
république algérienne démocratique et populaire
ministère de l’enseignement supérieur et de la recherche scientifique

École Nationale Polytechnique

Département d’Automatique
Laboratoire de Commande des Processus

Mémoire de projet de fin d’études pour l’obtention du diplôme
d’ingénieur d’état en Automatique

Graph Neural Networks: A
Comparative Study

Réalisé par :

Mohamed Mehdi ATAMNA
Ibrahim LAICHE

Présenté et soutenu publiquement le 07/07/2020

Composition du Jury :
Président M. Messaoud CHAKIR MCB École Nationale Polytechnique
Promoteur M. Rachid ILLOUL MCA École Nationale Polytechnique
Co-promotrice Mme Asma ATAMNA Postdoc Télécom Paris
Examinateur M. Mohamed TADJINE Professeur École Nationale Polytechnique

ENP 2020

république algérienne démocratique et populaire
ministère de l’enseignement supérieur et de la recherche scientifique

École Nationale Polytechnique

Département d’Automatique
Laboratoire de Commande des Processus

Mémoire de projet de fin d’études pour l’obtention du diplôme
d’ingénieur d’état en Automatique

Graph Neural Networks: A
Comparative Study

Réalisé par :

Mohamed Mehdi ATAMNA
Ibrahim LAICHE

Présenté et soutenu publiquement le 07/07/2020

Composition du Jury :
Président M. Messaoud CHAKIR MCB École Nationale Polytechnique
Promoteur M. Rachid ILLOUL MCA École Nationale Polytechnique
Co-promotrice Mme Asma ATAMNA Postdoc Télécom Paris
Examinateur M. Mohamed TADJINE Professeur École Nationale Polytechnique

ENP 2020

Dedication

This work is dedicated to my wonderful parents, my two sisters Asma and Lina and my
close friends, all of whom have been an exceptional source of support and gave me strength
when I most needed it.

Mohamed Mehdi ATAMNA

I dedicate this work to my beloved parents, for their endless love, support, and encourage-
ment.

To my brother Abdessamed, my two sisters Lamia and Walaa, all my relatives, my friends,
and all those who have helped me throughout these five years.

Ibrahim LAICHE

Acknowledgments

We would like to express our sincere gratitude to our two advisors, Dr Asma Atamna
and Mr Rachid Illoul for their continuous support and immense knowledge.

We would also like to thank the professors of the Control Engineering departement at
École Nationale Polytechnique for supporting and assisting us along our journey.

Our sincere thanks also go to the thesis committee for honoring us by evaluating our work.

 معلومات التقاط على لقدرتها نظرًا .وتفاعلاتها الأجسام لنمذجة تستخدم قوية بيانات بنية هي البيانية الرسوم :ملخص

 ، الروبوتات في ، المثال سبيل على .البيانات من واسعة مجموعة لنمذجة استخدامها يتم ، المتفاعلة الكيانات عن غنية

 الرسم بحواف معًا الأجسام تربط التي المفاصل تمثيل يمكن بينما بياني رسم بعقد المفصلية الروبوت أجسام تمثيل يمكن
 تسمى والتي ، البياني الرسم إدخال بيانات معالجة على القادرة العصبية البنى ظهرت ، الأخيرة الآونة في .البياني

 الرسم تصنيف مثل الإشراف تحت التعلم مهام من العديد في واعدة نتائج مع ، (GNNs)البيانية العصبية الشبكات

 الاستدلال مثل بالتحكم الصلة ذات التطبيقات من العديد في هذه GNN شبكات استخدام على أيضًا العمل تم وقد .البياني

 العمل هذا في . البشرية الحركات على التعرف مثل المرئية للمهام وحتى الاستشرافي التحكم و ، النظم على التعرف ،

 بنيتي بدمج قمنا ، التحكم في طفرة أحدثت التطبيقات ذلك في بما GNNs حول الحديثة للأبحاث شاملة مراجعة بعدو ،

GNNمرجعية مجموعات أربع على فعاليتها من والتحقق جديدتين بنيتين واقتراح ، قوية إهتمام آلية مع مرجعيتين

 مكاسب لدينا المقترحة البنيات تحقق .المتطورة البرمجيات وأدوات صارمة منهجية باستخدام البيانية الرسوم لتصنيف

 للاهتمام مثيرة آفاقًا يفتح مما ، معينة بيانات مجموعات في المرجعي الأداء فوق ٪14 إلى تصل الأداء في رائعة

 . الجسم تقديروضع ومشكلات البشرية الحركات على التعرف في خاصة ، لتطبيقات مستقبلية

 .البيانية الرسوم تصنيف ، الإشراف تحت التعلم ، الإهتمام آلية ، البيانية العصبية الشبكة ، الآلي التعلم :المفتاحية الكلمات

Résumé : « Graph Neural Networks : Une Étude Comparative »

Les graphes représentent une puissante structure de données qui est utilisée pour modéliser les

objets et leurs interactions. Grâce à leur capacité à capturer de riches informations sur les

entités interagissantes, les graphes sont utilisés pour modéliser une variété de données. Par

exemple, en robotique, les différents corps constituant un robot articulé peuvent être

représentés par les nœuds d'un graphe alors que les articulations les reliant entre eux peuvent

être représentés par les arêtes d'un graphe. Récemment, des architectures de réseaux de

neurones conçus pour traiter des données structurées en graphes, appelés Graph Neural
Networks (GNNs), sont apparues et ont obtenu des résultats prometteurs sur plusieurs tâches

d'apprentissage supervisé telles que la classification de graphes. D'importants travaux ont

également été entrepris afin d'appliquer ces architectures à des problèmes pertinents à

l'automatique tels que l'observation, l'identification des systèmes, la commande prédictive et

mêmes des tâches visuelles comme la reconnaissance d'action humaine. À travers ce travail,

après un passage en revue approfondi de l'état de l'art en matière d'architectures GNN,

applications en automatique incluses, nous combinons deux architectures parmi les plus

avancées avec un puissant mécanisme d'attention pour proposer deux architectures innovantes

que nous validons sur quatre ensembles de données pour la classification de graphes très utilisés

en recherche, le tout en suivant une méthodologie très rigoureuse et en utilisant des outils

logiciels de pointe. Nos architectures présentent un gain en performance allant jusqu'à 14% par

rapport aux architectures de référence sur certains ensembles de données, ouvrant ainsi la voie

à des perspectives intéressantes pour des applications futures, notamment sur des problèmes

d'estimation de pose et de reconnaissance d'action humaine.

Mots-clés : apprentissage automatique, graph neural network, mécanisme d’attention,

apprentissage supervisé, classification de graphes.

Abstract: Graphs are a powerful data structure that is used to model objects and their

interactions. Owing to their ability to capture rich information about interacting entities, they

are used to model a wide range of data. For example, in robotics, an articulated robot's bodies

can be represented with a graph's nodes while the joints linking the bodies together can be

represented with a graph's edges. Recently, neural architectures that are able to process graph

input data, called Graph Neural Networks (GNNs), have emerged with promising results on

many supervised learning tasks such as graph classification. Work has also been done to use

these GNNs in many control-related applications such as for inference, system identification,

model-predictive control and even for visual tasks like human action recognition. In this work,

after an extensive review of the state-of-the-art literature on GNNs, including breakthrough

applications in control, we combine two reference GNN architectures with a powerful attention

mechanism, proposing two novel architectures and validating them on four benchmark graph

classification datasets using rigorous methodology and cutting-edge software tools. Our

proposed architectures achieve impressive gains in performance of up to 14% over baselines on

certain datasets, opening up interesting perspectives for future work, especially in human action

recognition and pose estimation problems.

Keywords: machine learning, graph neural network, attention mechanism, supervised learning,

graph classification.

Contents

List of Figures

List of Tables

List of Symbols

List of Abbreviations

General Introduction 17

1 Graph Theory: Concepts and Notations 20

1.1 General Definitions . 20

1.2 Graph Isomorphism and Weisfeiler-Lehman Test 22

2 Machine Learning and Artificial Neural Networks: an Overview 25

2.1 Supervised Learning . 26

2.1.1 Definition . 26

2.1.2 Training and Test Sets . 26

2.1.3 Loss Function . 27

2.1.4 Types of Supervised Learning Problems 27

2.1.5 Performance Evaluation . 28

2.2 Some Classical Machine Learning Algorithms 29

2.2.1 Linear Regression . 29

2.2.2 Support Vector Machines . 29

2.3 Multi-Layer Perceptrons: Simple yet Powerful Artificial Neural Networks . 31

2.3.1 Describing Feedforward Layers . 32

2.3.2 Case of Binary and Multiclass Classification 35

2.3.3 Cross-Entropy Loss . 35

2.4 Training Neural Networks: Stochastic Gradient Descent and Variants . . . 37

2.4.1 Stochastic Gradient Descent . 37

2.4.2 Adam . 38

2.5 Backpropagation . 39

2.6 Overfitting and Underfitting . 40

2.7 Regularization . 40

2.7.1 Weight Decay . 41

2.7.2 Dropout . 42

2.8 Hyperparameter Tuning . 42

2.9 Other Prominent Neural Network Architectures 43

2.9.1 Convolutional Neural Networks . 44

2.9.2 Recurrent Neural Networks . 46

3 Graph Neural Networks 48

3.1 Graph Neural Networks in Control Engineering 49

3.1.1 Graph Neural Networks for Inference and Control 50

3.1.2 AGC-LSTM Model for Skeleton-Based Action Recognition 51

3.2 A Unifying Framework for Graph Neural Network Architectures 52

3.3 Graph Convolutional Networks (GCNs) . 53

3.4 Graph Isomorphism Networks (GINs) . 54

3.5 Other Important Work on Graph Neural Networks 56

3.5.1 Representation Learning on Graphs 56

3.5.2 A Spectral Formulation of Convolutional Neural Networks on Graphs 57

3.5.3 Learning Neural Fingerprints of Molecular Data 58

3.5.4 Diffusion-Convolutional Neural Networks (DCNNs) 58

3.5.5 PATCHY-SAN (PSCN) . 59

3.5.6 Spectral and Locally Connected Networks on Graphs 59

3.5.7 Message Passing Neural Networks (MPNNs) 60

3.5.8 FastGCN . 60

3.5.9 Simple Graph Convolution (SGC) 61

3.5.10 UGRAPHEMB . 61

4 Attention Mechanisms 62

4.1 Types of Graph Attention Mechanisms . 64

4.1.1 Velickovic et al.’s Attention . 64

4.1.2 Similarity-Based Attention . 66

4.1.3 Attention-Guided Walk . 66

5 Proposed Architectures 67

5.1 Proposed Attention Mechanism . 67

5.2 Graph Convolutional Network with Attention (GCNA) 68

5.3 Graph Isomorphism Network with Attention (GINA) 70

6 Experimental Procedure 72

6.1 Datasets . 72

6.1.1 Dummy Dataset . 72

6.1.2 ENZYMES . 73

6.1.3 PTC . 73

6.1.4 MUTAG . 74

6.1.5 Synthie . 74

6.2 Baselines . 74

6.3 Detailed Experimental Setup . 75

6.3.1 Software . 75

6.3.2 Data Preprocessing . 77

6.3.3 Architectures . 77

6.3.4 Regularization and Training Hyperparameters 78

6.3.5 Training Procedure . 78

6.4 Results . 79

6.4.1 Initial Configuration . 80

6.4.2 Best Configuration . 81

6.4.3 Discussion . 84

General Conclusion 87

Appendices 89

A All Tested Configurations 90

A.1 GIN(A) . 90

A.2 GCN(A) . 91

Bibliography 93

List of Figures

1.1 Directed and undirected graphs. 21

1.2 Two isomorphic graphs. 23

1.3 Example of graph isomorphism. 23

2.1 Possible separating hyperplanes vs. optimal hyperplane. 30

2.2 Maximal margin hyperplane. 31

2.3 Two-layer perceptron. 33

2.4 ReLU function. 34

2.5 LeakyReLU function. 34

2.6 Sigmoid function. 36

2.7 Example of a computational graph. 39

2.8 Model complexity’s influence on overfitting and underfitting. 41

2.9 MLP before and after applying dropout. 43

2.10 Grid and random search. 44

2.11 Two-dimensional convolution operator. 45

2.12 Example of a CNN architecture (VGG-16). 45

2.13 An RNN with a hidden state. 47

3.1 Graph representation of a physical system’s bodies and joints. 50

3.2 A Graph Network (GN) block. 51

5.1 GCNA architecture. 70

5.2 GINA architecture. 71

6.1 Class distribution for ENZYMES, PTC, MUTAG and Synthie datasets. . . 75

6.2 Learning curves with the initial configuration. 85

6.3 Learning curves with the best configurations. 86

List of Tables

6.1 Properties of the tested datasets. 74

6.2 Initially tested configuration for each model. 80

6.3 Test results for the initial configuration. 81

6.4 Best configuration for each model on each dataset. 82

6.5 Best test results after hyperparameter tuning for each model on each dataset. 83

A.1 All tested hyperparameter configurations for GIN and GINA architectures
on all datasets. 91

A.2 All tested hyperparameter configurations for GCN and GCNA architectures
on all datasets. 92

List of Symbols

G = (V,E) Graph G
V The set of vertices (nodes)
vi Node (vertex) i
E The set of edges
ei Edge i
A The adjacency matrix
n The number of vertices (nodes)
|V | The cardinality of set V
X Node feature matrix
d Number of features of each node
Xv Node feature vector for node v
In Identity matrix of size n
Nv The neighborhood of v
N∗v The neighborhood of v and the node itself
deg(v) The degree of node v
D The degree matrix
hti Node attributes of node vi at iteration t
x Inputs

y Labels
θ Parameter vector
fθ A model parameterized by θ
Lθ Loss function
` The loss for a single example
mtrain Number of training examples G
ŷi Predicted class label for example i
yi Correct class label for example i
w Weight vector
W Weight matrix
σ Nonlinear activation function
η The learning rate
G The set of graphs (graph space)
Y The set of graph labels (label space)
hG Graph embedding (vector representation)
hi Node embedding of node vi
h
(k)
v The feature vector of node v at the kth layer
Â The normalized adjacency matrix
W (k) The kth layer’s weight matrix
αi,j Attention coefficients
Aα The weighted adjacency matrix
L The number of graph convolutional layers in GINA
γ Learning rate’s decay rate.

List of Abbreviations

GNN Graph Neural Network
GCN Graph Convolutional Network
GIN Graph Isomorphism Network
GAT Graph Attention Network
GCNA Graph Convolutional Network with Attention
GINA Graph Isomorphism Network with Attention
WL Weisfeiler-Lehman
NP Nondeterministic polynomial time
ML Machine Learning
SVM Support Vector Machine
MSE Mean Squared Error
ANN Artificial Neural Network
MLP Multi-Layer Perceptron
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
CNN Convolutional Neural Network

RNN Recurrent Neural Network
LSTM Long Short-Term Memory
AGC-LSTM Attention Enhanced Graph Convolutional LSTM
GSP Graph Signal Processing
DCNN Diffusion-Convolutional Neural Networks
MPNN Message Passing Neural Networks
SGC Simple Graph Convolution
PTC Predictive Toxicology Challenge
GPU Graphics Processing Unit
GC Graph Convolution
lr Learning rate
wd Weight decay
Hid. dim. Hidden layer’s dimension
acc. Accuracy
Avg. Average

General Introduction

Graphs are powerful data structures that are used to model objects and their relationships.
Thanks to their ability to capture rich information about interacting entities, graphs are
used to model a wide range of real-world data: social networks, molecular graph structures,
biological protein-protein networks and recommender systems among others. For control
engineering, graphs are particularly interesting because many physical systems can be
represented using this data structure. For example, an articulated robot’s bodies can
be represented with a graph’s nodes while the joints linking the bodies together can be
represented with a graph’s edges. This makes it possible to design powerful, graph neural
network (GNN) architectures for many relevant tasks such as inference, model-predictive
control and system identification [62] as well as human action recognition [66]. Because
GNN architectures have such a wide range of applications, research in this area is very
active and state-of-the-art research papers are published regularly, meaning that there is
a lot of room for impactful research and continuous improvement.

GNNs were developed to effectively handle graph-structured data. They learn latent repre-
sentations for an input graph’s nodes by recursively aggregating neighboring node features
for each node, capturing important structural information about a node’s neighborhood.
The learned representations can then be used for various problems, such as node classifi-
cation and graph classification, the latter of which is the problem we tackle in this work.

Recently, deep GNN architectures based on graph convolutions have emerged with state-
of-the-art results on many graph-related problems. Of particular interest are Graph Con-
volutional Networks (GCNs) [40] and Graph Isomorphism Networks (GINs) [84], both of
which revolutionized the field of graph neural architecture design. The GCN architecture is
noteworthy because its authors introduced an efficient implementation of the convolution

18 Introduction

operation on graphs while GIN’s authors provided important theoretical conditions for a
GNN to be invariant to node permutations (which GIN satisfies).

Another interesting state-of-the-art architecture is the Graph Attention Network (GAT) [74],
which introduced the usage of attention mechanisms in GNN architectures. Attention
mechanisms, originally introduced in natural language processing applications, are impor-
tant because they allow a GNN to focus on the most important neighbors of a given node
in order to compute new representations, rather than giving all neighbors equal importance
by default.

Motivated by the recent advances in GNNs and in attention mechanisms for graph-structured
data, we wanted to explore the question of whether two reference GNN architectures,
namely GCN and GIN, would benefit from using attention on the particular task of graph
classification. In an attempt to address this question, we propose in this work two novel
GNN architectures, GCNA and GINA, that extend GCN and GIN respectively with the
attention mechanism implemented in the GAT [74]. Our two architectures exhibit the
important property of invariance to graph isomorphism, which guarantees that the same
output is produced for two equivalent graphs. To the best of our knowledge, our work is the
first to consider using attention with these two particular architectures. Our experiments
on four benchmark graph datasets show promising results where, on some datasets, using
attention helps improve the performance by up to 14%. More specifically, our contributions
in this work are as follows:

• We provide an extensive overview of the current, state-of-the-art literature on graph
neural networks, including breakthrough applications in the field of control theory.

• We propose two new GNN architectures, Graph Convolutional Network with Atten-
tion (GCNA) and Graph Isomorphism Network with Attention (GINA), leveraging
existing state-of-the-art architectures and augmenting them with an attention mech-
anism while preserving the property of invariance to node permutations (or graph
isomorphism).

• We make use of cutting-edge, powerful software tools for implementing deep learning
models and computation in the Python programming language.

• We implement a rigorous and thoroughly detailed experimental procedure, in line
with best practices in the field of machine learning.

• We evaluate our proposed GCNA and GINA architectures, and compare them against
baselines (GCN and GIN) in a graph classification task on a number of relevant
benchmark datasets which are often used in state-of-the-art research papers.

List of Abbreviations 19

• We provide interesting possible perspectives to explore, should any students decide
to build on this work in the future. To this end, we also make our code publicly
available.

The remainder of this thesis is organized as follows. In Chapter 1, we introduce important
graph-related definitions and notations that we use throughout this work. In Chapter 2,
we give an overview of important machine learning notions ranging from supervised learn-
ing, classification and regression to overfitting and regularization. We then present some
classical supervised learning models before introducing artificial neural networks and re-
lated concepts. In Chapter 3, we introduce graph neural networks, which are the artificial
neural networks at the heart of this work, and the notion of graph convolution. We also
review the most prominent graph neural network architectures in the literature, including
the GCN [40] and the GIN [84]. In Chapter 4, we introduce the concept of attention with a
focus on attention mechanisms for graph neural networks and, more specifically, the atten-
tion mechanism implemented in the GAT [74]. In Chapter 5, we present the architectures
we propose, consisting in GCN with attention (GCNA) and GIN with attention (GINA).
In Chapter 6, we detail our experimental procedure where we evaluate our architectures
on four benchmark graph datasets. We give, in particular, the details of the tested archi-
tectures, as well as the training and hyperparameter tuning procedures, and discuss the
observed results. Finally, Chapter 6.4.3 concludes this thesis.

CHAPTER 1

Graph Theory: Concepts and Notations

In this chapter, we introduce some graph theory concepts that are relevant to the sub-
sequent chapters as well as their related notations. We also define the different types of
graphs that are relevant to our work.

1.1 General Definitions

Graphs are a mathematical tool designed to represent a set of objects and the relations
between them. The objects are represented by points called vertices and each pair of
connected objects is called an edge. Graphs, as well as graph-related concepts, are formally
defined in [63] as follows:

Definition 1.1. (Graphs) A graph G is a pair of non-empty sets (V,E), where V =

{v1, . . . , vn} is the set of vertices (also called nodes or points) and E is the set of edges
(also called lines or links), formed by pairs of vertices (vi, vj).

A common way of representing a graph G in practice is by its adjacency matrix A ∈ Rn×n,
where n = |V | is the number of vertices (or the order of the graph), and such that the
element on the ith row and jth column aij = 1 if there is an edge between nodes vi and vj
(i.e., (vi, vj) ∈ E) and aij = 0 if there is no edge.

We say that a graph is undirected if the edges have no orientation; that is, the edge (vi, vj)
is identical to the edge (vj, vi). In this case, the adjacency matrix A is symmetric. If the

1.1. General Definitions 21

edges are oriented, we say that the graph is directed. Edges can also be between a node
and itself: (vi, vi) ∈ E. In that case, these edges are referred to as self-loops. Fig. 1.1 shows
a directed graph and an undirected one along with their adjacency matrices.

Figure 1.1: Example of a directed graph (G1) and an undirected one (G2) and their corre-
sponding adjacency matrix.

In addition to the adjacency matrix A, a graph G usually has a node feature matrix 1

X ∈ Rn×d, where d is the number of features for each node. Each row of X represents the
feature vector Xi of node vi. In some cases, a set of edge features—represented by an edge
feature matrix—is also available to characterize the graph along with A and X.

In this work, we only consider undirected graphs with no self-loops, and we only use node
features. If the graph has no node features (i.e., purely structural graph), we take X = In,
where n is the number of nodes and In ∈ Rn×n is the identity matrix. We now give
definitions of various graph-related concepts that we use later on, namely the notions of
neighborhood, node degree and degree matrix and walk.

Definition 1.2. (Neighboring nodes and neighborhood) Given a graph G = (V,E), two
nodes vi, vj ∈ V are said to be neighbors, or adjacent nodes, if (vi, vj) ∈ E, and we denote
with Nvi = {vj ∈ V |(vi, vj) ∈ E} the neighborhood of vi. If G is directed, we distinguish

1For the sake of brevity, we sometimes refer to the node feature matrix X as “feature matrix” in the
rest of this paper.

22 Chapter 1. Graph Theory: Concepts and Notations

between incoming neighbors of vi (nodes vj ∈ V such that (vj, vi) ∈ E) and outgoing
neighbors of vi (nodes vj ∈ V such that (vi, vj) ∈ E).

Definition 1.3. (Node degree and degree matrix) Given a graph G = (V,E), the degree
of a node vi ∈ V is the number of its neighbors. Formally:

deg(vi) = |Nvi | = |{vj ∈ V |(vi, vj) ∈ E}|. (1.1)

The degree matrix D for G is an n× n diagonal matrix defined as follows:

Dij =

{
deg(vi) if i = j

0 otherwise.
(1.2)

Note that if G is directed, we distinguish between indegree (number of incoming neighbors),
and outdegree (number of outgoing neighbors) of a node.

Definition 1.4. (Walks) Given a graph G = (V,E), a walk is an alternating sequence of
vertices and edges v1, e2, v2, e3, v3, e4, . . . , ek, vk where each edge ei = (vi−1, vi) ∈ E.

In the following section, we introduce the important notion of graph isomorphism as well
as the Weisfeiler-Lehman (WL) [81] isomorphism test.

1.2 Graph Isomorphism and Weisfeiler-Lehman Test

Informally speaking, we say that two graphs with the same number of vertices and edges
are isomorphic if their vertices are connected in the same way. A formal definition of graph
isomorphism, according to the authors of [82], is given by:

Definition 1.5. (Graph Isomorphism) Given two graphs G1 = (V1, E1) and G2 = (V2, E2),
an isomorphism of graphs G1 and G2 is a bijection f between the set of vertices of V1 and
V2: f : V1 → V2, such that any two vertices v, u of G1 are adjacent ((v, u) ∈ E1) in G1 if
and only if f(v) and f(u) are adjacent ((f(v), f(u)) ∈ E2) in G2. We say that G1 and G2

are isomorphic.

1.2. Graph Isomorphism and Weisfeiler-Lehman Test 23

Figure 1.2: The two graphs shown here are isomorphic, meaning that they are the same
up to a permutation of vertices (nodes).

Definition 1.5 states that isomorphic graphs have the same structure independently of the
vertex indexing. That is, they are identical up to a permutation of vertices. In Fig. 1.2,
the two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic even though their drawings
are different. In fact, we obtain the second graph by applying the mapping f : V1 → V2 in
Fig. 1.3.

V1 V2

v1
v2
v3
v4
v5
v6

v1
v2
v3
v4
v5
v6

Figure 1.3: The node permutation f : V1 → V2 that transforms G1 into G2 (see Fig. 1.2).

Graph isomorphism is important in graph neural architecture design. Indeed, a graph
neural network should ideally be invariant to node permutations in that the same output
should be obtained for two isomorphic graphs.

In general, finding whether two graphs are isomorphic is a challenging problem, and it is an
especially important problem in computational complexity theory. This is mainly because
it is not known if an algorithm exists to solve this problem in polynomial time, and it is
also unknown whether the problem is NP-Complete [65]. One algorithm that is often used
to test whether two graphs are isomorphic is the Weisfeiler-Lehman (WL) test [81] whose

24 Chapter 1. Graph Theory: Concepts and Notations

main idea is to iteratively compute a canonical representation—a coloring2—for the nodes
of a given graph. If two graphs do not have the same coloring, then they are definitely
not isomorphic. However, two non-isomorphic graphs can share the same coloring. This
means that the WL test alone cannot prove that two graphs are isomorphic. A simplified
version of the (1-dimensional) WL test is presented in Alg. 1, where a hash function is
used to map variable-sized inputs to a fixed-sized output and where node attributes h(t)i
are usually scalar integers (initialized to 1 if there is no attribute).

Data: Initial node coloring (h
(0)
1 , . . . , h

(0)
n) for graph G = (V,E)

Result: Final node coloring (h
(T)
1 , . . . , h

(T)
n)

1 t← 0;
2 repeat
3 for vi ∈ V do
4 h

(t+1)
i ← hash

(
{h(t)j }vj∈Nvi

)
;

5 end
6 t← t+ 1;
7 until stable node coloring is reached ;

Algorithm 1: The 1-dimensional Weisfeiler-Lehman [81] test.

Artificial neural networks for processing graph data that are permutation-invariant usually
have convolution operators which are based on the WL algorithm [40, 89], more details on
which algorithm can be found in [16].

In the next chapter, we provide an overview of important concepts in machine learning and
artificial neural networks. This allows us to lay the groundwork for a subsequent discussion
of specialized neural network architectures designed to process graph-structured data.

2Graph coloring consists in attributing labels (or “colors”) to the vertices of a given graph such that
adjacent vertices cannot have the same color.

CHAPTER 2

Machine Learning and Artificial Neural Networks: an Overview

Machine learning (ML) is the study of computer algorithms that can learn from data.
Broadly speaking, the goal of a machine learning algorithm is to build a mathematical
model which can leverage a set of input data (i.e., a collection of examples) to learn to
make accurate predictions about previously unseen data (supervised learning) or find useful
patterns in the input data itself (unsupervised learning).

Since the problem we tackle falls into the category of supervised learning problems, we focus
in this chapter on concepts relating to that particular category of problems. Furthermore,
because supervised learning is an expansive field, a thorough overview is out of the scope of
this work. As such, this chapter is only intended as a brief introduction to some of the most
fundamental concepts. We start by defining what supervised learning is before detailing
two classical machine learning algorithms. Then, we dive into artificial neural networks by
describing the most fundamental type, detailing how these networks are set up and trained
in the context of classification—one of two types of supervised learning problems. Next,
we discuss some of the common problems which arise when training neural networks as
well as practical solutions to these problems. Finally, we briefly discuss two specialized,
more complex and very important types of neural networks which are currently used to
power some impressive machine learning applications.

26 Chapter 2. ML & ANNs: an Overview

2.1 Supervised Learning

2.1.1 Definition

In the book Dive into Deep Learning [87], the authors define a supervised learning problem
as the task of predicting labels (i.e., outcomes or targets) given inputs (i.e., features or
covariates). Inputs are usually denoted by x while labels are denoted by y. Each (input,
label) pair is called an example, typically denoted by (x(i), y(i)). A collection ofm examples
forms a dataset, {x(i), y(i)}mi=1.

Definition 2.1. Let {x(i), y(i)}mi=1 be a dataset. Supervised learning aims to produce
a model fθ, where θ represents the model’s parameters, that maps the inputs x(i) to a
prediction fθ(x(i)) that is as close to y(i) as possible.

The term supervised learning comes from the view that the target y(i) we want our model
to correctly predict is provided by us, in our role as supervisors, because we are “showing”
the system what to do. Concretely, we want to obtain a model such that the prediction
fθ(x

(i)) matches the label y(i) as closely as possible. When we say that a model fθ “learns”,
this means that its parameters θ are iteratively optimized so that its predictions become
more accurate.

2.1.2 Training and Test Sets

It is important to introduce the notion of training and test sets. We want to train and
optimize our model on a subset of the whole dataset called the training set. Why? Because
if we use the whole dataset for training, although we may manage to optimize our model
on this whole dataset extremely well, there is no guarantee as to how it will perform when
exposed to unseen data examples.1 Reserving a portion of the dataset for testing (i.e., the
test set) gives us a tool to check our learned model’s ability to generalize to new, unseen
data. In practice, 80% of a dataset is usually reserved for training while the remaining
20% are used for testing, although these percentages can vary, of course.

Ultimately, the goal of supervised learning is to learn a model that captures important
patterns and dependencies present in training data while, at the same time, generalizing
well enough to unseen data. Perfectly satisfying both objectives is, however, impossible:
a model may perfectly capture the patterns in the training set, but it runs the risk of
being overly sensitive to noise present in that same set, thus performing poorly on test

1Note that the success of a supervised learning model is based on the assumption that the labeled
data used to train the model comes from the same distribution as the general unseen data, i.e., it is a
representative sample of the unseen general data.

2.1. Supervised Learning 27

data. Striking a good balance between these two objectives is crucial in machine learning
practice.

This ability to generalize to unseen data ties in with the notions of overfitting and under-
fitting, which we introduce in Section 2.6.

2.1.3 Loss Function

A loss function (also called a criterion) is a formal measure of how good (or bad) a model
fθ is at making predictions (i.e., how close a prediction fθ(x(i)) matches the actual label
y(i)). When training, we want to obtain a model such that this loss function (which we
denote with Lθ) is minimized over all mtrain training examples:

Lθ =
1

mtrain

mtrain∑
i=1

`(y(i), fθ(x
(i))), (2.1)

where `, the loss for a single example, depends on the task at hand: usually the mean
squared error for regression and cross-entropy for classification problems, both of which
are defined in the next few sections.

2.1.4 Types of Supervised Learning Problems

Supervised learning problems can be split into two distinct categories, depending on the
nature of the outputs (targets):

• Regression: Outputs are real numbers. For example: building a model to predict
house prices. The input x may be any relevant feature(s) of a house (size, number of
bedrooms, etc.) while the output y is the price of said house.

• Classification: The model predicts which class (among a discrete set of options)
the input belongs to. For example: building a model to predict the class an input
image belongs to. Classification options might include objects such as a car, house,
phone, etc.

Despite being only one of many paradigms within machine learning, supervised learning is
by far the most commercially successful of all, powering everything from text and speech
translation to face recognition technology and everything in between, across a wide spec-
trum of industries.

28 Chapter 2. ML & ANNs: an Overview

2.1.5 Performance Evaluation

In this subsection, we present the accuracy, a classical and widely used performance mea-
sure on classification tasks, as well as a central evaluation procedure in ML, the so-called
cross-validation.

Accuracy

As stated in Subsection 2.1.2, the performance of a machine learning model is evaluated
on the test set in order to have an estimate of model’s performance on future unseen data.
Depending on the task at hand, the performance measure—or performance indicator—
varies. Let us consider the case of classification. A very common performance measure is
the accuracy, which measures the ratio of correctly classified examples over a given dataset.
Formally, let us consider the set {ŷ(1), . . . , ŷ(m)} of class labels predicted by a model and
the set {y(1), . . . , y(m)} of correct labels. The accuracy is defined as follows:

Accuracy =

∑m
i=1 1y(i)(ŷ

(i))

m
, (2.2)

where 1a(b) = 1 if a = b and 0 otherwise.

Accuracy is best suited to estimate the performance on well-balanced datasets, i.e., datasets
where the labels are distributed roughly uniformly among classes. On imbalanced datasets
where some classes are over- (or under-) represented, other performance measures are used
that are out of the scope of this work.

Cross-Validation

Cross-validation is a set of model evaluation techniques that are used when the test set is
on the smaller side or, more generally, to obtain a more robust performance estimation.
Let us consider a particularly popular variant of cross-validation, the so-called k-fold cross-
validation. The idea in k-fold cross-validation is to split the dataset into k complementary
subsets—or folds—as opposed to one training set and one test set, then for each fold
i ∈ {1, . . . , k}, use the remaining k− 1 folds to train the model and the current fold i as a
test set to evaluate the model. That way, we have k data points (performance estimates)
that we can average to get the overall performance of the model.

In practice, k-fold cross-validation is commonly used to compare and select the fitter model
for a particular prediction task (model selection), as well as to select the best parameter
values for a model (see hyperparameter tuning in Section 2.8).

2.2. Some Classical Machine Learning Algorithms 29

2.2 Some Classical Machine Learning Algorithms

Before introducing artificial neural networks, which are by far the most dominant ma-
chine learning approach, we first describe two of the simplest and most popular supervised
learning algorithms: linear regression and support vector machines (SVMs).

2.2.1 Linear Regression

Linear regression, as its name implies, solves a regression problem. The goal is, for a vector
x ∈ Rd with d features, to predict a scalar value ŷ = fθ(x) that matches the label y ∈ R as
closely as possible. Linear regression makes the assumption that the relationship between
the independent features {x1, . . . , xd} and the dependent variable y is linear. This means
that our prediction ŷ is expressed as:

ŷ = w1x1 + · · ·+ wdxd + b, (2.3)

where {w1, . . . , wd} are the parameters of our model (also called weights) and b ∈ R is a
bias term. Collecting all features and weights into two vectors x,w ∈ Rd, we end up with
a more compact notation:

ŷ = w>x+ b. (2.4)

The goal is to find the best parameters w and b such that the loss function is minimized.
One of the most widely used loss functions in linear regression is the mean squared error
(MSE), defined as follows:

MSE =
1

mtrain

mtrain∑
i=1

(
ŷ(i) − y(i)

)2
=

1

mtrain

mtrain∑
i=1

(
w>x(i) + b− y(i)

)2
, (2.5)

mtrain being the number of training examples.

2.2.2 Support Vector Machines

Support vector machines (SVMs) are most commonly used to solve classification problems.
Their goal is fairly straightforward: to find the optimal hyperplane which linearly separates
(i.e., classifies) data points into two classes. Although SVMs can be used for multiclass
classification problems and they can also leverage an approach called “the kernel trick” to
create nonlinear hyperplanes [9], we focus here on the simplest case:

• The classification problem is binary: y(i) ∈ {−1, 1}.

• Features are two-dimensional: x(i) ∈ R2.

30 Chapter 2. ML & ANNs: an Overview

Figure 2.1: Left: There are two classes of observations, shown in blue and in purple. Three
separating hyperplanes, out of many possible, are shown in black. Right: A separating
hyperplane is shown in black. The blue and purple grid indicates the decision rule made
by a classifier based on this separating hyperplane: a test observation that falls in the blue
portion of the grid will be assigned to the blue class, and a test observation that falls into
the purple portion of the grid will be assigned to the purple class. Figure from [36].

• Training examples are linearly separable—i.e., they lie in two distinct groups which
can be clearly separated by a hyperplane (a line in the case of two-dimensional
features) with no overlap between the two classes.

As illustrated in Fig. 2.1, there is an infinity of possible hyperplanes that separate the data
of the two classes. The SVM algorithm finds the optimal hyperplane h(x) = 0, where
h(x) = w>x + b, w ∈ R2, b ∈ R, such that the margin between the support vectors—
i.e., the closest training examples to the separating hyperplane in each class—and this
hyperplane is maximized.

Given the hyperplanes w>x+b = 1 and w>x+b = −1 that define the limit of classes 1 and
−1 respectively (see Fig. 2.2), the margin to be maximized is given by 2

‖w‖ . In addition,
the optimal separating hyperplane should satisfy the following two constraints:

w>x(i) + b ≥ 1 when y(i) = 1, (2.6)

w>x(i) + b ≤ −1 when y(i) = −1, (2.7)

for each training example. This can be formulated as the equivalent constrained optimiza-
tion problem:

min
w

1

2
‖w‖

subject to y(i)
(
w>x(i) + b

)
≥ 1,

(2.8)

where the constraint in (2.8) is the combination of Eq. (2.6) and (2.7).

2.3. MLPs: Simple yet Powerful ANNs 31

Figure 2.2: The maximal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points and the
purple point that lie on the dashed lines are the support vectors, and the distance from
those points to the hyperplane is indicated by arrows. Figure from [36].

The optimization problem in (2.8) is solved in practice by the Lagrangian multipliers
method. Once the optimal w and b—and therefore the maximal margin hyperplane—are
found, classifying new examples x(i) is straightforward:

h(x(i)) = w>x(i) + b > 0⇒ y(i) = 1, (2.9)

h(x(i)) = w>x(i) + b < 0⇒ y(i) = −1. (2.10)

For a more in-depth discussion of SVMs, we refer the reader to the book An Introduction
to Statistical Learning [36].

2.3 Multi-Layer Perceptrons: Simple yet Powerful Ar-
tificial Neural Networks

Artificial neural networks (ANNs) are by far the most powerful and successful super-
vised learning tools in use today. Multi-layer perceptrons (MLPs), also known as feed-
forward neural networks or fully connected neural networks, form the basis upon which
more sophisticated—e.g., convolutional and recurrent—neural network architectures are
built.

As explained in the book Deep Learning [21], the goal of an MLP is to approximate—i.e.,
learn—some function f ∗. For classification problems, this function y = f ∗(x) maps an

32 Chapter 2. ML & ANNs: an Overview

input x to a class y. An MLP, parameterized by θ, learns the values of the parameters
θ for which y = fθ(x) gives the best approximation of the function f ∗. The universal
approximation theorem [32] posits that MLPs—given enough neurons—can approximate
any function. However, it doesn’t guarantee the learnability of such an approximation—i.e.,
any desired function can be approximated by an MLP, but actually learning the parameters
which would allow an MLP to approximate that function is not guaranteed.

Modeled loosely after real networks of biological neurons in the brain, artificial neural
networks are an attempt at translating neuroscience research findings into a set of linear
transformations followed by nonlinear functions, mathematically emulating an extremely
simplified model of how the brain processes information.

Generally speaking, many tasks which require mapping an input vector x to an output
y can be accomplished with artificial neural networks (given sufficient labeled training
data and sufficiently large models). MLPs can learn increasingly complex functions by
stacking multiple “layers”, hence the term multi-layer in the name. Mathematically, this
can be expressed as a composition of functions. For example, a two-layer perceptron can
be written as y = f(x) = f (2)

(
f (1)(x)

)
, where f (1) and f (2) represent the first and second

layers of the network, respectively. Intermediate layers are called hidden layers while the
final layer (f (2) in this case) is called the output layer.

2.3.1 Describing Feedforward Layers

Feedforward layers are the basic building blocks of multi-layer perceptrons. The word
feedforward comes from the fact that the output of each layer is only fed to the next layer,
with no feedback connections present. MLPs are built by successively stacking such layers,
a concept best explained through an example. Fig. 2.3 describes a two-layer perceptron,
where the outputs of each layer (hidden and output) can be described with the following
equations:

h = w(1)x+ b(1), (2.11)

o = w(2)h+ b(2), (2.12)

where x ∈ R4 is the input vector, h ∈ R5 is the hidden layer’s “activation” vector and o ∈ R3

is the output. Since the output layer has three neurons, this particular MLP can be used
to classify inputs into three different classes. w(1) ∈ R5×4 and b(1) ∈ R5 are the first layer’s
learnable parameters while w(2) ∈ R3×5 and b(2) ∈ R3 are the second layer’s learnable
parameters. It should be clear that each layer simply represents a linear transformation.

This primitive version of our two-layer perceptron example is, however, incomplete—a

2.3. MLPs: Simple yet Powerful ANNs 33

Figure 2.3: A two-layer perceptron. The hidden layer has 5 hidden units (i.e., neurons)
while the output layer has 3. Figure from [87].

composition of linear transformations is itself a linear transformation. Indeed:

o = w(2)h+ b(2)

= w(2)(w(1)x+ b(1)) + b(2)

= (w(2)w(1))x+ (w(2)b(1) + b(2))

= wx+ b. (2.13)

Essentially, we would be wasting computational resources trying to learn multiple layers’
worth of parameters when a single-layer perceptron would give the same results, not to
mention missing the representational power of a key element: nonlinear activation func-
tions.

Nonlinear Activation Functions

To truly unlock the power of multi-layer architectures and make sure that stacking more
MLP layers would result in the ability to learn more complex representations, nonlinear
activation functions (denoted here by σ) have been introduced. These functions are applied
element-wise following a linear transformation. The default recommendation (according
to [21]) is to use the rectified linear unit (ReLU) function: ReLU(z) = max{z, 0}, illustrated
in Fig. 2.4. The ReLU function is attractive because it remains piecewise linear (i.e.,
composed of two linear parts). As such, it retains some of the properties which make
gradient-based optimization methods work well with linear models.

There are other nonlinear activation functions in use. One such function is the LeakyReLU

34 Chapter 2. ML & ANNs: an Overview

Figure 2.4: The rectified linear unit (ReLU) function. Figure from [87].

Figure 2.5: The LeakyReLU function for different values of α. Notice that ReLU is a
particular case of LeakyReLU (α = 0). Figure from [87].

nonlinearity, illustrated in Fig. 2.5. For a given α ∈ [0, 1], it is defined as:

LeakyReLU(z) =

{
z if z > 0,

αz otherwise.

The main advantage of LeakyReLU over ReLU is that it can prevent neurons from be-
coming “dead” when using gradient-based optimization methods.2

2Neurons are said to be “dead” when their outputs do not change during optimization (meaning, in
practice, that they become unable to learn anything). LeakyReLU alleviates this problem thanks to its
small negative slope, preventing gradients from getting stuck on zero. We discuss why this is important
in Section 2.4.

2.3. MLPs: Simple yet Powerful ANNs 35

Applying a nonlinear activation function, our two-layer perceptron becomes:

h = σ(w(1)x+ b(1)), (2.14)

o = w(2)h+ b(2). (2.15)

We show now how the output o of our MLP can be used to perform classification.

2.3.2 Case of Binary and Multiclass Classification

Eq. (2.15) gives us the raw output vector of our network. To give this output a more
intuitive meaning, let us consider a multiclass classification task. Each element of the
vector o can be interpreted as the chance of the input x belonging to the corresponding
class. To compute the probability of each class i, we normalize the outputs between 0 and
1 by passing o to the softmax function:

ŷi = softmax(o) =
exp(oi)∑
j exp(oj)

, (2.16)

where oi is the ith element of o and ŷi is the estimated probability of x belonging to class
i. Now, it is clear that

∑
i ŷi = 1 and the elements ŷi of ŷ can be interpreted as estimated

conditional probabilities of each class: ŷ1 is the probability of x belonging to class 1, ŷ2 is
the probability of x belonging to class 2 and so on. The predicted class is simply the one
with the highest probability.

In cases where the classification problem is binary, the output o is a scalar. Instead of the
softmax, we use the sigmoid function:

ŷ = sigmoid(o) =
1

1 + exp(−o)
. (2.17)

As illustrated in Fig. 2.6, the sigmoid function collapses its inputs from a range of [−∞,∞]

to [0, 1], leading to a probabilistic interpretation of ŷ, in a similar fashion to the multiclass
classification case. For classification, we use 0.5 as a threshold: 0 ≤ ŷ < 0.5 means that x
belongs to class 1 while 0.5 ≤ ŷ ≤ 1 means that x belongs to class 2.

2.3.3 Cross-Entropy Loss

To measure how good the probabilities predicted by an ANN are, one of the most commonly
used loss functions for multiclass classification problems is the cross-entropy loss function.
Before defining it, however, it is important to point out that the label of an example x

must be contained in a vector y = [0, . . . , 1, . . . , 0] which contains a single 1 at the ith

36 Chapter 2. ML & ANNs: an Overview

Figure 2.6: The sigmoid function. Figure from [87].

position, indicating that x belongs to class i. Now, we can express the cross-entropy loss
for a single example as follows:

`(y, ŷ) = −
∑
j

yj log ŷj. (2.18)

Averaged over a full training set {x(i), y(i)}mtrain
i=1 , the cross-entropy loss becomes:

L = − 1

mtrain

mtrain∑
i=1

∑
j

y
(i)
j log ŷ

(i)
j . (2.19)

The cross-entropy loss function computes how probable the actual classes are according
to our model, given the features. It relies on the principle of likelihood maximization, a
detailed explanation of which can be found in [87].

In the case of binary classification (where the true label y = 0 for class 1 and y = 1 for class
2), the loss function is called binary cross-entropy. For a single example, it is expressed as
follows:

`(y, ŷ) = −
(
y log ŷ + (1− y) log(1− ŷ)

)
. (2.20)

Averaged over the full training set, it becomes:

L = − 1

mtrain

mtrain∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i)). (2.21)

Now that a basic MLP architecture and an appropriate loss function have been detailed,
the next section will focus on describing the training procedure for neural networks.

2.4. Training Neural Networks: Stochastic Gradient Descent and Variants 37

2.4 Training Neural Networks: Stochastic Gradient De-
scent and Variants

Training a neural network means searching for a parameter set θ that minimizes the loss
L over the training set.

Although nonlinearities give neural networks the ability to learn more complex represen-
tations, they also make loss functions nonconvex. This means that training ANNs calls for
gradient-based optimizers that are more sophisticated than the classical gradient descent
algorithm and that convergence to a global minimum is not guaranteed. In practice, loss
functions for ANNs present many local minima, and these optimizers usually reach a low
enough value for the cost function to, at least, result in acceptable model performance. It
should be noted that this nonconvex nature of the problem means that gradient descent-
based algorithms are sensitive to the initial values of the model’s parameters. For MLPs,
the recommendation is to initialize weights w to small random values and biases b to zero
or to small positive values [21].

In this section, we focus on two optimization algorithms in particular: stochastic gradient
descent and Adam [39], a more sophisticated and one of the best performing optimizers
currently in use.

2.4.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is the quintessential optimization algorithm for deep
learning. Recall that loss functions are typically computed over a full training dataset
(Eq. (2.5) and (2.19)). For very large datasets, this can become very computationally
expensive. Consider the following loss function for a training dataset {x(i), y(i)}mtrain

i=1 :

Lθ =
1

mtrain

mtrain∑
i=1

`(y(i), fθ(x
(i))). (2.22)

Classical gradient descent requires us to compute the following gradient expression:

∇θLθ =
1

mtrain

mtrain∑
i=1

∇θ`(y
(i), fθ(x

(i))), (2.23)

where ∇θLθ is the gradient of the loss function with respect to the model’s parameters
θ [21].

As mtrain grows to very large numbers, taking a single gradient step becomes prohibitively
expensive. As explained in [21], the insight of SGD is that the true gradient may be

38 Chapter 2. ML & ANNs: an Overview

approximated using a small subset of m′ examples drawn uniformly from the training set,
potentially lowering the computational cost considerably. The gradient estimate is given
by:

∇θLθ =
1

m′
∇θ

m′∑
i=1

`(y(i), fθ(x
(i))). (2.24)

Next, SGD updates the parameters θ with:

θ ← θ − η∇θLθ, (2.25)

where η is the algorithm’s learning rate, which determines the size of the step taken towards
the optimum at each iteration.

In machine learning practice, the common procedure is to first randomly shuffle the training
set, then use succesive subsets of m′ examples (called minibatches) to compute the loss, its
gradients and then update θ. A full pass through the training set is called an epoch, and
the optimization process can be repeated for any number of epochs chosen by the user.

Another interesting concept in training neural networks is the use of dynamic learning
rates, meaning that η can be programmed to decay as a function of the number of training
epochs. Doing so can allow the optimizer to better “close in” on the minimum of the loss
function and may reduce the possibility of overshooting it. This is especially important for
SGD, since the trajectory of the parameters throughout optimization is more noisy than
for standard gradient descent due to its stochastic nature [87].

2.4.2 Adam

As mentioned in Section 2.4, the Adam optimizer [39] is a more sophisticated variant
of the SGD algorithm. Adam efficiently combined various concepts and techniques for
effective optimization, which have made it one of the more robust and effective stochastic
gradient-based optimization algorithms. Notably, it uses exponential moving averages to
estimate the first (the mean m) and the second (the uncentered variance v) moments of
the gradients, both of which are initialized at zero:

m← β1m+ (1− β1)∇θLθ, (2.26)
v ← β2v + (1− β2)(∇θLθ)

2, (2.27)

where β1 and β2 are positive parameters to control the exponential decay rates of the
moving averages. The initialization with zeros causes moment estimates to be biased
toward small values, especially at the initial time steps of optimization, which is why a
bias correction step follows:

m̂← m/(1− βt1), (2.28)
v̂ ← v/(1− βt2), (2.29)

2.5. Backpropagation 39

where t is the current time step. Finally, the model’s parameters are updated with:

θ ← θ − ηm̂/(
√
v̂ + ε), (2.30)

where η is the learning rate and ε is a constant used for numerical stability. Concepts such
as dynamic learning rates and the use of minibatches carry over from SGD, naturally.

Before talking about some of the common problems encountered when training neural
networks (and the solutions), there is one important concept we need to introduce: how
do we actually compute the gradients ∇θLθ? The next section discusses this question.

2.5 Backpropagation

Backpropagation is an efficient way of computing a neural network’s gradients in practice.
Before describing it, however, let us provide some context.

When using a feedforward network to predict an input x’s label ŷ, information flows
through the various layers until an output is produced. This is called forward propagation.
During training, forward propagation continues until the cost function Lθ is evaluated.
This information flow can be visualized through computational graphs, which decompose
a neural network’s computations into a series of elementary operations. Fig. 2.7 illustrates
an example of a computational graph.

Figure 2.7: A computational graph for the expression H = ReLU(XW + b). Figure
from [21].

Similarly, we can exploit this flow of information in reverse: starting from the cost func-
tion, we can go backward through the computational graph and the various functions and
variables from which it is built, recursively applying the chain rule of calculus until we
finally compute an algebraic expression for the gradients ∇θLθ. This algorithm is called

40 Chapter 2. ML & ANNs: an Overview

backpropagation [60], and is one of the most important breakthroughs in the history of
machine learning, powering every modern application of neural networks of all kinds.

Modern software tools for machine learning computation automatically build computa-
tional graphs of neural networks and evaluate gradients in the background, thus elimi-
nating the need to compute gradient expressions by hand. Actually evaluating gradient
expressions in computers, however, requires some extra considerations, the details of which
can be found in [21].

2.6 Overfitting and Underfitting

By now, we have seen how a (simple) neural network works, how to establish a loss function
for classification and how to train and optimize the model’s parameters using gradient-
based algorithms. When training and testing neural networks, however, we can run into
two potential problems: overfitting or underfitting. Before explaining what these two
problems mean and what they entail, it is important to take a step back and look at what
we are trying to achieve when training a neural network.

Fundamentally, our goal with supervised learning is to discover patterns in the distribution
from which our training set was drawn, allowing a learned model to, hopefully, classify
unseen data correctly. However, as datasets represent only a small sample of real-world
data, there is a risk that whatever model we end up with will have discovered patterns that
are not adequately representative of the underlying data distribution and thus, performance
on unseen (i.e., test) data will inevitably suffer. This phenomenon—learning a model which
fits a training set very well but fails to generalize to new data—is called overfitting. On
the other hand, failing to perform well even on the training set itself is called underfitting.
It is typically indicative of a model that is too simple to be able to capture meaningful
patterns in the data for the task at hand.

A model’s complexity (i.e., its ability to fit a wide variety of functions), as stated in [21],
determines whether it is likely to overfit or underfit. We want a model that is complex
enough to capture the essential features of the data and still generalize well, but not too
complex that it essentially “memorizes” the properties of the training data and, by doing
so, fails to generalize. Fig. 2.8 illustrates this compromise.

2.7 Regularization

Solving the problem of underfitting is usually a matter of increasing the model’s complexity.
Reducing overfitting, however, is more complicated. It can be done implicitly by reducing
the model’s complexity, or explicitly using a set of techniques called regularization.

2.7. Regularization 41

Figure 2.8: Typical curves illustrating the influence of model complexity on underfitting
and overfitting. Figure from [87].

The authors of [21] define regularization as “any modification made to a learning algorithm
that is intended to reduce its generalization error but not its training error”. Although many
regularization strategies exist, we focus here on the ones we use in our own experiments:
weight decay and dropout.

2.7.1 Weight Decay

Weight decay, commonly known as L2 regularization, is perhaps the most widely used reg-
ularization technique in machine learning [87]. L2 regularization drives a model’s weights
closer to the origin by adding a penalty term (the sum of the squared Euclidean norms of
the weights) to the loss function.

For the example of linear regression described in Subsection 2.2.1, recall that the unregu-
larized loss function (MSE) had the expression:

1

mtrain

mtrain∑
i=1

(
w>x(i) + b− y(i)

)2
. (2.31)

Adding L2 regularization, the loss function becomes:

1

mtrain

mtrain∑
i=1

(
w>x(i) + b− y(i)

)2
+
λ

2
||w||2, (2.32)

where λ > 0 is a hyperparameter which controls how much emphasis we place on regular-
ization strength compared to minimizing the prediction error. Intuitively, L2 regularization

42 Chapter 2. ML & ANNs: an Overview

can be thought of as minimizing the weights of the model which contribute the least to
minimizing the objective function (i.e., the prediction error in the case of MSE). By doing
so, we reduce the model’s bias towards the training data. A more thorough analysis of the
effects of L2 regularization can be found in [21].

2.7.2 Dropout

Dropout [68] is a computationally efficient and powerful method of regularizing deep neural
networks (i.e., networks with a high number of layers).

Although deep neural networks are very powerful, they are also prone to overfitting. The
authors of the dropout paper argue that one of the main characteristics of overfitting in
neural networks is co-adaptation, where the activations of neurons in a given layer can
become too reliant on a specific pattern of activations in the layer before. The authors
theorize that neurons co-adapt to fix mistakes of other neurons in the previous layers during
training. This co-adaptation, in turn, leads to overfitting because it partially results from
sampling noise present in training data but not in test data, even if it is drawn from the
same distribution.

Dropout helps break up co-adaptation by temporarily dropping out neurons—i.e., dis-
abling them, along with all their incoming and outgoing connections—in a given layer
with a probability p, thereby forcing all remaining active neurons in that layer to take
responsibility for producing the desired output given an input sequence during training.
Concretely, dropped neurons see their corresponding weights set to zero during forward
propagation, while their gradients vanish during backpropagation. The random nature of
dropout means that, after repeated forward and backward propagation operations over
a full training set, we can expect most neurons (in layers where dropout is applied) to
perform well individually on a wide variety of contexts. Fig. 2.9 visually illustrates what
dropout does to an MLP.

Dropout can be performed on any hidden layer in a neural network, where a hyperparameter
p ∈ [0, 1] controls the probability of dropping each neuron in that layer. Experiments show
that it improves the performance of neural networks on supervised tasks in computer vision,
speech recognition, document classification and more [68].

2.8 Hyperparameter Tuning

The design of artificial neural architectures involves having to decide on the values of
various parameters, some of which determine the ANN’s architecture, such as the number
of hidden layers and units or the type of nonlinear activation function. Other parameters

2.9. Other Prominent Neural Network Architectures 43

Figure 2.9: MLP before and after applying dropout. Here, the neurons h2 and h5 are
dropped. Figure from [87].

are related to the optimization algorithm (such as the learning rate η) or to regularization
(such as the dropout rate p). Such parameters are called hyperparameters and are crucial
to the performance of an ANN.

The process of choosing the optimal set of hyperparameters is very important as it controls
the overall behaviour of the model both on training and test sets. This process is often
called hyperparameter tuning (or hyperparameter optimization). There are many ways to
go about finding the optimal set of parameters, one of which is grid search [13], where
we choose possible values for each hyperparameter, test each possible configuration—i.e.,
values combination—then choose the best one. Another method is random search [7],
which is very similar to grid search, but instead of defining discrete values of parameters,
we define an interval for each parameter and choose random values from those intervals.
This method usually outperforms grid search as shown in Fig. 2.10.

While these methods yield better results, they are both computationally very expensive,
especially when the training procedure takes a relatively long time. There are, however,
more sophisticated approaches used by practitioners to perform hyperparameter tuning,
such as Bayesian Optimization, which implements a more intelligent exploration of the
search space and optimizes a surrogate of the objective function to reduce the computa-
tional cost.

2.9 Other Prominent Neural Network Architectures

So far, we have only talked about multi-layer perceptrons. Although powerful in their
own right and appropriate for dealing with data which can be represented with real-valued
vectors, they can prove unwieldy for handling other types of data such as images, se-
quential information or structured data. As a result, specialized types of neural network

44 Chapter 2. ML & ANNs: an Overview

Figure 2.10: Grid and random search of nine trials to find the optimum of a function
f(x, y) = g(x) + h(y) ≈ g(x). g(x) is represented by the green curve above each graph
while h(x) is represented by the yellow one on the left. In this particular example, grid
search only explored three different points of g(x) on the nine trials while random search
explored a different value on each trial. Figure from [7].

architectures have been developed. We briefly introduce here two of the most important:
convolutional neural networks and recurrent neural networks.

2.9.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [43] have been developed for processing data which
has a grid-like topology. In practical applications, inputs are usually a multidimensional
array of data (sometimes referred to as tensors) such as 2D images. Unlike traditional
MLPs (which employ general matrix multiplication operations), they employ an opera-
tion called convolution, which is a special kind of linear transformation. Although these
networks are called convolutional, in practice, neural network software libraries employ a
related operation called cross-correlation to compute outputs.

For image data processing, the convolution operation is particularly interesting because it
allows the extraction of relevant features in images by taking into account the neighboring
pixels (i.e., context) for each pixel.

The learnable parameters in a CNN are arranged in multidimensional arrays called kernels
or filters. Fig. 2.11 illustrates a 2D cross-correlation operation. Notice how the kernel in
this particular example has 4 parameters arranged in a 2 × 2 matrix. The filter slides
over the input tensor from left to right and from top to bottom, and at each position
we compute an element-wise multiplication between the filter’s parameters and the input
subarray contained in that position. Finally, a sum-pooling operation sums the results of

2.9. Other Prominent Neural Network Architectures 45

these multiplications at each position to produce an output tensor, although other types
of pooling operations are possible (mean-pooling, max-pooling, etc.).

Figure 2.11: Two-dimensional convolution operation. The shaded portions are the first
output element and the input and kernel array elements used in its computation: 0× 0 +

1× 1 + 3× 2 + 4× 3 = 19. Figure from [87].

It is interesting to note that the cross-correlation operation can decrease the spatial di-
mensions of the input, as in Fig. 2.11. It is possible to control the size of the output either
by choosing the size of the kernel, its stride (whether it slides over the input tensor one
position at a time or more, skipping intermediate locations), by padding the input tensor
with zeros all around (therefore artificially increasing its spatial dimensions) or through
a combination of these options. It is also possible to use multiple kernels per convolu-
tional layer. Fig. 2.12 illustrates the VGG-16 [67] architecture, a popular CNN for image
classification.

Figure 2.12: VGG-16 [67], a popular CNN architecture for image classification (1000
classes).

In practice, when training CNNs, we observe that kernels tend to learn to extract particular
features in images such as contours and other properties. For example, for a CNN trained

46 Chapter 2. ML & ANNs: an Overview

to identify pictures of cats, we may find (through visualization) that some kernels learn to
identify a cat’s ears, while others may learn to identify the general body shape of a cat,
etc.

Perhaps unsurprisingly, the powerful computer hardware available nowadays has allowed
CNNs to become very deep, with some architectures exceeding 100 layers [28]. Naturally,
this makes training such architectures and getting them to converge quite complicated.
One interesting solution researchers have come up with is batch normalization [35], which
uses the statistics of the minibatches during training to normalize a given layer’s outputs
before feeding them into the following layer. This makes models less sensitive to parameter
initialization and makes tuning hyperparameters less complicated. Another interesting
thing to note is that batch normalization layers can be used with other types of neural
networks (such as MLPs).

Note that we have provided a very shallow introduction to CNNs. For a detailed expla-
nation of the various concepts not discussed here, we refer the reader to the excellent
books [87] and [21], which devote entire chapters to this type of neural network.

2.9.2 Recurrent Neural Networks

Another important type of neural network we need to briefly mention are recurrent neural
networks (RNNs). They use feedback connections, where the model’s outputs are fed back
into itself, hence the term recurrent in the name.

While convolutional neural networks are very effective at processing spatial information,
RNNs are ideally suited to handle sequential information. To compute current outputs,
they use state variables which store past information (classical RNNs) or both past and
future information (bidirectional RNNs), along with recurrent connections [87]. This al-
lows RNNs to learn new sequence representations that take into account the temporal
dependencies in the data. Interestingly, they are able to process data sequences of variable
length without needing to increase the model size, although, for long input sequences, it
may be difficult to access information from a long time ago. Fig. 2.13 illustrates a general
RNN architecture, where the hidden states store the current output and feed it back for
subsequent computation.

Arguably, the most famous type of RNN are long short-term memory (LSTM) [31] net-
works, successful applications of which include machine translation [70] and image cap-
tioning [75]. For a detailed description of this type of architecture, we refer the reader
to [87].

In the next chapter, we discuss a particular neural network architecture, designed specifi-
cally for handling graph-structured data.

2.9. Other Prominent Neural Network Architectures 47

Figure 2.13: An RNN with a hidden state. Figure from [87].

CHAPTER 3

Graph Neural Networks

The advent of deep learning approaches, brought about by increasingly powerful computer
hardware and their impressive results in computer vision and natural language processing
tasks, has led to the emergence of various deep neural architectures for processing graph-
structured data called graph neural networks (GNNs). Generally speaking, the goal of these
GNN approaches is to learn a mapping that encodes structural information about input
graphs—usually represented by their adjacency and node feature matrices—into a low-
dimensional vector space, such that the structure of the original graphs is reflected in the
geometric relationships in this vector space (also called embedding space). Depending on
the task at hand (e.g. node or graph classification), new representations—or embeddings—
are learned for either the nodes or the entire graph. These embeddings are then used
instead of the original adjacency and node feature matrices, e.g. to perform classification
in the case of supervised learning.

An important breakthrough in graph neural network architecture design came about in
2017, with Thomas N. Kipf & Max Welling introducing the Graph Convolutional Network
(GCN) architecture [40]. GCNs are motivated by convolutional neural networks (CNNs),
which are able to construct highly expressive representations from spatial features of the
input data. However, as CNNs can only operate on data lying on Euclidian domains
like images (2D or 3D grids) and text (1D sequences), work has been done to extend
the fundamental operations of CNNs (convolution and pooling) to operate effectively on
non-Euclidian data such as graphs [3, 15].

The fundamental contribution of Kipf & Welling lies in providing an efficient extension of

3.1. Graph Neural Networks in Control Engineering 49

the convolution operation to graphs. Their formulation is motivated from a first-order ap-
proximation of spectral graph convolutions [27], with further mathematical simplifications
leading to a computationally efficient, fully vectorized graph convolution operation that is
also scalable to large input graphs—i.e., graphs with a large number of nodes and edges.

Since modern GNN architectures use a neighborhood aggregation scheme where, at any
given layer in the network, the representation vector of a node is computed by using a
recursive aggregation of that node’s neighbors’ representation vectors, we can use a general
framework to describe these models and compare them effectively. The rest of this chapter
is organised as follows. First, we provide motivations for studying GNNs in the context of
control engineering by exploring two important research papers which give us a look at a
few interesting applications. After that, we detail the general GNN framework described
in [84]. Then, in the context of this framework, we describe and motivate the use of Graph
Convolutional Networks [40] and Graph Isomorphism Networks (GINs) [84], both of which
are—along with attention mechanisms—the state-of-the-art architectures most relevant to
our work. Finally, we present other important, state-of-the-art research papers on graph
neural networks.

3.1 Graph Neural Networks in Control Engineering

Neural networks, in general, find applications in control theory in various ways, including
modeling robotic systems in policy optimization tasks in reinforcement learning [72], human
pose estimation [86, 69] and action recognition [66, 59, 57].

In the case of graph neural networks more specifically, a few applications have emerged
recently with very promising results:

• Learning a model of the dynamics of a robotic system (system identification).

• Model-predictive control (MPC).

• Human skeleton-based action recognition.

Although we focus on these applications, this list is non-exhaustive; many research works
have used GNNs in other control and robotics-related problems [79, 80, 58, 45, 47].

In systems of articulated robots and in human skeleton image sequences, the nature of the
data lends itself particularly well to a graph representation: articulated robotic systems
have structure, which means that exclusively representing them by vectors of features (e.g.,
positions, linear and angular velocities) would be excluding important information about
their physical make-up. Using a graph representation, where an adjacency matrix contains

50 Chapter 3. Graph Neural Networks

structural information (with nodes representing bodies and edges representing joints) along
with features would seem like a natural way to overcome this limitation. The same intuition
can be applied to the human skeleton: graphs perfectly capture the kinematic dependency
between the joints and bones in the human body.

This intuition provides a strong argument for using GNNs in the applications mentioned
above and the experimental results outlined in the next research papers do indeed validate
this argument.

3.1.1 Graph Neural Networks for Inference and Control

Sanchez-Gonzalez et al. consider in [62] a supervised learning problem in which they model
different physical robotic systems as directed graphs (where nodes represent physical bodies
and edges represent joints linking the bodies together, as illustrated in Fig. 3.1) and use
system state data to learn a GNN dyamic model of these systems. The goal is that the
learned model can then be used to make very accurate forward predictions about system
states under random control signals.

Figure 3.1: Graph representation of a physical system’s bodies and joints. Figure from [62].

The basic building block (which they call Graph Network block or GN block) of the archi-
tecture they use sequentially applies 3 functions fe, fn and fg to update edge, node and
global feature vectors respectively (see Fig. 3.2 for an illustration). The individual func-
tions can be implemented using standard neural networks, and the authors use MLPs in
their implementation. The authors generate training data by applying simulated random
control signals to their real physical systems then recording the state transitions.

Modeling the system this way, the authors achieve very accurate predictions of future states
that generalize well to systems with continuously varying static parameters and to unseen
(i.e. test) data. Furthermore, they use a variation of the GNN architecture in a setting
where some of the system’s properties are not observable (mass, joint stiffness, etc.) and
find that it could still make accurate predictions, proving that the model performs implicit

3.1. Graph Neural Networks in Control Engineering 51

Figure 3.2: A Graph Network (GN) block. Figure from [62].

system identification—that is, these unobserved properties are not estimated explicitly,
but are expressed in latent representations which are made available to other mechanisms.

They further show that model-predictive control for reference tracking using this model
architecture works really well: the architecture being differentiable, they backpropagate
gradients of a cost function J with respect to the control variables u and iteratively optimize
the control values using gradient descent. They show that control using the learned model
worked in many cases as well as control using the real physics model.

3.1.2 AGC-LSTM Model for Skeleton-Based Action Recognition

Si et al. propose in [66] a novel and general network architecture for skeleton-based ac-
tion recognition called Attention Enhanced Graph Convolutional LSTM Network (AGC-
LSTM), which is the first attempt at a combined Graph Convolutional Network (with
attention) and LSTM [31] architecture for this computer vision task.

Human action recognition is an important task in computer vision. The goal is to correctly
identify what action a human agent is doing through the adequate understanding of move-
ment characteristics in an input sequence of images. Naturally, this requires a machine
learning tool which has the intrinsic ability to operate on sequential data and this is where
the LSTM (Long Short-Term Memory) part of this model comes into play. LSTMs [31] are
a fundamental discovery in machine learning models; they are able to process sequential
data and are at the heart of many breakthrough results in fields such as natural language
processing, with successful applications in modern voice assistants and image captioning
tools among others.

Effectively extracting discriminative spatial and temporal features is a challenging problem,
and there have been numerous attempts at finding effective frameworks based on both
RGB (red, green, blue) color video and skeleton data, with skeleton-based approaches

52 Chapter 3. Graph Neural Networks

being inherently more robust since they do not suffer from limitations such as background
clutter and illumination changes.

The proposed AGC-LSTM is able to effectively capture discriminative spatiotemporal fea-
tures. More specially, the attention mechanism is employed to enhance the features of
key nodes, which assists in improving spatio-temporal expressions. The proposed model
achieves state-of-the-art results on two benchmark datasets for skeleton-based action recog-
nition.

Having explained why GNNs are relevant in control and robotics applications, we present,
in the next section, a general definition that encompasses many modern GNN architectures.

3.2 A Unifying Framework for Graph Neural Network
Architectures

Let G = (V,E) denote a graph with adjacency matrix A ∈ Nn×n and a real-valued node
feature matrix X whose n rows correspond to node feature vectors Xv, v ∈ V . For
graph classification tasks, we are given a set of graphs {G1, . . . , GM} ⊆ G and their labels
{y1, . . . , yM} ⊆ Y , where G and Y represent the graph and label spaces, respectively. Our
goal is to learn (i) a representation vector (or embedding) hGi

for each graph Gi ∈ G, as
well as (ii) the function that maps each graph embedding hGi

to the corresponding graph
label yi.

Graph neural networks use graph structure information, contained in the adjacency matrix
A, and node feature vectors Xv to learn node embeddings hv by repeatedly aggregating
information from the neighborhood of each node. After k iterations of aggregation, where
each aggregation operation corresponds to a layer in the considered GNN architecture, the
resulting representation of each node is effectively capturing the structural information
within the kth-order neighborhood of that particular node. Following the formalism used
in [84, 2], the kth layer of a GNN can be characterized by the following equations:

a(k)v = AGGREGATE(k)
({
h(k−1)u : u ∈ Nv

})
, (3.1)

h(k)v = COMBINE(k)
(
h(k−1)v , a(k)v

)
, (3.2)

where h(k)v is the feature vector of node v at the kth iteration/layer and Nv is the set of
nodes adjacent to node v (its neighbors). AGGREGATE is the function which gathers
these neighboring nodes’ features while COMBINE uses a combination of the resulting
aggregate and the current representation of node v to compute its new one. The input to
the network being a matrix of node feature vectors Xv means that we initialize h(0)v = Xv.

3.3. Graph Convolutional Networks (GCNs) 53

Depending on the application, node embeddings can be used in a final readout step to
compute a graph embedding—i.e. a new representation vector for the whole graph. For
node classification, the node representation h

(K)
v of the final iteration/layer K is used

to predict the node’s class. For graph classification, the following READOUT function
aggregates node features from the final iteration to obtain the entire graph’s representation
hG:

hG = READOUT
({
h(K)
v | v ∈ V

})
. (3.3)

READOUT can be a simple permutation-invariant function such as summation or a more
sophisticated graph-level pooling function.

The choice of the AGGREGATE(k)(·), COMBINE(k)(·) and READOUT(·) functions is
what dictates the global architecture of the GNN. The framework and its three main
equations having been introduced, we now have a reference point from which we can
describe GCNs and GINs clearly.

3.3 Graph Convolutional Networks (GCNs)

As discussed earlier, the GCN architecture’s main contribution was to provide a computa-
tionally efficient and theoretically motivated implementation of convolution in the graph
domain. Because of this, it has now become an important baseline against which progress
in GNN architecture design is measured and a good starting point for our own work.

In [40], where GCNs were first introduced, the authors consider the semi-supervised node
classification problem in a graph and present a scalable approach based on convolutional
neural networks which operate on graphs.

The authors’ model relies on a layer-wise propagation rule which can be motivated by
spectral graph convolutions, with approximations through first-order Chebyshev polyno-
mials allowing the model to be computationally feasible. Further simplifications reduce the
number of trainable parameters (and by extension overfitting). Then, a neural network
can be built by stacking multiple such layers and applying a point-wise non-linearity. To
avoid exploding/vanishing gradients, the authors introduce a renormalization trick and by
conditioning the model on both the feature matrix X and the adjacency matrix A gradient
information from the supervised loss will be distributed and the model will be able to use
information about the graph’s structure. This architecture is called convolutional because
it represents a node as a function of its surrounding neighborhood. In other words, taking
the product of the node feature and adjacency matrices essentially amounts to summing
neighboring node information for each node (along with information about the node itself,
as long as we enforce self-loops). By applying successive convolution operators, we are
effectively convolving the kth-order neighborhood of the nodes.

54 Chapter 3. Graph Neural Networks

The full architecture the authors use (for node classification, not graph classification!) is
described in the paper by:

Z = f(X,A) = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
, (3.4)

which describes a two-layer GCN where Â is the normalized adjacency matrix of the input
graph (with added self-loops), W (k) is the kth layer’s trainable weight matrix and X is a
matrix of node features. Here, W (0) ∈ RC×H is an input-to-hidden weight matrix for a
hidden layer with H feature maps and W (1) ∈ RH×F is a hidden-to-output weight matrix.
C is the dimension of the input featuresXv for v ∈ V , H is the dimension of the hidden layer
(this is a hyperparameter whose value we can choose, as we will see later in training) and
F is our output dimension (equal to the number of classes in our classification problem).
Then, the softmax function is applied. Consequently, we end up with a matrix Z, where
each row (corresponding to a node in the input graph) contains the estimated conditional
probabilities of each class.

Looking at it from the perspective of the framework described above, the AGGREGATE
and COMBINE steps defined in Eq. (3.1) and (3.2) are integrated as follows:

h(k)v = f (k−1) (W (k−1)·MEAN
{
h(k−1)u ,∀u ∈ Nv ∪ {v}

})
, (3.5)

where MEAN
{
h
(k−1)
u ,∀u ∈ Nv ∪ {v}

}
represents the multiplication by the normalized ad-

jacency matrix Â in Eq. (3.4) (element-wise mean pooling), k ∈ {1, 2}, h(0)v = Xv, v ∈ V
for a graph G = (V,E), f (0) = ReLU, f (1) = softmax and Z in Eq. (3.4) is the matrix
whose rows are the vectors h(2)v , v ∈ V .

The authors used the GCN for node classification on the Citeseer, Cora and Pubmed
citation network datasets and on the NELL knowledge graph where only a fraction of nodes
are labeled. It significantly outperformed recent related methods and the propagation
model they use offers both improved efficiency (fewer parameters and operations) and
better predictive performance compared to a naïve 1st-order model or higher-order graph
convolutional models using Chebyshev polynomials.

3.4 Graph Isomorphism Networks (GINs)

Although recent GNNs have achieved stat-of-the-art performance in many tasks such as
node classification, link prediction and graph classification, their designs are mainly based
on empirical intuition, heuristics and experimental trial-and-error, with little theoretical
work undertaken to understand their properties and limitations.

3.4. Graph Isomorphism Networks (GINs) 55

Xu et al.’s work in [84] represents another important milestone in GNN architecture de-
sign. They provide—and mathematically prove—conditions for a GNN model to be as
powerful as the Weisfeiler-Lehman (WL) [81] graph isomorphism test, then proceed to
introduce their own model, the Graph Isomorphism Newtork (GIN), which fulfills these re-
quirements. Beyond relying on intuition, their architecture is guaranteed to be maximally
expressive: it is proven to map two different (i.e., non-isomorphic) graphs to two different
graph embeddings. Because of this, their state-of-the-art GIN is one of the most important
GNNs currently available and makes for an excellent high-performance backbone on which
we can build and improve.

First, the authors provide a theoretical framework for analyzing the expressive power of
GNN architectures. Then, they introduce a novel architecture which is provably as expres-
sive as the WL graph isomorphism test.

Intuitively, the authors theorize that a maximally powerful GNN must be able to map
two nodes to different embeddings, except if they have identical subtree structures (i.e.,
neighborhood structures) with identical features on the corresponding nodes.

The authors introduce (and prove) a series of lemmas and theorems which—when satisfied
by a given GNN architecture—allow it to be as powerful as the WL test and thus achieve
maximum discriminative power. More explicitly, any GNN can be maximally powerful if,
for the following node embedding function:

h(k)v = φ
(
h(k−1)v , f

({
h(k−1)u : u ∈ Nv

}))
, (3.6)

the functions f , φ and the graph-level readout—which operates on the multiset of node
features

{
h
(K)
v

}
—are injective. We refer the reader to [84] for proofs and further details.

Having established conditions for a maximally powerful class of GNNs, the authors then
developed a simple architecture, Graph Isomorphism Network (GIN), using multi-layer
perceptrons (MLPs) to model and learn injective aggregation functions. MLPs are able to
do so because of the universal approximation theorem [32], which is a property that allows
the GIN to approximate a theoretical GNN, leading to the following equation:

h(k)v = MLP(k)

(
(1 + ε(k)) · h(k−1)v +

∑
u∈Nv

h(k−1)u

)
. (3.7)

which merges the AGGREGATE (3.1) and COMBINE (3.2) steps into a single equation.

For graph-level readout, the authors use information from the learned representations at
all levels of the GIN: they sum the node features from the same iterations/layers (sum
aggregation is injective) and then concatenate these resulting vectors together into a final

56 Chapter 3. Graph Neural Networks

graph-level representation hG (this guarantees that information from all layers is used for
the final prediction):

hG = CONCAT

(∑
v∈V

h(k)v

∣∣∣∣∣k = 0, 1, ..., K

)
. (3.8)

Next, a discussion of GNNs that do not satisfy the conditions ensues (GCN [40], Graph-
SAGE [25]), with explanations of why 1-layer perceptrons are insufficient (they may not
be powerful enough to be able to distinguish different multiset functions—i.e., functions
which operate on sets with possibly repeating elements) and the limitations of mean and
max-pooling (they are not injective, hence their limited representational power).

The authors tested the model and compared it to other variants of GNNs on a variety of
bioinformatics and social network datasets. Training set performance gives an idea of a
model’s representational power while test set performance quantifies generalization ability.
The GIN outperformed the less powerful GNN variants on every dataset used and these
tests highlighted the advantages of sum-aggregation GNNs over mean-aggregation models.

Now that we have motivated our choice of GCNs and GINs as baselines and taken a detailed
look at their achitectures, we provide in the next section an overview of the current state
of the art in graph neural network research by looking at a list of important papers.

3.5 Other Important Work on Graph Neural Networks

3.5.1 Representation Learning on Graphs

Hamilton et al. provide in [26] a review of the key advancements in the field of representa-
tion learning on graphs, particularly methods to embed individual nodes as well as entire
(sub)graphs.

Node embedding methods fall into three main categories: matrix factorization-based meth-
ods [6, 1, 61, 46], random walk-based algorithms [22, 56] and graph neural networks.

The authors, in their discussion of the various methods, adopt a unified framework to
explicitly structure methodological diversity and unify notations and key concepts.

This framework is structured around four components: a pairwise similarity function to
measure similarity between nodes, an encoder function that generates node embeddings
(and contains trainable parameters), a decoder function which reconstructs similarity val-
ues between nodes, and a loss function.

3.5. Other Important Work on Graph Neural Networks 57

Intuitively, matrix factorization methods try to learn embeddings for each node such that
the inner product between learned embeddings approximates some deterministic measure
of node similarity. By contrast, random walk approaches employ a flexible, stochastic
measure of node similarity, where nodes have similar embeddings if they tend to co-occur
on short random walks over the graph.

However, these two families of methods (shallow embedding methods) train unique embed-
ding vectors for each node independently, which leads to some drawbacks:

• No parameter sharing between nodes: computationally inefficient, loss of a powerful
form of regularization.

• Failure to leverage node attributes during encoding.

• Inherently transductive [25]: cannot generate embeddings for unseen nodes.

Neighborhood autoencoder methods [11, 77] solve the second issue by incorporating graph
structure using deep neural networks. They rely on autoencoders [30] to compress infor-
mation about a node’s local neighborhood. They still suffer from the other drawbacks.

Neighborhood aggregation/convolutional encoders solve the limitations of shallow embed-
dings and autoencoders by incorporating graph structure into the encoder, leveraging node
attributes, sharing parameters across nodes and they can generate embeddings for nodes
that were not present during training. The intuition behind them is that they gener-
ate embeddings for a node by aggregating information from its local neighborhood. This
family includes graph convolutional networks (GCN [40]), column networks [71] and Graph-
SAGE [25]. It is common for these methods to incorporate supervision from node classifi-
cation tasks in order to learn embeddings.

Applications of node embeddings include visualization and pattern discovery, clustering
and community detection, node classification and semi-supervised learning and link pre-
diction. What’s more, sets of node embeddings can be used to generate embeddings of
entire subgraphs. Methods to do this include sum-based and graph-coarsening approaches.
Subgraph embeddings can be used for classification or the prediction of various properties.

3.5.2 A Spectral Formulation of Convolutional Neural Networks
on Graphs

Defferard et al. introduce in [15] the mathematical and computational foundations of an
efficient generalization of CNNs to graph data by extending the convolution and pooling
operations to operate effectively on data lying on non-Euclidian domains.

58 Chapter 3. Graph Neural Networks

Their work relies on graph signal processing (GSP) tools to end up with an efficient spectral
graph formulation of CNNs on graphs. Their work shows that this framework is able to
produce localized graph filters which are efficient to evaluate and learn while having the
ability to extract relevant information from graph-structured data.

3.5.3 Learning Neural Fingerprints of Molecular Data

Duvenaud et al. introduce in [17] a GNN architecture for learning features (“fingerprint”
vectors, which are essentially encodings of different substructures of a molecule as a math-
ematical object) for molecular data represented with graph structures.

However, these fingerprints are non-differentiable and, in the case of circular fingerprints,
are no better at modeling chemical features than randomly initialized neural graph fin-
gerprints. To overcome these problems, the authors use a differentiable neural network
architecture whose lower layers are convolutional.

This neural graph method for computing differentiable fingerprints provides several advan-
tages over fixed fingerprints:

• Ability to encode only relevant features (fixed fingerprints on the other hand must
be extremely large to encode all possible substructures without overlap) therefore
reducing computational cost.

• Better predictive performance thanks to machine-optimized fingerprints through the
use of data relevant to the task at hand.

• More meaningful feature representations: similar but distinct molecular fragments
can activate the same neural graph fingerprint, as opposed to standard fingerprints
which encode each fragment completely distinctly.

By using a differentiable architecture, the authors show it is possible to use standard neural-
network training methods to scalably optimize the parameters of these neural molecular
fingerprints end-to-end and achieve better predictive performance.

3.5.4 Diffusion-Convolutional Neural Networks (DCNNs)

Atwood & Towsley introduce in [3] a neural network architecture for graph-structured
data by extending convolutional neural networks to general graph-structured data. To
accomplish this, the authors introduced a "diffusion-convolution" operation which builds a
latent representation by scanning a diffusion process across each node in a graph-structured

3.5. Other Important Work on Graph Neural Networks 59

input. Graph diffusion can be represented as the transition matrix (a matrix that gives
the probability of jumping from node i to node j in one step) power series.

This architecture offers several advantages over probabilistic relational models and kernel
methods1:

• DCNNs are significantly more accurate in node classification tasks compared to al-
ternative methods.

• They provide a flexible representation of graphical data which can be used for a
variety of classification tasks.

• Prediction from a DCNN can be expressed as a series of polynomial-time tensor
operations which is very efficient.

3.5.5 PATCHY-SAN (PSCN)

Niepert et al. introduce in [51] a framework to apply CNNs to bear on a large class of graph-
based learning problems. Similar to CNNs for images, they devise a scheme to construct
locally connected neighborhoods from input graphs (that is, leveraging graph structure to
map nodes and their neighborhood from a graph representation to a vector space repre-
sentation) which then serve as the receptive fields of a convolutional architecture, allowing
the framework to learn effective graph representations.

This approach, which they call PATCHY-SAN, proved to be highly competitive at tasks
such as graph classification against state-of-the-art graph kernel approaches at the time
while being computationally efficient, and it would provide the basis for later work on
graph neural networks, which represent the current state of the art on graph data-based
classification tasks.

3.5.6 Spectral and Locally Connected Networks on Graphs

Bruna et al. discuss in [10] ways to construct deep neural networks on graphs other than
regular grids. Specifically, they propose two different constructions: a spatial construction,
which extends the properties of subsampling and compactly supported filters to general

1Graph kernels work by employing a pairwise similarity measure between graphs in a given set of data.
A popular approach to graph classification with graph kernels is to use a graph kernel to compute an n
× n kernel matrix K where Kij represents the similarity between graphs Gi and Gj , and then to plug the
computed kernel matrix into a kernalized learning algorithm such as support vector machines (SVM) to
perform classification.
For more information on graph kernel methods, we refer the reader to [8] and [85].

60 Chapter 3. Graph Neural Networks

graphs and a spectral construction, which draws on properties of convolutions in the Fourier
domain to enable a construction where the number of learnable parameters is independent
of the input dimension.

These constructions allow efficient forward propagation and can be applied to datasets
with a very large number of features. Their main contribution consists in showing that it
is possible to obtain efficient architectures from a weak geometric structure, which they
validate on low-dimensional graph datasets.

3.5.7 Message Passing Neural Networks (MPNNs)

Gilmer et al. reformulate in [20] existing neural network approaches to graph data process-
ing into a single common framework they call Message Passing Neural Networks (MPNNs)
and explore additional novel variations within this framework.

Their results show that MPNNs with the appropriate message, update, and output func-
tions chosen from existing state-of-the-art GNNs have a useful inductive bias for predicting
molecular properties, outperforming several strong baselines and eliminating the need for
complicated feature engineering.

3.5.8 FastGCN

Chen et al. propose in [12] a modification to the original GCN architecture [40] for learning
graph embeddings called FastGCN, whose objectives are:

• To relax the requirement of simultaneous availability of test data: for example, con-
stantly evolving graphs require an inductive scheme that learns a model from only a
training set of vertices and that generalizes well to any augmentation of the graph.

• To mitigate time and memory impacts of the recursive neighborhood expansion across
layers.

To achieve these goals, they interpret graph convolutions as integral transforms of em-
bedding functions under probability measures and they use a sampling scheme in the
reformulation of the loss and the gradient. The proposed approach not only gets rid of
the reliance on the test data but also yields a controllable cost for per-batch computation
while retaining comparable prediction accuracy.

3.5. Other Important Work on Graph Neural Networks 61

3.5.9 Simple Graph Convolution (SGC)

Wu et al. theorize in [83] that graph convolutional networks (GCNs) and their variants
may be inheriting unnecessary complexity and redundant computation by virtue of deriving
inspiration from recent deep learning approaches, which have gained traction due to the
limitations of prior approaches. Consequently, in this paper, the authors worked to reduce
this complexity through successively removing nonlinearities and collapsing weight matrices
between consecutive layers.

Notably, their experimental evaluation demonstrates that these simplifications do not nega-
tively impact accuracy in many downstream applications such as node classification. More-
over, the resulting model—which they call Simple Graph Convolution (SGC)—scales to
larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup
over methods such as FastGCN in a variety of benchmark datasets.

3.5.10 UGRAPHEMB

Bai et al. introduce in [5] an end-to-end neural network-based framework for graph-level
representation learning (called UGRAPHEMB), in which they adopt the GIN state-of-the-art
architecture [84] as a node embedding method (although any architecture can be used under
such a framework). To generate their graph-level embedding, they propose an attention
mechanism called Multi-Scale Node Attention (MSNA).

Experiments on various benchmark datasets show that the produced graph-level embed-
dings achieve very competitive performance on three downstream tasks, namely, graph
classification, similarity ranking, and graph visualization.

CHAPTER 4

Attention Mechanisms

We introduce here attention mechanisms, an important concept we use to augment our
baseline GCN [40] and GIN [84] architectures and make them even more powerful.

An attention mechanism is a component of a neural network’s architecture which can help
improve a model’s performance by allowing it to focus on important parts of the input data
to make decisions. In other words, attention is in charge of quantifying the dependence
between the input and output elements.

Attention mechanisms have been successfully adopted by models solving different tasks,
mainly in computer vision and natural language processing, the latter being the break-
through application domain. Specifically, these mechanisms have been used for machine
translation [4] to allow the model to focus on the relevant parts of the input sentence by
assigning weights which reflect the relative importance of different words (in the input
sentence) to each translated word (output sentence). To better illustrate an attention
mechanism’s benefits, let us consider an example of English-to-French sentence translation
from [4]. The source sentence is:

An admitting privilege is the right of a doctor to admit a patient to a hospital
or a medical centre to carry out a diagnosis or a procedure, based on his status
as a health care worker at a hospital.

A first translation is done without “attention” and hence it is not so accurate since it cannot
be context-aware:

63

Un privilège d’admission est le droit d’un médecin de reconnaître un patient à
l’hôpital ou un centre médical d’un diagnostic ou de prendre un diagnostic en
fonction de son état de santé.

Notice how the translation deviates from the original meaning of the source sentence (un-
derlined text). The second translation, on the other hand, takes into account context
(through “attention”), which leads to a much better and natural translation:

Un privilège d’admission est le droit d’un médecin d’admettre un patient à un
hôpital ou un centre médical pour effectuer un diagnostic ou une procédure,
selon son statut de travailleur des soins de santé à l’hôpital.

Attention mechanisms have also been used to select important regions of an input image
for image classification [76]. Finally, attention has also been used in image [90] and natural
language [42] question answering.

More recently, there has been more interest in applying attention mechanisms to graph-
related tasks (e.g, graph classification [50], node classification [74, 19, 88] and link predic-
tion [23, 78]) where they are used to compute node embeddings that focus on the more
relevant neighbors of a given node. Attention mechanisms offer several benefits:

• Since attention is essentially a weighted average, it allows for dealing with variable-
sized inputs [74] without predefining the input size (in GNNs, attention can be used
on nodes with different numbers of neighbors), allowing the model to focus on task-
relevant parts of the graph.

• They allow the model to ignore noisy and task-irrelevant parts of the graph, improving
the signal-to-noise (SNR) ratio [37, 76].

• They make a model’s results more interpretable [74, 4] by analyzing the learned
attention weights.

The authors of [44] formally define graph attention as follows:

Definition 4.1. (Graph attention) Given a target graph object v0 (e.g., node, edge, graph)
and a set {v1, . . . , v|Nv0 |} of graph objects in v0’s neighborhood Nv0 , attention is defined as
a function fa : {v0}×Nv0 → [0, 1] that maps each of the objects in Nv0 to a relevance score
that indicates the importance of each object in Nv0 to v0. Furthermore, to make scores
easily comparable across different objects, we normalize them across all choices of vj in
Nv0 , that is,

∑|Nv0 |
j=1 fa(v0, vj) = 1.

In a neural network, these scores will be learned and, in the particular case of GNNs, they
will be used to compute a hopefully better node embedding that’s the weighted sum of the
features of its neighbors; instead of attributing the same weight to each neighbor.

64 Chapter 4. Attention Mechanisms

4.1 Types of Graph Attention Mechanisms

Attention mechanisms that have been applied to graphs can be classified into three main
types (as described in [44]). They all share the same purpose, that is, they are used to
help the model focus on relevant parts of a graph. However, these types differ in how the
attention mechanism is defined or implemented, with the difference usually being in the
attention function fa (see Definition 4.1). We describe them here.

4.1.1 Velickovic et al.’s Attention

The first type is the attention mechanism described in Graph Attention Networks (GATs) [74].
This particular type of attention is called self-attention—that is, it quantifies the inter-
dependence between the input elements. This is different from general attention, which
quantifies the dependence between the input and output elements (as mentioned at the
beginning of this chapter as a general definition of attention).

In that paper, Velickovic et al. introduced a GNN model based purely on attention (im-
plemented as a two-layer network of what they call graph attentional layers) and managed
to best the GCN and other competing methods in classification accuracy across various
datasets. This suggests that their attention mechanism is very powerful, and that by mix-
ing these attention layers with GCN or GIN layers, we might be able to achieve even better
performance than standalone GCNs, GINs or GATs. We use a slightly modified version of
this attention mechanism to augment our baseline GCN and GIN architectures, the details
of which are discussed in Chapter 5.

A graph attentional layer in the GAT accepts as input a set of node embeddings {h1, h2, ..., hn},
hi ∈ RF corresponding to the nodes {v1, v2, ..., vn}, where n is the number of nodes and F
is the dimension of each embedding. It outputs a new set of embeddings (of a potentially
different dimension F ′), {h′1, h′2, ..., h′n}, h′i ∈ RF ′ .

As a first step, a linear transformation, parameterized by W, maps node embeddings from
RF to RF ′ . Then, an attention mechanism fa : RF ′ × RF ′ → R is applied as follows:

ei,j = fa(Whi,Whj), vj ∈ Nvi , (4.1)
ei,j = 0, vj /∈ Nvi , (4.2)

with Nvi being the neighborhood of node vi. The computed coefficients ei,j represent the
relative importance of node vj to node vi and from the two equations above, attention
is only performed (i.e., non-zero) on a node’s neighbors.1 To make coefficients easily

1The equations as written in the original GAT paper [74] (and here) may lead the reader to think that
attention scores are only computed for a node’s neighbors. However, the authors explicitly say that, in

4.1. Types of Graph Attention Mechanisms 65

comparable across different nodes, we normalize them across all choices of nodes vj ∈ Nvi

using a masked softmax function:

αi,j = softmax(ei,j) =
exp(ei,j)∑

vk∈Nvi
exp(ei,k)

, vj ∈ Nvi , (4.3)

αi,j = 0, vj /∈ Nvi . (4.4)

The attention mechanism fa is a single-layer feed-forward neural network, parameterized
by a trainable weight vector a, then followed by the LeakyRelu nonlinearity. Eq. (4.3) then
becomes:

αi,j =
exp (LeakyReLU(a[Whi ||Whj]))∑

vk∈Nvi
exp (LeakyReLU(a[Whi ||Whk]))

, vj ∈ Nvi , (4.5)

where || represents the concatenation operation. Once obtained, the normalized attention
coefficients are used to compute a linear combination of the features corresponding to
them—which is effectively a weighted graph convolution operation—to serve as the final
output features for every node (after potentially applying a nonlinearity, σ):

h′i = σ

(∑
j

αi,jWhj

)
. (4.6)

This is the particular weighted convolution used by the authors. In practice, however, the
computed attention weights can be used along a different convolution operator.

The authors have also found it useful to employ multi-head attention. This means that K
independent attention mechanisms execute the transformation of Eq. (4.6), and then their
features are concatenated, resulting in the following output feature representation:

h′i =
Kn

k=1

σ

(∑
j

αki,jW
khj

)
, (4.7)

where
f
represents concatenation, αki,j are normalized attention coefficients computed by the

kth attention mechanism (ak), and Wk is the corresponding input linear transformation’s
weight matrix. Note that, in this setting, the final returned output will consist of K ×
F ′ features (rather than F ′) for each node. If multi-head attention is performed at the
prediction level, the authors employ averaging instead of concatenation, and delay applying
the final nonlinearity until then:

h′i = σ

(
1

K

K∑
k=1

∑
j

αki,jW
khj

)
. (4.8)

their experiments, the scores are also computed for the node itself. In Section 5.1 , where we propose our
own attention mechanism, we modify the notation to reflect the fact that we also compute attention scores
for the nodes themselves.

66 Chapter 4. Attention Mechanisms

4.1.2 Similarity-Based Attention

This type of attention is fairly similar to the previous one, the main difference being the
use of the cosine-similarity (sim(~a,~b) = ~a·~b

||~a||·||~b||
) to give more attention to objects that share

more similar features. This attention model was used in Attention-based Graph Neural
Networks (AGNNs) [41], where attention weights are computed as follows:

αi,j =
exp (β · sim(Whi,Whj))∑

vk∈Nvi
exp (β · sim([Whi,Whk]))

, (4.9)

where sim is the cosine-similarity function and W is a trainable weight matrix. This model
explicitly learns similar embeddings for objects that are relevant to each other.

4.1.3 Attention-Guided Walk

The third type of graph attention is slightly different in purpose. This type of attention
was used in Graph Attention Models (GAMs) [37]. In this network, we have an agent that
starts at a random node on the graph and, at each time step, moves to a neighboring node.
The agent can only gather information from the nodes it chooses to explore; that means
that the agent needs to collect enough information to allow it to make a correct prediction
on the label of the graph. The agent will only explore a small portion of the graph which
means that global information about the graph is unavailable.

The attention mechanism, in this architecture, acts as a guide for the agent and is defined
as a function fa : Rh → Rk which takes as input the hidden state at time t, ht ∈ Rh (ht
contains information from all the nodes previously explored) and outputs a k-dimensional
vector, rt+1, that ranks the k nodes of the graph according to which should be visited in
the next step.

CHAPTER 5

Proposed Architectures

Now that all the essential building blocks to our work—namely GCNs, GINs and attention
layers—have been explained in detail, we introduce in this chapter our proposed architec-
tures.

As mentioned briefly in Subsection 4.1.1, our main contribution lies in augmenting the
GCN [40] and GIN [84] architectures with a modified variant of the attention mechanism
proposed in [74]. We call the two resulting architectures Graph Convolutional Network with
Attention (GCNA) and Graph Isomorphism Network with Attention (GINA), respectively.
In the next section, we describe our own implementation of the attention mechanism before
detailing the GCNA and GINA architectures.

5.1 Proposed Attention Mechanism

We augment the GCN and GIN architectures with the attention mechanism presented
in [74], and defined in Subsection 4.1.1, to which we make a couple of simplifications due
to computational complexity considerations. More precisely, we use neither the linear
transformation (characterized by the weight matrix W and described in Eq. (4.5)) nor
multi-head attention. These changes mean that Equations (4.7) and (4.8) are unused
while Eq. (4.5) simplifies to:

αi,j =
exp (LeakyReLU(a[hi || hj]))∑

vk∈N∗vi
exp (LeakyReLU(a[hi || hk]))

, vj ∈ N∗vi , (5.1)

68 Chapter 5. Proposed Architectures

where we compute attention scores for a node’s neighbors and the node itself (i.e., N∗vi =
Nvi ∪ {vi}) and, for any hi ∈ RF , let us recall that a ∈ R2F is the trainable weight vector
of the attention mechanism (which is a single-layer feed-forward neural network).

Once we compute attention coefficients αi,j (refer to Subsection 4.1.1 for more details), we
use them to perform a weighted graph convolution, where the neighbors of a node, vi, con-
tribute proportionally to their attention coefficients, αi,j, in the new node embedding of vi.
Implementing this weighted graph convolution in a GCN or a GIN is fairly straightforward.
In fact, all we need to do is create a new, weighted adjacency matrix Aα by multiplying
non-zero entries in the adjacency matrix with added self-loops by the corresponding αi,j
coefficients, as illustrated in the example below.

Example 5.1. Let A be an adjacency matrix. The weighted adjacency matrix, Aα, used
for graph convolution after self-loops are added and attention is applied is as follows.

A
0 1 0 . . . 1

1 0 1 . . . 0
...

...
...

. . .
...

1 0 1 . . . 0

−→
A w/ self-loops
1 1 0 . . . 1

1 1 1 . . . 0
...

...
...

. . .
...

1 0 1 . . . 1

 attention−−−−−−→

Aα
α1,1 α1,2 0 . . . α1,n

α2,1 α2,2 α2,3 . . . 0
...

...
...

. . .
...

αn,1 0 αn,3 . . . αn,n

where n is the number of nodes of our input graph.

This not only preserves the structure of the input graph (as null elements in the original
adjacency matrix A are preserved in Aα), but also provides us with an efficient, vectorized
way to update node embeddings in our GCNA and GINA architectures, the details of
which are introduced in the following sections.

5.2 Graph Convolutional Network with Attention (GCNA)

First, let us recall the two (equivalent) fundamental embedding equations of the GCN
architecture detailed in Section 3.3:

Z = f(X,A) = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
, (3.4)

h
(l)
i = f (l−1)

(
W (l−1)·MEAN

{
h
(l−1)
j ,∀vj ∈ Nvi ∪ {vi}

})
, (3.5)

where l ∈ {1, 2}, h(0)i = Xi, vi ∈ V for a graph G = (V,E), f (0) = ReLU, f (1) = softmax
and Z in Eq. (3.4) is the matrix whose rows are the vectors h(2)i , vi ∈ V .1

1Note that, unlike in Section 3.3, we use l to index layers instead of k. This is done in order to avoid
notational confusion in the next (GCNA) equations.

5.2. GCNA 69

Our GCNA architecture is the result of applying our attention mechanism (see Section 5.1)
on the two layers, l ∈ {1, 2}, of the GCN. For each layer, the first step is to compute the
attention coefficients α(l−1)

i,j using the attention mechanism, then update node embeddings.
The whole end-to-end architecture can be described with:

α
(l−1)
i,j =

exp
(
LeakyReLU(a(l−1)[h(l−1)i || h(l−1)j])

)
∑

vk∈N∗vi
exp

(
LeakyReLU(a(l−1)[h(l−1)i || h(l−1)k])

) , vj ∈ N∗vi , (5.2)

h
(l)
i = f (l−1)

(
W (l−1)·SUM

{
α
(l−1)
i,j h

(l−1)
j , ∀vj ∈ N∗vi

})
, (5.3)

where l ∈ {1, 2}, h(0)i = Xi, vi ∈ V for a graph G = (V,E), f (0) = ReLU, f (1) = softmax.
Note that the MEAN has been replaced with the SUM in Eq. (5.3). Indeed, the weighted
arithmetic mean, when the weights sum up to 1 (

∑
vj∈N∗vi

α
(l−1)
i,j = 1), is equivalent to the

weighted sum.

Applied in the listed order, these equations represent our two-layer GCNA architecture.
It is interesting to note that Eq. (3.4) can be rewritten in terms of two new, weighted
adjacency matrices A(0)

α and A(1)
α whose elements are α(0)

i,j and α(1)
i,j , respectively:2

Z = f(X,A) = softmax
(
A(1)
α ReLU

(
A(0)
α XW (0)

)
W (1)

)
. (5.4)

The original GCN does not include a READOUT function (see Eq. (3.3)) since the authors
do not use it for graph classification. However, in our implementation of the GCN and
GCNA architectures for the graph classification task, we sum the final-layer representations
h
(2)
i of all the nodes of the input graph to obtain our graph-level readout hG:

hG =
∑
vi∈V

h
(2)
i . (5.5)

Then, we pass hG as input to a softmax function for classification:

yG = softmax(hG), (5.6)

where the position of the highest score in yG indicates the predicted class of the input
graph. For a visual illustration of the GCNA architecture, see Fig. 5.1.

2It is unnecessary to use the normalization mentioned in Section 3.3 and in the original GCN paper [40]
since normalized Âα = Aα.

70 Chapter 5. Proposed Architectures

Figure 5.1: GCNA architecture. Note that H(l) is the matrix of the lth-layer node embed-
dings h(l).

5.3 Graph Isomorphism Network with Attention (GINA)

We propose here our second architecture: GINA. In the same way, let us recall the funda-
mental GIN embedding equation detailed in Section 3.4:

h
(l)
i = MLP(l)

(1 + ε(l)) · h(l−1)i +
∑
vj∈Nvi

h
(l−1)
j

 , (3.7)

where l ∈ {1, 2, . . . , L} (L being a hyperparameter indicating the number of layers), h(0)i =

Xi, vi ∈ V for a graph G = (V,E).

Similarly to our proposed GCNA architecture, GINA is the result of applying our attention
mechanism (see Section 5.1) on each layer of the GIN. For each layer, the first step is to
compute the attention coefficients α(l−1)

i,j using the attention mechanism, then update node
embeddings. The whole end-to-end architecture can be described with:

α
(l−1)
i,j =

exp
(
LeakyReLU(a(l−1)[h(l−1)i || h(l−1)j])

)
∑

vk∈N∗vi
exp

(
LeakyReLU(a(l−1)[h(l−1)i || h(l−1)k])

) , vj ∈ N∗vi , (5.7)

h
(l)
i = MLP(l)

(1 + ε(l)) · α(l−1)
i,i h

(l−1)
i +

∑
vj∈Nvi

α
(l−1)
i,j h

(l−1)
j

 , (5.8)

where l ∈ {1, 2, . . . , L} (L being a hyperparameter indicating the number of layers), h(0)i =

Xi, vi ∈ V for a graph G = (V,E). Note that the convolution in Eq. (3.7) becomes

5.3. GINA 71

weighted in Eq. (5.8) thanks to the attention scores. Furthermore, in our experiments,
we set ε = 0 as we have found in practice that it adds computational complexity with no
performance benefit. This means that Eq. (5.8) simplifies to:

h
(l)
i = MLP(l)

 ∑
vj∈N∗vi

α
(l−1)
i,j h

(l−1)
j

 . (5.9)

Applied in the listed order, these equations represent our full GINA architecture. To create
our graph-level readout hG, we simply sum the last-layer node representations h(L)i :

hG =
∑
vi∈V

h
(L)
i . (5.10)

Then, we pass hG as input to a softmax function for classification:

yG = softmax(hG). (5.11)

where the position of the highest score in yG indicates the predicted class of the input
graph. For a visual illustration of the GINA architecture, see Fig. 5.2.

Figure 5.2: GINA architecture. Note that H(l) is the matrix of the lth-layer node embed-
dings h(l).

In the next chapter, we evaluate these architectures on a number of benchmark datasets,
detailing the full process of training and testing as well as discussing the results.

CHAPTER 6

Experimental Procedure

In this chapter, we extensively detail our experimental procedure and discuss our empirical
results. We present, in particular: (i) the benchmark datasets we use to train and evaluate
our models, GCNA and GINA, (ii) the software tools we use, (iii) the architectures of
our models and the baselines against which we compare them, GCN and GIN, (iv) the
detailed descriptions of data preprocessing, training, testing, and hyperparameter tuning
procedures and (v) the results we achieve for each model on each dataset.

6.1 Datasets

To evaluate our models, we use four real-world graph classification benchmark datasets
among the most widely used in GNN literature.1 We also artificially generated and used
a dummy dataset early on to validate the implementation of our models. Some dataset
statistics are summarized in Table 6.1 and a brief description of each dataset is given in
this section.

6.1.1 Dummy Dataset

To test the correct numerical implementation of our architectures (including baselines,
since we also code those from scratch), we created an artificial dataset containing a certain

1TU Dortmund University maintains a database of many graph datasets. It can be accessed through
this link: https://chrsmrrs.github.io/datasets/docs/datasets/

https://chrsmrrs.github.io/datasets/docs/datasets/

6.1. Datasets 73

number of random graphs.

For each graph, we randomly generate an adjacency matrix, a node feature matrix and a
label. These graphs have a predefined—and equal—number of nodes. Adjacency matrices
are created by summing randomly generated triangular binary matrices and their transpose.
We then generate a binary label for each node in each graph based on whether it has
neighbors (label = 1) or not (label = 0). This gives some sense to our labels and prevents
our data from being completely random, which can lead to erratic model behavior and
thus make debugging more difficult.

We used this dataset primarily to debug potential mistakes in our code and to assess our
models’ behavior on a simple, binary node classification task. Therefore, we do not report
performance results for this dataset.

6.1.2 ENZYMES

ENZYMES is a dataset consisting of 600 graphs representing the protein tertiary struc-
tures (i.e., three-dimensional shapes) of various proteins obtained from the BRENDA [64]
enzymes database.

Nodes in these graphs represent the protein secondary structures (the three-dimensional
form of local segments of proteins, i.e., helices, sheets and turns) and edges represent
whether those structures are neighbors in space. These graphs are divided into 6 classes
according to their Enzyme Commission number (EC number), which is a numerical classifi-
cation scheme based on the chemical reactions that an enzyme catalyzes. This dataset also
contains attributes for each node representing physical and chemical information thereof.
These attributes include hydrophobicity and the van der Waals volume (the space occupied
by the molecule, which is impenetrable to other molecules at ordinary temperatures).

6.1.3 PTC

The PTC dataset was created for the Predictive Toxicology Challenge [29] to compare
different approaches for the prediction of rodent carcinogenicity of new compounds (i.e.,
the ability of a compound to cause cancer to a rodent) based only on information derived
from their structure. The PTC dataset is divided into four smaller datasets based on the
gender of the rodents (Male/Female) and and their type (Mice/Rats).

In our case, we used the PTC-MR (Male Rats) dataset. This dataset contains 344 graphs
representing different chemical compounds labeled according to their carcinogenicity on
rodents. The nodes and edges on these graphs represent atoms and the chemical bonds
between them.

74 Chapter 6. Experimental Procedure

Property Graphs Classes Avg. n Max. n d

MUTAG 188 2 17.93 28 −
PTC 344 2 14.29 64 −
ENZYMES 600 6 32.63 126 18

SYNTHIE 400 4 95 100 15

Table 6.1: Properties of the tested datasets. n is the number of nodes, d is the number
of node features, Avg. n is the average number of nodes per graph and Max. n is the
maximum number of nodes per graph.

6.1.4 MUTAG

The MUTAG [14] dataset consists of 188 graphs of chemical compounds wherein nodes
represent atoms and edges represent the chemical bonds between them. These graphs are
divided into two classes according to their mutagenic2 effect on special bacteria.

6.1.5 Synthie

Synthie [49] is a synthetic (i.e., artificially generated) dataset containing 400 graphs divided
into four classes. Nodes have real-valued attribute vectors of dimension d = 15. The
generation procedure of this dataset is explained in details in [49].

Fig. 6.1 shows class distributions for ENZYMES, PTC, MUTAG and Synthie. With the
exception of Synthie, all the datasets are rather well-balanced. This gives us insight on
which performance measure to choose.

6.2 Baselines

To assess the potential benefits of using an attention mechanism, we compare our ar-
chitectures, GCNA and GINA, with their respective versions without attention, namely
GCN [40] and GIN [84], as baselines.

The next section details our experimental procedure.

2Mutagens are physical or chemical agents that change the genetic material (DNA) of an organism.
This increases the number of mutations of the organism, potentially causing cancer.

6.3. Detailed Experimental Setup 75

Figure 6.1: Class distribution for ENZYMES, PTC, MUTAG and Synthie datasets.

6.3 Detailed Experimental Setup

6.3.1 Software

Python

The Python programming language has become the standard for most machine learning
and artificial intelligence applications. One of the main reasons for that is the great software
library ecosystem that it offers, where many libraries are optimized to handle basic machine
learning algorithms, data preprocessing and data visualization. The libraries we used in
this work are described here:

• NumPy [52, 73] is a package dedicated to numerical computation in Python. It
includes support for multi-dimensional arrays (vectors, matrices, tensors) and offers
a large number of functions that can be used on those arrays.

• scikit-learn [55] offers a large number of basic ML algorithms such as clustering,
logistic regression and support vector machines. It also includes support for data
preprocessing and visualisation through its numerous functions.

• Matplotlib [33] is a data visualization library used to create 2D and 3D plots,
histograms, pie charts, and other forms of visualization.

76 Chapter 6. Experimental Procedure

• NetworkX [24] is a package for the manipulation of graph data. It is particularly
useful for preprocessing graph datasets, where raw data—which is stored in text
files—needs to be used to efficiently generate adjacency and features matrices that
are compatible with NumPy.

To efficiently implement deep learning models along with all the necessary computations,
however, we need a high-performance machine learning computation framework, of which
many open-source options are available. For this work, we use PyTorch [54].

PyTorch

PyTorch [53] is an open-source deep learning framework on Python supported by Face-
book’s AI Research group (FAIR). This framework is very flexible, easy to learn, and well
documented. Additionally, PyTorch integrates seamlessly with most libraries used in deep
learning and data analysis (such as NumPy), streamlining the data preprocessing proce-
dure. Moreover, PyTorch leverages the computational power of graphics processing units
(GPUs), which are an all-around much better optimized tool for tensor operations than
central processing units (CPUs), making the training process significantly faster.

Another major advantage of PyTorch is its differentiation engine Autograd, which provides
automatic differentiation (i.e., backpropagation and gradient computation) for all opera-
tions on tensors, meaning that we only need to define the forward propagation structure
of our model.

Google Colab

Training deep learning models can be very demanding in terms of computational resources.
Our models in particular consist of multiple graph convolution layers that have high num-
bers of trainable parameters, making training on personal laptops with mainstream GPUs
very time-consuming. This is why we use the Google Colab platform.

Google Colab3 is a free programming environment that runs entirely on cloud-based servers
and offers users free access to an Nvidia Tesla K80 GPU for sessions of up to 12 hours.
Moreover, Google Colab servers are preloaded with a Python environment, making this a
convenient tool for our purposes.

3https://colab.research.google.com

https://colab.research.google.com

6.3. Detailed Experimental Setup 77

6.3.2 Data Preprocessing

The necessary software tools introduced, we detail here our data preprocessing procedure.

First, we use the NetworkX library [24] to generate NumPy-compatible adjacency and
feature matrices from the raw datasets (stored in text files and available at [38]. Since
graphs in each dataset vary in size (i.e., they have different numbers of nodes), we equalize
adjacency and node feature matrices’ dimensions across all graphs in a given dataset in
order to leverage PyTorch’s efficient built-in data manipulation tools.

Specifically, to achieve this while preserving structural information about input graph data,
we use the size of the largest graph in the dataset (say it has n nodes, thus an adjacency
matrix A ∈ Nn×n and a node feature matrix X ∈ Rn×d, d being the number of node
features) as the common size for all other graphs in the dataset. For these other graphs,
we fill each adjacency matrix with zeros until we reach the desired n × n dimension. We
do the same with node feature matrices: we fill them with extra, zero-valued rows until
each matrix is of dimension n× d. This process is called zero-padding.

6.3.3 Architectures

As mentioned previously, we used the PyTorch framework to implement all the models we
investigate; this includes our models, GCNA and GINA, as well as the baselines, GCN and
GIN.4 We started by building the elementary layers for each architecture, that is, graph
convolution layers, MLP layers and attention layers. We then combine these layers to
create the GIN(A) and GCN(A)5 models (see equations in Sections 3.3, 3.4, 5.2 and 5.3).
Each architecture is determined by a set of hyperparameters, namely:

• The number of graph convolution (GC) layers: this is specific to the GIN(A) ar-
chitecture. It corresponds to the highest value for k and l in Eq. (3.7) and (5.8),
respectively. As for GCN(A), we fix the number of GC layers to two, as done in [40].

• The number of layers in each MLP: this is also specific to GIN(A). It indicates the
size of each MLP.

• The number of hidden units: for GIN(A), it refers to the dimension of the hidden
layers in each MLP, i.e., the size of its linear mappings. For GCN(A), it refers to
the dimension of the linear mappings determined by matrices W (0) and W (1) (see
Eq. (3.4) and (5.4)).

All tested values of the aforementioned architecture-related hyperparameters are detailed
in Tables A.2 and A.1 in Appendix A.

4Our code is available at https://github.com/theatamna/PFE
5For the sake of brevity, we write GCN(A) or GIN(A) instead of GCN and GCNA or GIN and GINA.

https://github.com/theatamna/PFE

78 Chapter 6. Experimental Procedure

6.3.4 Regularization and Training Hyperparameters

For regularization, we apply dropout and weight decay, both described in Section 2.7.
When used, dropout is applied to the output of each convolutional layer, as well as to the
attention coefficients described in Eq. (5.1); in other words, each node of the graph is only
exposed to a stochastically sampled neighborhood. We also use batch normalization (see
Subsection 2.9.1) on every layer on GIN as well as GINA. There are also hyperparameters
specific to the training procedure which we recall here:

• Batch size: it defines the number of data samples to use by SGD to update the
gradients (model’s parameters). We use batches of size 128.

• Number of epochs: it defines the number of times SGD passes through the entire
dataset.

• Learning rate (lr): a positive scalar η that defines the step size taken towards the
optimum at each iteration.

• Learning rate decay: it determines the amount 1− γ by which the learning rate η is
decreased each x epochs, i.e., η ← γ.η every x epochs. We use γ = 0.8 and x = 50.

• Dropout: it randomly deactivates neurons with a given probability p to reduce over-
fitting. In our case, dropout can be applied to the graph convolution layers of our
architectures, or to the attention layers.

• Weight decay (wd): it determines the importance of the L2 regularization term in
the loss function.

While we fix some of these hyperparameters to a given value, we tune the remaining
as explained in Section 6.4. All tested hyperparameter configurations can be found in
Tables A.2 and A.1 in Appendix A.

6.3.5 Training Procedure

We train our models by performing 5-fold cross-validation for each tested hyperparameter
configuration, where we repeat the training 5 times, each using a different fold as test set
and the remaining folds as training set.6 We use the Adam optimizer [39] introduced in
Subsection 2.4.2 on the cross-entropy loss defined in Eq. (2.19). To assess the performance
of each architecture for a given configuration, we report the average test accuracy over all
5 test folds along with its standard deviation, as well as the maximum accuracy over all 5

6Cross-validation is important as it allows each and every example in the considered dataset to be used
for testing, thus helping in checking the model’s ability to generalize to broader data.

6.4. Results 79

test folds. We opted for the accuracy as our performance measure because it is well-suited
for balanced datasets, where classes have approximately the same number of samples. In
our case, most of the datasets we use are well balanced as illustrated in Fig. 6.1. For a
better interpretation of the test set performance, we also investigate the learning curves
(training loss and training accuracy curves) of our models, as illustrated in Section 6.4.

Due to the complexity of the models and the size of the datasets, we had to perform the
training procedure on the Google Colab platform. For a given dataset, we first load it from
our Google Drive repository and perform the preprocessing step explained in Subsection
6.3.2. The dataset is then split into 5 folds for cross-validation. Since Colab only offers
limited runtime, we had to create checkpoints after each fold where we save the training
loss and training accuracy for each epoch, as well as the test accuracy for that fold.

Hyperparameter Tuning

Due to the high computational cost of grid and random search, we did not use either
of them for our hyperparameter tuning. In fact, performing grid search, for example,
for all of our hyperparameters (10 for GIN(A) and 8 for GCN(A)) on the Google Colab
platform is impractical. Instead, we opted for an iterative process where we optimize
one hyperparameter while keeping the others fixed. That is, at each tuning iteration, we
perform 5-fold cross-validation for a set of configurations where only one hyperparameter
is varied. Then, we pick the configuration with the best test performance and generate a
new set of configurations by varying another hyparameter. We repeat this process until
we obtain satisfactory results.

To reduce the number of hyperparameters to tune, we fix some of them across all models and
all datasets as mentioned previously. In particular, we fix the number of graph convolution
layers in GCN(A) to 2 throughout all experiments.7 We also set the batch size to 128 and
the learning rate decay to 0.8 every 50 epochs.

We start our tuning process from the configuration shown in Table 6.2 that we deem rea-
sonable and from which we generate a set of configurations by varying one hyperparameter.
We then perform the tuning procedure as described previously.

6.4 Results

We discuss in this section both training and test results obtained by GCN, GCNA, GIN
and GINA on the four datasets presented in Section 6.1 (except the dummy dataset):

7The parameter “#GC layers” (number of graph convolution layers) for GCN(A) is omitted in config-
uration tables for this reason.

80 Chapter 6. Experimental Procedure

ENZYMES, PTC, MUTAG and Synthie. In particular, we discuss two hyperparameter
configurations: the initial configuration with which we began training/testing and the
best configuration we achieved. The full list of all tested configurations can be found in
Appendix A.

6.4.1 Initial Configuration

Table 6.2 lists the hyperparameters of the initial configuration for each model. We use the
same number of hidden units at each layer for all architectures. We also train for the same
number of epochs with PyTorch’s default learning rate for Adam. As for regularization,
we use a weight decay of 10−3. Fig. 6.2 shows learning curves (training loss and training
accuracy) for one fold on each dataset for all models. Test results are shown in Table 6.3.

Model lr #epochs Hid. dim. Dropout wd #GC layers #MLP layers
GIN(A) 0.001 300 128 0.0 10−3 5 2
GCN(A) 0.001 300 128 0.0 10−3 − −

Table 6.2: Initially tested configuration for each model.

Training Results

Looking at the learning curves in Fig. 6.2, we see that GIN(A) models are able to almost
perfectly fit all the training sets, achieving 100% training accuracy on the ENZYMES and
Synthie datasets and over 90% on the PTC and MUTAG datasets. The corresponding loss
function curves decrease much more sharply compared to GCN(A) and reach much lower
values at the end of training. As such, GIN(A) models significantly outperform GCN(A)
models on training sets (especially on the ENZYMES dataset) as shown by the accuracy
curves, which is to be expected as GIN is a more complex architecture than GCN and, as
such, has more representational power.

With regards to the attention mechanism, we see that model variants with it achieve better
or similar accuracy: GCNA slightly outperforms GCN on all but the PTC dataset (with
similar loss curves across all datasets) while GINA achieves lower loss values compared to
GIN on three datasets, the fourth being equal. Accuracy-wise, since even the standard
GIN learns well on training data, GINA achieves similar results and both architectures are
able to fit training data extremely well.

Test Performance

Table 6.3 summarizes the test accuracy achieved by each model with the initial configu-
ration on each dataset. Comparing these results, we immediatly see that GINA achieves

6.4. Results 81

the best results on ENZYMES and Synthie, GIN is the best on MUTAG, while GCN tops
the results on PTC. Clearly, the attention mechanism brings important improvements on
GINA compared to GIN on three out of four datasets (up to a significant +5.6% on Syn-
thie). On the other hand, attention only improves the performance of GCNA compared to
GCN on one dataset (+6.2% on ENZYMES).

Model
GCN GCNA GIN GINA
Avg. acc. Max. Avg. acc. Max. Avg. acc. Max. Avg. acc. Max.

MUTAG 82.0 ± 4.86 89.0 80.8 ± 7.96 94.0 84.0 ± 3.10 86.0 82.0 ± 5.44 89.0
PTC 56.4 ± 3.01 60.0 55.0 ± 5.93 65.0 49.2 ± 6.94 57.0 52.0 ± 3.52 57.0

ENZYMES 25.8 ± 3.97 31.0 32.0 ± 4.0 37.0 54.0 ± 2.28 58.0 56.6 ± 2.87 60.0
Synthie 44.4 ± 4.41 51.0 40.8 ± 3.82 45.0 79.0 ± 4.77 87.0 84.6 ± 2.42 88.0

Table 6.3: Test results for each model on each dataset for the initial configuration.
Reported is the average test accuracy (on 5 folds) with the standard deviation, as well as
the maximum test accuracy. Bold font indicates the best result for each dataset.

To be more specific about the impact of the attention mechanism, we notice that, for EN-
ZYMES, it improves performance across the board: GINA performs better than GIN while
GCNA outperforms GCN. However, test accuracy for GIN(A) is much lower than training
accuracy, suggesting that these models are overfitting; thus, more regularization needs to
be used. Synthie test results follow the same pattern as ENZYMES for GIN(A); GCN,
however, outperforms GCNA. GCN keeps outperforming GCNA on PTC and MUTAG
(even achieving the best overall result on PTC), perhaps suggesting that the attention
mechanism does not work as well on GCN as on GIN. It should be noted that GIN and
GINA exhibit clear overfitting on PTC and ENZYMES, again suggesting that there is a
need for more regularization.

There is a particularly noteworthy aspect when looking at these initial results: adding
the attention mechanism significantly improves the performance of GIN on datasets where
nodes have features. In the next subsection, where we discuss the best achieved results,
we see whether the patterns observed here still hold.

6.4.2 Best Configuration

After trying different configurations (see Appendix A) and adding dropout to attention
layers with a rate of 0.6,8 we achieved better test results on all datasets for all the models,
as shown in Table 6.5. These results where obtained using the configurations in Table 6.4.

8Dropout on attention layers is only used in this subsection, with a rate of 0.6. The dropout values
listed in Table 6.4 are for the outputs of each convolutional layer, as in Subsection 6.4.1.

82 Chapter 6. Experimental Procedure

Dataset Model
Hyperparameters

lr #epochs Hid. dim. Dropout #GC layers #MLP layers

MUTAG

GCN 0.001 300 64 0.0 − −
GCNA 0.001 300 128 0.0 − −
GIN 0.001 300 128 0.0 2 4
GINA 0.001 300 128 0.0 2 6

PTC

GCN* 5e-05 300 48 0.0 − −
GCNA* 5e-05 300 192 0.0 − −
GIN* 0.0001 300 80 0.2 4 8
GINA 0.001 300 128 0.0 3 6

ENZYMES

GCN* 0.0008 500 128 0.0 − −
GCNA 0.01 350 128 0.0 − −
GIN 0.001 500 128 0.0 4 8
GINA 0.001 500 128 0.0 4 8

Synthie

GCN* 0.001 300 128 0.25 − −
GCNA* 0.001 300 400 0.0 − −
GIN 0.001 300 128 0.0 2 4
GINA 0.001 300 128 0.0 2 4

Table 6.4: Best configuration for each model on each dataset. Dropout rates in the table
are applied to graph convolution layers. A dropout rate of 0.6 is additionally applied to
attention layers for GCNA and GINA in each configuration. A weight decay of 10−3 is also
applied everywhere except for configurations marked with ‘*’.

6.4. Results 83

Training Results

Looking at the learning curves in Fig. 6.3, we notice that loss function curves are more
noisy—especially for GIN(A)—compared to the curves in Subsection 6.4.1. This indicates
that further tuning is required in order to mitigate the noise during training. A possible
solution could be to reduce the dropout rate on attention layers or to use more graph
convolution (GC) layers (unlike in the initial configuration, there seems to be more GC
layers than MLP layers for GIN(A)). When looking at training accuracy, we see that GCNA
equals or outperforms GCN on all datasets while reaching lower loss function values. The
reverse is true for GIN(A): GIN achieves equal or higher training accuracies compared to
GINA while reaching lower loss function values on ENZYMES and Synthie.

Test Performance

Comparing the test results in Table 6.5, we notice the same trends as in Subsection 6.4.1:
GINA achieves the best results on ENZYMES and Synthie, GIN is the best on MUTAG,
while GCN tops the results on PTC. After tuning, the attention mechanism brings even
more significant improvements on GINA compared to GIN on the two datasets with node
features (+3.6% on Synthie and an impressive +14.2% on ENZYMES, while closing the
gap to GIN on MUTAG and being extremely close on PTC). On the other hand, we still
see that attention does not help GCNA much and that it still overfits compared to GCN
(its only advantage is +1.4% on MUTAG).

These test results also stress the importance of hyperparameter tuning: for the best-
performing models, we notice performance improvements ranging from+3.2% up to+12.8%

on the four datasets compared to the initial configuration in Subsection 6.4.1. We also see
that regularization contributes to better generalization, especially for GINA: although its
performance on the training set decreased on MUTAG and it takes more epochs to train
on ENZYMES, its test performance improves significantly nonetheless. It also generalizes
better on Synthie compared to the baseline GIN.

Model
GCN GCNA GIN GINA
Avg. acc. Max. Avg. acc. Max. Avg. acc. Max. Avg. acc. Max.

MUTAG 84.4 ± 6.28 94.0 85.8 ± 3.91 89.0 87.2 ± 2.8 92.0 86.2 ± 5.30 94.0
PTC 60.6 ± 5.71 66.0 58.2 ± 3.96 66.0 57.2 ± 4.83 63.0 57.0 ± 4.86 65.0

ENZYMES 38.0 ± 5.40 46.0 35.8 ± 1.72 38.0 55.2 ± 4.06 60.0 69.4 ± 3.38 74.0
Synthie 53.6 ± 5.00 63.0 46.2 ± 6.55 53.0 87.4 ± 1.35 90.0 91.0 ± 3.84 97.0

Table 6.5: Best test results after hyperparameter tuning for each model on each dataset.
Reported is the average test accuracy (on 5 folds) with the standard deviation, as well as
the maximum test accuracy. Bold font indicates the best result for each dataset.

84 Chapter 6. Experimental Procedure

6.4.3 Discussion

Our experiments indicate that the GIN architecture benefits in many cases from the addi-
tion of the attention mechanism, particularly on datasets where nodes have features. This
is, as we have seen, not usually the case for the GCN architecture. It may be that further
hyperparameter tuning is required, or it may be that the GCN architecture is fundamen-
tally limited in such a way that attending over a node’s most important neighbors cannot
bring tangible performance benefits. Having a closer look at the graphs’ structure—node
degrees in particular—could also give us more insight into the results, as it could be that
attention helps most with graphs with large neighborhoods.

These experiments also demonstrate how sensitive neural network architectures are to the
choice of hyperparameters and that learning useful representations requires a careful and
extensive tuning procedure.

6.4. Results 85

Figure 6.2: Learning curves for all the models on each dataset with the initial configuration.
Left: The evolution of training loss for each model. Right: The evolution of training
accuracy for each model.

86 Chapter 6. Experimental Procedure

Figure 6.3: Learning curves for all the models on each dataset for configurations with the
best test results. Left: The evolution of training loss for each model. Right: The evolution
of training accuracy for each model.

General Conclusion

In this work, we motivated the study of graphs as a powerful data structure that is par-
ticularly relevant to control engineering applications, as graphs are able to capture rich
information about the structure of physical systems. As such, we introduced and exten-
sively reviewed the state of the art in graph neural newtork (GNN) research, including
breakthrough applications in control engineering such as GNNs for inference, system iden-
tification, control and human action recognition. We then took two reference GNN ar-
chitectures (GCN [40] and GIN [84]) as baselines and augmented them with an attention
mechanism (introduced in [74]), preserving the fundamental property of invariance to graph
isomorphism and proposing two novel architectures: GCNA and GINA.

Through a series of experiments on benchmark graph datasets, we studied the impact of at-
tention mechanisms on a supervised learning, graph classification task. These experiments
highlighted some interesting findings: the attention mechanism we use is particularly useful
in datasets where nodes have non-trivial features, helping GINA achieve impressive per-
formance gains of up to 14%. The experiments also highlight how critical hyperparameter
tuning is to achieving good performance when training machine learning models.

Our findings, coupled with our review of GNNs in control-related applications, open up
some very interesting perspectives for future work, building on the foundation we provided
here:

• The architectures we introduced have very high expressive power, giving them the
ability to learn complex representations for input graph data. As such, it may be
useful to think of ways to apply them to human pose estimation tasks, as graphs
are ideally suited to capturing the human body’s physical structure. For the same

88 Chapter 6. Experimental Procedure

reasons, another application with a potentially high impact would be to combine our
architectures with a recurrent neural network architecture and use it for sequential
tasks such as human pose estimation through skeleton data sequences, in a similar
way to what Si et al. did in [66].

• Proper hyperparameter tuning is critical in determining a model’s performance and
can be particularly tedious to do by hand, especially on deep, complex architectures
like ours. An interesting perspective would be to use AutoML tools which auto-
mate the process of tuning. Some are specifically designed for neural architecture
search and hyperparameter optimization such as the emerging Auto-PyTorch [48],
which offers BOHB [18], a multi-fidelity/Bayesian optimization-based algorithm, far
more sophisticated than grid or random search. SMAC [34] is another interesting
hyperparameter optimization tool.

Appendices

APPENDIX A

All Tested Configurations

A.1 GIN(A)

Config. n◦
Hyperparameters

lr #epochs Hid. dim. Dropout #GC layers #MLP layers
1 0.001 300 128 0.0 2 4
2 0.001 300 128 0.0 2 6
3 0.001 300 128 0.0 2 8
4 0.001 300 128 0.0 3 4
5 0.001 300 128 0.0 3 6
6 0.001 300 128 0.0 3 8
7 0.001 300 128 0.0 4 4
8 0.001 300 128 0.0 4 4
9 0.001 300 128 0.0 4 6
10 0.01 300 128 0.0 2 8
11 0.0001 300 128 0.0 2 4
12 0.001 300 128 0.05 2 6
13 0.001 300 128 0.1 2 6
14 0.001 300 128 0.15 2 6
15 0.001 300 128 0.2 2 6
16 0.001 300 128 0.25 2 6
17 0.001 300 128 0.3 2 6
18 0.001 300 128 0.35 2 6
19 0.001 300 128 0.40 2 6
20 0.001 300 128 0.45 2 6
21 0.001 300 16 0.0 2 6

A.2. GCN(A) 91

22 0.001 300 32 0.0 2 6
23 0.001 300 64 0.0 2 6
24 0.001 300 256 0.0 2 6
25 0.001 300 128 0.05 2 4
26 0.001 300 128 0.1 2 4
27 0.001 300 128 0.15 2 4
28 0.001 300 128 0.20 2 4
29 0.001 300 128 0.25 2 4
30 0.001 300 128 0.30 2 4
31 0.001 300 128 0.35 2 4
32 0.001 300 128 0.4 2 4
33 0.001 300 128 0.45 2 4
34 0.001 300 16 0.0 2 4
35 0.001 300 32 0.0 2 4
36 0.001 300 64 0.0 2 4
37 0.001 300 256 0.0 2 4
38 0.001 300 512 0.0 2 4
39 0.0001 300 128 0.05 4 8
40 0.0001 300 128 0.1 4 8
41 0.0001 300 128 0.15 4 8
42 0.0001 300 128 0.2 4 8
43 0.001 300 8 0.0 4 8
44 0.001 300 16 0.0 4 8
45 0.001 300 32 0.0 4 8
46 0.001 300 40 0.0 4 8
47 0.001 300 48 0.0 4 8
48 0.001 500 192 0.0 2 4
49 0.0005 500 192 0.0 2 4
50 0.0003 500 192 0.0 2 4
51 0.0001 500 192 0.0 2 4
52 8e-05 500 192 0.0 2 4
53 5e-05 500 192 0.0 2 4
54 3e-05 500 192 0.0 2 4
55 1e-05 500 192 0.0 2 4

Table A.1: All tested hyperparameter configurations for GIN and GINA architectures on
all datasets.

A.2 GCN(A)

Config n◦
Hyperparameters

Config n◦
Hyperparameters

lr #epochs Hid. dim. Dropout lr #epochs Hid. dim. Dropout
1 0.001 300 128 0.0 18 0.0001 300 128 0.15
2 0.001 300 128 0.05 19 0.0001 300 128 0.20
3 0.001 300 128 0.1 20 0.001 300 128 0.0

92 Appendix A. All Tested Configurations

4 0.001 300 128 0.15 21 0.0001 300 192 0.0
5 0.001 300 128 0.20 22 0.0001 500 192 0.0
6 0.001 300 128 0.25 23 0.0003 300 192 0.0
7 0.001 300 128 0.30 24 0.0003 500 192 0.0
8 0.001 300 128 0.35 25 0.0005 500 192 0.0
9 0.001 300 128 0.4 26 0.0008 300 192 0.0
10 0.001 300 128 0.45 27 0.0008 500 192 0.0
11 0.001 300 16 0.0 28 0.001 300 192 0.0
12 0.001 300 32 0.0 29 0.001 300 192 0.0
13 0.001 300 64 0.0 30 0.001 500 192 0.0
14 0.01 300 128 0.0 31 1e-05 300 192 0.0
15 0.0001 300 128 0.0 32 1e-05 500 192 0.0
16 0.0001 300 128 0.05 33 5e-05 300 192 0.0
17 0.0001 300 128 0.10 34 5e-05 500 192 0.0

Table A.2: All tested hyperparameter configurations for GCN and GCNA architectures
on all datasets.

Bibliography

[1] A. Ahmed, N. Shervashidze, S. N. V. J., and Smola, A. Distributed large-scale
natural graph factorization. In WWW (2013).

[2] Atamna, A., Sokolovska, N., and Crivello, J. A principled approach to ana-
lyze expressiveness and accuracy of graph neural networks. In International Sympo-
sium on Intelligent Data Analysis (IDA) (2020), pp. 27–39.

[3] Atwood, J., and Towsley, D. Diffusion-convolutional neural networks. In NIPS
(2016).

[4] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representa-
tions (ICLR) (2015).

[5] Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., Sun, Y., and
Wang, W. Unsupervised inductive graph-level representation learning via graph-
graph proximity. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI) (2019), pp. 1988–1994.

[6] Belkin, M., and Niyogi, P. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In NIPS (2002).

[7] Bergstra, J., and Bengio, Y. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research 13, 1 (2012), 281–305.

[8] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N.,
Smola, A. J., and Kriegel, H.-P. Protein function prediction via graph kernels.
Bioinformatics 21, 1 (2005), 47–56.

94 Bibliography

[9] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory (New York, NY, USA, 1992), COLT ’92, Association for Computing
Machinery, p. 144–152.

[10] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral networks and
locally connected networks on graphs. In ICLR (2014).

[11] Cao, S., Lu, W., and Xu, Q. Deep neural networks for learning graph representa-
tions. In AAAI (2016).

[12] Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with graph convolu-
tional networks via importance sampling. In International Conference on Learning
Representations (2018).

[13] Chicco, D. Ten quick tips for machine learning in computational biology. BioData
mining 10, 1 (2017), 35.

[14] Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman,
A. J., and Hansch, C. Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with molecular orbital energies and hy-
drophobicity. Journal of Medicinal Chemistry 34, 2 (1991), 786–797.

[15] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural
networks on graphs with fast localized spectral filtering. In NIPS (2016).

[16] Douglas, B. L. The weisfeiler-lehman method and graph isomorphism testing, 2011.

[17] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R.,
Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Convolutional networks on
graphs for learning molecular fingerprints. In NIPS (2015).

[18] Falkner, S., Klein, A., and Hutter, F. BOHB: Robust and efficient hyperpa-
rameter optimization at scale. In Proceedings of the 35th International Conference
on Machine Learning (2018), J. Dy and A. Krause, Eds., vol. 80 of Proceedings of
Machine Learning Research, PMLR, pp. 1437–1446.

[19] Fey, M. Just jump: Dynamic neighborhood aggregation in graph neural networks,
2019.

[20] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E.
Neural message passing for quantum chemistry. In ICML (2017).

[21] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

http://www.deeplearningbook.org

Bibliography 95

[22] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks.
In KDD (2016).

[23] Gu, W., Gao, F., Lou, X., and Zhang, J. Link prediction via graph attention
network, 2019.

[24] Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring network structure,
dynamics, and function using networkx. In Proceedings of the 7th Python in Science
Conference (2008), G. Varoquaux, T. Vaught, and J. Millman, Eds., pp. 11–15.

[25] Hamilton, W., Ying, R., and Leskovec, J. Inductive representation learning on
large graphs. In arXiv:1603.04467 (2017).

[26] Hamilton, W. L., Ying, R., and Leskovec, J. Representation learning on graphs:
Methods and applications, 2017.

[27] Hammond, D. K., Vandergheynst, P., and Gribonval, R. Wavelets on graphs
via spectral graph theory. Applied and Computational Harmonic Analysis 30, 2 (Mar.
2011), 129–150.

[28] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016), pp. 770–778.

[29] Helma, C., and Kramer, S. A survey of the predictive toxicology challenge 2000–
2001. Bioinformatics 19, 10 (2003), 1179–1182.

[30] Hinton, G., and Salakhutdinov, R. Reducing the dimensionality of data with
neural networks. In Science, 313(5786):504–507 (2006).

[31] Hochreiter, S., and Schmidhuber, J. Long Short-Term Memory. Neural Com-
put. 9, 8 (1997), 1735–1780.

[32] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks
are universal approximators. In Neural networks, 2(5):359–366 (1989).

[33] Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering 9, 3 (2007), 90–95.

[34] Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-based
optimization for general algorithm configuration. In Proceedings of the 5th Interna-
tional Conference on Learning and Intelligent Optimization (2011), Springer-Verlag,
pp. 507–523.

[35] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In ICML (2015).

96 Bibliography

[36] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to
Statistical Learning: With Applications in R. Springer Publishing Company, Incorpo-
rated, 2014.

[37] John Boaz Lee, R. R., and Kong., X. Graph classification using structural
attention. In KDD (2018).

[38] Kersting, K., Kriege, N. M., Morris, C., Mutzel, P., and Neumann, M.
Benchmark data sets for graph kernels, 2016.

[39] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In ICLR
(2015).

[40] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolu-
tional networks. In ICLR (2017).

[41] Kiran K. Thekumparampil, Chong Wang, S. O., and Li., L.-J. Attention-
based graph neural network for semi-supervised learning. In arXiv (2018).

[42] Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani,
I., Zhong, V., Paulus, R., and Socher, R. Ask me anything: Dynamic memory
networks for natural language processing, 2015.

[43] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W., and Jackel, L. D. Backpropagation applied to handwritten zip code
recognition. Neural Comput. 1, 4 (Dec. 1989), 541–551.

[44] Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K., and Koh, E. Attention models
in graphs: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD)
13, 6 (2019), 1–25.

[45] Li, Q., Gama, F., Ribeiro, A., and Prorok, A. Graph neural networks for
decentralized multi-robot path planning, 2019.

[46] M. Ou, P. Cui, J. P. Z. Z., and Zhu, W. Asymmetric transitivity preserving graph
embedding. In KDD (2016).

[47] Manso, L. J., Jorvekar, R. R., Faria, D. R., Bustos, P., and Bachiller,
P. Graph neural networks for human-aware social navigation, 2019.

[48] Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban,
M., Burkart, M., Dippel, M., Lindauer, M., and Hutter, F. Towards
automatically-tuned deep neural networks. In AutoML: Methods, Sytems, Challenges,
F. Hutter, L. Kotthoff, and J. Vanschoren, Eds. Springer, 2018, ch. 7, pp. 141–156.

Bibliography 97

[49] Morris, C., Kriege, N. M., Kersting, K., and Mutzel, P. Faster kernels for
graphs with continuous attributes via hashing, 2016.

[50] Nguyen, D. Q., Nguyen, T. D., and Phung, D. Universal self-attention network
for graph classification, 2019.

[51] Niepert, M., Ahmed, M., and Kutzkov, K. Learning convolutional neural net-
works for graphs. In ICML (2016).

[52] Oliphant, T. E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[53] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic differentiation
in PyTorch. In NIPS Autodiff Workshop (2017).

[54] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.

[55] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[56] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social
representations. In KDD (2014).

[57] Piergiovanni, A., and Ryoo, M. S. Representation flow for action recognition. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2019).

[58] Prorok, A. Graph neural networks for learning robot team coordination, 2018.

[59] Qiu, Z., Yao, T., Ngo, C.-W., Tian, X., and Mei, T. Learning spatio-temporal
representation with local and global diffusion, 2019.

[60] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations
by back-propagating errors. Nature 323 (1986), 533–536.

98 Bibliography

[61] S. Cao, W. L., and Xu, Q. Grarep: Learning graph representations with global
structural information. In KDD (2015).

[62] Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Ried-
miller, M., Hadsell, R., and Battaglia, P. Graph networks as learnable physics
engines for inference and control. In Proceedings of the International Conference
on Machine Learning (2018), vol. 80 of Proceedings of Machine Learning Research,
pp. 4470–4479.

[63] Santi, P. Topology control in wireless ad hoc and sensor networks. ACM computing
surveys (CSUR) 37, 2 (2005), 225–232.

[64] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn,
G., and Schomburg, D. Brenda, the enzyme database: updates and major new
developments. Nucleic acids research 32, suppl_1 (2004), D431–D433.

[65] Schöning, U. Graph isomorphism is in the low hierarchy. In Annual Symposium on
Theoretical Aspects of Computer Science (1987), Springer, pp. 114–124.

[66] Si, C., Chen, W., Wang, W., Wang, L., and Tan, T. An attention enhanced
graph convolutional LSTM network for skeleton-based action recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 1227–
1236.

[67] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition, 2014.

[68] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

[69] Sun, K., Xiao, B., Liu, D., and Wang, J. Deep high-resolution representation
learning for human pose estimation, 2019.

[70] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 2 (Cambridge, MA, USA, 2014), NIPS’14, MIT
Press, p. 3104–3112.

[71] T. Pham, T. Tran, D. P., and Venkatesh, S. Column networks for collective
classification. In AAAI (2017).

[72] Tjomsland, J., Shafti, A., and Faisal, A. A. Human-robot collaboration via
deep reinforcement learning of real-world interactions, 2019.

Bibliography 99

[73] Van Der Walt, S., Colbert, S. C., and Varoquaux, G. The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering
13, 2 (2011), 22.

[74] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and
Bengio, Y. Graph attention networks. ICLR (2018).

[75] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. Show and tell: A neural
image caption generator. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015), pp. 3156–3164.

[76] Volodymyr Mnih, Nicolas Heess, A. G., and Kavukcuoglu, K. Recurrent
models of visual attention. In NIPS (2014).

[77] Wang, D., Cui, P., and Zhu, W. Structural deep network embedding. In KDD
(2016).

[78] Wang, R., Li, B., Hu, S., Du, W., and Zhang, M. Knowledge graph embedding
via graph attenuated attention networks. IEEE Access 8 (2020), 5212–5224.

[79] Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learning structured policy
with graph neural networks. In ICLR (2018).

[80] Wang, T., Zhou, Y., Fidler, S., and Ba, J. Neural graph evolution: Towards
efficient automatic robot design, 2019.

[81] Weisfeiler, B., and Lehman, A. A. A reduction of a graph to a canonical form
and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 9,
2 (1968), 12–16.

[82] Wilson, R. J. Introduction to graph theory. Pearson Education India, 1979.

[83] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Sim-
plifying graph convolutional networks. In Proceedings of the International Conference
on Machine Learning (2019), vol. 97 of Proceedings of Machine Learning Research,
pp. 6861–6871.

[84] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural
networks? In ICLR (2019).

[85] Yanardag, P., and Vishwanathan, S. Deep graph kernels. In SIGKDD (2015).

[86] Yang, W., Li, S., Ouyang, W., Li, H., and Wang, X. Learning feature pyramids
for human pose estimation, 2017.

100 Bibliography

[87] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into Deep Learning.
2020. https://d2l.ai.

[88] Zhang, J., Zhang, H., Xia, C., and Sun, L. Graph-bert: Only attention is needed
for learning graph representations, 2020.

[89] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-end deep learning
architecture for graph classification. In AAAI (2018).

[90] Zichao Yang, Xiaodong He, J. G. L. D., and Smola., A. Stacked attention
networks for image question answering. In CVPR (2016).

https://d2l.ai

	3058bff95138d512c2aae422ca4e059db339fb66cba442f2a0b908f1c198e20e.pdf
	fa80f79e77c9ab0a7b235c063129ada2991cbe2c3d25751480b38d90f6417ab6.pdf
	3058bff95138d512c2aae422ca4e059db339fb66cba442f2a0b908f1c198e20e.pdf
	General Introduction
	Graph Theory: Concepts and Notations
	General Definitions
	Graph Isomorphism and Weisfeiler-Lehman Test

	Machine Learning and Artificial Neural Networks: an Overview
	Supervised Learning
	Definition
	Training and Test Sets
	Loss Function
	Types of Supervised Learning Problems
	Performance Evaluation

	Some Classical Machine Learning Algorithms
	Linear Regression
	Support Vector Machines

	Multi-Layer Perceptrons: Simple yet Powerful Artificial Neural Networks
	Describing Feedforward Layers
	Case of Binary and Multiclass Classification
	Cross-Entropy Loss

	Training Neural Networks: Stochastic Gradient Descent and Variants
	Stochastic Gradient Descent
	Adam

	Backpropagation
	Overfitting and Underfitting
	Regularization
	Weight Decay
	Dropout

	Hyperparameter Tuning
	Other Prominent Neural Network Architectures
	Convolutional Neural Networks
	Recurrent Neural Networks

	Graph Neural Networks
	Graph Neural Networks in Control Engineering
	Graph Neural Networks for Inference and Control
	AGC-LSTM Model for Skeleton-Based Action Recognition

	A Unifying Framework for Graph Neural Network Architectures
	Graph Convolutional Networks (GCNs)
	Graph Isomorphism Networks (GINs)
	Other Important Work on Graph Neural Networks
	Representation Learning on Graphs
	A Spectral Formulation of Convolutional Neural Networks on Graphs
	Learning Neural Fingerprints of Molecular Data
	Diffusion-Convolutional Neural Networks (DCNNs)
	PATCHY-SAN (PSCN)
	Spectral and Locally Connected Networks on Graphs
	Message Passing Neural Networks (MPNNs)
	FastGCN
	Simple Graph Convolution (SGC)
	UGRAPHEMB

	Attention Mechanisms
	Types of Graph Attention Mechanisms
	Velickovic et al.'s Attention
	Similarity-Based Attention
	Attention-Guided Walk

	Proposed Architectures
	Proposed Attention Mechanism
	Graph Convolutional Network with Attention (GCNA)
	Graph Isomorphism Network with Attention (GINA)

	Experimental Procedure
	Datasets
	Dummy Dataset
	ENZYMES
	PTC
	MUTAG
	Synthie

	Baselines
	Detailed Experimental Setup
	Software
	Data Preprocessing
	Architectures
	Regularization and Training Hyperparameters
	Training Procedure

	Results
	Initial Configuration
	Best Configuration
	Discussion

	General Conclusion
	Appendices
	All Tested Configurations
	GIN(A)
	GCN(A)

	Bibliography

