates the corresponding LUT word, allowing for the
accurate evaluation of tanh(x) for negative inputs.

2.2 Range Decoder
It is incorporated to facilitate range-addressing operations. Given the input mag-
nitude, the Range Decoder determines the appropriate range by utilizing its word-
select outputs (w1, w2, ..., w15), it’s implementation is well detailed in [31].

2.3 Multiplexer
It serves the purpose of selectively passing either the LUT words or the input di-
rectly. The decision to allow the input to pass through occurs when no word is
selected by the Range Decoder. In other words, when reading the table 4.2, this
corresponds to the condition where |X| < 0.390625. This functionality can be
implemented by employing a NOR logic gate that operates on all the word-select
signals generated by the Range Decoder outputs.

3. Simulation of The Function

Figure 4.8 illustrates the values of the word-select signals for the Range decoder block
across the entire input range.

Figure 4.8: Range Decoder block signals simulation [26]

The figure 4.8 demonstrates that the inputs can be categorized into three distinct
regions:

• Linear Region: This region corresponds to a linear relationship between the input
and the output, where the input bypasses the LUT and directly propagates to the
output. It is characterized by all word-select signals being set to a low level (0).
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• Nonlinear Region: In this region, the shape of the tanh function becomes evi-
dent. Each word-select signal (w1, w2, ..., w15) assumes the value of 1 within its
specific sub-range, while the remaining sub-ranges have these signals set to 0. This
configuration allows for the formation of the desired Hyperbolic Tangent shape.

• Saturation Region: This region represents the saturation region of the system.
Inputs falling within this region satisfy certain conditions.

From the analysis of 4.8, it can be concluded that the Range Decoder effectively
performs its intended function. It decodes the input values into sub-domains, and these
sub-domains can be identified when their corresponding word-select signals are set to 1.

Figure 4.9 provides evidence of the flawless performance of the Tangent function block.
The figure demonstrates that the block operates perfectly under different scenarios. For
instance, when the first input value falls within the linear range, the output equals the
input value directly, showcasing the block’s accurate translation of the linear relationship.
On the other hand, the third input value resides within the nonlinear region, highlighting
the block’s ability to handle and process inputs within this specific range successfully.

Figure 4.9: Hyperbolic Tangent block output simulation [26]

4.2.4.4 Neural Network Manager

This block allows to manage the internal environment of ANN-i, it is the first element
that is used in the internal architecture of the ANN Generator, each internal ANN has its
own anatomy and its own weights and biases, the role of this block is managing all these
internal parameters for each ANN.

4.2.4.5 The architecture of the ANN Generator

The configuration of an Artificial Neural Network (ANN), including the number of inputs,
outputs, layers, and neurons per layer, is unique to each application. However, imple-
menting multilayer networks can require significant resources and may not be a practical
solution for real-time applications, such as motor speed control for EVs. In order to
address this challenge, we adopted an architectural approach inspired by the concept of
layer multiplexing as introduced in the paper [29]. This innovative approach enables the
implementation of a large number of ANNs while minimizing resource requirements.

By leveraging this principle, we were able to design a more efficient and resource-
friendly solution for our specific application, accommodating the demands of real-time
operations for motor speed control in EVs.
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1. Neural Network Implementation using Layer Multiplexing

In a multi-layer feed-forward ANN, data flows sequentially from one layer to another,
with computations occurring one layer at a time. This characteristic allows for a unique
approach known as layer multiplexing, where it is unnecessary to implement all layers
simultaneously. Instead, only the largest layer, typically the one with the maximum
number of neurons, needs to be implemented. This layer is then called repeatedly, acting
as different layers with the assistance of a control unit.

The control block plays a vital role in ensuring the complete computation of the ANN
using layer multiplexing. It orchestrates the sequencing and placement of inputs, weights,
biases, and the values of the activation function (obtained from the LUT) for each layer.

In contrast to conventional architectures, the work described in [29] deviates from
implementing the complete ANN, as depicted in the Figure 4.10.a. Instead, it simplifies
the architecture to focus only on the implementation of the layer-multiplexed ANN, as
shown in the Figure 4.10.b.

Within our architecture, all the ANN models have a structure of 1-1-d (d is the number
of outputs that changes depending on the input). Hence, we have implemented the largest
layer as the output layer. This decision was made due to our ANN models having only one
hidden neuron and d output neurons. Consequently, the largest layer effectively serves as
the output layer.

Figure 4.10: Layer multiplexed ANN [29]
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2. Single Neuron Architecture

According to the mathematical model presented in Chapter 3, a neuron carries out two
fundamental arithmetic operations. Firstly, it performs the computation of the sum of
the products between inputs and their respective synaptic weights. Subsequently, the
resulting sum is passed through an activation function to determine the neuron’s output.

In our specific ANN models, the sum of products calculation is not required since we
only have one hidden layer with one hidden neuron. However, the activation function
is implemented through circuits illustrated in Figure 4.7. The overall architecture of a
neuron can be visualized in Figure 4.11.

Figure 4.11: A Single Neuron Block Architecture

The weight width used in this work is 15 bits, consisting of 7 bits for the integer part
and 8 bits for the fractional part. Consequently, the product of the weight (15 bits) with
the input (9 bits) yields a 24-bit result. This result is then passed to an adder, which also
produces a 24-bit output. However, a challenge arises when adapting the width of the
data from the adder to match the input width of the activation function block without
affecting the results. To address this issue, we introduced a block called the bitreducer,
depicted in Figure 4.11, which performs this adaptation.

Due to the presence of a saturation region in the hyperbolic tangent function, the
output of the LUT is consistently 1 for input values that verifies |X| > 2.4. Therefore,
if the output of the adder surpasses 2.4, the bitreducer adjusts it to a value that can be
represented in 9 bits, ensuring an output of 1 from the LUT. Specifically, since the LUT
input has 3bits for the integer part, if the value is greater than 2.4, the bitreducer sets it
to a value of 3, which can be represented using 9 bits with 3 bits for the integer part of
the input to the LUT. Conversely, if the value is less than -2.4, the bitreducer sets it to
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-4, as these values also yield an output of 1 from the LUT while fitting within the 9-bit
representation.

This approach enables the appropriate adaptation of the data width from the adder
to the input of the activation function block, ensuring that the results remain accurate
while considering the saturation region properties of the hyperbolic tangent function and
the limitations of the available bit representations.

3. The Global Architecture of The Implemented ANN

The figure 4.12 shows the block diagram of the global architecture of the implemented
ANN in our application.

Figure 4.12: Global ANN model Architecture

The Figure 4.12 clearly illustrates the utilization of Layer multiplexing concept in
implementing the output layers, along with the presence of a single hidden layer with one
neuron as described earlier.

The Control Unit plays a crucial role in coordinating all the blocks and data, ensuring
the proper functioning of the implemented layers, it simply contains a finite state machine
that produces signals to synchronize all the ANN system.

In the diagram, the Normalised im value represents the output of the Component
Manager block. Its purpose is to centralize and normalize the inputs of the neural network.
This step is essential for the accurate operation of the neural network as we trained the
ANN models with normalised inputs.

The Neural Network Manager block encompasses the biases and weights of all the
neurons in the entire neural network. The Control Unit synchronizes the outputs of this
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block, ensuring that the biases and weights are provided at the correct time and with the
appropriate values.

Overall, these components and the coordination by the Control Unit contribute to the
effective functioning and management of the neural network system.

4.2.5 Reverse Normalisation

The reverse normalisation block allows the de-normalization of ANN outputs according
to the principle explained in 3.3 in 3.7. Its implementation uses the same principle as
that of the normalisation block.

The number of angles varies from [3 to 23] depending on both given inputs, the reverse
normalisation block gives the final switching angles which will be used later on by the
PWM generator module.

Figure 4.13: Synoptic diagram of the Reverse Normalisation module

4.2.6 Frequency Range Variator

The main feature of this block 4.14 is to change the entire operating frequency range
based on the nominal frequency f0 for the PWM signal generator block that controls the
inverter; this change is managed by the two internal signal freq which is fixed in the code.

Figure 4.14: Synoptic diagram of the Regulation or Frequency Variator module

The clock used for the ANNs is 10 ns (fixed by the FPGA board), in order to control
the range of variation of the frequency we, implemented a frequency divider with variable
output frequency controlled by the internal signal ”freq”; The latter is used as a clock in
the PWM generator to control the fundamental frequency of the PWMs signals.

This block allowed us to achieve a dependence between the frequency and the mod-
ulation index because we can always vary the frequency range as we want. By changing
im we always have an instantaneous frequency variation due to the constant v/f law as
shown in equation 2.3.
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4.2.7 PWM Generator

The last step of the ANNSHE PWM algorithm is to generate the three phased PWM
signals s1, s2 and s3 from the switching angles αi generated by the reverse normalisation
block.

The PWM Generator module converts these angles to times, thus we obtain the switch-
ing times, the block then uses them to generate the output signals.

The generation takes place in two Steps as shown in the figure 4.15.

Figure 4.15: Synoptic diagram of the PWM Generator module

With the switching angles in degrees,(s1,s2 and s3) the PWM signals, d the number
of switching angles and the Clkdiv which corresponds to the output of the frequency range
variator block.

4.2.7.1 Step 1

In order to generate the PWM control signals it is necessary to transform the switching
angles into switching times, so the switching angles must pass through a time adapter
which allows to define the basis of the time signal by converting the switching angles αi

into switching moments ti using the equation 2.14, and as we have used a 1MHz clock we
get the following equation

ti(µs) =
105αi

18im
(4.9)

Hence :
ti(µs) =

θi
im

(4.10)

With
θi =

105αi

18
(4.11)

According to FPGA circuit. To avoid this division, the values of θi given by the
equation are calculated in this step. Then, in the step of generating control signals, an
internal signal “counter” in the form of a counter is created. The equation

im×ti(µs) = θi (4.12)

The “counter” represents the value of im×ti(µs). It is initialized by 0 and it increments
by im at each rising edge of the clock (1 µs) then we compare it, each time, with θi.
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4.2.7.2 Step 2

To generate the PWM signals s1, s2 and s3 from the switching instants ti calculated in
the previous step, we use the PWM signals generator.

Initially, the signal s1 starts at 1. As previously mentioned, a ”counter” is initialized
at 0 and increments by im. This counter is then compared to θ1. When the ”counter”
surpasses θ1, s1 is toggled, and “counter” is compared then to θ2 until it becomes greater
then θ2 then s1 is toggled again and so on. This sequence repeats until the “counter”
becomes greater than θd. Next, we start compareing“counter” to θπ − θd where θπ is the
value of θ that corresponds to the half-period α = π. Once “counter” becomes greater
than θπ − θd, s1 is toggled, and “counter” is compared then to θπ − θd−1 untiluntil it
surpasses it, then s1 is toggled. This toggling process repeats until “counter” becomes
greater than θπ − θ1. Then we compare it to θπ. When “counter” becomes greater than
θπ, s1 is toggled, the “counter” is reset to 0, and the same process is repeated again.

Based on the database used during the learning phase for all ANN-i networks, it
was noted that θi < 60◦, we know that s2 is phase-shifted by 120◦ with respect to s1,
besides s1=0 after 120◦ and the next switching instant is at θπ − θd. Consequently, at
the beginning the signal s2 starts at 0, its counter ”counter2” starts at θ 2π

3
and it’s

compared to θπ − θd then the same process for generating s1 is repeated. The same with
s3, we find that it starts at 1 and its counter “counter3” starts at θπ

3
and it’s compared

to θπ − θd then the same process for generating s1 is repeated.

4.3 Simulation and Results

In this section, the software Vivado has been used to simulate the PWM signals generated
by the algorithm ANNSHE PWM designed by the VHDL codes.

The ANNSHE PWM architecture has two inputs, which are the modulation index im
and the clock clk, and three outputs representing the three PWM commands which are
phase shifted by 120◦

4.3.1 ANN Architecture Simulation

In order to evaluate the effectiveness of the implemented ANN structure, we have con-
ducted two distinct simulations as illustrated in the accompanying Figures 4.16, 4.17.
The initial simulation, characterized by an im value of 52%, corresponds to a neuron
configuration of ”010”, thereby necessitating the utilization of ANN-3. In the second
simulation, an im value of 96% and a neuron configuration of ”000”, warrants the ap-
plication of ANN-1.

Notably in Figures 4.16, 4.17, a noticeable discrepancy arises in the allocation of
output assignments between the two ANN models. Specifically, the output layer of ANN-
3 for im=52% encompasses a total of 15 neurons, whereas ANN-1 with im=96% consists
of only 3 neurons.
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Figure 4.16: ANN for im = 52%

Figure 4.17: ANN for im = 96%

To test the latency of the algorithm, we ran a simulation of the ANN architecture
4.18, generating output results for three different values of the variable im. Ideally, all the
outputs should have their values assigned within the third cycle of the clock. However, the
number of neurons in the output layers varies across different ANNs, and it significantly
exceeds the number of products in the first case. (since we have employed six multipliers,
with one multiplier assigned per neuron). Consequently, this discrepancy explains why it
takes an additional two clock cycles to assign values to outputs that surpass six products.
On the contrary, the third ANN, which possesses the largest output layer consisting of
three neurons, manages to assign values to all its outputs within the third clock cycle.

Figure 4.18: ANNs Outputs for Three Different im Values
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4.3.2 PWM Simulation

Figures 4.19, 4.20 show under Vivado a simulation of the implementated ANNSHE PWM
algorithm in the FPGA for different values of im.

Figure 4.19: PWM for im = 52%

Figure 4.20: PWM for im = 96%

According to Figures 4.19, 4.20, the six signals are generated in parallel and are
independent of each other with phase of 120 for the first signals, which confirms the
utility of the FPGA circuit to generate a three-phase PWM signal.

The signal PWM1 from Figure 4.19 has 15 switching angles and it has a period T =

38ms, thus a frequency of f = 26Hz.
These results are confirmed by the fact that for im = 52%, and the selected ANN is

the ANN-3 which has 15 switching angles. And from the equation 2.3 we find that the
output frequency is f = 26Hz.

Similarly, the signal shown in Figure 4.20, also referred to as PWM1, displays 3
switching angles and possesses a period of T = 20.8ms, resulting in a frequency of f =

48Hz.
Again the results are confirmed. for im = 96% the selected ANN is the ANN-3 which

has 3 switching angles. Using the previous equation we find that the output frequency is
f = 48Hz.
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4.4 Conclusion

In this chapter, we have seen in detail the complete architecture used to deploy the
ANNSHE PWM algorithm in an FPGA board, we also have explained all the steps that
are necessary for its implementation and we proved the efficiency and the intelligence of
the latter. We presented the steps for implementing the different six blocks on the FPGA.

We insisted on optimising the source consumption because of its importance and its
impact on the performance of our controlling system for the EPS of the EV.

Finally, in this chapter, we validated the efficiency and precision of the algorithm
proposed to control the ASM for an electric propulsion system, and by simulation tests
we confirm its effectiveness and accuracy in the control of the fundamental voltage.

In the next chapter, our attention will be directed towards the experimental results
and practical real-world validation of the operation of the whole EPS system connected
together.
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5.1 Introduction

The simulation of ANNSHE PWM motor control technique using a simulation environ-
ment serves as a critical step towards the practical validation of this control technique.
While the theoretical analysis and mathematical modeling that we did in chapter 2 and
chapter 3 provide valuable insights, the simulation in a virtual environment allows us to
verify its effectiveness and performance before implementing it in practical applications.
Furthermore, simulating ANNSHE PWM algorithm offers a safe and cost-effective means
of extensive testing and validation. It eliminates the need for physical prototypes and
minimizes the risks associated with testing on actual hardware.

In this chapter, our focus lies on the experimental confirmation of the proposed on-line
ANNSHE PWM technique. we start with an emulation using Simulink’s simulation and
modeling hardware verification toolbox to do validation and progressing to experimental
verification. Subsequently, we delve into the experimental results and tests conducted
within the laboratory using a real world asynchronous motor with a three phase inverter
of our work.

5.2 Hardware verification using FPGA In the Loop

Traditionally, digital designs are simulated using software simulation tools like ModelSim
or PSIM, which model the behavior of the design based on the description written in a
hardware description language (HDL) like Verilog or VHDL. While software simulation
is valuable for early-stage verification, it may not capture the complete behavior of the
design, especially when it interacts with external devices or real-world inputs.

FIL handles this limitation by incorporating an actual FPGA device into the simula-
tion and verification process, allowing it to interact with actual signals and communicate
with external devices, such as sensors or actuators. This enables more comprehensive
testing and verification, as the FPGA can respond in real-time to inputs and produce
outputs as it would in a physical implementation.

Figure 5.1: FPGA in the loop using NEXYS A7
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The FPGA executes the VHDL code, and the resulting outputs are transmitted to
MATLAB’s Simulink environment in real-time. This communication is typically achieved
through an Ethernet cable or a JTAG connector, ensuring immediate and synchronized
response between the FPGA and Simulink.

5.2.1 Configuration of FIL

The steps for FIL configuration are as fellow

• step 1
The process of FIL involves establishing a connection between MATLAB and Vi-
vado. However, successful integration relies on compatibility between the versions
of both software. In our case, we utilized MATLAB 2017a and Vivado 2018.2,
ensuring compatibility between the two. It is essential to note that MATLAB should
be installed prior to Vivado for proper functionality. Finally, we enter the following
command into MATLAB’s command line1:

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
'C:\Xilinx\Vivado\2018.2\bin\vivado.bat');

• step 2
After launching FIL using the command filWizard, the next step is to add the
specifications of the FPGA board in the Launch Board Manager and we choose
the method of connection either using Ethernet or JTAG connection.

• step 3
If we opt for an Ethernet connection, it is crucial to ensure that both the FPGA
board and the PC are on the same network. This can be achieved by adjusting
the PC’s Ethernet settings(in change adapter setting, in internet protocol version
4 proprieties), specifically by configuring the subnet mask. In our case, the FPGA
IP address is set to ’192.168.0.2’, the PC IP address is ’192.168.0.3’, and the subnet
mask is ’255.255.255.0’.

• step 4
we load the VHDL code, specifying the top block of our design. Following that, we
establish a connection test to ensure there are no issues and that we have correctly
inputted the FPGA’s specifications.

1The command in the command window is written in two separate line
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After successfully completing the aforementioned steps, upon running the FIL, we had
a FIL block in Simulink’s model. At this stage, we can conveniently observe the output
signals generated by the FPGA.

We shall note that in our work we used Nexys A7 FPGA and Ethernet connection for
the FIL verification.

Figure 5.2: FIL block for Nexys A7 FPGA

In figure 5.2, the FIL block consists of one input and six outputs. The input is
referred to as the modulation index, denoted as im(in percent %), and the six outputs
are the phased signals. Three of the outputs represent the actual signals (pwm1, pwm2
and pwm3), while the remaining three outputs are the negations (not) of those signals
(not(pwm1), not(pwm2) and not(pwm3). the three signals control the upper transistors
and the not signals control the lower transistors as shown in figure 5.8

5.2.2 Results of FIL’s verification

After running the simulation we got the following results presented in 5.3

(a) Three phased ANNSHE PWM sig-
nals and the output of the FPGA

(b) ANNSHE PWM verification
and testing using FIL

Figure 5.3: FIL verification for im = 76%

By comparing the output of the FIL block with the theoretical values of the instants,
as well as the simulation results obtained in Vivado using logic analyzer, we can conclude
that the FPGA output signals are accurate and verified.

90



Chapter 5. Experimental Results and Practical Validation

Now, we can proceed with the experimental and practical realization of the system,
as well as its validation.

5.3 Experimental validation

As we have extensively discussed throughout this work, the entire traction system consists
of a command card, which is an FPGA, along with an inverter and a motor.

Figure 5.4: Our model for EV’s traction system

Once we upload the code into the FPGA, the resulting output signals that we verified
using FIL governs the switching of the inverter, thereby controlling the speed of the motor.
However, in order to validate our work, it is crucial to speak about a vital component of
an electric vehicle (EV), namely the three-phase inverter.

In contrast to the theoretical discussions presented in chapter 1.5, we will now con-
struct the three phase inverter, serving as a model for a real-world EV. Subsequently, we
will conduct comprehensive testing of the entire algorithm on this constructed inverter
model.

5.3.1 Three-Phase Power Inverter

The inverter is constructed using two main components: the inverter itself or the power
level and its dedicated command card.

5.3.1.1 The inverter’s command card

The command card serves as an interface between the FPGA output and the power level,
while also acting as a protective barrier between the high-power electronics and other
components. In the event of reverse current from the motor, a massive current sink, or
any other issues, the card plays a crucial role in safeguarding the FPGA and other low
power circuits. It consists of six components, namely three optocouplers and three half
bridge drivers.

• The optocoplers
The protection components on the card. it helps in isolating the grounds and
duplicating the PWM signal to the driver IC.

• The half bridge driver
It provides the necessary signals to control the switching of these power switches,
each driver control one inverter arm (or a half bridge).
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(a) Optocoupler diagram (b) IR2111 Half bridge driver

Figure 5.5: Inverter command card components

Based on the design established in [10], the card has the following design

(a) Optocoupler’s isolation circuit (b) Inverter’s driver circuit

Figure 5.6: Command card circuit [10]

By connecting the two circuits mentioned in figure 5.14, we obtain the command card.
During our work in the laboratory, we encountered two old card that required main-

tenance. We conducted a thorough investigation to identify the problems, replaced the
faulty components, and proceeded with our experimental validation.

Figure 5.7: inverters command card
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5.3.1.2 The power level of the inverter

Similar to the command card, we intended to use the laboratory’s test inverter. However,
it was also non-functional, so we had to diagnose and fix the problem. It took a significant
amount of time to identify the issue, and considering our tight schedule, we decided to
dismantle the inverter. We then proceeded to test the MOSFETs individually and replaced
the damaged ones. Finally, we reconstructed the inverter from scratch depending on the
diagram shown in figure 5.8 to ensure its proper functionality and ease of maintenance.

(a) Diagram of the three phase inverter
(b) The 3 phase inverter constructed
in the laboratory

Figure 5.8: The 3 phase inverter

Referring to figure 5.8

• All upper D pins are connected to Vcc, the positive plate of the EV’s battery.

• All lower s pins are connected to GND, the negative plate of the EV’s battery.

• All upper S pins are connected to lower D pins, in the figure ..... are mentioned as
U, V and W and each one of them is connected to one phase input of the ASM.

• For every inverter arm, the upper transistor’s gate is connected to driver’s HO pin.

• For every inverter arm, the lower transistor’s gate is connected to driver’s LO pin.

• For every inverter arm, the upper transistor’s S is connected to driver’s VS pin.

Once the outputs U, V, and W from the command card were connected to the motor
inputs, we proceeded to modify the FPGA inputs. As anticipated, the motor responded
in real time by changing its speed.
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5.3.1.3 Test bench

To validate the concept of the entire system, we assembled all the components and per-
formed speed control of an ASM. The test bench used for this purpose is depicted in figure
5.9 and includes the following components:

1. An asynchrounous motor (0.7 kW).

2. An FPGA development board to implement the ANNSHE PWM algorithm.

3. A three-phase voltage inverter to drive the ASM.

4. A DC power supply to power the voltage inverter which may represent a DC battery
in an EV.

5. An oscilloscope to visualize signals.

Figure 5.9: The test bench

5.3.1.4 Experimental results

After connecting all the components together and conducting tests on the online algo-
rithm, we observed that the motor indeed changed its speed in accordance with the input
value of im. Simultaneously, we conducted FFT, and the results revealed the elimination
of harmonics, as demonstrated in the figures presented below.
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(a) Output signal (b) FFT

Figure 5.10: ANNSHE PWM phase to phase output signal im=20%

(a) Output signal (b) FFT

Figure 5.11: ANNSHE PWM phase to phase output signal im=48%

(a) Output signal (b) FFT

Figure 5.12: ANNSHE PWM phase to phase output signal im=64%
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(a) Output signal (b) FFT

Figure 5.13: ANNSHE PWM phase to phase output signal im=80%

(a) Output signal (b) FFT

Figure 5.14: ANNSHE PWM phase to phase output signal im=96%

To obtain final validation, we performed FFT on the signals with the motor connected
and with the motor disconnected. The resultswere as follows:

(a) FFT of the inverter’s output with-
out ASM

(b) FFT of the inverter’s output with
ASM

Figure 5.15: FFT of ANNSHE PWM signal for im = 76%

By comparing the two sub figures in Figure 5.15, we can observe that, theoretically, for
a value of im = 76%, the fundamental frequency is calculated as f = im×f0 = 0.76×50 =

38 Hz, which precisely matches the frequency indicated by the cursor in both sub figures.
Prior to connecting the motor, the output signal displayed the presence of harmonics

multiples of three, with the first non-eliminated harmonic occurring at f = 630 Hz. This
value is in close proximity to the theoretical value mentioned in the table 2.3 (fmin = 633

Hz), falling within the range of experimental error. After connecting the motor, we ob-
served the elimination of all multiples of three harmonics, which validates our assumption
and confirms the success of our work.
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5.4 Conclusion

In this chapter, we discussed the configuration of the FIL as our chosen software tool for
hardware verification. We then proceeded to verify the functionality, performance and
precision of the ANNSHE PWM algorithm implemented on the NEXYS A7 FPGA board
by utilizing the FIL.

Subsequently, we embarked on the experimental part of our study. We implemented
the ANNSHE PWM ASM speed control algorithm on the FPGA in real time application,
which served as our command circuit for the entire electric propulsion system model.

Additionally, we described the steps to reconstruction of the three-phase inverter and
then we practically varied the ASM motor speed based on different im values. We verified
the effectiveness of this approach by examining the FFT analysis results, which confirmed
the successful elimination of harmonics.

Finally, we validated that all the theoretical work presented in previous chapters were
translated into a successful practical implementation through our prototype model.
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The fabrication of an electric vehicle is a complex and resource-intensive process that
requires considerable time and effort. Our focus was specifically on the core component
of the propulsion system, namely the the electric motor. When designing speed control
system for an EV’s motor, it is crucial to take into account the expectations of drivers,
which have now transformed into requirements for electric vehicles in today’s market.

In our work, our primary interest revolved around the speed control of the electric mo-
tor. After thorough deliberation, we determined that utilizing a three-phase asynchronous
motor and employing PWM signals to control it would be the most suitable approach.

During our work, we discovered that precise control of the switching instants of the
three-phase inverter’s transistors enables us to control the speed of the motor. However,
this problem is mathematical described by a non linear system of equations. The vast
number of possible solutions made it impractical to store all the values in memory, leading
us to explore alternative approaches for real-time response and efficient implementation.

We explored two approaches in this work. The first approach, called ANNSHE PWM,
involved using an Artificial Neural Network (ANN) to predict the switching angles instead
of storing all the values in a database. This method proved to be effective, accurate, and
had low latency and low hardware resource consumption. However, its implementation
complexity was a drawback.

The second approach that we developed was called PISHE PWM, which combined
image processing theory and electrical machine theory. It treated the solution set as an
images to be compressed and so, we need only to store polynomial coefficients instead
of the original values. This approach achieved a remarkable compression rate of 97.43%.
While it was more precise and simpler to implement compared to ANNSHE PWM, it ex-
hibited significant higher latency. Ultimately, for the application of an electric vehicle, we
chose to proceed with ANNSHE PWM due to its acceptable precision for our application
and low latency response.

The experimental validation of our algorithm was conducted in two stages. In the first
stage, we performed FPGA-in-the-Loop (FIL) verification by implementing the proposed
algorithm on a Nexys A7 FPGA. The results were then transmitted to Simulink via
an Ethernet connection. Comparisons with off-line results showed significant similarity,
allowing us to proceed with the test bench and conducting experimental validation.

In the second stage, we carried out the final experimental verification on a test bench.
The test bench consisted of an ASM powered by a three-phase inverter that we recon-
structed from an old one used in the laboratory. The control of the inverter was based on
the proposed online PWM technique. We measured and evaluated the output signals of
the inverter during the experiment, and a FFT was performed to confirm the elimination
of harmonics. The obtained results closely matched those predicted by theory and the
FIL verification.

Throughout the entire speed range, we successfully eliminated low-order harmonics,
achieved desirable switching frequencies, and effectively controlled the motor’s speed. For
future work, there are several perspectives to consider within the framework of SHE PWM
methods and electric vehicle (EV) engineering.

Regarding the PISHE PWM approach, further research and development are nec-
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essary to enhance its capabilities and performance in real-time applications. Exploring
different image processing techniques and algorithms could lead to improvements in terms
of precision, latency, and hardware resource consumption. Continuously exploring and
refining this method has the potential to yield even better results.

In the context of EVs, an upscale study is needed to adapt the proposed algorithm and
techniques for actual automobile fabrication. This involves integrating the inverter and
power blocks into a comprehensive system that meets the requirements and standards of
modern electric vehicle technology. This would entail considering various aspects such as
safety, efficiency, reliability, and cost-effectiveness.

Additionally, future work could involve embedding other essential systems within the
EV propulsion system. This may include battery management systems, regenerative
braking mechanisms, advanced control algorithms for improved energy efficiency, and
intelligent monitoring and diagnostic systems for enhanced reliability and maintenance.

Continuing research in SHE PWM methods and EV propulsion system engineering
holds great promise for further advancements in electric vehicle technology. The aim is
to develop more efficient and reliable systems that contribute to the widespread adoption
and sustainability of electric transportation.
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