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Résumé

Dans ce projet de fin d’études, le probleme d’estimation des signaux d’état et du di-
agnostic des systemes a échelles de temps est abordé. Nous essayons de développer de
nouveaux observateurs et estimateurs pour cette catégorie de systemes en commencant
dans un premier temps par introduire certains observateurs adaptatifs non linéaires pour
le diagnostic des défauts et le filtre de Kalman pour les systemes a échelles de temps.
Nous établirons a partir du filtre de Kalman a échelles de temps une généralisation de
la version discrete du filtre de Kalman étendu au cas des échelles de temps puis nous
proposerons une extension des observateurs adaptatifs pour le diagnostic de défauts aux
échelles de temps.

L’ensemble des calculs et des démonstrations se base principalement sur les notions et
outils introduits dans théorie de I'analyse et du calcul dans les échelles de temps.
L’efficacité des observateurs étudiés ou développés sera illustrée au travers de résultats
découlant de simulations numériques. Nous ferons notamment une étude comparative
entre les versions discretes et échelles de temps du filtre de Kalman étendu dans un
scénario de poursuite de cible.

Mots clés: time scale theory, time scale systems, estimation d’état, diagnostic de
défauts.



Abstract

In this thesis, the problem of state signals estimation and diagnosis on time scale
systems is addressed. We will try to develop new observers for this category of systems,
starting first by introducing certain adaptive nonlinear observers for fault diagnosis and
the time scale Kalman filter.

We establish from the time scale Kalman filter a generalization of the discrete version
of the extended Kalman filter to the time scale case, we will also propose an extension
of the adaptive nonlinear state observers for fault diagnosis on time scales.

The calculations and demonstrations are mainly based on the tools and notions intro-
duced in the theory of time scale analysis.

The effectiveness of the observers studied or developed will be illustrated through the
numerical simulations results. We also make a comparative study between the discrete
and time scale versions of the extended Kalman filters in a target tracking scenario.

Key words: time scale theory, time scale systems, state estimation,fault diagnosis.
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General Introduction

Introduction

State estimation is a control engineering area of major importance due to the role that it
plays in studying the problem of system inner signals reconstruction from limited measure-
ments. This control engineering strategy has become essential in any control application
that deals with engineered processes control and monitoring or system calibration.
System states estimation is performed using states observers . These tools provide an es-
timate of the internal state of a given real system by observing its indirect effects using
system’s inputs and outputs. Since the previous century, observers theory has been widely
developed for continuous and discrete time linear and non linear systems.

Discrete and continuous states observers have already demonstrated high effectiveness and
suitability for application in different engineering domains such as aerospace, telecommu-
nication ...etc thanks to the simplicity of their implementation and their efficiency [8|.
Actually, systems may also be described and characterized by continuous and discrete dy-
namics at the same time. This is especially profound in many technological systems, in
which logic decision making and embedded control actions are combined with continuous
physical processes [17].

To capture the evolution of these systems, specially dedicated mathematical models are
needed. In 1988 Stefan Hilger, under the direction of Bern Aulbach, introduced the theory
of time scales in order to unify discrete and continuous analysis [14]. As a result, we can
generalize a process to account for both cases, or any combination of the two under some
topological conditions.

It’s important to notice that many other time scales than just the set of real numbers or
integers can be handled by this process and this leads to more general results.

This theory represents a major asset to give an appropriate description to systems with

12



General Introduction 13

hybrid or time non uniform dynamics which are also known as time scale systems.

Motivation

Despite the growing interests in this new theory and the different studies already done in
the literature, time scale theory is recent and no well developed for control and estimation
applications.

The motivation behind this thesis relies on the development of time scale observers from
the extension of already established discrete and continuous observers for estimation and
diagnosis. Indeed, to achieve the main goal of this thesis we take continuous and discrete
observers and generalize their dynamical properties to the arbitrary time scale case.

The observers considered are the extended Kalman filter (EKF) and different adaptive
state observers for fault diagnosis on Lipschitzian nonlinear systems.

Thesis outline

The thesis is organised as follows:

e In chapter 1, we introduce the basics of time scale calculus and the main tools or
equations that will be used to establish our proofs in the third chapter. We also
introduce in this chapter the notions that characterize the dynamical properties of
time scale systems.

e Chapter 2 deals with fault estimation and diagnosis, we introduce here the basics of
fault diagnosis in dynamical systems and we present fault estimation using adaptive
observers

e Chapter 3 gathers all our contributions to the topic, we introduce the time scale
Kalman filter presented in [6]. We develop then different time scale observers and
bring a theoretical and numerical analysis of these observers performances through
the study of the observer based control case on time scales. These observers are
assessed through different numerical simulations.

e In chapter 4, we unfold a radar target tracking scenario using the classical EKF and
the new time scale EKF.

A general conclusion and a bibliographic appendix complete this document.



CHAPTER 1

Time Scale Calculus
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1.1 Introduction

Time Scale calculus is a contemporary theory that was introduced by the German math-
ematician Stefan Hilger in his PhD thesis in 1988 in order to accomplish a unification
of both theories of differential and difference equations|[14|. Thus this theory unifies the
classical integral and differential calculus with the calculus of finite differences.

Time scale theory offers a new formalism to study hybrid systems that are characterized
by discrete continuous dynamics, it has a tremendous potential for applications to any field
that requires a simultaneous description and modelling of discrete and continuous data|5].

1.2 Background on time scale calculus

In this section, we will state the basic definition of the main concepts and notions connected
to time scales and the tools that will be used in chapters to come.

1.2.1 Basic definitions

Definition 1.2.1. [5/ A time scale is an arbitrary non empty closed subset of the real
numbers R.

Thus R, Z, N, Ny
as are [0,1] U [2,3], [0,1] UN.
While Q, R\Q, C, (0, 1) are not time scales.
We assume that a time scale T has the topology that it inherits from the real numbers
set[5].
Any time scale that is a combination of any of the above sets is called a hybrid time scale|5].
Definition 1.2.2. /5] Let T be a time scale. For t € T we define the forward jump operator
o:T—=T by
o(t)=inf{s € T:s>t},
While the backward jump operator p: T — T is defined by

p(t) =sup{s e T:s < t}.

We admit that inf(()) =sup(T) (i.e., o(t) =t if T has a maximum ¢) and sup((})) =inf(T)
(i.e., p(t) =t if T has a minimum ¢ ).
If o(t) > t, we say that t is right-scattered, while if p(t) < t we say that ¢ is left-scattered.
We say that a point is isolated if it is right-scattered and left-scattered at the same time.
Also, if t <sup(T) and o(t) = ¢, then t is called right-dense, and if ¢t >inf(T) and p(t) = ¢,
then t is called left-dense. Points that are right-dense and left-dense at the same time are
called dense.
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t right-scattered | o(t) >t
t right-dense | o(t) =t
t left-scattered | p(t) <t
t left-dense p(t) =t

Table 1.1: Classification of points on T

Definition 1.2.3. [5]/ The graininess function is defined by
pt) =oft) —t

The set T* is derived from the time scale T as follows|5]:

If T has a left-scattered maximum m, then T* = T — {m}.Otherwise, T* = T.

To sum up.

T — T\ (p(supT), supT] if supT < o0
T if supT = oo

Finally, if f: T — R is a function, then we define the function f? : T — R by

fo(t) = f(o(t)) fort e T.

T | pt) o(t) p(t)

R 0 t t

Z 1 t+1 t—1
hZ h t+h t—h
¢" | (g—1)t qt :

NG [ 2vE+1 | (Vi+1)? | (VI—1)

Table 1.2: Examples of time scale sets

1.2.2 Differentiation

(1.1)

(1.2)

We consider a function f : T — R and define the so-called delta or Hilger derivative of f

at a point t € T".

Definition 1.2.4. [5] Assume f : T — R is a function and let t € T*. Then we define
f2(t) to be the number (provided it exists) with the property that given any € > 0, there is

a neighborhood U of t (i.e.,U = (t —6,t +0) N'T for some § > 0) such that
[f(o(t)) = F()] = f2@)[o(t) = s]| < €la(t) —s| for alls € U.
We call f2(t) the delta (or Hilger) derivative of f at t.
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We say that f is delta (or Hilger) differentiable (or simply: differentiable) on T* pro-
vided f2 exists for all + € T®. Then, we call the function f& : T — R the (delta)
derivative of f on T*.

We state now an important theorem that gives some easy and useful relationships concern-
ing the delta derivative.

Theorem 1.2.1. [5] Assume f : T — R is a function and let t € T*. Then we have the
following:

i) If f is differentiable at t, then f is continuous at t.

it) If f is continuous at t and t is right-scattered, then f is differentiable at t with:

iii) If t is right-dense, then f is differentiable at t if the limit

o 0 = ()

s—t t—s

exists as a finite number. In this case

£3(0) =ty T = 1)

w) If f is differentiable at t, then

Fla(t)) = £(t) + u(t) 2 ().

Notice that the last property in theorem1.2.1 is our main equation to run the different
simulations.
We can give the following examples:

a. When T = R, then (if the limits exists)

b. When T = Z, then
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c. When T = ¢ for ¢ > 1, then

It’s important to be able to find derivatives of sums, products, and quotients of differen-
tiable functions. We state here an important theorem that gives us the main formulas that
allow us to make these calculations

Theorem 1.2.2. /5] Assume f,g: T — R are differentiable at t € T". Then:
i) The sum f+ g: T — R is differentiable at t with:
(f +9)2(t) = f2(t) + g2 (1)
it) For any constant o, af : T — R is differentiable at t with
(@f)2(t) = af2(1).
ii1) The product fg: T — R is differentiable at t with

(f9)2(t) = f2(0)g(t) + f(a()g>(t) = f(H)g™(t) + f2(t)g(o(t)).

) If f(t)f(o(t)) # 0,then 1 is differentiable at t with

f
NN A
(f) O = =T 7w

v) If g(t)g(o(t)) # 0, then g is differentiable at t and

([)A _ [AMg() — fHgA()
. .

1.2.3 Integration

In order to describe the classes of functions that are "integrable", we introduce the following
two concepts.

Definition 1.2.5. [5] A function f : T — R is called regulated provided its right sided
limits exist (finite) at all right-dense points in T and its left sided limits exist (finite) at all
left-dense points of T .
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Definition 1.2.6. [5] A function f : T — R is called rd-continuous provided it is contin-
uous at right-dense points in T and its left sided limits exist(finite) at left-dense points in

T.

Remark. The set of rd-continuous functions f : T — R is denoted by:
Cra = Crq(T) = Cry(T,R).

The set of functions f : T — R that are differentiable and whose derivative is rd-continuous
is denoted by[5]:
Cld = de(T) = Ov}d(']ra R).

r

Some results concerning rd-continuous and regulated functions are contained in the
following theorem.

Theorem 1.2.3. [5] Assume f: T — R.

i) If f is continuous, then f is rd-continuous.
it) If f is rd-continuous, then f is regulated.
iii) The jump operator o is rd-continuous.
i) If f is requlated or rd-continuous, then so is f7.

v) Assume f is continuous. If g : T — R is requlated or rd-continuous, then f o g has
that property too.

Definition 1.2.7. [5] A continuous function f : T — R is called pre-differentiable with
(region of differentiation) D, provided D C T*, T#\ D is countable and contains no right-
scattered elements of T, and f is differentiable at each t € D.

Let’s introduce now the main existence theorem for pre-antiderivatives.

Theorem 1.2.4. [5] Let [ be a requlated function. Then there exists a function F which
18 pre-differentiable with region of differentiation D such that

FA(t) = f(t)  holds for allt € D.

Definition 1.2.8. [5/ Assume f : T — R is a regulated function. Any function F as
in theorem1.2.4 is called a pre-antiderivative of f. We define the indefinite integral of a
requlated function f by

/f(t)At =F(t)+C.
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Where C' is an arbitrary constant and F' is a pre-antiderivative of f. The Cauchy integral

15 defined by
/ ft)At = F(s) — F(r) forallr,s € T.
A function F: T — R is called an antiderivative of f : T — R provided
FA(t) = f(t) holds for all t € T .

Theorem 1.2.5. [5] Every rd-continuous function has an antiderivative. In particular if
to € T, then F is defined by

= /tf(T)AT forteT.

1s an antiderivative of f.

Theorem 1.2.6. [5] if f € C,q and t € T", then

o(t)
/t () AT = () (1),

Theorem 1.2.7. [5]/ If a,b,c € T, a € R, and f,g € C,q, then:

z)/ t)+g(t At—/f At—i—/abg(t)At;
i) /abaf(t)At:a/abf(t)A
i11) /ab f(t)At = —/ba f(t)At

b
vi) if f(t) >0 for alla <t <b, then / f(t)At > 0.
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Time Scale T R 7
p(t) t t—1
o(t) t t+1
p(t) 0 1
f2 @) f'(t) Af(t)
[ () At [P ftydt L) (ifa < b)
Rd-continuous f | continuous f any f

Table 1.3: Classical examples

1.2.4 Exponential functions on time scales
In this subsection, we introduce the generalized exponential functions on time scales.
Definition 1.2.9. [5/ A function p: T — R is called regressive if

L+ u(t)p(t) #0 forallt € T.

Definition 1.2.10. [5/ An m x n matriz-valued function A is rd-continuous if each of its

entries are rd-continuous.
Furthermore, if m =n, A is said to be regressive (denoted by A € R) if

I+ pu(t)A(t) s invertible for allt € TF.
Remark. The set of all regressive and rd-continuous functions is given by
R =R(T) =R(T,R).

In the matrixz case we write:

R(T, R™™).

In Laplace transforms of continuous time signals, we have the s plane. In the z-
transform of discrete time signals, there is the unit circle. In time scales, both are special
cases of the Hilger circle which contains the Hilger complex numbers defined as follows:

Definition 1.2.11. [5/For u > 0, we define the Hilger complex numbers by

1
C,=2€C:z#——.
7

When =0, let Cy = C.
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~,
z l‘/ k S\

. 2 - \

L Irnp( ) “ndll N \
Y \ \

A
T Ty
::1‘9

-

L}

Figure 1.1: Hilger Complex Plane [27]

Remark. When u # 0 the Hilger real part of j is

1] -1
Re,(2) = e +1]-1
i
and the Hilger imaginary part is
A 1
Im,,(2) = —rg(uz + )
1

{a) pi(t)=10 (b) pl(f) = -': (e) uit) = -; d)p*=1
Figure 1.2: Example of Hilger complex planes with given graininess

To express the exponential function we need to define first the cylinder transformation
whose range is the set Z, defined as follows.

Definition 1.2.12. [5/For u > 0, we define the strip

=13

Zu:{zEC:—g<1m(z)§
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When =0, let Zy = C.
Definition 1.2.13. [5/ For 1 > 0, we define the cylinder transformation ,, : C,, — Z,, by

1

&==;Lmﬂu2+1% (1.3)

where Log represents the principal logarithm function. For u =0, we define &y(z) = z for
all z € C. e
Log(1+pz . 0
ie., £(2) = H Zf w7
z if w=20

Theorem 1.2.8. [5/Suppose that A is regressive and rd-continuous. Then the initial value

problem
XAt =AWX({t) ,X(ty) =1

has a unique n X n matriz-valued solution X.

Definition 1.2.14. /5] The solution X from theorem1.2.8 is called the matriz exponential
function on T and is denoted by e4(.,ty). Where e4(t,s) = exp {f: fu(T)(A<T))AT}

Theorem 1.2.9. [5] Let A be regressive and rd-continuous. Then for r,s,t € T,

vii) (ea(t,.))® = —e4(t, VA =ea(t, ) (I + pu(s)A)~LA.
As examples, let’s assume that A is a n X n matriz. We have:

a. If T =127, then

sty [T+ A i A) -8
’ (I + A) if I + A is a constant and invertible.

b. If T =R, then
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exp {ftt A(T)dT} if A is continuous and A(s)A(t) = A(t)A(s) for all s,t € T.
GA(t, tg) = 0

eAlt=to) if A(t) is constant.

c. If T = hZ, then

(t.10) 123 [T+ hA(RT)]if A(t) is regressive.
e ) - t—t
AT (I + hA) = if I +hA is a constant and invertible .

d. If T = ¢"° for ¢ > 1, then

eat, 1) = [ [T+ (a—1)7A(7)].

T€TN(0,t)

Theorem 1.2.10. /5] Let A € R be an n x n matriz-valued function on T and suppose
that f : T — R"™ s rd-continuous. Letty € T and xo € R™. Then the solution of the initial
value problem

z2(t) = A)x(t) + f(t), (o) = wo.

s given by

x(t) = ea(t, to)xo +/ ealt,o(T))f(T)AT.

to

Theorem 1.2.11. /5] Let to € T, z, f € Cpq and A € RT.Then
22 (t) < A(t)x(t) + f(t), for allt € T

implies

x(t) < x(to)ea(t, to) + /t ea(t,o(r))f(r)A7,  for allt € T

to

1.2.5 Lyapunov and Riccati Equations

In the next chapters, we will use the notion of Lyapunov and Riccati equations on time
scales to obtain or demonstrate some results.

Definition 1.2.15. [29/A square matriz-valued function A is said to be symmetric if it is
equal to its transpose,i.e. A = AT.

Definition 1.2.16. [29/ A symmetric matriz-valued function A is said to be positive def-
inite (denoted A > 0) if ¥ Ax > 0 for any nonzero vector x. A symmetric matriz-valued
function A is said to be positive semi-definite (denoted A > 0) if (xTAx > 0) for any
nonzero vector x.
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Definition 1.2.17. [29] Let P € C}(T,R"™") be symmetric, A generalized Lyapunov
function is given by

T () P(t)x(t).

We will use the Lyapunov functions to demonstrate the error and stochastic error
stability of some observers in the third chapter.

Definition 1.2.18. [29] Let X be positive definite and let A,B,C be constant matrices.
Then a Riccati equation of the first form is given by

X2t) =C+ AX(t) + (I + pt) )X (AT — (I + put)A)

X)BT(C + u(t)BX(t)BT) ' BX (t)(I + u(t)AT). (1.4)
And a Riccati equation of the second form is given by
—X2(t) = C+ AX(t) + (I + p(t)A) X () AT — (I + pu(t)A) (L5)

X(t)BY(C + u(t)BX(t)BY) ' BX7 (t)(I + u(t)A™).

We will use these two equations in the third chapter.
The equation 1.4(1) will be used to describe the evolution of the error covariance of the
Kalman Filter and predict its value.
The equation 1.5(2) will be used to compute the value parameter of the optimal state
feedback in the third chapter.

1.3 Controllability and Observability

These two concepts have been introduced by R.E.Kalman in the early 1960s. Both allow
a control system classification without necessarily finding their solution in closed form.
Because of this usefulness, It’s important to lay down the foundations of linear control on
time scales and introduce those two notions for these systems.

In this section we will consider the time scale invariant linear system

x2(t) = Ax(t) + Bu(t)

y(t) = C(t) (1.6)

where t € T, x € R" is the state, u € R is the input , y € R? is the output and A € R"*",
B e R™™ (' e RP*™,

Here u is assumed to be rd-continuous. A is assumed to be regressive and C' is assumed
to be of rank n.
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Remark. Although system 1.6 seems to be a very natural extension from the continuous
and discrete cases, to examine the rank condition for controllability in the classical sense,
one must assume that the graininess function is differentiable, an assumption that is not
satisfied in general for time scales (see Example 1.56 in [5]). To step this issue the linear
system 1.6 has been altered in [29]. But for the work done in this thesis, we will focus only
on system 1.6. Nevertheless, I strongly encourage to read the third chapter in [29].

1.3.1 Controllability

Let’s consider the state equation
22(t) = Ax(t) + Bu(t) (1.7)

When we refer to a linear system being "controllable", we mean there exist inputs such
that the state vector "can be driven" to the origin for any given initial condition. If all of
the states of the linear system are controllable, then we have the following definition for
complete controllability.

Definition 1.3.1. [29] The state equation 1.7 is said to be completely controllable on [to, t¢]
if for all xy € R", there exists u such that the solution x of 1.7 with x(ty) = xo satisfies
[E(tf) = 0.

The generalized controllability criterion is

Theorem 1.3.1. [29] The state equation 1.7 is completely controllable if and only if the
controllability Gramian We [to, ts] is invertible where

We [to. /] = / " ealto, () BBTEL (to, o (7)) At

to

Let’s look now at the generalized Kalman rank condition for controllability of linear
systems on time scales.

Theorem 1.3.2. [16] The state equation 1.7 is completely controllable if and only if the
n X (nm) controllability matriz T'c [A, B] has full rank n, where

I'c[A, B]=[B AB A’B ... A"'B]
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1.3.2 Observability

We refer to a linear system being "observable" if given the output y and input u, we can
find our initial condition . If this is true regardless of the initial time and initial state,
we have the following definition for complete observability.[29]

Definition 1.3.2. [29] The linear system 1.6 is said to be completely observable on [ty,ty]
where, if for any x(ty) and a known u, x(ty) can be uniquely determined by y(t).

On the other hand, the linear system 1.6 is said to be unobservable if given x(ty) = xo and
the input u(t) = 0, there exists a finite time ty such that y(t) =0 for all t € [to,ty).

Theorem 1.3.3. [29] The linear system 1.6 is completely observable if and only if the
observability Gramian Wo [to, tf] is invertible, where

ty
Wo [to, t7] = / el (7,10)CT Cea(T, 1) AT.

to

The generalized Kalman rank condition for observability of linear systems on time scales
is as follows.

Theorem 1.3.4. [29] The linear system 1.6 is completely observable if and only if the
(np) x n observability matriz T'o [A, C] has full rank n, where

C
CA
FO [A7 C] =

OAnfl

1.4 Stability and stabilisability of time scale linear sys-
tems

In this section we introduce the uniform exponential stability of linear systems on time
scales and give the characterisation of stabilisability of linear systems.

These two concepts will be needed to explain some simulation results.

In this section, we consider the time invariant linear system on the time scale T

2 (t) = Az(t), (1.8)

where z(t) e R", A € R and t € T.
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Remark. In general, the exponential stability of a linear system on time scale cannot be
characterised by the spectrum of its matrix.

Fortunately, this can be done for uniform exponential stability. For this reason, when we
talk about stability in the next sections we will mean the uniform exponential stability.
Moreover, The spectrum decides of about the classical exponential stability of system 1.8
only if the matriz A is diagonalisable. [2]

In this particular case, all what will be developed for uniform exponential stability can be
stated for classical exponential stability. This will be useful to explain some filters behaviors.

Let’s start with the basic definitions

Definition 1.4.1. [2] Let’s consider the non linear system

v2(t) = f(a(t),  x(to) = m, (1.9)

where x(t) € R", o € R", t.to € T and f is of class C*. We assume that the state x = 0
is the unique equilibrium of 1.9. The unique forward trajectory determined by xo and tgy
evaluated at the time t > tq is denoted by p(t, xo,to).

The equilibrium of 1.9 is uniformly exponentially stable if there exist constants a < 0,
M >1 and 6 > 0 such that for every ty € T

lzoll < & = |p(t, o, to)[| < M [l >, Vi > to
A system with the above property is called uniformly exponentially stable

Remark. If p is unbounded, then for any f the system 1.9 is not uniformly exponentially
stable.

Definition 1.4.2. [2/Let’s consider now the nonlinear control system on the time scale T

(1) = gla(t), u(t)), 2(to) = o, (1.10)

where z(t) € R, u(t) € R™, 2o € R", t,to € T andt > ty. We assume that g : R x R™ —
R™ is a function of class C* with respect to the variables x and u. We also assume that the
state x = 0 is an equilibrium of 1.10 for u = 0.(i.e.g(0,0) =0.)

A mapping k : R* — R™ of class C' such that k(0) = 0 will be called feedback. Applying
the feedback k to system 1.10 we get the closed-loop system

(1) = fla(t),  x(to) =z, (1.11)

where f(x) = g(x, k(x)).

The feedback k stabilises system1.10 uniformly exponentially if x = 0 is a uniform expo-
nentially stable equilibrium point of the closed loop system 1.11 [2].

System 1.10 will be called uniformly exponentially stabilisable if there exists a feedback sta-
bilising the system 1.10 uniformly exponentially.
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System 1.10 will be called linearly uniformly exponentially stabilisable if there exists a linear
feedback v = Kx, K € R™*", stabilising the system 1.10 uniformly exponentially.
For linear systems we will consider only linear feedbacks.

Let’s announce an important proposition.

Proposition 1.4.1. [2/ The following conditions are equivalent:

(i) System 1.8 is uniformly exponentially stable.
(i) There exist constants o < 0 and M > 1 such that for all ty € T

lea(t, to)|| < Met—to) Vt €T and t > to.

We announce the following theorem.

Theorem 1.4.1. [10] The following conditions are equivalent:

(i) There exists uniform exponentially stable linear system 1.8 on time scale T.

(i1) There exists fi > 0 such that u(t) <@ for allt € T.

This theorem expresses the boundedness of the graininess on a time scale as a necessary
condition to the stability of any system that evolves in it.

Theorem 1.4.2. [2] Let u(t) < @ for all t € T. Assume that the eigenvalues of A are
distinct, real and each A € ¢(A) satisfies A € (—%,O). Then the system 1.8 is uniform
exponential stable.

Not only the fact that this theorem shows that uniform exponential stability can be
characterized by the eigenvalues of the matrix A, but it also gives a location in the Hilger
complex plane for the placement of poles when we stabilise a system with a state feedback.
Let us consider the linear control system defined on the time scale T.

2 (t) = Az(t) + Bu(t), (1.12)

where z(t) € R", u(t) € R™, A € R B € R™™. v is also assumed to be rd-continuous
and A regressive.
under theses conditions the following theorem has been stated in [3]

Theorem 1.4.3. [3] Assume that u(t) is bounded. If system 1.12 is controllable, then it
15 stabilizable.

Remark. The theorem above is of utmost importance, because we will work with bounded
graininess time scales.
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1.5 Conclusion

This first chapter is dedicated to introduce essential notions and theorems to deal with any
problem related to time scale systems.

First we recalled theoretical basics and notions that constitute calculus in time scale theory,
these notions allow us to define what is a time scale system and describe its behavior
through delta derivative equations.

After that we gave an overview of tools that allow the analysis of time scale systems
dynamical properties. We have seen that controlability and observability for time scale
linear systems are the same as continuous linear systems. We have also seen that graininess
operator is a key parameter to analyse time scale systems stability.

This graininess important role in systems stability constrains us to assume that graininess
values are always known in next chapters.



CHAPTER 2

State of the art on Fault Estimation and Diagnosis
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2.1 Introduction

In this chapter, we focus on the state of the art on fault estimation and diagnosis. We
talk in general about diagnosis and details around the diagnosis and introduce important
results about adaptive observers for fault diagnosis for Lipschitzian non linear systems.
These observers have a major interest because of their ability to adapt the state observation
to faults that could strike system components by locating and estimating those faults.

2.2 Basics of fault diagnosis in dynamic systems

2.2.1 Terminology

In this part, we recall the definition of some terms as they are stated in [15].

- Fault: an unauthorized deviation of at least one characteristic property or a system
parameter from its nominal value.

- Fault detection: Determination if a fault is present in the system as well as the
instant of its occurrence.

- Fault location: determination of the type, location and time of a fault appearance;
it follows the fault detection.

- Fault identification: determination of the severity level of the fault as well as its
temporal behavior; it follows the fault location.

- Fault diagnosis: Determination of the type, size, location and time of the appear-
ance of a fault; it follows fault detection and includes isolation and identification.

2.2.2 Faults types

Faults may happen for different reasons such as components aging, friction...etc. According
to the organ where they appear, the faults are classified into three principal categories [20]:
sensor faults, actuator faults and components faults.

- Actuator faults: these are slippages between signals supplied by the control unit
and those applied to the system.

- Sensor faults: they characterize abnormal deviations between real signals and mea-
sured values supplied by sensors. Their effects are harmful on looped systems.
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- Component fault: they characterize anomalies in the system itself. This type of
fault causes a change in the system dynamic.

The faults can also be differentiated following their time behavior.

A fault which appears abruptly is qualified as an abrupt fault. On the other hand, when a
fault has a slow evolution it is qualified as a gradual fault.

A non persistent abrupt fault that disappears and reappears randomly is known as an
intermittent fault.

I
£i t
[a) 5 ()

.f./..- T H T
- r N
5 ()

Figure 2.1: Time evolution of faults: (a)abrupt fault (b)gradual fault (c)intermittend fault

2.2.3 Faults modeling

Model-based diagnosis techniques are usually designed around a dynamic model that de-
scribes the behavior of the system in normal situations. [20]

The appearance of a fault leads to an abnormal change in the behavior of the system.
Faults are then detected if the measured variables deviate from those calculated from the
model.

Unfortunately, disturbances, measurement noise and non-modeled dynamics also generate
inconsistencies between the behavior of the system and the mathematical model that is
describing it.

The diagnosis of a fault is therefore possible only if we know the symptoms associated with
this one, i.e. if we know the impact of this fault on the behavior of the process and are able
to discern it from that generated by model imperfections and other faults. It is therefore
necessary to establish a list of all the faults to be diagnosed as well as the model describing
the dynamic behavior of the process generated by these faults and which takes account of
the imperfections of the model. [20]

we consider the non-linear systems which can be described by the following differential
equation system:

(2.1)
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Where z(t) € R™, u(t) € R™, y(t) € RP represent the state vector, the control signal
and the measured outputs respectively . ®(z(t)) : R — R is a function that represents
the model nonlinearities.

The vector §(t) € R! which is distributed via the known D matrix represents the effect of
the external disturbances and model uncertainties. w(t) € R? is the measurement noise.

Just like disturbances, faults are represented by some unknown additive signals as follows:
@(t) = Az(t) + B(u(t) + fo(t)) + ©(2(t)) + E.fe(t) + Di(t) (2.2)
y(t) = Ca(t) + Eufo(t) + w(t) '

Where the vectors f,(t) € R™, f.(t) € R% and f,(t) € R% represent actuator faults,
component faults and sensor faults respectively. The matrices B, E. and FE, locate the
incidence of these faults.

The system described by the equations 2.2 can be represented as follows [20]:

Ax(t) + Bu(t) + ®(x(t)) + E(t) f(t) + Wid(t)

(2.3)
Cx(t) + Ff(t) + Wad(t)

—N—
—~
~ T~
~— ~—

I

Where f = [fT 7 (1", E=[B E. Ouxg], F = [Opem Opeq B, d=[67 '],
Wi =[D Opxm| and Wa = [0p5; I,].

The effect of a fault f; can be distinguished from disturbances effect if E; ¢ span(W;).
As well as, the effect of a fault f; is distinguishable from the other faults if E is a full rank
matrix. [20]

It’s also worth noting that the measurement noise can hide the sensor calibration faults
and slow the detection of gradual faults.

Remark. f; (i =1...(m+ q. + qs)) refers to the components of the vector f.

Remark. F; (i = 1...(m + q. + qs)) refers to the column vector of E that corresponds to
fi-

Remark. [t’s important to notice that modeling with additive faults can lead to a number
of faults higher than the real one. [20]

We consider the model of a flexible link arm given by the following equations [23]:

(Bu(t) = 0 () = Frwm(t) + Fru(t) (2.4)

@it) = =5 (0i(t) = Om(t)) — “Lsin(0(1))
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Figure 2.2: Flexible link arm [20]

Where 6,,, and 6, are the angular positions of the motor shaft and the rod respectively,
w,, and w; are their respective angular velocities. u represents the control torque applied
by the motor, J,, the rotor inertia momentum, .J; the rod inertia momentum, & the bond
elasticity constant, m the rod mass, g the gravity constant, h the distance between the
rotation axis of the rod and its center of gravity, b the viscous friction coefficient and k, is
some positive constant.We suppose that 6,, and w,, are measured.

If we define the state of the system x = [ml Ty X3 m}T: [Gm Wm0 wl]T, the system
2.4 can be written in the form (2.1) such that

0 1 0 0 0 0
-k b £ 9 ke 1000 0
o 0 0 1| 0| ¢ {0100}’ () 0

Jﬁt 0 _Jﬁt 0 0 %tghsin(mg)

Many faults can occur in this system. In this example, we will only deal with compo-
nents faults.

The deformation of the flexible connection and another mechanical fault which manifests
itself by an abnormal increase in viscous friction in the bond. It is clear that the impact
of these two faults on the model results in abnormal variations of the parameters k£ and b.
Thus, the model of the system with the parametric variations due to these faults can be
written

{j; — (A+ AA)z + Bu + O(x) (25)

y=Cux
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where
0 0 0 0
_Ak _Ab Ak
AA — JIm Jm Im
0 0 0 0
Ak Ak
5% 0 =50

Ak, Ab represent respectively the abnormal variations of k£ and b.
If we put Ef = AAx, the system 2.5 becomes:

t=Ax + Bu+ ®(x) + Ef
y=Cx

where

] | AR(zz — ) _OLmO—it
et B VA R R

2.3 Fault estimation using adaptive observers

2.3.1 Generalities around the adaptive observers

An adaptive observer is an observer that aims to estimate, in addition to the state, the
unknown process parameters. [20]

The estimation of the unknown parameters is guaranteed only if the persistent excitation
condition is satisfied. [20]

Their major limitation is that they require the system to satisfy some structure specifying
the unknown parameters location relative to the outputs.|20]

Let’s define now what is the persistent excitation.

Definition 2.3.1. [/] A signal V(1) : R — RP*# satisfies the persistent excitation property
if there exist some positive real constants T, ki and ko so that ¥Vt > 0

t+T
Lk, > / V() U(r)dr > 1,k (2.7)
t

2.3.2 Non linear lipschitzian systems observation

Nonlinear systems observers synthesis problem consists mainly in looking for a correction
term that is able to dominate the nonlinear part in the dynamic of the observation error.
The difficulty of this problem is largely linked to the analytical properties of these nonlin-
earities . The class of nonlinear systems that has attracted the most attention is that of



2.3. Fault estimation using adaptive observers 37

the so-called Lipschitzian systems which are described by the following equation system

{x':Ax+Bu+<I>(m,u,t) (2.8)

y=Cz
The nonlinear term ®(x, u) satisfies locally the following Lipschitz continuity condition
[P (2, u,t) = @(&, u, )| < lo [l — 2] (2.9)

Vr,2 € D* C R", and v € R™, where the constant ls € RT, called the Lipschitz constant,
is independent of x and w values. If 2.9 is satisfied Vx,z € R", the function ®(z,u,t) is
globally lipschitzian.

Remark. system 2.8 can describe globally or locally the behavior of many real systems.

[20]

Remark. Any non linear system in the general form & = G(x,u,t) which has the origin
as an equilibrium point can be written as 2.8 if G(x, u,t) is continuously differentiable with
respect to x. [20]

Conventional state observers for system 2.8 have generally the following
structure [20] :

& = Ai + Bu + ®(&,u,t) + Ly — C#) (2.10)

The estimation error dynamic & = x — Z is given by
i=(A-LC)Z+ O (2.11)

where & = ®(z,u,t) — O(&, u, t).

Subsequently, we need to determinate a gain L that allows the linear term in2.11 to dom-
inate the non linear term ® to guarantee the convergence of T to the origin.

Obviously, the eigenvalues placement in the the left half plane isn’t sufficient to guarantee
the stability of 2.11, especially when the Lipschitz constant value reaches high values|20].
A sufficient and necessary condition for the stability of 2.8 is provided by the following
theorem

Theorem 2.3.1. [20] We consider the error system 2.11 with (C, A) as an observable pair
and ® satisfies 2.9. The error x is asymptotically stable if the gain L can be chosen so that
(A — LC) is stable and

mggl(amm(/l — LC — jwl,)) >l (2.12)
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2.3.3 The considered class of nonlinear systems

In the context of faults estimation and reconstruction using observers, the systems consid-
ered are usually linear or non-linear in the following form [24]

{x':Ax+<D($aU)+Ef (2.13)

y=Cx

where x € R" is the state vector, u € R™ the input vector, y € RP the output vector and
f € R? an unknown vector that models the faults effect on the system.

O(z,u) : R x R™ — R" is a known non-linear function and A € R"*" B € R FE €
R™4 and C' € R™? are constant matrices with rank(C') = p and rank(E) = q.

We suppose that the pair (C, A) is observable or at least detectable and the non-linear
function ®(z,u) doesn’t alter the system observability (detectability).

Hypothesis 2.1. The input u and the faults vector f are bounded. Moreover, u ensures
the x state boundness even in faulty mode.

Hypothesis 2.2. The function ®(x,u) is lipschitzian with respect to x uniformly in u.
i.€., there exists a known real constant les > 0 so that

(2, u) = @(Z, u)|| <o |lz — 2] (2.14)

Hypothesis 2.3. The matrices E and C' satisfy the following condition

rank(C'E) = rank(F) (2.15)

Hypothesis 2.4. the following equality

sl,—A —F

rank( [ o 0y

} ) = n + rank(FE) (2.16)

is satisfied Vs € C such as Re(s) > 0.

The hypothesis 2.3 is known as the observer matching condition [13|. This condition
signifies that rank(F) < rank(C) (¢ < p) and that the faults appear only in the dynamics
of ¢ outputs. [21]

The hypothesis 2.4 is known as the minimal phase condition |24]. It indicates that all the
invariant zeros of (A, E,C) have a negative real part. (for more details check [20] )
It also ensures for the system 2.13, the detectability of x and f.
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2.3.4 Adaptive state observer design

In this part, we recall some adaptive state observers and their error stability condition.

Conventional adaptive state observer

The adaptive state observer that corresponds to the system 2.13 is given by the equations

[20] . :
{x:Ax+q>(x,u)+Ef+L(y—C~’C) (2.17)

j =TF(y - Ci)

where 7 and f are the estimates of z and f respectively, L € R"*P the observer gain,
F € R7? a matrix to determinate and I' € R?*? a symmetric and positive definite matrix.
From 2.13 and 2.17, the estimation error dynamics & = z — # and f = f — f are given by
the following equations
{xf (A= LC)i + @+ Bf (218
f=f-TFCz

where ® = ®(x,u) — ®(#,u). The theorem below provides a sufficient condition for the
asymptotic stability of the system 2.18. (for the demonstration or more details see demon-
stration of theorem 2.1 in [29])

Theorem 2.3.2. [20] If we consider the system 2.13 under the hypothesis 2.2-2.4 and the
observer 2.17. If there are some real and positive constant € and two matrices P € R™"
symmetric and positive definite and F' € RY*P such that

(A—LO)'P+ P(A— LC)+ ¢ 'PP + €%, < 0 (2.19)
ETP =FC (2.20)
then sz = 0, the estimations errors T and f which dynamics are given by 2.18 are

asymptotically stable.

the observer synthesis problem consists in determining the matrices L and F' such that
the inequality 2.19 is satisfied under the equality constraint 2.20.
In [20] a systematic method is proposed which consists in transforming 2.19 and 2.20 into
a convex optimization problem formulated in terms of affine or linear matrix inequalities
(LMI).
The LMI problem is in this case:
minimise 7 such that

nl, (ETP—FC)T

. ol (2.21)
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and
ATP+PA—CTMT—MC’+el§>In P

* —el,

<0 (2.22)

with L = P~'M.

Extension to sensor faults case

If we take into account only the case of sensor faults, the system 2.13 can be written into
the form

{:i: = Az + O(z, u) (2.23)

y:C$+Esfs

where the vector f; € R® models the effect of sensor faults and E, € RP*% is its distribution
matrix which is supposed to be a full rank matrix.

in [20] the problem of reconstruction of sensor faults is transformed into a problem of
reconstruction of actuators faults. The following system is considered

{jjs = _Asms + Asy

Ys = Ts

(2.24)

where y, € RP and the matrix A, € RP*P is Hurwitz. The association of both systems 2.23
and 2.24 in a single system gives us
T=AT+®(T,u) + Ef,
{x A7+ 0@ u) + £ (2.25)
ys = CT

_ ]l = A Oyl =~ |[P,w)] =  [Ouxs| =
Wherem—{xJ,A—[ASO _AJ,@(:B,u)—{OpXI },E—[ES],C—[OPM Ip}.

In [20] it is shown that system 2.25 also satisfies the hypotheses 2.3 and 2.4, which means
that the state observation and fault estimation is also possible for this one.

Fast fault estimation observer design

The fast fault estimation observer was developed to compensate the weakness of adaptive
state observers to give precise estimates of time-varying faults. Its basic concept consists
in using an adaptation law which can be qualified as a proportional derivative to improve
the fault estimation dynamic. [20]

Let’s state first the following hypothesis
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Hypothesis 2.5. the time derivative of the fault vector satisfies the following condition

7] <+ 220

where v is a known positive constant.

The fast fault estimation observer that corresponds to the system 2.13 is given by the
equations [20]
7= Ai+ ®(#,u) + Ef + L(y — C#) (227)
f=TF(o(y — C&)+y— Ci) '
where o is a positive constant. From 2.13 and 2.27, the estimation error dynamics  and
f are described by the following equations
i=(A-LC)i+ o+ Ef
- ( ) . ! (2.28)
f=f-TFCz+Cx)
where & = ®(z,u) — (&, u).
The time derivative of the output signal presents a serious issue for its evaluation when
the output is submitted to noises. [20]
Because of this, the adaptive law (the second equation in 2.27) can be implemented in the
following form

(2.29)

f=TF(w+y—Ci)
w=o(y—Cz)

The stability analysis in [20] has given the following theorem

Theorem 2.3.3. [20] We consider the system 2.13 under hypotheses 2.1-2.5 and the ob-
server 2.27.

If there are two positive constants €1 and € and two matrices P € R™" symmetric and
positive definite and F' € R?*P such that

(A—LC)'P+ P(A—LC)+Beil, P o Y(A-LC)'PE

* —e 1, o~ 'PE <0 (2.30)
* * o~ Yel, —2ETPE)
ETP=FC (2.31)

then the errors & and f given by 2.28 converge to some neighborhood around the origin.In
addition, if f =0, then T and f converge asymptotically to zero.

To compute the observer gains,the LMI problem to solve is as follows|20]

ATP+ PA-CTM" — MC+ 1361, P oY (PA—-MC)T
« —al, o PE <0 (232
* x o (el, — 2ETPE)

With L = P71 M.
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Conventional PI observer design

In addition to the proportional correction term, the PI observer uses an integral
correction term which cancels the bias in the state estimation error caused by the model
imperfections. 20|

The conventional PI observer that corresponds to the system 2.13 is given by [20]

t
i = Ak + (&, u) + E/ Lao(y — C&)dt + Li(y — C%) (2.33)
0

Taking f = f(f Lo(y — Cz)dt, we can rewrite 2.33 into the following form

i=At+®@u)+ Ef + Li(y — Ci
f=1La(y - C%)
Let’s put the observer 2.34 in the form
X = AR + 0(X,u) + Ly — C) (2.35)
where
Sk | A E B A | ®(2,u) L
p=fa= [t P le=le o) e = 700 e = |

Let X = X — X where X = [xT fT}T and suppose that f = 0. The error dynamic
equation X is obtained by subtracting 2.35 from 2.13:

X=(A-LO)X +d (2.36)

where ® = ®(X,u) — ®(X,u). Subsequently, the synthesis of the observer 2.33 is only
possible if the pair (C,.A) is at least detectable. (lemme2.3 in[20] gives a condition that
ensures the detectability of the pair(C,.A))

the following theorem ensures the stability of the observer 2.35.

Theorem 2.3.4. [20] Let the system 2.13 under hypotheses 2.1 2.2 and 2.4 and the ob-
server 2.35. For f = 0, the estimation error of the augmented state X given by 2.36
1s asymptotically stable if there are a real positive constant € and two matrices P €
RO+OX(+a) symmetric and positive definite, and M € RUFDXP sych that

AP+ PA—-CTMT —C + €314, P

! d] <O (2.37)

Once this problem solved, the observer gain is computed as follows

L=P 'M (2.38)
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PI H,, observer design

In this part, the H,, filtering has been combined with the PI observer to improve its
performances when f # 0. First, we state the following hypothesis

Hypothesis 2.6. the function f has a finite energy,i.e.

/OO fridt < oo (2.39)
0

We consider now the equation 2.36 which expresses the dynamic of the augmented
estimation error. In the case where f # 0, this equation becomes

X=(A-LOX+d+Ef (2.40)

where £ = [qu LJT. The idea here, is to use the H, filtering techniques to compute
the observer gain £ such that the following conditions are satisfied

lim X =0 for f=0 (2.41)

t—o0

/ XTDXdt < A / fffdt  for f#0 (2.42)
0 0

where \ is a positive constant and D a symmetric semi-positive definite matrix.

Theorem 2.3.5. [20] Let the system 2.13 under hypotheses 2.1, 2.2 and 2.4 and the
observer 2.35.

If there are two real positive constants € and A and two matrices P € RUHOX(+0) symmetric
and positive definite, and M € ROHD*P sych that

AP+ PA-CT MY — MC +€lilyg+D P PE
* —€lntq Omigxq| <0 (2.43)
* * -1,

where D is defined in accordance to 2.42, then the estimation error of the augmented state
X given by 2.36 satisfies the conditions 2.41 and 2.42.

to gain an optimal precision in the estimation of z and f, the LMI problem 2.43 can
be turned into the following LMI optimisation problem: [20]
Minimise A such that

ATP 4+ PA—C'MT — MC + €l2lig+D P PE

* —€[n+q O(n+q) xq (244)
% * —/\Iq
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2.3.5 Simulation example

Let’s consider the flexible link arm 2.4 with an additive fault that corresponds to an ab-
normal viscous friction increase. The system satisfies the hypotheses 2.2-2.4. The system
parameters values are: J,, = 0.037(Kgm?), J, = 0.093(Kgm?), k = 0.18( Nm/rad), b =
0.0083(Nms/rad), m = 0.21(Kg), g = 9.81(m/s?), h = 0.15(m) and k, = 0.18( Nm/V").|20]
The fundamental matrix of the system and the non-linear term are written in the following
form [20]

0 1 0 0 0
k bk k
—_— —_— —_ O =T
— | T T T TIm Tm — Tm
A=l ot O |0y s
Jﬁt 0 —Jﬁt -1 _ﬁghsin(xg) + 2y
The observer gains computed in [20] are :
1.1147 -0
—0.4321 1.7916
L=1 "0"" ooosy | F=10 —05426] ., =5
1.9355 —0.1921
1.7541 1.000
—4.864 .8242
L= 5049 5.8 ,F =[0.0000 —0.3776] ,I' = 5,0 = 50

0.0000  0.9680
1.9355  —0.4150

6.0856 0.9930
—0.6767  29.0253
L= ]-0.1668 —0.7119
2.0227 2.1366
—05349 —15.6266

The simulation is run with following fault scenario

(0 if t < 5,

0.1 if 5s <t < 5.2,

=20 if 525 <t < Ts,

0.1 if 7s <t < 10s,

L 0.1sin(2t)cos((t — 10)?) if 10s < t.

The initial conditions are chosen to be x = [—0.5 05 0 O}T.
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The results obtained are:

—real value

- - estimate
|

18 20

time

Figure 2.3: Conventional adaptive observer state estimation
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Fault signal
03 1 1 1 I I 1 ] 1 .
- - -Estimate
—Exact
02F -
0.1F -
o
= . |
= N
-0.1 r:l ! -
(] — L
0 2 4 20

Figure 2.4: Conventional adaptive observer fault estimation
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State signal —real value
] ” I | 1 1 | | | - - - estimate
K OW/\N\NVWVW\/\/\/\/\/\/\/\N\_
_1 | | | | | | | ] |

05 I | | | | I | I I
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_05 | | | | | | | | |
0 2 46 § 10 12 14 16 18 2
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time

Figure 2.5: Fast fault estimation observer state estimation
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Fault signal

04 I I 1 1
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0.2

]

0.2
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time

Figure 2.6: Fast fault estimation observer fault estimation
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State signal —real value
\ - - -estimate
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3” O W
05 | ! | | | | ! ! |
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05 I | | | | | | | |
3~ 0 W\/\/\/\/\/\/\_’\/%_/\f\/\/\/\/\/\/\’\/.
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time

Figure 2.7: PI H,, observer state estimation
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Fault signal
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Figure 2.8: PI H,, observer fault estimation

2.4 Conclusion

This chapter gives an overview of observer based fault estimation and diagnosis.

First, we recalled definitions and notions related to model based fault diagnosis. We pre-
sented after that the adaptive nonlinear state observers for Lipschitzian systems. We ended
this chapter by running a simulation example where we tested each observer on a nonlinear
system.

Simulation results show that these observers represent an effective estimation strategy for
fault diagnosis on the systems considered in this chapter.

To have similar observers to diagnose faults on time scale systems would be useful for any
situation where time scale behavior results from a system component fault or sensor fault
scenario likely to happen. For this reason we will try to generalize the fast fault observer
and the PI observer to time scales in the next chapter.



CHAPTER 3

Time Scale Observer Design
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3.1 Introduction

This chapter presents the filtering theory and design of observers for time scale systems.
At first, we will present the Kalman filter on time scales introduced in [6]. We'll add a
fault estimation feature to this observer on the basis of what has been developed in the
previous chapter (i.e. chapter 2) and extend the Discrete version of the Extended Kalman
Filter to time scales.

After that, we study the observer based control for time scale systems and highlight the
impact of graininess increase on systems robustness, we also discuss the LTR case for these
systems.

At last, we will also extend the three adaptive observers introduced in the previous chapter
(chapter 2) by extending theorems 2.3.3, 2.3.4 and 2.3.5 to the general arbitrary time scale
case.

3.2 Kalman filter on time scales

In this section, we introduce the Kalman filter for linear systems on time scales.When the
system is stochastic, the Kalman filter is an observer that estimates the system when it is
corrupted by noisy measurements.

3.2.1 Time scale Kalman filter equations

We consider the linear stochastic system

22 (t) = Ax(t) + Bu(t) + Gw(t), z(ty) = zo, (3.1)
y(t) = Cz(t) + v(t), '

where x € R" represents the state, u € R™ is a known input, y € RP represents the mea-

surement, w € R is the process noise, and v € RP is the measurement noise.

The state z is a nonstationary random variable with mean T and covariance P, = E [(z — T)(z — T)"],

the input w is deterministic, the output y is a non stationary random variable with mean

y and covariance P, = E [(y —Y)(y — @)T] , the process noise w is a stationary white noise

with mean 0 and covariance E [w(t)w”(s)] = Q4(t, s), the measurement noise v is a sta-

tionary white noise with mean 0 and covariance E [v(t)v"(s)] = Ré(t, s).

xg, w and v are assumed to be mutually uncorrelated, P(ty) = Fy, @ and R are all positive

definite.

In this case it’s important to find a filter that rejects the noise and retains the relevant

data.

Therefore, we're looking for an accurate estimate of the true state in addition to the small-

est possible mean square error. Which means finding an estimate & such that = satisfies
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the observer equation
#2(t) = Az(t) + Bu(t) + K(1) [y(t) — C2(t)],  &(to) = T(to) (3.2)

where T is the expected value of our true state and K represents the Kalman gain.
In this section the following hypotheses are made.

Hypothesis 3.1.  a. The true state and the estimate state belong to the same time scale.
b. The state and measurement are Gaussian.

c. The state measurement is being updated in "real-time". In other words, there is a
measurement at the next available point in the time scale.

d. The error covariance of our hybrid filter is found through the integrator just as it is
for the Kalman-Bucy filter.

e. There exists a term 0(.,.) such that

/: /t:f 2T (1)Q0(m, 7)1 () Ar Ay = / 7 T (1) Qu(r) A (3.3)

to

If x is the state of the system 3.1 and satisfies the hypotheses 3.1 and Z solves 3.2, the
state error ¥ = x — T satisfies

FA(t) = M(1)a(t) + Gu(t) — K (t)u(t), (3.4)

where M (t) = A — K(t)C. (see Lemma 3.11 in [6])
This leads to announce the the following theorem.

Theorem 3.2.1. [6] The covariance of the solution of 3.4 is given by

P(t) = en(t, to) {PO +/ e (to, o(7))GQGT et (ty, o (7)) AT+
o (3.5)

/ enr(to, o(T)) K (T)RKT (1)ed, (to, o (7)) ATed, (£, 10).

to
P given by 3.5 satisfies the following equation

PA = AP+(I+pA)PAT+K [R 4 pCPC"] K*—K [CP + nCPA"]-[pAPCT + PCT] KT+GQGT ..
(3.6)

Definition 3.2.1. [6/ Assume that R+ pCPCT > 0. Then we define the Kalman gain by

K(t) = (I + pt)A)PH)CT(R+ u(t)CPt)CT) ™ (3.7)
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Now that the Kalman gain is in the form 3.7, it is possible to write the error propagation
as a Riccati equation. [6]

Theorem 3.2.2. [6] Assume that R+ nCPCT > 0 and define K by 3.7. Then P solves
3.5 if and only if

P2 = AP+ (I + pA)PAT — (I + pA)PCT (R + uCPCT)'OP(I + nA") + GQG™. (3.8)

Remark. In [22] an other interesting contribution was provided to this topic. A Kalman
filter has been developed where the measurement-update and time-update equations account
for the size of the time step of a randomly generated time scale.

3.2.2 Fault estimation feature

The purpose here is to design a Kalman filter that can diagnose faults in addition to the
signal estimation and mean square error minimisation.

To design such a filter we go back to observers introduced the chapter 2, and try to adapt
the proportional integral observer to time scales linear systems exposed to noises.

In, this part we consider the system 3.1 with some additive faults:

{xA(t) = Ax(t) + Bu(t) + Ef(t) + Guw(t), (3.9)

y(t) = Cx(t) +v(t),
where f € R? and E € R"*? . Let assume the following hypotheses about E and f.
Hypothesis 3.2. The E matrix only contains rows of zeros and ones.
Hypothesis 3.3. The faults signals act in a low and limited frequency band.

Hypothesis 3.4. The fault signal to noise ratio is high enough to distinguish the faults
impact from the noise impact.

The hypothesis 3.4 is important as it allows to distinguish the faults effect from the
noise effect on the measurements.
We can announce the following theorem.

Theorem 3.2.3. Consider the system 3.9 and assume that hypotheses 3.2 to 3.4 hold.
The state and fault signals can be accurately estimated by the observer

{ (1) = Ad(t) + Bu(t) + Ef(t) + La(y(t) - C2 (1)),
A(t) = La(y(t) — Cit)),

=

(3.10)
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where K(t) = il(t)] — (I + u(t) A)YP()CT (R + p(t)CP(£)CT),
1, C= [C’ 0} and P solves the equation 3.5.

If the pair [C, A] is observable.

Proof. Let’s take the observer described by 2.34 and apply for the linear system 3.9 (in
this case we take ®(z,u) = Bu) We obtain the equation 3.10. Let’s consider now the
augmented systems of both 3.9 and 3.10 we obtain

E8 = AL + Bu+ GQ,
y=CE+o,

and

€8 = AL + Bu + K(t)(y — CE)
stere 6 = 7 77 6= it 7] o= |G (L= a].

A, B, C and K are as stated in theorem 3.2.3. We can notice that the equation 3.2.2
is the same observer as 3.2 for the system 3.2.2.

Subsequently we deduce that theorems 3.4 and 3.2.2 are applicable to observer 3.2.2 pro-
vided the system 3.2.2 is observable. Moreover, we have chosen the observer 2.34 for its
ability to reject noise easily. O

Remark. Hypotheses 3.2 and 3.3 ensures that fTf2 is negative.

Let us find now some condition on the graininess y that ensures the convergence of f
to the origin. Let’s consider the Lyapunov function V(t) = % fT f where f = f— f and
derive it using iv) and considering Hypothesis 3.3 (i.e. f® =~ 0) in theorem 1.2.1 and i)
in theorem 1.2.2 we obtain

1 U RO
VAW = 3 [T - TR 4 )T (3.11)
A sufficient condition that guarantees the negativity of V() is
2f"f%
p(t) < =———.
FAT fA
Remark. If we assume that HfAH > \ and HfH < 7y then we’ll obtain
gl
t) < —
) <

From the remark above we deduce that the slower the fault estimation is, the more
stable is the filter. In the case where f = 0 the estimation doesn’t vary in time which
implies it cannot diverge even if the graininess takes very high values which is trivial.
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3.3 Extended Kalman filter for time scale systems

The Fxtended Kalman Filter is the nonlinear version of the Kalman filter. It allows the
estimation and prediction of observable states of non linear systems by linearizing around
the different prediction points and applying the classical Kalman filter.

This filter is very famous and is largely applied in various fields to perform estimation and
state prediction.For this reason, it would be appreciable to have a generalized version to
time scale systems.

In this section we will generalize the Discrete Time Extended Kalman filter introduced in
[30] to time scale systems and give a proof of its stochastic stability.

3.3.1 Time scale extended Kalman filter equations

We consider the non linear time scale stochastic system described by the following equation
and observation model with additive noise

{x%) = f(x(t),u(t)) + Gu(?),
y(t) = h(z(t)) + Do(t),

where z € R" is the state vector, u € R™ is the input signal, y € R? is the measured signal,
t € T. The functions f and h are assumed to be C! class functions.

w € R! and v € R* are uncorrelated zero-mean white noise processes with identity covari-
ance matrix. G € R™ and D € RP*¥. We consider a constant initial condition x, with

(3.12)

probability one.

Hypothesis 3.5. the times scale T has a bounded graininess.

We introduce the following state estimator for the system 3.12
3% = f(2,u) + K(t)(y — h(2)). (3.13)

where the observer gain K (t) is a matrix-valued stochastic process of size p x n.
Because f and h are C''-functions, they can be expanded via

and
hx) — h(@) = Cule — &) + x(2,2), (3.15)
with a n x n matrix-valued stochastic process A; and p x ¢ matrix-valued stochastic process

C; given by
of

A, =
YT on

(%, u), (3.16)
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and 9k
= — (T 1
Ci= oo (3), (317)

respectively.

Definition 3.3.1. A time scale extended Kalman filter is given by the coupled equations:

e The delta differential equation 3.13 for the estimate.
o The linearization equations 3.16 and 3.17.
e the Riccati delta differential equation given by 3.2.2.

e The Kalman gain given by 3.7.

Remark. The usual choice for the matrices (Q and R are the covariances for the corrupting
noise terms in 3.12 i.e.

Q=0aa", (3.18)

R=DD'. (3.19)

3.3.2 Error stochastic stability

In this part we will give the proof of the stochastic stability of the filter 3.13 estimation
€error.

To establish this proof we will base our proof on the work done in [30]. Actually, we will
extend the proof already established for the discrete case to the general arbitrary time
scale case.

We define the estimation error by
(=z—1. (3.20)

Subtracting 3.13 from the state equation in 3.12 and using the measurement equation in
3.12 and 3.14-3.17 gives us the estimation error.

(%= (A= KC)C+ 7+ s (3.21)

where
re =z, &,u) — Kix(z, ) (3.22)
sy = Guw — Kw (3.23)

For the analysis of the error dynamics 3.21 we make use of the concept for the boundedness
of stochastic processes.
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Definition 3.3.2. The stochastic process ( is said to be exponentially bounded in mean
square, if there are real numbers n,v > 0 and < 0 such that

E{IICI*Y < nlicol® e + v (3.24)
for every t > tg.
Remark. The definition above is inspired from Definition 2.1 in [30].

Definition 3.3.3. [30] The stochastic process is said to be bounded with probability one, if
sup [|¢]| < oo (3.25)
t>to

holds with probability one.

We introduce here our first lemma

Lemma 3.3.1. Assume there is a stochastic process V(C) defined in a countable time scale
T as well as real numbers v, v, A > 0 and 0 < a < 1 such that

gl < v(Q) < T¢I’ (3.26)

and
E{V(C)ICE = V() < A—=aV(Q) (3.27)

are fulfilled for every solution of 3.21. Then the stochastic process is bounded with proba-
bility one.

to see the proof of the discrete version of this lemma look at lemma 2.1 in [30].
For isolated time scales we can make a bijection (a sort of mapping) between T and N
which means that this lemma is always valid in this case.
The zero graininess case can be not taken into account because we're generalizing the
discrete version of the Extended Kalman filter. Moreover, the zero graininess case takes
us back to the continuous extended Kalman filter which stochastic stability is already
established and demonstrated.
We can now state the theorem that gives us the filter stochastic stability.

Theorem 3.3.1. Consider the non linear stochastic system given by 3.12 on a countable
and bounded graininess time scale T and an extended Kalman filter as stated in 3.53.1. Let
the following assumptions hold:

1) There are positive real numbers @, ¢, p, P > 0 such that the following bounds on various
matrices are fulfilled for everyt > tq, t € T:

14 <@, (3.28)
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1Cl <7, (3.29)
pl < P, <7, (3.30)
ql < Q, (3.31)
rl < R. (3.32)

2) A is regressive for every t > tg.

3) There are positive numbers ey, €, ky, ky, > 0 such that the nonlinear functions ¢, x
i 3.22 are bounded via

o, &, u)|| <k, [z — 2], (3.33)

Ix(, )l < ky o — 21 (3.34)

for x,& € R™ with ||x — z|| < €, and ||z — || < €, respectively.

Then the estimation error  given by 3.20 is exponentially bounded in mean square and
bounded with probability one, provided that the initial estimation error satisfies

G <¢€ (3.35)
and the covariance matrices of the noise terms are bounded via

GGT < oI (3.36)

DD <61 (3.37)

for some d,e > 0.

As in [30] the proof of this theorem is divided into several lemmas. These lemmas are
the extension from the discrete case to time scale sets of the lemmas 3.1, 3.2 and 3.3 in
[30].

We will introduce each lemma and give its proof, we will then demonstrate the Theorem
3.3.1.
Let’s start with the first lemma.
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Lemma 3.3.2. Under the conditions of Theorem 3.3.1, there is a real number 0 < o < 1
such that I, = P! satisfies the inequality

(I + pAy) = pK G (T + pAe) — kGl < (1 — )Tl (3.38)
fort >ty with K; given by 3.7.
Proof. From 3.2.2, 7v) in 1.2.1 and noticing that

(I + pAy)BCH(R + uCiP,CHYTCLP(I + nA)T = (I + pAy) BCIKT
we have
B = P+ pAb + p(1 + pA) BAT + pQ — u(I + pAy) PCTK],

The equation above can be written into the form

P = (I + pA)P(I + pA)" + pQ — u(l + pA)PC KL, (3.39)
Rearranging the terms yields

By = [(I+pA) = pEC P (T pA) = pBG Cl T 4 pQ 4+ pk Cy P (T pAy) — p, Gl (3.40)

In the next step, we take care of the term K;CyP[(I + pA;) — uK;Cy])T on the right side of
3.40.
With 3.7 it can be verified that

(I 4+ pA) I + pA,) — pK,C)P, = P, — nP,CI'(R + pC,P,CIH 'O, P, (3.41)
is a symmetric matrix, and applying the matrix inversion lemma we obtain
(I 4+ pA) I + pAy) — pK,C)P, = [P + (uCHR™C ™ > 0 (3.42)
because P, > 0. Moreover, we have from 3.7 using P, > 0 and R > 0
(I 4+ pA)'K,C, = PCH(R + uC,P,CH™'C, > 0 (3.43)
combining 3.42 and 3.43 and using P; = P! we establish that

KGR (1 + pAr) — MKtCt]T =
(I + pA)I + pA) K CHT + pA) 7 + pAr) — pIGCRY (T + pA)T >0

holds and inserting into 3.40 leads to
Py > [(I+ pAy) — pIKGC B[ + pAy) — MKtCt]T + p@ (3.44)

Inequality 3.42 implies that [({ + pA;) — pK;Ch] exists and therefore we may write
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pPe >
(I +pAr) = I C{ P (T +pA) — pBG G 7 Q[T+ A) — pBG Gy T (T +pA) — pBG Gy ™

From 3.7, 3.28-3.32 and C;P,CT > 0 we have
1
Il < (1 + ) (3.45)

Taking the inverse of both sides (this is allowed since P, > pI and ({4 uA;) —pK;C; are non
singular), multiplying from left and right with [(I+puA;) —puK,CiT and [(I 4 pAs) — pnKCyl,
and using 3.30 we get finally with II, = P!

-1

I+ pAy) — pKCITIO[(I + pAy) — pK, Gy < |1+ M| I
(1 + 1) = KOO + ) = ) < 1+ B |

i.c. inequality 3.38 with 1 —a =1/ |1 e O
i.e. inequality wi a=1/ +p[(1+w)+u(1+ua)pf2ﬂ

We introduce now our second lemma.

Lemma 3.3.3. Let the conditions of theorem 3.3.1 be fulfilled, let I, = P7' and K, 7, be
given by 3.7 and 3.22. Then there are positive real numbers €, kpon > 0 such that

rITL[2(1 + pdy) — pkK,Cyl(z — 2) 4 1] < kpont || — 2| (3.46)
holds for ||x — || < €
Proof. From 3.7, 3.28-3.32, 3.5 and C; P,CI > 0 we have
1
Kl < (1 + e
and inserting into 3.22 yields
. 1 .
2l < ll(z, 2, W)l + (1 + Fa)pe [Ix (e, 2)]] - (3.47)
Choosing € = min(e,, €,) and using 3.33, 3.34 we obtain
. 1 N
7all < ki ll = 2* + (1 + F@)pe—ky [l — 2| (3.48)

for ||z — z|| < € ie.,
Irell < &' |z — & (3.49)
with
=k + (14 m)ﬁ%kx. (3.50)
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From 3.48 and 3.28-3.32 we get with II; = P, ! for ||z — 2|| < ¢
T?Ht{ZKI + /J/At) — ,LLKtCt](I' — ‘%) + Tt} S

. L i A
Kol =2l - {210+ @) + (1 + pajpe [l — 2 + Kl - 21}

we obtain 3.46 with

K 1
Finont = - -A2[(1 + @) + (1 + pa)pe €] + K}

Here comes the last lemma.

Lemma 3.3.4. Let the conditions of Theorem 3.3.1 hold, let I, = P!, and K, s, given
by 3.7 and 3.23. Then there is a positive real number ky,se > 0 independent of §, such
that

E{StTHUSt} S knoi565 (351>

holds.

Proof. Since v and w are uncorrelated the expectation value of the cross terms containing
both v and w will vanish and we focus on the following terms:

siM7s; = W GTTIGw + v DT KI'TI° K Dv (3.52)

From 3.7, 3.28:3.32 and C,PC! > 0 we have
1
I, < (1 + e

inserting into 3.52 and using 3.30 we get with II, = P!

]—9252

" (1+ ma)*v" DT Du (3.53)

1
stTH"st < ZWTGTGw +
p

Because both sides are of 3.53 are scalars, we may take the trace of the right-hand side of
3.53 without changing its value

—_

(1 + fa)*e’p’

s, < ~tr(w’ GTGw) + or?

tr(v DT Dv) (3.54)

[leS]

Using the well-known matrix identity

tr(CA) = AT
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where I', A are such matrices that the above matrix multiplication and the trace operations
make sense we get

—_

1 _|_ m) 2622_?2

sI7s; < ~tr(Gww’ GT) + ( o tr(Dvv? DT) (3.55)

I3

Taking the mean value yields

(1 + ma)*c*p?
2

B{sTTI%s,} < %tr(GE{wa}GT) + te(DE{u™}DT)  (3.56)

pr

where we have used D and G are deterministic matrices. Because v and w are standard
vector-valued white noise process, the conditions

E{vw’} =1 (3.57)

Blow™} =1 (3.58)

hold therefore we have

1 —\252-2
B{sTIls,} < %tr(GGT) + (—H;#tr(DDT) (3.59)
Using 3.36 and 3.37 we get
E{GG"} < otr(I) = né (3.60)
E{DD"} < étr(I) = pé (3.61)

where n and p are the number of the rows for G and D, respectively. Setting

1 7)\272752
L0 ““)20 pm (3.62)
pr

knoise -

[ESW s

if follows with 3.59 and 3.62 that
E{S?HUSt} S knoise(S
yielding the desired inequality 3.51. O]

Now that we have introduced and proved the extension of all the needed lemmas in
[30], we can start the proof of the Theorem 3.3.1.
We choose

V(¢) = ¢"I¢ (3.63)
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with II = P~!, which exists since P, is positive definite. From 3.30 we have

%w <V(Q) < - |IC)? (3.64)

I’B

ie., 3.26 with v = % and 7 = 110. To satisfy the requirements for an application of Lemma
3.3.1, we need an upper bound on E{V?((?)|¢} as in 3.27. From 3.21 we have

Vo(CT) = (Sl + pAy) — nK G + i+ s YI{[(1 + pAy) — pKGCJC+ e + 50
And applying lemma 3.3.2 we obtain with 3.63

V() < A=)V (Q)+r] T{2[(I+pAy) — I, CylCHre 4287 T {[(1+pAy) — K ColCre 47 17 s,
(3.65)

The conditional expectation E{V?(¢?)|¢},the term E{sI TI°{[(I+pA;)—uK,;Ci]¢+r:}|C
vanishes because neither 117 nor A;, Cy, Ky, ry, (; depend on v or w. The remaining terms
are estimated via 3.3.3 and 3.3.4 yielding

E{V((7)I¢t = V() £ —aV(C) + knont HCH3 + Enoised (3.66)

for ||¢|| < €. Defining
a

e = min(é, T (3.67)

we obtain with 3.63, 3.64 for ||C]| <€
IS < 5= i<l < SV(Q) (3.68)

nonl = 2_ 9 .
Inserting into 3.66 yields
o}

E{VZ(E)ICE = V(Q) = =5 V(O + Knoised (3.69)
for ||C]] < €. Therefore we're able to apply Lemma 3.3.1 with ||(o|| <€, v = %, U= é, and

A = Knoised. When € < ||(]| < e with some € < € the inequality 3.69 terms become neéative
and is fulfilled to guarantee the boundedness of the estimation error choosing

~2

Qe
= 3.70
2]_gknoise ( )
with some € < ¢ we have for ||| > €
(6%
kTLOZ866 S ? HCH EV(C) (371)
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3.4 Observer based control on time scales

We discuss in this part the control of systems with a feedback based on observers to
estimate the system state.

In [6] the observer based control has been discussed for the time scale LQG controller and
a proof for the separation principle has been established. (see equation 31 page 435)
Let’s consider a time scale linear system similar to 3.1 without process and measurement
noises.

{;:A::C;{a: + Bu, x(ty) = zo (3.72)
withx e R", Ae¢ R v e R™, Be R ye€RPand C € RP*". t e T.
Hypothesis 3.6. the time scale T has a bounded graininess.
We assume a time scale version of the famous Luenberger form observer.
% = A2 + Bu+ L(y — C%) (3.73)

where 7 is the estimate and L € R"*? is the observer gain. The estimation error =z — &
dynamic is described by the following equation

i = (A - LCO)z (3.74)

We want to control the system 3.72 with a state feedback. Since we don’t have a direct
access to the state x we use the provided observer estimate .
This leads to the controlled system described by the equation

1® = Ar + B(—K1) (3.75)

where K € R™*™ is the feedback controller gain. (we assume u = 0 in 3.75)
adding and subtracting BK =z to 3.75 and rearranging terms yields

22 = (A — BK)z + BK# (3.76)
Considering the augmented state £ = [xT :Z'T]T we obtain the equation of the augmented
system
A— BK  BK
A
8= 0 A_IC 19 (3.77)

The system 3.77 describes the separability principle of the state feedback controller and
the Luenberger like observer. The observer and the controller can be designed separately
and are independent of each other.

In addition, the hypothesis 3.6 and system 3.72 observability and controlability ensure
system 3.77 stabilisability.

We can restrict the general form of controllers and observers with the above structure to
the Kalman filter case and LQR case. It conducts us to the case discussed in [6].
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3.5 LQG/LTR case

In this section we want to discuss the well known LTR issue.

LQG is based on the so-called principle of separation of control and estimation. The state-
feedback controller LQR is optimal in the sense of a quadratic criterion, and the Kalman
filter is the optimal state estimator in the presence of white noise disturbances. Taken
together controller and filter give a control law which is optimal in the presence of white
noise measurement and process noise.

Unfortunately the LQG controller lacks robustness due to systems uncertainties.[19]

To overcome this issue, the LQG/LTR controller has been designed to recover the robust-
ness property of the LQG under the Kalman filter optimal state estimation.|7]

We will propose an LTR approach to overcome this issue for non zero graininess time scale
systems. The controller and observer gains will be inspired from the delta operator formu-
lation that has been developed in [26] and [25].

Indeed, the time scale theory is a generalization of the delta operator approach. subse-
quently, we will change the delta term in each gain equation (each LTR gain equation in
[25] and [26]) by the graininess operator (.

We will see later in a simulation that this approach seems to work well for the non zero
graininess time scale case regarding to the system response obtained, unfortunately we
won’t give any proof for this new filter.

Generally the LQG/LTR controller design proofs rely on a frequency description of sys-
tems. To our knowledge, we do not have yet an effective frequency description of time-scale
systems, which makes the evaluation of the filter capacity to recover the targeted robust-
ness properties impossible. Subsequently, we cannot generalize the proofs based on the
frequency description of systems.

the plant to be controlled is described by 3.1.

For this system the observer gain is given by

}Q:(L+m??WB]1 5.78)

And the feedback controller gain is given by

[CB]LC(I + pA)
"

K, = (3.79)

Remark. i) Some conditions need to be satisfied to be able to use this approach.
Firstly, the system should have a number of outputs equal to the inputs.
Secondly, all the system zeros must be stable. [19]

ii) The gains given by 3.78 and 3.79 have no sense in the zero graininess case. However,
this mustn’t cancel the availability of this approach for the non zero graininess. An
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extension can always be done to the continuous case by taking the continuous Loop
Transfer Recovery controller in this case.

3.6 Simulation examples

3.6.1 Kalman filter

We consider the spring-mass system described by the following equations

( A -
X1 _ 0 1 T n 0 w,
To _—1 —2| |9 1
(3.80)
gl
Y= [1 0 + v,
\ L2

where x1 represents the position of an object, x, is its velocity, y is the measurement,
w =~ N(0,1) is the process noise, and v ~ N(0,2) represents the measurement noise. In
applying the Kalman filter, it is assumed that the measurement are Gaussian with variances
02 =2and 02, = 3.

The system and filter initializations were

1 . 1 2 0
xo—[1:|,$0—|:1} andPo—[O 3:|

The simulation is run on the time scales listed in 3.1.

T [ w) | o)
27 t+2
Hn %_‘_1 Hn+1

Paib 1(Pap) | o(Pap)
1 1
N | ey | VEFT

Table 3.1: Time scales considered for simulation

0, teU,lke kc+a)
where (P, ) = ¢ b, teUX dkc+a and o(P, ;) =
p(Pap) ) ol } (Pap) {t+b t e U {kc+a}
c=a

The simulations have given the following results

t, t e U lke, ke +a)
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Position Error
100 r v 20 - - .
—Exact —— Estimation
——Measure —Measurement
— Estimate 15F -
50F .
10F .
o QL
] ]
g =
E 0 - - a 5 - -
= £
< <
O - -
50F |
sk .
-100 . . ' -10 — . .
0 5 10 15 20 0 5 10 15 20
iterations iterations

Figure 3.1: Time scale Kalman filter simulation for T = 27Z.

We can see that the estimation error is superior to the measurement error when p(t) = 2.

Position Error
5 T 4 T T - :
—Exact — Estimation
4} ——Measure 3} —Measurement
— Estimate
3F . 2F .
3 2r , g 1r / ,
2 2
= 1} 1 = of -
£ =
< o} ] <_1} i
-1k 1 2F 1
2F ; 3t .
_3 I L L _4 L i L
0 5 10 15 20 0 5 10 15 20
iterations iterations

Figure 3.2: Time scale Kalman filter simulation for T = H,,.
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For this case, the estimation error is smaller.(notice that the graininess is very small
here)

Position Error
8 | —Exact 8 [ " |—Estimation
6k ——Measure ——Measurement
— Estimate 6F -
4 L -
= - 4 i T
2?2 =
= =
a O - - E_, 2 - -
= =
< o} | <
O - -
4} i
2 i
6k i
_8 Il 2 2 _4 2 Il 'l
0 5 10 15 20 0 5 10 15 20
iterations iterations

Figure 3.3: Time scale Kalman filter simulation for T = Pys.

The estimation error is high for high graininess values and lessen when the graininess
decreases.
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Position Error
30 . 15 . . —
—Exact — Estimation
\ ——Measure 10k —Measurement
20r ——Estimate
N> st
10F .
t | & o
= =
& £l
-10F .
< <10}
20F . 15b
30F h 20k
-40 . ' 25 ' . .
0 5 10 15 20 0 5 10 15 20
iterations iterations

Figure 3.4: Time scale Kalman filter simulation for T = 27Z for t < 8 and T = Hi, for ¢ > 8.

In the figure above, we observe that the estimation error decreases with the graininess.

Position Error
6 T 4 H - .
—Exact —Estimation
——Measure —Measurement
—— Estimate
4r 2F
< 2} 1 < of s
E E
£ i
< of y I
2F g 4F
-4 ! . -6 . .
0 10 20 30 0 10 20 30
iterations iterations

Figure 3.5: Time scale Kalman filter simulation for T = Nz,



3.6. Simulation examples 71

The observer behaves very well here, the estimation error is close to the origin. in this
case, the graininess is small.
Fault estimation case:
In this scenario, we add some faults to the mass-spring system 3.80 and perform the
simulations.
The simulation will be done on time scales 27, H,,, N 7 and a union of these three time
scales.
the fault signal experiences two phases. The first one is a step signal. During the second
phase it oscillates.
The simulation have given the results below.

Position Fault
600 : 6F r
400 F . 51
200F . 4F
O 4 .y 3 i
2200 F . 2r
400} ] T
—Exact —Exact
_600 | - - -Estimate 0 1 — Estimate
0 50 100 0 50 100
time time

Figure 3.6: Time scale Kalman filter with fault estimation feature for T = 27Z.
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Position Fault

3F ]
25k l/\/\/.

—Exact —Exact
— Estimate | —Estimate

0 5 10 0 5 10
time time

Figure 3.7: Time scale Kalman filter with fault estimation feature for T = H,,.

Position Fault

oF —Exact 0 —Exact
) | | —Estimate 05 | | — Estimate
0 10 20 30 40 0 10 20 30 40
time time

Figure 3.8: Time scale Kalman filter with fault estimation feature for T = N 2,
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Position Fault
60 T v x ;
6}
50F .
5 -
40F -
30t . 41
20F 1 3t
10F . !
O - -
l -
-10f —Exact —Exact
20 | | — Estimate 0 i i — Estimate
0 20 40 60 0 20 40 60
time time

Figure 3.9: Time scale Kalman filter with fault estimation feature for T = 2Z H,, N 2,

Comments on results

The Riccati and the gain equations change depending on the time scale, subsequently the
gain will get impacted following the time scale on which the system evolves.

From figure 3.1 to figure 3.5 we have plot the true position, the measurements, the esti-
mates and the estimation error with the measurement error to have an idea of the filter
effectiveness.

The time scale Kalman filter seems to work well in certain time scales but not all of them,
even though the estimation error appears to be bounded in all cases.

Actually, the estimation error drops when the graininess operator pu(t) is small. On the
other hand, we observe that the error gets larger when the graininess stretches.
According to theorem 1.4.2, we can state that this behavior is expected from the theory
since the larger the graininess is, the harder becomes the estimation error stabilisation.
Moreover, if we look at the graininess as a delay, it conducts the estimation error to in-
crease as a consequence of the delays impact on the error stability.

From figure 3.6 to 3.8 we have plot the position with its estimate and measurements. We
have also plot the fault signal that occurs to the system with its estimate.

The filter succeeds to approximate the fault on each time scale. When the fault oscillates
the filter fails to identify the oscillatory behavior of the fault signal.

The fault estimation dynamic is extremely slow, this slowness suppress the capacity of
the filter to shape accurately time varying fault signals, especially when they have an im-
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portant oscillatory behavior like in the simulation. Nevertheless, we have seen that this
slowness ensures the fault estimation error stability. Since the fault estimation isn’t accu-
rate the state estimation looses accuracy even in small graininess time scales. However,
this phenomenon doesn’t deteriorate the global stability of the state estimation.

3.6.2 Extended Kalman filter

The extended Kalman filter will be tested on a time scale system inspired from 2.4. (Ba-
sically we replace the classical derivative by its Hilger version)

We added process and measurement noises. Both are zero mean processes with respectively
the deviations 30 and 40.

The time scale on which the system has been run is characterized by a random graininess
with some gaps. Time is given in seconds while the different angles are in radians.

We obtained the following results

0 0 error
30001 " R0 m
* Exact : « Estimation
¢+ Estimate 60k * Measurement
2000 F e
A ﬁ “ A 40}
1000 F
20F
of - S o}
20F
-1000F
" 9 40F ¢
2000 F :
-60F
-3000 : . ! -80 1 L
0 5 10 15 0 5 10
time time

Figure 3.10: Time scale extended Kalman filter motor shaft angle estimation and its esti-
mation error.

15
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* Exact
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Figure 3.11: Time scale extended Kalman filter motor

and its estimation error
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* Exact
» Estimate

-200

10 15

time

w error
m

80
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20
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-60

-80 . - :
0 5 10 15
time

shaft angular velocity estimation

91 error
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20
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-10 ;

e

20 . - :
0 5 10 15
time

Figure 3.12: Time scale extended Kalman filter rod angle estimation and its estimation

error.
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w, w, error
800 ——— 60T
a0l A AI * Estimate 50}
400} A |
30F
200F
20F
oF - N
10}
200} " ol -
-400 " 10l
I
_600 2 2 Il _20 'l 2
0 5 10 15 0 5 10
time time

Figure 3.13: Time scale extended Kalman filter Rod angular velocity estimation and its
estimation error.

Comments on results

We have plot the motor shaft and rod angular positions with their estimations and the
estimation error with the time scale.

For this simulation we have deliberately chosen small graininess values (unless the gaps)
to avoid the system instability.

The time scale extended Kalman filter behaves globally well. It has inherited same dynam-
ical performances as the time scale Kalman filter from which it’s inspired. The estimation
error is bounded but it increases when the graininess reaches higher values even if in this
simulation the estimation error is always under the measurement error even when the
graininess increases.

3.6.3 Observer based control

We run a simulation of the linearization of the inverted pendulum presented in [18], the
system is shown in figure 3.14. This system is stabilized with a pole placement.

15
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Fit)

o x

ol

Figure 3.14: Inverted Pendulum.

the equations that govern the system dynamic are

3 3
B0 = 2 0(0) - L gty + 550 (351
(1) = —ﬁm) + %@(w + mm) (3.82)

Where my, is the pendulum mass, m.. is the cart mass, L; is the pendulum length and J,
is its inertial momentum. f.. and f, are the friction forces that the system is subjected to.
The state space representation of this system is presented in [18], we consider the following
time scale system which is derived from this model.

02 (t) 0 1 0 0 o(t) 0

A2 A

eA )] 404 —0217 0 —154 | [pA(1) 50.0

A0 7] o 0 0 1 2(t) o | ) (3.:83)
22 (1) 0.950 —0.005 0 —0.411] [22(¢) 13.3

The system outputs are the pendulum angle ¢(t) (given in radians (rad) ) and the cart
position x(t) (given in meters (m)). this system is stabilisable using the observer based
control in accordance with theorem 1.4.3.

Parameters values are given in [18] table 3 page7.

The time scale on which the simulation has been run has been practically generated. This
time set is a successive union of continuous time set and discrete time sets. Figure 3.15
gives an idea of this time scale general structure. This time scale is interesting because it
gathers high and small graininess cases with different time scale density transitions. Time
here is given in seconds (s).

We design a state feedback controller for this system with the purpose of stabilising it.
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Figure 3.15: Practically generated time scale set

(3.84)

We place the poles of the system in the stability region that is relative to this time
scale following what has been stated in theorem 1.4.2.
The maximum value of this time scale graininess is 7 = 5. It conducts us to impose
the following Hilger plane poles to the system p = [—0.15,—0.1, —0.13, —0.17]. Using the
cylindrical transformation (see equation 1.3 in definition 1.2.13 ) we impose the following
eigen values to the system eig = [—0.1055, —0.0787, —0.09559, —0.1145]. the simulation
has given the following results
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Figure 3.16: Observer based control simulation in noisy scenario
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Comments on results

In this simulation, we have driven the eigenvalues to the stability region as mentioned
previously. The reference for output signals is the origin.

First, the observer based control succeed to stabilise the system in this time scale in both
scenarios.

When the graininess increases both output signals deviate from their reference in the noisy
scenario. However, the signals are bounded in the totality of the time scale on which the
simulation is run.

According to theorem 1.4, the system states should be uniformly exponentially stable which
is not the case in this simulation.

The stability has been deteriorated by the impact of the noise on the system. These noises
drive system poles out of the stability region of the Hilger complex plane that shrinks under
high graininess values.

We deduce from this simulation that high graininess values badly impact time scale systems
robustness and constitute a threat to their stability. It also induces an increase in the noise
impact on the system stability.

If this deduction is correct, the suppression of noises should drive the system to converge
exponentially to its reference. This phenomenon is observed in the figure 3.17.

3.6.4 LQG/LTR

In this part we consider an altered version of the system 3.83.
In this case we turn the B matrix to

50 0
0 0
B= 0 13
0 0

The system here is submitted to process and measurement noises with zero mean and
respectively the deviations () = 6 and R = 0.2. We also induce a variation of system
parameters to assess the controllers robustness, we alter the state matrix parameters by
0.5%.

We define the following criteria

J = / (2" Mz + u" Nu)dt (3.85)
0
100 0 0
00 0 0 10
where M = 0 0 30 0 andN—[O J.
0 0 0 0
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We have two possible control strategies to design our controller using LTR approach.

K, = (I + u(t)A)PCT(R + u(t)CPCT)~1.
_ [eBI'Cc+ut)A)
€ n(t) '
where () and R are system noises deviation matrices. K, and K, are controller and ob-

server gains respectively.

K _ UtuABCB
case2: P ut) ’
K. = (N + p(t)BTS? B)"'BTS7(I + () A).

where S solves 1.5.

casel:

the time scale envisaged in this simulation is the union of uniform discrete and other non-
uniform sets with a larger graininess.
T=1[2,1,15,3,1,2.5,1,1.5,2.9,7Z,2,1,1.4,2.8,1.4,6,1.03,7Z,2,3.4,1.9,6, 1.8,0.8, Z].

The simulations have given the following results (ref = [150, 300])
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Figure 3.18: LTR controller casel simulation
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Figure 3.19: LTR controller case2 simulation
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Figure 3.20: LQG case controller simulation
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Yl Error * Estimation
2000 + Time scale
. * Measurement
_2000 ‘ 1 1 1 1 1 1 1 1 ]
0 100 200 300 400 500 600 700 800 900
time
Y2 €rror * Estimation
200 + Time scale
* Measurement
0 [ - o
_200 1 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900
time
Figure 3.21: LTR controller casel estimation error
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Figure 3.22: LTR controller case2 estimation error
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Comments on results

From figure 3.15 and figure 3.16 we can see that both LTR approaches give interesting
results.

This controller succeed to recover the targeted robustness properties in this simulation
while the LQG fails to stabilise the system.

Regarding to the estimation error, the first case LTR controller gives better estimation
performances than the second case.

3.7 Adaptive non linear fault estimation observers

The purpose of this section is to generalize the non linear adaptive observers introduced
in chapter 2 to time scale systems. We will do that by giving a generalization of theorems
2.3.3, 2.3.4 and 2.3.5 to time scale systems.

First we start by considering the lipschitzian nonlinear time scale system described by
equations

(3.86)
y(t) = Cx(t),

where x € R” is the state vector, u € R™ the input vector, y € RP the output vector,

® : R" x R™ — R" is a known nonlinear function, f € R? an unknown vector that mod-

els faults effect on the system which is to identify. A € R™" B € R™, £ € R"*9 and

C' € R™? are constant matrices with rank(C) = p and rank(FE) = ¢. t belongs to some

bounded graininess time scale T.

The pair (C, A) is supposed to be observable and the non linear function ®(x,u) doesn’t

alter the system observability.

Moreover all hypotheses 2.1-2.5 are admitted to be satisfied. We introduce now some useful

relations. (Young inequality)

{:C(t)A = Az(t) + ®(2(t),u(t)) + Ef(t),

Lemma 3.7.1. [1] for all non strictly positive reals a and b and all strictly positive reals
p and q such that % + é = 1 the following inequality always holds

ab? b
ab < — + —.
p q

A frequent case of the Young inequality is

Lemma 3.7.2. [1] For all reals a and b and all reals € > 0 the following inequality holds
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in the case where a and b are vectors, the inequality above becomes

2 2
iy < Ml <l

o 5 (3.87)

3.7.1 Fast fault estimation observer

First, we start by stating the time scale equivalent of the hypothesis 2.5.

Hypothesis 3.7. The delta derivative of the faults vector satisfies the following condition

1£2]] <~ (3.88)

where 7y is a known positive constant.

The fast fault estimation observer that corresponds to system 3.86 is given by equations

{@A = A&+ ®(2,u) + Ef + L(y — C#), (3.89)

fA=TF(o x (y— C&) +y® — C&2),

where o is a positive constant. From 3.86 and 3.89, we deduce the estimation errors
dynamics 7 and f that are governed by equations

fA = f2—TF(cCi+ Ci»), (3.90)

{g:A =(A-LC)i+®+ Ef,
where & = ®(z,u) — ®(Z, u).
To overcome the derivative evaluation issue, we can rewrite the second equation in 3.89 in
the form

R (3.91)

f=TF(w+y—Ci,
w> =0 x (y—Cz).

The following theorem ensures the observer stability

Theorem 3.7.1. We consider the system 3.86 and the observer 3.89.
If there exist five positive constants €, €1, €2, €3 and €4 and two matrices P € R™ "™ positive
definite and symmetric and F' € RY*P such that

Qll QQQ QlS
* * Qs

FC = ETP[I + u(A - LO)). (3.93)
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with Qu = [(A—LO)"P[I+pu(A—LO)|+P(A—LC) +ljer] — 2 (o I+ A—LC) [T +p(A—
LO)TIP[I + w(A — LC)|(oI + A — LC) + 2ol + (A — LO)"CTF'TFC[ol + (A — LO)].

Q2 = [I + u(A— LC)T|P + “[o] + (A — LC)|CTF'TFC.

Q13 = —L(A = LC)T[I + (A = LO)"PE + “[(o] + A — LC)|"CTF'TFCE.
Qu = —e1l + pP — 2 [1 + p(A — LOYTPPII + (A — LC)] + LCTFTTFC.
Qo3 = —L[I + (A — LC)|TPE + pPE + LCTFTFCE.

Qss = 1 = 2E"(I + (A — LC)|PE + pnE"PE — 2ET[I + u(A — LO)"PP[I + p(A —
LC)E + LETCTF'TFCE.

Then the errors T and f giwen by 3.90 converge to some neighborhood of the origin. More-
over, if f® =0 then ¥ and f converge asymptotically to zero.

Proof. To prove this theorem, we consider the following Lyapunov function
V =3TPi+ %fTF‘lf. (3.94)
Using #ii) in theorem 1.2.2 and iv) in theorem 1.2.1 we obtain
VA =38TPr + % FAITf 4 27T Pt 4 % frrtA (3.95)

Developing each term, using equation 3.97 and rearranging them yields
VA =iT[(A— LO)TP+ P(A— LO) + (A — LC)TP(A — LC))& + 25T PO + 2 fTT-1 fA —
2fTETP(I + (A — LO))#2 + 23" (A — LC) PO + 2u@T PEf + p@" PO + ufTETPEf +
LpaTp=1pa 28 fATET P 4 i(A— LC)) (02 +3%) 4+ E(0Ci+ Ci*) T FITF(0CE + CF2).
On the other hand, from the Lipschitz condition 2.9, we obtain

Reils — e dTd > 0. (3.96)

where ¢, is a positive constant. Now we add the left part of inequality 3.96 to the right
part of the equation above.

VA < FT[(A— LO)'P[I + p(A — LO))& 4 28" [ + p(A — LC)T PP + 36,572 — e,07d +
2FIT1 A 4 2udTPEf + p®TPd — 2fTETP(I + p(A — LO)|[(A — LO)3 + @ + Ef] +

m fTETPE fHLfATT A 4 B(oCF + Ci2)TFITF(0C% + C[(A — LC)i + @ + Ef]) —
AT ETP(T + (A — LC)(07 + (A — LO)Z + @ + Ef).

Applying the young inequality to the terms %fTI‘*lfA, %“fATETP[I + pu(A - LO)][oT +
(A— LO)7|, 2 fATETP(I + (A — LC)|® and 2 fATETPT + (A — LC)|Ef yields

VA < GT[(A— LC)T PI + u(A— LO)) + P(A— LC) 7+ 257 [I + (A~ LC)T P&+ 126,777 —
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a®T® 4 EfTf 4 LATP-ITP-1pA 2 FTRTPIT 4 (A — LC)|(A — LO)E — 2 fTETP[I +
p(A = LC)® — 2fTETP(I + (A — LO)|Ef + 2u®"PEf + ud'Po + ufTETPEf +
LFATD-L A 4 bof + (A — LO)E + ® + Ef]TCTFTTFCloi + (A — LO)Z + & + Ef] —
e pATETEfA — 223 (0] + A — LC)T[I + (A — LC)"PP[I + (A — LO)(o] + A —
LC)i — e fATETEfA — T[] + (A — LO)|" PP[I + (A — LC)|® — k4 fAT ETE A —
L FTET[[ + (A — LC)T"PP[I + u(A — LC)|Ef.

o€y

After rearranging terms again the inequality above can be rewritten into the form

Qu Qn O3 .

VA < XT * Q22 Q23 X+ fAT[F‘ UEF‘ 4 gF—l - /%ETE - %ETE - %ETE]JCA.

* * Qa3

T
where x = |®| and Q;jeq1,2,3)2 are as stated in theorem 3.7.1.

f

Qu Q2 Q3 s
If Hypothesis 3.7 is satisfied and taking | * Q Q3= Z and ["—F— + pI'™! —
* * Qa3

pes ETE — pes ETE — ey ETE] = R leads to
1
VA< —Amin(—2) ”XH2 + ;”YZAmam(R)- (3.97)
It means that errors & and f converge to some neighborhood around the origin if inequality

3.92 is satisfied.
In the case where f2 = 0, the errors # and f converge asymptotically to zero. ]

3.7.2 Proportional integral observer

The conventional PI observer that corresponds to the system 3.86 is given by

t
o :Aj:+c1>(j:,u)+E/ Lo(y — C#)At + Li(y — C%). (3.98)
0

t
Setting f = / Lo(y — Cz)At, we can rewrite 3.98 into the form
0

{:%A = Ai + ®(2,u) + Ef + Li(y — Ci). (3.99)

f2 = Ly(y — C#).
To simplify the stability analysis of this observer we set it into the form

X2 = AX + (X, u) + L(y — CX). (3.100)
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L[], [A E] - Te(iu)] . [L
WhereX—[f},A—{qun quj,C—[C Opxq},i)()(,u)—{ Ot },L'_{LQ].

Let X = X — X where X = [T fT]T and assuming that f® = 0. The estimation
error dynamic equation is given by

X2 =(A-LO)X + . (3.101)

where ® = ®(X, u) — O(X, u).
Notice that the observability condition must always be satisfied to design this observer.
We announce the following theorem now

Theorem 3.7.2. Let the system 3.86 and the observer 3.99. For f* =0, the estimation
error of the augmented state X given by 3.101 is asymptotically stable if there exist a
positive constant € and two matrices P € ROHOX(+0) symmetric and positive definite, and

M € ROHDXP gych that

{Q” Qi 1 (3.102)

*  —el +puP

where Q11 = ATP — CTMT + PA — MC + 3¢l + pATPA — pATMC — uCt*TMT A +
pCt MITP-TMC.

Q12 = P + p(ATP — CTMT).

The observer gain is computed as follows

L=P M. (3.103)

Proof. Let’s consider the Lyapunov function
V=xTpXx. (3.104)
The delta derivative of V' is
VA = XATPY + xoTpXA, (3.105)

Developing each term in 3.105 and rearranging them yields
VA = XT[(A—LC) TP+ [T+ u(A—LO)|"P(A—LC)| X 4+2XT [T+ pu(A—LC)|" PO+ udT PO
From Lipschitz condition (i.e.l3eXTX — edTd > 0) we have

VA < XT[(A = LOTP + [I + p(A — LO)]"P(A — LC)]X + 2X7[I + p(A — LC)]"PP +
pdTPO + 2eXTX — 7.
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Now using the substitution £ = P~ M, V2 satisfies

VA <eTze, (3.106)
where
¢=[x7 371" (3.107)
and o o
. 11 12
Z = { ; —e]—i—u??] . (3.108)

where ()11 and ()12 are as stated in theorem 3.7.2.
It’s obvious now that if condition 3.102 is satisfied A tends asymptotically to zero. [

3.7.3 PI H,, observer

In this subsection we adapt the H., filtering with the PI observer to time scales with the
purpose to enhance its performances when f2 # 0.
First we start by announcing a time scale version of the 2.6.

Hypothesis 3.8. the function f> has a finite energy,i.e.,

/ h AT FAAL < 0. (3.109)
0

We reconsider the equation 3.101 for the case f2 # 0
X2 = (A-LOX + D+ EfA, (3.110)

where £ = [qu 1 }T. We want the observer gain £ to satisfy the conditions

lim X =0 for =0,
t—o0
(3.111)
/ XTDXAt < A / AT FAAL for f2#0.
0 0

where ) is a positive constant and D a symmetric semi positive definite matrix .
We announce now the theorem that ensures the H, filter stability.

Theorem 3.7.3. Let the system 3.86 and the observer 3.99. If there exist two real positive
constants € and X and two matrices P € ROTOX(+0) symmetric and positive definite, and
M € RFD*P sych that
Qu Q2 Qi3
x Qoo (az| <0, (3.112)
* * Qa3
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where Q11 = ATP — CTMT +PA -~ MC + €3 + D + u(ATPA - CTMTA — ATMC +
CTMTPIMC).

Q12 =P + p(ATP -t MT).
Qus = PE + u(ATPE — CTMTE).

Qa2 = —€l + P, Qo3 = 2uPE and Qa3 = —\I + nETE.

And D is defined such that it satisfies 3.111.
Then, the estimation error of the augmented state X satisfies the conditions in 3.111.

Proof. Considering the Lyapunov function V = XTPX and following the same steps in
the proof of Theorem 3.7.2 when f® # 0 we obtain the inequality

VA < T ZE 2T PESA, (3.113)

where ¢ and Z are defined by 3.107 and 3.108 respectively.
We consider now the criteria

J=XTDX — \fAT 2 4 VA, (3.114)
Inequality 3.113 implies
J < XTDX — AfAT A 4 6T 26 + 26TPEfA. (3.115)

If we replace £ and Z by their expressions we obtain

~ T ~
X Qu Qi Qi3 {(
o

J< | @ ¥ Qun Qo
fA * * Qa3 fA

where Qijeq1,23)2 are defined as stated in 3.7.3. If the inequality 3.112 is satisfied thus
J < 0 and subsequently

(3.116)

/ JAt = / (XTDX — MfATFA) AL + V(00) — V(0) < 0. (3.117)
0 0
Under zero initial conditions V' (0) = 0, the inequality 3.117 implies
/ XTDXAL < )\/ AT FAAL. (3.118)
0 0

Moreover, if f& = 0, it’s obvious that J < 0 implies V2 < 0 and subsequently the
asymptotic stability of X towards the origin. O



92 Chapter 3. Time Scale Observer Design

3.7.4 Simulation

We run a simulation for the system 2.4 on a time scale with random graininess.
the fault scenario is the same as in the chapter 2.
the simulations have given the following results
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Figure 3.23: Time scale fast fault estimation observer state estimation.




3.7. Adaptive non linear fault estimation observers

93
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Fault estimation error
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Figure 3.27: Time scale PI H,, observer state estimation.
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Fault estimation error
04r =

o f

o time scale
03F
0.2 2
0.1p

T

-0.2

_03 1 1 1 1 1 1 1 1 ]
0 2 4 6 8 10 12 14 16 18

time

Figure 3.30: Time scale PI H,, observer fault estimation error.

Comments on results

In this simulation, we have chosen gains similar to the ones used in the chapter 2.

This choice is related to the fact that the graininess of the time scale is very small (to
guarantee the system stability during the simulation), following this we can satisfy the
conditions stated in theorems 3.7.2 and 3.7.1 by considering a continuous time scale which
allows us to use the previous gains.

the simulation in both cases has given good results, the observers identify the fault signal
accurately and perform the state estimation with high efficiency.

It’s interesting to notice that the gaps don’t deteriorate the state estimation quality as it
is the case for the Kalman filter. The fault estimation doesn’t even deviate from the fault
signal after high graininess values when the fault signal is steady.

On the other hand, when the fault varies the same previously observed phenomenon for the
time scale Kalman filter happens. The estimation error picks when the graininess reaches
higher values.

The time scale fast fault estimation observer converges asymptotically when the fault signal
delta derivative is equal to zero as it’s expected from theorem 3.7.1.

The Proportional integral observer designed with H, filtering technique has a satisfying
performance in the fault varying case even if we notice a small phase shift in the fault
estimation.
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3.8 Conclusion

In this chapter, we have introduced observers newly designed for time scale systems.
These observers have shown interesting behaviors during simulations.

The estimation accuracy appeared to depend on the nature of the observer and the struc-
ture of the time scale on which the system evolves.

Indeed, the time scale Kalman filter introduced in [6] and its non linear extended version
are affected by the time scale structure. Large graininess induce larger estimation error
especially in noisy scenarios where system robustness is deteriorated under large graininess
because of stability region narrowness.

It would be useful to study deeper this phenomenon in the future works to find a way to
overcome this issue or at least limit the impact of the graininess on the estimation error.
The adaptive non linear fault estimation observers didn’t experience this issue but the
calculations to find gains that would satisfy the conditions established in theorems related
to each observer are complicated.

It is possible to establish a formulation as a LMI optimisation problem to solve for each
value of u by extending what has been developed in [20] to the general time scale case.
However, this approach need a more detailed study to find necessary conditions on the
time scale structure that would ease these calculations and decrease its numerical and
computational complexity.
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4.1 Introduction

In the present chapter, we will apply the new time scale extended Kalman filter as a fil-
tering technique for the radar target tracking.

The target tracking is a wide domain which objective is to track the movements of a given
mobile in a space defined by the perception area of different sensors [12]. In our case, we
will only focus on the tracking using radars.

During the previous decades, for meany strategic reasons this domain attracted the at-
tention of many researchers around the world, and this led to the emergence of several
techniques and algorithms to estimate a target trajectory.

Many scenarios of target tracking such that jamming, saturation or passive detection in-
duce a non uniformity of the measurements, which makes the time scale analysis tools
really relevant here.

First, we will introduce the generalities around the target tracking using Kalman filter
algorithms, after that we will adapt those algorithms to the general time scale case and we
will conclude with some simulations.

4.2 Generalities around the target tracking

In this this section, we introduce a simplified version of models that describe a body
trajectory in the horizontal plane. we will then derive the discrete state equations from it
to the maneuvering target case and non maneuvering one.

After that, we’ll talk briefly about the classical filtering estimation techniques using the
EKF.

4.2.1 Model of target trajectories

To model the trajectory of a target, we can state that whatever the complexity of this
trajectory, we can always describe it with a succession of line segments, circle arcs, elliptical
arcs...etc...[9]
From the statement above, we can determine the trajectory followed by a target at some
instant ¢ by determining the different canonical trajectories followed by the target during
this time. [11] In our study we restrain ourselves to the line segments and we describe the
target evolution by the evolution of its (x,y) coordinates through time.
If F, is the sum of all the forces that act on the body at an instant ¢, we obtain by the
second dynamic fundamental relation
2
d |:(I?(t):| _ F’u <41)

e Ly(t)
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where m is the mass of the targeted body. The forces are reduced to air friction and other
external disturbances when the body isn’t in a maneuver phase.

When it produces an acceleration to maneuver (engines thrust), the net force F, is also the
result of this action.

Non maneuvering target

Non maneuvering targets can be described by very simple models.
Generally these bodies have mainly a rectilinear motion at constant speed. This movement
is characterized by the equations [11]

S = (tk — tk_l)U + S0,
4.2

where s is the crossed distance, v is the velocity and (t; — tx_1) is the time difference.
In discrete time, these equations become [11]
{qm:4@—¢hguk—n+sw—1%

v(k) =v(k—1), (43)

Inspiring ourselves from the model described by the equation 3.3 in [11], we can write
an augmented version of this model for the plane

xy(k) = x4k — 1),

and T = tk — tk—1~

Wmm{mm:%w 2o (k) = v, (k)

w3(k) = sy (k)  xa(k) = vy (k)
Naturally, the systems are subjected to noises thus we have the following discrete state
model

= Arp_y +w, (4.5)

17T 0 0
T 01 00 ) ) .

where x = [m1x2x3x4] , A= 00 1T and w is a process noise with zero mean and
0 0 0 1
2T 0 0

covariance matrix Q = g 8 Z; % ; .

0O 0 o0 T
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Maneuvering target

Now we add to the system 4.3 a third term that represents the acceleration of the body.

S = (tk — tk_l)U + So,

v=% =35 =(t) — tp_1)a + vy,

dt

_ v
@ =g

v,

where a is the acceleration of the body. We deduce from the equations above the discrete

time description

(4.6)

u here is an input signal that controls the body acceleration. This leads to a system of

equations equivalent to 4.4

/

L L6 k)= Yo
x1(k) = s.(k)  xo(k) = v, (k)
where 73(k) = aa(k)
z4(k) = sy(k)  w5(k) = vy(k)
zg(k) = ay(ki

T = Arip_1 + Bu 4+ w.

w(k)=a1(k—1) +Taa(k— 1)+ 2

1 T T 0
0 1 T Oqx3
T 0 0 1 01><3
Where ¢ = |1 29 x3 24| , A=
[1 2 T3 4} Oy 1 T %2
013 00 I

[0

o O O = O

5133(]{ — 1),

07

_— o O O O

(4.7)

(4.8)
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4.2.2 Measurement equation

The radar sends an impulse signal in a given direction. This signal propagates in all di-
rections by forming spherical waves. After AT the signal reaches the target, this time is
proportional to the target distance. A part of this signal is reflected by the target and
after the same time AT, the reflected wave reaches the radar, which after processing the
received signal gives an estimation of the distance between the radar and the target and
the angle formed by the radar aim axis and a reference axis. (the measurement process is
described with more details in [12])

Such a radar performs the tracking by distance and angle measurements. These measure-
ments are described by the following equation [11]

V/Su(k)? + sy )]

atan(s@‘gg). (4.9)

Obviously, the measurements are corrupted with noises. Taking into account 4.9 and these
noises leads to the following measurement equation

y = h(x) +wv, (4.10)

Yp = h(zx) = [

where x is the process state vector and the measurement noise v is a gaussian white noise
Od 0 :|

with the covariance matrix R = [ .
0 a, &

4.2.3 Radar tracking using EKF

Regarding to the non linearities that characterize the measurement equation, we apply the
extended Kalman filter by locally linearizing the model around the estimation points and
applying the Kalman filter to determine the correction gain.

The set of EKF equations for the target tracking are given in [12]

(fl; = f(fk—buk—m)
P = ApPe 1 AT + Qi
Ky = P, Cl(CyP; Cf + Ry) ™! (4.11)
Ty = 2y, + Ki(ye — h(2)))

(P = (I + K Cy) Py,

where C' and A are given by 3.17 and 3.16 respectively. P is obtained by solving 3.8 for
the case u(t) = 1.

Remark. In our simulation we will take the input control signal u equal to zero in the
filter algorithm. As we’re performing a tracking simulation, we don’t have access to this
signal.
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s N et

1. Actual deviation
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1. State prediction matrx
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Figure 4.1: Kalman filter algorithm scheme. [28]

Remark. In general, the Kalman filter is not sufficient enough to estimate the dynamic
of a maneuvering target to track it.

In these conditions, special maneuver detection devices incorporated in the tracking system
are used to be able to follow the trajectories of the targets with precision. [12]

To lighten this issue, we will give to the control signal u impulse values.

4.3 Simulation

In the simulations, we generate a trajectory using the difference equation 4.6 for a body
in that evolves in the (z,y) plane.

After that we generate radar measurements using the radar measurement equation 4.9.
In our scenario, we partially loose the target position at some instants. We will use both
classical and time scale extended Kalman filters to perform the target tracking.
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Remark. In the matlab code, we replace some values of the measurements vector by NaN
to indicate that we lost the target at this instant.

Remark. When the value of y is equal to NaN, in the classical EKF estimation we simply

estimate the position using the equation Tp = AZyp_1, we remove the correction term since
we do not have any measurement.

In this simulation the parameters are taken as follows:
oq = V2, 06 = \/Ta00 0Q = V2, Xy = 3,40,4,20]" for the non maneuvering case and
oq = V30, 05 = \/1509) Q@ = v2,Xo = [1500,0,0.1,180, 1, —0.5]", for the maneuvering

case.

Remark. the graininess operator is increased by the sampling period each time the measure
15 replaced by NalN .

example: when y = [NaN, NaN, NaN] we have u = 4T,. where T, is the sampling period.

Time is given in seconds (s) and distances are given in meters (m) for both maneuvering
and non maneuvering cases.

Remark. For the non maneuvering case we use a predictive version of the discrete extended
Kalman filter. each time we don’t have a measurement we remove the correction term of
the filter and we replace the filter equation by 11 = f(xr41,0).



106 Chapter 4. Application to the Radar Target Tracking

Target trajectory
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Figure 4.2: Linear trajectory and measurements generation.

Non maneuvering case:

Discrete EKF tracking
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Figure 4.3: Target tracking using discrete EKF.
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Figure 4.4: Discrete extended Kalman filter targes position estimation error.

Time scale EKF tracking
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Figure 4.5: Target tracking using time scale extended Kalman filter.
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Time scale EKF prediction error
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Figure 4.6: Time scale extended Kalman filter target position estimation error



4.3. Simulation 109

Maneuvering case:
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Figure 4.7: Maneuvering target trajectory.
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Figure 4.8: Maneuvering target tracking using discrete extended Kalman filter.
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Figure 4.9: Maneuvering target tracking using time scale extended Kalman filter.
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Figure 4.10: Maneuvering target position estimation error.

Comments on results

The time scale Kalman filter performs the radar target position tracking with a very
satisfying accuracy in presence of extremely corrupted measurements.

We still observe the usual deviation of the estimate from the signal when the data are
missing (which is implied by an increase of the graininess), the estimation accuracy is
quickly recovered when the measurements get back (which is due to the graininess value
decrease). It’s important to notice that the error peak of the discrete filter is less important
than the one observed for the time scale EKF in the maneuvering case.

In the non maneuvering case, the time scale filter appears to perform with lesser accuracy,
unfortunately the absence of measurements drives the estimation error to highly increase
and it takes more time to recover its initial accuracy than the maneuvering case. Moreover,
the discrete EKF has a better accuracy than the time scale EKF even when the measures
are accessible to the observer. Nevertheless, whatever the case this error is still bounded.
The difference of the graininess increase impact on the error pick between the discrete and
time scale Kalman filter suggests that the time scale Kalman filter introduced in [6] should
be improved to overcome this issue.
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4.4 Conclusion

In this chapter, we evaluated the time scale extended Kalman filter performance in a
concrete scenario where non uniform measurements are involved.

The particularity of this simulated scenario is the fact that the non-uniformities that usually
characterize the time scale systems are just virtual.

Indeed, they only appear in the measurements or the feedback loop while the state of the
system is characterized by a classical discrete dynamic.

The results of these simulations are interesting regarding to the relevance of the information
obtained about this time scale filter estimation capacity.

We have seen that the time scale extended Kalman filter is able to perform the radar target
tracking with an accuracy globally equivalent to its discrete version.

The implementation of this new filter omens a promising potential for practical applications
in any engineering area which could be subjected to non-uniformities in the dynamics of
their processes.



General Conclusion

State observers represent a major asset in control engineering and control theory to solve
the issue of systems inaccessible inner state signals measure. the introduction of this type
of tools for time scale systems is of important interest, since this new theory is still poorly
supplied with advanced observation techniques and strategies.

In this context, the main purpose of this thesis was the development of observers with the
objective to perform state estimation for systems that are characterized with non uniform
or hybrid dynamics.

At first, we reminded the fundamentals of time scale calculus and introduced the main
notions and definitions around time scale systems and their dynamical properties. We pre-
sented then the generalities relative to model based fault diagnosis and gave an overview
of some observer based diagnosis strategies and techniques.

In the main chapter that gathers all our contributions to the topic, we introduced first the
time scale Kalman filter and added to it a fault diagnosis feature. We developed its ex-
tended version to nonlinear systems and established its time scale stochastic stability. We
ended this part by studying the observer based control case and discussing the LQG/LTR
issue for the non zero graininess time scale case.

After that, we proposed a study where we generalized to the random time scale general
case the adaptive observers (fast fault estimation and PI observers) by generalizing their
error stability conditions for any graininess value. We also extended to time scales the H,
filtering approach to design the PI observer introduced in [20].

The method followed to provide the proofs of this thesis important results mainly relied
on establishing the time scale equivalent of the already established proofs that ensured the
stability properties of the introduced filters and observers in continuous or discrete time
sets using the theoretical tools of time scale calculus.

This approach has proven to be successful, since it allows the establishment of powerful
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results by combining the conventional continuous and discrete control theory results and
time scale calculus.

During the simulations, all the newly introduced observers have shown interesting perfor-
mances regarding to their global accuracy and convergence rates. However, we have seen
that the estimation error tends to increase due to the error stability configuration which
is highly influenced by the graininess operator that shrinks the stability domain when this
operator increases. The Loop transfer recovery controller proposed seems to work with
good performance on unions of nonzero graininess time scales, unfortunately it fails to
reject the noise impact when the graininess takes random values.

In the last chapter, we proposed a radar target tracking scenario where the radar sometimes
looses its target to assess the time scale Kalman filter performances. The filter performance
were similar to what has been observed in chapter 3. These results signify that this new
filter can be used in real applications where systems with non uniform measurements are
involved. Moreover, the time scale Kalman filter is of major interest for any application
with non-uniform dynamics or hybrid systems.

Future outlook

There are several directions to consider for future developments in view of the work done
in this thesis. Next years students should inquire for a solution to the error pick issue
observed in Kalman filter estimation for high values graininess. They could find a new and
better formulation for this filter that could fix this issue.

A frequency description of time scale systems should be developed in future works. Indeed,
the frequency description of continuous and discrete systems is very useful to quantify
systems dynamical properties and ease the performance analysis of a controller or observer
capacity to reject noises or respond with a given rate and accuracy. Such a description
would allow a truly rigorous development of the LQG/LTR controller and overcome the
issues that we met. Beyond that, it will allow a better understanding of time scale systems
robustness properties and subsequently find a way to strengthen these properties under
high graininess.

The last important thing to improve concerns the adaptive non linear fault estimation
observers. We gave in theorems 3.7.1, 3.7.2 and 3.7.3 the gains conditions that ensure
the estimation error stability of each observer. It would be suitable to translate these
LMI conditions into LMI optimization problems to allow a more easier evaluation of the
observer gains.
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