
الشعبية الديمقراطية الجزائرية الجمهورية
République Algérienne Démocratique et Populaire

العلمي البحث و العالي التعليم وزارة
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

التقنيات المتعددة الوطنية المدرسة
الالٓية قسم

Ecole Nationale Polytechnique

Département d’Automatique

End-of-studies project dissertation
for obtaining the State Engineer’s degree in Automation and Control

Contribution to estimation-based
nonlinear control design for

multi-UAV systems

Realized by:
Ms. BOUHOUNALI Feriel Ms. KHEDACHE Kenza

Publicly presented and defended on the 3rd of July, 2023, in front of the
jury composed of:

President Pr. BOUKHETALA Djamel ENP
Examiner Dr. ACHOUR Hakim ENP
Promoter Pr. LADACI Samir ENP
Co-promoter Pr. BELKHATIR Zehor U. Soton, UK
Guest Dr. ILLOUL Rachid ENP
Guest Mr. MER ZIGHED Aziz CRD, Algiers

ENP 2023

الشعبية الديمقراطية الجزائرية الجمهورية
République Algérienne Démocratique et Populaire

العلمي البحث و العالي التعليم وزارة
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

التقنيات المتعددة الوطنية المدرسة
الالٓية قسم

Ecole Nationale Polytechnique

Département d’Automatique

End-of-studies project dissertation
for obtaining the State Engineer’s degree in Automation and Control

Contribution to estimation-based
nonlinear control design for

multi-UAV systems

Realized by:
Ms. BOUHOUNALI Feriel Ms. KHEDACHE Kenza

Publicly presented and defended on the 3rd of July, 2023, in front of the
jury composed of:

President Pr. BOUKHETALA Djamel ENP
Examiner Dr. ACHOUR Hakim ENP
Promoter Pr. LADACI Samir ENP
Co-promoter Pr. BELKHATIR Zehor U. Soton, UK
Guest Dr. ILLOUL Rachid ENP
Guest Mr. MER ZIGHED Aziz CRD, Algiers

ENP 2023

الشعبية الديمقراطية الجزائرية الجمهورية
République Algérienne Démocratique et Populaire

العلمي البحث و العالي التعليم وزارة
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

التقنيات المتعددة الوطنية المدرسة
الالٓية قسم

Ecole Nationale Polytechnique

Département Automatique

Mémoire de projet de fin d’études
pour l’obtention du diplôme d’Ingénieur d’État en Automatique

Contribution à la conception de
commandes non linéaires basées sur

l’estimation pour les systèmes de
multi-UAV

Réalisé par :
Mme BOUHOUNALI Feriel Mme KHEDACHE Kenza

Présenté et soutenu publiquement le 3 Juillet 2023, devant le jury
composé de :

Président Pr. BOUKHETALA Djamel ENP
Examinateur Dr. ACHOUR Hakim ENP
Promoteur Pr. LADACI Samir ENP
Co-promoteur Pr. BELKHATIR Zehor U. Soton, UK
Invité Dr. ILLOUL Rachid ENP
Invité M. MER ZIGHED Aziz CRD, Alger

ENP 2023

ملخص
سياق في المحركات رباعي متعدد نظام على مطبقة المسار تتبع لمشكلة والتقدير التحكم تقنيات العمل هذا يستكشف
الخطي غير التنبئي التحكم واستراتيجية ,PID تحكم وحدة بواسطة التحكم يتم القائد-التابع. تشكيل في التحكم
من تتحقق المكثفة المحاكاة عمليات .(EKF) الممتد كالمان مرشح باستخدام الحالة تقدير اجٕراء يتم .(NMPC)
ادماج في مساهمتنا تكمن هذه. التحكم اسٔاليب ملائمة و ادٔاء حول قيمة رؤى النتائج توفر المقترحة. النهج صحة
متعددة للانٔظمة CasADi تحسين اطٕار واستخدام التشكيل في التحكم لمشكلة NMPC في التنبؤ على القائم النهج

المحركات. رباعي

التحكم المتعددة، طيار بدون الطائرات انٔظمة المحركات، رباعي الماهٔولة، غير الجوية المركبات : مفتاحية كلمات
الممتد. كالمان مرشح التنبؤي، التحكم نموذج القائد-التابع، التشكيل، في

Résumé

Ce travail explore les techniques de contrôle et d’estimation pour le problème de suivi
de trajectoire appliqué à un système de multi-quadrirotor dans le contexte du contrôle
de formation leader-suiveur. Nous introduisons un contrôleur PID, et une commande
prédictive non linéaire de modèle (NMPC). L’estimation de l’état est réalisée à l’aide du
Filtre de Kalman Étendu (KFE). Des simulations approfondies valident les approches
proposées. Les résultats fournissent des indications précieuses sur les performances et
l’adéquation de ces techniques de commande. Notre contribution réside dans l’intégration
d’une approche basée sur les prédictions dans la commande NMPC pour le problème de
contrôle de formation et l’utilisation de la bibliothèque d’optimisation CasADi pour les
systèmes de multi-quadrirotor.

Mots clés : Véhicules aériens sans pilote, Quadrotor, Systèmes de multi-drones, Contrôle
de formation, Leader-suiveur, Commande prédictive, Filtre de Kalman Étendu.

Abstract

This work explores control and estimation techniques for the trajectory tracking problem
applied to a multi-quadrotor system in the context of leader-follower formation control.
We introduce an optimized PID controller, and a Nonlinear Model Predictive Controller
(NMPC). State estimation is done using the Extended Kalman Filter (EKF). Extensive
simulations validate the proposed approaches. The results provide valuable insights into
the performance and suitability of these control approaches. Our contribution lies in the
integration of a prediction-based approach in NMPC for the formation control problem
and the use of the CasADi optimization framework for multi-quadrotor systems.

Keywords: Unmanned Aerial Vehicles, Quadrotor, Multi-UAV systems, Formation con-
trol, Leader-follower, Model Predictive Control, Extended Kalman Filter.

Dedication

“
To my dear mother,
To my dear father,

To my grandmother,
To my brother Mounir and my sister Malak,

To all my family and friends,
To my dear Abdelghani,

To my dear friends Keltoum, Yousra, and Samy,
To my partner in this work Kenza,

”
- Feriel

“
To my dear father,
To my dear mother,

To my siblings,
To all my family and my friends,

To my dear friend and partner in this work Feriel,

”
- Kenza

Acknowledgments

We would like to express our sincere gratitude and appreciation to all those who have
contributed to the completion of this thesis.

We are deeply grateful to our supervisors, Pr. LADACI and Pr. BELKHATIR for their
guidance, expertise, and unwavering support throughout this research journey. Their
invaluable insights, constructive feedback, and mentorship have been instrumental in

shaping the direction of this work.

We would also like to extend our heartfelt thanks to the members of our thesis
committee, Pr. BOUKHETALA Djamel and Dr. ACHOUR Hakim, for their evaluation
and critical review of this thesis. Their expertise and feedback significantly enriches the

quality of this research.

We would like to extend our heartfelt thanks to Dr. ILLOUL Rachid and Mr. MER
ZIGHED Aziz, the representative of the CRD research center, for gracing us with their

presence during this thesis defense. Their presence greatly enriches our discussion.

Our deepest appreciation goes to our families and friends for their unconditional love and
support, and to all the people who have been by our side throughout this thesis journey.

Contents

List of Figures

List of Tables

List of Abbreviations

1 General introduction 15
1.1 Motivation and Challenges . 16
1.2 Objectives and Contributions . 17
1.3 Organization of the thesis . 18

2 Background & state-of-the-art for UAV systems 19
2.1 Introduction . 20
2.2 Unmanned Aerial Vehicles . 20

2.2.1 Motivation and applications . 20
2.2.2 Classification of UAVs . 21

2.2.2.1 Classification based on the shape of the UAV 22
2.2.2.2 Classification based on the size of the UAV 23

2.2.3 Literature review on single UAV control and estimation 23
2.3 Multi-UAV systems . 25

2.3.1 Motivation and applications . 26
2.3.2 Classification of multi-UAV systems 27

2.3.2.1 Coordination and cooperation 27
2.3.2.2 Classification based on spatial relations 27
2.3.2.3 Classification of formation control 28
2.3.2.4 Classification based on communication architectures . . . 29

2.3.3 Literature review on formation control of multi-UAV systems . . . 30
2.4 Conclusion . 31

3 Mathematical modeling of quadrotor systems 33

Contents

3.1 Introduction . 34
3.2 Mathematical modeling of a single quadrotor 34

3.2.1 Newton-Euler representation . 35
3.2.1.1 Translational subsystem equation 36
3.2.1.2 Rotational subsystem equation 37

3.2.2 State-space representation . 39
3.3 Mathematical modeling of multi-quadrotor system for formation control . . 40
3.4 Analysis of models’ structure and challenges 41

3.4.1 Single quadrotor system case . 41
3.4.2 Multi-quadrotor system case . 42

3.5 Conclusion . 42

4 Control and estimation for a single quadrotor 43
4.1 Introduction . 44
4.2 Optimal PD control of a quadrotor . 44

4.2.1 Cascade control . 44
4.2.1.1 Outer loop for translational subsystem 45
4.2.1.2 Inner loop for rotational subsystem 46
4.2.1.3 Altitude and yaw control 46

4.2.2 Background on the Genetic Algorithm 47
4.2.2.1 Initial population . 47
4.2.2.2 Fitness score . 47
4.2.2.3 Operators of Genetic Algorithms 48

4.2.3 Genetic Algorithm for PD tuning 48
4.2.3.1 Multi-objective optimization 49

4.3 Nonlinear Model Predictive Control of a quadrotor 51
4.3.1 Background on Optimal Control 51

4.3.1.1 System dynamics model 51
4.3.1.2 Objective functional . 51
4.3.1.3 Constraints and boundary conditions 52
4.3.1.4 OCP formulation . 52
4.3.1.5 Direct methods for OCP solution 53

4.3.2 Background on Model Predictive Control 54
4.3.3 NMPC problem reformulation using multiple shooting 55

4.3.3.1 Discretization . 55
4.3.3.2 Objective function . 56

Contents

4.3.3.3 Optimization variable . 57
4.3.3.4 Dynamics constraints . 57
4.3.3.5 Inequality constraints and bounds 58
4.3.3.6 The resulting Nonlinear Programming Problem 58

4.3.4 Application of NMPC on a single quadrotor 59
4.4 Design of estimation-based control techniques 60

4.4.1 Motivation and estimation approach 60
4.4.2 Choice of measurements and sensors 61
4.4.3 Background on the Extended Kalman Filter 61

4.4.3.1 Extended Kalman Filter equations 62
4.4.3.2 Covariance matrices tuning 63

4.4.4 Application of EKF on a single quadrotor 63
4.5 Simulation results . 65

4.5.1 PD controller results . 65
4.5.2 EKF-based PD controller results 67
4.5.3 NMPC controller results . 69
4.5.4 EKF-based NMPC controller results 71

4.6 Comparison and results discussion . 73
4.6.1 Full state controllers . 74
4.6.2 EKF-based controllers . 75

4.7 Conclusion . 77

5 Formation control of multi-quadrotor systems 78
5.1 Introduction . 79
5.2 Leader-follower formation control . 79

5.2.1 Formation controller . 80
5.2.2 Optimal PD control of the followers 83

5.2.2.1 Outer loop for translational subsystem 83
5.2.2.2 Inner loop for rotational subsystem 83
5.2.2.3 Altitude and yaw control 84
5.2.2.4 Genetic Algorithm for PD tuning 84

5.2.3 Application of NMPC to the followers 84
5.2.3.1 Discretization . 85
5.2.3.2 Objective function . 85
5.2.3.3 Optimization variable . 85
5.2.3.4 Dynamics constraints and bounds 85

5.2.3.5 The resulting Nonlinear Programming Problem 86
5.2.3.6 Prediction based leader-follower NMPC 86

5.2.4 Application of EKF to the followers 87
5.3 Simulation results . 87

5.3.1 PD controller results . 88
5.3.2 EKF-based PD controller results 89
5.3.3 NMPC controller results . 92
5.3.4 EKF-based NMPC controller results 94

5.4 Comparison and results discussion . 97
5.4.1 Full state controllers . 97
5.4.2 EKF-based controllers . 99

5.5 Conclusion . 100

6 Conclusion and future work 101
6.1 General conclusion . 102
6.2 Future work . 103

Appendixes 104
Bibliography 106

List of Figures

2.1 Single UAV classifications, from [1] . 21
2.2 Single-rotor (helicopter) . 22
2.3 Multi-rotor (quadrotor) . 22
2.4 Fixed-wing UAV . 22
2.5 Hybrid UAV . 22
2.6 Multiple-UAV cooperation, from [7] . 26
2.7 Multi-UAV spatial relations: (a) physical coupling, (b) formations, (c)

swarms, and (d) intentional cooperation, from [61] 28
2.8 Multi-UAV centralized communication architecture, from [68] 30

3.1 Reference frames for the quadrotor, from [81] 35

4.1 Quadrotor PD control scheme . 45
4.2 x− y position controller . 45
4.3 GA-based PD control . 49
4.4 Map of Optimal Control . 54
4.5 A basic working principle of MPC, from [93] 54
4.6 PD trajectory tracking . 66
4.7 PD tracking errors . 66
4.8 Quadrotor’s states with PD controller . 67
4.9 PD input efforts . 67
4.10 EKF-based PD trajectory tracking . 68
4.11 EKF-based PD tracking errors . 68
4.12 Quadrotor’s states with EKF-based PD controller 69
4.13 EKF-based PD trajectory tracking in 3D space 69
4.14 EKF-based PD trajectory tracking in the x− y plane 69
4.15 NMPC trajectory tracking . 70
4.16 NMPC tracking errors . 70
4.17 Quadrotor’s states with NMPC controller 71

4.18 NMPC input efforts . 71
4.19 EKF-based NMPC trajectory tracking . 72
4.20 EKF-based NMPC tracking errors . 72
4.21 Quadrotor’s states with EKF-based NMPC controller 73
4.22 EKF-based NMPC trajectory tracking in 3D space 73
4.23 EKF-based NMPC trajectory tracking in the x− y plane 73

5.1 Desired formation pattern, from [100] . 79
5.2 Leader-follower control scheme . 80
5.3 Quadrotors formation in the x− y plane, from [100] 80
5.4 PD formation controller errors . 88
5.5 Follower PD trajectory tracking . 89
5.6 Follower PD tracking errors . 89
5.7 Follower EKF-based PD trajectory tracking 90
5.8 Follower EKF-based PD tracking errors . 90
5.9 Follower EKF-based PD velocity tracking 91
5.10 Follower’s states with EKF-based PD controller 91
5.11 Follower EKF-based PD trajectory tracking in 3D space 92
5.12 Follower EKF-based PD trajectory tracking in the x− y plane 92
5.13 Formation of 3 quadrotors in 3D space . 92
5.14 Formation of 3 quadrotors in the y − z plane 92
5.15 Follower NMPC trajectory tracking . 93
5.16 Follower NMPC tracking errors . 93
5.17 Follower EKF-based NMPC trajectory tracking 94
5.18 Follower EKF-based NMPC tracking errors 94
5.19 Follower EKF-based NMPC velocity tracking 95
5.20 Follower’s states with EKF-based NMPC controller 95
5.21 Follower EKF-based NMPC trajectory tracking in 3D space 96
5.22 Follower EKF-based NMPC trajectory tracking in the x− y plane 96
5.23 Leader’s x velocity predictions . 96
5.24 Leader’s y velocity predictions . 96
5.25 Formation of 3 quadrotors in 3D space . 97
5.26 Formation of 3 quadrotors in the y − z plane 97

List of Tables

4.1 Performance indices . 49
4.2 Quadrotor’s model parameters . 65
4.3 Optimal PD simulation parameters . 65
4.4 NMPC simulation parameters . 70
4.5 Performance metrics of full-state controllers 74
4.6 Performance metrics of EKF-based controllers 76

5.1 Followers’ optimal PD simulation parameters 88
5.2 Followers’ NMPC simulation parameters 92
5.3 Performance metrics of full-state controllers for the follower 97
5.4 Performance metrics of EKF-based controllers for the follower 99

List of Abbreviations

UAV Unmanned Aerial Vehicle

GCS Ground Control Station

VTOL Vertical Takeoff and Landing

IMU Inertial Measurement Unit

GPS Global Positioning System

DCM Direction Cosine Matrix

MIMO Multiple Input Multiple Output

PD Proportional Derivative

PID Proportional Integral Derivative

FOPID Fractional Order Proportional Integral Derivative

T2FNNs Type-2 Fuzzy Neural Networks

LQR Linear Quadratic Regulator

GA Genetic Algorithm

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

OPI Optimization Potential Index

ISE Integral of Square Error

IAE Integral Absolute Error

ITAE Integral Time-weighted Absolute Error

ISC Integral of Squared Control

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

NLP Nonlinear Programming Problem

ODE Ordinary Differential Equation

CasADi Computer Algebra Systems for Algorithmic Differentiation

KF Kalman Filter

EKF Extended Kalman Filter

AHRS Attitude and Heading Reference System

INS Inertial Navigation System

Chapter 1

General introduction

Chapter 1. General introduction

1.1 Motivation and Challenges

In recent years, the field of aerial robotics has witnessed remarkable progress, with quadro-
tors emerging as agile and versatile Unmanned Aerial Vehicles (UAVs) [1]. These UAVs
possess the potential not only to perform complex maneuvers and navigate intricate en-
vironments but also to collaborate and form coordinated formations. Considering the
growing interest in utilizing UAVs for complex tasks, the development of effective control
strategies for multi-UAV systems holds great importance. By coordinating the actions of
multiple UAVs, we can achieve precise spatial relationships, adapt to changing environ-
ments, and execute tasks that require collective efforts. Therefore, the motivation behind
investigating multi-UAV systems lies in their ability to accomplish tasks that would be
challenging or impossible for a single UAV alone [2]. In the field of multi-UAV systems,
significant advancements have been made in control and estimation techniques to address
the unique challenges posed by these complex systems. Researchers have explored vari-
ous approaches to achieve coordinated control and efficient operation of multiple UAVs.
The formation control of UAVs, which involves orchestrating multiple UAVs to main-
tain specific spatial relationships, has become a fascinating and challenging area of re-
search. Several control methods have been explored for UAV formation. These include
the leader-follower method [3], virtual leader method [4], behavior-based method [5], and
graph theory [6]. The leader-follower approach [7] is widely employed and has demon-
strated effectiveness in various domains, including robotics, UAVs, and swarm robotics.
Another important consideration in the context of multi-UAV systems is state estima-
tion, which plays a crucial role in accurately determining the states of individual UAVs
that are not directly measurable or to filter noisy measurements. In recent years, data
fusion techniques have gained prominence in multi-UAV estimation [8], along with the
Extended Kalman Filter (EKF) [9]. EKF enables accurate estimation of the states of in-
dividual UAVs, facilitating coordinated behavior and enhancing the overall performance
of multi-UAV systems.

The cooperative control of UAVs presents significant challenges owing to factors such as
complex, nonlinear, high order dynamic model of each UAV, interdependence between the
agents, restricted information availability, and more. Addressing these complexities re-
quires advanced control strategies. One promising control technique for the leader-follower
formation problem is Nonlinear Model Predictive Control (NMPC) [10] [11]. NMPC offers
several advantages, including the ability to handle nonlinear complex dynamics, such as
the UAV model, incorporate constraints on the system’s states and inputs, and generate
optimal control actions based on a predictive model of the system. These features make
NMPC a powerful tool for achieving accurate trajectory tracking of each UAV in the
formation and ensure coordinated behavior of the agents. However, the interdependence
between the leader and the followers poses a major challenge when incorporating the for-
mation control approach with NMPC. This challenge arises because the NMPC algorithm
requires having the references over an entire time horizon, meanwhile, the followers’ ref-
erences are generated based on the leader agent. We address this challenge by proposing
a prediction-based leader-follower approach.

16

Chapter 1. General introduction

1.2 Objectives and Contributions

In this work, our objective is to address the leader-follower formation control problem
and the estimation problem for a multi-quadrotor system, ie. design effective control
strategies in the context of the leader-follower configuration considering partial measure-
ments information, we aim to maintain a specific formation pattern in space. For this,
we consider the leader’s trajectory tracking problem first. We will be focusing on two
prominent methods, optimal PD control using the Genetic Algorithm (GA) and Nonlin-
ear Model Predictive Control (NMPC) using the multiple shooting technique to transform
an Optimal Control Problem (OCP) into a Nonlinear Programming Problem (NLP). Ad-
ditionally, we implement the NMPC controller in the optimization framework CasADi to
improve computational efficiency. Moreover, we aim to ensure the formation keeping by
the followers using a Lyapunov-based formation controller. For this, we adapt the de-
signed PD and NMPC controllers to the followers’ case to maintain a desired ’V’ shape.
Additionally, we addressed the estimation problem for each quadrotor in the formation
using the Extended Kalman Filter (EKF) to estimate the system states based on noisy
sensor measurements.

Throughout this work, one major challenge when designing NMPC type of controller
for the leader-follower formation control problem is that the NMPC algorithm requires
having the references of each agent in the system over the whole horizon. Therefore, the
generation of references for the followers’ over the whole horizon at each instant posed
a major challenge. This challenge arose because the followers’ references solely depend
on the state of the leader, meaning the problem required having the leader’s state over
the whole horizon, however, that information is not available at each instant. Our contri-
bution to address this challenge involves the introduction of an original prediction-based
formation control approach in the leader-follower configuration, where we used the leader’s
state predictions in the formation controller to generate the followers’ references. More-
over, the prediction-based scheme is combined with EKF estimation for all agents in the
formation. The proposed approach showcased its remarkable ability to generate coordi-
nated control actions for maintaining desired formations. However, the implementation of
NMPC for formation control posed notable challenges due to its inherent computational
demands. To overcome this obstacle, we leveraged the capabilities of CasADi, a symbolic
framework for dynamic optimization, which allowed us to effectively reduce the computa-
tional time while seamlessly integrating prediction-based techniques tailored specifically
for formation control.

17

Chapter 1. General introduction

1.3 Organization of the thesis

This work is organized into several chapters to provide a systematic and comprehen-
sive exploration of the proposed formation control problem. The following outlines the
organization of the thesis:

This chapter serves as an introduction to the topic, providing an overview of the
motivations, objectives, and contributions of this work. This chapter also presents the
scope of the study and outlines the organization of the subsequent chapters.

Chapter 2 focuses on the background and state-of-the-art for UAV systems. It pro-
vides an exploration of the motivation behind UAV use and their various applications.
The classification of UAV systems is discussed, along with an examination of multi-UAV
systems and their different classifications. We also review the literature on control and
estimation strategies for UAV systems. This chapter provides a comprehensive foundation
for understanding the field of UAV and multi-UAV systems.

In chapter 3, the mathematical modeling of quadrotor systems takes center stage.
The Newton-Euler representation and state-space representation for a single quadrotor
are introduced, along with an analysis of the modeling challenges and structure of multi-
quadrotor systems for formation control. This chapter lays the groundwork for under-
standing the dynamics and behavior of quadrotor systems.

Chapter 4 delves into the control and estimation for a single quadrotor. First we
employ an optimized PD controller using the Genetic Algorithm. Then, Nonlinear Model
Predictive Control (NMPC) is introduced, by formulating an Optimal Control Problem
(OCP) and discretizing it using the multiple shooting technique, resulting in a Nonlin-
ear Programming Problem (NLP), which is then solved using the CasADi optimization
framework. Additionally state estimation is discussed using the Extended Kalman Filter
(EKF). Moreover, a comparison between PD and NMPC control techniques is highlighted,
showcasing their respective merits, trade-offs, and implications for tracking accuracy, re-
sponse time, and computational complexity.

In chapter 5, the formation control of multi-quadrotor systems is investigated, par-
ticularly the leader-follower approach. The previously developed optimal PD and NMPC
techniques are adapted to the followers’ case. For the NMPC controller, we propose a
prediction-based approach in the formation controller to ensure the formation keeping
by the followers. The integration of formation control with EKF is explored for each
quadrotor in the formation, leading to coordinated behavior among UAVs.

Finally, this work concludes with chapter 6, which presents a summary of the research
findings. This section provides a concise yet thorough overview of the key outcomes
obtained throughout the study. Additionally, the chapter delves into an exploration of
potential future directions, paving the way for further investigations and advancements
in the field.

18

Chapter 2

Background & state-of-the-art for
UAV systems

Chapter 2. Background & state-of-the-art for UAV systems

2.1 Introduction

Unmanned Aerial Vehicles (UAVs) have attracted substantial interests from the control
engineering research community in the recent years, this is due to their use in both
military and civilian operations [2] and their various applications in many fields such as
surveillance, search and rescue [12], environmental monitoring, mapping [13], and more.
In some of these applications, it is advantageous to combine many UAVs to work together
in a coordinated manner to achieve a common goal which leads to an improved efficiency,
increased coverage, and greater flexibility in terms of task assignment compared to a single
UAV, making it a more efficient solution for many applications.

An important amount of research has been done on the control of multi-agent systems
which arise numerous challenges especially when it comes to the coordination between the
different agents. Formation control, which is a key component in the domain of multi-
agent systems, deals with the coordination of multiple autonomous agents, it aims to get
these agents to form a specific pattern in space. To achieve this goal, numerous algorithms
and control strategies have been studied in literature that enable agents to communicate,
plan and execute their trajectories while minimizing communication delays and collision
risks [14] [15], ensuring stability, robustness, and scalability of the overall system.

One widely used approach of formation control is the leader-follower approach [16]. In
this approach, one or more agents are designated as leaders, while the rest are considered
followers. This approach has been applied in various fields, such as robotics, UAVs,
autonomous underwater vehicles, and swarm robotics. It has shown promising results in
achieving complex tasks that are impossible to be completed by a single agent.

This chapter will cover the fundamentals of UAVs within the framework of multi-UAV
systems. Particularly, our focus will be on motivations, applications, various classifications
of both single UAVs and multi-UAV systems, as well as a literature review on UAV control
and estimation. We will place particular emphasis on leader-follower formation control,
which serves as the central topic of this work.

2.2 Unmanned Aerial Vehicles

UAVs are defined as type of aircraft that operates without a human pilot on board and
that can be remotely controlled or can fly autonomously. Currently, a wide range of
aircraft types are employed, such as fixed-wing aircraft, helicopters, and airships. How-
ever, the one platform that has received unmatched amount of attention is the multi-rotor
helicopter, especially the quadrotor, because it is more advantageous over other aircrafts
with a simple structure and a great flight capacity and maneuverability.

2.2.1 Motivation and applications

UAVs have captured the attention of researchers and garnered significant interest in recent
years, owing to their potential to revolutionize a wide range of fields and their involvement
in numerous real-world applications [2]. Their versatility has led to their use in various
commercial purposes, including aerial photography and videography, delivery services,

20

Chapter 2. Background & state-of-the-art for UAV systems

and environmental monitoring. In the industrial sector, drones carry out missions in
hostile environments that are inaccessible to humans, optimizing processes and ensuring
safety. Additionally, drones serve multiple functions in transportation, contributing to
traffic monitoring, package delivery, and many more.

Equipped with onboard sensors, UAVs facilitate efficient data collection across diverse
environments. This capability enables access to a wide range of data types, including
temperature, humidity, and geographic information, proving valuable in monitoring and
tracking ecosystems, such as meteorological extreme events and climate change.

As UAV technology continues to advance, new applications are constantly being dis-
covered and explored. From agricultural monitoring to disaster response, from search and
rescue missions [12] to scientific research, drones are poised to reshape numerous indus-
tries and make a lasting impact on society. The popularity of UAVs can be attributed
to their essential features, such as mobility, easy deployment, flexibility, and versatile
usage. These characteristics make them a preferred choice for various applications and
contribute to their continued growth and adoption across industries offering a wide range
of benefits and paving the way for innovative solutions in the future.

2.2.2 Classification of UAVs

UAVs can be classified based on several factors such as shape, size, speed, reached al-
titude, operational range, flight endurance, among others [1]. We can summarize these
different classifications as shown in Fig. 2.1.

Figure 2.1: Single UAV classifications, from [1]

21

Chapter 2. Background & state-of-the-art for UAV systems

2.2.2.1 Classification based on the shape of the UAV

There are mainly four types of UAVs based on the shape:

• Single-rotor UAVs: also known as helicopters, have the capability to vertically
take off and land (VTOL). They utilize a main rotor for controlling attitude and a
tail rotor for directional control. Their key advantage lies in their ability to carry
heavy payloads over extended flight durations. However, the mechanical complexity,
large size, and high cost of the rotor system pose risks for unmanned versions.

• Multi-rotor UAVs: feature more than two rotors. This category includes birotors,
trirotors, quadrotors, hexarotors, and octocopters. Multi-rotor UAVs enable vertical
takeoff and landing. They possess high maneuverability and agility, allowing them
to perform intricate maneuvers and navigate confined spaces. However, their main
drawback is the limited flight time compared to other types of aircraft.

• Fixed-wing UAVs: are characterized by a simple structure consisting of a rigid and
fixed wing. Fixed-wing UAVs have the capacity to carry heavier payloads compared
to multi-rotor UAVs. However, they are less agile during flight, restricting their
ability to perform complex maneuvers or operate in confined spaces. Additionally,
they require a runway for takeoff and landing.

• Hybrid UAVs: combine features of both fixed-wing and multi-rotor UAVs. They
offer a balance between agility and speed. They are capable of carrying larger
payloads and do not necessitate a runway for operations. Their main drawbacks are
their price, intricate mechanics, reduced flight stability, and limited speed range.

The aforementioned UAV classes are shown in Figures 2.2-2.5.

Figure 2.2: Single-rotor (helicopter) Figure 2.3: Multi-rotor (quadrotor)

Figure 2.4: Fixed-wing UAV Figure 2.5: Hybrid UAV

22

Chapter 2. Background & state-of-the-art for UAV systems

2.2.2.2 Classification based on the size of the UAV

We can break it up into the following categories:

• Very small UAVs: they include micro and nano-UAVs, are characterized by their
resemblance to insects or birds, typically ranging between 5 and 50cm, these UAVs
are equipped with extremely small and lightweight components. They have a top
speed of over 10km/h.

• Small UAVs: often referred to as mini-UAVs, typically ranging from 50cm up to
2m. These UAVs are commonly based on the fixed-wing model and are launched
by propelling them into the air. They can carry a maximum payload of 9kg and fly
at speeds of around 150km/h, usually at altitudes below 400m.

• Medium UAVs: are characterized by their weight, they are usually too heavy for
a single person to handle but smaller than airplanes given their payload capacity
limitation of 200kg. Typically falling within the fixed-wing UAV category, these
aircraft have wingspans ranging from 5 to 10m. They can reach maximum velocities
of 463km/h without exceeding altitudes of around 1km.

• Large UAVs: primarily designed for military purposes, offer extensive range and
endurance. They are typically based on fixed-wing structures, enabling them to
carry heavy payloads over long distances while reaching maximum altitudes of up
to 5.5km.

Among the different cited types of UAVs, small size UAVs are the most popular for
several reasons. Firstly, they are cost-effective, making them more accessible to a wider
range of users. Secondly, their lightweight and compact design enhances portability,
enabling easy transport and deployment. Additionally, small UAVs offer a higher level
of safety, minimizing the potential harm to people or property in the event of accidents
or malfunctions, which makes them suitable for indoor and urban environments. Lastly,
their maneuverability and ease of maintenance make them particularly well-suited for
scientific research and learning purposes.

2.2.3 Literature review on single UAV control and estimation

There is a wealthy literature on the control and estimation techniques for UAVs. A wide
variety of control techniques and estimation algorithms have been applied to UAVs to
stabilize these highly unstable systems, achieve satisfying performances, and accurate
state estimation. We can classify some of the control and estimation strategies applied
on UAVs as follows:

• PID control: from the control problem viewpoint, the most widely used technique
is PID control due to its simplicity and efficiency [17]. For instance:

– A PID and PD controllers have been implemented and compared in [18] to
choose the proper controller.

– In [19], a PID controller is combined with EKF to reject the measurement
noise from the IMU sensor.

23

Chapter 2. Background & state-of-the-art for UAV systems

– An adaptive neuro PID controller is presented in [20] to achieve stable perfor-
mance of a quadcopter.

– Numerous variations of PID controller have also been developed to enhance
the transient performance, including inner-outer loop structures [21] and the
PD2 feedback structure in [22].

– Another popular variation for enhancing PID performance and dealing with
uncertainties is the Fractional Order PID (FOPID) in [23] [24].

– The optimal tuning of PID parameters has also been widely discussed. Numer-
ous heuristic approaches have been employed such as the Genetic Algorithm
(GA) [25], Particle Swarm Optimization (PSO) [26], and Ant Colony Opti-
mization (ACO).

• Nonlinear control techniques: the nonlinear nature of the control problem has re-
sulted in significant advances in nonlinear control techniques [27] [28], we can cite:

– Sliding mode control is considered a strong strategy due to its robustness in
the face of parametric uncertainties and disturbances [29] [30] [31].

– The authors of [32] propose a Lyapunov-based backstepping controller that
guides a quadrotor along a predefined trajectory.

– A comparison of sliding mode control and backstepping techniques can be
found in [28] and [33]. On the other hand, [34] enhances the sliding mode
approach by combining it with backstepping techniques.

– The research [35] compares the accuracy of trajectory tracking between type-1
and type-2 fuzzy neural networks (T2FNNs).

– Another interesting control method is the feedback linearization technique [36]
[37] [38], which has demonstrated success in controlling nonlinear systems.

– Reinforcement learning techniques have also been widely used for this purpose,
neural controllers have proven their ability to control complex systems [39].

• Optimal control techniques: another type of the widely discussed control techniques
in the literature is optimal control. There are different types of optimal control
methods, such as:

– Linear Quadratic Regulator (LQR) is a popular optimal control method em-
ployed in UAV control systems [40].

– H∞ is a robust control technique that aims to achieve desired performance in
the presence of uncertainties, disturbances, and system modeling errors [41].

– Model Predictive Control (MPC), which has emerged as a promising control
technique for quadrotor systems in recent years [42] [43]. Its appeal stems from
its ability to handle highly nonlinear MIMO systems. Extensive research has
demonstrated that Nonlinear MPC (NMPC) outperforms linear MPC, partic-
ularly when dealing with nonlinear dynamics. This approach holds significant
relevance for quadrotors due to their inherently complex and nonlinear dynam-
ics. However, the implementation of NMPC in real-time applications presents
computational challenges due to the demanding nature of the internal plant
model’s calculations. To overcome this issue, various approaches have been

24

Chapter 2. Background & state-of-the-art for UAV systems

developed, including the explicit MPC method [44], this technique involves
solving the optimization problem offline and storing the resulting optimal pa-
rameters. As a result, solving the optimization problem at each sampling time
is avoided, enabling real-time implementation of NMPC. To further enhance
the real-time performance of NMPC, fast optimizers are also employed [45].

• To implement these different control strategies, state estimation is crucial to ob-
tain the full information about the state vector of UAV systems from noisy sensor
measurements. The Extended Kalman Filter (EKF) is one of the most popular and
widely studied estimation techniques for nonlinear dynamic systems. Various works
delve into this topic, offering valuable insights. For instance:

– The authors of [46] focus on implementing an EKF-based on a drag force en-
hanced model, this EKF enables the estimation of all the states of a quadrotor,
including the unknown drag coefficients.

– Meanwhile, [47] concentrate on estimating only the attitude of the quadrotor
using the IMU sensor.

– The authors in [48] present a vision-based EKF approach for tracking a target.
– EKF finds significant applications in sensor fusion scenarios where inaccurate

measurements need to be effectively filtered. This technique combines multiple
sensor inputs to enhance the accuracy of state estimation. In [49], EKF is
combined with MPC, to fuse data obtained from an IMU, a sonar, and an
optic-flow based vision system. By leveraging the EKF estimation, the study
achieves improved estimation accuracy by accounting for the strengths and
limitations of each sensor modality.

– Another study that delves into sensor fusion is presented in [50], where the
authors focus on developing different strategies for state vector estimation by
fusing measurements from IMU, GPS, and distance measurement sensors using
EKF estimation.

2.3 Multi-UAV systems

In nature, collective movements such as flocks of birds, swarms of bees, or colonies of
bacteria are commonly seen. A fascinating occurrence is that several entities with limited
intelligence and size can make spectacular coordinated movements, this phenomenon has
attracted widespread attention from researchers in many areas. This kind of motion is not
only visually satisfying but also possesses immense potential in military, industrial, and
civilian applications [2]. From there comes the idea of a multiple UAV system involving
the deployment of several UAVs in a coordinated manner to achieve a common goal.
Moreover, it enables efficient utilization of resources, increased coverage, and improved
safety compared to a single UAV system.

25

Chapter 2. Background & state-of-the-art for UAV systems

2.3.1 Motivation and applications

Despite the capabilities of a single UAV system, its operational tasks are often limited, hin-
dering the system from achieving its full operational potential and widespread application.
While a single UAV can perform certain functions, such as small payload transportation
or localized surveillance, it may struggle with complex missions that require extensive
coverage, large-scale object searching, or heavy payload transportation [51].

Recognizing the potential applications and challenges, researchers are increasingly
drawn to explore the possibilities of utilizing multiple UAVs, commonly called swarms, in
cooperative missions. The effective collaboration and synchronization of multiple UAVs
can construct a more efficient system that harnesses the collective capabilities of the UAVs,
surpassing the performance of a single UAV.

By working together, a system composed of multiple UAVs can achieve a higher level
of operational functionality and provide broader applications. The cooperative efforts of
multiple UAVs enable enhanced capabilities, such as coordinated surveillance over large
areas, efficient distribution of heavier payloads, and the ability to tackle complex tasks
that would be challenging for a single UAV. The synchronized operation of multiple UAVs
not only improves efficiency but also enhances overall system reliability and robustness,
making it an attractive approach for various applications ranging from disaster response
and environmental monitoring [52] to military operations and search-and-rescue missions
[12]. In agriculture, multi-UAV are utilized for tasks like crop mapping, plant health as-
sessment, and fertilizer application. For delivery services, multi-drone systems are being
developed to overcome urban traffic challenges and enable efficient package delivery. In
the construction sector, swarm drones assist with tasks such as surveying [53], site inspec-
tions, and creating 3D maps. In the energy and utilities industry, multi-drone systems
are employed for inspecting pipelines [54], power lines [55], and wind turbines. In en-
tertainment, swarm drones are used to create captivating light shows and performances.
Additionally, swarm UAVs find applications in military operations, scientific research for
tasks such as data collection, wildlife monitoring [56], and oceanographic surveys. These
examples merely scratch the surface of the vast potential and continuous development of
swarm drones’ applications. An example of multi-UAV cooperation is shown in Fig. 2.6.

Figure 2.6: Multiple-UAV cooperation, from [7]

26

Chapter 2. Background & state-of-the-art for UAV systems

2.3.2 Classification of multi-UAV systems

2.3.2.1 Coordination and cooperation

In a platform involving multiple vehicles, coordination and cooperation are crucial. Co-
ordination involves sharing resources and requires both temporal (synchronization) and
spatial coordination (sharing of space). Spatial coordination is based on path planning
algorithms but can become challenging when the number of vehicles is high. Coopera-
tion refers to joint behavior directed towards a common goal and requires integration of
sensing, control, and planning.

A coordinated multi-UAV system relies on several essential components to function
effectively. Firstly, the system comprises the UAVs themselves, which form the swarm.
Secondly, a Ground Control Station (GCS) serves as the central point of control, manag-
ing command transmission to the drones. The GCS can consist of either a single computer
or a cluster of computing nodes. Thirdly, a communication system, equipped with devices
and antennas, allows communication between the UAVs and the GCS using a common
protocol. Various technologies such as Mobile Ad-Hoc Network (MANET) [57], Flying
Ad-Hoc Network (FANET) [58], and Vehicular Ad-Hoc Network (VANET) [59] can be
employed for this purpose. The system also requires a navigation system to enable the
UAVs to fly and determine their position within the environment. This system incorpo-
rates sensors like GPS and Inertial Measurement Units (IMUs). Furthermore, a control
system facilitates drone control and coordination from the ground station. It encompasses
software for mission planning, decision making, and swarm behavior. Lastly, a data pro-
cessing system enables real-time data processing at the GCS and facilitates feedback to
the control system. This system may include tools for image processing, data analysis,
and machine learning. Together, these components collaborate to enable the multi-UAV
swarm to function as a unified entity. The GCS assumes overall command and control,
while the UAVs work together to achieve shared objectives.

2.3.2.2 Classification based on spatial relations

In this section, we will focus on classification based on spatial relations as shown in Fig.
2.7, a fully detailed classification can be found in [60].

• Physical coupling: it concerns UAVs that are connected by physical links and
have motions constrained by forces that depend on each other. The main focus is
on motion-coordinated control while taking into account the force constraints.

• Formations: the UAVs that are not physically coupled but have their relative
motions strongly constrained to maintain a formation. The motion planning prob-
lem can be addressed by considering the formation as a whole. Collision avoidance
within the team can be incorporated into the formation control strategy.

• Swarms: it covers teams of many vehicles that display emerging collective behav-
iors due to their interactions. The motion of these vehicles may not necessarily
result in formations. The main challenge of swarms is scalability, given the large
number of vehicles involved.

27

Chapter 2. Background & state-of-the-art for UAV systems

• Intentional cooperation: in this scenario, the UAVs in the team move along
individual task-defined trajectories to fulfill a global mission. These trajectories are
not related geometrically as they are in the formation case.

Figure 2.7: Multi-UAV spatial relations: (a) physical coupling, (b) formations, (c) swarms,
and (d) intentional cooperation, from [61]

2.3.2.3 Classification of formation control

In formation control, multiple UAVs fly in a particular pattern, the aim of formation con-
trol is to ensure that each UAV follows a desired trajectory while maintaining a specified
inter-vehicle distance and orientation. If the formation inter-distances are variable, its
called a flexible formation. In contrast, if the inter-distances remain constant, it is known
as a rigid formation. The control strategies for formation control are:

• Behavioral approach: several desired behaviors are defined for the agents. These
may include behaviors such as maintaining cohesiveness, avoiding collisions, and
avoiding obstacles, among others [5]. This approach is linked to the concept of
amorphous formation control, as discussed further below.

• Virtual structure approach: the group of agents is treated as a single entity,
referred to as a virtual structure. The desired movement of the virtual structure is
specified, and the movements of the individual agents are then derived from it [4].

• Leader–follower approach: one or more agents acts as a leader and the remaining
agents are considered as followers. The followers maintain a fixed positional offset
from the leader, following its movements. Meanwhile, the leader is responsible for
tracking its designated trajectory [3]. In this configuration, the states of the leader
serve as the coordination variable, as the actions of the followers in the formation can
be fully determined once the leader states are known. One major advantage of this

28

Chapter 2. Background & state-of-the-art for UAV systems

approach is its simplicity and scalability. The followers only need to communicate
with the leader agents, which reduces the communication and computation burden.
Moreover, this approach can handle a wide range of formation patterns by adjusting
the relative positions and orientations of the followers with respect to the leaders.
The leader-follower approach mainly consists of two configurations, a standard and
an interactive configuration. The standard configuration operates in a way that
allows the leader to influence the followers when it is within their neighboring set.
However, no feedback is considered from the followers to the leader [62], treating
the leader as a special agent with independent motion. This approach offers advan-
tages in terms of efficiency and energy saving. However, a drawback of the standard
leader-follower approach is its lack of robustness, particularly in cases of leader fail-
ure. To address this limitation, in [63], a switchable multiple leaders concept is
introduced to enable the formation to persist even in the event of leader failure.
Additionally, in [64], a weighted neighbor-based formation method is presented, it
exhibits greater robustness compared to the anonymous neighbor-based formation.
For the interactive leader-follower configuration, in [65], [66] the leader has knowl-
edge of the objective command for the group of agents, while the remaining agents
are interconnected either with each other or with the leader through a predeter-
mined topology. The followers having the capability to interact with the leader
enables bidirectional communication.

Another classification of formation control can be based on the presence or absence of
explicit prescriptions for desired formation shapes:

• Morphous formation control: the desired formations are established by explic-
itly specifying various factors, including the desired positions of the agents, inter-
agent distances, and inter-agent displacements.

• Amorphous formation control: when desired formations are not explicitly de-
fined, the desired behaviors, such as maintaining cohesiveness and avoiding colli-
sions, are provided for the agents.

2.3.2.4 Classification based on communication architectures

In the leader-follower approach, centralized, decentralized, and distributed communication
architectures can be employed. The choice of the adequate architecture depends on the
system’s complexity and the dynamic environment it operates in.

• Centralized control strategy [67] involves a central entity, such as a central
computer or a GCS, that has complete knowledge and control over the leader and
all the followers. The central processor is responsible for generating commands and
transmitting them to the agents. It collects data from all agents, and determines
the desired formation and actions for each agent. The centralized control strategy
enables precise coordination and synchronization among the agents but relies heav-
ily on the central entity for decision-making, which can introduce a single point of
failure. The standard leader-follower formation configuration is perceived as a cen-
tralized method, where the leader operates independently from the followers. This
architecture is illustrated in Fig. 2.8.

29

Chapter 2. Background & state-of-the-art for UAV systems

Figure 2.8: Multi-UAV centralized communication architecture, from [68]

• Decentralized control strategy [61] distributes the decision-making process among
the leader and follower agents themselves. Each agent has its own local sensing, com-
putation, and decision-making capabilities. The leader agent may provide high-level
guidance or objectives to the followers, but the followers make their own decisions
based on local information and interactions with neighboring agents. Decentralized
control reduces the reliance on a central entity and allows for more autonomous
behavior of the agents increasing the robustness of the overall system. However,
achieving consensus and coordination among the agents can be more challenging in
a decentralized control strategy due to the absence of a centralized authority.

• Distributed control strategy [68] it evolves from the decentralized control ap-
proach by incorporating the sharing of local information. It offers advantages over
centralized control, particularly in situations where data delays occur. Distributed
control is closely associated with decentralized control and the management of large-
scale systems. Researchers have proposed distributed control strategies to address
communication challenges within the decentralized control. By incorporating com-
munication aspects, distributed control strategies enhance the coordination and
performance of leader-follower formations in a more robust and efficient manner.

2.3.3 Literature review on formation control of multi-UAV sys-
tems

There are various research methods for UAV formation control, such as the leader-follower
method [3], virtual leader method [4], behavior-based method [5], and graph theory [6].
We can cite the following works:

• In [14] and [15], different methods such as optimization control, graph theory, guid-
ance, and potential field have been utilized to address formation control problems.

• In their work, the authors of [69] introduced a leader-follower formation control
scheme that employs two different controllers. The first one is a PD controller
utilized to maintain the desired formation shape. The second one is based on fuzzy
logic for achieving the desired formation pattern.

30

Chapter 2. Background & state-of-the-art for UAV systems

• The study [70] introduced a controller for synchronized position tracking based on a
PI control law for a pair of UAVs. The proposed approach ensures the preservation
of the formation shape by synchronizing the positions of the agents.

• Another study in [71] presented an alternative leader-follower formation control
scheme for a quadcopter group. In their approach, the authors employed a pre-
scribed performance control method to simultaneously achieve the desired formation
pattern and formation trajectory.

• The author in [72] conducted research on formation keeping and reconstruction. A
distributed feedback controller was created and its effectiveness was tested. The
formation reconstruction problem was also transformed into a fuel optimal control.

• In [73], the authors designed a robotic formation-keeping strategy based on the
leader-follower control method.

• A feedback controller is designed in [74] for each UAV and a distributed overlapping
control technique is employed to shape the dispersed UAV formation into the target
formation.

• The author in reference [75] introduced a multi-UAV formation control technique
that uses a hierarchical mechanism and MPC. Although the method is highly precise
in controlling the UAV formation, it has a weak real-time performance.

• The researchers in [76] aimed to preserve the formation of a high-order disturbed
multi-UAV system. They proposed combining the sliding mode technique and the
adaptive neural network method.

• In [77], a formation control strategy that utilizes deep reinforcement learning to
avoid collision is presented.

• Another recent study in [78] utilized a distributed backstepping technique to control
the formation of multiple UAV systems. In another study [79], the backstepping
technique was used again to control a swarm formation of UAVs along a specific
circular path. The designed technique takes into account parameters and input
constraints, and adjusts itself adaptively.

• In [80], a predictive model was designed using the event-triggered method to control
a multi-UAV system.

• Finally, [16] proposes a hybrid controller that is a combination of the PID and the
adaptive fuzzy controller with integral feedback.

2.4 Conclusion

In conclusion, this chapter delved into the state-of-the-art research on UAVs, multi-UAV
systems and formation control, with a particular focus on the leader-follower configuration.
Throughout the chapter, several key aspects were discussed, including the motivation and
applications of both single UAV and multi-UAV systems, their different classifications, as
well as the different control and estimation strategies existing in literature. An analysis

31

Chapter 2. Background & state-of-the-art for UAV systems

of the limitations of single UAV systems was conducted, demonstrating the necessity for
multi-UAV systems and emphasizing their crucial role in overcoming these limitations
and unlocking new possibilities in various applications.

In the next chapter, the mathematical modeling of single UAV and multi-UAV systems
is carried out, establishing a solid understanding of the underlying dynamics of these sys-
tems and gaining valuable insights into the behavior and interactions of UAVs, ultimately
paving the way for advanced control and optimization techniques.

32

Chapter 3

Mathematical modeling of quadrotor
systems

Chapter 3. Mathematical modeling of quadrotor systems

3.1 Introduction

The quadrotor has emerged as one of the most popular UAV platforms in recent years. Its
unique design and maneuverability have made it a versatile choice for various applications.
In this chapter, we will explore the modeling aspects and the underlying principles and
equations that govern the movement of both single quadrotors and multi-quadrotor sys-
tems, laying the foundation for understanding their behavior and control in leader-follower
formation scenarios.

To accurately represent and simulate the quadrotor’s dynamics, various modeling ap-
proaches can be employed. These include Euler angles, Direction Cosine Matrix (DCM),
and quaternions. Each representation has its advantages and trade-offs in terms of com-
putational efficiency, singularity avoidance, and ease of implementation. In this study, we
will adopt the Euler angles representation for its simplicity and intuitive understanding,
allowing us to describe the quadrotor’s attitude (pitch, roll, and yaw angles).

In the context of leader-follower formation control, modeling a multi-quadrotor sys-
tem involves capturing the dynamics and interactions between the leader and follower
UAVs. By considering the individual quadrotor models and incorporating coordination
and constraints between the different agents, we can simulate the collective behavior and
formation control of multiple quadrotors. This modeling approach enables the investi-
gation of formation configuration, trajectory tracking, and cooperative tasks among the
UAVs within a leader-follower framework.

In the subsequent sections, we will delve deeper into the mathematical modeling of
single quadrotors using Euler angles representation. We will also explore the extension
of these models to capture the dynamics of multi-quadrotor systems in the context of
leader-follower formation control.

3.2 Mathematical modeling of a single quadrotor

A quadrotor is a type of UAV that features four vertically oriented rotors, each providing
thrust to generate lift and control the vehicle’s motion in the three-dimensional space.
Any movement of the quadrotor can be achieved by changing the angular rates of its
rotors [19], the quadrotor can generate the required lift and perform desired pitch, roll,
and yaw maneuvers. Increasing and decreasing the speed of all rotors leads the quadrotor
to ascend and descend vertically. Yaw rate is obtained by changing the velocity of the
rotors (1,3) or (2,4) shown in Fig 3.1. Pitch rate is achieved by altering the speed balance
of rotors 1 and 3. Change in pitch angle then leads to longitudinal acceleration. Similarly,
roll rate is obtained like pitch rate, the only difference is that rotors 2 and 4 are used
instead rotors 1 and 3. Changing the roll angle leads to lateral acceleration. When all
of the rotors have same velocity, the overall moment produced is zero and the quadrotor
is holding its attitude. When an appropriate velocity is set up, then the rotors generate
counteracting thrust to balance the force of gravity, enabling the quadrotor to maintain
its altitude. The position when attitude and altitude are kept unchanged is called hover.

34

Chapter 3. Mathematical modeling of quadrotor systems

3.2.1 Newton-Euler representation

To model the 6-DOF quadcopter, Newton-Euler formalism will be used. We need to
consider two reference frames: an earth inertial frame (Oxyz) and a body fixed frame
(Obxbybzb) shown in Fig 3.1.

Figure 3.1: Reference frames for the quadrotor, from [81]

The quadrotor operates based on six degrees of freedom (6-DOF), encompassing trans-
lational and rotational motion [19]. therefore twelve states are needed to describe it. The
first six states represents the attitude and its change. These are the roll ϕ, pitch θ and
yaw ψ Euler angles η = [ϕ θ ψ]T (between body-fixed frame and the earth-fixed frame)
and the angular velocities in the body frame w = [p q r]T . The remaining six states are
the coordinates of the center of mass of the quadrotor in the earth frame expressed as
rxyz = [x y z]T and the linear velocities in the earth frame V = ṙxyz = [ẋ ẏ ż]T .

To simplify the modeling and analysis of the quadrotor system, the following assump-
tions are made [7] [82]:

• The structure and the propellers are rigid.

• The structure is symmetrical about the axes.

• The body frame origin coincides with the center of gravity of the quadrotor.

• We do not take into account the dynamics of rotors and propellers.

• The aerodynamic forces and gyroscopic effects are not taken into account.

• The parameters of the quadrotor are supposed to be known and constant.

The rotation matrices with respect to the yaw, pitch and roll angles are given by:

Rz(ψ) =

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 , (3.1)

Ry(θ) =

 cos θ 0 sinθ

0 1 0

−sinθ 0 cosθ

 , (3.2)

35

Chapter 3. Mathematical modeling of quadrotor systems

Rx(ϕ) =

1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ

 . (3.3)

The rotation matrix from the body frame to the inertial frame is given by the sequence
roll-pitch-yaw [7]:

R = Rz(ψ)Ry(θ)Rx(ϕ), (3.4)

R =

cψcθ cψsθsϕ− cϕsψ sψsϕ+ cψcϕsθ

cθsψ cψcϕ+ sψsθsϕ cϕsψsθ − cψsϕ

−sθ cθsϕ cθcϕ

 , (3.5)

where: c ∆
= cos and s

∆
= sin.

Note that R−1 = RT = Rx(ϕ)Ry(θ)Rz(ψ) is the matrix defining the transform from
the inertial frame to the body frame. The importance of the R matrix stems from the
fact that certain states are measured in the body frame while others are measured in the
earth frame, thus a transform is needed.

The quadrotor’s motion can be broken into two subsystems, a rotational subsystem
with respect to the Euler angles that is fully actuated and a translational subsystem with
respect to the x, y and z positions that is underactuated.

Newton’s second law and dynamics equations of the quadrotor can be described in
vector form as following:

F = m
dV

dt
, (3.6)

M =
dH

dt
, (3.7)

where m is the quadrotor’s mass, V is the linear velocity vector in the earth frame and
M is the moment the quadrotor. H is the angular momentum of the quadrotor relative
to the inertial frame. It is essential to emphasize that the translational dynamics of the
quadrotor are represented in the earth frame, while the rotational dynamics are modeled in
the body frame. In the body-fixed frame, the inertia matrix I is diagonal, simplifying the
calculation of rotational dynamics compared to the earth frame, where I is non-diagonal
and time-variant.

3.2.1.1 Translational subsystem equation

Starting with the translational subsystem, the equation (3.6) in the earth frame becomes:

FxFy
Fz

 = m

ẍÿ
z̈

 . (3.8)

The total thrust is the sum of the forces generated by the four propellers T = T1 + T2 +

T3 + T4. If we neglect the aerodynamic forces, the external forces acting on the quadro-
tor’s body consist of the total thrust T exerted by the propellers and the gravitational
force. Thrust always acts along the body’s z axis therefore it is projected according to

36

Chapter 3. Mathematical modeling of quadrotor systems

quadrotor’s attitude while the gravitational force is always acting in the earth’s frame
upward-pointing z axis [7]. The acceleration due to gravity is g. 0

0

−mg

+R

0

0

T

 = m

ẍÿ
z̈

 , (3.9)

ẍ = (sinψ sinϕ+ cosψ cosϕ sin θ) T
m
,

ÿ = (cosϕ sinψ sin θ − cosψ sinϕ) T
m
,

z̈ = (cos θ cosϕ) T
m

− g.

(3.10)

3.2.1.2 Rotational subsystem equation

For the rotational subsystem, in equation (3.7), since the angular momentum vector alters
its direction, we need to apply the total derivative of the vector H.

M = Ḣ + w × H, (3.11)

H = Iw, (3.12)

where w represents the quadrotor’s attitude change, while I denotes its moment of inertia.
Since the quadrotor is a symmetric rigid body about its xz and yz planes, with rotation
axes coinciding with the principal axes, its moment of inertia matrix is diagonal and is
given by:

I =

Ix 0 0

0 Iy 0

0 0 Iz

 , (3.13)

where Ix, Iy and Iz are the moments of inertia with respect to the principle axes in the
body frame.

M = Iẇ + w × (Iw), (3.14)

after replacing the angular velocities in the body frame w = [p q r]T and expanding the
cross product we get:

Mϕ = Ixṗ+ qr(Iz − Iy),

Mθ = Iy q̇ + pr(Ix − Iz),

Mψ = Iz ṙ + pq(Iy − Ix),

(3.15)

where Mϕ, Mθ and Mψ are the roll, pitch and yaw moments [82]. Therefore, the Euler
rates in the body frame are given by:

ṗ =
Mϕ

Ix
− qr

Ix
(Iz − Iy),

q̇ =
Mθ

Iy
− pr

Iy
(Ix − Iz),

ṙ =
Mψ

Iz
− pq

Iz
(Iy − Ix).

(3.16)

37

Chapter 3. Mathematical modeling of quadrotor systems

The transform between angular rates in the earth frame to body frame is given by:

pq
r

 = E

ϕ̇θ̇
ψ̇

 , (3.17)

E =

1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 , (3.18)

the change of attitude in the earth frame (for θ ̸= ±π
2

so that E is invertible) is given by:

ϕ̇θ̇
ψ̇

 = E−1

pq
r

 , (3.19)

E−1 =

1 sinϕ tan θ cosϕtanθ
0 cosϕ − sinϕ
0 sinϕ

cos θ
cosϕ
cos θ

 . (3.20)

Considering four identical motors and no motor dynamics, for each propeller, the
total thrust T is proportional to the square of its rotating velocity Ωi with respect to the
coefficient kT [82]. The three moments Mϕ, Mθ, Mψ are also proportional to the square
of Ωi with respect to the coefficient kτ as follows:


T

Mϕ

Mθ

Mψ

 =


kT kT kT kT
0 −kT l 0 kT l

−kT l 0 kT l 0

kτ −kτ kτ −kτ




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 , (3.21)

where l is the length of the arm of the quadrotor. The inverse rotational velocities inputs
are: 

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 =


1

4kT
0 −1

2kT l
1

4kτ
1

4kT

−1
2kT l

0 −1
4kτ

1
4kT

0 1
2kT l

1
4kτ

1
4kT

1
2kT l

0 −1
4kτ




T

Mϕ

Mθ

Mψ

 , (3.22)

we know that the inputs of the quadrotor are the four angular velocities of its propellers
Ωi. However, in this work, we don’t transform the thrust and moment inputs into angular
velocities.

38

Chapter 3. Mathematical modeling of quadrotor systems

Finally we get:
ẍ = (sinψ sinϕ+ cosψ cosϕ sin θ) T

m
,

ÿ = (cosϕ sinψ sin θ − cosψ sinϕ) T
m
,

z̈ = (cos θ cosϕ) T
m

− g,

ϕ̇ = p+ sinϕ tan θq + cosϕtanθr,
θ̇ = cosϕq − sinϕr,

ψ̇ =
sinϕ
cos θq +

cosϕ
cos θ r,

ṗ =
Mϕ

Ix
− qr

Ix
(Iz − Iy),

q̇ =
Mθ

Iy
− pr

Iy
(Ix − Iz),

ṙ =
Mψ

Iz
− pq

Iz
(Iy − Ix).

(3.23)

3.2.2 State-space representation

In this section, the state-space representation of the quadrotor’s nonlinear model is pre-
sented with respect to the earth frame. This representation serves the purpose of designing
controllers for the quadrotor system.

We consider the state vector X = [x1, ..., x12]
T ∈ R12 given as follows:

X = [x y z ẋ ẏ ż ϕ θ ψ p q r]T , (3.24)

which contains the linear positions and velocities in the earth-fixed frame, the angular
positions in the earth-fixed frame and angular velocities in the body-fixed frame.

We also consider the input vector U ∈ R4 :

U = [u1 u2 u3 u4]
T = [T Mϕ Mθ Mψ]

T . (3.25)

Thus, the quadrotor model can be written as follows:

Ẋ = F (X,U), (3.26)

where the nonlinear function F (X,U) : R12 × R4 → R12 is locally Lipschitz.
The desired motion of a quadrotor can be completely specified by the vector Y con-

taining the 3D positions x, y and z and the yaw angle ψ. As a result, the objective of
the trajectory planning problem is to determine the vector Y ref that corresponds to this
desired motion [7].

Y = h(X) = [x y z ψ]T = [x1 x2 x3 x9]
T , (3.27)

Y ref (t) = [xref (t) yref (t) zref (t) ψref (t)]T . (3.28)
On the other hand, the measurement vector Z contains the measured states using sensors
[83], its gonna be used with the Extended Kalman Filter (EKF) for state estimation.
More details about this can be found in section 4.4.3.

Z = hmes(X) = [x y z ϕ θ ψ]T . (3.29)

39

Chapter 3. Mathematical modeling of quadrotor systems

Finally, the state-space representation is given by the following set of equations:

ẋ1 = x4,

ẋ2 = x5,

ẋ3 = x6,

ẋ4 = (sinx9 sinx7 + cosx9 cosx7 sinx8)
u1
m
,

ẋ5 = (cosx7 sinx9 sinx8 − cosx9 sinx7)
u1
m
,

ẋ6 = (cosx8 cosx7)
u1
m

− g,

ẋ7 = x10 + sinx7 tanx8x11 + cosx7tanx8x12,
ẋ8 = cosx7x11 − sinx7x12,

ẋ9 =
sinx7
cosx8

x11 +
cosx7
cosx8

x12,

ẋ10 =
u2
Ix

− x11x12
Ix

(Iz − Iy),

ẋ11 =
u3
Iy

− x10x12
Iy

(Ix − Iz),

ẋ12 =
u4
Iz

− x10x11
Iz

(Iy − Ix).

(3.30)

This model serves as the fundamental entity for the subsequent section focusing on
multi-quadrotor systems. It establishes the basis upon which the analysis and under-
standing of the multi-quadrotor system will be built.

3.3 Mathematical modeling of multi-quadrotor sys-
tem for formation control

Formation control refers to cooperative control where agents are required to maintain a
specific topology and relative distances to their neighbors. As part of a team, each action
executed by a drone can impact the overall performance of the team. We will be focus
on leader-follower formation control as described in subsection 2.3.2.3. In this work, we
consider a rigid formation where the desired pattern is fixed. For comprehending the
fundamentals of multi-quadrotor systems modeling, the subsequent definition elucidates
the concept of leader-follower formation control.

Definition 3.1 (Leader-follower formation task)
Consider a group of n quadrotors, where each quadrotor ith in the group is described
by the dynamical model in equation (3.30). Within this group, certain quadrotors are
designated as leaders, while the remaining ones are followers. A formation task in the
context of a multi-quadrotor system with a leader-follower configuration is characterized by
a designated formation trajectory provided to the leader quadrotor and a desired geometric
pattern that defines the inter-distance and orientation between neighboring quadrotors
within the quadrotor group.

40

Chapter 3. Mathematical modeling of quadrotor systems

The objective is to design the control vector Ui = [u1i u2i u3i u4i]
T for each quadro-

tor i that result in a stable formation. With one leader i = L and n − 1 followers,
i ∈ {F1, ...Fn−1}, the ith quadrotor is described by the set of equations (3.31).


Ẋi = F (Xi, Ui), i ∈ {L, F1, F2, ...Fn−1},
Yi = h(Xi),

Zi = hmes(Xi),

(3.31)

we assume that all the quadrotors in the formation have the same mass m and inertia
matrix I. We also assume that the ith follower knows the current state of the leader at
each instant t [7].

The position and yaw angle of the leader are denoted as (xL(t), yL(t), zL(t), ψL(t))

and the followers’ position and yaw angle are denoted as (xi(t), yi(t), zi(t), ψi(t)), for
i ∈ {F1, ..., Fn−1}. For the leader, the output vector is YL = h(XL) and it tracks its
desired trajectory Y ref

L (t), where:

YL = h(XL) = [xL yL zL ψL]
T , (3.32)

Y ref
L (t) = [xrefL (t) yrefL (t) zrefL (t) ψrefL (t)]T . (3.33)

The formation configuration is specified by a desired inter-distance and orientation
between the leader and each follower. Therefore, the leader’s states are used to generated
reference velocities for the followers to keep the desired formation pattern.

For the ith follower, the output vector is Yi = h(Xi), for i ∈ {F1, ..., Fn−1}, and it
tracks its desired trajectory Y ref

i (t), where:

Yi = h(Xi) = [xi yi zi ψi]
T , (3.34)

Y ref
i (t) = [xrefi (t) yrefi (t) zrefi (t) ψrefi (t)]T . (3.35)

The reference Y ref
i (t) is solely generated based on the leader’s states. The followers are

then controlled to keep the formation pattern. More details about this are discussed in
section 5.2.1.

The measurement vector is the same for all quadrotors:

Zi = hmes(Xi) = [xi yi zi ϕi θi ψi]
T i ∈ {L, F1, F2, ...Fn−1}. (3.36)

3.4 Analysis of models’ structure and challenges

3.4.1 Single quadrotor system case

The quadrotor model is a high-order dyanmic model, inherently unstable [84], severely
nonlinear, has multiple inputs and multiple outputs (MIMO), is under-actuated with six
degrees of freedom and only four control inputs, its state variables are strongly coupled
which makes the control of this system a difficult task. An analysis of the quadrotor’s
model stability, controllability and observability can be found in [84] [85] [86]. The
quadrotor model is controllable and observable considering the measurement vector de-
scribed in equation (3.29).

41

Chapter 3. Mathematical modeling of quadrotor systems

It is worth noting that the control of the z dynamic is less challenging compared to the
x and y dynamics, the z position can be directly controlled using one loop that generates
the thrust input, however, x and y positions are coupled with the roll ϕ and pitch θ angles.

3.4.2 Multi-quadrotor system case

Besides the complex dynamics of a multi-quadrotor system, it also presents several other
difficulties and challenges that need to be addressed for successful operation. Firstly,
coordinating the movements and behaviors of multiple quadrotors is a complex task. It
involves managing various aspects, including maintaining the desired formation, avoiding
collisions and obstacles, and executing synchronized maneuvers. Achieving these objec-
tives necessitates the implementation of advanced control algorithms and communication
protocols to handle the complexity of the task effectively. Secondly, the interplay between
the quadrotors’ dynamics and their interaction with the environment poses another chal-
lenge. Each quadrotor’s motion can be influenced by external disturbances and model
uncertainties. These effects can affect the stability and overall system performance, de-
manding robust control strategies and sensor fusion techniques for accurate state estima-
tion. Another challenge lies in designing efficient and scalable communication systems
for inter-quadrotor coordination. Establishing reliable and low-latency communication
links among the quadrotors is crucial for sharing information, coordinating actions, and
achieving cooperative tasks.

3.5 Conclusion

Throughout this chapter, we presented the single quadrotor model using Euler angles
representation, as well as the multi-quadrotor system model in the context of leader-
follower formation control. Furthermore, a full analysis of the models’ structures and
difficulties is given for the single and multi-quadrotor case which gives us insights into
their dynamics, kinematics, and control challenges. In the next chapter, we will present
controllers design for single quadrotor systems.

42

Chapter 4

Control and estimation for a single
quadrotor

Chapter 4. Control and estimation for a single quadrotor

4.1 Introduction

The main objective of this chapter is to synthesize control strategies for trajectory track-
ing in 3D space of a single quadrotor. Specifically, we focus on the design of an optimized
Proportional-Derivative (PD) controller using the Genetic Algorithm (GA) and a Non-
linear Model Predictive Controller (NMPC), coupled with the Extended Kalman Filter
(EKF) for state estimation. We validate these approaches on the model of the quadrotor
developped in section 3.2.

The quadrotor system represents a complex and nonlinear dynamic platform, posing
significant challenges in control design. Traditional PD controllers, while widely used,
may struggle to yield optimal performance due to the quadrotor’s intricate dynamics. To
address these limitations, we explore the application of the Genetic Algorithm for optimiz-
ing the PD controller parameters to improve its performance. Additionally, we investigate
the application of NMPC, which allows for the explicit consideration of system dynamics
and constraints in the control formulation, enabling real-time optimization for trajectory
tracking and stability. Furthermore, accurate estimation of the quadrotor’s state vari-
ables is crucial for effective control implementation. In this regard, we incorporate EKF
to estimate the quadrotor’s states based on noisy sensor measurements.

Moreover, to assess the effectiveness of the proposed control approaches, we conduct
a comprehensive comparison between the two control techniques, namely the optimized
PD and the NMPC controllers. This comparative analysis aims to evaluate the strengths,
weaknesses, and overall performance of each control approach. By examining their re-
spective control capabilities, tracking accuracy, and computational efficiency, we can gain
valuable insights into the suitability of these control strategies for quadrotor applications.

4.2 Optimal PD control of a quadrotor

In this section, we employ a PD controller for trajectory tracking of a desired reference
of the 6-DOF quadrotor. For successful maneuvering of the quadrotor, six PD controllers
are designed to control the attitude (ϕ, θ, and ψ) and position (x, y, and z) of the
quadrotor. For this quadrotor model, we avoid the integrator part of the PID controller
due to the presence of a double integrator within the system [87]. The PD gains are tuned
using the Genetic Algorithm in order to minimize an objective function and optimize the
performance of the closed-loop system [25].

4.2.1 Cascade control

A quadrotor consists of six degrees of freedom (x, y, z, ϕ, θ, ψ) with only four control
inputs (u1, u2, u3, u4). Due to this under-actuation, the x and y positions can’t be directly
controlled. This problem is resolved using two cascaded loops [7] which rely on the
inherent coupling between the (ϕ, θ) attitude and the (x, y) positions, as we can observe
in the quadrotor’s model, given in equation (3.30), the translational subsystem depends
on the rotational subsystem. Hence, to move in the x direction, the quadrotor needs
to adjust its orientation by pitching downward, creating a horizontal force through the
propellers’ thrust, while keeping its altitude constant. Likewise, to move horizontally in

44

Chapter 4. Control and estimation for a single quadrotor

the y direction, the quadrotor must modify its attitude by rolling either to the right or
left. The outer loop generates references for rotational variables based on translational
variables [82]. Then, we control the attitude variables in the inner loop. Therefore, the
inner loop dynamics need to be faster than the outer loop. The control scheme is shown
in Fig. 4.1.

Figure 4.1: Quadrotor PD control scheme

4.2.1.1 Outer loop for translational subsystem

The outer loop determines the desired pitch and roll angles (θref , ϕref) based on the
desired x and y positions (xref , yref). Considering the symmetry of the quadrotor, the
control design for x and y positions is identical.

We first compute the x and y position’s tracking errors in earth frame then we trans-
form them into the body frame because the input vector U is defined in the body frame,
this is shown in Fig 4.2.

Figure 4.2: x− y position controller

ex(t) = xref (t)− x(t), (4.1)

ey(t) = yref (t)− y(t), (4.2)[
ebx
eby

]
=

[
cosψ sinψ
− sinψ cosψ

] [
ex
ey

]
, (4.3)

where ex, ey are the x and y tracking errors in the earth frame while ebx, eby are the
tracking errors in the body frame. This outer loop position controller consists of two PD
controllers that take the ebx, eby errors and their derivatives, and generates the ϕ and θ

references (ϕref (t) and θref (t) respectively).

45

Chapter 4. Control and estimation for a single quadrotor

ϕref (t) = kPye
b
y(t) + kDyė

b
y(t), (4.4)

θref (t) = kPxe
b
x(t) + kDxė

b
x(t), (4.5)

where kPy and kDy are the PD gains of the y axis while kPx and kDx are the PD gains of
the x axis.

4.2.1.2 Inner loop for rotational subsystem

The inner loop controls the quadrotor’s rotational subsystem (ϕ, θ), it has two PD con-
trollers that generate the roll and pitch moments u2 and u3.

u2 = kPϕeϕ(t) + kDϕėϕ(t), (4.6)

eϕ(t) = ϕref (t)− ϕ(t), (4.7)

u3 = kPθeθ(t) + kDθėθ(t), (4.8)

eθ(t) = θref (t)− θ(t), (4.9)

where kPϕ and kDϕ are the PD gains of the roll controller while kPθ and kDθ are the PD
gains of the pitch controller. Due to the symmetry of the quadrotor, we choose kPx = kPy,
kDx = kDy, kPϕ = kPθ, kDϕ = kDθ.

4.2.1.3 Altitude and yaw control

The altitude PD controller takes the z tracking error and its derivative and generates the
necessary thrust input after compensating the gravitational effect. The resulted thrust
is in the earth frame, the necessary conversions are done to get the thrust in the body
frame.

u1 =
mg + kPzez(t) + kDz ėz(t)

cosϕ cos θ , (4.10)

ez(t) = zref (t)− z(t), (4.11)

similarly for the yaw controller:

u4 = kPψeψ(t) + kDψėψ(t), (4.12)

eψ(t) = ψref (t)− ψ(t), (4.13)

where kPz and kDz are the PD gains of the z axis while kPψ and kDψ are the PD gains
of the yaw controller. It is very convenient to put limitations on some control signals like
pitch and roll angles limit (|ϕ| < π

2
, |θ| < π

2
) as well as saturations on the input effort U .

Despite the PD controller effectiveness and ability to achieve satisfying results, its
performance depends mainly on tuning the gains. Tuning its constants manually can
be laborious, time consuming, and requires a very good understanding of the system
dynamics. To solve this issue, the Genetic Algorithm is employed to tune the gains of the
six PD controllers and find their optimal values.

46

Chapter 4. Control and estimation for a single quadrotor

4.2.2 Background on the Genetic Algorithm

Genetic Algorithms (GAs) are a type of optimization and search algorithms used to solve
complex constrained and unconstrained optimization problems [25], they are heuristic
search algorithms that are categorized under the broader family of evolutionary algo-
rithms, drawing inspiration from the principles of genetics and natural selection observed
in biological evolution, introduced by John Holland at the University of Michigan in the
United States in the 1970s. GAs involve iteratively modifying a population of individual
solutions. In each iteration, certain individuals are selected from the current population
as parents and are utilized to generate the offspring for the subsequent generation. Across
multiple successive generations, the population ”evolves” to converge towards an optimal
solution.

GAs start without any prior knowledge of the optimal solution and rely solely on
feedback from their environment, as well as evolutionary operators like reproduction,
crossover, and mutation, to reach the best solution [81]. By initiating the search from
multiple independent points and conducting parallel search, the algorithm converges to-
wards suboptimal solutions and avoids local minimas. GAs prove particularly useful in
solving optimization problems that are not well suited for standard algorithms such as
problems with objective functions that are discontinuous, nondifferentiable, highly non-
linear or stochastic.

4.2.2.1 Initial population

The population can be viewed as a collection of points within the search space. Each
individual within the population is represented by a chromosome which can be a sequence
of bits. The degree of adaptation or fitness of an individual is determined by an objective
function. In a GA, the population size is typically set to include several hundreds of
potential solutions. The initial population is usually generated randomly, encompassing
the entire range of possible solutions within the search space. In some cases, the solutions
may be strategically ”seeded” in specific regions where optimal solutions are more likely
to be found.

4.2.2.2 Fitness score

Each individual is assigned a fitness score, which reflects their competitive capability. The
goal is to seek individuals with optimal or near-optimal fitness scores. The GA maintains
a population consisting of a fixed number of individuals (chromosomes or solutions) along
with their corresponding fitness scores [81]. The selection process favors individuals with
better fitness scores, who mate and produce offspring with improved genetic combinations
inherited from their parents. As the population size remains constant, space needs to be
created for new individuals. Consequently, some individuals die and are replaced by
newcomers, eventually forming the next generation once all mating opportunities in the
previous population are exhausted. It is anticipated that over successive generations,
better solutions will emerge while the least fit individuals die.

47

Chapter 4. Control and estimation for a single quadrotor

4.2.2.3 Operators of Genetic Algorithms

GAs employ three main sets of rules at each iteration to generate the subsequent genera-
tion from the current population [88]:

• Selection rules: these rules select the individuals with the best qualities, referred
to as parents, who will contribute to the population in the next generation. Selec-
tion is typically stochastic and may take into account the scores or fitness of the
individuals.

• Crossover rules: these rules involve combining the chromosomes of two parents
to create children for the next generation. The crossover process often involves
exchanging genetic information between parents to generate offspring with a com-
bination of traits from both parents.

• Mutation rules: they introduce random changes to individual parents to generate
children. These random alterations are meant to introduce diversity and explore
new areas of the solution space.

The different variations of GAs can be identified based on the type of codification utilized
for the chromosomes and the specific genetic operators employed. The Algorithm can be
summarized as follows:

Algorithm 1 Genetic Algorithm
Input: Initial population
Output: Best individuals

1 Evaluate fitness of the individuals
for population size do

2 Select best individuals from population as parents
Generate new individuals using mutation and crossover
Evaluate fitness of the new individuals
Replace the worst individuals of the population by the new individuals

3 end

4.2.3 Genetic Algorithm for PD tuning

Discussing the differences between the GA and traditional PD tuning methods such as
Ziegler–Nichols [89] can help us understand why GA is often considered more efficient. GA
differ from traditional search and optimization techniques in the following main aspects:

• Parallel population search: unlike traditional methods that start from a sin-
gle point and iteratively explore the solution space, GAs simultaneously search a
population of points which allows for a broader exploration of the solution space.

• No derivative or auxiliary knowledge requirement: GAs rely solely on the
objective function and corresponding fitness levels to guide the search process.

48

Chapter 4. Control and estimation for a single quadrotor

• Probabilistic transition rules: GAs employ probabilistic transition rules instead
of deterministic rules [88]. These rules, such as selection, crossover, and mutation,
introduce randomness into the search process.

• Multiple potential solutions: GAs often provide multiple potential solutions to
a given problem instead of producing a single optimal solution. The final choice of
the solution is left to the user.

4.2.3.1 Multi-objective optimization

We conduct an unconstrained multi-objective optimization problem. Each PD controller
has two tuning parameters; they are tuned using GA to optimize a multi-objective Op-
timization Potential Index (OPI). Different performance indexes have been developed to
evaluate dynamic performances of controllers based on factors like the tracking error of the
closed-loop system or the control energy. These indexes are time-integral criteria that are
used in the objective function of optimization algorithms. Many criterion can be used such
as Integral Squared Error (ISE), Integral Absolute Error (IAE), Integral Time-weighted
Absolute Error (ITAE), and the Integral Squared Control (ISC). It’s worth noting that
the choice of the performance index depends on the specific control objectives and system
requirements. In our application, we chose the the ISE and ISC indices to satify our
control objectives which are minimizing the tracking error and control energy, they are
given by:

Performance index Description Expression
ISE Integral Squared Error JISE =

∫∞
0
e2(t)dt

ISC Integral Squared Control JISC =
∫∞
0
u2(t)dt

Table 4.1: Performance indices

We run the GA using a multi-objective function that is a weighted sum of the ISE
and ISC indices for each PD controller. We aim to make the quadrotor follow a desired
trajectory subject to minimum tracking error and minimum control energy specifications.
We employ a stop criterion based on the maximum number of generations. The PD tuning
scheme using GA is shown in Fig 4.3.

Figure 4.3: GA-based PD control

49

Chapter 4. Control and estimation for a single quadrotor

The GA is run offline, therefore, there are no computational restrictions. The total cost
function in equation (4.14) is given by the sum of the cost functions of each PD controller.
The GA is initialised randomly, but it is possible to choose its initial population. The
resulted parameters represent a local optimum of the cost function JG(Θ).

minimize
Θ

JG(Θ) = Jx + Jy + Jz + Jϕ + Jθ + Jψ, (4.14)

where Θ = [kPx kDx kPy kDy kPz kDz kPϕ kDϕ kPθ kDθ kPψ kDψ]
T is the vector of pa-

rameters to be optimized. The optimization problem is twelve-dimensional, therefore,
there is no guarantee that it is a convex problem (non-linear model, saturation).

The cost functions for each axis are a weighted sum of ISE and ISC indices:

Jx =

∫ tf

0

w1(e
b
x(t))

2dt, (4.15)

Jy =

∫ tf

0

w1(e
b
y(t))

2dt, (4.16)

Jz =

∫ tf

0

[w1e
2
z(t) + w2u

2
1(t)]dt, (4.17)

Jϕ =

∫ tf

0

[w1e
2
ϕ(t) + w2u

2
2(t)]dt, (4.18)

Jθ =

∫ tf

0

[w1e
2
θ(t) + w2u

2
3(t)]dt, (4.19)

Jψ =

∫ tf

0

[w1e
2
ψ(t) + w2u

2
4(t)]dt, (4.20)

where tf is the final simulation time. w1, w2 are the ISE and ISC optimization weights
respectively, they must satisfy w1 + w2 = 1, their values are selected to increase the
emphasis on each control objective. We take the output states (x, y, z and, ψ) errors
in the optimization process because the position of the quadrotor is specified by these
variables in 3D space. Then, we add ϕ and θ errors to enhance the performance of the
controller.

50

Chapter 4. Control and estimation for a single quadrotor

4.3 Nonlinear Model Predictive Control of a quadro-
tor

In this section, we apply Nonlinear Model Predictive Control (NMPC) for trajectory track-
ing of the 6-DOF quadrotor. We begin by providing an overview of optimal control theory
and the different approaches to solving an Optimal Control Problem (OCP). Specifically,
we focus on the direct multiple shooting method, which enables the reformulation of an
OCP into a Nonlinear Programming Problem (NLP). Then, we introduce the principles of
NMPC and outline the formulation of the NMPC optimization problem, which falls within
the category of OCPs. Given the highly nonlinear nature of the quadrotor model, the
NMPC-based controller demands significant computational resources. To address this,
we introduce the CasADi optimization framework, which offers the advantage of faster
computational time.

4.3.1 Background on Optimal Control

In dynamic optimization problems, referred to as Optimal Control Problems (OCPs),
the primary objective is to find an optimal control input that minimizes a specified cost
function or performance measure while adhering to a set of constraints. These constraints
encompass both system dynamics and limitations imposed on the states and controls of
the system. In the subsequent sections, we discuss the essential elements of a an OCP.

4.3.1.1 System dynamics model

The system dynamics are described with a mathematical model given by a set of differ-
ential algebraic equations having the form:

Ẋ(t) = F (X(t), U(t)), (4.21)

where X(t) ∈ Rn, U(t) ∈ Rm, and F (X,U) is continuously differentiable with respect
to the X and U arguments for t ∈ [t0, tf]. The system model is considered an equality
constraint that needs to be satisfied at each instant.

4.3.1.2 Objective functional

In an OCP, a cost functional is used to quantify the performance of the control strategy.
It represents the objective to be optimized in the control problem. The cost functional
typically incorporates control objectives such as minimizing (or maximizing) certain sys-
tem variables, tracking trajectories, and minimizing energy consumption. In this work,
we use the minimum tracking error and minimum control effort criteria. The Bloza cost
function is given by:

J(X(t), U(t), t) = E(X(tf), U(tf), tf) +

∫ tf

t0

L(X(t), U(t), t)dt, (4.22)

E is called Mayer term and L is called Lagrange term. In our application L is chosen as:

51

Chapter 4. Control and estimation for a single quadrotor

L(X(t), U(t), t) =
∥∥X(t)−Xref (t)

∥∥2

Q
+ ∥U(t))∥2R, (4.23)

L(X(t), U(t), t) = [X(t)−Xref (t)]TQ[X(t)−Xref (t)] + UT (t)RU(t), (4.24)

where Xref is the desired trajectory, and Q and R are positive definite weighting matrices
for the states and the control inputs respectively.

4.3.1.3 Constraints and boundary conditions

The optimal solution must adhere to a set of constraints and boundary conditions both
on the control inputs and the system states. We can consider both equality and inequality
constraints defined as:

g1(X(t), U(t)) = 0, ∀t ∈ [t0, tf], (4.25)

g2(X(t), U(t)) ≤ 0, ∀t ∈ [t0, tf], (4.26)

and boundary conditions:

U(t) ∈ U , ∀t ∈ [t0, tf],

X(t) ∈ X , ∀t ∈ [t0, tf],
(4.27)

U and X are the sets defined by the bounds on the inputs and states respectively:

U = {U ∈ Rm | Umin ≤ U ≤ Umax} ,
X = {X ∈ Rn | Xmin ≤ X ≤ Xmax} , (4.28)

the initial state is also considered a boundary condition:

X(t0) = X0. (4.29)

4.3.1.4 OCP formulation

Based on the definitions provided earlier, an OCP is generally formulated by seeking to
minimize an objective functional, the controls and states that minimize it must adhere to
the model equations, path constraints, and boundary conditions. Hence, the constrained
OCP can be formulated as follows:

minimize
U(t),X(t)

J = E(X(tf), U(tf), tf) +

∫ tf

t0

L(X(t), U(t), t)dt,

s.t. Ẋ(t) = F (X(t), U(t)), ∀t ∈ [t0, tf],

g1(X(t), U(t)) = 0, ∀t ∈ [t0, tf],

g2(X(t), U(t)) ≤ 0, ∀t ∈ [t0, tf],

X(t0) = X0, ∀t ∈ [t0, tf],

U(t) ∈ U , ∀t ∈ [t0, tf],

X(t) ∈ X , ∀t ∈ [t0, tf].

(4.30)

The optimal trajectory X∗(t) corresponds to the optimal input U∗(t) and we obtain
the minimal objective functional J∗. To solve the formulated OCP, there are mainly three
approaches [90]:

52

Chapter 4. Control and estimation for a single quadrotor

• Dynamic programming: such as Hamilton-Jacobi-Bellman equation [91].

• Indirect methods: based on the first order optimality conditions of variations of
the OCP. They employ the philosophy of optimize then discretize, such as Pon-
tryagin Minimum Principle, these methods are mainly used for relatively simple
optimization problems.

• Direct methods: employ the strategy of discretize then optimize. In this work
we focus on direct methods because they are well adapted for complex optimization
problems such as NMPC problems.

4.3.1.5 Direct methods for OCP solution

In many systems, the OCP is solved off-line because solving it directly can be compu-
tationally intensive [91]. Therefore, in this work we will explore reformulating an OCP
into a Nonlinear Programming Probelm (NLP) using direct methods [92] which allows
to significantly improve the computational efficiency, tackle the resulting NLP using al-
gorithms like sequential quadratic programming, and treat highly nonlinear OCPs with
both inequality and equality constraints.

The finite dimensional Nonlinear Programming Problem (NLP) [92] is a standard
problem formulation in numerical optimization having the general form:

minimize
W

Φ (W) ,

s.t. G1(W) ≤ 0,

. G2(W) = 0,

(4.31)

where W is the optimization variable, Φ(W) is a nonlinear objective function, and G1(W),
G2(W) are inequality and equality constraints respectively. To solve nonlinear OCPs using
a direct method, the control trajectory is typically discretized and parameterized, while
the state trajectory can be handled using either a sequential or simultaneous approach.

• Sequential approach: the state vector is implicitly handled alongside the con-
trol vector and initial value vector. The ordinary differential equations (ODEs) are
addressed as an initial value problem using an ODE solver such as the Euler algo-
rithm or Runge-Kutta. Consequently, simulation and optimization are sequentially
conducted in each iteration of the NLP solver. The degrees of freedom in the NLP
problem consist solely of the discretized control parameters. An example of the
sequential method is the direct single shooting method (control parametrization).

• Simultaneous approach: both the state trajectory and the control trajectory are
parameterized. All the parameterized variables, including both states and controls,
are considered as optimization variables in the NLP problem. The discretization
methods commonly used in this approach are collocation on finite elements or mul-
tiple shooting (control and state parametrization).

The different approaches for solving an OCP can be summerized in Fig. 4.4.

53

Chapter 4. Control and estimation for a single quadrotor

Figure 4.4: Map of Optimal Control

4.3.2 Background on Model Predictive Control

MPC is an optimal control technique in which an optimal control action is calculated
to minimize a cost function for a constrained dynamical system over a finite, receding,
horizon [10]. The controller can be divided into two main components: the internal
dynamic plant model and the optimizer. The internal model is capable of predicting
future outputs based on the current state feedback. On the other hand, the optimizer
is responsible for solving an optimization problem to determine the optimal input. This
controller is particularly useful for supervising MIMO control systems. At each time
step, an MPC controller receives the current state of the plant. It then calculates the
sequence of optimal control actions based on predictions of the system states to track a
reference trajectory so that it minimizes the cost over the horizon by solving a constrained
optimization problem [11]. The cost usually consists of the error between the predicted
state, calculated using the internal model, and the desired trajectory. The controller then
applies only the first control action to the plant, disregarding the following ones. The
process is repeated in the next sampling time. The constraints can be on both the system
states and the inputs. This process is illustrated in Fig. 4.5.

Figure 4.5: A basic working principle of MPC, from [93]

54

Chapter 4. Control and estimation for a single quadrotor

In NMPC, the OCP to be solved at each sampling time over the horizon [t0, tN] has
the general form [90] :

minimize
U(t),X(t)

J =

∫ tN

t0

L(X(t), U(t), t)dt,

s.t. Ẋ(t) = F (X(t), U(t)), ∀t ∈ [t0, tN],

X(t0) = X0, ∀t ∈ [t0, tN],

U(t) ∈ U , ∀t ∈ [t0, tN],

X(t) ∈ X , ∀t ∈ [t0, tN],

(4.32)

one major inconvenience of this approach is the online solving of the OCP at each sample
time, which has enormous computational requirements.

In summary, the main goal of MPC is to find an optimal control sequence that mini-
mizes a performance index subject to a plant model as an equality constraint and boundary
conditions on the states and control inputs as inequality constraints [93]. The key prin-
ciples of MPC are prediction, online optimization and receding horizon. In this work, we
focus on NMPC, which is specifically designed for systems with nonlinear dynamics, it
allows us to use the nonlinear plant model as well as nonlinear constraints.

4.3.3 NMPC problem reformulation using multiple shooting

Multiple shooting technique converts the continuous OCP into a finite dimensional NLP
[90]. The main idea behind multiple shooting is to discretize the time horizon of the OCP
into multiple smaller intervals, called shooting intervals, and introduce the states and the
control inputs at the boundaries of each interval, where both variables are considered
optimization variables. The problem is then formulated as an NLP, where the goal is
to find the values of these variables that satisfy the dynamic equations and constraints
over each interval [92]. Continuity conditions in each shooting are considered equalities
while constraints on the state at the end of each shooting are considered as inequalities.
This transformation reduces the size of the optimization problem by adding the states as
optimization variables and allows a more efficient solution using numerical optimization
techniques. The key steps involved in the multiple shooting approach are the following
[91]:

4.3.3.1 Discretization

In multiple shooting, the prediction horizon is partitioned into N equidistant shooting
intervals. We use k as the discrete time variable, the prediction horizon time grid is:

k < k + 1 < ... < k +N, (4.33)

this approach offers flexibility in the choice of interval length. Different lengths can be used
to capture the system dynamics more accurately which enables tailoring the discretization
to the specific requirements of the problem.

The state trajectory is discretized into N+1 nodes and the control input is discretized
into N nodes at each horizon. The control input is supposed to be piece-wise constant
at each shooting interval. At each instant k, the NMPC algorithm is executed over the

55

Chapter 4. Control and estimation for a single quadrotor

horizon [k, k + N] and a decision is made based on the measured or estimated state
X(k), a sequence of optimal controls is computed over the prediction horizon. We set the
prediction horizon equal to the control horizon. The matrix PU(k) is filled with optimal
control actions U(k + j) over the horizon, j ∈ [0, N − 1]:

PU(k) = [U(k), U(k + 1), ..., U(k +N − 1)], (4.34)

PU(k) =


u1(k), u1(k + 1), ..., u1(k +N − 1)

u2(k), u2(k + 1), ..., u2(k +N − 1)
...

um(k), um(k + 1), ..., um(k +N − 1)

 , (4.35)

only the first control action U(k) is applied during the sampling period [k, k + 1], then
we move to the next horizon and repeat the process. The state prediction matrix corre-
sponding to PU(k) over the horizon is PX(k):

PX(k) =
[
XU(k), XU(k + 1), ..., XU(k +N)

]
, (4.36)

PX(k) =


x1,U(k), x1,U(k + 1), ..., x1,U(k +N)

x2,U(k), x2,U(k + 1), ..., x2,U(k +N)
...

xn,U(k), xn,U(k + 1), ..., xn,U(k +N)

 , (4.37)

XU(k+j) is the predicted state corresponding to the optimal input U(k+j−1), j ∈ [1, N].
The NMPC problem also requires having the reference trajectories over the whole

horizon. Let Xref (k) be the reference of the states. Therefore, the reference matrix
RX(k) is:

RX(k) = [Xref (k), Xref (k + 1), ..., Xref (k +N)], (4.38)

RX(k) =


xref1 (k), xref1 (k + 1), ..., xref1 (k +N)

xref2 (k), xref2 (k + 1), ..., xref2 (k +N)
...

xrefn (k), xrefn (k + 1), ..., xrefn (k +N)

 , (4.39)

4.3.3.2 Objective function

The objective function captures the system’s performance and is typically a sum of stage
costs over all intervals. Let the running costs at each instant k + j, j ∈ [0, N] be:

L(XU(k + j), U(k + j)) =
∥∥XU(k + j)−Xref (k + j)

∥∥2

Q
+ ∥U(k + j))∥2R, (4.40)

L(XU(k + j), U(k + j)) = [XU(k + j)−Xref (k + j)]TQ[XU(k + j)−Xref (k + j)]

+ UT (k + j)RU(k + j),
(4.41)

the running cost characterizes the control objectives, it penalizes the tracking error be-
tween the predicted states XU and the desired trajectory Xref , and it includes the minimal
control effort objective.

56

Chapter 4. Control and estimation for a single quadrotor

The cost function is the evaluation of the running costs along the whole horizon:

JN =
N−1∑
j=0

L (XU(k + j), U(k + j)) , (4.42)

the minimal value of the cost function is:

VN(X) = min
U
JN (XU , U) . (4.43)

4.3.3.3 Optimization variable

The decision variable W in the context of multiple shooting is given by:

W = [UT (k), UT (k + 1), ..., UT (k +N − 1), XT
U (k), X

T
U (k + 1), ..., XT

U (k +N)]T , (4.44)

for simplicity, we write:

W = [UT
0 , ..., U

T
N−1, X

T
U,0, X

T
U,1, ..., X

T
U,N]

T , (4.45)

it contains both the controls and the states as optimization variables over the prediction
horizon, its dimension is (m ∗N + n ∗ (N + 1)). Using W as the optimization variable in
the cost function is a major advantage of multiple shooting, it allows the ’lifting’ which
means reformulating a function with more variables which makes it less nonlinear. Also
multiple shooting allows the initialization with a known guess for the state trajectory.

4.3.3.4 Dynamics constraints

The differential equations describing the system dynamics are discretized and imposed as
constraints between adjacent intervals. These constraints naturally ensure the continuity
of states and control inputs between intervals, ensuring that the system’s dynamics are
satisfied over the entire time horizon. Consider the nonlinear plant model developed in
section 3.2:

Ẋ(t) = F (X(t), U(t)), (4.46)

using Euler method, we write the system model in the discrete time domain. Other more
complex algorithms such as Runge-Kutta can be employed. However, solving the NMPC
problem can become more computationally expensive.

X(k + 1) = X(k) + T ∗ F (X(k), U(k)) = f(X(k), U(k)), (4.47)

T is the sampling time. In multiple shooting, this model is added as a constraint be-
tween the actual state and the predicted state (based on the plant model). This equality
constraint is considered at each shooting step as follows:

f(XU(k), U(k))−XU(k + 1) = 0, (4.48)

this equality constraint is written in term of the optimization variables contained in W

as follows:

57

Chapter 4. Control and estimation for a single quadrotor

G2(W) =


X(k)−XU,0

f(XU,0, U0)−XU,1
...

f(XU,N−1, UN−1)−XU,N

 = 0, (4.49)

where X(k) = f(X(k − 1), U(k − 1)) is the real state coming from the system at each
iteration after applying the optimal control U(k − 1).

This approach simplifies the constraint formulation and eliminates the need for com-
plex differential equation solvers. Moreover, the introduction of state variables at the
boundaries reduces the size of the optimization problem which leads to significant com-
putational efficiency gains, allowing for faster solution times compared to solving the
original OCP directly.

4.3.3.5 Inequality constraints and bounds

Any additional constraints, such as state constraints or control constraints, are also in-
cluded in the NLP formulation.

G1(W) =


g1(XU,0, U0)

...
g1(XU,N−1, UN−1)

g1(XU,N)

 ≤ 0, (4.50)

bounds on control inputs and states are also considered:

U(k + j) ∈ U , ∀j ∈ [0, N − 1],

XU(k + j) ∈ X , ∀j ∈ [0, N],
(4.51)

where:
U = {U ∈ Rm | Umin ≤ U ≤ Umax} ,

X = {XU ∈ Rn | Xmin ≤ XU ≤ Xmax} , (4.52)

4.3.3.6 The resulting Nonlinear Programming Problem

Multiple shooting allowed to reformulate the NMPC OCP to consider the variables at
interval boundaries:

minimize
W

JN =
N−1∑
j=0

L (XU(k + j), U(k + j)) ,

s.t. XU(k + 1) = f (XU(k), U(k)) ,

XU(0) = X0,

U(k + j) ∈ U , ∀j ∈ [0, N − 1],

XU(k + j) ∈ X , ∀j ∈ [0, N],

(4.53)

58

Chapter 4. Control and estimation for a single quadrotor

the resulting Nonlinear Programming Problem can be written in terms of the optimization
variable W = [UT

0 , ..., U
T
N−1, X

T
U,0, X

T
U,1, ..., X

T
U,N]

T :

minimize
U0,...,UN−1,XU,0,XU,1,...,XU,N

JN =
N−1∑
j=0

L (XU,j, Uj) ,

s.t. g1(XU,j, Uj) ≤ 0, j ∈ [0, N],

. f(XU,j−1, Uj−1)−XU,j = 0, j ∈ [0, N],

(4.54)

which has the general form:

minimize
W

Φ(W),

s.t. G1(W) ≤ 0,

. G2(W) = 0,

(4.55)

overall, the main difference between an OCP and an NLP lies in their formulation and
structure. This transform through multiple shooting reduces the problem size, improves
computational efficiency and simplifies constraint handling, making multiple shooting a
popular technique for solving nonlinear MPC problems, particularly when dealing with
complex systems and long time horizons. By transforming the OCP into an NLP through
multiple shooting, the resulting problem can be solved using a wide range of existing
nonlinear programming solvers. These solvers are well-developed and optimized for NLP
problems, offering various optimization algorithms and solution techniques.

In this work, the NLP is solved in MATLAB using CasADi, an open-source soft-
ware containing symbolic tools specifically designed for solving nonlinear optimization
problems. CasADi offers a high-level optimization framework that makes the process of
formulating and solving the problem very efficient. It is particularly useful for complex
nonlinear dynamic systems which makes it adequate for the quadrotor trajectory tracking
problem. CasADi is proven to run much faster than other optimization packages [94],
its computational performance makes it very suitable for our application. By utilizing
CasADi, the user can express the objective function, constraints, and dynamics equations
of the NLP in a concise and intuitive manner and then invoke the appropriate solver
to find the optimal solution. The NLP solver used is the IPOPT (Interior Point OPTi-
mizer) [91] solver which is a popular NLP solver that is integrated into CasADi. IPOPT
uses an interior-point method, which is a class of optimization algorithms that iteratively
approach the optimal solution by moving along the interior of the feasible region. It is
particularly effective for handling convex and non-convex OCPs.

4.3.4 Application of NMPC on a single quadrotor

We use multiple shooting NMPC for trajectory tracking of a single quadrotor. The
quadrotor has 12 states and 4 inputs. Therefore, the decision variable W is of dimension
(4N + 12(N + 1)), i.e., W ∈ R(4N+12(N+1)), and is given as follows:

W = [UT
0 , ..., U

T
N−1, X

T
U,0, X

T
U,1, ..., X

T
U,N]

T . (4.56)

To initialize the decision variables, it is advantageous to use the previous predictions at
instant k as an initialization for the next horizon that starts at instant k+1 for the states

59

Chapter 4. Control and estimation for a single quadrotor

and inputs. Therefore, we trim the first prediction at instant k that we already used, and
we double the last prediction at instant k +N . Using the previous prediction matrix:

PX(k) =
[
XU(k), XU(k + 1), ..., XU(k +N)

]
, (4.57)

we trim the first column and double the last column:

P 0
X(k + 1) =

[
XU(k + 1), ..., XU(k +N), XU(k +N)

]
, (4.58)

we do the same for initializing the controls:

P 0
U(k + 1) = [U(k + 1), ..., U(k +N − 1), U(k +N − 1)]. (4.59)

The nonlinear quadrotor model f(X,U) is provided to NMPC to predict the system states.
It is used as an equality constraint at each shooting step.

G2(W) =


X(k)−XU,0

f(XU,0, U0)−XU,1
...

f(XU,N−1, UN−1)−XU,N

 = 0. (4.60)

The optimal solution must also satisfy boundary conditions. For the quadrotor, we con-
sider lower and upper bounds on states and control inputs:

Umin ≤ U ≤ Umax, (4.61)

Xmin ≤ XU ≤ Xmax. (4.62)

4.4 Design of estimation-based control techniques

In this section, we discuss the design of estimation-based control techniques for quadrotor
systems. We first discuss the motivations and emphasize the necessity and benefits of using
estimation techniques for precise control. Then, we consider measurements and sensor
choice for our application. Finally, we examine the Extended Kalman Filter, explaining
its basic principles and how the algorithm estimates and filters the system states based
on noisy sensor measurements.

4.4.1 Motivation and estimation approach

The accuracy of the feedback signal plays a crucial role in the performance of a feedback-
based controller. To accurately represent the system’s state, various sensors and filters are
employed. While commercial quadrotors are equipped with onboard sensors like Global
Positioning System (GPS), Inertial Measurement Unit (IMU), radio detection and ranging
(radar), sound navigation ranging (Sonar), light detection and ranging (Lidar), cameras,
Attitude and Heading Reference System (AHRS), Inertial Navigation System (INS), etc.,
these sensors alone often fail to provide a reliable feedback signal. As a result, this limi-
tation is addressed by developing an estimation approach alongside the onboard sensors.
This approach aims to overcome the drawbacks associated with the onboard sensors and
enhance the overall accuracy of the feedback signal.

60

Chapter 4. Control and estimation for a single quadrotor

In previous research, estimation methods have been employed to improve the perfor-
mance and control of quadrotor systems. For instance, a robustified nonlinear dynamic
inversion control scheme based on an uncertainty and disturbance estimator (UDE) was
proposed to address nonlinearities, input coupling, uncertainties, and external distur-
bances [95]. Sensor fusion algorithms, such as EKF, have also been widely adopted for
integrating multiple measurements in complex scenarios for quadrotors. A methodol-
ogy was presented to estimate quadrotor orientation using a single low-cost IMU sensor
through the use of two EKFs and a Direction Cosine Matrix algorithm [96]. Another
study derived an EKF for various drone models in different dimensions, aiming to infer
the state of the quadrotor from sensor values and control inputs [97]. These examples
emphasize the importance of estimation approaches, including the EKF, in inferring the
state of quadrotor systems.

4.4.2 Choice of measurements and sensors

For our specific application, we measured both the linear and angular positions of the
quadrotor. This choice was influenced by a comprehensive evaluation of the quadrotor
system’s observability, as demonstrated in the study conducted in [98]. Additionally,
through our own extensive trials, we have concluded that EKF estimation using these
measurements yields accurate results. Although it’s important to consider the limitations
in terms of accuracy and update rate associated with the measurements.

To mesure the quadrotor’s global position, a GPS receiver is used. For the quadrotor’s
angular position, we opted for an AHRS which is widely used for attitude estimation due to
its simplicity, accuracy, and real-time performance. By combining data from gyroscopes,
accelerometers, and magnetometers, the AHRS estimates the quadrotor’s attitude angles.
However, it’s worth noting that AHRS alone may encounter challenges in providing highly
accurate orientation estimates over extended periods due to sensor drift and noise. In or-
der to fuse these measurements and address potential inaccuracies of individual sensors,
we implement an EKF which is known for its sensor fusion capabilities, enabling us to
estimate the remaining six states of the quadrotor (linear and angular velocities). Addi-
tionally, the EKF can provide an improved estimation of the measurements, which helps
mitigate the impact of sensor inaccuracies. This approach of combining a GPS, AHRS,
and an EKF aims to obtain accurate and reliable estimates of the quadrotor’s states,
while addressing the limitations and uncertainties associated with individual sensors.

4.4.3 Background on the Extended Kalman Filter

EKF is a suboptimal nonlinear version of the Kalman Filter (KF). KF is a recursive
algorithm that estimates the state of a linear dynamical system with measurements and
process noise. However, when dealing with nonlinear systems, such as those with nonlinear
state transition and observation models, the standard KF cannot be directly applied [83].

On the other hand, EKF utilizes the process of linearization by approximating the
nonlinear state transition and measurement models based on the current state estimate.
This linearization is achieved by computing the Jacobians, which capture the local linear
behavior of the models around the estimated state. By linearizing the models, EKF is
able to update the covariance estimate using the same equations as the standard KF. EKF

61

Chapter 4. Control and estimation for a single quadrotor

operates in two main stages: the prediction stage, where the system’s state is estimated
based on the previous state estimate and the transition model, and the update stage,
where the estimated state is corrected based on the measurements.

4.4.3.1 Extended Kalman Filter equations

The nonlinear system in continuous time is represented as follows:

Ẋ(t) = F (X,U) + ξ(t), (4.63)

Z(t) = hmes(X) + υ(t), (4.64)

where F (X,U) is the nonlinear state model, hmes(X) is the measurements model, ξ(t),
υ(t) are white Gaussian process and measurement noises respectively. In discrete time
domain, the system equations become:

X(k) = X(k − 1) + F (X(k − 1), U(k − 1)) ∗ T + ξ(k − 1),

= f(X(k − 1), U(k − 1)) + ξ(k − 1),
(4.65)

Z(k) = hmes(X(k), U(k)) + υ(k), (4.66)

T is the sampling time. We linearize the states and measurement equations by taking the
partial derivatives, the Jacobians are defined as:

A(k) =
∂F

∂X

∣∣∣∣
X̂(k),U(k)

, (4.67)

H(k) =
∂hmes

∂X

∣∣∣∣
X̂(k),U(k)

, (4.68)

the linearization point X̂(k) is the latest state estimation at each time sample. The cal-
culations are performed using the following two steps, the notations (−) and (+) represent
the estimated value before and after the measurement update:

Step 1: Prediction
In this step, given the estimation at the k − 1 step, the state of the system at time

step k is predicted based on the system’s model.

X̂−(k) = f(X̂+(k − 1), U(k − 1)), (4.69)

we predict also the covariance of the estimation error at time k:

P−(k) = A(k − 1)P+(k − 1)AT (k − 1) +Qξ, (4.70)

Qξ is the covariance of the process noise ξ(k).

Step 2: Update
We compute the Kalman gain K(k) at time k:

K(k) = P−(k)HT (k)
[
H(k)P−(k)HT (k) + Rυ

]−1

, (4.71)

62

Chapter 4. Control and estimation for a single quadrotor

this gain is designed to minimize the covariance of the estimation error X̃ = X − X̂.
Then, using the measurements, we update the prediction:

X̂+(k) = X̂−(k) +K(k)
[
Z(k)− hmes(X̂−(k))

]
, (4.72)

we finally update the covariance estimate:

P+(k) =
[
I −K(k)H(k)

]
P−(k), (4.73)

Rυ is the covariance of the measurement noise υ(k). In summary, the EKF algorithm
consists of four main steps, discretization, linearization, prediction and update.

4.4.3.2 Covariance matrices tuning

The choice of the Qξ and Rυ matrices is very important, they are used to model the process
noise and measurement noise, respectively. In general, a high value for the Qξ matrix
indicates high process noise, which means that the system dynamics are highly uncertain
or variable. On the other hand, a low value for the Qξ matrix indicates low process noise,
which means that the system dynamics are less uncertain. Similarly, a high value for the
Rυ matrix indicates high measurement noise, which means that the measurements are
highly uncertain. A low value for the Rυ matrix indicates low measurement noise, which
means that the measurements are less uncertain.

The filter determines the relative weights given to the measurements and the model
predictions by calculating the Kalman gain, which is based on the covariance matrices Qξ

and Rυ. The Kalman gain determines the amount of weight given to the measurement
and the model prediction in the estimate. If the measurement noise is high and the
model is accurate, the Kalman gain will give more weight to the model prediction. If
the measurement noise is small or the model is less accurate, the Kalman gain will give
more weight to the measurement. It is important to choose appropriate values for the Qξ

and Rυ matrices to ensure that the EKF is able to accurately estimate the state of the
system. The values of Qξ and Rυ are usually determined through experimentation or by
using statistical analysis of the system and sensor noise characteristics.

4.4.4 Application of EKF on a single quadrotor

The nonlinear quadrotor model with process and measurement noise is given as follows:

Ẋ(t) = F (X,U) + ξ(t), (4.74)

Z(t) = hmes(X) + υ(t), (4.75)

hmes(X) = [x y z ϕ θ ψ]T , (4.76)

the measurements vector contains the linear and angular positions of the quadrotor. EKF
needs both the state and measurement models to be linarized. For the state-transition
model, the Jacobian A(k) is a 12-by-12 sparse matrix. Its nonzero elements are:

63

Chapter 4. Control and estimation for a single quadrotor

A1,4 = 1,

A2,5 = 1,

A3,6 = 1,

A7,8 = −Iz − Iy
Ix

r,

A7,9 = −Iz − Iy
Ix

q,

A8,7 = −Ix − Iz
Iy

r,

A8,9 = −Ix − Iz
Iy

p,

A9,7 = −Iy − Ix
Iz

q,

A9,8 = −Iy − Ix
Iz

p,

A10,7 = 1,

A10,8 = sin(ϕ)tan(θ),

A10,9 = cos(ϕ)tan(θ),

A10,10 = cos(ϕ)tan(θ)q,

A10,11 = −sin(ϕ)tan(θ)r,
A11,8 = cos(ϕ),

A11,9 = −sin(ϕ),
A11,10 = −sin(ϕ)q − cos(ϕ)r,

A12,8 =
sin(ϕ)

cos(θ)
,

A12,9 =
cos(ϕ)

cos(θ)
,

A12,10 =
cos(ϕ)

cos(θ)
q − sin(ϕ)

cos(θ)
r,

A12,11 =
sin(ϕ)sin(θ)q + cos(ϕ)sin(θ)

cos2(θ)
,

(4.77)

the Jacobian of the measurements model for the quadrotor is a 6-by-12 matrix, it is given
by:

H(k) =

[
I3×3 03×3 03×6

03×6 I3×3 03×3

]
, (4.78)

it is worth noting that the computational complexity of EKF is high because it requires
evaluating the Jacobians at the current estimate in real time.

64

Chapter 4. Control and estimation for a single quadrotor

4.5 Simulation results

In this section, the different control and estimation strategies developed previously will
be validated through simulations of the trajectory tracking problem of the single quadro-
tor system. The reference trajectory is a 3D continuous helical trajectory given by
(xref (t), yref (t), zref (t)) = (2 sin 0.1t, 2− 2 cos 0.1t, 0.1t) and the desired yaw angle ψref (t)
is a square signal. The wind forces are neglected. The simulation parameters of the
quadrotor model are listed in table 4.2, they are chosen to represent a real quadrotor [99].

Parameters Value Unit
g 9.81 m.s−2

m 0.2 kg

Ix 0.1 kg.m2

Iy 0.1 kg.m2

Iz 0.08 kg.m2

Table 4.2: Quadrotor’s model parameters

To ensure an accurate simulation of the quadcopter’s closed-loop response, it is im-
portant to take into account actuator saturation. This means that the produced thrust
and torques should be limited by the maximum achievable motor speeds.

4.5.1 PD controller results

After executing the genetic algorithm with 15 generations having 15 individuals each,
we get the optimal PD parameters in table 4.3 with the minimal cost function value
min JG(Θ) = 1.2821.

Axis kP kD Saturation
x 0.4062 0.1617 |θref | ≤ 1.05 [rad]

θ 8.8283 1.7920 |u3| ≤ 2 [N.m]

y 0.4062 0.1617 |ϕref | ≤ 1.05 [rad]

ϕ 8.8283 1.7920 |u2| ≤ 2 [N.m]

z 11.8091 2.5949 |u1| ≤ 2.1 [N]

ψ 6.9740 1.7235 |u4| ≤ 2 [N.m]

Table 4.3: Optimal PD simulation parameters

65

Chapter 4. Control and estimation for a single quadrotor

Trajectory tracking results for the initial conditionX0 = [0.3 0.3 0 0 0 0 0 0 0 0 0 0]T

Figure 4.6: PD trajectory tracking

Figure 4.7: PD tracking errors

66

Chapter 4. Control and estimation for a single quadrotor

Figure 4.8: Quadrotor’s states with PD controller

Figure 4.9: PD input efforts

4.5.2 EKF-based PD controller results

In this subsection, we use EKF in closed-loop with the PD controller, meaning the con-
troller uses the estimated state X̂ for the feedback instead of X. We used additive white
Gaussian noise for process and measurement noise. The following weighting matrices to
characterize the noise and the initial estimation error covariance are selected through an

67

Chapter 4. Control and estimation for a single quadrotor

iterative process of trial and error:

Qξ = diag(0.05, 0.02, 0.02, 0.02, 5, 5, 0.02, 0.02, 0.0002, 0.02, 0.02, 0.0002),

Rν = diag(3.5, 2, 2, 0.000001, 0.000001, 0.00005),

P0 = 0.001 ∗ diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
(4.79)

Trajectory tracking results for the initial condition X̂0 = [0.3 0.3 0 0 0 0 0 0 0 0 0 0]T

Figure 4.10: EKF-based PD trajectory tracking

Figure 4.11: EKF-based PD tracking errors

68

Chapter 4. Control and estimation for a single quadrotor

Figure 4.12: Quadrotor’s states with EKF-based PD controller

Figure 4.13: EKF-based PD trajectory
tracking in 3D space

Figure 4.14: EKF-based PD trajectory
tracking in the x− y plane

4.5.3 NMPC controller results

The NMPC algorithm is run over a prediction horizon of 5s, the weighting matrices in
the cost function are shown in table 4.4. The input and state boundaries are the same as
for the PD controller, shown in table 4.3.

69

Chapter 4. Control and estimation for a single quadrotor

NMPC parameters Values
Sampling time T 0.05 [s]

Number of intervals N 100
Prediction horizon length 5 [s]

Weighting matrix Q diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)

Weighting matrix R diag(1, 1, 1, 1)

Table 4.4: NMPC simulation parameters

Trajectory tracking results for the initial conditionX0 = [0.3 0.3 0 0 0 0 0 0 0 0 0 0]T

Figure 4.15: NMPC trajectory tracking

Figure 4.16: NMPC tracking errors

70

Chapter 4. Control and estimation for a single quadrotor

Figure 4.17: Quadrotor’s states with NMPC controller

Figure 4.18: NMPC input efforts

4.5.4 EKF-based NMPC controller results

In this subsection, we use EKF in closed-loop with the NMPC controller. The matrices
Qξ, Rν and P0 are the same as for the EKF-based PD.

71

Chapter 4. Control and estimation for a single quadrotor

Trajectory tracking results for the initial condition X̂0 = [0.3 0.3 0 0 0 0 0 0 0 0 0 0]T

Figure 4.19: EKF-based NMPC trajectory tracking

Figure 4.20: EKF-based NMPC tracking errors

72

Chapter 4. Control and estimation for a single quadrotor

Figure 4.21: Quadrotor’s states with EKF-based NMPC controller

Figure 4.22: EKF-based NMPC trajec-
tory tracking in 3D space

Figure 4.23: EKF-based NMPC trajec-
tory tracking in the x− y plane

4.6 Comparison and results discussion

In the previous sections, we designed two control techniques for quadrotor control, PD
and NMPC controllers combined with EKF for state estimation. While PD and NMPC
share the common goal of achieving desired trajectories, they differ in their underlying
principles, control strategies, and performance characteristics. Understanding the advan-
tages and limitations of each approach is very important. Therefore, in this section we
compare and assess the performance of the two controllers and determine their suitability
for specific control objectives and applications.

73

Chapter 4. Control and estimation for a single quadrotor

4.6.1 Full state controllers

In this section, we delve into a comparison between NMPC and PD controllers for quadro-
tors. We will analyze their strengths and weaknesses, and evaluate their performance in
terms of tracking accuracy, response time, input effort, computational requirements, and
implementation complexity. To provide a comprehensive evaluation, we summarize the
key performance metrics of PD and NMPC controllers in table 4.5.

Controller PD NMPC
Evaluation Error(%) Tr(5%)(s) Overshoot (%) Error (%) Tr(5%)(s) Overshoot (%)

x 2.9846 7.63 / 0.0026 2.70 /
y 1.8582 11.45 / 0.0016 4.35 /
z 1.0992 4.45 / 0.0521 1.45 /
ψ 0.0160 1.63 0 0.0037 1.65 3.2659

Table 4.5: Performance metrics of full-state controllers

Results discussion

• The PD offered promising results for the ψ and z axis. However, it is a little bit
less accurate for the x and y axis, for instance, the x axis exhibited a relative error
that is close to 3%. This is due to complex x and y dynamics and their coupling,
requiring a cascade control structure.

• Despite its simplicity and easy implementation, the PD controller achieved satisfying
results for the quadrotor’s trajectory tracking problem. Its remarkable performance
is also due to the fine tuning of its parameters achieved using the Genetic Algorithm.

• The Genetic Algorithm is a highly efficient method for fine-tuning PD gains, partic-
ularly for complex nonlinear systems with numerous parameters to optimize, such
as quadrotors. This approach enables us to save valuable time by tuning all 12

parameters simultaneously.

• NMPC outperforms the PD controller with significantly smaller tracking errors.
Additionnaly, the PD exhibited oscillations in the beginning of the simulation for
the x and y axis, while the NMPC eliminated these oscillations. This can be at-
tributed to its advanced model-based approach and online optimization, resulting in
increased precision. NMPC effectively handles complex dynamics and constraints,
leading to remarkable tracking accuracy, highlighting its superiority over traditional
PD control.

• The response time Tr(5%) is significantly smaller for NMPC compared to PD control.

• For the PD, the ψ angle didn’t have an overshoot, while with the NMPC controller
it had a small overshoot of 3.2%, this is due to computational limitations that hinder
NMPC’s ability to respond promptly to abrupt changes.

• For the PD, the control actions in the beginning of the simulation have a higher
peak compared to the NMPC control actions.

74

Chapter 4. Control and estimation for a single quadrotor

• NMPC heavily relies on accurate system models to make predictions and optimize
control inputs. Therefore, it is sensitive to model inaccuracies, if the model does not
capture the quadrotor’s dynamics accurately, the control performance may degrade.

• Setting up an NMPC controller for quadrotor control requires tuning several param-
eters, including the prediction horizon, control weighting matrices, and constraint
handling. The selection of an appropriate horizon length is crucial for the quadro-
tor’s trajectory tracking problem. Finding an appropriate parameter set can be
challenging and often involves iterative trial-and-error.

• Another important consideration in comparing the NMPC and PD is the computa-
tional time. It is observed that the computational time for the PD is significantly
shorter than that of the NMPC. The PD operates based on simple feedback control,
requiring fewer and less complex calculations compared to NMPC. This computa-
tional advantage of the PD allows for faster execution and real-time responsiveness,
making it suitable for real-time applications. On the other hand, NMPC involves
solving an optimization problem over a horizon at each iteration, which can be very
computationally demanding especially for complex nonlinear systems like quadro-
tors and with longer prediction horizons, limiting its real-time applicability espe-
cially on resource-limited hardware. However, advances in computational hardware
and algorithmic optimizations continue to improve the computational efficiency of
NMPC, narrowing the gap between the two control approaches.

• The use of the CasADi optimization framework for NMPC implementation has
significantly improved computational efficiency. CasADi provides efficient numer-
ical optimization solvers and symbolic computation capabilities, leading to faster
computation. Studies have shown that CasADi can be up to 20 times faster than
other numerical optimization approaches such as the MATLAB MPC toolbox and
achieves smaller tracking error [94].

• As CasADi offers faster computational speed compared to conventional MPC tool-
boxes, it provides a significant advantage for real-time implementation, which is
crucial for our application. Additionally, the integration of MATLAB with CasADi
serves as a solid basis for developing advanced control algorithms for quadrotor sys-
tems. Our control technique leverages this integration effectively, enabling seamless
modeling, simulation, and performance evaluation of the entire system across vari-
ous operating scenarios.

In summary, PD control is sufficient enough for certain applications that don’t require
very high tracking accuracy, making it well-suited for resource-limited hardware. On the
other hand, NMPC controller is more suitable for sophisticated applications that demand
high tracking accuracy, although it requires significant computational efficiency.

4.6.2 EKF-based controllers

In this section, we will assess the performance of PD and NMPC controllers combined with
EKF estimation for quadrotor systems. By incorporating EKF estimation, we can account
for the unavailability of certain states and sensor noise, making the control process more

75

Chapter 4. Control and estimation for a single quadrotor

realistic. This comparison will provide insights to help select the most suitable estimation-
based control strategy for the quadrotor system. Table 4.6 allows for an assessment of
the performance of EKF-based control.

Controller EKF-based PD EKF-based NMPC
Evaluation Error(%) Tr(5%)(s) Overshoot Error (%) Tr(5%)(s) Overshoot

x 3.0329 7.63 / 1.6385 3.00 /
y 1.9867 11.82 / 0.7873 3.80 /
z 1.1993 4.43 / 1.0077 3.75 /
ψ 0.0120 1.63 0 0.0700 1.65 3.4377

Table 4.6: Performance metrics of EKF-based controllers

Results discussion

• EKF estimation is highly effective for estimating unavailable system states and
filtering measurements based on noisy sensor data, the obtained estimation results
are very accurate. Therefore, EKF is very suited for nonlinear systems such as
quadrotors.

• Accurate feedback signal is crucial for precise control in PD and NMPC controllers.
EKF combined with both these two control techniques exhibited great effectiveness
for providing accurate estimates to use for the feedback control.

• This integration of the EKF into the control system enhances realism by generating
more reliable state estimates that closely resemble the true system behavior. The
accurate and realistic state estimation enables the controllers to make more informed
decisions and generate control actions that align closely with the desired behavior
of the quadrotor.

• The choice of Qξ and Rυ matrices, representing the uncertainties in the system
dynamics and measurements respectively, is very important for tuning the EKF
and achieving accurate state estimation. However, tuning Qξ and Rυ by trial and
error can be time consuming.

• The comparison reveals that tracking errors are slightly larger in the estimation-
based approaches compared to full-state controllers. This difference can be at-
tributed to the fact that EKF takes into account the noise present in the real-world
system, resulting in more realistic and accurate state estimates. On the other hand,
in the simulation without estimation, perfect knowledge of the system is assumed,
neglecting the effects of noise. Therefore, while the errors may be slightly larger
in the estimation-based approaches, it is important to note that these approaches
provide a more realistic representation of the quadrotor system and can handle
real-world conditions more effectively.

• The integration of EKF estimation in control strategies introduces an additional
computational overhead, particularly for NMPC. The estimation process involves
calculations for state propagation and covariance matrix updates, contributing to
increased computational time. This can be a significant consideration, especially
for NMPC, which already has a relatively high computational burden. However,

76

Chapter 4. Control and estimation for a single quadrotor

it is important to weigh this increased computational cost against the benefits of
a more realistic approach. Advances in computational hardware and algorithmic
optimizations, along with the utilization of efficient numerical tools, can help allevi-
ate some of the computational challenges associated with estimation-based NMPC.
Ultimately, the trade-off between computational time and enhanced control perfor-
mance needs to be carefully evaluated to determine the most suitable approach for
quadrotor control applications.

4.7 Conclusion

In this chapter, the control and estimation problem for a single quadrotor was investi-
gated, we employed two control techniques to address the trajectory tracking problem.
First, we designed an optimized PD controller using GA to fine-tune its parameters. Sub-
sequently, we developed an NMPC controller, this was done by reformulating the OCP
into an NLP using the multiple shooting technique. To implement this controller effi-
ciently, we took advantage of the computational advantages of the CasADi optimization
framework. The developed control strategies were coupled with EKF estimation to make
the control strategies more realistic, both techniques were validated through simulations.
Furthermore, a comparison between the two techniques was conducted to evaluate their
performance.

This chapter serves as a basis for the next chapter about the formation of multiple
quadrotors. Indeed, the single quadrotor controlled in this chapter is going to be consid-
ered the leader quadrotor in the context of leader-follower formation control developed in
the next chapter.

77

Chapter 5

Formation control of
multi-quadrotor systems

Chapter 5. Formation control of multi-quadrotor systems

5.1 Introduction

In this chapter, the formation problem of multi-quadrotor systems is investigated, partic-
ularly, the rigid formation task where the desired inter-distance between the quadrotors
is constant, resulting in a ’V’ shape fixed pattern . To achieve this, we employ the
leader-follower formation control strategy. The single quadrotor controlled in the previ-
ous chapter is considered the leader, meanwhile, for the followers we use two controllers.
The first one is a Lyapunov based formation controller to keep the inter-distance in the
x − y plane and orientation between the leader and the followers, this is done by devel-
oping a nonlinear dynamics model of the formation error, allowing the formation pattern
to be maintained. Additionnaly, a PD and NMPC controllers are employed for trajectory
tracking of each quadrotor in the formation. To do this, the previously designed PD and
NMPC controllers for a single quadrotor are adapted for the leader-follower problem. For
the NMPC controller, we propose an original prediction-based leader-follower formation
control scheme. For each agent in the group, state estimation using EKF is done based
on noisy sensor measurement. Numerical simulations demonstrate the effectiveness of the
proposed techniques in maintaining the formation. Furthermore, a comparison between
the two control techniques is conducted to evaluate their performance.

5.2 Leader-follower formation control

We consider a group of n quadrotors described by the model developed in section 3.3,
with one leader i = L and n− 1 followers, i ∈ {F1, ..Fn−1}, the ith quadrotor is described
by: 

Ẋi = F (Xi, Ui), i ∈ {L, F1, F2, ...Fn−1},
Yi = h(Xi),

Zi = hmes(Xi),

(5.1)

in this work, we limit the formation task to three quadrotors, one leader i = L and two
followers i = F1 and i = F2. In this section, we design controllers for each ith quadrotor
in the formation to maintain a desired ’V’ shape in the x− y plane shown in Fig. 5.1.

Figure 5.1: Desired formation pattern, from [100]

79

Chapter 5. Formation control of multi-quadrotor systems

The leader tracks a designated trajectory, while the followers are positioned at a
specific distance from the leader and have a particular orientation to create the desired
formation shape. The leader control has been developed in the previous chapter, in this
chapter, we focus on the control of the followers. It is important to note that the followers
aren’t given a predefined trajectory to track, their reference trajectories solely depend on
the state of the leader.

5.2.1 Formation controller

In the process of formation flight, the leader follows a predetermined trajectory, while for
the followers, a formation controller is implemented to maintain a specific shape in the
x − y plane, which is determined by the relative kinematics between the leader and the
followers [101]. The formation controller generates the reference velocities for the followers,
which then track these references to maintain a relative distance and orientation. The
leader-follower formation control scheme is shown in Fig. 5.2.

Figure 5.2: Leader-follower control scheme

For each follower, the formation controller takes the leader’s x and y positions, and ψ
orientation and generates the follower’s reference velocities ẋ, ẏ, and ψ̇ in order to keep a
fixed distance and a fixed deviation in the x−y plane between the leader and the follower
[69]. This is shown in Fig. 5.3.

Figure 5.3: Quadrotors formation in the x− y plane, from [100]

80

Chapter 5. Formation control of multi-quadrotor systems

We consider the vertical subsystem and the horizontal subsystem as completely de-
coupled, Therefore the control design is for each subsystem is done separately. Also, the
trajectory dynamics of each quadrotor are slower than attitude dynamics. Therefore, we
can decompose the control scheme into an inter-loop and outer-loop, and the treat the
formation controller separately from the quadrotor’s model [100].

We start with the relative translational kinematics in the x − y plane at a fixed z

altitude. ẋi, ẏi are the velocity components in the earth-fixed frame and vix, viy are the
velocity components in the body-fixed frame. For each quadrotor i ∈ {L, F1, F2}, the
translational dynamics in the x− y plane are given by:

ẋi = vix cosψi − viy sinψi, (5.2)

ẏi = vix sinψi + viy cosψi, (5.3)

similarly we can write:
vix = ẋi cosψi + ẏi sinψi, (5.4)

viy = −ẋi sinψi + ẏi cosψi, (5.5)

we consider λi the distance between the center of mass of the leader and the followers
i ∈ {F1, F2}, λix and λiy are the x and y components in the leader’s body frame. For each
follower i ∈ {F1, F2}, we can write:

λix = −(xL − xi) cosψL − (yL − yi) sinψL, (5.6)

λiy = (xL − xi) sinψL − (yL − yi) cosψL, (5.7)

by differentiating:

λ̇ix = −(ẋL− ẋi) cosψL+(xL−xi)ψ̇L sinψL− (ẏL− ẏi) sinψL− (yL− yi)ψ̇L cosψL, (5.8)

using the equations (5.4) and (5.7), we can write:

λ̇ix = λiyψ̇L + ẋi cosψL + ẏi sinψL − vLx, (5.9)

using the equations (5.2) and (5.3):

λ̇ix = λiyψ̇L + (vix cosψi − viy sinψi) cosψL + (vix sinψi + viy cosψi) sinψL − vLx, (5.10)

λ̇ix = λiyψ̇L + vix(cosψi cosψL + sinψi sinψL) + viy(cosψi sinψL − sinψi cosψL)− vLx,

(5.11)
we use the following trigonometric identities:

cos (a− b) = cos a cos b+ sin a sin b, (5.12)

sin (a− b) = sin a cos b− cos a sin b, (5.13)

let λdi be the desired constant distance. We define the formation errors for i ∈ {F1, F2}:

eix = λdix − λix, (5.14)

eiy = λdiy − λiy, (5.15)

eiψ = ψi − ψL, (5.16)

81

Chapter 5. Formation control of multi-quadrotor systems

we get:
λ̇ix = λiyψ̇L + vix cos eiψ − viy sin eiψ − vLx, (5.17)

similarly for the y component:

λ̇iy = −λixψ̇L + vix sin eiψ + viy cos eiψ − vLy, (5.18)

therefore, the formation errors dynamics are given by:

ėix = −(λdiy − eiy)ψ̇L − vix cos eiψ + viy sin eiψ + vLx, (5.19)

ėiy = (λdix − eix)ψ̇L − vix sin eiψ − viy cos eiψ + vLy, (5.20)
ėiψ = ψ̇i − ψ̇L, (5.21)

the formation controller is designed to stabilize the formation errors using the inputs vix,
viy and ψ̇i, i ∈ {F1, F2} which are used later as reference velocities for each follower.

ėi = Ai(ei) + Bi(ei)vi, (5.22)

Ai(ei) =

−(λdiy − eiy)ψ̇L + vLx
(λdix − eix)ψ̇L + vLy

−ψ̇L

 , (5.23)

Bi(ei) =

− cos eiψ sin eiψ 0

− sin eiψ − cos eiψ 0

0 0 1

 , (5.24)

where ei = [eix eiy eiψ]
T and vi = [vix viy ψ̇i]

T .

Proposition 5.1 (Lyapunov based formation controller)
Given the leader-follower dynamical model in (5.1), then the reference velocities given by
the following equation

vrefi = B−1
i (ei)(−Ai(ei)−Kiei) (5.25)

guarantee the stability of the formation errors ei = [eix eiy eiψ]
T between the leader and

the ith follower [101].

Proof. Consider the positive definite Lyapunov candidate function be defined as follows:

V (ei) =
1

2
eTi ei, (5.26)

by differentiating:
V̇ (ei) = eTi ėi = eTi [Ai(ei) + Bi(ei)vi], (5.27)

to satisfy the Lyapunov stability condition, V̇ has to be a negative definite function.
Therefore, the reference velocities vrefi are given as follows:

vrefi = [vrefix vrefiy ψ̇refi]T = B−1
i (ei)(−Ai(ei)−Kiei), (5.28)

Ki = diag(Kix, Kiy, Kiψ) is a diagonal positive definite matrix. We tune this gain so that
the formation controller errors converge to zero. Then:

V̇ = −eTi Kiei < 0. (5.29)

82

Chapter 5. Formation control of multi-quadrotor systems

therefore, this Lyapunov-based formation controller allows the formation errors to
converge to zero, allowing the followers to maintain the desired formation pattern.

The generated vrefix and vrefiy velocities are defined in the body frame, the necessary
transform to the earth-frame is done to get ẋrefi and ẏrefi . In the next sections, the followers
are controlled to track these reference velocities, for this, we adapt the previously designed
PD and NMPC controllers of the leader to the followers case.

5.2.2 Optimal PD control of the followers

In this section, the optimized PD controller using GA is adapted for the followers to
maintain the formation pattern. Since the formation controller generated desired velocities
for the followers, we control the follower’s velocities to track their references. For each
follower, six PD controllers are employed, the same cascade structure as for the leader
is used. The gains are tuned using GA for each follower. The input vector of the ith
follower is denoted Ui = [u1i u2i u3i u4i]

T , for i ∈ {F1, F2}.

5.2.2.1 Outer loop for translational subsystem

For each follower i ∈ {F1, F2}, the outer loop determines the follower’s desired pitch
and roll angles (θrefi , ϕrefi) based on the desired vix and viy velocities in the body frame
generated by the formation controller.

eivx(t) = vrefix (t)− vix(t), (5.30)

eivy(t) = vrefiy (t)− viy(t), (5.31)
where eivx, eivy are the velocity tracking errors in the body frame. This outer loop position
controller consists of two Proportional (P) controllers that take the eivx, eivy errors and
generates the ϕi and θi references.

ϕrefi (t) = kiPye
i
vy(t), (5.32)

θrefi (t) = kiPxe
i
vx(t), (5.33)

where kiPx , kiPy are the P gains for the x and y axis respectively for the follower.

5.2.2.2 Inner loop for rotational subsystem

The inner loop controls the followers’ rotational subsystem (ϕi, θi), it has two PD con-
trollers that generate the roll and pitch moments u2i and u3i.

u2i = kiPϕe
i
ϕ(t) + kiDϕė

i
ϕ(t), (5.34)

eiϕ(t) = ϕrefi (t)− ϕi(t), (5.35)
u3i = kiPθe

i
θ(t) + kiDθė

i
θ(t), (5.36)

eiθ(t) = θrefi (t)− θi(t), (5.37)
where kiPϕ and kiDϕ are the PD gains of the roll controller while kiPθ and kiDθ are the PD
gains of the pitch controller.

83

Chapter 5. Formation control of multi-quadrotor systems

5.2.2.3 Altitude and yaw control

The z axis is controlled in position just like for the leader, we use a PD controller.

u1i =
mg + kiPze

i
z(t) + kiDz ė

i
z(t)

cosϕi cos θi
, (5.38)

eiz(t) = zrefi (t)− zi(t). (5.39)

For the yaw controller, we use a Proportional action to control the yaw velocity to the
reference generated by the formation controller.

u4i = kiPψe
i
ψ(t), (5.40)

eiψ(t) = ψ̇refi (t)− ψ̇i(t), (5.41)
where kiPz and kiDz are the PD gains of the z axis while kiPψ is the P gain of the yaw
controller.

5.2.2.4 Genetic Algorithm for PD tuning

As for the leader, we use GA for the followers i ∈ {F1, F2} to optimize the PD gains. The
objective function for the ith follower is given by the sum of the cost functions of each
axis.

minimize
Θi

J iG(Θi) = J ix + J iy + J iz + J iϕ + J iθ + J iψ, (5.42)

where Θi = [kiPx kiPy k
i
Pz k

i
Dz k

i
Pϕ kiDϕ kiPθ k

i
Dθ k

i
Pψ]

T is the followers’ vector of param-
eters to be optimized. The cost functions for each axis are a weighted sum of ISE and
ISC indices.

J ix =

∫ tf

0

w1(e
i
vx(t))

2dt, (5.43)

J iy =

∫ tf

0

w1(e
i
vy(t))

2dt, (5.44)

J iz =

∫ tf

0

[w1(e
i
z(t))

2 + w2u
2
1i(t)]dt, (5.45)

J iϕ =

∫ tf

0

[w1(e
i
ϕ(t))

2 + w2u
2
2i(t)]dt, (5.46)

J iθ =

∫ tf

0

[w1(e
i
θ(t))

2 + w2u
2
3i(t)]dt, (5.47)

J iψ =

∫ tf

0

[w1(e
i
ψ(t))

2 + w2u
2
4i(t)]dt. (5.48)

tf is the final simulation time. w1, w2 are the ISE and ISC optimization weights respec-
tively, they are the same as for the leader, they must satisfy w1 + w2 = 1.

5.2.3 Application of NMPC to the followers

In this section, the previously designed NMPC controller for the leader is adapted to
the followers to keep the desired formation. As for the leader, an Optimization Control
Problem (OCP) is formulated. The OCP is then discretized using the multiple shooting
technique and reformulated into a Nonlinear Programming Porblem (NLP).

84

Chapter 5. Formation control of multi-quadrotor systems

5.2.3.1 Discretization

For each follower, the prediction horizon is discretized into N shooting intervals. At each
instant k, the NMPC algorithm is executed over the horizon [k, k + N] and a sequence
of optimal controls is computed for the ith follower, i ∈ {F1, F2}. The matrix Pi,U(k) is
filled with optimal control actions Ui(k + j) over the horizon, j ∈ [0, N − 1]:

Pi,U(k) = [Ui(k), Ui(k + 1), ..., Ui(k +N − 1)], (5.49)

the state prediction matrix corresponding to Pi,U(k) over the horizon is Pi,X(k):

Pi,X(k) =
[
Xi,U(k), Xi,U(k + 1), ..., Xi,U(k +N)

]
, (5.50)

Xi,U(k + j) is the predicted state corresponding to the optimal input Ui(k + j − 1),
j ∈ [1, N]. The NMPC problem also requires having the references over the whole horizon.
Let Xref

i (k) be the reference of the states. Therefore, the reference matrix is:

Ri,X(k) = [Xref
i (k), Xref

i (k + 1), ..., Xref
i (k +N)]. (5.51)

5.2.3.2 Objective function

The running cost for the ith follower penalizes the difference between the state vector and
its reference, as well as the control energy, it is given by:

Li(Xi,U(k + j), Ui(k + j)) = [Xi,U(k + j)−Xref
i (k + j)]TQi[Xi,U(k + j)−Xref

i (k + j)]

+ UT
i (k + j)RiUi(k + j),

(5.52)
Qi and Ri are the state and input weighting matrices respectively for the followers. The
cost function is the evaluation of the running costs along the whole horizon:

J iN =
N−1∑
j=0

Li (Xi,U(k + j), Ui(k + j)) , (5.53)

for j ∈ [0, N − 1] and i ∈ {F1, F2}.

5.2.3.3 Optimization variable

The decision variable Wi for each follower in the context of multiple shooting contains
both the inputs and states, it is given by:

Wi = [UT
i (k), U

T
i (k+1), ..., UT

i (k+N −1), XT
i,U(k), X

T
i,U(k+1), ..., XT

i,U(k+N)]T . (5.54)

5.2.3.4 Dynamics constraints and bounds

For each follower, the dynamics model is discretized and imposed as a constraint between
adjacent intervals. We write the system model in the discrete time domain:

Xi(k + 1) = Xi(k) + T ∗ F (Xi(k), Ui(k)) = f(Xi(k), Ui(k)), (5.55)

85

Chapter 5. Formation control of multi-quadrotor systems

this equality constraint is considered at each shooting step as follows:

f(Xi,U(k), Ui(k))−Xi,U(k + 1) = 0, (5.56)

we also consider bounds on control inputs and states:

Ui(k + j) ∈ U , ∀j ∈ [0, N − 1],

Xi,U(k + j) ∈ X , ∀j ∈ [0, N],
(5.57)

where:
U = {Ui ∈ Rm | Umin

i ≤ Ui ≤ Umax
i } ,

X = {Xi,U ∈ Rn | Xmin
i ≤ Xi,U ≤ Xmax

i } . (5.58)

5.2.3.5 The resulting Nonlinear Programming Problem

The resulting NMPC Nonlinear Programming Problem for the ith follower can be written
as follows:

minimize
Wi

J iN =
N−1∑
j=0

Li (Xi,U(k + j), Ui(k + j)) ,

s.t. Xi,U(k + 1) = f (Xi,U(k), Ui(k)) ,

Xi,U(0) = X i
0,

Ui(k + j) ∈ U , ∀j ∈ [0, N − 1],

Xi,U(k + j) ∈ X , ∀j ∈ [0, N],

for all i ∈ {F1, F2},

(5.59)

this NLP is solved using the IPOPT solver in the optimization framework CasADi just
like for the leader.

5.2.3.6 Prediction based leader-follower NMPC

In order to compute the optimal control inputs for the followers, the NMPC algorithm
requires the followers’ references throughout the entire horizon [k, k+N] at each time step.
These references are determined solely based on the leader’s states. Thus, to generate the
followers’ references using the formation controller, we need the leader’s states over the
entire horizon at each instant. However, since this information is not available yet at time
step k, we address this issue by utilizing the leader’s predicted states in the formation
controller. This approach enables us to generate the followers’ references without relying
on the leader’s real states. For this, we use the following leader’s state prediction matrix:

PL,X(k) =
[
XL,U(k), XL,U(k + 1), ..., XL,U(k +N)

]
, (5.60)

at each instant k, we extract the leader’s predictions of the states ẋL,U(k+ j), ẏL,U(k+ j),
ψ̇L,U(k + j) and ψL,U(k + j) over the horizon j ∈ [0, N]. We transform these velocities to
the body frame as follows:

vLx(k + j) = ẋL,U(k + j)cos(ψL,U(k + j)) + ẏL,U(k + j)sin(ψL,U(k + j)),

vLy(k + j) = −ẋL,U(k + j)sin(ψL,U(k + j)) + ẏL,U(k + j)cos(ψL,U(k + j)),
(5.61)

86

Chapter 5. Formation control of multi-quadrotor systems

and we use them in the formation controller over the horizon j ∈ [0, N]. The discretized
formation error dynamics can be written as:

ei(k + j + 1) = ei(k + j) + T ∗ [Ai(ei(k + j)) + Bi(ei(k + j))vi(k + j)], (5.62)

where ei(k + j) = [eix(k + j), eiy(k + j), eiψ(k + j)]T are the formation controller errors
and vi(k+ j) = [vix(k+ j), viy(k+ j), ψ̇i(k+ j)]

T are the followers’ velocities. We compute
their references over the horizon j ∈ [0, N] for each follower i ∈ {F1, F2}:

vrefi (k + j) = B−1
i (ei(k + j))[−Ai(ei(k + j))−Kiei(k + j)], (5.63)

now that we have the followers’ references over the horizon, we transform them back in
the earth frame and we use them in the optimization problem.

Additionally, since the leader’s position predictions are available too, we can compute
the followers’ desired position based on leader’s information and add it to the followers’
cost function to enhance their tracking performance. This is done as follows:[

xrefi (k + j)

yrefi (k + j)

]
=

[
xL,U(k + j)

yL,U(k + j)

]
+

[
cosψL,U(k + j) − sinψL,U(k + j)

sinψL,U(k + j) cosψL,U(k + j)

] [
λdix
λdiy

]
, (5.64)

therefore, the followers’ position reference consists of the leader’s predicted position plus
the desired inter-distance between the leader and the followers’. This distance is defined
in the body-frame, the necessary transform is done to bring it to the earth frame. We fill
the generated velocity and position references in the followers reference vector Xref

i (k+j)

over the horizon j ∈ [0, N].

5.2.4 Application of EKF to the followers

Each follower in the formation is equipped with the same sensors as the leader, detailed in
section 4.4.3. We use EKF state estimation for each follower. Process and measurement
noise are added to each follower’s system model and measurement model for i ∈ {F1, F2}.

Ẋi(t) = F (Xi, Ui) + ξi(t), (5.65)

Zi(t) = hmes(Xi) + υi(t), (5.66)
hmes(Xi) = [xi yi zi ϕi θi ψi]

T , (5.67)
ξi(t), υi(t) are white Gaussian process and measurement noises respectively. Qi

ξ and Ri
υ

are the covariances of the process noise and the measurement noise respectively. Each
follower’s model is discretized and the EKF algorithm detailed in section 4.4.3 is applied.

5.3 Simulation results

In this section, we present the simulation results of the formation of three quadrotors (one
leader and two followers) in a ’V’ shape. There are two control objectives:

• The tracking of the desired trajectory by the leader (xrefL (t), yrefL (t), zrefL (t), ψrefL (t)) =

(2 sin 0.1t, 2 − 2 cos 0.1t, 0.1t, 0), these results have been presented in the previous
chapter. It is worth recalling that this trajectory is not given to the followers. The
initial linear position of the leader is rLxyz,0 = [0 0 0]T .

87

Chapter 5. Formation control of multi-quadrotor systems

• The formation keeping by the two followers described by the desired inter-distance
and deviation from the leader:

– First follower: the initial position is rF1
xyz,0 = [−1 −1 0]T . The desired distance

is λdF1 = 2
√
2 (λdF1x = −2, λdF1y = −2). The desired yaw deviation from the

leader is ψF1 − ψL = 0.
– Second follower: the initial position is rF2

xyz,0 = [−1 1 0]T . The desired distance
is λdF2 = 2

√
2 (λdF2x = −2, λdF2y = 2). The desired yaw deviation from the

leader is ψF2 − ψL = 0.

The followers’ model parameters (m, Ix, Iy, Iz) are identical to the leader. We present
the simulation results only for the first follower, as it exhibits symmetric behavior to the
second follower. Then, we conclude with a simulation of the formation of three quadrotors.

5.3.1 PD controller results

After executing the genetic algorithm, we get the optimal PD parameters for the followers
in table 5.1. We used the same parameters for the two followers, i ∈ {F1, F2}. The
formation controller gains are KF1 = KF2 = diag(1, 1, 1).

Axis kiP kiD Saturation
ẋi 1.3265 0 |θrefi | ≤ 1.05 [rad]

θi 6.4446 2.3152 |u3i| ≤ 2 [N.m]

ẏi 1.3265 0 |ϕrefi | ≤ 1.05 [rad]

ϕi 6.4446 2.3152 |u2i| ≤ 2 [N.m]

zi 7.5220 2.8205 |u1i| ≤ 2.1 [N]

ψ̇i 1.1153 0 |u4i| ≤ 2 [N.m]

Table 5.1: Followers’ optimal PD simulation parameters

Trajectory tracking results for the first follower:

Figure 5.4: PD formation controller errors

88

Chapter 5. Formation control of multi-quadrotor systems

Figure 5.5: Follower PD trajectory tracking

Figure 5.6: Follower PD tracking errors

5.3.2 EKF-based PD controller results

We use EKF in closed-loop with the PD controller for the followers. We used additive
white Gaussian noise for process and measurement noise. The weighting matrices to
characterize the noise and the initial estimation error covariance are selected through an
iterative process of trial and error, they are identical for the two followers i ∈ {F1, F2}.

89

Chapter 5. Formation control of multi-quadrotor systems

Qi
ξ = diag(0.05, 0.02, 0.02, 0.02, 5, 5, 0.02, 0.02, 0.0002, 0.02, 0.02, 0.0002),

Ri
υ = diag(3.5, 2, 2, 0.000001, 0.000001, 0.00005),

P i
0 = 0.001 ∗ diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

(5.68)

Trajectory tracking results for the first follower:

Figure 5.7: Follower EKF-based PD trajectory tracking

Figure 5.8: Follower EKF-based PD tracking errors

90

Chapter 5. Formation control of multi-quadrotor systems

Figure 5.9: Follower EKF-based PD velocity tracking

Figure 5.10: Follower’s states with EKF-based PD controller

91

Chapter 5. Formation control of multi-quadrotor systems

Figure 5.11: Follower EKF-based PD
trajectory tracking in 3D space

Figure 5.12: Follower EKF-based PD
trajectory tracking in the x− y plane

Formation of three quadrotors using the EKF-based PD control:

Figure 5.13: Formation of 3 quadrotors
in 3D space

Figure 5.14: Formation of 3 quadrotors
in the y − z plane

5.3.3 NMPC controller results

Now we present the follower’s results using NMPC. The NMPC parameters are identical
for the two followers, they are shown in the table 5.2.

NMPC parameters Values
Sampling time T 0.05 [s]

Number of intervals N 100
Prediction horizon length 5 [s]

Weighting matrices QF1 , QF2 diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Weighting matrices RF1 , RF2 diag(1, 1, 1, 1)

Table 5.2: Followers’ NMPC simulation parameters

92

Chapter 5. Formation control of multi-quadrotor systems

Trajectory tracking results for the first follower:

Figure 5.15: Follower NMPC trajectory tracking

Figure 5.16: Follower NMPC tracking errors

93

Chapter 5. Formation control of multi-quadrotor systems

5.3.4 EKF-based NMPC controller results

In this subsection, we use EKF in closed-loop with the NMPC controller. The EKF co-
variance matrices Qi

ξ, Ri
ν and P i

0 are the same as for the EKF-based PD.

Trajectory tracking results for the first follower:

Figure 5.17: Follower EKF-based NMPC trajectory tracking

Figure 5.18: Follower EKF-based NMPC tracking errors

94

Chapter 5. Formation control of multi-quadrotor systems

Figure 5.19: Follower EKF-based NMPC velocity tracking

Figure 5.20: Follower’s states with EKF-based NMPC controller

95

Chapter 5. Formation control of multi-quadrotor systems

Figure 5.21: Follower EKF-based
NMPC trajectory tracking in 3D space

Figure 5.22: Follower EKF-based
NMPC trajectory tracking in the x − y

plane

Now we present the leader’s ẋL and ẏL velocities predictions, ẋL,U and ẏL,U respectively,
that are used in the formation controller to generate the followers’ references, for N = 100

and T = 0.05s we get the following predictions over the horizon [k, k +N]:

Figure 5.23: Leader’s x velocity predic-
tions

Figure 5.24: Leader’s y velocity predic-
tions

96

Chapter 5. Formation control of multi-quadrotor systems

Formation of three quadrotors using the EKF-based NMPC control:

Figure 5.25: Formation of 3 quadrotors
in 3D space

Figure 5.26: Formation of 3 quadrotors
in the y − z plane

5.4 Comparison and results discussion

This section provides a comparative analysis of the simulation results for quadrotor for-
mation control, particularly the followers’ results in the context of the leader-follower
approach. First, we compare the performance of PD and NMPC controllers, then we
compare EKF-based PD and NMPC controllers for the followers. The findings aim to
guide the selection of the most suitable control approach for quadrotor formation control,
enhancing precision and coordination in real-world scenarios.

5.4.1 Full state controllers

The focus of this section is a comparison between PD and NMPC full state controllers.
Through an analysis of their performance metrics, we aim to evaluate the effectiveness
of each control strategy in achieving precise and coordinated quadrotor formation flight.
Table 5.3 provides some information about the two control strategies.

Controller PD NMPC
Evaluation Error(%) Tr(5%)(s) Error (%) Tr(5%)(s)

x 1.3126 3.47 0.0108 3.05
y 3.7966 3.36 0.0460 2.85
z 1.8758 4.25 0.0307 0.90
ψ 0.0462 1.06 0.0076 0.80
ẋ 0.5892 7.27 0.0001 4.30
ẏ 0.3342 7.82 0.0004 4.90
ψ̇ 0.0792 2.35 0.0299 1.95

Table 5.3: Performance metrics of full-state controllers for the follower

97

Chapter 5. Formation control of multi-quadrotor systems

Result discussion

• The leader-follower formation control approach proved to be highly effective, show-
casing its simplicity and intuitive nature. This approach enabled the agents in the
system to successfully achieve the desired shape, with the followers relying solely
on the leader’s information.

• Both the NMPC and PD controllers demonstrated satisfying performance in the
leader-follower formation control, ensuring accurate trajectory tracking for the leader,
and precise formation keeping for the two followers, maintaining the formation pat-
tern in space.

• The PD controller, despite its simplicity, yielded very satisfying results in the leader-
follower formation control. The straightforward nature of the PD control technique
allowed for efficient implementation on the three quadrotors in the formation. The
Genetic Algorithm also contributed to the followers’ gain tuning, enhancing the PD
performance in maintaining the desired formation pattern.

• However, when comparing the performance of NMPC and PD controllers, it is
evident that NMPC outperforms PD in terms of overall control performance, given
that the relative errors and time response for NMPC are much smaller than for the
PD. For instance, the PD relative error in the y axis for the followers is close to
3.8% compared to 0.04% for the NMPC.

• The formation controller generates reference velocities for the followers’ based on the
leader’s velocities to maintain the desired distance and deviation from the leader.
This approach of synchronizing the followers’ velocity with the leader’s velocity
ensures consistent motion patterns, coordinated movements, and collective behavior
to maintain the formation shape and adapt to changes in the leader’s velocity.

• The formation controller, based on Lyapunov’s method for stability, demonstrated
effectiveness by accurately generating the necessary velocities for the followers to
maintain the desired formation shape. It played a crucial role in stabilizing the
errors between the leader and the followers, ensuring that each follower’s velocity
aligned with the desired formation. Simulation results show that all quadrotors
converge to the desired formation shape.

• Adapting the NMPC controller to the followers’ case requires tuning several pa-
rameters, such as prediction horizon length and weighting matrices. Additionally,
unlike the PD, NMPC also requires having the followers’ references at each instant
over the whole horizon which poses a supplementary challenge.

• The adoption of a prediction-based approach in the followers’ NMPC controller
showed impressive results. By incorporating the predicted leader’s velocities into
the formation controller, the followers received the necessary velocity references over
the entire prediction horizon. This allowed enhanced coordination and synchro-
nization between the leader and followers, resulting in improved formation control
performance. This prediction-based approach proved to be a valuable solution for
providing future state information of the leader, which would otherwise be inacces-
sible to the followers.

98

Chapter 5. Formation control of multi-quadrotor systems

• The computational complexity of the NMPC and PD controllers differs, with NMPC
being more complex but yielding better results, while PD offers simplicity with
acceptable performance. The NMPC controller’s higher computational requirements
stem from its iterative optimization and consideration of future time steps. Despite
the increased complexity, NMPC demonstrates superior accuracy and precision in
leader-follower formation control. In contrast, the PD controller requires fewer
computational resources and is easier to implement in real-time scenarios.

• The implementation of NMPC for the leader-follower case in the optimization frame-
work CasADi offered significant advantages. These advantages include the seamless
extension of the leader’s problem formulation to the followers, the online optimiza-
tion capabilities, effective handling of complex dynamics and constraints for each
quadrotor in the formation, and enhanced computational efficiency.

5.4.2 EKF-based controllers

In this section, we compare the two PD and NMPC controllers with EKF estimation
for formation control. Building upon the simulations conducted in previous sections,
we analyze their performance metrics to assess their effectiveness in achieving precise
and coordinated quadrotor formation flight. Table 5.4 presents results for each control
strategy, enabling a comprehensive comparison of their respective performance.

Controller EKF-based PD EKF-based NMPC
Evaluation Error(%) Tr(5%)(s) Error (%) Tr(5%)(s)

x 2.0266 4.44 0.8127 2.90
y 3.3955 2.43 1.5965 2.90
z 1.9496 10.01 1.1534 2.95
ψ 0.0558 0.69 0.0431 0.80
ẋ 3.1830 7.50 0.9380 4.50
ẏ 1.3883 5.69 1.6883 4.90
ψ̇ 0.1820 0.74 0.0381 2.05

Table 5.4: Performance metrics of EKF-based controllers for the follower

Result discussion

• The adoption of EKF state estimation exhibited exceptional accuracy in estimating
the states of both the leader and followers. This accuracy played a crucial role in
the formation maintenance of the three quadrotors.

• For the full state controllers, the performance of the NMPC controller in both
position and velocity tracking surpassed that of the PD controller. The absence of
noise and EKF estimation allowed the NMPC controller to achieve much smaller
errors. When noise and EKF estimation were introduced, both PD and NMPC
controllers’ relative errors increased. However, the NMPC controller’s experienced
a more notable increase in errors compared to the PD controller.

99

Chapter 5. Formation control of multi-quadrotor systems

• Despite the increased errors, NMPC still outperforms PD control, demonstrating
smaller relative errors overall. These results highlight the superiority of the NMPC
controller in achieving precise and coordinated quadrotor formation flight.

• However, it is important to acknowledge that NMPC exhibited some sensitivity to
the feedback signal, particularly in the presence of noise. This sensitivity suggests
that further tuning of the prediction horizon and other parameters could potentially
enhance the NMPC controller’s performance and mitigate its sensitivity.

• The notable advantage of the NMPC controller lies in its quicker response time Tr(5%)

compared to the PD. This characteristic proves valuable for prompt reactions and
improved tracking performance in dynamic environments.

In conclusion, the choice between the NMPC and PD controllers for leader-follower
formation control depends on several factors. The NMPC controller, despite its higher
computational complexity, offers superior accuracy, precision, and response time, making
it suitable for applications that prioritize optimal control performance. On the other hand,
the PD controller’s simplicity and real-time implementation feasibility make it a practi-
cal choice when acceptable performance is sufficient. The decision should consider the
desired control objectives, available computational resources, and the trade-offs between
complexity and real-time requirements. Ultimately, selecting the appropriate controller
requires a careful evaluation of the specific application’s needs and constraints.

5.5 Conclusion

This chapter presented a leader-follower formation control strategy for multiple quadro-
tors, an effective formation controller based on Lyapunov method is presented for the
formation keeping, and the trajectory tracking problem is adapted to the followers. Fur-
thermore, two control strategies were employed, namely PD and NMPC, combined with
EKF for state estimation for the trajectory tracking of the leader and the formation
keeping by the followers. A prediction-based control approach has been proposed in
the NMPC controller, which solved the significant challenge of generating the followers’
references based on the leader’s state. The developed control and estimation strategies
enabled the quadrotors to achieve coordinated motion and maintain the desired formation
geometry. Simulation experiments were conducted to evaluate the effectiveness of each
controller.

100

Chapter 6

Conclusion and future work

Chapter 6. Conclusion and future work

6.1 General conclusion

In this work, our primary focus was on multi-UAV systems, particularly emphasizing the
problem of formation control in multi-quadrotor systems. Our investigation delves into
the leader-follower approach, where one quadrotor assumes the role of the leader while
the remaining ones act as followers. The main objective of this study was to gain valuable
insights into various aspects of quadrotor systems, including mathematical modeling, con-
trol techniques, estimation techniques, and formation control of multi-quadrotor systems.

The trajectory tracking problem of the leader quadrotor has been firstly investigated.
This problem was tackled using two control techniques, namely PD and NMPC controllers,
combined with an EKF state estimation. First, we implemented a cascade PD control
scheme for the single quadrotor case, the fine-tuning of its parameters was achieved by
employing the Genetic Algorithm using a multi-objective cost function to minimize the
tracking errors and the control effort. Then, we used an NMPC controller by formulating
an Optimal Control Problem (OCP), which was discretized using the multiple shooting
technique and transformed into a Nonlinear Programming Problem (NLP). The resulting
NLP was then solved using the interior-point optimization method using the frame work
CasADi which significantly enhanced the computational efficiency. This NMPC controller
allowed the solving of an online optimization problem over a finite receding horizon at each
time step, as well as the handling of complex nonlinear constraints. The two controllers
were implemented in the full-state case and the estimation-based case.

Then, the rigid formation task of a multi-quadrotor system was addressed, where the
followers have to keep a fixed inter-distance and orientation from the leader, resulting in
a ’V’ shape. A Lyapunov based formation controller was used to ensure the formation
keeping by the followers. Moreover, the previously developed PD and NMPC controllers
were adapted for the formation keeping problem of the followers. For the NMPC con-
troller, our contribution lies in the introduction of a prediction-based control approach,
where the leader’s predictions were used to generate references for the followers. Numer-
ical results were presented demonstrating the effectiveness of the proposed control and
estimation approaches to keep the formation pattern and ensure coordinated motion of
the three quadrotors.

A comparison between the two PD and NMPC controllers has been conducted in the
context of a single quadrotor and the leader-follower approach. It aimed to asses their
performance and reveal insights into the strengths and limitations of both control meth-
ods, shedding light on their respective merits and trade-offs in terms of tracking accuracy,
response time, and computational complexity. The PD control method demonstrated ef-
ficiency and simplicity in its implementation. In contrast, the NMPC approach exhibited
superior performance in trajectory tracking compared to PD. However, it should be noted
that the NMPC approach is computationally demanding. These findings serve as a valu-
able resource in selecting the appropriate control strategy based on specific application
requirements and desired performance metrics.

102

Chapter 6. Conclusion and future work

6.2 Future work

As the field of formation control of multi-quadrotor systems continues to evolve rapidly,
there are several avenues for future research and development that can further enhance
the capabilities and applications of these systems. Building upon the findings and contri-
butions of this work, the following areas warrant further exploration:

• Real-time implementation of the developed control and estimation strategies for a
multi-UAV system, necessitating further exploration into hardware and communi-
cation protocols to ensure efficient control in dynamic environments.

• Implementing EKF estimation with measurement of Euler rates: an alternative
approach can be explored by measuring Euler rates using a gyroscope, which may
be a cost-effective alternative to a full-fledged AHRS system.

• Modeling the quadrotor motors: in order to accurately simulate the behavior of
the quadrotor, it is important to model the motors that drive the rotors. This
will enhance the overall accuracy of the quadrotor model and enable more realistic
simulations and control system design.

• Robustness testing: conducting tests to assess the performance and stability of the
developed formation control strategies under various disturbances and uncertainties
in real-world scenarios.

• Variable distance between the leader and the followers: experimenting with differ-
ent distances between the leader and followers drones to understand the system’s
dynamics and communication requirements in practical environments.

• Variable orientation in the formation: investigating the effects of a variable orien-
tation between the leader and the followers in the formation, enabling the drones
to adapt to different orientations and facilitate more diverse formation geometries.

• Formation in 3D space: extending the developed formation controller in the x − y

plane, where the different quadrotors have to be at an equal altitude z at each in-
stant, to a 3D formation controller were the agents can navigate at different heights.

• Scaling up the formation: extending the formation control framework to accommo-
date a larger number of drones and hierarchical stages of followers, enabling the
formation to handle complex missions in real-world applications.

• Obstacle avoidance: developing and integrating robust obstacle avoidance algo-
rithms to enhance the autonomy and safety of the drones within the formation
when operating in dynamic environments.

• Interchangeable leaders: implementing the concept of interchangeable leaders, al-
lowing different drones to take turns as the leader during the mission, providing
flexibility and adaptability in real-world scenarios.

• Improving computational efficiency of the NMPC controller: optimizing the com-
putational efficiency of the control strategies and algorithms to ensure real-time
implementation on resource-constrained platforms, making the formation control
feasible for real-world applications.

103

Appendixes

CasADi

CasADi is an open-source software tool for numerical optimization in general and
optimal control (i.e. optimization involving differential equations) in particular. CasADi
is designed to be used in scientific and engineering applications that involve optimization,
simulation, and control. It supports a wide range of problem types, including nonlinear
programming (NLP), optimal control, and dynamic optimization.

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax bor-
rowed from computer algebra systems (CAS), which explains its name. While AD still
forms one of the core functionalities of the tool, the scope of the tool has since been con-
siderably broadened, with the addition of support for ODE/DAE integration, nonlinear
programming and interfaces to other numerical tools. In its current form, it is a general-
purpose tool for gradient-based numerical optimization – with a strong focus on optimal
control – and CasADi is just a name without any particular meaning.

The framework offers a user-friendly interface for defining optimization problems and
provides a suite of efficient algorithms for solving them. It supports various solvers, both
local and global, to handle different types of optimization problems. CasADi also incorpo-
rates advanced features like sensitivity analysis, multi-threading, and parallel computing
to enhance performance. One of the key features of CasADi is its automatic differenti-
ation capabilities. It allows users to obtain derivatives of functions defined in CasADi
with respect to their inputs or parameters. This feature is particularly useful in optimiza-
tion and control problems, where gradient information is required for efficient solution
methods such as gradient-based optimization algorithms.

CasADi is implemented in C++, but it provides interfaces for several programming
languages, including MATLAB, Python, and Julia. This makes it accessible to a broad
user community working in diverse scientific and engineering domains. It is important
to point out that CasADi is not a conventional AD tool, that can be used to calculate
derivative information from existing user code with little to no modification. If you
have an existing model written in C++, Python or MATLAB/Octave, you need to be
prepared to re-implement the model using CasADi syntax. Secondly, CasADi is not a
computer algebra system. While the symbolic core does include an increasing set of tools
for manipulating symbolic expressions, these capabilities are very limited compared to a
proper CAS tool. Finally, CasADi is not an “optimal control problem solver”, that allows
the user to enter an OCP and then gives the solution back. Instead, it tries to provide
the user with a set of “building blocks” that can be used to implement general-purpose
or specific-purpose OCP solvers efficiently with a modest programming effort.

105

Bibliography

[1] R. Shakeri, M. Al-Garadi, A. Badawy, et al., “Design challenges of multi-uav sys-
tems in cyber-physical applications: A comprehensive survey, and future direc-
tions,” IEEE Communications Surveys Tutorials, vol. 21, pp. 3340–3385, Jun.
2019.

[2] L. Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles
(EngineeringPro collection). American Institute of Aeronautics and Astronautics,
2004, isbn: 9781563476440.

[3] P. Howlett, “An optimal strategy for the control of a train,” The ANZIAM Journal,
vol. 31, no. 4, pp. 454–471, 1990.

[4] P. Peter and H. Phil, “Optimal driving strategies for a train journey with speed
limits,” The ANZIAM Journal, vol. 36, no. 1, pp. 38–49, 1994.

[5] T. Balch and R. Arkin, “Behavior-based formation control for multi-robot teams,”
Robotics and Automation, IEEE Transactions on, vol. 14, pp. 926–939, Jan. 1999.

[6] J. Wang, X. Nian, and H.-b. Wang, “Consensus and formation control of discrete-
time multi-agent systems,” Journal of Central South University of Technology (En-
glish Edition), vol. 18, pp. 1161–1168, Aug. 2011.

[7] Z. Hou, “Modeling and formation controller design for multi-quadrotor systems
with leader-follower configuration,” Theses, Université de Technologie de Com-
piègne, Feb. 2016.

[8] J. García, J. M. Molina, and J. Trincado, “Real evaluation for designing sensor
fusion in uav platforms,” Information Fusion, vol. 63, pp. 136–152, 2020, issn:
1566-2535.

[9] Y. Liu, R. Yu, S. Cai, and H. Mu, “Cooperative localization of imu-based uav
using relative observation by ekf,” in Proceedings of 2021 International Conference
on Autonomous Unmanned Systems (ICAUS 2021), M. Wu, Y. Niu, M. Gu, and
J. Cheng, Eds., Singapore: Springer Singapore, 2022, pp. 311–321, isbn: 978-981-
16-9492-9.

[10] C. Camacho E. F. Bordons, Model Predictive Control. Springer London, Jun. 2004.
[11] J. P. Lars Grüne, Nonlinear Model Predictive Control. Springer London, Apr. 2011.
[12] N. Michael, S. Shen, K. Mohta, et al., “Collaborative mapping of an earthquake-

damaged building via ground and aerial robots,” Journal of Field Robotics, vol. 29,
no. 5, pp. 832–841, Sep. 2012, issn: 1556-4959.

106

Bibliography

[13] G. Loianno, J. Thomas, and V. Kumar, “Cooperative localization and mapping
of mavs using rgb-d sensors,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 4021–4028.

[14] J. Zhang, J. Yan, and P. Zhang, “Fixed-wing uav formation control design with
collision avoidance based on an improved artificial potential field,” IEEE Access,
vol. 6, no. 1, pp. 78 342–78 351, Dec. 2018.

[15] W. Y. et al., “Obstacle avoidance research of the automated guided vehicle based on
improved artificial potential field method with chaotic optimization,” Sci. Technol.
Innov. Herald, vol. 14, no. 17, pp. 150–153, 2017.

[16] Z. Ali, A. Israr, E. Alkhammash, and M. Hadjouni, “A leader-follower formation
control of multi-uavs via an adaptive hybrid controller,” Complexity, vol. 2021,
p. 16, Nov. 2021.

[17] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design, and technol-
ogy,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559–
576, 2005.

[18] G. Tuta Navajas and S. Roa Prada, “Building your own quadrotor: A mechatron-
ics system design case study,” in 2014 III International Congress of Engineering
Mechatronics and Automation (CIIMA), 2014, pp. 1–5.

[19] M. Tanveer, S. F. Ahmed, H. Desa, F. Warsi, and M. Joyo, “Stabilized controller
design for attitude and altitude controlling of quad-rotor under disturbance and
noisy conditions,” American Journal of Applied Sciences, vol. 10, pp. 819–831,
Aug. 2013.

[20] M. Fatan, B. L. Sefidgari, and A. V. Barenji, “An adaptive neuro pid for control-
ling the altitude of quadcopter robot,” in 2013 18th International Conference on
Methods Models in Automation Robotics (MMAR), 2013, pp. 662–665.

[21] N. Cao and A. F. Lynch, “Inner–outer loop control for quadrotor uavs with input
and state constraints,” IEEE Transactions on Control Systems Technology, vol. 24,
pp. 1797–1804, 2016.

[22] A. Tayebi and S. McGilvray, “Attitude stabilization of a vtol quadrotor aircraft,”
IEEE Transactions on Control Systems Technology, vol. 14, no. 3, pp. 562–571,
2006.

[23] J. Han, L. Di, C. Coopmans, and Y. Chen, “Fractional order controller for pitch
loop control of a vtol uav,” Journal of Intelligent Robotic Systems, vol. 73, May
2013.

[24] S. Seyedtabaii, “New flat phase margin fractional order pid design: Perturbed uav
roll control study,” Robotics and Autonomous Systems, vol. 96, pp. 58–64, 2017,
issn: 0921-8890.

[25] H. Noshahri and H. Kharrati, “Pid controller design for unmanned aerial vehicle
using genetic algorithm,” in 2014 IEEE 23rd International Symposium on Indus-
trial Electronics (ISIE), 2014, pp. 213–217.

[26] T. Mac, C. Copot, T. Duc, and R. Keyser, “Ar.drone uav control parameters tuning
based on particle swarm optimization algorithm,” May 2016, pp. 1–6.

107

Bibliography

[27] H. J. K. D. Lee and S. Sastry, “Feedback linearization vs. adaptive sliding mode
control for a quadrotor helicopter,” Int. J. Control Autom. Syst., vol. 7, pp. 419–
428, 2009.

[28] P. Adigbli, C. Grand, J.-B. Mouret, and S. Doncieux, “Nonlinear attitude and posi-
tion control of a micro quadrotor using sliding mode and backstepping techniques,”
pp. 17–21, Oct. 2007.

[29] R. Xu and Ü. Özgüner, “Sliding mode control of a quadrotor helicopter,” Pro-
ceedings of the 45th IEEE Conference on Decision and Control, pp. 4957–4962,
2006.

[30] L. Besnard, Y. Shtessel, and D. Landrum, “Control of a quadrotor vehicle using
sliding mode disturbance observer,” Aug. 2007, pp. 5230–5235.

[31] Z. G. Xiong JJ, “Global fast dynamic terminal sliding mode control for a quadrotor
uav,” ISA Trans, vol. 66, pp. 233–240, 2017.

[32] D. Cabecinhas, R. Cunha, and C. Silvestre, “A globally stabilizing path following
controller for rotorcraft with wind disturbance rejection,” IEEE Transactions on
Control Systems Technology, vol. 23, no. 2, pp. 708–714, 2015.

[33] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques ap-
plied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005, pp. 2247–2252.

[34] T. Madani and A. Benallegue, “Backstepping sliding mode control applied to a
miniature quadrotor flying robot,” in IECON 2006 - 32nd Annual Conference on
IEEE Industrial Electronics, 2006, pp. 700–705.

[35] E. Kayacan and R. Maslim, “Type-2 fuzzy logic trajectory tracking control of
quadrotor vtol aircraft with elliptic membership functions,” IEEE/ASME Trans-
actions on Mechatronics, vol. 22, no. 1, pp. 339–348, 2017.

[36] J.-J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, New Jersey.,
1991.

[37] H. Voos, “Nonlinear control of a quadrotor micro-uav using feedback-linearization,”
May 2009, pp. 1–6.

[38] M. A. Lotufo, L. Colangelo, and C. Novara, “Control design for uav quadrotors
via embedded model control,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 5, pp. 1741–1756, 2020.

[39] “Robust deep reinforcement learning for quadcopter control,” IFAC-PapersOnLine,
vol. 54, no. 20, pp. 90–95, 2021, Modeling, Estimation and Control Conference
MECC 2021, issn: 2405-8963.

[40] N. Koksal, B. Fidan, and K. Buyukkabasakal, “Real-time implementation of de-
centralized adaptive formation control on multi-quadrotor systems,” Jul. 2015,
pp. 3162–3167.

[41] M. Chen and M. Huzmezan, “A combined mbpc/2 dof h infinity controller for
a quad rotor uav,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit.

[42] T. Báča, G. Loianno, and M. Saska, “Embedded model predictive control of un-
manned micro aerial vehicles,” Aug. 2016.

108

Bibliography

[43] M. Islam and M. Okasha, “A comparative study of pd, lqr and mpc on quadrotor
using quaternion approach,” in 2019 7th International Conference on Mechatronics
Engineering (ICOM), 2019, pp. 1–6.

[44] C. Liu, H. Lu, and W.-H. Chen, “An explicit mpc for quadrotor trajectory track-
ing,” in 2015 34th Chinese Control Conference (CCC), 2015, pp. 4055–4060.

[45] Tajeddin, Sadegh, “Automatic code generation of real-time nonlinear model pre-
dictive control for plug-in hybrid electric vehicle intelligent cruise controllers,” M.S.
thesis, 2016.

[46] R. C. Leishman, J. C. Macdonald, R. W. Beard, and T. W. McLain, “Quadrotors
and accelerometers: State estimation with an improved dynamic model,” IEEE
Control Systems Magazine, vol. 34, no. 1, pp. 28–41, 2014.

[47] “A cascaded approach for quadrotor’s attitude estimation,” Procedia Technology,
vol. 15, pp. 268–277, 2014, 2nd International Conference on System-Integrated
Intelligence: Challenges for Product and Production Engineering, issn: 2212-0173.

[48] A. D. Wu, E. N. Johnson, and A. A. Proctor, “Vision-aided inertial navigation for
flight control,” Journal of Aerospace Computing, Information, and Communication,
vol. 2, no. 9, pp. 348–360, 2005.

[49] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive quadrotor control:
Attitude, altitude and position experimental studies,” Iet Control Theory and Ap-
plications, vol. 6, pp. 1812–1827, 2012.

[50] “Nonlinear kalman filters and particle filters for integrated navigation of unmanned
aerial vehicles,” Robotics and Autonomous Systems, vol. 60, no. 7, pp. 978–995,
2012, issn: 0921-8890.

[51] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative grasping and
transport using multiple quadrotors,” in Distributed Autonomous Robotic Systems:
The 10th International Symposium, A. Martinoli, F. Mondada, N. Correll, et al.,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 545–558.

[52] A.-C. Stan, “A decentralised control method for unknown environment exploration
using turtlebot 3 multi-robot system,” in 2022 14th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI), 2022, pp. 1–6.

[53] A. Chriki, H. Touati, H. Snoussi, and F. Kamoun, “Uav-gcs centralized data-
oriented communication architecture for crowd surveillance applications,” in 2019
15th International Wireless Communications Mobile Computing Conference (IWCMC),
2019, pp. 2064–2069.

[54] F. Aljalaud, H. Kurdi, and K. Youcef-Toumi, “Autonomous multi-uav path plan-
ning in pipe inspection missions based on booby behavior,” Mathematics, vol. 11,
no. 9, 2023, issn: 2227-7390.

[55] H. Shen, Y. Jiang, F. Deng, and Y. Shan, “Task unloading strategy of multi uav
for transmission line inspection based on deep reinforcement learning,” Electronics,
vol. 11, no. 14, 2022, issn: 2079-9292.

[56] R. H. Kabir and K. Lee, “Wildlife monitoring using a multi-uav system with op-
timal transport theory,” Applied Sciences, vol. 11, no. 9, 2021, issn: 2076-3417.

109

Bibliography

[57] L. Hogie, P. Bouvry, and F. Guinand, “An overview of manets simulation,” Elec-
tronic Notes in Theoretical Computer Science, vol. 150, no. 1, pp. 81–101, 2006,
Proceedings of the First International Workshop on Methods and Tools for Co-
ordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), issn:
1571-0661.

[58] S. Al-Emadi and A. Al-Mohannadi, “Towards enhancement of network communi-
cation architectures and routing protocols for fanets: A survey,” in 2020 3rd In-
ternational Conference on Advanced Communication Technologies and Networking
(CommNet), 2020, pp. 1–10.

[59] M. R. Ghori, A. S. Sadiq, and A. Ghani, “Vanet routing protocols: Review, imple-
mentation and analysis,” Journal of Physics: Conference Series, vol. 1049, no. 1,
p. 012 064, Jul. 2018.

[60] G. Skorobogatov, C. Barrado, and E. Salamí, “Multiple uav systems: A survey,”
Unmanned Systems, vol. 08, Nov. 2019.

[61] I. Maza, A. Ollero, E. Casado, and D. Scarlatti, “Classification of multi-uav archi-
tectures,” Handbook of unmanned aerial vehicles, pp. 953–975, 2015.

[62] W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under
fixed and switching topologies,” Systems Control Letters, vol. 59, no. 3, pp. 209–
217, 2010, issn: 0167-6911.

[63] Z. Hou and I. Fantoni, “Leader-follower formation saturated control for multiple
quadrotors with switching topology,” 2015 Workshop on Research, Education and
Development of Unmanned Aerial Systems (RED-UAS), pp. 8–14, 2015.

[64] Z. Hou and I. Fantoni, “Distributed leader-follower formation control for multiple
quadrotors with weighted topology,” 2015 10th System of Systems Engineering
Conference, SoSE 2015, May 2015.

[65] E. Semsar-Kazerooni and K. Khorasani, “Optimal consensus algorithms for coop-
erative team of agents subject to partial information,” Automatica, vol. 44, no. 11,
pp. 2766–2777, 2008, issn: 0005-1098.

[66] E. Semsar-Kazerooni and K. Khorasani, “Switching control of a modified leader-
follower team of agents under the leader and network topological changes,” Control
Theory Applications, IET, vol. 5, pp. 1369–1377, Aug. 2011.

[67] A. Chriki, H. Touati, H. Snoussi, and F. Kamoun, “Uav-gcs centralized data-
oriented communication architecture for crowd surveillance applications,” in 2019
15th International Wireless Communications Mobile Computing Conference (IWCMC),
2019, pp. 2064–2069.

[68] W. Y. H. Adoni, S. Lorenz, J. S. Fareedh, R. Gloaguen, and M. Bussmann, “In-
vestigation of autonomous multi-uav systems for target detection in distributed
environment: Current developments and open challenges,” Drones, vol. 7, no. 4,
2023, issn: 2504-446X.

[69] R. Abbas and Q. Wu, “Tracking formation control for multiple quadrotors based
on fuzzy logic controller and least square oriented by genetic algorithm,” The Open
Automation and Control Systems Journal, vol. 7, pp. 842–850, Aug. 2015.

[70] N. Linorman and H. Liu, “Formation uav flight control using virtual structure and
motion synchronization,” Jul. 2008, pp. 1782–1787.

110

Bibliography

[71] C. Hua, J. Chen, and Y. Li, “Leader-follower finite-time formation control of mul-
tiple quadrotors with prescribed performance,” International Journal of Systems
Science, vol. 48, pp. 1–10, May 2017.

[72] W. N. Wang, “Research on formation reconfiguration and formation keeping con-
trol algorithm for three dimensional unmanned aerial vehicles,” Shen Yang Aerosp.
Univ, 2018.

[73] Y. H. Q. et al, “March-inspired multi-robot compact formation strategy,” CAAI
Trans. Intell. Syst, no. 5, pp. 673–679, 2018.

[74] D. M. Stipanović, G. İnalhan, R. Teo, and C. J. Tomlin, “Decentralized overlapping
control of a formation of unmanned aerial vehicles,” Automatica, vol. 40, no. 8,
pp. 1285–1296, 2004, issn: 0005-1098.

[75] A. Bemporad and C. Rocchi, “Decentralized hybrid model predictive control of a
formation of unmanned aerial vehicles,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 11 900–11 906, 2011, 18th IFAC World Congress, issn: 1474-6670.

[76] Y. Fei, P. Shi, and C.-C. Lim, “Neural network adaptive dynamic sliding mode for-
mation control of multi-agent systems,” International Journal of Systems Science,
vol. 51, no. 11, pp. 2025–2040, 2020.

[77] Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision avoidance through
deep reinforcement learning using model-guided demonstration,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. PP, pp. 1–15, Jul. 2020.

[78] Y. Kartal, K. Subbarao, N. R. Gans, A. Dogan, and F. Lewis, “Distributed back-
stepping based control of multiple uav formation flight subject to time delays,”
IET Control Theory & Applications, vol. 14, no. 12, pp. 1628–1638, 2020.

[79] T. Z. Muslimov and R. A. Munasypov, “Adaptive decentralized flocking control
of multi-uav circular formations based on vector fields and backstepping,” ISA
Transactions, vol. 107, pp. 143–159, 2020, issn: 0019-0578.

[80] L. Wei, M. Chen, and T. Li, “Dynamic event-triggered cooperative formation con-
trol for uavs subject to time-varying disturbances,” IET Control Theory Applica-
tions, vol. 14, pp. 2514–2525, Nov. 2020.

[81] A. Sheta, M. Braik, D. R. Maddi, A. Mahdy, S. Aljahdali, and H. Turabieh, “Opti-
mization of pid controller to stabilize quadcopter movements using meta-heuristic
search algorithms,” Applied Sciences, vol. 11, no. 14, 2021, issn: 2076-3417.

[82] M. Walid, N. Slaheddine, A. Mohamed, and B. Lamjed, “Modeling and control of a
quadrotor uav,” in 2014 15th International Conference on Sciences and Techniques
of Automatic Control and Computer Engineering (STA), 2014, pp. 343–348.

[83] J. Cayero, J. Cugueró, and B. Morcego, “Impedance control of a planar quadrotor
with an extended kalman filter external forces estimator,” 2015.

[84] M. Rinaldi, S. Primatesta, and G. Guglieri, “A comparative study for control of
quadrotor uavs,” Applied Sciences, vol. 13, no. 6, 2023, issn: 2076-3417.

[85] Mardlijah and D. Prihatini, “Control design of quadcopter using output feedback
control pole placement,” in 2022 International Conference on Computer Engineer-
ing, Network, and Intelligent Multimedia (CENIM), 2022, pp. 197–202.

111

Bibliography

[86] M. Sarim, A. Nemati, M. Kumar, and K. Cohen, “Extended kalman filter based
quadrotor state estimation based on asynchronous multisensor data,” Oct. 2015.

[87] M. Islam, M. Okasha, and M. M. Idres, “Trajectory tracking in quadrotor platform
by using pd controller and lqr control approach,” IOP Conference Series: Materials
Science and Engineering, vol. 260, no. 1, p. 012 026, Nov. 2017.

[88] D. C. Meena and A. Devanshu, “Genetic algorithm tuned pid controller for pro-
cess control,” in 2017 International Conference on Inventive Systems and Control
(ICISC), 2017, pp. 1–6.

[89] P. M. Meshram and R. G. Kanojiya, “Tuning of pid controller using ziegler-nichols
method for speed control of dc motor,” in IEEE-International Conference On Ad-
vances In Engineering, Science And Management (ICAESM -2012), 2012, pp. 117–
122.

[90] Y. Chen, N. Scarabottolo, M. Bruschetta, and A. Beghi, “Efficient move block-
ing strategy for multiple shooting based nonlinear model predictive control,” IET
Control Theory and Applications, vol. 14, pp. 343–351, Jan. 2020.

[91] J. Aburajabaltamimi, “Development of efficient algorithms for model predictive
control of fast systems,” 2011.

[92] J. Tamimi and P. Li, “Nonlinear model predictive control using multiple shooting
combined with collocation on finite elements,” IFAC Proceedings Volumes, vol. 42,
no. 11, pp. 703–708, 2009, 7th IFAC Symposium on Advanced Control of Chemical
Processes, issn: 1474-6670.

[93] D. Simon, “Model predictive control in flight control design - stability and reference
tracking,” Ph.D. dissertation, Mar. 2014.

[94] M. Elhesasy, T. N. Dief, M. Atallah, et al., “Non-linear model predictive control
using casadi package for trajectory tracking of quadrotor,” Energies, vol. 16, no. 5,
2023, issn: 1996-1073.

[95] R. Sanz, P. García, Q.-C. Zhong, and P. Albertos, “Robust control of quadrotors
based on an uncertainty and disturbance estimator,” Journal of Dynamic Systems,
Measurement, and Control, vol. 138, Apr. 2016.

[96] B. J. Emran, M. Al-Omari, M. F. Abdel-Hafez, and M. A. Jaradat, “A cascaded ap-
proach for quadrotor’s attitude estimation,” Procedia Technology, vol. 15, pp. 268–
277, 2014.

[97] S. Tellex, A. Brown, and S. Lupashin, “Estimation for quadrotors,” arXiv preprint
arXiv:1809.00037, 2018.

[98] M. Sarim, A. Nemati, M. Kumar, and K. Cohen, “Extended kalman filter based
quadrotor state estimation based on asynchronous multisensor data,” Oct. 2015.

[99] S. Ahmed, B. Qiu, C.-W. Kong, H. Xin, F. Ahmad, and J. Lin, “A data-driven
dynamic obstacle avoidance method for liquid-carrying plant protection uavs,”
Agronomy, vol. 12, no. 4, 2022, issn: 2073-4395.

[100] N. Xuan-Mung and S. K. Hong, “Robust adaptive formation control of quadcopters
based on a leader–follower approach,” International Journal of Advanced Robotic
Systems, vol. 16, 2019.

112

Bibliography

[101] R. Abbas and Q. Wu, “Improved leader follower formation controller for multiple
quadrotors based afsa,” TELKOMNIKA (Telecommunication Computing Electron-
ics and Control), vol. 13, p. 85, Mar. 2015.

113

	List of Figures
	List of Tables
	List of Abbreviations
	General introduction
	Motivation and Challenges
	Objectives and Contributions
	Organization of the thesis

	Background & state-of-the-art for UAV systems
	Introduction
	Unmanned Aerial Vehicles
	Multi-UAV systems
	Conclusion

	Mathematical modeling of quadrotor systems
	Introduction
	Mathematical modeling of a single quadrotor
	Mathematical modeling of multi-quadrotor system for formation control
	Analysis of models' structure and challenges
	Conclusion

	Control and estimation for a single quadrotor
	Introduction
	Optimal PD control of a quadrotor
	Nonlinear Model Predictive Control of a quadrotor
	Design of estimation-based control techniques
	Simulation results
	Comparison and results discussion
	Conclusion

	Formation control of multi-quadrotor systems
	Introduction
	Leader-follower formation control
	Simulation results
	Comparison and results discussion
	Conclusion

	Conclusion and future work
	General conclusion
	Future work

	Appendixes

