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عُذ ذُفةز انرصًةى . الأَفاق انًٕععح يثم اندغٕس ٔذأثةش كثةش عهى الاعرداتح انذيُايةكةح نهٓةاكم  ّسيةح نالأحشكاخ هانرثايٍ انًكاَي ن :ملخص

عهى انشغى يٍ أٌ  .انرعشيف انًعمٕل نهحشكاخ الأسيةح انضنضانةح أيش حاعى نرحهةم الاعرداتح انٓةكهةح انضنضاني نهٓةاكم،

لذ ذكٌٕ  عذدا كثةشا يٍ انضلاصل انًغدهح ذى خًعٓا خلال انعمٕد انًايةح، ظشٔف انًٕلع ايٍ ذى ذغدةم ْزِ انضلاصل

انًغرخذيح عهى َطاق ٔاعع  ،شك صنضاني يًرذن (EGF)ًةذاَةح انغشيٍ   في ْزِ انذساعح، طشيمح دٔالانٓةاكم. ذحد  يخرهفح كثةشا عٍ ذهك

يشكض صنضال الاصُاو الأعاط في يُطمح عهى صخش نردًةع انحشكاخ انضنضانةح عثش يدًٕعح يٍ انًحطاخ انضنضانةح انري ذمع يذدخ ، 

حغاعةح ٔأخشيد دساعح ٔعائطةح ذثحث  الأعاط تُاء عهى َرائح.صخش نذًد ذمذيًّ هرداَظ نًَٕرج ٔعائطي  غشب اندضائش(.-ل)شًا0891

دٔال انرداَظ انًكاَي  .(HGFطشيمح دٔال غشيٍ انٓدةُح )ذًذيذ تاعرخذاو اخشيد  ظشٔف انًٕلع،انرداَظ، نًُثع انضنضال، يغاس الاَرشاس ٔ 

 Zervaانًطٕس في يماستح  ،تالاصُاو ذى حغاتٓا تاعرخذاو ًَٕرج ذحهةهي نًٕلع يحذد Sogedia  انًٕافمح نهحشكاخ انضنضانةح انغطحةح في يٕلع

ٔHarada مح يع ذمذيشاذُا ذٕنةذ عشٕائي نهرغاسعاخ في يٕالع يخرهفح عهى عطح الأسض يٍ انًٕلع، يرٕاف  .عشٕائي انطثماخ نًٕلع ذشاتي

ذأثةش انشك انضنضاني انًًرذ يًكٍ أٌ يغثة اَخفاض انُُائح انًرحصم عهةٓا تةُد اٌ نهكثافاخ انطةفةح نهطالح ٔدٔال انرداَظ انًكاَي، ذى ذمذيًٓا. 

فصم انيغافح  ُذ، ٔ انى حذ كثةش عم تشكم يحغٕطةمهذعشٕائةح انطثمح يًكُٓا  .الأعاط في انحمم انمشيةصخش عهى  يحغٕط في انرداَظ

يشٔف انرشتح  . يٍ اخمحرى نظشٔف ذشتح ثاترح راخ انمةى انًُخفضح يٍ َغثح انرخًةذلشب ذشدد سَةٍ انًٕالع، انرداَظ انًرٕعطح انى انكثةشج، 

 .غةطش عهى ذشْٕاخ انضنضانةح نلأسضذعشٕائةح انطثمح ْزِ، 
 .عشٕائةحذشتح ، داَظانر ،صنضاني يًرذشك ، دانح غشيٍ: يحاكاج انحشكح الأسيةح، الكلمات المفتاحية

 

Résumé : La variabilité spatiale des mouvements du sol a une influence notable sur la réponse dynamique des 

structures étendues telles que les pipelines et les ponts. Lors de la réalisation de la conception sismique des 

structures, la définition raisonnable des mouvements du sol de tremblement de terre est cruciale pour l'analyse de 

la réponse structurelle. Bien qu'un grand nombre de séismes enregistrés aient été recueillis au cours des dernières 

décennies, les conditions du site où ces tremblements de terre sont enregistrés peuvent être très différentes de 

celles des structures. Dans cette étude, la méthode des Fonctions de Green Empiriques (EGF) pour source finie, 

la plus utilisée, a été étendue pour synthétiser les mouvements sismiques à travers un réseau de stations 

localisées au substratum rocheux en champs proche du séisme de 1980 d’El-Asnam (Nord-ouest Algérie). Un 

modèle paramétrique de la cohérence au rocher est présenté sur la base des résultats de la simulation. Une étude 

paramétrique investiguant la sensibilité de la cohérence à la source sismique, trajet de propagation et les 

conditions de site, est réalisée en simulant l'accélération du sol pour différents scénarios en utilisant l’extension 

de la méthode Hybride de Fonctions de Green (HGF). Les fonctions de cohérence spatiale correspondantes des 

mouvements sismiques de surface sur le site Sogedia d’El-Asnam sont calculées en utilisant le modèle spécifique 

de site analytique développé dans l'approche de Zerva et Harada pour un site de sol aléatoire stratifié. Une 

génération stochastique d’accélérogrammes à divers endroits sur la surface du sol du site, compatibles avec nos 

estimations des densités spectrales de puissance et des fonctions spatiales de cohérence cibles, est présentée. Les 

résultats obtenus montrent que  l'effet de la source étendue peut entraîner une perte significative de cohérence au 

substrat rocheux dans le champ proche. La stochasticité de la couche peut réduire de manière significative, et 

grandement pour la moyenne à grande distance de séparation, la cohérence des sites à proximité de la fréquence 

de résonance, même pour les conditions de sol ferme lorsque son taux d'amortissement est faible. Pour ces 

conditions de sol, la stochasticité de la couche contrôle les déformations sismiques du sol.  

 

Mots clés: Simulation de mouvements du sol, fonction de Green, source étendue, cohérence, sol aléatoire. 

 

Abstract: Spatial variability of ground motions has significant influence on dynamic response of extended 

structures such as pipelines and bridges. When carrying out seismic design of structures, reasonable definition of 

earthquake ground motions is crucial to structural response analysis. Although a large number of earthquakes 

have been recorded in the past decades, the site conditions where these earthquakes occured may be much 

different from those of the structures. In this study, the widely used finite-source empirical Green’s function 

(EGF) method is extended to synthesize seismic motions across an array of stations located at bedrock in the 

epicentral region of the 1980 El-Asnam earthquake (North-west Algeria). A parametric model of coherency is 

presented for base rock based on the simulation results. A Parametric study investigating the sensitivity of 

coherency to seismic source, propagation path and site conditions, is conducted by using the extended hybrid 

Green’s function method. The corresponding spatial coherency functions of surface seismic motions at the El-

Asnam Sogedia site are calculated using the analytic site specific model developed in the Zerva and Harada 

approach for a layered, random soil site. A stochastic generation of time histories at various locations on the 

ground surface of the site, compatible with our estimations of the target power spectral densities and the spatial 

coherency functions, is presented. The obtained results show that finite-source effects can cause significant loss 

of coherency at bedrock in the near-field. The layer stochasticity can significantly reduce, or greatly reduce for 

medium to large separation distances, the coherency near the sites resonant frequency, even for firm soil 

conditions when its damping ratio is low. For these soil conditions, the layer stochasticity controls the seismic 

ground strains. 

  

Keywords: Ground motion simulation, Green’s function, finite-source, coherency, random soil. 
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General introduction: 

 

Lifeline systems, such as gas mains, oil pipelines, bridges, and dams, that are 

supported on ground over large horizontal distances experience differential seismic movement 

of their supports during earthquakes. This differential motion of the supports results in 

displacement and stress distribution in the structural elements that is different from what is 

caused by uniform motion of all the supports. In many cases, the outcome is additional strains 

(or stresses) on the elements, which can result in damage to the elements of the structures 

(e.g., Lupoi et al., 2005; Walling and Abrahamson, 2007; Karmakar et al. 2012; Soyluk and 

Sicacik 2012; Shrestha et al. 2014). The most definite outcome that can be drawn from all 

past studies on the effect of spatial variations of seismic ground motions (SVGMs) on the 

response of lifelines is that the use of identical motions as excitations at the structures’ 

supports will not always yield a conservative response. Indeed, in some cases, the response 

induced by identical motions can be grossly unconservative. Spatial variations of ground 

motion result from different physical processes related to the seismic source, the wave 

propagation path, and local site conditions. Attenuation effects result in the reduction of 

ground motion amplitudes with distance from the source. At a local spatial scale, for example 

within a few hundred meters, attenuation effects are not critical, and spatial variation is due to 

the physical processes such as (1) wave passage effects, which refer to the difference in 

arrival times of seismic waves at different locations; (2) incoherence effects, which refer to 

the differences in amplitudes and phases due to multiple reflections and refractions of seismic 

waves in inhomogeneous medium, as well as complex superposition of waves radiated from 

different parts of the source; and (3) local site effects, which refer to the change in amplitude 

and frequency content of ground motion due to local variations of soil conditions (Der 

Kiureghian, 1996). 

 

When the soil medium is locally uniform, variability in amplitude and frequency content is 

less significant than variations in phase caused by wave passage and incoherence effects. In 

such situations, ground motion variability is locally modelled as realizations of random 

processes with a spatially uniform amplitude and frequency content (Hao et al., 1989; Der 

Kiureghian, 1996). Engineering models of such processes are often calibrated from strong-

motion array data from past earthquakes. This includes estimations of apparent wave 

propagation velocity, coherency function, and site-dependent power spectral density function 

(PSD) of seismic waves. These coherency functions usually consist of two parts, the modulus 

or lagged coherency, which measures the similarity of the seismic motions between two 

stations, and the phase, which describes the wave passage and local site effects. Several 

models of coherency and correlation functions: theoretical, empirical and semi-empirical, are 

reported in the literature (e.g., Der Kiureghian, 1996; Harichandran and Vanmarcke, 1986; 
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Abrahamson et al., 1991a; Luco and Wong, 1986). Such models are needed for simulating 

time series of spatially variable ground motions that are crucial for seismic response analysis 

of horizontally extended structures.  

 

It is well known that coherency functions are characteristics of the local site, source, and 

wave propagation path. Therefore, models calibrated from data collected in one region may 

not be suitable for use in other areas (Somerville et al., 1988, 1991; Zerva, 2009). Due to lack 

of local data, coherency models calibrated for one region are often used to simulate ground 

motion in other regions, sometimes with different tectonic and geological settings. Many 

studies recognize the need for a single expression for the description of the spatial variability 

of the seismic motions to be used in engineering applications. However, the results of the 

study of Zerva (1994) on the effects of choosing of spatial incoherence models suggest that 

the response of lifelines is sensitive to the details of the spatial incoherence model (partial or 

full correlation at low frequencies, degree of exponential decay as frequency and separation 

distance increase). This leads to the suggestion that a single generic expression for the spatial 

incoherence of the motions may not, for the time being, be appropriate for the seismic 

response analysis of critical engineering structures, but that further research on the physical 

modeling of the spatial variability is necessary. A conclusion as to which model is better than 

the others will be reached when we have a complete physical understanding of the causes and 

the significance of the causes that produce the spatial incoherence in the motions.  

On the other hand, almost all the work in ground motion simulation used for structural 

response history analysis are based on the empirical Kanai–Tajimi spectrum or Clough–

Penzien spectrum, which are approximate ground motion power models that fail to accurately 

account for wave motions transmitted from the earthquake source through the medium. A 

physically consistent and refined model using a seismological source model that can account 

for effects of the fault rupture and the transmission of waves from the fault through the media 

to the ground surface is desired. 

 

1.1 Literature review on numerical simulations of spatially variable ground motions 

 

Although strong motion networks are expanding in many countries, dense arrays are 

required to record local variability are still rare. An alternative method, in the face of a lack of 

recorded data, to simulate spatially variable ground motion could be numerical simulation of 

ground motion. In this context, stochastic simulation methods based on the random vibration 

approach (Hao et al., 1989; Deodatis, 1996; Gao et al. 2012) that require pre-specified 

coherency functions are not applicable, and one needs to resort to simulation based on 

modelling of the physics of the seismic source and propagation of waves in an elastic 

medium. The choice of an appropriate simulation method depends on the availability of data 



Chapter 1: General introduction 
 

14 

 

on the wave propagation path and seismic source. The simulation method should be capable 

of incorporating the physical effects (e.g., finite-source effects) that lead to spatial variability 

at a local scale that confirm to the current empirical and theoretical understandings of the 

spatial and spectral nature of coherency functions (e.g., Ding and Song, 2010; Menke et al., 

1990). 

 

The two widely-used ground motion simulation approaches rely on point-source and finite-

source modelling. The point-source method (Boore, 1983, 2003) lacks the ability to model 

incoherence effects due to seismic waves radiating from different parts of a finite source. 

Such effects can be at least partially incorporated into finite-source ground motion simulation 

methods. Such methods rely on modelling an extended earthquake source and the wave 

propagation medium. Numerical simulations of ground motions incorporating the effects of 

three-dimensional seismic source, wave propagation in complex media, and the influence of 

the local site - such as, topographic effects and basin responses -have gained popularity in 

recent years (e.g., Smerzini and Villani, 2012). Such simulations are often semi-deterministic 

numerical methods based on finite elements (Bielak et al., 2005), finite differences (Pitarka, 

1999) or spectral elements (Mazzieri et al., 2013). Such extensive simulation methods are 

very attractive due to their ability to model complex source, path, and site effects in 

generation and propagation of three-dimensional seismic wave fields. These methods are, 

however, computationally expensive and require great detail about the source, as well as the 

geological and geotechnical properties of the area. The results of such simulations are 

accurate to the same degree that the input data are accurate, as in all simulations.  

In other words, detailed information on the fault geometry and slip distribution, as well as 

geological structure of the site, is required. While such information can be compiled for 

recent, large earthquakes, it is not easily predicted for future earthquakes. Although such 

methods have been very successful in reproducing ground-motion records from well-studied, 

past earthquakes, their reliability in predicting ground motion due to future earthquakes 

depends on the level of confidence with which various source, path, and site parameters are 

predicted. Through detailed geological and geotechnical studies, uncertainties in the path and 

site parameters can potentially be reduced, but inherent uncertainties in source parameters 

such as slip distribution are still significant, and it is not yet possible to predict the source 

model of a future earthquake based on past experience.  

 

Most importantly, these physics-based, numerical methods can simulate low-frequency (to 

about 2.5 Hz; e.g., Smerzini and Villani, 2012) motion. For engineering applications, and 

especially for incoherence effects, larger frequency components (~2-9 Hz) are more relevant. 

Hybrid methods of simulation, where low-frequency motion obtained from physics-based 

models, are combined with high-frequency motion obtained from stochastic models are also 
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being developed in the recent years (e.g., Graves and Pitarka, 2010).  Due to computational 

costs and lack of detailed information about the source, path, and site, these models have 

limited use in routine work.  

 

 An alternative for modelling the wave propagation effect is provided by the use of the 

empirical Green’s functions (EGF). These functions are calibrated from ground motion time 

series recorded during small events and, in this sense, incorporate, at least partially, the effect 

of the wave propagation path. The small events must correspond to the same seismogenic 

source as the target event being simulated. Hartzell (1978) first utilized observed records from 

small events (e.g., aftershocks and foreshocks) as Green’s functions to a simulate ground 

motion time series corresponding to a mainshock. Since then, his original idea has been 

applied, developed, and improved upon by numerous researchers (e.g., Irikura, 1983, 1986; 

Irikura et al., 1997). Sometimes, EGF in the form of recorded time series from small 

earthquakes are not available. In these cases, the EGF method, as conceived originally, is not 

applicable.  

To overcome this problem, hybrid methods for broadband-frequency ground motion 

simulations have been developed combining deterministic and stochastic approaches. One 

such method is the hybrid Green’s function (HGF) proposed by Kamae et al. (1998a). In this 

semi-empirical method, ground motion time histories corresponding to small earthquake 

events are calculated using the stochastic point-source model (Boore, 1983), or using a hybrid 

scheme combining deterministic and stochastic approaches. The long-period motions 

 1 Hzf  from the small events are deterministically calculated using the 3D finite-difference 

method (Pitarka, 1999) (i.e., assuming a point source and adopting a 3D velocity model of the 

heterogeneous structure). High-frequency  1 Hzf  motions from these are stochastically 

simulated using Boore's 1983 method. The resulting small events are then used as EGF to 

simulate ground motion corresponding to large earthquakes. The HGF method, in its former 

version, has been widely used, due to its relative simplicity, in simulating strong motion time 

series in regions where recorded data is not available (Joshi and Midorikawa, 2004; Joshi and 

Mohan, 2008). 

 

1.2 Literature review on site conditions effects on coherency 

 

The strong influence of site conditions on strong ground motion characteristics has been 

widely investigated and extensively documented. This strong influence is due to the fact that 

the shallow region surrounding the site is usually the most heterogeneous portion of the 

propagation path between the source and the site. This leads us to expect that the complex 

wave propagation phenomena that give rise to variability in site response will also give rise to 

variability in spatial incoherence due to differences in site conditions (Somerville et al., 
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1991). Therefore, this will influence the response of spatially extended structures. The 

majority of spatial coherency models were developed from recorded data at relatively uniform 

(rock or soil) site conditions during the strong-motion, shear-wave window and decay 

exponentially with separation distance and frequency (Luco and Wong, 1986; Abrahamson et 

al., 1991a). It is generally assumed that a single coherency model evaluated from the data at a 

uniform site can describe the coherency of the motions between pairs of stations located either 

both on stiff soil conditions, both on soft soil conditions, or one on stiff and one on soft soil 

conditions.  

This assumption is contradicted by following observations from recorded data. Somerville 

et al. (1991) investigated the coherency function of ground motions of horizontal shear waves 

on a site located on folded sedimentary rocks, such as the Coalinga anticline in California, and 

they found that the lagged coherency does not show a strong dependence on station separation 

and wave frequency. The incoherence is generally higher than on the flat alluvial sites of the 

El Centro differential array and the SMART-1 array where, in contrast, coherency had 

uniform (similar) behavior with its own pattern for each soil array (Somerville, 1991). 

Incoherency decreased smoothly with frequency and separation distance, which Somerville et 

al. (1991) attributed to wave scattering in a laterally homogeneous, horizontally layered 

sediment. Somerville et al. (1991) related the chaotic behavior to the wave propagation in a 

medium having strong lateral heterogeneities in seismic velocity.  

Liao et al. (2007) used the seismic data recorded at the Parkway array in Wainuiomata 

Valley, New Zealand, to study the effect of variable site conditions and irregular subsurface 

topography on coherency estimates from horizontal S-wave windows. They compared the 

lagged coherency functions of different station combinations: four groups with station pairs 

located on the sediments, one group with one sedimentary station, and one rock station (Liao 

et al., 2007). They concluded that the lagged coherency between the sediment and rock 

stations exhibits large variability and follows no consistent pattern in comparison to the 

uniform soil sites coherencies (Liao et al., 2007).  

Schneider et al. (1992) conducted an extensive study of spatial, lagged coherency estimates 

evaluated from data at a number of dense arrays at various sites, classified broadly as soil and 

rock sites. The coherency estimates evaluated at the rock sites show significant variability, 

which has been attributed to topographic effects at the rock sites (Schneider et al., 1992). The 

comparison suggests that coherencies estimated at rock sites are lower at low frequencies than 

coherencies at soil sites (Schneider et al., 1992). Also, the decay with frequency of the rock-

site coherencies is flatter and slower than the decay of the coherencies at the soil sites, which 

they explained by the fact that scattering at rock and soil sites differs so the exponential decay 

of the lagged coherency at these different site conditions will also be different (Schneider et 

al., 1992). These observations suggest that the spatial coherency function measured on flat-

lying sedimentary sites may not provide a good description of spatial ground motion 
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coherencies on sites with variable conditions and irregular subsurface topography (Schneider 

et al., 1992). These include folded sedimentary rocks exposed at the surface, basins generated 

by the folding of sedimentary rocks, and alluviated river valleys.  

 

In reality, it is hard to obtain a theoretically accurate coherency model that can be 

extrapolated to other sites, because of the difficulty in studying wave propagation through 

highly variable and complex soil media. It is well known that a more accurate model can be 

obtained through a more advanced analysis of wave motion transmitting through an 

accurately modeled medium. However, most of this work fails to obtain an explicit analytical 

expression of the coherency function that is needed for the synthesis of SVGMs at a particular 

site. Furthermore, in the theoretical wave coherency model by Der Kiureghian (1996) in 

which variability in local site conditions was represented by a one-dimensional, S-wave 

propagating vertically through two soil columns with different properties, only the 

randomness of rock was accounted for approximately in the incoherence effect, which is 

assumed to affect the lagged coherency value only, and the local site effects are assumed to 

have an influence on the phase only. The advantages of the model is that it can consider 

different soil properties at different support locations, and it is straightforward to use. 

However, the local soil properties exhibit greater randomness and spatial variation than the 

rock, which can also affect the lagged coherency value, as shown by the above observations. 

Unfortunately, how the local soil profile influences the lagged coherency value, besides 

affecting the phase part of coherency model, is unknown. 

 

Another point worth noting regarding the difficulty in reliably predicting the local site 

effects is that uncertainties always exist in defining the properties of soils. This results from 

the natural heterogeneity or variability of soils, the limited availability of information about 

internal conditions and sometimes the measurement errors. These uncertainties associated 

with system parameters are also likely to influence the lagged coherency loss function. 

Research on uncertain soil properties on the ground motion coherency is relatively rare. Zerva 

and Harada (1997) presented a semi-empirical, site-specific coherency model that 

approximated the site topography by a horizontally extended, stochastic layer overlaying a 

half space (bedrock). They simplified horizontal stochastic layers at a site with no dramatic 

changes in its topography as a single-degree-of-freedom (1-DOF) system with the soil layer 

thickness and with soil material properties as random functions of the horizontal coordinate to 

study the effect of soil stochasticity on the coherency function. They pointed out that the 

effect of soil layer stochasticity should also be incorporated in spatial variation models 

because the variability in the soil characteristics will reduce the lagged coherency function at 

the stochastic layer predominant frequency. This drop in lagged coherency behavior has been 

noted by Kanasewich (1981), who suggested that site resonances can be identified from holes 
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in the coherency spectra of motions at adjacent locations. Their analysis is also in concord 

with the coherency-hole phenomena observed by Cranswick (1988) in his geophysics 

research. It should be noted, that a 1-DOF system cannot realistically represent local site 

conditions due to the fact that multiple predominate frequencies exist corresponding to 

different modes of the site.  

Liao and Li (2002) analytically evaluated the spatial coherency in their stochastic 

methodology to study the effects of uncertain soil properties and irregular topography on the 

coherency function, where it is shown that the surface layer irregularity of a site with 

deterministic soil properties subjected to non-identical random input excitation can reduce the 

lagged coherency function values in the vicinity of the resonant frequencies of the site. 

Furthermore, the stochasticity in the soil layer also tends to cause diminution of the lagged 

coherency function values near the site’s resonant frequencies. The latter result is in 

agreement with that of Zerva and Harada (1997) and Cranswick (1988). However, this 

method is difficult to implement, sometimes a bit arbitrary in selecting the absorbing 

boundary conditions, and it is difficult to explain why the coherency function varies 

significantly over a relatively short distance (Bi and Hao, 2011).  

Kanda (2000), using two dimensional finite element modeling of a layered medium with 

irregular interfaces (fully deterministic concave and convex sine-shaped interfaces are 

assumed between the layers) and random spatially variable incident motions, analyzed 

coherency and amplitude variability on the free surface of the site. The analytical results 

showed that interface irregularities between layers significantly change the frequency 

characteristics of ground motions at the soil surface. Although the spatial lagged coherency of 

ground motion is near unity at frequencies lower than the first predominant frequency of the 

soil, it fluctuates and depends on the types of irregular interfaces at high frequencies. 

 

As a result, the effects of irregular surface and subsurface topography and uncertain soil 

properties of a site on the coherency function of spatial ground motions cannot be neglected. 

At the present, only very limited recorded spatial ground motion data on sites of different 

conditions are available. They are not sufficient to determine the general spatial incoherence 

characteristics of ground motions. Whereas analytical studies can provide insight into various 

aspects underlying the spatial variability in the seismic motions, the forward, purely analytical 

modeling of coherency, will be limited by the assumptions that are necessarily to simplify this 

complex problem. 

 

1.3 Methodology 

 

The research carried out in this thesis concentrates on modeling and simulation of spatially 

varying earthquake ground motions at the free surface of layered stochastic soil sites in the 
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epicentral region of the 1980 El-Asnam Earthquake (N.W Algeria), where recorded seismic 

data from dense arrays are not available. In the first step, based on an extension of the widely 

used finite-source ground motion simulation approach, the so-called empirical Green’s 

function (EGF) method and given by Irikura et al. (1997), shear horizontal (SH) wave seismic 

motions (out-of-plane) at increasing separation distances at the bedrock (around El-Asnam 

Sogedia Factory site) in the near field were synthesized using geophysical parameters 

corresponding to the scenario of the El-Asnam mainshoc event (October 10, 1980, Ms=7.2) 

and its recorded aftershock (November 8, 1980, ML=5.6). Power and cross spectral densities 

are computed, and lagged coherency functions are then estimated for the stationary segment 

of the strong motion S-wave window. The latter functions are compared to those obtained 

using the widely referred parametric plane wave coherency models in order to model the 

incident base rock ground motion spatial variation. To be able to study and understand the 

effects of the seismological input simulation parameters of source, propagation path and site 

on the spatial lagged coherency function, in particular, the ranges of magnitude, uniform rock 

basement and epicentral distance, we synthesized ground motions at various stations from 

hypothetical earthquakes by using a hybrid Green’s function method (HGF) given by Joshi 

and Mohan (2008). The results are compared with published literature, and they are 

interpreted in light of the physics of ground motion generation incorporated in the simulation 

methods.  

 

In the second step, the corresponding power and cross spatial densities of total surface 

seismic motions at the El-Asnam Sogedia Factory soil site with multiple soil layers are 

determined using the analytic site specific model developed in the Zerva and Harada (1997) 

approach for a layered random soil site, which directly relates the local soil conditions and 

base rock motion characteristics with the surface ground motions. The previously synthetized 

incident motions by the EGF method at different locations in the base rock, i.e. at the 

bedrock-layer interface, are assumed herein to have the same power spectral density. Site 

conditions consist of a vertical transmission of an SH wave with soil proprieties considered as 

varying randomly along the horizontal direction. Due to the absence of sufficient information 

to describe the variability of soil properties in the horizontal direction of the present site 

example, the layer thickness and soil material properties are regarded herein as random 

variables with the Gaussian distribution accounted for by a given coefficient of variation. The 

damping ratios adopted in this study are based on iterative equivalent nonlinear site response 

analysis of the soil layers when subjected to bedrock motion and are, therefore, considered to 

model hysteretic energy dissipation in the soil layers. The site contribution to the lagged 

coherency and, using the parametric model idealizing bedrock lagged coherency, the resulting 

total lagged coherency is then derived. The contribution of the various factors (the spatial 

correlation function of the predominant ground frequency varying in the horizontal direction, 
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the mean value of the equivalent damping ratio of the ground, mean value of the predominant 

ground frequency, and the wave propagation speed in the horizontal direction of the incident 

motion) to the spatial variation of the surface motions and the resulting seismic ground strains 

on the surface of the stochastic layer evaluated from the model are examined for the present 

site. Parametric models of the ground motion coherency and power spectral density at the 

surface of the study area are presented. Such models are useful in random vibration analysis 

of lifeline structures under the action of earthquake excitation or in simulation of spatially 

variable ground-motion time histories to be used in nonlinear time history analysis of such 

structures. 

For such nonlinear analysis, the spectral representation method of unconditional simulation 

given by Hao et al. (1989) is used to generate non-stationary, spatially varying ground motion 

time histories at various locations on the ground surface of the El-Asnam Sogedia site, 

compatible with the properties of the target (predictive) random field, e.g. power spectral 

density and the spatial coherency functions at the surface.  

 

1.4 Thesis Organization 

 

The thesis contains six chapters; the subsequent five chapters are summarized here. In 

Chapter 2, basic concepts of random processes are first given. The general properties of 

stochastic coherency function and the coherency estimation procedure based on conventional 

spectral analysis are then presented. 

 

Chapter 3 provides the methodology of the two widely-used, finite-source ground motion 

simulation approaches at a single location, the EGF and HGF methods, and their extension to 

simulate spatially correlated excitations at multiple locations on bedrock. A case study is 

proposed using the extended EGF method and non-parametric lagged coherency of ground 

motion is presented for the bedrock in the epicentral area of the 1980 El-Asnam Earthquake in 

northwest Algeria. Estimated coherency functions are compared with several parametric 

models proposed by various investigators. 

 

Chapter 4 gives the results of a parametric study investigating the sensitivity of lagged 

coherency to the engineer parameters of simulation using the extended HGF method.  

 

Chapter 5 deals, first, with a model of accounting for local site effect in the spatial 

coherency of surface ground motion, including consideration of spatial-random-variable soil 

profiles, and the resulting seismic ground strains on the surface of a stochastic layer evaluated 

from the spatial incoherence expression of the model. Next, the contributions of the various 

factors to the spatial variation of the surface motions and the resulting seismic ground strains 
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are examined for an example of the El-Asnam Sogedia Factory soil site. The simulated, 

spatially variable surface ground motions that match the predictive spatial coherency and 

power spectral density models close the Chapter.  

 

Finally, Chapter 6 summarizes the concluding remarks of the thesis and provides suggestions 

for future research. 
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BASIC CONCEPTS OF RANDOM PROCESSES 
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Basic concepts of random processes: 

 

Structures are subjected to loading that is mostly time dependent in a weak or strong 

fashion. Response histories under weakly time-dependent loading may be calculated by using 

the quasi-static analysis procedure. For moderately or strongly time-dependent loading, 

calculation of response quantities requires a full dynamic analysis procedure, assuming that 

the structure is deterministic and the loading history is fully determined or known. This means 

that it obeys a specific rule or a definite function of time, such as constant, linear, or 

harmonic. time functions with known properties. Under such a structural and loading 

scenario, the corresponding analysis called the deterministic dynamic analysis, since all 

necessary parameters of the analysis can be uniquely determined or known. However, the 

difficulty in the structural dynamic analysis is to determine the loading functions and their 

properties correctly, such as frequencies, durations, amplitudes, and phases. Due to the lack of 

sufficient knowledge of dynamic excitations in nature, we possess limited information on 

loading parameters which that are usually obtained from recorded data or observations of 

occurrences, such as earthquakes and sea waves, that occur in an arbitrary fashion. Other 

examples can be wind loading on high-rise buildings and towers and traffic loading on 

bridges and viaducts, which do not follow specific rules.  

Earthquakes occur periodically in seismic areas with unknown information and sea 

waves occur continuously with random fluctuations of the sea surface. The only information 

that we have is based on experiences of past occurrences from which we can predict structural 

response in a probabilistic manner. When the excitation loading varies arbitrarily with time, 

the corresponding response will also be arbitrary with time. Such a response process deals 

with the random vibration, and its characteristic properties can be determined by using 

statistical and probabilistic methods. The basis for probability modelling, processing and 

simulation of spatial variations of ground motion, is the theory of random processes. Basic 

concepts and numerical processing methods of random processes are presented in this chapter 

(Newland, 1984; Jenkins and Watts, 1969). 
 

 

2.1 Moments 

 

The moment, or expected value functions, of random processes can be obtained using the 

equations: 

 

       

 1 1 1 1( ) ( , ) E x t x f x t dx





                (2.1) 

 

 1 2 1 2 1 2 1 2( ) ( ) ( , , , ) E x t x s x x f x x t s dx dx





        (2.2) 
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where 
1( )x t and 

2 ( )x s  are random processes and 
1( , )f x t , 1 2( , , , )f x x t s  are their probability 

density function (called the first order probability density function) and joint probability 

density function (called the second order joint probability density function) at any time, 

respectively. 

 

Using Equations (2.1) and (2.2), any order of moment can be calculated. 

Mean value function of ( )x t  (first order moment): 

 

                            ( ) ( )  ( , ) xm t E x t x f x t dx





          (2.3) 

 

autocorrelation function of ( )x t  (second order moment): 

 

  2

1 2 1 2 1 2( , ) ( ) ( ) ( , , ) xxR t t E x t x t x f x t t dxdx





                          (2.4) 

 

autocovariance function of ( )x t  (second order moment):  

 

      1 2 1 1 2 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) xx x x x xB t t E x t m t x t m t x m t x m t f x t t dxdx

 

 

        

(2.5)

 
 

other useful functions are the variance function of ( )x t : 

 

 
2( ) ( )x xxt B t          (2.6) 

 

 

and the autocorrelation coefficient function of ( )x t  : 

 

1 2
1 2

1 2

( , )
( , )

( ) ( )

xx
xx

x x

B t t
t t

t t


 
         (2.7) 

 

where x  is the standard deviation of ( )x t . 

 

The above formulas can be extended to two random processes, 1( )x t  and 2 ( )x t . Instead of 

using the same 1 1( )x t  and 1 2( )x t , 1 1( )x t  and 2 2( )x t  are used to derive the corresponding 

definition for cross terms, which are called the cross correlation, the cross covariance, and the 

cross correlation coefficient. For example, the cross covariance function of 1( )x t  and 2 ( )x t  is: 
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 
1 2 1 2

1 2

1 2 1 1 1 2 2 2

1 1 1 2 2 2 1 1 2 2 1 2

( , ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( , , , ) 

x x x x

x x

B t t E x t m t x t m t

x t m t x t m t f x t x t dx dx

 

 

         

        
     (2.8) 

 

and their cross correlation coefficient function is: 
 

 

                                          

1 2

1 2

1 2

1 2

1 2

1 2

( , )
( , )

( ) ( )

x x

x x

x x

B t t
t t

t t


 
                                   (2.9) 

 

The correlation and covariance information of stochastic processes is important and 

frequently used in the spectral analysis of structures. The above mentioned equations for the 

correlation and covariance functions are general. For special processes, such as stationary and 

ergodic processes, they are simplified. 

 

If ( )x t  is a stationary process, then the above-defined first moment, or mean value, in Eq. 

(2.3) becomes a constant and is independent of time, t. For processed acceleration time 

histories, this mean value is generally zero, and, if it is not, the time histories are demeaned: 

the mean value is subtracted from the process. Also, the above second-moment functions 

depend only on the time lag, 2 1t t   . For example, the autocovariance function can be 

expressed as : 

 

  

   1 2 2 1( , ) ( ) ( )xx xx xxB t t B t t B          (2.10) 

 

where ( )xxB   is an even function, ( ) ( )xx xxB B   . 

 

The stationarity assumption carries a peculiar characteristic. Since the moments do not 

depend on absolute time, but only on time lag, the time histories have neither a beginning nor 

an end and maintain the same stochastic characteristics throughout their (infinite) duration. 

This characteristic is unrealistic as, obviously, seismic ground motions have an absolute 

starting and ending time. For ease of derivation, one may still argue is valid for the following 

reason. Generally, the stochastic characteristics of seismic ground motions for engineering 

applications are evaluated from the strong motion shear S-wave window (Harichandran and 

Vanmarcke, 1986), that is a segment of the actual seismic time history, that, however, 

maintains the same properties throughout its duration. This strong motion window can be 

viewed as a segment of an infinite series with uniform characteristics through time, or a 

stationary process (Harichandran and Vanmarcke, 1986). For a stationary process, the 

amplitude and phase of the motions are not functions of time. It is noted that the assumption 
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of stationarity is relaxed in the simulation of random processes and fields for their subsequent 

use in engineering applications (see Chapter 5, Sec. 5.2).  

The mathematical process of frequency analysis assumes that the limited-duration segment 

will immediately repeat. This is not completely true. It is often the case that the end of the 

segment does not smoothly mesh with the start of the segment. The consideration of a finite 

segment of the time history in the evaluations can be treated as one of infinite duration 

multiplied by a rectangular window time function. In the frequency domain, the results of this 

multiplication is equal to a convolution of the Fourier transform of the real time series and the 

Fourier transform of the rectangular time window. Hence, the results obtained after applying 

the FFT on the finite segment are distorted by the convolution with the spectral rectangular 

window at every discrete frequency value. This is an effect of data truncation and is related to 

the large discontinuity which may occur between the values between the edges of the finite 

segment.  

Generally, instead of the rectangular window, a cosine-tapered window is utilized, with 

cosine functions at both its ends. The duration of the cosine functions is a small percentage of 

the overall duration, T, of the segment and results in a smooth transition region in the 

analyzed segment from zero acceleration values to finite ones at the beginning of the segment, 

and from finite ones to zero at its end. The role of the taper window is to prevent 

discontinuities and the resulting spurious high frequency during the Fourier transform to 

compute the frequency content of the analyzed segment (Ancheta and Stewart., 2015). Many 

suggestions exist for how to smoothly taper a signal at its edges. Well-known and widely used 

windows include the Hanning, Hamming, Tukey, and Blackman windows. They differ 

slightly in how they taper near the edges and are available for direct use in Matlab code. The 

Tukey window, which is a rectangular window with the edges equal to parts of a cosine, will 

be used in this research. 

 

It is also assumed that the stationary time histories at the recording stations are ergodic 

(Newland, 1984). A stationary process is ergodic if averages taken along any realization of 

the process over its infinite duration are identical to the ensemble averages, i.e., the 

information contained in each realization is sufficient for the full description of the process. 

Obviously, the information from the time history is available only for a finite duration 

window, that presumably represents a segment of the stationary process. The consideration of 

ergodicity, however, is important, especially in the subsequent parametric modeling of the 

stochastic descriptors of the motions. The evaluation of these parametric models for the 

random processes and fields would require, ideally, records at the same site from many 

earthquakes with similar characteristics so that an ensemble of data can be analyzed and 

averages of the ensemble evaluated. In reality, there is only one realization of the random 

process or the random field, i.e., one time history at each recording station or one set of 
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recorded data at an array for an earthquake with specific characteristics. The assumption of 

ergodicity permits the use of the characteristics of a single realization over its duration to 

represent the ensemble characteristics, to which parametric models for the description of the 

spatial variation of seismic ground motions can be fitted, as will be the case in this research 

(see Chapter 3). These models are necessary for random vibration analyses or for the 

generation of artificial time histories. It is obvious that reality does not fully conform to these 

assumptions, but actual data recorded at dense instrument arrays during the strong motion S-

wave window may be viewed as homogeneous, stationary, and ergodic in a limited or weak 

sense (Zerva and Zervas, 2002). 

 

2.2 Spectral properties of random processes 

 

Since the fast Fourier transform (FFT) algorithm was introduced, harmonic analysis has 

provided a very effective tool for dealing with many problems. This frequency domain 

approach is particularly useful and suitable for vibration problems in which frequency is a 

very important parameter. To carry out a harmonic analysis, it is necessary to determine the 

spectral properties of the processes involved.  

 

Assume 1( )x t  and 2 ( )x t  are two, jointly stationary and zero mean random processes. Their 

power spectral density (PSD) functions ( )xxS   (
1 1

( )x xS   and 
2 2

( )x xS  , respectively) and 

cross power spectral density function 
1 2

( )x xS   can be defined respectively by the Fourier 

transform of the corresponding covariance functions as given by the Wiener-Khinchine 

transformation pairs: 

 

 

( ) (1/ 2 ) ( )  

( ) ( ) e  

i

xx xx

i

xx xx

S B e d

B S d


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

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






    (2.11) 

 

where ( )xxS   is a real-valued even function, ( ) ( )xx xxS S   ; 

 

1 2 1 2

1 2 1 2

( ) (1/ 2 ) ( )  

( ) ( ) e  

i

x x x x

i

x x x x

S i B e d

B S i d


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








    



    







   (2.12) 

 

 

where   is the circular frequency (in rad/sec). 
1 2

( )x xS i  is, in general complex and has the 

following properties: 
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1 2 1 2 2 1

*( ) ( ) ( )x x x x x xS i S i S i           (2.13) 

 

1 2 1 1 2 2

2

( ) ( ) ( )x x x x x xS i S S          (2.14) 

 

where ∗ denotes a complex conjugate. 

 

 

2.3 Estimation of covariances 

 

Assuming that 1( )x t  and 2 ( )x t , 0 t T   with T is the duration of the strong motion S-

wave window, they are two, jointly stationary random processes having zero mean values, or 

they have been demeaned. An estimation of the theoretical autocovariance function (Eq. 2.5) 

for 1( )x t  is (Jenkins and Watts, 1969; Zerva, 2009): 

 

 
1 1

1 1

0

1
( )            0

( )

0                                                 

T

x x

x t x t dt T
B T

T



 





  

 



     (2.15) 

 

It can be recognized from the equation that the stationary autocovariance is an even function 

of the time lag    , i.e., ( ) ( )xx xxB B   . Equation (2.15) evaluates the stochastic descriptors 

of the time histories as continuous functions of time. For a discrete data series having N data 

points at intervals t  and times ( 1)  kt k t , 1 ...  k N , so that ( 1)  N t T . The 

autocovariance function is estimated using : 

 

                    

1 1

1 1

0

1
( ) ( )                0 1

( ) 1

0                                                  1






   

 
 


N l

nx x

x n x n l l N
B l N

l N

   (2.16) 

 

The autocovariance estimators of the motions at different seismic stations are evaluated from 

Eq. (2.16). The estimators are sharply peaked at 0  , decay quickly with the time lag  , and 

exhibit symmetry around the zero axis. 

 

The estimator of the cross covariance function (Eq. 2.8) for processes 1( )x t  and 2 ( )x t is 

(Zerva, 2009): 

 

                        

 
1 2

1 2

0

1
( )            0

( )

0                                                

T

x x

x t x t dt T
B T

T



 





  

 



     (2.17) 

which can also be written as (Newland, 1984): 
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T

T
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T
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    (2.18) 

 

 

For a discrete data series, Eq. (2.18) becomes : 
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    (2.19) 

 

Contrary to the autocovariance functions of the data (Eqs. 2.15 and 2.16), the cross covariance 

functions are not peaked 0  . They decay quickly with the time lag   and exhibit no 

symmetry around the zero axis 0  . An equivalent symmetry property of the cross 

covariance function can be derived from Eq. (2.18), is 
1 2 2 1

( ) ( )x x x xB B   . The peaks of the 

cross covariance functions between separated stations occur at time lags 0 , that has values 

close to 0   for short separation distances and that increase with increasing distance. The 

locations of the peaks, as well as their amplitudes, vary between station pairs. The shift of the 

peak values of the cross covariance functions from 0   is associated with the propagation of 

the waves and has a significant effect on the bias of the spectral estimates, as the lagged 

coherency function. The lag 0 , due to wave-train propagation, is the amount of time by 

which one of the records must be shifted to look like the other one as much as possible. 

 

The autocorrelation coefficient and cross correlation coefficient functions of the discrete 

time series 1( )x t  and 2 ( )x t can be easily calculated using: 
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2.4 Estimation of Spectra 

 

Assume 1( )x t  is a series in 0 t T   having sample increment t . Thus, the total number 

of data points is 1N T t   . The power spectral density function of 1( )x t  can be estimated 

by first tapering 1( )x t  and evaluating its Fourier transform: 

 

 

 1 1 1 1

1
( ) ( )   = ( )exp ( )

2

i tX x t e dt X i  








      (2.22) 

 

  
1 1    ( ) ( )  i tx t X e d 





         (2.23) 

 

The power spectral estimate of Eq. (2.11) can be alternatively evaluated directly in the 

frequency domain as follows (Zerva, 2009): 

 

* 2

11 1 1 1

2 2
( ) ( ) ( ) ( )S X X X

T T

 
          (2.24) 

 

where 11( )S   is used rather than 
1 1

( )x xS  , for simplicity in presentation. Equation (2.24) 

clearly indicates that the power spectral density is real-valued. It further provides the physical 

interpretation of the power spectrum, namely that it is a scaled square of the Fourier 

amplitudes of the time history at the recording station during the analyzed window. An 

alternative approach to approximation of the PSD of the ground acceleration is by converting 

a response spectrum to an equivalent PSD, e.g., Tiliouine et al. (2003); Zhang et al. (2013). 

 

The smoothed spectral estimate can be evaluated directly in the frequency domain through 

the following convolution expression (Jenkins and Watts, 1969): 

 

                                             
11 11( ) ( ) ( )  S W u S u du 





                        (2.25) 

 

where the spectral window, ( )W  , and the lag window, ( ) , are Fourier transforms of each 

other, i.e., 
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The window ( )  has the properties: 

         

(0) 1                   

( ) ( )              

( ) 0                               T
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 

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     (2.28) 

  

Analogous to these properties (Eq. 2.28), the spectral window, ( )W   has the properties: 
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For discrete frequencies, Eq. (2.25) takes the form: 
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     (2.30) 

 

where 2 T    is the frequency step, n n    is the discrete frequency, ( )W m   is the 

spectral window, 2 1M  is the number of frequencies over which the averaging is performed, 

the superscript M  indicates the dependence of the estimate on the length of the smoothing 

window, and the last equality in Eq. (2.30) results from Eq. (2.24). Examples of smoothing 

windows include the rectangular, Bartlett, Tukey, Parzen, Hanning and Hamming windows 

(e.g., Jenkins and Watts, 1969). It is noted that different smoothing windows yield similar 

results, as long as the bandwidth of the windows is the same (Jenkins and Watts, 1969). 

Equations (2.25) and (2.30) suggest that the smoothed spectral estimate is an average over- 

frequency of the raw spectral estimate. With the smoothing operation, the variance of the 

estimate is reduced. The application of smoothing produces a trade-off between resolution and 

data scattering, as the level of smoothing increases the scattering of the spectral estimate 

decreases, and the mean value also decreases. 

 

The spectral bandwidth of the window is defined as (e.g., Jenkins and Watts, 1969): 

 

 
1 1
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From the available smoothing windows, the Hamming window is most commonly used for 

smoothing seismic spectral estimates (Abrahamson et al., 1991a; Ancheta and Stewart, 2015). 

Its expression (in samples) is given by: 

                

( )
( ) 0.54 0.46cos             ....

m M
W m m M M

M

  
    

 
    (2.32) 

 

The area underneath the Hamming window is 1.08M . If the window is used in the frequency 

domain, as is most commonly the case in analyzing seismic data, it ought to satisfy the 

characteristics of spectral windows (Eq. 2.29). Hence, the area underneath the window needs 

to be equal to unity, i.e., the right-hand side of Eq. (2.32) needs to be divided by 1.80M . 

To compute the cross power spectral density function (or cross spectrum) between 1( )x t  

and 2 ( )x t , both 1( )x t  and 2 ( )x t  need to be tapered. After transforming 1( )x t  and 2 ( )x t  to the 

frequency domain, i.e.,  1 1 1( ) = ( )exp ( )X X i  
 

and  2 2 2( ) = ( )exp ( )X X i   , the 

cross power spectral density function can be obtained using Eq. (2.33) as an alternative to Eq. 

(2.12) (Zerva, 2009): 
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     (2.33) 

 

 

where 12 ( )S   is used rather than 
1 2

( )x xS i , for simplicity in presentation. The absolute value 

of the cross spectral density, 

 

 

 12 1 2

2
( ) ( ) ( )S X X

T


    (2.34) 

 

 

is usually termed the cross amplitude spectrum and the phase difference in Eq. (2.33), i.e., 
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
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         (2.35) 

                                                                                                                                                                                                                                                               

The cross amplitude spectrum is controlled by the Fourier amplitudes of the motions at the 

two stations, and the phase spectrum indicates whether the frequency component of the time 

history at one station precedes or follows the other time series at that frequency. 
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Similar to the power spectrum, cross spectral estimates also need to be smoothed to reduce 

their variance. The smoothed cross spectrum can be evaluated directly in the frequency 

domain through the convolution: 

12 12( ) ( ) ( )  S W u S u du 




      (2.36) 

 

For discrete frequencies, Eq. (2.36) takes the form: 
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Equation (2.37) is derived in a manner similar to the smoothed, discrete power spectral 

density of Eq. (2.30). An important observation that can be recognized from Eq. (2.37), and 

also applies to Eq. (2.36), is that the Fourier phases of the individual time series contribute not 

only to the phase spectrum of the smoothed estimator, but also to its cross spectral amplitude. 

For the unsmoothed estimates, the cross amplitude spectrum (Eq. 2.34) is not affected by the 

phases, which contribute only to the phase spectrum (Eq. 2.35). For clarity, the smoothed 

cross amplitude spectrum is given by: 
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and the smoothed phase spectrum by: 
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                   (2.39) 

 

 

It is noted that the last equality of the unsmoothed phase spectrum in Eq. (2.35), i.e., 

12 2 1( )  ( ) ( )      , no longer applies to the smoothed estimate (Eq. 2.39). 

 

 

2.5 Stochastic and empirical ground motion coherency models  

 

Spatial variability of ground motion at two points (or locations) is caused by a number of 

factors (Abrahamson et al., 1991a; Der Kiureghian 1996; Zerva and Harada 1997; Somerville 

et al., 1988) which can be summarized as follows: 
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a) Differences in the manner of superposition of waves arriving from an extended finite 

source and wave scattering by irregularities and inhomogeneity along the wave path and 

at the site, commonly termed incoherence effects. 

b) Traveling-wave or wave passage effects, in which non vertical waves reach different 

points on the ground surface at different times, producing a time shift between the 

motions at those points. 

c) Site effects due to the variation in filtering effects of overlying soil columns. 

 

Considering motions  ix t  and  jx t  at two discrete locations i  and j  separated by a 

distance  , the complex coherency function in space and circular frequency   is defined as: 

 
 

  
 

   

,
,

ij

ij

ii jj

S

S S

 
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 
  (2.40) 

 
           

where  ,ijS  
 
is the smoothed cross spectral density function of  ix t

 
and  jx t ; and 

 iiS 
 
and  jjS 

 
are their smoothed power spectral density functions. Separating  ,ij    

into its absolute value and phase, we have: 
 

                  , , exp ,ij ij iji             (2.41) 

 

 

where  0 , 1ij     is a term commonly referred to as the lagged coherency function, and 

 ,ij    is the smoothed phase spectrum given by: 
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    (2.42) 

 

which is the same as the phase spectrum of Eq. (2.39). 

 

The wave passage introduces a deterministic shift in the Fourier phase (or deterministic 

delay in time) dependent on the wave speed and the separation distance between locations. 

Stochastic variations of Fourier amplitude and phase, unrelated to wave passage, occur due to 

wave scattering and interference along the source-to-site ray paths. These random variations 

in the Fourier phase are represented through the lagged coherency function. Generally, lagged 

coherency decreases with an increase in separation distance and frequency. The lagged 

coherency indicates the degree of linear relation between the data at each frequency. The 

closer the value of the lagged coherency to unity, the higher the indication of the linear trend, 
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and the closer the value of the lagged coherency to zero, the larger the scattering in the data. 

Lagged coherency, the most commonly cited coherency, and plane wave coherency, which is 

also used as a way of describing motion incoherency of the two points and is defined as the 

real value of complex coherency, are both obtained when the tapered time series are aligned 

using a single wave speed, i.e., considering that the time histories propagate with constant 

velocity at all frequencies as if they were a perfect plane wave propagation (Ancheta and 

Stewart, 2015).   

In the alignment process, a reference station is selected. The cross covariance between the 

reference station time history and the motions at individual stations is evaluated, the time lag 

0 associated with the peak value of the cross covariance identified, and the time histories are 

shifted as much as the identified time lag, so that wave propagation effects (i.e. wave passage 

effects) are partially removed. Indeed, seismic ground motions incorporate random time delay 

fluctuations around the wave passage delay, that are particular for each recording station. 

These arrival time perturbations are caused by the upward traveling of the waves through 

horizontal variations of the geologic structure underneath the array and, also, due to 

deviations of the propagation pattern of the waves from that of plane wave propagation. 

 

In this study, lagged coherency functions are computed from the numerically simulated 

time series of ground acceleration at different space locations; the simulation methods are 

described in Chapters 3 and 5. The stationary part (strong motion S-wave window) of the time 

series is first extracted by visual inspection of the time evolution of Arias Intensity of the 

simulated time series. After extraction, a Tukey time window with a tapering length of 15% of 

the length of the demeaned stationary part is applied. The tapered S-wave signals are aligned 

to remove wave passage effects (e.g., Rupakhety and Sigbjörnsson, 2012; Zerva, 2009). The 

alignment is achieved by shifting the time axis of tapered S-wave windows with respect to an 

arbitrarily selected reference station by an amount corresponding to the time lag where the 

cross-covariance function of the tapered S-wave window and that at the reference station is 

maximal. The aligned, tapered windowed signals are then used to estimate power and cross 

spectral density functions, which are smoothed. We smooth all power spectra using a 

Hamming spectral window with a parameter of 39M   ( 2 1M  is the width of the window). 

This level of smoothing is selected in order to reduce the variance in lagged coherency. We 

note that the window length used here is longer than that reported in Zerva (2009). The fact 

that the simulated time series in our study have a relatively long duration means that the 

frequency resolution of the computed spectra is relatively fine. This allows us to use longer 

windows to effectively reduce the variance of computed spectral estimates without seriously 

compromising their frequency resolution. 
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Based on coherency estimates from recorded strong motion array data, several models of 

parametric lagged coherency functions have been proposed in the literature: empirical, semi-

empirical and analytical coherency models (see Zerva, 2009 for a detailed description). In the 

present study, coherencies estimated from simulated ground motion (Chapter 3) are compared 

with the models the empirical model of Hindy and Novak (1980) and the semi-empirical 

models of Luco and Wong (1986) and Somerville et al. (1988).  

The Hindy and Novak (1980) model is mathematically expressed as (Novak and Hindy, 

1979; Hindy and Novak, 1980): 

 

  , exp ( )ij

        (2.43) 

 

Where   and   are model parameters. The dimensionless parameter,  , is defined as 

/ sv  , with  
1/2

/ oR r  , where sv  is the shear wave velocity, R  is the distance 

travelled by the wave, or  the scale length of random inhomogeneities along the path, and 2  

is a measure of the relative variation of the elastic properties in the medium. It is found that 

the exponentially decaying spatial incoherence model of Hindy and Novak (1980) is in 

general agreement with a number of spatial incoherencies when the model parameters are 

chosen appropriately.  

The model of Luco and Wong (1986) is a particular case of Eq. (2.43) with 2  . The model 

has been used extensively by researchers in seismic response analysis of lifelines (e.g.  Zerva, 

1994; Liao and Li, 2002; Martinellia et al., 2016). The model is based on shear wave 

propagation through a random media, an approximation of which may be valid for the 

propagation of the waves from the source to the ground surface or from the source to the 

bedrock-layer interface. Zerva and Harada (1997) and Der Kiureghian (1996) have also used 

this model for the description of coherency of bedrock motion. It is pointed out that the 

parameter   has values in the range of 0.02 to 0.5. The model of Hindy and Novak (1980) is 

more flexible than the Luco and Wong (1986) model, and is therefore adopted in this study. 

Somerville et al. (1988) assumed the following model showing a larger decrease with the 

frequency than with the separation distance:     

 

   2, exp ( )ij a b          (2.44) 

 

where a  and b  are two independent constants.  

 

 

On the other hand, the wave passage effect is modelled by theorizing that ground motions 

consist of a waveform that propagates unchanged (unit amplitude, monochromatic) with 

velocity, c , on the ground surface along a line connecting two stations. The vector of the 
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separation distance between the stations is denoted here by ij j ir r   . The analytical 

coherency expression of Eq. (2.40) for this type of motion would be (Zerva and Zervas, 

2002): 

 

 
2

.
( , )  exp   exp

ij ij

ij ij

c
i i

cc

  
  

   
     
    

     (2.45) 

 

 

where 
ij ij  , c c . It has been implicitly assumed that the waveform propagates from 

station i to station j. Equation (2.45) implies that ( , ) 1ij ij    and that the complex term in 

the equation describes the wave passage effect, i.e., the delay in the arrival of the waveforms 

at the further away station is caused solely by their propagation. The phase spectrum of such 

motions is a linear function of frequency described as: 

 

  ,
ij

ij ij
c


  


  (2.46) 

 

 

where ij c  reflects the time lag, 0 , defined earlier in the discussion of the alignment of the 

time histories. For a single type of wave dominating the window analyzed, as is most 

commonly the case for the strong motion S-wave window used in spatial variability 

evaluations, the consideration that the waves propagate with constant velocity on the ground 

surface is a valid one (Harichandran and Vanmarcke, 1986). Since body waves are non-

dispersive, except in highly attenuated media, they have approximately the same velocity over 

a wide range of frequencies. In reality, the apparent propagation velocity of the motions may 

vary slightly with frequency, even for the broad-band shear wave window. Equation (2.45) is 

most commonly used to describe the wave passage part of the phase spectrum in the 

simulation of spatially variable ground motions (see Chapter 5). 
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Finite-fault simulation of multiple-station bedrock ground motions: 

 

As indicated in Chapter 1, the spatial variation of seismic ground motion can 

significantly affect the seismic responses of extended structures, and the characterization of 

the spatial variation is important for the reliable seismic resistant analysis of lifeline 

structures. Due to wave scattering arising from the complexity of the earth's structure 

(inhomogeneity, anisotropy, presence of asperities, etc.), as well as rupture propagation 

effects along extended faults, strong ground motions at different points in a site would be 

characterized not only by amplitude and frequency content variability (described by a code-

prescribed response spectrum or a power spectral density for the appropriate ground type) and 

wave propagation effects (deterministic phase variability), but also by coherency decay 

effects (random phase variability) (Harichandran, 1991).  

 

Selection of the coherency function in modeling the SVGMs or seismic analysis of 

critical systems is an important task (Zerva, 1994). However, most of these models are 

different and dependent on specific array data, such as coherency models developed using the 

strong-motion shear-wave window from recorded array data on uniform local soil sites, rock 

sites, and some non-uniform sites. Because of the complexity of earthquake wave propagation 

through the random, heterogenous, nonlinear, spatially variable, and site specific soil profile, 

it is difficult to ensure that the resulting structural analysis is accurate when using a coherency 

model obtained at a similar local site as that where the structure is located.  

For example, Schneider et al. (1992), analyzed the spatial incoherence of the motions 

recorded at dense arrays in California and Japan and compared the results with the spatial 

incoherence model of Abrahamson et al. (1991) for the site of the SMART-1 array in Lotung, 

Taiwan. They observed that, for distances of less than 100 m, the spatial incoherence of the 

motions is consistent at all sites. Coherencies computed on rock were lower than those on 

alluvium and show large variability, suggesting that the spatial incoherence may be more 

dependent on path and source effects than on local site geology. This dependence may be 

explained as follows. The near-receiver scattering is presumed to low enough that it is masked 

by the scattering from greater distances. Menke et al. (1990) analyzed the coherency of data 

recorded at the ECO and DBM arrays located on hard rock sites in the Adironack Mountains. 

Their results imply that the heterogeneities are three-dimensional and that scattering from 

near-receiver heterogeneities controls the incoherence properties of the seismograms. Bi and 

Hao (2011) analyzed that the coherency function between surface ground motions on a 

canyon site (irregular subsurface topography) and found that it is different from that between 

base rock motions. The lagged coherency function on the base rock is the upper bound of that 

of the ground surface. This shows the effect of lateral heterogeneities in surface soil sites, 
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which are, in general, site-specific. Therefore, it is unreasonable to apply the coherency 

function models from records at soil surface to base rock under soil.  

 

It is obvious that the choice of a spatial incoherence model, a conclusion as to which of 

the models should be preferred in the seismic response analysis of a specific structure, will 

only be possible when the physical reasons underlying the spatial incoherence of the motions 

are fully understood. These are as follows: interference of different waves from an extended 

source that can arrive at the site during the same time window, long path scattering, scattering 

effects of the local site topography, the variability in the soil properties, etc. All of these 

factors are, in general, event and site specific estimations (Zerva, 1994). Many researchers 

have recognized the physical reasons. For example, Somerville et al. (1988, 1990) have 

posited that the spatial variation of ground motion is influenced by earthquake source, 

propagation path, and site condition. Der Kiureghian (1996) theorized that the spatial 

variation of ground motion could be attributed to wave passage effects, incoherence effects, 

attenuation effects, and site response effects. However, it is very difficult to evaluate, 

distinguish, and quantify the influence of each factor from records. 

 

The ideal method for characterizing the ground motion spatial variation is to develop a 

geophysical model that can simulate the earthquake process directly. However, this kind of 

model is still not available because of the complexity of the fault rupture mechanism, the 

uncertainty of the soil and rock structures, and the seismic wave propagation path 

(Harichandran 1991). As explained in detail in Chapter1, empirical Green’s functions (EGF) 

are an alternative for modelling the wave propagation effect by the finite-fault methods of 

ground motions simulation (e.g., Irikura 1983, 1986; Irikura et al., 1997). These functions are 

calibrated from ground motion time series recorded during small events and, in this sense, 

incorporate, at least partially, the effect of the wave propagation path (i.e., the effects of long 

path and near source scattering, or the scattering from the source to the site, on coherency 

properties are included in EGFs), in addition to the finite source effect on coherency 

incorporated by the using these finite-fault methods. The small event must correspond to the 

same seismogenic source as the target event being simulated. Sometimes, EGF in the form of 

a recorded time series from small earthquakes is not available, in which case the EGF method 

is not applicable as originally conceived.  

To overcome this problem, hybrid methods for broadband-frequency ground motion 

simulation have been developed combining deterministic and stochastic approaches. One such 

method is the hybrid Green’s function (HGF) technique proposed by Kamae et al. (1998a). In 

this semi-empirical method, ground motion time histories corresponding to small earthquake 

events are calculated theoretically using the stochastic point-source model (Boore, 1983), or 

using its modified version, which is a hybrid scheme combining deterministic and stochastic 
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approaches. The long-period motions ( 1 Hzf ) from the small events are deterministically 

calculated using the 3D finite-difference method (Pitarka, 1999), i.e., assuming a point source 

and adopting a 3D velocity model of the heterogeneous structure, whereas the high-frequency 

( 1 Hzf ) motions are stochastically simulated using Boore's 1983 method. The resulting 

small events are then used as EGF to simulate ground motion corresponding to large 

earthquakes. The HGF method, in its former version, has been widely used due to its 

simplicity compared to EGF in simulating strong motion time series in regions where 

recorded data is not available (e.g., Joshi and Midorikawa, 2004; Joshi and Mohan, 2008). 

 

In this chapter, we provides the methodology of the two widely-used, finite-source ground 

motion simulation approaches at a single location, EGF and HGF, for which we extended to 

be able to simulate at multiple locations on bedrock. A case study of the 1980 El-Asnam 

Earthquake (North-West Algeria) in the epicentral region is proposed using the EGF method. 

Power and cross spectral densities and lagged coherency functions are estimated from the 

strong motion shear-wave window, and the latter is calibrated to the existing parametric 

coherency function models. The extended HGF method will be used in Chapter 4 to simulate 

different earthquake scenarios that are needed for a parametric study investigating sensitivity 

of lagged coherency to the engineer parameters of simulation.  

 

3.1 Ground motion simulation 

 

3.1.1 The empirical Green’s function method  

 

The EGF of Irikura et al. (1997) considers a rectangular fault plane (length L, width W) 

divided into l m  elementary, rectangular sub-faults on its surface, as shown in Fig. 3.1. 

Denoting the Green’s function associated with a sub-fault  ,o oi j
 
by  ,

i jo o
eu tx , the total 

synthetic signal  ,U tx
 
at point x due to the whole fault plane is given by: 
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where  denotes convolution. The function  F t
 
is given by: 
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and ijt  is given by Eq. (4.3): 
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Fig. 3.1 - Schematic source model for synthesis. The start indicates the hypocentre location. 

 

In these equations, ijt
 
is the phase delay, sR  is the radiation pattern (Aki and Richards, 

2002),   is the rise time of the event for which ground motion is being simulated,
o oi jr

 
is the 

Euclidean distance between the receiver, x , and the rupture starting point on the elementary 

sub-fault  ,o oi j , ijr  is the Euclidean distance between the receiver and the centre of the sub-

fault  ,i j , ij  is the distance between the hypocentre and the centre of the sub-fault  ,i j , sv  

is the shear wave velocity, 0.72r sv v is the rupture velocity, 'n  is an integer to eliminate 

spurious periodicity (Irikura, 1983), ( )F t
 is the slip-time filtering function, c  is the stress 

drop ratio, 0r  is the Euclidean distance between hypocentre and the receiver, and ( )ijt t 

represents the Dirac delta function. The parameters l , m , and n  are determined from the 

scaling relations given by Kanamori and Anderson (1975). When the seismic moment ratio of 
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the target earthquake (the one being simulated) to the elementary one (the one used for 

empirical Green’s function) is 
3N , the parameters l , m , and n  should each be equal to N  

(Irikura, 1983), the total number of divisions along the length or width of the fault so that the 

dimensions of sub-faults are small enough to be treated as point sources.  

 

Kamae et al. (1998b) revised the Kanamori and Anderson (1975) relation to allow for a 

potential difference in stress drop between the target and the small events. The revised 

relations are: 
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    (4.4) 

 
 

where L  and eL  are fault lengths, W  and eW are widths,   and e are rise times, and D  and 

eD are average slip, corresponding to the target event and small event, respectively.   
 

The rise time parameter, , is given by the following relation in Geller (1976): 
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where S L W   is the fault plane area. The rise time of the mainshock can be calculated from 

the similarity relation (Eq. 4.4) by using a small event rise time determined by picking the 

frequency of the significant trough of its Fourier spectra (see Irikura, 1983). 

 

Because the frequency content of earthquakes is magnitude dependent, direct application 

of Green’s function as in Irikura (1986), can lead to underestimating the ground motion 

amplitudes at low frequencies. To overcome this, Irikura et al. (1997) introduced the 

exponential slip function (Eq. 4.2). 

 
 

3.1.2 The hybrid Green’s function method  

 

HGF works in a similar way as the EGF method, except that a synthetic time series, rather 

than a recorded time series from small earthquakes, is used as the empirical Green’s function. 

As discussed in the beginning of this chapter, the HGF method used by Joshi and Midorikawa 

(2004) and Joshi and Mohan (2008) is presented here and will be used in the next Chapter 4. 

In this approach, Boore’s (1983) method is used to first simulate ground motion 

corresponding to an aftershock, which is then used as the Green’s function to simulate ground 
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motion due to main shocks corresponding to different scenarios. To simulate the Green’s 

function, we calibrate the model parameters of a theoretical Fourier amplitude spectrum 

(FAS) using the available aftershock data in the zone of interest. Only the S-wave portion of 

the recorded data is used in calibrating the model. More details on the calibration process and 

the model parameters are presented in subsequent sections and in Chapter 4.  

 

The theoretical FAS of ground acceleration shear waves,  A f , at a distance, r , from a 

point source with seismic moment, oM , is given by (Boore, 1983): 
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where f
 is the frequency, sQ

 is the shear-wave quality factor accounting for inelastic 

attenuation, 1/ r  models the geometric spreading, and C  is the scaling factor given by Eq. 

(4.7): 
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 ,sR   is the radiation pattern of shear waves (Aki and Richards, 2002), FS accounts for free 

surface, PJ  is a factor that accounts for the partitioning of total shear-wave energy into two 

horizontal components, and   is the average density of the rock. The source spectrum, 

 , cS f f , is the  -squared model function of the corner frequency which is given by: 
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where   is the stress drop. The function,  , mP f f , is a high-cut filter function with cut-off 

frequency, mf  and is taken from Boore (1983).  

 

 

3.2 Case study: Coherency estimated from ground motion simulated using EGF method 

 

The EGF method, which has been used in simulating ground motion at a single location, is 

extended here to synthesize spatially varying horizontal ground motion at bedrock. The 

seismic scenario is the October 10, 1980 El-Asnam Earthquake of magnitude 7.3sM  , for 

which ground motion records are not available. The earthquake occurred at 12:25 GMT, and 
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the hypocentre was estimated to be at 36°17’N, 1°41’E at a depth of 12 km (Cisternas et al., 

1982). The ground motion from the 5.6LM   aftershock of 08 November 1980 recorded at 

the Sogedia Factory Station (see Fig. 3.2) is used as EGF. We note that only one aftershock 

from the source of the target event is available at the study site. In a more favourable 

situation, where multiple aftershocks would be available, it is preferable to use them as 

Green’s functions from different sections of the source to the site. This would allow for a 

more accurate representation of the path effect, especially for large faults. The epicentral 

distance of this station is about 5 km. The aftershock event took place in the same rupture 

zone as the mainschock (target) and had a similar faulting mechanism (Cisternas et al., 1982). 

In the following, the mainshock, for which ground motion is being simulated, is called the 

target event. The aftershock, from which EGF is obtained, is called as the small event.  

 

In order to simulate ground motion at bedrock, the EGF should also correspond to the 

bedrock. Since the bedrock is not outcropping at the recording station, deconvoluted motion 

(Petrovski and Milutinovic, 1981) corresponding to the bedrock is utilized. The time series of 

the deconvoluted motion is baseline corrected using the method described in Rupakhety et al. 

(2010). The horizontal components of ground acceleration corresponding to the bedrock are 

shown in Fig. 3.3. The fault plane is assumed to be 40 km x 15 km, with a dip angle of 60° 

(see Fig. 3.4). Shear wave velocity is equal to 2 km/s (Petrovski and Milutinovic, 1981; 

Yielding et al., 1981), and the corresponding rupture velocity  rv  is equal to 1.44 km/sec. 

The stress drop of the mainshock is 100 bars (from Dechamps et al., 1982). For the small 

event, a value of 82.57 bars is calculated by using the relation given by Boore (1983) and a 

corner frequency of 0.37 Hz obtained from a spectral fitting procedure described in Chapter 4. 

This gives a stress drop ratio,  c
 
equal to 1.21. The fault plane is divided equally into seven 

parts in both directions. The scale factor parameter, N, is equal to 7, and the number 'n  is 

taken to be 20. The Fourier spectrum (FAS) of the aftershock (see Fig. 4.1 in Chapter 4) is 

characterized by a significant trough around 5Hz, which yields a rise time of 0.2e   sec. 

Using the similarity condition (Eq. 4.4), rise time for the mainshock is estimated to be 1.4   

sec. The latter value is close to the 1 sec adopted by Dechamps et al. (1982). Other relevant 

parameters used in the simulation are given in Table A.1 in the Appendix.    

The location of hypocentre is shown with a red star in Fig. 3.4. It lies on cell 

0 0( , ) (7,4)i j  from where the rupture is assumed to propagate radially. In the presented 

methodology, the total seismic moment of the target event is assumed to be uniformly 

distributed over the entire fault plane. This assumption was invoked due to the lack of 

information about the actual (or expected) slip distribution of the past (or future) event. If 

heterogeneous slip distribution models are available, the methodology can be extended to 

account for non-uniform slip distribution. This can be done by scaling the contribution of each 

sub-fault in the total motion in proportion to the seismic moment released at the sub-fault, 
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keeping the total seismic moment unchanged. Horizontal components of ground acceleration 

are then simulated at five stations at bedrock, namely
(0)S ,

(1)S , 
(2)S ,

(3)S and 
(4)S  (see Fig. 

3.4). Station 
(0)S is considered to be reference station, and it lies directly under the Sogedia 

Factory station. The other stations are separated from it by 40 m, 100 m, 200 m, and 500 m. 

These are the same distances as those considered by Zerva and Harada (1997) in their shear 

strains estimation for buried structures. Evaluation of seismic ground strains requires 

coherency models developed for strong motion shear wave windows that are valid at short 

separation or epicentral distances. The epicentral distance of the reference station is 5 km. 

Simulation of ground motion and estimation of lagged coherencies were performed by 

computer codes developed by us.  
 

 

 

 

Fig. 3.2 - Map of the epicentral region of the 10 October 1980 El-Asnam Earthquake (simplified from 

Despeyroux, 1984). Epicentral locations (from Cisternas et al., 1982) and the Sogedia Factory station 

are indicated. 
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Fig. 3.3 - Acceleration of bedrock (NS and WE components) obtained by deconvolution of ground 

acceleration due to the 8 November 1980 aftershock recorded at the Sogedia Factory station. The 

acceleration time series are from Petrovski and Milutinovic (1981).  

 

 
 

 

Fig. 3.4 -  Schematic representation of the finite-fault model corresponding to the 1980 El-Asnam 

mainshock; the star indicates the location of the hypocentre, the blue triangle represents the Sogedia 

Factory Station which recorded the 8 November 1980 aftershock, and the blue dots represent the 

locations of bedrock stations at which ground motion is simulated (dimensions are not to scale).  

 

Ground acceleration time series simulated at the five stations are shown in Figs. 3.5 and 

3.6. Peak ground acceleration (PGA) of the simulated motion is close to 60% of acceleration 

due to gravity. Figure 3.7 presents the smoothed (with an 39-point Hamming window) power 

spectral densities of the aligned data at the five stations (Fig. 3.6) and smoothed cross 

amplitude spectra between reference station S
(0)

 and stations S
(1)

, S
(2)

, S
(3)

 and S
(4)

 at 

separation distances of 40, 100, 200 and 500m, respectively. It can be clearly seen from Fig. 

3.7a that the power spectral density (as a square of the Fourier amplitudes of the data) is a 

clearer descriptor of the characteristics of the seismic motions than the autocovariance 
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function. Figure 3.7a suggests that the PSDs at five stations have a fairly similar frequency 

content, which should be consistent with the shape of their autocovariance functions. The 

peaks in the spectra occur at the same frequencies, with the highest peak at a low frequency of 

approximately 1 Hz (the predominant frequency of the rock) and essentially the same 

amplitude at all stations, except for the station for S
(4)

 at 500 m, where the peak occurs at the 

high frequency of 7.5 Hz. At a high frequency of 7.5 Hz, i.e., short wavelength, wave energy 

arrives to all stations from the fault after performing a high number of cycles of propagation 

in the rock. Therefore, wave energy should be highly attenuated and arrive with low 

amplitude. At the low frequency of 1 Hz with a long wavelength, they are less attenuated and 

arrive with high amplitudes. This trend is not observed at the station S
(4)

, which implies that 

its high peak of 7.5 Hz is not real but is produced artificially by the digital summation in 

equation (4.1).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 - Transverse (orthogonal to the epicentral direction) component of ground acceleration 

simulated at the five stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 - Transverse component of aligned, tapered time histories corresponding to the non-aligned 

data at the five stations presented in Fig. 3.5. As described in Chapter 2, Sec. 2.5, first, the stationary 

part signal (by visual inspection of time evolution of Arias Intensity of time series in Fig. 3.5) is 

extracted, demeaned and then tapered with Tukey window with the end taper length equal to 15% of 

the length of the signal. The tapered stationary signals are aligned to eliminate wave passage effects. 

These aligned tapered signals are used to compute lagged coherencies shown in Fig.  3.8 (left). The 

duration of the strong S-window is T = 13sec (2.00-15.00sec). 
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On the other hand, the fairly similar frequencies content and amplitudes in PSDs between 

stations, i.e., no significant variation with the separation distance, are related to the fact that 

the stations are considered to be located on the same rock conditions through the use of a 

single Green function, where the waves propagate over long distances without encountering 

variability in the rock strata along their path. In addition, 500m is considered as low value for 

the maximum separation distance between stations. It is not sufficient to have larger 

differences in radiation  ,sR    and attenuation 1/r in equation (4.1) between stations. These 

considerations result in a less pronounced difference between the motions at the stations. It is 

noted that the PSDs of bedrock motions in Fig 3.7a possess several significant modes of 

vibration. It shows that the point estimates of the motions should be described by 

seismological models rather than by engineering ones, such as the Kanai-Tijimi (1957, 1960) 

or the Clough–Penzien spectrum (1975) of ground motions on soil sites, which model only 

the effect of the local soil conditions, since the bedrock excitation is a white process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.7 - Smoothed power spectral density functions (a) and smoothed cross amplitude spectra (b) 

derived as described in Sec. 2.5 and the M = 39 Hamming window of the aligned time histories of Fig. 

3.6.  
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As was the case for the smoothed power spectral densities (Fig. 3.7a), the cross spectra are 

sharply peaked. It can be clearly seen from the figures 3.7a and 3.7b that the similarity in the 

frequency content data (Fig. 3.7a), due to the above considerations, leads to similar cross 

amplitude estimates (Fig. 3.7b). Whereas, the more differentiated PSD stations data (which 

occur when using multiples Green functions or/and longer separation distances) should yield 

cross amplitude spectra with significant differences in their frequency content. Figures 3.7a 

and 3.7b provide the reference figures for the evaluation of the lagged coherency of the 

present case study following the procedure given in Section 2.5. As the shear waves do not 

contribute to the motions above the value of around 9 Hz for all stations, the lagged coherency 

functions will be shown only up to 9 Hz and not up to the cutoff frequency of 25 Hz used in 

the analysis so that the comparison may be made with the other coherencies presented in the 

next chapter of the parametric study. The fitting of analytical parametric models to the data 

will be up to 8Hz. 

 

 
 

 

 

 

 

 

 

 

Fig. 3.8 - Lagged coherencies (left) at the four stations obtained from ground acceleration time series 

shown in Fig. 3.6. Lagged coherencies (right) estimated from the Boore’s point source model (Eq. 

4.6). 

Lagged coherencies computed from the simulated signals (Figs. 3.5 and 3.6) are shown in 

Fig. 3.8 (left). The spectral and spatial characteristics of the simulated lagged coherencies, as 

shown in Fig. 3.8 (left), are similar to that reported in the literature (for example, Zerva, 

2009). In general, lagged coherency decays in both frequency and space. The lagged 

coherencies for the short separation distances of 40 and 100m show frequency decay less 

significant than that for a separation distance of a few hundred meters. It is noted that the 

coherency estimate for a separation distance of 500m first decreases with frequency, then 

starts increasing around 7 Hz. Such increase of coherency with frequency is physically not 

meaningful and is most likely due to uncertainties in the spectral estimation and smoothing 

operation (e.g., Zerva, 2009 and Rupakhety and Sigbjörnsson, 2012). The coherency is 

significantly less than 1.0 at low frequencies (1-2 Hz) for the long separation distance of 500 

m and at intermediate frequencies (3-5 Hz) for the medium separation distance of 200 m. 
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Such loss in coherency has been attributed to scattering of waves along the propagation path 

caused by heterogeneities in the path and near the stations due to heterogeneities near the 

surface (see, Zerva, 2009).  

It is noted that such effects are not fully modelled in the present simulation method 

because EGF is available at only one station. In this sense, the spatial variation of scattering 

effects is not captured in the simulation. The relatively low value of incoherence at low 

frequencies and large separate distance may, therefore, be due to source effects in the near 

field, which are found to be prominent at low frequencies (Abrahamson et al., 1991). This 

behaviour can also be explained by the fact that the term ijt
 
in (Eq. 4.3) might become nearly 

random in the near-field region of a rectangular fault plane (Irikura, 1986). Consequently, the 

phase difference between two stations increases with increasing separation distances. In the 

far-field, the source to site distance is large compared to the inter-station separation distance 

of a few hundred meters. Therefore, the loss of coherency with separation distance is less 

pronounced than in the near-field, as the term ijt  is almost the same for the different stations.  

 

The results of the simulation indicate that source effects in coherency are significant; 

considerable loss in coherency is obtained just by modelling the source effect. On the other 

hand, the source effects, site effects, and scattering effects may constructively and 

destructively interfere in coherency decay (see Zerva, 2009 for a detailed discussion). 

Therefore, isolating these different effects from recorded data is not straightforward. The 

simulation method presented in this work models coherency decay mainly due to source 

effect, which seems significant for the case under study.  

 

For comparison, Fig. 3.8 (right) shows the lagged coherencies estimated from the 

simulated accelerations at the same rock stations by using the Boore’s point source model 

(Eq. 4.6) and the same spectral estimates of coherency. This lagged coherency, which is low, 

occurs because the stochastic point source model does not contain built-in coherency (Boore, 

2003). The low lagged coherency is also typical for any pair of simulated records and is 

independent of  , which is not in agreement with the observed coherency structure from 

actual records (e.g., Harichandran and Vanmarcke, 1986). Different authors (e.g., 

AfifChaouch et al., 2003) suggested that a finite source produces more incoherent motion 

than a point source, because, in the near-field of an extended seismic source, ray paths 

extending from different portions of the ruptured fault give rise to differential ground motion 

at two points some distance apart because of different azimuths, incidence angles, attenuation, 

and scattering paths. 
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3.3 Parametric modelling of spatial coherency 
 

In this section, we calibrate the three selected parametric models (see Sect. 2.5) to the 

coherency functions computed from simulated ground motion corresponding to the 1980 El-

Asnam Earthquake (see Section 3.2, and Fig. 3.8 (left)). The functional form of the models is 

taken to be the same as that of Hindy and Novak (1980), Luco and Wong (1986) and 

Somerville et al. (1988) and is presented in Eqs. (2.43) and (2.44). These models were 

selected because they have been extensively used by researchers in seismic response analysis 

of lifelines. Since these models do not explicitly consider scattering effects and noise, they are 

often viewed as a plane wave coherency models, and are, therefore, suitable for our analysis. 

We note that we tried to calibrate Harichandran and Vanmarcke’s (1986) model without 

success, as this model did not seem to be well constrained by the simulated coherency data. 

To calibrate the parameters of the Hindy and Novak (1980), Luco and Wong (1986) and 

Somerville et al. (1988) models, we use non-linear, least squares regression in the hyperbolic 

arctangent  1tanh transformation of lagged coherency. Such a transformation is preferable 

because the transformed variable has an approximately frequency independent variance 

(Jenkins and Watts, 1969). The frequency and separation distance ranges used in fitting the 

model were  0 8  Hz  and  0 500  m , respectively. The regression parameters and the 

goodness of fit of the models (i.e., the coefficient of determination R-square and the Root 

mean squared error RMSE) are found to be:   

 

 

Hindy and Novak Luco and Wong Somerville et al. 

55.87 10    sec m
-1

 rad
-1

 59.41 10    sec m
-1

 rad
-1

 67.42 10a    m
-1

 

1.52   --- 61.03 10b    sec
2
 m

-1
 rad

-2
 

R-squared = 0.88 R-squared = 0.82 R-squared = 0.89 

RMSE = 0.30 RMSE = 0.38 RMSE = 0.29 

 

 

The comparison in Fig. 3.9 shows that the Hindy and Novak, and Somerville et al. models 

are flexible and fit the data well for the four separation distances. At 500m, the Hindy and 

Novak model fits better in low frequencies, 0-2Hz, than the Somerville et al. model. The Luco 

and Wong model fits the simulated lagged coherencies relatively well for separation distances 

up to 100 m. For a separation distance of 200 m, the fit is good up to a frequency of 6 Hz. For 

a separation distance of 500 m, it falls and differs significantly from the estimated coherency 

function except at low frequencies up to 2Hz.  

The quality of fit is also clear from the residuals in the 
1tanh
 transformation as shown in 

Fig. 3.10. The mean value of the residuals is generally closest to 0, while it is clearly most 

biased for a separation distance of 500 m in the Luco and Wong model. Residuals were 
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=40m =100m

=200m =500m

calculated as the difference between data and model, which are then normalized by the 

constant standard deviation. For the lagged coherency, the residual is defined as: 

 1 1

, ,( , ) tanh tanhij ij m ijR        with, 1.09  , a value estimated (Jenkins and 

Watts, 1969) using 0.03 HzB   (Eqs. 2.31 and 2.32 with M = 39) as bandwidth and a 

stationary window duration of T = 13 sec.  

 

The present results indicate that the Hindy and Novak parametric model can be used as a 

first approximation, or, at the least, an upper bound of the lagged coherency of the motions on 

the ground surface in the near-field region of the El-Asnam Earthquake scenario. This model, 

with the PSD functions (Fig. 3.7a), could be useful in a random vibration analysis or the 

generation of spatially variable ground motion for a time history analysis of lifeline structures 

in our study area of El-Asnam. Because of the differentiable condition required in seismic 

strain estimates in Chapter 5, the Luco and Wong model will be used rather than the Hindy 

and Novak model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3.9 - Lagged coherencies of transverse ground acceleration at bedrock (see Fig. 3.5) due to the 

1980 El-Asnam Earthquake (solid lines) and the corresponding parametric models (dashed lines).   
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Fig. 3.10 - Residual
-1tanh lagged coherencies corresponding to the simulated results and fitted models 

shown in Fig.  3.9.  
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Sensitivity analysis of simulated coherency: 

 

It is well known that the coherency of ground motion is affected by seismic source, 

propagating medium, site conditions, the relative orientation between the source and the site 

(directivity), and parameters such as fault orientation and fault depth (Jin et al., 2000; Ding 

and Song, 2010). The sensitivity of ground motion parameters at a station simulated by the 

EGF method has been already studied. However, the sensitivity of the coherency of the 

simulated ground motion to the parameters used in simulation has not been studied. In this 

section, such a sensitivity analysis is presented.  

 

The main objective of this chapter is to identify the simulation parameters which have a 

large influence on simulated coherency functions and, therefore, need to be well constrained 

for simulation of the strong ground motion field (Zerva, 1994; Jin et al., 2000). The 

parameters considered in this analysis are magnitude (source parameter), wave velocity (path 

parameter), and epicentral distance (path parameter). It is noted that other source 

phenomenon, such as heterogeneous slip distribution, directivity effect, focal mechanism, 

depth of the epicenter, rupture velocity, numbers of sub-sources, etc., can influence the 

coherency of resulting ground motions (Zerva and Shinozuka, 1991; Ding and Song, 2010). 

Parameters such as slip distribution and the directivity effect are not easily modelled (or 

predicted for future events). In this sense, priority is given to those source parameters that are 

relatively well understood in the sensitivity analysis presented in this work. The effects of 

other relevant source parameters are outside the scope of this study, but parametric studies 

investigating such effects could shed more light on source effects in the coherency of ground 

motion in the near-fault and are currently underway. Because EGFs corresponding to various 

scenarios of these parameters are not available, we use the HGF method (Sect. 3.1) for ground 

motion simulation.  

 

The stress-drop ratio, c , is assumed to be 1. We also investigated the effect of this 

parameter in coherency estimates and decided that a value equal to 1 was suitable. It was 

found that, although this parameter has some effects in simulated ground motion amplitudes, 

lagged coherencies were not very sensitive to this parameter. A direct implication of changing 

this parameter is the change in number of sub-faults to be used in simulation. If too few sub-

faults are used (corresponding to large values of c ), the finite-fault effect is not appropriately 

modelled. Such a situation is not likely because, within reasonable variations of the 

parameter, the number of sub-faults remains unchanged (see Eq. 4.4) as it is rounded off to 

the next integer. When a suitable value of number of sub-faults is selected, c  needs to be 

adjusted to conserve the seismic moment. The simulated coherency functions were found to 

be relatively insensitive to the choice of this parameter as long as a reasonable number of sub-



Chapter 4: Sensitivity analysis of simulated coherency 

 

57 

 

10
-2

10
-1

10
0

10
1

10
-4

10
-2

10
0

Frequency (Hz)

N
o

rm
a

li
z
e

d
 F

A
S

 

 

Theoretical (Boore, 1983)

Recorded (rotation-invariant)

faults is used in the simulation.  In the HGF method, the EGFs are simulated using the 

stochastic method with a theoretical source spectrum given in Eq. (4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1 - Comparison between the recorded and theoretical FAS (normalized by its maximum) of 

ground acceleration at bedrock. The recorded spectrum is obtained from the 8 November 1980 

aftershock at Sogedia Factory station deconvoluted at bedrock (see text above for more details). The 

hypocentral distance is 12.96 km, and an average radiation pattern of 0.868 is used. 

 

Some parameters of the spectrum are kept constant for all scenarios, namely, 2FS  , 

0.71PJ   and 100   bars (from Dechamps et al., 1982). The parameters 
sQ  , 

cf  and 
mf

were obtained by fitting the theoretical source spectral model of Eq. (4.6) to the FAS of the 

deconvoluted aftershock ground motion time series recorded at the Sogedia Factory station 

(Fig. 3.3). Only the shear wave parts of the two horizontal components of motion were 

extracted and windowed. Rotation-invariant estimate of FAS of horizontal motion is then 

obtained based on the formulation presented in Rupakhety and Sigbjörnsson (2014). The FAS 

is fitted to the theoretical model yielding 45sQ  , 0.368cf   Hz and cut-off frequency,

20mf   Hz. Figure 4.1 shows a comparison between the rotation invariant spectra and the 

theoretical model fitted to it. The other parameters required for simulating EGF are mentioned 

in the following sections as they depend on the different scenarios being simulated. Using the 

FAS spectra and phase spectrum obtained from the aftershock record, EGF are simulated 

using the stochastic method. These EGFs are then used to simulate ground acceleration at the 

five bedrock stations. Coherency estimates are obtained from the simulated ground motion 

using the procedure described in Section 2.5.  
 
 

4.1 Effect of shear wave velocity 

 

Shear wave velocity, and rupture velocity which are closely related, play an important role 

in how the seismic waves radiated from the different sections of an extended source 

superimpose in time at a station. Since the superposition of these waves at nearby stations is 

expected to affect coherency of motion across the stations, we study the sensitivity of 
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coherency to shear wave velocity. Three different scenarios of generic rock with 1500a

sv   

m/s, 2500b

sv   m/s, and 3500c

sv   m/s are considered to simulate ground acceleration at the 

five stations using the HGF method. Table A2 in the Appendix lists the others relevant 

properties of the generic rocks (from  Chapellier and Mari, 2011). Transverse component of 

simulated ground acceleration by using HGF method for the three generic rocks are shown in 

Fig. 4.2, and their corresponding lagged coherencies are shown in Fig. 4.3.  

 

 

 

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 - Transverse ground acceleration simulated at the five stations for three generic rocks: a) for 

1500a

sv  m/s, b) for 2500b

sv  m/s, and c) for 3500c

sv  m/s.  

The results indicate that at low frequencies (<2 Hz) lagged coherency is not very sensitive 

to shear wave velocity. At such low frequencies, the wavelengths of shear waves are not as 

sensitive to variations in wave velocity as they are at high frequencies. High sensitivity of 

wavelengths might result in high sensitivity of coherency within a small spatial area. It is also 

observed that the decay of coherency with frequency is faster when the shear wave velocity is 
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lower. At frequencies above 2 Hz, the coherency seems, in general, to increase with shear 

wave velocity, except for a separation distance of 500 m, where the increase is not consistent 

for all frequencies. The overall increase of coherency with shear wave velocity is expected 

from the fact that the differential arrival time of shear waves radiated from different sections 

of the fault decreases with increasing wave velocity. Increasing wave velocity also implies 

smaller time difference in arrival of waves radiated from a sub-fault at different stations, 

which results in higher coherency. It should be noted that the simulation method used here 

considers only the source effect in loss of coherency, and does not take into account scattering 

effects in the propagation medium and near the receiver. Even in lack of these scattering 

effects, considerable loss in coherency is observed at medium and high frequencies, which 

implies that source effect alone can have significant effect on coherency. This effect is 

expected to be more pronounced in the near-field region (e.g., Abrahamson et al., 1991) -

which is the case of the present analysis - for the reasons explained in Section 3.2.  
 

 

   
 

Fig. 4.3 - Lagged coherencies of transverse ground acceleration for three generic rocks: a) for 

1500a

sv  m/s, b) for 2500b

sv  m/s, and c) for 3500c

sv  m/s. The black, blue, green, and redlines 

correspond to separation distance of 40m, 100m, 200m, and 500m, respectively.  

 
   

4.2. Effect of earthquake magnitude 
 

Abrahamson et al. (1991) show some evidence of magnitude dependence of coherency: at 

frequencies below 5 Hz small magnitude events tend to have lower coherency than large 

magnitude events while at frequencies of 6 to 10 Hz, the reverse is true. Somerville et al. 

(1988) suggested that coherency for aftershocks is greater at all frequencies than that for 

mainshock in the near-field. 

 

To study the effect of the magnitude on bedrock coherency, we compute accelerograms 

which correspond to two earthquake events. One of them corresponds to the 1980 El-Asnam 
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mainshock with  24

0  7.3   540 10  dyne-cmsM M    and the other one corresponds to the 

13 May 1995 Kozani-Greneva Earthquake with  24

0  6.5   55 10  dyne-cmwM M    which 

occurred in North-western Greece. The five receiver stations are placed on bedrock of type b 

(shear wave velocity equal to 2500 m/s, see Table A2 in the Appendix) for both events. For 

the larger event, simulations are based on the HGF method using aftershock data from 8 Nov 

1980 aftershock. The fault geometry is considered to be the same as that of the El-Asnam 

Earthquake, with 7N   and
0 0( , ) (7,4)i j  . For the smaller event, hybrid Green’s functions 

are simulated from the recording of the largest aftershock of Kozani-Greneva Earthquake that 

occurred on 15 May 1995 with  24

0  5.1   0.44 10  dyne-cmwM M   . For this event, a 

rectangular fault with dimensions 29 km  13 km is divided into 5 5  sub-faults. The strike, 

dip, and the rake of this event are taken to be the same as that of the El-Asnam mainshock, the 

cut-off frequency is taken to be 7 Hz and the stress-drop 12.19 bars. The relevant parameters 

of this event are taken from Roumelioti et al. (2000). The rupture is assumed to start at the 

cell    0 0, 1,2i j  with radial propagation. The resulting lagged coherency functions are 

shown in Fig. 4.5 and their corresponding simulated motions are in Fig. 4.4.  

 

 
 

 

  

Fig. 4.5 - Lagged coherency at bedrock for a) large magnitude and b) and small magnitude 

earthquakes. The black, blue, green, and red lines represent separation distance of 40 m, 100 m, 200 

m, and 500 m, respectively. 

 

It is observed that coherency of smaller earthquake is larger than that of the larger one at 

all frequencies which is consistent with the observations of Somerville et al. (1988). For the 

smaller earthquake, and for separation distance up to 200 m, loss in coherency does not start 

until about 6 Hz, whereas lagged coherency for 500 m separation distance steadily decreases 

from about 1 Hz. On the contrary, loss in coherency with frequency starts at much lower 

frequencies for all separation distance for the larger earthquake. Spatial decay of lagged 

coherency is more pronounced for the larger earthquake. These results indicate the finite 

source effect on lagged coherency. As the rupture area increases, seismic waves radiated from 
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different parts of the fault arrive more asynchronously at nearby stations, resulting in loss of 

coherency. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 - Transverse ground acceleration simulated at the five stations on the generic medium bedrock 

( 2500b

sv  m/s) for a) large magnitude and b) and small magnitude earthquakes.  

 

 

4.3. Effect of epicentral distance  

 

Abrahamson et al. (1991), using data recorded on soil site at the LSST array in Lotung, 

Taiwan, observed that coherency in the near-field was lower than that in the far-field at low 

frequencies, which was interpreted as a source effect, whereas the reverse was true for higher 

frequencies, which was interpreted as a path effect. Similar results were found by Somerville 

et al. (1988). In the presented simulation method, site effects are not modelled, and thus the 

loss in coherency is mainly due to source effect. This section investigates the importance of 

this effect for different epicentral distances.  
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d2)

Three different epicentral distances are considered: 
1 5d   km, 

2 33d   km, and 
3 65d   

km, which correspond, respectively, to hypocentral distance of 12.96 km, 35.1 km, and 66.09 

km. These three distances are assumed to represent, for the 1980 El-Asnam mainshock, the 

near-, intermediate-, and far-field (from the Table A3 in the Appendix and given by 

Hammoutene et al., 1992). By using the HGF method, ground acceleration time series are 

simulated at three sets of five stations on bedrock of type b. On each set, the reference stations 

are placed at the epicentral distance mentioned above, and the other stations are separated 

from it by, 40 m, 100 m, 200 m, and 500 m. All the stations lie on the hanging wall and lie on 

the radial line from the epicentre of the target event to the Sogedia Factory station. Hybrid 

Green’s functions for the simulation are based on the  24

05.6 1.55 10  dyne-cmLM M    

event. Figure 4.6 and 4.7 show the generated time histories and the lagged coherency 

functions at different separation distance, respectively, in the near-, intermediate-, and the far-

field. 

 

   
 

Fig.  4.7 - Lagged coherency functions, from left to right, corresponding to near-, intermediate-, and 

far-field of the 1980 El-Asnam Earthquake. The black, blue, green, and red lines correspond to 

separation distance of 40m, 100m, 200m, and 500m, respectively. 

 

 It can be observed that lagged coherency increases, at all frequencies, with epicentral 

distance. In the far-field, and on bedrock, the loss in coherency is negligible up to 8 Hz. This 

is expected because the simulation method presented here only accounts for the source effect, 

which is not strong in the far-field. It can be concluded that the effect of finite source in 

lagged coherency is negligible in the far-field. This implies that scattering and local site 

effects are the main sources of incoherence. In the near-field, however, considerable loss in 

coherency is observed, which indicates that source-effects are important. In the near-field, the 

term ijt
 
in Eq. (4.3) is sensitive to the separation distance between the stations, which implies 

asynchrony in the arrival of waves radiating from different sub-faults at these stations. This 

asynchrony results in a loss of coherency. In the far-field, this term is not sensitive to inter-



Chapter 4: Sensitivity analysis of simulated coherency 

 

63 

 

station separation distance. Therefore waves radiating from different stations arrive almost 

synchronously at nearby stations. This results in highly coherent motion. The consequence of 

this differential sensitivity is also apparent from Fig. 4.7, where lagged coherency functions 

are less sensitive for increasing epicentral distance.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 - Transverse ground acceleration simulated at the five stations on the generic medium bedrock 

( 2500b

sv   m/s), from left to right, corresponding to near-, intermediate-, and far-field of the 1980 El-

Asnam Earthquake.  

 

A word of caution regarding this interpretation is that the presented results account only for 

finite source effect, and lack modelling of scattering and local site effects. When these effects 

are present, lagged coherencies in the far-field are expected to be smaller than what is 

presented in Fig. 4.7.  
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The present results of the parametric study investigating the sensitivity of lagged 

coherency showed that shear wave velocity, earthquake magnitude, and epicentral distance 

are all important factors that contribute to plane wave coherency. Larger shear wave velocity 

was found to produce more coherent motion in general. Larger earthquakes were found to 

produce more incoherent motion. In the near-field, the finite source effect seems to be 

significant, producing incoherent motion. While in the far-field, plane wave coherency was 

found to be almost equal to one up to a frequency of 8 Hz. Due to the lack of information 

about ground motions at base rock, there are no statistical coherency function models of base 

rock. If EGFs with well-known source parameters are not available, the HGF technique seems 

to be preferable in the sense that it provides at least a first approximation, and possibly an 

upper bound, on lagged coherencies of any earthquake scenario.  
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Modelling and simulation of spatially variable motions at the surface of a random and 

spatially variable soil profile: 

 

Research on the seismic-resistant design of structures of extended lifeline systems 

(e.g., Lupoi et al., 2005; Walling and Abrahamson, 2007) indicate that the type of response 

(conservative or unconservative) induced by spatially variable ground motions (SVGMs) 

compared to that of identical ones depends strongly on the spatial variation models used in the 

analysis. A realistic characterization of seismic ground motion spatial variation is highly 

desired. Hence, appropriate modeling of the spatial variation of seismic ground motions, as 

well as the generation of realistic spatially variable seismic time histories (if time history 

analysis is considered to deal with material and geometric nonlinearity; its use is 

recommended in the building codes such as NRCC 2010), becomes important for engineering 

in the seismic response analysis of extended structures (Zerva and Zervas, 2002; Zerva, 

2009). 

 

Coherency and power spectral density functions are commonly used to describe the spatial 

variation of seismic ground motions at multiple supports of long-span structures. Many 

coherency function models have been proposed based on theoretical derivation (semi-

empirical coherency models) or measured spatial ground motion time histories at dense 

seismographic arrays (empirical coherency models). Usually, the time window containing the 

shear wave part of the accelerograms is chosen to estimate the stationary power density and 

coherency functions. In most cases, the shear wave contains the strongest energy in 

earthquake recordings and, generally, is the most damaging component from the engineering 

point of view. The existing empirical coherency models (e.g., Harichandran and Vanmarke, 

1986; Menke et al., 1990) are dependent on sites/arrays and, even, events (i.e., the fact that 

they were developed for a particular site and a specific earthquake). They cannot be reliably 

extrapolated to engineering sites other than those for which the models were developed. In 

addition to that, there are significant differences in the way the individual investigators apply 

numerical processing techniques in their spectral estimations, treat the wave passage effect, 

and select a particular analytical function as a coherency model to fit the data. Researchers 

have gradually realized that the estimation of a site-specific coherency function that relies 

solely on an empirical approach is not practical (Der Kiureghian, 1996).  

In order to overcome the drawbacks of the empirical approaches, some researchers are 

resorting to analytical or semi-empirical coherency models (e.g., Luco and Wong, 1986; 

Somerville et al., 1988; Der Kiureghian, 1996). Their techniques rely on combining 

theoretical derivations and spectral estimation techniques so as to make the coherency models 

more flexible and adaptable to site-specific characteristics. However, most of them are 

suitable for modeling spatial ground motions on flat-lying alluvial sites (i.e. laterally 
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homogeneous and deterministic, horizontally layered sediment site). It has been found that 

these coherency functions are not appropriate for modeling spatial variations of ground 

motions at sites with lateral variations in their surface and/or subsurface topography or soil 

conditions.  

In practice, the local soil properties (including layer thickness, shear modulus, density and 

damping ratio of each soil layer) exhibit greater randomness and spatial variation than the 

rock, that can also affect the lagged coherency value, as shown by the observations from 

recorded data investigating the lagged coherency function of ground motions of horizontal 

shear waves on such irregular sites (see, e.g., researcher’s observations described in Chapter 

1, Somerville et al., 1991, Schneider et al., 1992; Liao et al., 2007). Unfortunately, how local 

site conditions with heterogeneous soil profiles influence the lagged coherency value, besides 

affecting the phase part of coherency model, is unknown. 

 

To account for the effect of local site conditions in the current engineering practice, 

different ground motion response spectra specified in design codes are incorporated to 

account for the effects of different local site conditions at different stations, but the coherency 

models utilized are those for uniform soil conditions (Deodadis, 1996). The above suggests 

that coherency estimates are significantly affected by topography and inhomogeneous media 

(random soil properties). The current simulation practice accounting for the effects of 

different site conditions may not reflect reality. To consider local site effects, Der Kiureghian 

(1996) proposed a theoretical model describing the coherency function of motions on the 

ground surface, in which he assumed that site effects influence the phase of the coherency 

function only, while they do not affect the lagged coherency. This is a simple model for 

determining site-dependent coherency. For example, it does not account for the effect of 

incoherency resulting from wave scattering (scattering from near-receiver heterogeneities) 

within the two soil columns at two stations, that can, in some cases, control the properties of 

the lagged coherency (Menke, 1990). 

 

On the other hand, the Der Kiureghian (1996) model represents the power spectral density 

function of ground motion using the site-dependent transfer function and the white noise 

spectrum. He also posited the corresponding parameters (central frequency and damping 

ratio) for this model in three typical sites, i.e., stiff site, medium site, and soft site. Although 

this model takes into account the difference in soil conditions at various support points of 

lifelines, it over estimates the effects of  local site conditions. Deodatis (1996) generated a set 

of sample functions of a non-stationary, multivariate, stochastic process based on a spectral 

representation method that could be used to simulate ground motions at spatially correlated 

points with different power spectral densities modeled by the Clough-Penzien spectrum. 

Similar to the Der Kiureghian model, this model is a modified power spectral density function 
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obtained by the filtration process of bedrock white noise when propagating the media with 

different central frequencies and damping ratios. Hence, it can only approximately represent 

the local site effects.  

All of these models are based on the parametric Kanai–Tajimi spectrum (1957, 1960) or its 

extension represented by the Clough–Penzien spectrum (1975), which models only the effect 

of the local soil conditions, since bedrock excitation is a white process. However, seismic 

ground motions are the result of the rupture at the fault and the transmission of waves through 

the media from the fault to the ground surface. A physically consistent and refined model, 

using a seismological source model simulation (e.g., Irikura, 1983) that can account for 

effects of the finite-fault rupture process and the directivity (which affect intensity and 

frequency content of  base rock motions in the near field, as shown in Fig. 3.7a) and the 

transmission of waves from the fault through the media to the ground surface, is desired 

(Zerva, 2009).  

 

Also, it is interesting to note that the damping ratios of soft, intermediate, and firm sites 

estimated from average Kanai-Tajimi spectra are not consistent with common geotechnical 

engineering practice. Hence, a suitable model directly connects the local site conditions and 

the characteristics of bedrock motion with the ground motion using the transfer function that 

truly reflects the influence of the site amplification effect on the shear waves transferred from 

bedrock to surface. Moreover, trying to establish an analytical expression for a realistic 

ground motion power spectrum related to the local site conditions is quite difficult since very 

limited information is available on the spectral characteristics of propagating seismic waves. 

 

In this context, many studies of site amplifications of seismic waves have also been 

reported, with various simplifications adopted in the analysis, mainly by reducing the problem 

to a combination of one-dimensional (1-D) propagation schemes (Wolf, 1985). Taking the site 

amplification effect into consideration, Hao (1993) developed a numerical method to calculate 

the site amplification effect on ground motion time histories by assuming seismic waves 

consisting of SH and combined P and SV waves. Wang and Hao (2002) then extended this 

method to include the effects of random variation of soil properties on site amplifications of 

seismic waves. Some computer programs, such as SHAKE91 (by Idriss et al., 1992), are also 

able to calculate site responses to incoming seismic waves and the ground motion time 

histories on the ground surface by solving the fundamental dynamic equations of motion in 

the frequency domain.  

These approaches are based on a 1-D wave propagation assumption, and the seismic waves 

are assumed to propagate vertically from the base rock (i.e., from the rock-layer interface) to 

ground surface. Horizontal wave propagation, wave scattering owing to uneven surface 

conditions, as in the surface of a canyon site, are neglected. However, these methods have 
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predicted amplifications well, and the corresponding computer programs, such as SHAKE, 

are commonly used in engineering practice to calculate earthquake ground motions on the 

surface of a soft soil site. This one-dimensional site response analysis is perhaps the most 

used technique in accounting for the local site effect and has been adopted by several design 

standards. Admittedly, results obtained from 2-D or 3-D analysis with accurate local soil 

modeling are preferred; however, these results are not readily applicable in reality.  

 

It should be noted that these approaches only simulate ground motion time histories at one 

point on the ground surface. Ground motion spatial variations are not considered. Studies 

which consider both the ground motion spatial variation effect and the site amplification 

effect are limited because of the complexity of earthquake wave propagation through the 

random, heterogeneous, nonlinear, spatially variable, and site specific soil profile. In reality, 

spatial variations and uncertainties about soil properties always exist. These are caused by the 

inherent heterogeneity or variability of soils, the limited availability of information about 

internal conditions, and, sometimes, measurement errors. Therefore, soil properties cannot be 

realistically considered to be deterministic. These uncertainties associated with system 

parameters are also likely to influence the lagged coherency loss function (Zerva and Harada, 

1997; Liao and Li, 2002). 

 

For this purpose, Bi and Hao (2011) investigated the coherence loss between simulated 

spatial ground motions on the surface of a layered soil site induced by the irregular surface 

topography of a canyon site (non-uniform site) and random soil properties. They based their 

work on the combined one-dimensional wave propagation theory and spectral representation 

method of Hao et al. (1989). The spatially varying bedrock motions are assumed to consist of 

out-of-plane SH waves or in-plane, combined P and SV waves that propagate into a random, 

layered soil site with an assumed incident angle. The shear modulus, density, and damping 

ratio of each soil layer are considered as random variables in the analysis, are assumed to 

follow a normal distribution, and are modeled by one-dimensional random fields in the 

vertical direction. We found that the lagged coherency function between surface ground 

motions on a canyon site is different from that between base rock motions. At all frequencies, 

the coherency loss functions on the ground surface are smaller than those on the base rock, 

even with deterministic soil site properties, i.e., the coherency function on the base rock is the 

upper bound of the coherency of spatial ground motions on the surface of a canyon site.   

For a deterministic canyon site, the lagged coherency function of the spatial surface ground 

motions oscillates with frequency. The maximum (peaks) and minimum (troughs) coherency 

values are directly related to the modulus of the site amplification spectral ratios (transfer 

function ratios) of two local sites or two wave paths. When the spectral ratios of two local 

sites differ from each other significantly, the spatial ground motions on the ground surface are 
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weakly correlated. The coherency function models for motions on a flat-lying site cannot be 

used to model that of motions on a canyon site.  

The influence of random soil properties in the vertical direction in all layers of a canyon 

site, compared with a deterministic case, on the lagged coherency function depends on the 

amount of variation in soil properties. In general, the more significant the random variations 

of soil properties are, the larger the local site effects on spatial surface ground motion 

variations are. However, they could result in larger coherency values at certain frequencies 

corresponding to smaller mean amplification spectra ratios. This is expected because smaller 

amplification spectra ratios indicate smaller differences between two local sites at the 

corresponding frequencies. The random variations of the soil damping ratio and density have 

an insignificant effect on the lagged coherency as compared to the random variations of shear 

modulus. 

 

Compared to the work by Deodatis (1996), the power spectral density functions at different 

locations of a canyon site in this analytical study are derived from the wave propagation 

theory, that directly relates the local soil conditions and base rock motion characteristics with 

the surface ground motions, thus local site effects can be realistically considered. Also, this 

example shows that the site significantly amplifies the motions on the base rock, which makes 

the energy of surface ground motions concentrate at a few frequencies corresponding to the 

various vibration modes of the site. This result indicates the importance of considering the 

multiple modes of a local soil site when estimating the seismic wave propagation and site 

amplification. The result of this research is an extension of that obtained using a 1-DOF 

model (Zerva and Harada, 1997). With a 1-DOF model, the influence of the higher vibration 

modes of the site on site amplification, and hence the spatial ground motion coherency, 

cannot be included. 

 

Earlier, Liao and Li (2002), Zerva and Harada (1997), and Kanda (2000) performed 

analytic studies on the influence of local site conditions, including topography and/or spatial-

random-variable soil properties, on the wave motion coherency. Liao and Li (2002), in their 

approach to evaluate the spatial coherency in their stochastic methodology to study the effects 

of uncertain soil properties and irregular topography at sites on the coherency function, show 

that the layer irregularity of a site with deterministic soil properties, subjected to non-identical 

random input excitation, can reduce the lagged coherency function values in the vicinity of 

the resonant frequencies of the site. Furthermore, the stochasticity of the soil layer tends to 

cause diminution of the lagged coherency function values near the site’s resonant frequencies. 

The latter result is in agreement with Zerva and Harada (1997) and Cranswick (1988). 

However, this method is difficult to implement and sometimes a bit arbitrary selecting the 
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absorbing boundary conditions. Furthermore, it is difficult to explain why the coherency 

function varies significantly over relatively short distances (Bi and Hao, 2011).   

 

Zerva and Harada (1997) modeled horizontal soil layers at a site with no dramatic changes 

in their topography (uniform site with only subsurface soil variability) as a 1-DOF system 

with horizontally random, variable characteristics to study the effect of uncertain soil 

properties on the coherency function. They pointed out that the spatial coherency of motions 

on the ground surface is similar to that of the incident motion at the base rock except at the 

predominant frequency of the layer, where it decreases considerably. The effect of uncertain 

soil properties should also be incorporated in spatial variation models of ground motions.  

Their explanation for this phenomenon was that for input motion frequencies close to the 

mean natural frequency of the 1-DOF oscillators, the response of the systems was affected by 

the variability in the value of this natural frequency and resulted in the loss of correlation. 

However, it should be noted that a 1-DOF system cannot realistically represent the multiple, 

predominate frequencies that may exist at a site with multiple layers and multiple modes, but 

one should not discard this simple model too soon, since there are many structures, e.g., log-

span bridges, for which the high frequency component of ground motions are not significant, 

and even this simple model may be adequate if it captures the first resonant frequency well.  

 

Kanda (2000), using two-dimensional, finite element modeling of a layered medium with 

irregular interfaces (fully deterministic concave and convex sine-shaped interfaces are 

assumed between the layers) and random, spatially variable incident motions, analyzed 

coherency and amplitude variability on the free surface of the site. The analytic results 

showed that interface irregularities between layers significantly change the frequency 

characteristics of ground motions at the soil surface and alter its spatial incoherence function. 

 

It is obvious from these examples, and the early observations, that the effects of irregular 

surface topography and random soil properties of a site on the lagged coherency function of 

spatial ground motions cannot be neglected. It should be noted that, whereas analytical studies 

can provide insight into various aspects underlying the spatial variability in the seismic 

motions, the forward, purely analytical modeling of coherency will be limited by the 

necessary assumptions made to simplify this complex problem. 

 

In this chapter, the significance of stochasticity in the characteristics of the surface layers 

of a site to the spatial variation of seismic ground motions and the resulting seismic ground 

strains is investigated for the case of El-Asnam Sogedia Factory soil site located in the 

epicentral region of the 1980 El-Asnam Earthquake (N.W Algeria). For this purpose, we use 

the analytic site specific model developed in Zerva and Harada (1997) and Harada and 
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Shinouzuka (1987), in which they approximate the site topography by homogeneous, 

horizontally extended soil layers with random thicknesses and soil material properties 

overlying a half-space (bedrock). The methodology is applicable to sites without dramatic 

changes in their topography and for the strong motion S-wave window.  

The incident motions at different locations at the bedrock-layer interface, consisting of 

stationary out-of-plane SH waves with an incident angle and synthetized by the EGF method 

(Section 3.2), are assumed to have the same intensity and frequency content and represented 

by the average of their unsmoothed power spectral density functions. The spatial variation of 

ground motions on the base rock is accounted for by means of the two, selected parametric 

models of lagged coherency (Section 3.3) and the commonly used complex term to describe 

the wave passage effect (Eq. 2.45) with a specified constant apparent propagation velocity. 

The incident shear waves at the bedrock-layer interface were then assumed to propagate 

vertically through the stochastic soil layer, and the site response was approximated by that of 

one-degree-of-freedom oscillators with random properties.  

The power and cross spatial densities of total surface seismic motions on a spatially 

random variable site with multiple soil layers are analytically derived using the Zerva and 

Harada (1997) approach, which directly relates the local soil conditions and base rock motion 

characteristics with the surface ground motions. The expression of the total coherency 

function is then obtained, and the total lagged coherency and its site contribution part are 

deducted. Due to the absence of sufficient information to describe the variability of soil 

properties in the horizontal direction at the Sogedia Factory site, the layer thickness and soil 

material properties are regarded as random variable with Gaussian distributions. The damping 

ratios adopted in this study are based on iterative equivalent nonlinear site response analysis 

of the soil layers when subjected to bedrock motion and are considered to model hysteretic 

energy dissipation in the soil layers. The contribution of the various factors (spatial 

correlation function of the predominant ground frequency varying in the horizontal direction, 

mean value of the equivalent damping ratio of the ground, mean value of the predominant 

ground frequency, and wave propagation speed in the horizontal direction of the incident 

motion) to the spatial variation of the surface motions and the resulting seismic ground strains 

on the surface of the stochastic layer evaluated from the model are examined for the present 

site.  

Parametric models of ground motion coherency and power spectral density at the surface 

of the study area have been presented. Such models are useful in random vibration analysis of 

lifeline structures under the action of earthquake excitation or in simulation of spatially 

variable ground-motion time histories to be used in nonlinear time history analysis of such 

structures. For such nonlinear analysis, the spectral representation method of unconditional 

simulation given by Hao et al. (1989) is used to generate non-stationary, spatially varying 

ground motion time histories at various locations on the ground surface of the El-Asnam 
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Sogedia site, compatible with the properties of the target (predictive) random field, i.e. power 

spectral density and the spatial coherency functions at the surface.  

 

5.1 Stochastic modeling of seismic surface ground motion 

 

5.1.1 Homogeneous stochastic horizontal ground 

The necessarily limited number of soil tests and their inherent lack of representativeness 

are significant sources of uncertainty in the evaluation of site response analyses. The 

uncertainty of the accuracy of analytical or numerical models used for the analysis is, in 

general, less significant. Moreover, uncertainty in field data is increased by the inherent soil 

heterogeneity, namely spatial variability of soil properties within so-called homogeneous soil 

layers. Therefore, deterministic descriptions of spatial variability of soil properties are not 

always feasible, and the sufficiently large degree of disorder, leads to the use of statistical 

methods in describing their distribution within a statistically homogeneous soil zone. While 

the natural variability of soil properties is known to affect the soil system behavior, the 

consequences of spatial variability are not well understood yet, and their exploration requires 

the use of stochastic, field-based techniques of data analysis. 

 

In this context, and as schematically shown in Fig. 5.1 where X  and Z  represent the 

horizontal and vertical space coordinates, respectively, the soil thickness  jH x  of the j-th 

layer may vary randomly in the X-direction. Similarly, a  representative soil property, 

 ,q x z , which can be attributed to, e.g., shear modulus,  ,G x z , mass density,  ,x z , and 

damping ratio, ( , )x z , may be a random function of x  and z . As in the Zerva and Harada 

(1997) study, it is assumed, for the first approximation, that the soil layer thickness,  jH x , 

and soil property,  ,q x z , are random functions of x only : 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 - Horizontal soil layers showing layer depth,  jH x , and soil property,  ,jq x z
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 ( ) 1 ( )
jj j HH x H f x  

   (5.1) 

 

 

 ( , ) ( ) 1 ( )z qq x z q z f x     (5.2) 

 

 

where 
jH and ( )q z are the expected values of  jH x  and  ,q x z  with respect to x : 

 
 

E ( )   j jH x H                              (constant)                 (5.3) 

 

 E ( , ) ( )      zq x z q z (deterministic function of z)         (5.4) 

 

 

The quantities ( )
jHf x  and ( )qf x  in Eqs. (5.1) and (5.2) represent the stochastic 

fluctuations of  jH x  and  ,q x z  with respect to x  and have a mean of zero: E ( ) 0
jHf x  

 
 

and E ( ) 0qf x    . It is noted here that the layer thickness is a nominally constant value and 

the soil layers are almost statistically homogeneous in the sense that  
2

E ( )  1
jHf x 

  
 (i.e., 

the coefficient of variation 
2( ) 1

jHcov ) and  
2

E ( ) 1qf x 
  

 (i.e.,
 

2( ) 1qcov ), in 

equations (5.1) and (5.2).  

 

5.1.2 Equations of seismic ground motion  

Consider ground layers resting on elastic rigid bedrock and subjected to earthquake ground 

motion as shown in Fig. 5.1. The total soil depth is assumed to be a constant, H . The input 

earthquake ground motion at the bedrock is assumed to be a stationary random shear wave 

(SH) propagating with speed, c , in the X -direction and represented by ( , )bu x t . The 

displacement time history at any location ( , )x z  within the layer is the superposition of the 

incident displacement at the bedrock-layer interface, ( , )bu x t  , and the relative displacement 

between the bedrock and the location under consideration, ( , , )ru x z t : 

 
 

( , , ) ( , ) ( , , )b ru x z t x t x z tu u                                (5.5)

           
 

The following assumptions are made at this point regarding the layer response to the 

random incident motion. 
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First, the incident random waves impinge the bedrock layer interface at such an angle that 

their propagation within the layers can be assumed to be vertical. This assumption serves as a 

first approximation, since it simplifies the wave propagation patterns in layered media, and is 

commonly used in the consideration of the effects of layers on seismic ground motions (e.g., 

Bi and Hao, 2011). Furthermore, it can be reasoned that, because the angle of transmission of 

body waves from the bedrock to the surface layer can be as steep as 90°, i.e., a nearly vertical 

direction, (O’Rouke et al., 1980, 1982), the propagation of the waveforms within the layer can 

be considered vertical. This one-dimensional ground response analysis is also based on the 

assumption that all boundaries are horizontal, and, the soil and bedrock surface extends 

infinitely in the horizontal direction.  

 

Second, the relative displacement, ),,( tzxur , can be represented by the product of the 

generalized coordinate, ),( txu
, and an assumed single mode shape, )(z , that satisfies the 

normalization and the geometric boundary conditions expressed as, respectively, 1)( o  (at 

the ground surface) and 0)( H  ( ( , , ) 0ru x z t   at the bedrock-layer interface z H ): 

 

 

( , , ) ( ) ( , )ru x z t z u x t           (5.6) 

 

 

The assumed mode shape takes, for simplicity, the following form (Harada and Shinouzuka, 

1987), and corresponds to the first mode shape of a single, homogeneous, infinite horizontal 

layer lying on elastic rigid bedrock and under vertically propagating seismic shear waves: 
 

( ) cos
2

z
z

H




 
  

 
       (5.7) 

 

This consideration approximates the layer or soil column response by that of a single-degree-

of-freedom oscillator with random characteristics. It is noted that this simplification 

eliminates the effects of higher modes present in a layered half-space, but captures the 

dominant layer response. It is generally acceptable that the site responds with a dominant 

frequency to seismic excitations, since the maximum amplification at the homogeneous 

horizontal soil profile under shear waves that travel up and down occurs, in general, at the 

fundamental-mode frequency. For this reason, the fundamental period of a site is widely used 

in the calculation of seismic soil amplification factors for the evaluation of the base shear 

force for building design (Motazedian et al., 2011).  

It is also noted that, with the enforcement of the boundary condition, 0)( H , the model 

does not properly consider the effect of the soil layers (waves propagate with refraction and 

reflection at the layer-layer irregular interfaces) on the total motion at the bedrock-layer 

interface. Thus, the present approach is valid only for the estimation of surface ground motion 
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characteristics. The layer characteristics and the parameters affecting the incident motion at 

the bedrock-layer interface, such as source effects and random inhomogeneities along the path 

of the waves in the bedrock, are statistically independent quantities. 

 
 

Through the principle of virtual work, the differential equation of motion for the 

generalized displacement coordinate, 
*( , )u x t , is given by (Zerva and Harada, 1997): 

 

   
2

* * * * * *
( , ) 2 ( ) ( , ) ( , )   ( , )( )  ( ) bx t x x t u x t u x tu x u x        (5.8) 

 

where 
*
( )x  is the ground predominant natural frequency and   is the participation factor. 

They are given as: 

 

 

 

 

2

* 0

2

0

(1 ( )) ( ) ( ) d
( )  

(1 ( )) ( ) ( ) d

H

G z

H

z

f x G z z z
x

f x z z z




 









                                   (5.9)  

 

 

   
0 0

2 2

0 0

( , ) ( ) d ( ) ( ) d

( , ) ( ) d ( ) ( ) d

H H

z

H H

z

x z z z z z z

x z z z z z z

   


   
 
 

 
                                 (5.10)  

 

where, ( )z z  and ( )zG z  are the means values of the random quantities, ( , )x z  and  ,G x z , 

respectively.  

 

 
*
( )x  is an approximate, equivalent damping ratio for shear waves to account for the energy 

loss. Alternatively, the (natural) predominant ground frequency, 
*
( )x , and the equivalent 

damping ratio, 
*
( )x , may also be expressed according to Eq. (5.2): 

 
 

 *

0( ) 1 ( )x x                                       (5.11)  

 

 *

0( ) 1 ( )x x          (5.12) 

 

in which, 0  and 0  are the mean values of 
*
( )x  and 

*
( )x , respectively, and ( )x  and ( )x  

are homogeneous stochastic fields with zero mean and corresponding standard deviations, 

  and  . It is easy to show that *cov 
   and *cov 

  .  
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Once 
*( , )u x t  is determined, the seismic motions on the ground surface 

( , ) = ( , 0, )u x t u x z t  can be evaluated from Eq. (5.5) with 1)( o . For this, Zerva and 

Harada conducted a random vibration analysis to evaluate first the solution to Eq. (5.8), where 

the cross-spectral density function, * * ( , ) 
u u

S , was developed and expressed in the term 

( , ) 
b bu uS and the soil layer transfer function, 0 0( , , )H    , as:  

 

 

 * *

2 42 4 4 4

0 0 0 0 0( , ) ( , , ) 4 ( ) ( , , ) ( , )
b bu uu u

S H R H S                    (5.13) 

 

and then from Eqs. (5.13) and (5.5), they deducted a similar relation for the ground surface 

response ( , 0, )u x z t , as :  

 
                                                                            

24 4 2 2 2 4

0 0 0 0 0

42 4 4

0 0 0

( (2 4 2) ( 1) ) ( , , )
( , ) ( , )

4 ( ) ( , , )
b buu u u

H
S S

R H

         
   

      

      
 
   

  (5.14) 

 

 

 

in which, ( )R   is the autocorrelation of the ( )x  field (Eq. 5.11) and the complex 

frequency response function 0 0( , , )H     is given as: 

 

           0 0 2 2

0 0 0

1
( , , )

2
H

i
  

    


 
        (5.15) 

          

This spatial correlation function, ( )R  , of the predominant circular frequency, ( )x , of the 

ground results from the spatial variability of the soil material as well as the soil layer 

thickness. Equation (5.14) is useful for estimating the site-specific spatial variability of the 

ground displacement ( , )u x t , which is of primary importance for the seismic analysis and 

design of buried lifeline structures. 

 

The corresponding power spectral density of the motions is obtained from Eq. (5.14) by 

setting the separation distance equal to zero, ( 0)  , as: 

 

        

 
24 4 2 2 2 4

0 0 0 0 0

42 4 4 2

0 0 0

( (2 4 2) ( 1) ) ( , , )
( ) ( )

4 ( , , )
b buu u u

H
S S

H

         
 

      

      
 
   

  (5.16) 
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in which ( ) ( 0, )
b b b bu u u uS S   

 
is the power spectrum of the incident motion. It is noted 

that, for a participation factor equal to unity ( 1  , i.e. simple, single-degree-of freedom 

oscillator) and for deterministic values of the soil properties, Eq. (5.16) reduces to the well-

known KanaiTajimi spectrum (Kanai, 1957; Tajimi, 1960). The surface motions are assumed 

to be spatially homogeneous, which implies that their power spectrum, which is proportional 

to the square of their amplitude (see Eq. 2.24), is assumed to be the same at all locations. An 

assumption also made implicitly in Eq. (5.16) to the bedrock motions. This assumption is 

reasonable since the source to site distance is much larger than the site dimension and stations 

are situated on a Sogedia site considered to have approximately the same local soil profile (or 

local soil conditions) without dramatic changes in topography (Zerva and Zervas, 2002).  

 

5.1.3 Spatial variability of surface motion  

 

The total spatial variability of surface motion is composed of terms corresponding to wave 

passage effects, bedrock motion loss of coherency effects, and site response contributions 

(Der kiureghian, 1996). In this approach, coherency function of surface motion is expressed 

as follows:  

 

 
                                                                            

                    
, , ,

( , )

( )
( , )

           ( , ) ( , ) ( , )

uu

uu

b coh b prop l coh

S

S

 


  

        



  

                            (5.17) 

 

 

where: , ( , )  b coh  is the loss of coherency of the incident base rock motion, it is often 

described by the existing lagged coherency models from the literature. In this study we will 

idealized , ( , )  b coh  by using a parametric coherency model, calibrated to coherency 

functions estimated in the Sec. 3.2 from ground motion simulations using the extension of the 

EGF method at the bedrock of the epicentral region of the 1980 El-Asnam Earthquake. As 

well,  , ( , ) exp ib prop c      is a term describing the wave passage effect in the incident 

motion (Eq. 2.45), and , ( , )  l coh  is a term representing the contribution of the layer 

stochasticity to the spatial variation of coherency. , ( , )  l coh   can be extracted by substituting 

Eqs. (5.15) and (5.16) for the first equality in Eq. (5.17), followed by identifying the result of 

the last equality in Eq. (5.17), taking into account the relation in Eq. (5.18): 

 

 

 

                                    
, ,

( , )

( )

              

( , )

( , ) ( , )

b b

b b

u u

b
u u

b coh b prop

S

S

 


  

     



 

                                             (5.18) 
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 the result takes the form: 

 

 

 1 0 0 2 0 0

, 2

1 0 0 2 0 0

( , , , ) ( ) ( , , , )

( , , , ) ( , , , )
l coh

H R H

H H





        


        

 


   

                      (5.19) 

 

in which, 

 

 
24 4 2 2 2 4

1 0 0 0 0 0 0 0

42 4 4

2 0 0 0 0 0

( , , , ) ( (2 4 2) ( 1) ) ( , , )

( , , , ) 4 ( , , )

H H

H H

             

         

      

 
   (5.20) 

 

 

It is noted that c (in  , ( , ) exp ib prop c     ) is the apparent propagation velocity of the 

incident motion at the bedrock-layer interface. This is a function of the shear wave velocity in 

the bedrock sv  and the angle of incidence of waves at the interface.  

 

The overall incoherence (incident motion incoherence and layer stochasticity) in the spatial 

variation of the surface motions is given by taking the modulus of the complex function in Eq. 

(5.17) and expressing it as the following equation:  

 

 

, ,( , ) ( , ) ( , )coh b coh l coh               (5.21) 

 

5.1.4 Analytical evaluation of seismic ground strains 

 

The relative significance of the effects of the incoherence evaluated from the present 

model and the apparent propagation of the seismic ground motions on the response of buried 

lifelines is evaluated in this section. The spatial incoherence model of the motions is described 

by the Eq. (5.21) (i.e., the modulus of the complex function in Eq. (5.17)), and a wide range 

of apparent propagation velocities is considered in the wave passage effect. 

 

The analysis and design of buried pipelines to resist seismic motions differs fundamentally 

from that of conventional structures. One of the basic differences is that, because of their 

extended length, pipelines are subjected to spatially variable seismic ground motions. 

Furthermore, it has been postulated, both from recorded data and from analytical evaluations, 

that inertia effects for buried pipelines may be neglected, that their movement during 

earthquakes is similar to that of the ground, and that the maximum axial strain along a straight 

buried pipeline coincides with the maximum ground strain (e.g., O’Rourke et al., 1984). 

Generally, the seismic design of buried structures (pipelines and tunnels) relies directly on the 

characterization of the seismic ground deformations and strains (e.g., Hashash et al. 2001, 
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Newmark and Roesenblueth, 1971) that are imposed on the structure due to its interactions 

with the surrounding soil and constitute, essentially, their seismic loads. Axial deformations in 

these structures are induced by the seismic wave components with motions parallel to the axis 

of the structure, and bending deformations are caused by the seismic wave components with 

motions perpendicular to the axis of the structure. Axial strains are considered to be more 

important in the seismic design of straight, buried, small diameter pipelines (O’Rourke et al., 

1982). As the radius of the pipeline increases, however, axial stresses decrease, and the 

structure becomes sensitive to bending stresses as well. For tunnels, shear waves propagating 

in a direction normal or nearly normal to the structure’s axis can lead to deformations of the 

cross section of the tunnel lining (ovaling or racking deformations). Larger strains ought to be 

expected in soft and deep soils, due to smaller shear wave velocity in the layer, and smaller 

strains ought to be expected in the basement rock. 

 

Simplified guidelines for the design of pipelines to resist seismic motions determine the 

ground strain through the assumption of a plane, sinusoidal wave that propagates along the 

structure's axis with a constant velocity, without interference from other waves, and without 

changing shape (Newmark and Rosenblueth, 1971). Newmark and Roesenblueth (1971), in 

their empirical estimation of seismic ground strains, noted that horizontal, straight buried 

pipelines follow the motion of the ground, and that maximum axial strains induced in buried 

pipelines can be adequately approximated by the maximum ground strains, which are given 

by:  

 

L max
max

( )

c


                                                            (5.22) 

 

in which, L max( )  is the maximum horizontal (particle) velocity in the longitudinal direction 

of the pipeline at a location on the ground surface and c  is the component of the apparent 

velocity of the waves with respect to the ground surface in the same direction. The rotational 

ground deformation for the evaluation of the torsional response in structures was also 

approximated by a similar expression (Newmark and Roesenblueth, 1971). In this case, the 

maximum angle of rotation of the ground about the vertical axis, max , is approximated by: 

 

T max
max

( )

c


                                                           (5.23) 

 

 in which, T max( )  is the maximum horizontal (particle) velocity in the transverse direction. 

 

The strain estimates of Eqs. (5.22) and (5.23), as well as comparative ones for radial, 

tangential and shear strains, rely on the following assumptions: (i) the seismic energy travels 

as a sinusoidal, single plane wave with a known azimuth and constant horizontal velocity; (ii) 
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the surface deformation is caused solely by the propagation of the motions; and (iii) the 

medium is laterally homogeneous.  

 

Recent evaluations of strains still rely on the traveling-wave assumption of Eqs. (5.22) and 

(5.23) and consider seismic ground motions as being dominated by body or surface waves for 

the estimation of the apparent propagation velocity. Strain estimates based on these 

expressions are commonly referred to as single-station strain estimates, and their evaluation 

requires knowledge of the particle velocity and a representative propagation velocity of the 

motions. The particle velocity may be available from recorded data at a single station and/or 

attenuation relations, while the appropriate estimates for the apparent propagation velocity of 

the motions are difficult to obtain. Indeed, near field ground motions are caused by 

interference a number of different types of waves during the same time window, each with its 

own propagation velocity. The propagation velocity of P-waves is larger than the propagation 

velocity of S-waves, which, in turn, travel faster than surface waves. In reality, the apparent 

propagation velocity of the motions may vary slightly with frequency even for the broad-band 

shear wave window. In addition, surface waves for realistic soil profiles are dispersive, which 

means that the phase or propagation velocity is a function of frequency. A common rule is 

that surface waves become significant and tend to govern only in shallow structures and at 

sites located more than about five focal depths from the epicenter (O’Rourke et al., 1984). 

Surface waves are generated by the reflection and refraction of body waves at the ground 

surface. Surface waves can be more destructive to buried pipelines than body waves by 

generating larger ground strain caused by their low phase velocity. Therefore their omission 

will lead to discrepancies between the actual strains and the single-station strain estimates. 

These observations contradict the validity of the first assumption in (i).  

 

At the sites of dense instrument arrays, frequency-wavenumber techniques can be utilized 

for the estimation of the propagation characteristics (the azimuth and apparent propagation 

velocity of the contributing waves imping upon the array during different time windows and 

at different frequencies for each component of the motions and each event. All techniques 

evaluate, in different forms, the frequency-wavenumber (F-K) spectrum of the motions, i.e., 

the triple Fourier transform of the recorded time histories, and identify the average 

propagation velocity of the motions from the peak of the spectrum (Zerva and Zevra, 2002). 

However, that such estimates reflect only the average propagation velocity of the waves but 

do not capture the arrival time perturbations at individual stations caused by horizontal 

variations in the geologic structure encountered along the seismic ray paths (Zerva and 

Zervas, 2002) that introduce random variations of the wave passage effect. These random 

variations are sources of random phase variations and are represented in the lagged coherency 

function, which is not taken into account by assumption (ii). 
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However, in the absence of such information, the apparent propagation velocity of the 

motions needs to be evaluated analytically from the source-site geometry and the 

characteristics of the soil profile. It can be clearly seen from Eqs. (5.23) and (5.23) that 

uncertainties in the estimated apparent propagation velocity of the waveforms will directly 

affect the value of the seismic ground strain. Additionally, any strain estimate based on the 

traveling-wave assumption will only be an approximation for the actual strains, as Eq. (5.22) 

does not consider the effect of the change in the shape of the motions (dispersion, amplitude 

variability, and loss of coherency) on the seismic ground deformation. Just the consideration 

of the apparent propagation of the motions would provide a lower bound for actual seismic 

ground strains. Indeed, Bodin et al. (1997), from their analysis of seismic strains in the Valley 

of Mexico, suggest that Eq. (5.22) may, in certain cases, be uncertain within a factor of 2 to 3. 

Additional differential displacements and strains are caused by changes in the amplitudes and 

phases of the motions as well as the above-cited arrival time perturbations of the waveforms 

at the various locations on the ground surface. These effects are those of the spatial variability 

of seismic ground motions. 

 

The last assumption (iii), considers that the site can be approximated by horizontal layers 

extending to infinity. Lateral variations in the site’s subsurface topography, however, can 

significantly amplify seismic ground strains. In addition, assumption (iii) implies that the soil 

properties within each layer can be considered deterministic. In reality, they are uncertain, a 

fact that will invariably affect the value of the strain estimate. It is noted that the spatial 

variation of the seismic ground motions incorporates the effect of the variability in the soil 

properties at a site into the local scattering effect.  

 

The significance of incoherence versus that of apparent propagation in the evaluation of 

surface seismic strains is analyzed herein. It is assumed that the cross-spectral density of the 

seismic ground motions is described by Eq. (5.14), which incorporates the effects of both the 

incoherence evaluated for strong motion shear waves (incident motion incoherence and layer 

stochasticity) and the apparent propagation. For this, we adopt the analytical approach 

developed by Zerva and Harada (1997), already used in the previous section on the evaluation 

of surface seismic motions. It allows for the analytical estimation of horizontal strains of a 

soil site having stochastic characteristics and also for analyzing the contribution of 

incoherence and wave propagation in seismic ground strains.  

In this analytical methodology, it is necessary to represent, in addition to the spatial 

correlation function, ( )R  , in Eq. (5.19), the coherency function, ( , )   , of the total 

ground surface motions by an analytical model. For the latter, and from its definition given in 

Eq. (5.17), only the term of the loss of coherency of the incident base rock motion 

, ( , )b coh    remains to be described by the existing parametric lagged coherency models from 
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the literature. The wave passage effect and the layer stochasticity contribution to the 

coherency function and are already incorporated earlier through analytic expressions and by 

Eqs. (2.45) and (5.19), respectively. Because of the analytic random vibration evaluation of 

certain response quantity of lifelines, e.g. the variance of the horizontal seismic strains, it is 

required that the random field resulting from the selected spatial incoherence model 

( , )coh    in Eq. (5.21) is mean-square differentiable. Therefore, its term , ( , )b coh   , should 

be selected according to this condition. For this purpose, from the previous three parametric 

lagged coherency models with the parameter values found in Sect. 3.3, only the Luco and 

Wong (1986) model respects this condition and might be used with its value incoherence 

parameter   in this type of development in the case of small to medium separation distance.  

 

The behavior of the sample spatial correlation function, ( )R  , is approximated by the 

analytical expression: 

 

                  
( ) ( )2R f    

       
                                 (5.24) 

 

in which, ( )f  , the normalized spatial correlation function, ought to be consistent with the 

variability of the data at the site and satisfy the following conditions: (i) it ought to be 

symmetric around 0   (homogeneity requirement); (ii) its first and second derivatives ought 

to exist and assume finite values at 0  , so that the evaluation of strains based on the 

expression is feasible. It is noted that these two conditions impose ( )f 0 0
  . For the present 

example, the mathematical expression used for ( )f   is: 

 

 

     

( )

2
2

b
f 1 2 e

b


 
 
 





  
     
   

       (5.25) 

 

in which b  is the scale of correlation. Alternative expressions for the normalized 

autocorrelation function can be found in, e.g., Harada and Shinozuka (1986). 

 

Seismic strains resulting on the surface of the stochastic layer are evaluated as follows. The 

cross correlation function of the seismic motions on the ground surface is defined as: 

 

( , ) ( , )  i

uu uuR S e d







                (5.26) 

From the above expression, the variance of the horizontal seismic strains 
( , )

( , )
u x t

x t
x

 
  

 
 

along the X-direction (direction of wave propagation on the ground surface) becomes: 
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( , ) ( , )
[ ] [  ]

2 2
2 uu uu

2 2
0

0
0

R S
d





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     
     

           (5.27) 

and that of the seismic ground velocities 
( , )

( , )
u x t

x t
t

 
  

 
 (particle velocities): 

 

( , )
[ ] [ ( , ) ]

2
2 2uu

uu2
0

0
0

R
S d









  
       

           (5.28) 

 

The square-root of the variance (root-mean-square) of a random quantity provides information 

on its mean maximum value, since rms values are proportional to the mean maximum ones 

(Cranswick, 1988). 

 

The evaluation of seismic ground strains (Eq. 5.27) requires the integration of the second 

derivative with respect to   of the cross correlation of the motions at 0  , which becomes 

(Eqs. 5.14, 5.18, and 5.26): 

 

 

( , ) [ ( , , , ) ( ) ( , , , )] ( ) 
2 2 2

b b

i
c

uu 1 0 0 2 0 0 u uR 0 H R H e e S d

 
 

  





                   

(5.29) 

 

in which ( , , , )1 0 0H      and ( , , , )2 0 0H     are given by Eq. (5.20). Since both the value 

and the derivatives of the spatial correlation function ( )R   are needed at 0   in Eqs. 

(5.27) and (5.29), its analytical approximation (Eq. 5.24) is required. These derivatives, for 

any assumed correlation function expression ( )f  , take the form:  

 

 

( ) ; ( ) ; ( ) ( )2 2R 0 R 0 0 R 0 f 0     
                (5.30) 

 

The substitution of Eq. (5.30) into Eqs. (5.27) and (5.29) yields the variance of the seismic 

ground strains: 

 

 

[ ( ( / ) )( ) ( ) ] ( ) 
b b

2 2 2 2 2 2

1 2 2 u u2 1 c H H f 0 H S d



   



                  (5.31) 

in which, the dependence of 1H and 2H  on  , 0 , 0  and  has been omitted for simplicity. 

With the assumption that ( )
b bu uS  , the power spectral density of the incident motion 

acceleration, is a slowly varying function of frequency, and noting that both 
2

00 ),,( H
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and 
4

0 0( , , )H     peak close to 0  , an approximation for the variance of the ground 

strains is found to be : 

 

 
2 2 2 ''

2 2 2 2 2 2 2

0 0 0 02 2 3

0 0 0 0

(0)
(2 (1/ ) )( (1 ) 4 ) (1 4 ) ( )

2 2 2 b bu u

f
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

    
             

    
 (5.32) 

 

The variance of the seismic velocity at the ground surface can also be evaluated through a 

similar procedure. Eqs. (5.20), (5.28) and (5.30) lead to: 

 

 

2 2 2

1 2( ) ( ) 
b bu uH H S d



 



                      (5.33) 

 

which, with the same approximations used to evaluate of the seismic strains, yields 

 

 
2
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  
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   
        (5.34) 

 

Eqs. (5.32) and (5.34) then result in the following estimate for the rms seismic ground strain 

in terms of the rms ground velocity: 
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    
   

       
            (5.35) 

 

 

The normalized spatial correlation function of the present example (Eq. 5.25) yields 

( ) / 2f 0 6 b 
   , and Eq. (5.35) takes the form of: 
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    
   

       
             

(5.36) 

which presents the rms seismic strain,  , normalized with respect to the rms ground 

velocity,  , as a function of the apparent propagation velocity of the motions on the ground 

surface. It incorporates the effects of propagation, loss of coherency of the incident motion at 

bedrock, and stochasticity in the local site conditions.  

 

If the soil has deterministic characteristics, equation (5.36) becomes: 
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2 2[2 (1/ ) ]c




  


     (5.37) 

 

In the two extreme cases, i.e., when 0c   and c , the seismic ground strains of Eq. 

(5.36) assume the value: 

 

0c   : 1/ c







      (5.38) 

 

i.e., the apparent propagation velocity of the motions controls the strains. It is noted that Eq. 

(5.38) is in complete agreement with the commonly used assumption of Eq. (5.22), and 
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       
     (5.39) 

 

 

i.e., the random characteristics of the ground contributes in the shear strains. 

 

In the next section a numerical example is presented to illustrate the effect of the spatial-

random-variable soil profiles on the coherency loss function of the surface motions and 

seismic ground strains. 

 

5.1.5 Numerical example 

  

Stochastic characteristics of the ground  

The parameters of the proposed model, 0 , 0 ,   and ( )R  , depend on the soil 

properties and they need to be estimated. The mean value and standard deviation can be 

determined using standard techniques. In the present study, we consider the Sogedia site in 

El-Asnam city, with the soil conditions, shown in Figs. 5.2a, 5.2b and Table 5.1, over a length 

of 1200m.  

 

The thicknesses and material properties given in Fig. 5.2a and Table 5.1, respectively, 

represent the mean values (expected values) estimated by Petrovski and Milutinovic (1981) of 

the properties of our one-dimensional, spatial random variable soil profile. For reasons of the 

limited availability of information (data from only one borehole is available at the Sogedia 

site) about spatial variation of soil properties in each layer and the measurement errors, it is 

assumed that the stochasticity in soil characteristics is due to variabilition in the depths of the 
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layers, i.e., the soil characteristics given in Table 5.1 are constant within each sub layer. The 

statistical variations of most soil properties follow a normal distribution (Wang and Hao, 

2002). In this case, a same distribution is assumed for soil layer thickness and is accounted for 

by the coefficient of variation H HHcov H , with 0
020Hcov    for each soil layer,  j ,  j = 

1, 2. Therein, the model ground (1200m x 33m x 1m) consists of two different layers (M = 2) 

with the material properties shown in Table 5.1. The bedrock is assumed to be rigid. The 

ground is divided into sixty sections in the horizontal direction, and each section has a 

horizontal length of 20m (20=1200/60). From the layer thickness and soil material data shown 

in Fig. 5.2b and Table 5.1, the predominant ground frequency *( )nx  (n = 1, 2,..., 60) may be 

computed by Eq. (5.40), an extension of Okamoto’s (1984) equation, for each vertical soil 

section. The mean predominant frequency value is 0 9.6π rad/s   ( 0 4.8 hzf  ) with a 

corresponding standard deviation of = 0.06  .  
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     (5.40) 

 

 

Table 5.1 - Material properties of the site profile in Fig. 5.2. 

 

 

For the value of the damping ratio, 0 , it is well-known that the response of a soil system 

subjected to strong earthquake motions is connected with significant, nonlinear effects that 

have to be taken into account in an appropriate manner. The site response in terms of the 

cross-spectral density function (Eq. 5.14) was derived using the soil columns at two stations 

separated by   as two linear systems. The derivation makes us of stationary random vibration 

theory, involving the frequency response function of the soil 0 0( , , )H    . By definition, this 

function is the steady-state response of a linear system to a complex harmonic excitation of 

the form exp( )i t . Of course, behavior under strong earthquake motions is not linear. We need 

to define this function for some sort of an equivalent linear soil system. The model of the 

response function given by Equation (5.15) considers the soil column at the site as a single-

degree-of-freedom system with viscous damping, where 0  and 0  are the parameters of the 

Soil type 

 

Mass density 

  (gr/cm
3
) 

Poisson’s     

ratio 

Shear modulus 

(kgf/cm
2
) 

Shear wave 

velocity (m/s) 

Damping 

ratio (%) 

 

1- Clayey mixture 1.90 0.48 3040 400 5 

2- Sandstone clay 

    and sand 

3- Bedrock 

2.30 

 

2.4 

0.48 

 

0.49 

18630 

 

96000 

900 

 

2000 

3 

 

1.25 
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equivalent soil system. This, however, is a very crude model for several reasons, including the 

fact that soil damping is not viscous (Wang and Hao, 2002), and deep soil columns usually 

possess several significant modes of vibration. Additionally, it is not easy to determine the 

parameters 0  and 0  on a rational basis. Nevertheless, this model is a simple alternative 

when other options are not practical. It is noted that this model is consistent with the well-

known Kanai-Tajimi model (Kanai, 1957; Tajimi, 1960) for ground motions on soil sites. 

Typical ranges of the parameter values for that model are 0 2 5  rad/s     and 

0 0.2 0.6   . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

Fig. 5.2 - (a) Site profile at Sogedia Factory in northwest Algeria with mean layer thicknesses as 

shown (from Petrovski and Milutinovic (1981)), and (b) a realization of the soil profile (bedrock not 

shown) with stochastic layer thickness. 

 

For a better representation of the frequency response function, one must model the site 

itself, not the frequency response function directly. Once such a model is developed, one can 

use existing soil response analysis, e.g., the program SHAKE (Idriss et al., 1992), to compute 

the frequency response function. The analysis would require computing the response of the 

soil column to a complex harmonic excitation for a long period in order to achieve the steady-

No.1  Clayey mixture 

 

          (thickness = 11m) 

 

 

No.2  Sandstone clay and sand 

  

          (thickness = 22m)  

 

 

 

  Marl (Rock layer)     
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state response, as required by the definition of that function. Naturally, such an approach can 

account for the non-viscous and nonlinear behavior of soils, albeit in an approximate, 

equivalent, linear sense. This analysis must be repeated for each frequency, , to obtain a 

complete description of 0 0( , , )H    . In this study, damping in each layer was estimated by 

using equivalent, linear, one-dimensional site response analysis. The bedrock motion is used 

as input motion, and an iterative procedure is used to estimate the damping ratio of an 

equivalent linear system. Therefore, it is considered to model hysteretic energy dissipation in 

the soil layers. The algorithm for the damping ratio and transfer function is SHAKE 91 (Idriss 

et al., 1992). Using the average properties (Fig. 5.2a and Table 5.1), the numerical values 

found of the damping ratio for each soil layer are given in Table 5.1. They are in accord with 

those estimated by Petrovski and Milutinovic (1981), whose values were found to be in the 

range of 1.0 - 4.5%.  

 

We note that this approach is different from the one commonly used in investigating of the 

effects of lateral ground heterogeneities in ground-motion coherency. For example, for a firm 

site (high predominant frequency 0 ) in the present example, a damping ratio of 60% has been 

used by Zerva and Harada (1997), based on observations that the average power spectral 

density functions of recorded ground motion at firm sites match the so-called modified Kanai-

Tajimi model with the parameter 0  equal to 0.6. This parameter from the Kanai-Tajimi 

model can be interpreted to represent ground damping, but is not necessarily related to it. In 

particular, when power spectral density functions of ground motion recorded at different sites 

(all relatively firm but with slightly different predominant frequencies) are averaged, the 

averaging operation smooths the peaks of the spectra of individual ground motions. The 

resulting average spectrum has a broader peak with a width that is not representative of the 

widths of the individual spectra. Estimating damping (which controls the width of the peak) 

from the average spectra may not be reliable because of this. In any case, damping values as 

high as 60% are not realistic for firm soils. It is interesting to note that damping ratios of soft 

and firm sites estimated from average Kanai-Tajimi spectra are not consistent with common 

geotechnical engineering practice. For example, in studies such as Zerva and Harada (1997), 

soft soils are assumed to have a much lower damping ratio than firm sites. It is well known 

that soft soils dissipate more energy during inelastic deformations and, therefore, exhibit 

higher damping than firm sites. 

The 5% of the damping ratio of the top layer (in Fig. 5.2a) is assumed for the damping 

coefficient, 0 , for the Sogedia soil site, because the values of the developed shear maximum 

strains occurred in all the thickness of this layer are significantly higher than those developed 

in the second layer.  

 



Chapter 5: Modelling and simulation of spatially variable motions at the surface of a random 

and spatially variable soil profile 

 

90 

 

The participator factor determined from Eq. (5.10) is 4  . The sample spatial 

correlation function, ( )R   of ( )x , is calculated by interpreting the sample, *( ) nx , as a 

realization of the homogeneous stochastic process, 
*( )x , using the following equation 

(Jenkins and Watts, 1969):                

 

                      

                      

* *

0 0

1 0 0

( ) ( )1
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N k
n k n
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n

x x
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N k
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 





      
     

     
                     (5.41) 

 

 

where N is the total number of soil sections (60). To avoid a small averaging number, N-k in 

Eq. (5.41), 600k m   is used as the longest separation distance.  
 

The resulting normalized spatial correlation function, ( ) / (0)kR R   ( 2(0)R  ), is 

plotted in Fig. 5.3. The analytical spatial correlation function (Eqs. 5.24 and 5.25), normalized 

by the layer frequency variance, is also plotted in Fig. 5.3. The value of b  is determined in 

such a way that ( )R   (Eq. 5.24) becomes zero for the same value of the separation 

distance,  , that produces a zero value for ( )R   (Eq. 5.41); in this study case, 60 m   for 

( )R 0    (Fig. 5.3) and, thus,  84.85 mb  . 

 

The power spectral density of the total surface motions (Eq. 5.16), normalized with respect 

to that of the incident motion PSD ratio, is shown in Fig. 5.5. As expected, its power is 

contained in the vicinity of the mean value of the layer predominant frequency, and its shape 

resembles that of the Kanai-Tajimi spectrum (Kanai, 1957; Tajimi, 1960). The high level of 

amplification is related to the low value of 5% selected for the damping, 0 . This high level is 

in accord with that found using SHAKE 91 for the absolute transfer function, ( )H  , (also 

given in Fig. 5.5) between the surface and the top of the rock boundary of the soil at the 

Sogedia site, in regards to the other relation of the PSD ratio, 
2

( ) ( )  ( )
b buu u uS H S   (Der 

Kiureghian, 1996). It is interesting to observe that the site has multiple resonant frequencies. 

Obviously, if a single-degree-of-freedom soil model, as in (Eq. 5.15), is used, one can model 

one resonant frequency at best. However, one should not discard this simple model too soon, 

since there are many structures, e.g., long-span bridges, for which the high-frequency 

components of ground motion are not significant. Even this simple model may be adequate if 

it captures the first resonant frequency well, as is the case for this site.  
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Fig. 5.3 - Spatial correlation functions for the predominant ground frequency of the stochastic layer 

using actual soil data (Sogedia soil profil shown in Fig. 5.2) and an analytical approximation.                            

      

From the individual stationary PSD of simulated acceleration at each station at the 

bedrock, the point spectrum, ( )
b bu uS  , of the assumed incident random field can be obtained 

by simple averaging over all stations. In order to compensate for slight intensity variations 

from station to station, it is advisable to normalize each auto spectrum by dividing by the 

variance of the corresponding acceleration prior to averaging. Also, since averaging reduces 

the variance of the final point spectral estimates, each, individual auto spectrum can be 

estimated using a window with a small bandwidth in order to achieve good resolution 

(Harichandran, 1991).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 - Power spectral density functions of simulated ground accelerations at bedrock (around 

Sogedia site) at the five stations (around Sogedia Factory site) corresponding to the 1980 El-Asnam 

Earthquake, and their average spectrum. 
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In the present study, we made a simple averaging because, as shown in Fig. 5.4, PSD’s 

frequency content follows the same trend, and, exhibits insignificant differences (which are 

purely numerical as stations are located on uniform rock conditions) in the amplitudes. The 

average,
 

( )
b bu uS  , of the unsmoothed (raw) PSD functions of the incident acceleration motions 

and their corresponding acceleration at the surface, ( )uuS  , computed using Eq. (5.16), are 

given in the Fig. 5.5. The function, ( )uuS  , will be utilized in Section 5.2 for the simulation of 

the SVGMs on the ground surface required for the nonlinear structural response history 

analysis. 

 

The contribution of the layer stochasticity to lagged coherency at the ground surface (Eq. 

5.19) at separation distances of 40, 100, 200, and 500 m are presented in Fig. 5.6. The 

correlation structure in Fig. 5.6 is different from that expected in spatial variability (i.e. 

exponential decay with both separation distance and frequency). The site contribution to the 

coherency is exactly equal to one, except for a drop at the stochastic layer predominant 

frequency (at approximately 0 4.8 Hzf  ) that is caused by the random variability around its 

mean value for the different soil columns from the site. The explanation of Zerva and Harada 

(1997) for this realistic phenomenon was that the soil layer responds to the incident excitation 

as a series of single-degree-of-freedom systems with slightly varying, correlated natural 

frequencies. For input motion frequencies close to the mean natural frequency of the 

oscillators, the response of the systems is affected by the variability in the value of this natural 

frequency and results in a loss of correlation. As the exciting frequencies increase past the 

natural frequency of the systems, the actual value of the natural frequency (for small 

variabilities) ceases to affect the response significantly. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5 - Power spectral density of ground acceleration at bedrock and the ground surface, their ratio, 

and equivalent linear transfer function of the site (see legend for units and descriptions). 
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Fig. 5.6 - Contribution of layer stochasticity to the lagged coherency of surface motion (see Eq. 5.16). 

 

Through this numerical example, it is clear that the effects of soil heterogeneity are to 

significantly decrease lagged coherency at frequencies close to the fundamental frequency of 

the firm site. The decrease is, as expected, proportional to the separation distance. At a short 

separation distance, 40m, soil heterogeneity results in significantly incoherent motion, and 

results in greatly incoherent motion for medium to large separation distances, even for the 

firm soil condition when its damping ratio is low. On the other hand, it is important to stress 

that the decrease of the coherency is significant even for the relatively low coefficient of 

variation, 20%, considered in this study. Zerva and Harada (1997) adopted larger coefficients 

of variation (in the range of 30-90%), but observed a less pronounced loss of coherency than 

that presented in Fig. 5.6. This is due to the high damping ratio adopted by Zerva and Harada 

as discussed previously. The results indicate that the loss of coherency is very sensitive to 

damping in soil.  Therefore, a proper estimation of the soil damping ratio is very important 

studying the soil effects in ground-motion incoherence. From the analytic expression of 

, ( , )l coh    in Eq. (5.19), it is clear that the soil damping ratio has a direct effect on the loss of 

coherency. On the other hand, the effect of the coefficient of variation of layer thickness, 

Hcov , is indirect through its effect on the autocorrelation function of the predominant site 

frequency, which depends also on the horizontal fluctuation of values of the material soil 

property,  ,q x z , such as the shear wave velocity. 
  

In Eq. (5.21), for the overall incoherence, the incident motion incoherence, , ( , )  b coh , is 

obtained from simulated ground motion using the extended EGF method. The details of 

simulation are explained in Section 3.2. The lagged coherency functions at the bedrock for 

four separation distances are shown in Fig. 5.7. The parametric models of Hindy and Novak 

(1980), Luco and Wong (1986) and Somerville et al. (1988), that were described and 
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discussed in Section 3.3, fitted to the estimated lagged coherency functions are also shown in 

Fig. 5.7. The Hindy and Novak coherency model, with its two parameter values of 
55.87 10    sec m

-1
 rad

-1
 and 1.52  , is then selected as the preferred model (it exhibits 

a better fit, as discussed in Sect. 3.3) to idealize and represent the actual incident motion 

incoherence , , ( , )  b coh , in Eq. (5.21). On the other hand, because of its respect of the 

requirement of mean-square differentiable unlike to the Hindy and Novak model, the Luco 

and Wong model with the value found for its parameter, 59.41 10    sec m
-1

 rad
-1

, is 

selected to idealize the same , ( , )  b coh  in the ground shear strain estimate resulting from Eq. 

(5.36) and which is addressed later herein. 

Using this parametric model for bedrock, and the site contribution shown in Fig. 5.6, the 

lagged coherency at the surface was estimated and is presented in Fig. 5.8. The lagged 

coherency functions exhibit a sharp decrease near the fundamental frequency of the site. Even 

at a short separation distance of 40m, the effect of soil heterogeneities reduces the lagged 

coherency near the site fundamental frequency from ~0.95 at bedrock to ~0.4 at the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.7 - Lagged coherency function estimated at the bedrock (solid lines, see Fig. 3.8) and the fitted 

parametric models of Luco and Wong (dashed lines), Hindy and Novak (dotted lines) and Somerville 

et al. (thicker dashed-dotted lines).           

 
 

Figure 5.9 compares the coherency at distances of 40, 100, 200 and 500 m for incident and 

surface motions. It is noted from the figure that the overall shape of the total coherency is 

controlled by that of the incident motion as it decays with separation distance and frequency, 

following the model of Hindy and Novak, i.e., the loss of coherency due to the finite-source 
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effect. The layer stochasticity results in a decrease in the correlation close to the mean value 

of the natural frequency of the layer. This is expected, since the total incoherence of the 

surface motions is the product of the incident motion incoherence and incoherence resulting 

from the layer stochasticity. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 5.8 - Lagged coherency function at the surface; obtained from the bedrock coherency function 

(Hindy and Novak model as shown with dotted lines in Fig. 5.7) and the contribution of stochastic site 

as shown in Fig. 5.6. 

 

The drop in the correlation at the predominant frequency of the layers is distinguishable. The 

drop in coherency observed in Figs. 5.6 and 5.9 has also been noted by Kanasevich (1981), 

who suggested that site resonances can be identified from holes in the coherency spectra of 

motions at adjacent locations and by Cranswick (1988), who further indicated that 

perturbations with small deviations in the layer characteristics will produce the greatest 

changes in the response functions. Since incoherence is a measure of similarity in the motions 

(i.e., the  change in the shape of the motions at different locations), it will be low at the 

resonant frequencies. Liao and Li (2002) also reached a similar conclusion from their 

analytical evaluation of wave propagation through media with random variable properties. 

 

The overall agreement of the spatial coherency with and without site effects found by 

Zerva and Harada in their example of a random, soft soil site with 0 0.2   is not the case 

with the present observations at the firm Sogedia site. These indicate that the site variability 

may particularly influence the overall correlation structure of the total motion. It also does not 

justify the use of smoothly decaying spatial coherency models with parameters obtained from 

surface records (e.g., Luco and Wong, 1986) to describe the coherency of the incident 

motions.  
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Fig. 5.9 - Variation of the total spatial incoherence (incident motion and layer stochasticity) with 

frequency at separation distances of 40, 100, 200 and 500 m. 

 

 

The coherency trough in Fig. 5.9 where the power spectral amplitude is peaked due to the 

site effects, (see red curve of the PSD ratio in Fig. 5.5) could be seen as not in agreement with 

observations from recorded data. Abrahamson et al. (1991) observed that the peaks of an 

average Fourier amplitude spectrum (FAS) from surface motions produce high coherency at 

the same frequencies and spectral troughs at low coherency, that were attributed, respectively, 

to the direct (coherent) energy that dominates spectral peaks and to the scattered energy that 

dominates spectral troughs. According to Zerva and Harada’s conclusion, if the coherency 

troughs occurred at the dominant frequencies of the site, they would be associated with 

amplitude peaks rather than troughs. We think that the contradiction with Abrahamson et al.’s 

conclusion is not evident. A comparison between them should be based on the analysis of the 

spectral ratio (i.e. modulus of the ratio of transfer functions) between the two considered sites, 

wave paths, or soil columns. This is a more reliable and appropriate parameter to measure the 

local site effects on incoherence of spatial surface ground motions, according to the approach 
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of  Bi and Hao (2011), explained in the beginning of this chapter and the above rational 

interpretation of this type of coherency-drop given by Cranswick (1988). Indeed, the PSD 

ratio expression taken from the Eq. (5.16) of Zerva and Harada uses the mean values of soil 

properties and not those corresponding to each soil column. The FAS in Abrahamson et al.’s 

research is that of surface motion and not a FAS ratio with respect to the bedrock motion, in 

addition to the fact that it is an average taken over several stations having different wave paths 

through the considered site.  

 

Of course, there are additional considerations that need to be taken into account for the proper 

evaluation of local coherency at a specific site. The seemingly reasonable and simplifying 

approximations in the analytical derivations of coherency models do not capture the complex 

physical causes underlying (the complex geologic conditions underneath the arrays and the 

complexity of the incoming waves) the spatial variation of seismic ground motions. In other 

words, such models do not take into consideration the lateral coupling of the wave 

propagation at the site. 

 

The present methodology of Zerva and Harada (1997) incorporates site effects in the 

spatial correlation structure of the motions that are consistent with observations, but have not 

been taken into account before, in its estimates through a simple approach. Generally, it is 

assumed that the site contribution results from the response of the individual, statistically 

independent soil columns with different characteristics. Accordingly, the site contribution 

does not affect incoherence but produces a deterministic phase difference in the surface 

motion correlation (Der Kiureghian, 1996). Clearly, the deterministic phase difference is 

caused by the delays in the arrival of the waves from the bedrock to the ground surface due to 

their propagation through different layers.  

The present approach approximates the soil columns transmitting the bedrock excitation to 

the ground surface by single-degree-of-freedom systems with similar, correlated 

characteristics. The time delay in the arrival of the waves from the interface to the ground 

surface is incorporated in the model through the layer predominant frequency (Eq. 5.8). An 

incident impulse acceleration at the bedrock-layer interface at 0t   would produce a 

maximum response on the ground surface at approximately 0(1/ 4)(2 / )t   , with 0(2 / ) 

representing the period of oscillation. The layer stochasticity causes random fluctuations in 

the arrival of the waves from the bedrock to the surface. Thus, it affects the lagged coherency 

random phase variability of the motions. The apparent propagations (deterministic phase) of 

the surface motions are controlled by that of the incident motion, since vertical propagation is 

considered within the layer.  

It is emphasized that the present methodology is applicable to sites with no dramatic 

changes in their topography, for which the homogeneity assumption for the layer variability is 
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valid. For sites with spatial characteristics that deviate significantly from constant mean 

values, the spatial homogeneity assumption ought to be waived. In this case, the layer 

stochasticity would affect both the incoherence and the apparent propagation (deterministic 

phase) of the motions. 

 

Figure 5.10 presents the estimate of the ratio of the rms ground strain,  , at the site over 

the rms of particle velocity,  , (Eq. 5.36) of the seismic motion at the surface of our spatial-

random-variable Sogedia soil profile as function of the apparent propagation velocity of the 

motions. In addition to the variation in Eq. (5.38) due to the apparent propagation effects only 

and which is the basic assumption of the single-station strain estimates, three others variations 

of seismic strains are presented in the figure. The first, termed incidence motion incoherence 

in the figure, corresponds to incident wave effects only (Eq. 5.37) (i.e., ground motions 

exhibiting loss of coherency according to the Luco and Wong model,
 

59.41 10    sec m
-1

 

rad
-1

, and propagating on the ground surface, but the random variability in the layer properties 

is not considered). The second, termed site incoherence, corresponds to site effects only, i.e., 

the incident motions are fully coherent, 0   in Eq. (5.36), and loss of coherency results 

only from the variability in the layer properties while motions still propagate on the ground 

surface. The third estimate, termed total incoherence, incorporates the contributions of both 

the incident motion variability ( 59.41 10    sec m
-1

 rad
-1

) and the surface layer 

stochasticity (Eq. 5.36).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5.10 - Variation of rms strain over rms ground velocity (    ) with the apparent propagation 

velocity of the motions, c.  

 

Figure 5.10 shows that, for low values of the apparent propagation velocity, 500 c m , 

that are the case for surface, rather than body, wave propagation, the apparent propagation 
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effects overshadow those of loss of coherency, and Eq. (5.22) is valid. For higher values of 

the apparent propagation velocity, which are more appropriate in near-source regions for the 

shear waves considered in the analysis (in these regions, more realistic values for c would be 

greater than 1500 m/s, since the strong shaking part of the seismic motion generally 

propagates on the ground surface with the apparent velocity of the body waves at the bedrock-

surface layer interface, and the angle of incidence of such waves could be as high as 90° (

c )), loss of coherency starts become important and fully controls the values of the 

seismic ground strains, which in turn control the seismic response of buried pipelines, as is 

reflected by the essentially constant value of the ratios in Fig. 5.10, at the apparent 

propagation velocity of 3500 m/sc . This constant value should increase with increasing 

total incoherence. In this region, the estimate of the commonly used assumption from Eq. 

(5.22) significantly underestimates the actual values of the seismic strains. For 3500 m/sc , 

there is transition region where the propagation effects start contributing to the strains, which 

start increasing until, eventually, they become proportional to the inverse propagation 

velocity. Again, in this range of velocities, Eq. (5.22) underestimates the seismic strains. 

Figure 5.10 confirms that higher strain occurs are obtained at low propagation velocities, i.e., 

that wave effects may be more significant for the response of pipelines in regions where 

surface waves dominate (low propagation velocities) rather than in near-source regions where 

body waves dominate (significant incoherence effects from extended sources and/or from 

scatterers and/or from random soil properties).  

It should be noted at this point that a similar pattern for the variation of the seismic strains 

with the apparent propagation velocity of the motions was observed by O'Rourke et al. (1980) 

from their analysis of the recorded data during the 1971 San Fernando earthquake. The 

epicentral distance of the 1980 El-Asnam earthquake, Ms=7.2, from the Sogedia site under 

consideration was around 5Km, i.e. the area would be considered a near-source region 

(according to Table A3 in the Appendix), in which body waves should dominate. The value of 

c at the Sogedia bedrock-layer interface, evaluated analytically from the source-site geometry 

as explained in Section 5.2, is 5200 m/s. Then, we can see from the Fig. 5.10 that when 

5200 m/sc  , the relative strain estimate, 1/ c , produces only 1/5 of the value of the strain due 

to total incoherency effects, suggesting that strain estimates as they are currently used for 

design produce nonconservative results in regions where incoherence effects are important. 

 

This incoherence effect was not obvious from the spatial variability of the surface ground 

motions (Fig. 5.9). Although, it is not altogether unexpected, since the layer stochasticity 

contribution to seismic strains occurs around the dominant soil frequency (Eq. 5.32). Figure 

5.10 further suggests that the effects of the site stochasticity contribute more to the total 

values of seismic ground strains than those of the incident motion variability. As expected, the 

combined effect of the bedrock motion and layer stochasticity yields higher strains (Fig. 
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5.10). The Zerva and Harada (1997) analysis used for the Sogedia site suggests that the effect 

of layer stochasticity cannot be neglected in the evaluation of the spatial variation of seismic 

ground motions, and a simple approach may suffice for the site-specific evaluation of seismic 

ground strains.  
 

The spatially variable seismic ground motion model described in the previous section (the 

coherency model given in Eq. (5.17) using the Hindy and Novak or Luco and Wong 

coherency models) can be used directly as input motions at the supports of lifelines in random 

vibration analyses. The nonlinear response evaluation of the structural systems, however, 

requires a time history analyses. Such analyses, in turn, necessitate the generation of spatially 

variable time histories to be used as input excitations at the structures. Spatially variable 

seismic ground motions can be generated either from the description of the random field 

through a power spectral density (or a response spectrum) and a spatial variability coherency 

model or from a predefined seismic ground motion time history (e.g., a recorded 

accelerogram) and a spatial coherency model. The former, which is the most common 

approach, is referred to as an unconditional simulation of spatially variable seismic ground 

motions (Hao et al., 1989; Deodatis, 1996), whereas the latter is referred to as a conditional 

simulation of spatially variable seismic ground motions (Abrahamson, 1992). 

 

5.2 Spatial ground motion time histories simulation at spatial-random-variable soil  

 

We propose, in this section to simulate the horizontal, in-plane, spatially variable 

acceleration motions on the surface of the Sogedia layered stochastic soil profile by applying 

the stochastic methodology given by Hao et al. (1989) and Olievera et al. (1991), which is a 

spectral decomposition simulation scheme utilizing a sequential approach and random phase 

variability and which needs to predefine the random field through a power spectral density 

and a spatial variability model. According to Hao et al. (1989), a spectral representation based 

simulation algorithm is first used to generate stationary time histories that are compatible with 

a prescribed power spectral density and lagged coherency functions and constant apparent 

propagation velocity, but not with the prescribed response spectrum. After multiplying these 

stationary time histories by an appropriate envelope function to introduce non-stationary 

ground motions and to control the duration of strong ground motions, Hao et al. adjust each 

non-stationary time history independently to make it compatible with the prescribed response 

spectrum. This adjustment is performed by Fourier transforming each non-stationary time 

history to the frequency domain, multiplying its frequency domain Fourier transform by the 

ratio of the prescribed response spectrum over the computed response spectrum of the non-

stationary time history, and then inverse transforming the product back to the time domain. 

This adjustment procedure is usually repeated a few times. Many later developments, such as 
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of Deodatis (1996) for generating non-stationary, non-homogeneous and response-spectrum-

compatible spatially variable seismic ground motions, are based on this method. 

 

The surface motions at different locations are assumed to be stationary, random processes 

with zero mean values and have the same two-sided power spectral density ( )iiS   or 0 ( )S   

of ground motion u  (this assumption is reasonable, see in Section 5.1.2). The two-side cross 

power spectral density function, ( )ijS i , between ground surface motions at n locations in a 

site can be expressed in terms of 0 ( )S   and the complex spatial coherency functions, 

( ) ij i , ,  1,  2,...,  i j n , which includes the wave passage effect, as : 
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Since the matrix, ( )S , given by Eq. (5.42) is Hermitian and a positive definite, it can 

always be decomposed into the multiplication of a complex lower triangular matrix, ( )iL , 

and its Hermitian ( )H iL , as shown by: 
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and where  ( 1,  2,...,  ,   1,  2,... )ijl i n j i   can be calculated by the Cholesky method. After 

obtaining ( )iL , the stationary time series at all points, ( )iu t   1,  2,...,  i n , that reflect the 

effects of time delay and loss of coherency, can be simulated in the time domain directly : 
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where 
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0( ) 4 ( )  ( )         0   ij ij NA S l i            (5.46) 

0( ) 4 ( )  ( )            0   ij ij NA S l i            (5.47) 
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are the amplitudes and phase angles of the simulated time histories that ensure the spectrum of 

the simulated time histories are compatible with those given in Eq. (5.42). ( )mk k   is the 

random phase angles, uniformly distributed over the range of [0, 2π], mk  and rs , and should 

be statistically independent unless m r , and k s . N  represents an upper cut-off 

frequency beyond which the elements of the cross power spectral density matrix given in Eq. 

(5.42) is assumed to be zero (i.e., insignificant) for either mathematical or physical reasons. 

  is the resolution in the frequency domain. k k    is the kth discrete frequency, k = 1 

to N and where N is the total number of frequencies under analysis, N N   . The time 

series generated by Eq. (5.45) are stationary processes. In order to obtain the non-stationary 

time histories, the envelope (intensity modulating) function, ( )t , is applied to ( )iu t . The 

non-stationary time histories at different locations are obtained by: 

 

 

( ) ( ). ( )i if t t u t ,      1,  2,...,  i n        (5.49) 

 

 

In the present example of the Sogedia soil profile, we generate the horizontal component of 

accelerations on the ground surface at five (n = 5) locations (stations), namely 
(0)S ,

(1)S , 
(2)S ,

(3)S , and 
(4)S . Station 

(0)S , which corresponds to the projection on the surface of the 

previous station, 
(0)S , at the rock, is considered as the reference station and is located at X=0 

in the Fig. 5.1. The other stations are separated from it by 40 m, 100 m, 200 m, and 500 m. 

The epicentral distance of the surface reference station is 5 km.  

 

The power spectral density function, ( )iiS  , of the surface motions is modelled by the Eq. 

(5.16) (displacement) that was plotted (acceleration) in Fig. 5.5. The spatial coherency 

function,
 

( ) ij i , at any two locations,  and  i j , on ground surface separated by a distance,  , 

is modeled by the complex spatial coherency function,
 

( , )   , given in Eq. (5.17), in which 

the bedrock coherency loss, , ( , )b coh   , is represented by the previously selected Hindy and 

Novak (1980) lagged coherency. , ( , )b prop   represents the wave passage effect at the 

bedrock. For the Sogedia base rock with a shear wave velocity of, 2000 m/ssv   and 

considering the location chosen for the five stations relative to the El-Asnam fault, we 
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estimate analytically the value of the angle of incidence for waves at the interface of  =i   

180-157.38°. c is the apparent wave velocity  sin( )sc v i   at the bedrock-surface layer 

interface. This is 5200 m/s, according to the base rock property and the specified incident 

angle. , ( , )l coh    is the contribution of the Sogedia layer stochasticity to the coherency 

modeled by Eq. (5.19) and plotted in Fig. 5.6. The overall incoherence, ( , )coh    (incident 

motion incoherence and layer stochasticity), in the spatial variation of the surface motions is 

plotted in Fig. 5.8. To model the temporal variation of the simulated ground motions, the 

simulated stationary time histories are multiplied by the Jennings et al. (1968) envelope 

function with the following form:  

 

 

    
 

2

0 0

0

0

( )                          0

( ) 1                                   

exp 0.155( )        

n

n

t t t t

t t t t

t t t t T



  


  


  

     (5.50) 

 

0 2 sect   and 15 secnt   were used, so that the flat part of the envelop function, or, 

equivalently, the strong motion duration of the series, is 0 13 secnt t  . This assumed value 

of 13 sec corresponds to the same strong duration of motions on the Sogedia bedrock 

generated by the EGF method in the Section 3.2.  

 

In the simulation, the time increments between discrete points in a time series is t = 0.02 

sec. The total number of points in the series is ptsN = 4096 (=2
12

), which gives a total 

duration of T = ( pts-1)N t =81.90 sec. The sampling frequency, sf  ( 1sf t  ), and the 

Nyquist folding frequency, Nf  ( 1 2Nf t  ), for such a sample are 50 Hz and 25 Hz. That 

is, the highest frequency that can be investigated if one samples a time series at intervals of 

length t  is 1 2 t . Otherwise, the power spectrum will be aliased. The usual frequency 

increment for FFT data analysis is 1df T  = 0.0122 Hz (  = 0.0767 rad/s) and 

pts/2+1N N  = 2049, which implies that N N    = 24.997 Hz (157.065 rad/s). 

 

The five, generated, horizontal surface motions are shown in Fig. 5.11 from t = 0 up to t = 

50 sec rather than the simulated, full duration of 81.90 sec. The PGAs of the simulated 

motions are around 1000 m/s². The high level of the PGAs is related to the high value of the 

PSD ratio, or equivalently, that of the absolute transfer function of the soil (shown in Fig. 

5.5), which is due to the  -low value of 5% of the equivalent ratio damping, 0 , found for the 

firm Sogedia soil profile.  
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Fig. 5.11 - Generated horizontal, in-plane acceleration motions at five stations on ground surface over 

a length equal to 81.90 sec. 

 

Fig. 5.12 shows the comparison of the power spectral densities (acceleration) of the 

generated time histories with the target spectral density function model (Eq. 5.16). It shows 

that power spectral densities of the simulated motions match well with the target spectrum. 

Fig. 5.13 shows the coherency loss functions computed (as described in Sect. 2.5) between the 

generated time histories and the overall incoherence model, ( , )coh   , (Eq. 5.21). A good 

match can also be observed. It is then proven that the simulated, spatial ground motion time 

histories are compatible with the model of power spectral density individually and the model 

coherency loss function between stations. In the absence of recorded data, the generated time 

histories can be used as input to multiple supports of long span structures crossing a random 

site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.12 - Comparison of power spectral density of the generated surface acceleration with model 

power spectral density. 
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Fig. 5.13 - Comparison of coherency loss between the generated surface accelerations with model 

coherency loss function. 
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Summary and conclusion: 

 

The main contribution of this work is to present an approach to simulate spatially 

variable ground motions using the empirical Green’s function method. This method has been 

extensively used in the literature to simulate point estimates of strong ground motion. In this 

work, we test whether it is suitable for simulating a ground bedrock motion field within a 

relatively small spatial extent, thereby modelling incoherence effects. The case study and 

parametric study presented herein suggest that the approach is suitable for simulating 

incoherence due to finite source effects. In particular, plane wave coherency estimates can be 

obtained through such simulations. Although loss in coherency is due to source scattering and 

local site effects, the present methodology captures only the effects from finite sources. This 

is a limitation of the method. Nevertheless, in the absence of recorded data, the method can be 

useful in modelling spatially variable ground motion at bedrock, in that the simulated 

coherencies can be considered as upper bounds of what is expected in the presence of 

scattering and local site effects. In a practical sense and in the absence of strong motion array 

data in the study region, the results presented could provide a rough approximation of ground 

motion coherency that can be used in a random vibration analysis of lifeline structures or 

simulating spatially variable ground motion for a time history analysis of such structures. To 

facilitate such modelling, a parametric model of lagged coherency was presented. The 

parametric model follows the same functional form as that of Hindy and Novak (1980), and 

the model parameters are calibrated using simulated lagged coherency functions. The 

presented model should be considered representative of plane wave coherency when 

scattering effects in the simulated ground motion are lacking, as is the case of Hindy and 

Novak (1980) model.  

 

A parametric study investigating sensitivity of lagged coherency showed that shear wave 

velocity, earthquake magnitude, and epicentral distance are all important factors that 

contribute to plane wave coherency. Larger shear wave velocity was found to produce more 

coherent motion in general. Larger earthquakes were found to produce more incoherent 

motion. In the near-field, the finite source effect seems to be significant for producing 

incoherent motion. While in the far-field, plane wave coherency was found to be almost equal 

to one up to a frequency of 8 Hz. Because structures in the near-field are more severely 

affected by earthquakes, the practical significance of the presented methodology is justified in 

because it provides a first approximation, and possibly an upper bound, on lagged 

coherencies.  
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From the seismic engineering viewpoint where the simulations of SVGMs are desirable on 

the ground surface, a method of accounting for stochastic, local site effects in estimating total 

loss incoherence of surface motions at the El-Asnam Sogedia site was used. The study shows 

that the layer stochasticity can significantly reduce, and greatly for medium to large 

separation distances, the lagged coherency near the site’s resonant frequency, even for firm 

soil conditions with a low damping ratio. It was also shown that, for these soil conditions, the 

layer stochasticity controls the seismic ground strains. A stochastic generation of time 

histories at various locations on the ground surface of the El-Asnam Sogedia site, compatible 

with our estimations of the target power spectral densities and the spatial coherency functions, 

was presented. These resulted in spatial surface ground motion time histories that can be used 

as multiple inputs for the nonlinear seismic response analysis of multi-supported structures. 

 

Further study on the effect of other relevant parameters, such as geometry of the fault, 

location of stations on the hanging or foot wall, directivity of stations with respect to rupture 

propagation, and geometry of the rupture source, would be valuable in understanding their 

effects in plane wave coherency. In addition, investigating scattering effects (near the earth's 

surface, near the array, and elsewhere along the propagation path at increasing distances) 

would be valuable. For example, randomness in rupture velocity and rise time on the fault can 

enrich the frequency content of ground motion (Zerva and Shinozuka, 1991). The effects of 

fault geometry and the size of sub-events could also have significant effects on ground-motion 

coherency (see, for example, Ding and Song, 2010). Bilateral rupture propagation and source 

directivity effects can also influence ground-motion coherency (see, Spudich, 1994). Source 

asperities may generate highly coherent energy in a narrow frequency band (Abrahamson et 

al., 1991) thereby altering the spectral nature of lagged coherency functions. These effects, 

and others, need to be investigated in detail, preferably using well recorded past earthquakes.  
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Appendix: 

Table A1 Input parameters for the application of the EGF method 

Parameter 
Simulation of the El-Asnam mainshock 

Target Event Small Event 

s
M   7.3 5.6 

0
( )M dyne.cm   540x1024   from  Dechamps and 

                  Gaudemer (1981) 

1.55x1024  estimated from the Bolt and  

Herraiz (1983) equation:  

0 (17 92 1 02) (1 11 0 15)

for 3 6 2

L

L

log M . . . . M

M .

   

 
  

            
 

Epicenter coordinates  36°17N   01°41E 36°14N   01°40E 

Hypocentral depth ( )km   12 12 

Strike angle ( )   

Dip angle ( )   

Rake angle ( )   

220 

60        calculted by Dechamps 

78        and  Gaudemer (1981)  

40 

15 

220 

60 

78 

5.714    from scaling relations : 

2.142    Eq. (4.4) 

 

Fault length ( )km   

Fault width ( )km   

Rise time ( ) sec    1.4                            0.2 

Coordinates of the reference station 

point (0)
S  : 

 

          Hypocentral distance
0 0

( )
i j

r km                                           12.96 

          Radiation pattern
0 0 0 0

 ( , )
s i j i j

R                                          0.868 

 

 

 

          Table A2 Geotechnical characteristics of generic rocks used in parametric study (Petrovski and 

         Milutinovic, 1981; Yielding et al., 1981; Chapellier and Mari, 2011) 

 

Rock type 
Sogedia 

El-Asnam 
Medium(a) Hard(b) Very Hard (c) 

ρ (density) 2.4 gr/cm3 2.2 2.5 2.8 

Vs (S-wave velocity) 2000 m/s 1500 2500 3500 
Vp (P-wave velocity) 3460 m/s 3100 4500 5300 

Qs (Quality factor) 45 125 230 300 

 

 
      

Table A3 Classes of magnitude and the field of distances (from  

Hammoutene et al., 1992). 
 

 

 

 

 

 

 

 

 

Magnitude 

 

d1  

(Near-field) 

d2 

(Intermediate-field) 

     d3  

(Far-field) 

              4.5   0 Km               10-20 Km 2 Km 

                          15-30  

5        6.   20               20-40 4 

        7   2               25-50 5 

              7   30               30-60 6 
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