ECOLE NATIONALE POLYTECHNIQUE DEPARTEMENT DE GENIE CHIMIQUE Laboratoire De Valorisation des Energies Fossiles

MEMOIRE DE MAGISTER

FEKRACHE SAMIR

Ingénieur ENP Génie Chimique

DETERMINATION DES PROPRIETES DES HYDROCARBURES PAR LA METHODE DE CONTRIBUTION DE GROUPES COUPLEE AUX RESEAUX DE NEURONES ARTIFICIELS

Soutenu devant le jury composé de :

M.H.GUERMOUCHE, Professeur (U.S.T.H.B) C.E.CHITOUR, Professeur (E.N.P) M.BOUKHETELA, Maître de conférence (E.N.P) R.DERRICHE, Professeur (E.N.P) A.MEFTI, Chargé de cours (E.N.P)

Président Rapporteur Examinateur Examinateur Examinateur

Dirigé par : Professeur C.E.CHITOUR

Octobre 2006

RESUMES

. تعتبر هذه الدراسة

المقارنة مع معا كورة في المراجع بينة أن الطريقة المطروحة تؤ

Résumé :

Ce travail consiste en une contribution à la connaissance des propriétés physiques et thermodynamiques des corps purs et de leurs mélanges par une méthode empirique, basée sur les contributions de groupes et les réseaux de neurones artificiels.

Nous avons ainsi établis des réseaux pouvant approximer des propriétés physiques des hydrocarbures purs en fonction de leurs températures d'ébullition et leurs structures. Une comparaison avec les corrélations les plus citées dans la littérature a été effectuée pour rendre compte de l'efficacité de cette méthode.

Mots clés :

Hydrocarbures, propriétés, réseaux de neurones, contribution de groupes

Abstract :

The aim of this work is to determine the properties of pure hydrocarbons and their mixtures with the use of a combination of artificials neurals networks group contribution

For this, we made networks to approximate the pures hydrocarbons properties which are functions of boilling point and the structure of the hydrocarbons. This method was tested with satisfactory accuracy, and when compared with other group contributions methods, it reveals better results.

Key words:

Hydrocarbons, properties, neurals networks. group contribution

TABLE DES MATIERES

INT		1
Cha	apitre I : DIFFERENTES METHODES DE CARACTERISATION DES HYDROCARBU	RES 3
Intr	oduction	3
I.1	Les équations d'état	3
I.2	Loi des états correspondants I.2.1 Corrélations fondées sur le facteur de compressibilité critique I.2.2 Corrélations fondées sur le facteur acentrique	5 5 6
I.3	Méthodes empiriques : Méthode de contribution de groupes	7
	 I.3.1 Principe. I.3.2 Corrélations de contribution de groupes. I.3.3 Méthodes de prédiction des propriétés physiques des Hydrocarbures purs. I.3.3.1 Description des méthodes de prédiction des propriétés critiques. a. Température Critique. b. Pression Critique. c. Volume Critique. I.3.3.2 Description des méthodes de prédiction des propriétés thermiques. a. Facteur Acentrique. I.3.3.3 Description des méthodes de prédiction des propriétés de transport. a. Densité. b. Volume Molaire. I.3.3.4 Description des méthodes de prédiction des propriétés. Thermodynamiques. a. Capacité Calorifique. b. Enthalpie Standard de formation. I.3.3.5 Description des méthodes de prédiction des propriétés spécifiques. a. Facteur de caractérisation de Watson K_{UOP}. 	
	a- Indice de réfraction n^{20}_{D}	
I.4	Conclusion	19
Cha	apitre II : LES RESEAUX DE NEURONE	21
Intr	oduction	21
II.1	. Définitions	21
	II.1.1 Le Neurone biologique II.1.2 Les neurones formels	21

	II.1.3 Les réseaux de neurones non bouclés	23
	II.1.3.1 Les réseaux de neurones complètement connectésII.1.3.2 Les réseaux de neurones à couchesII.1.3.3 Les réseaux de neurones à une couche cachée et une sortie linéaire	24 24 25
II.2.	Propriété fondamentale des réseaux de neurones II.2.1. Les réseaux de neurones sont des approximateurs universels II.2.2 La parcimonie	26 26 26
II.3.	Réseaux de neurones et régression non linéaire	27
II.4.	Application des réseaux de neurones	28
II.5.	Conclusion	29

Chapitre III : PRESENTATION DES RESULTATS

III.1	Résultats de Simulation et Comparaison	32
	III.1.1 Propriétés Critiques	32
	III.1.1.1 Température Critique	32
	III.1.1.2 Pression Critique	34
	III.1.1.3 Volume Critique	36
	III.1.1.4 Comparaison avec d'autres corrélations	38
	III.1.2 Propriétés Thermiques	.40
	III.1.2.1 Facteur Acentrique ω	.40
	III.1.2.2 Comparaison avec d'autres corrélations	42
	III.1.3 Propriétés de Transport	.43
	III.1.3.1 Densité	.43
	III.1.3.2 Volume Molaire	.45
	III.1.3.3 Comparaison avec d'autres corrélations	47
	III.1.4 Propriétés Thermodynamiques	48
	III.1.4.1 Chaleur Spécifique	48
	III.1.4.2 Enthalpie Standard de Formation	.50
	III.1.4.3 Comparaison avec d'autres corrélations	.52
	III.1.5 Propriété Spécifique	53
	III.1.5.1 Facteur de caractérisation de Watson K _{UOP}	53
	III.1.5.2 Indice de réfraction n20	.55
	III.1.5.3 Comparaison avec d'autres corrélations	57
III.2.	Conclusion	58
Chap	Ditre IV: APPLICATION AUX MELANGES	61
T\/ 1	Détermination des propriétés physiques des mélanges de composition finie	61
10.1.	IV 1 1 Introduction	61
	IV.1.2 Application des réseaux établis au calcul des propriétés des mélanges binaires et	
	Ternaires	61
	IV.1.3 Application des réseaux établis au calcul des propriétés des fractions légères ou mélanges à multi composants	65
	melanges a multi composants	

IV.2. Détermination des propriétés des fractions pétrolières dont la composition n'est pas connue	66
IV.2.1 Méthode basée sur la composition PNA	66
IV.3. Conclusion	68
REFERENCES BIBLIOGRAPHIQUES	69
ANNEXES	75

I.3.3 Méthodes de prédiction des propriétés physiques des Hydrocarbures purs

I.3.3.1 Description des méthodes de prédiction des propriétés critiques

La connaissance des propriétés critiques est indispensable dans le traitement des mélanges d'hydrocarbures où la coexistence d'une phase gazeuse et d'une phase liquide est fréquente. Ils permettent de prévoir le comportement des fluides dans un large intervalle de température et de pression et de définir ainsi les conditions d'existence de leurs différentes phases. Ce sont également les paramètres clés de la prédiction des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs par la loi des états correspondants.

a. Température Critique

Nous allons présenter six méthodes de contribution de groupes pour l'estimation de la température critique qui sont : Lydersen³, Ambrose⁴, Klincewicz et Reid⁵, Fedors⁶, Joback²⁰, et Skander et Chitour²³.

Historiquement, la méthode de Lydersen, développée en 1955, était considérée comme la méthode la plus précise pour l'estimation de la température critique (Tc) des hydrocarbures^{7,8}. En 1978 Ambrose a utilisé une quantité considérable de nouvelles données pour développer une, plus précise mais aussi plus complexe, méthode de prédiction. Klincewicz et Reid ont utilisé les données ramassées par Ambrose pour établir une nouvelle méthode aussi précise que celle de Ambrose mais pas aussi complexe. Plus récemment, Joback a exploité les nouvelles données critiques rendues disponibles depuis les travaux de Lydersen en 1955 pour développer une méthode qui est tout aussi précise que celle de Ambrose. Klincewicz et Reid et Joback seront les plus utiles, mais la méthode de Ambrose inclus des groupements qui ne sont pas disponible dans les méthodes citées plus haut. La méthode de Lydersen reste importante pour la comparaison, et pour cause, elle était le modèle standard pendant plus de vingt ans.

La cinquième méthode, celle de Fedors⁶ est importante parce qu'elle ne requière pas la température d'ébullition comme c'est le cas des autres méthodes. Cette méthode n'est pas aussi précise, mais peut s'avérer très utile si on ne dispose pas de la température d'ébullition. Enfin, pour terminer, nous ajoutons la méthode développée par Skander et Chitour²³ qui se base sur les contributions de groupes et qui donne des résultats tout aussi précis que les méthodes citées plus haut.

LYDERSEN³, Température Critique

$$Tc = Tb / [0.567 + \Sigma \Delta_{TL} - (\Sigma \Delta_{TL})^{2}]$$
(14)

Où, Δ_{TL} représente les contributions de différents groupements (Annexe1 Tableau 1).

AMBROSE⁴, Température Critique

$$Tc = Tb (1 + \Phi_T + \Sigma \Delta_{TA}) / (\Phi_T + \Sigma \Delta_{TA})$$
(15)

Où, Δ_{TA} contributions de différents groupements (Annexe1 Tableau 2). Φ_T : 1.570 pour les Perfluocarbons, 1.242 Ailleurs.

KLINCEWICZ-REID⁵, Température Critique

$$Tc = 45.4 - 0.77 \text{ MM} + 1.55 \text{ Tb} + \Sigma \Delta_{TK}$$
(16)

Où, Δ_{TK} représente les contributions de différents groupements (Annexe1 Tableau 3).

FEDORS⁶, Température Critique

$$Tc = 535 \log_{10} (\Sigma \Delta_{TF})$$

(17)

- Φ : Paramètre.
- ω : Facteur acentrique.
- K_{UOP} : Facteur de caractérisation de Watson.
- W1,2 : Matrice des poids des connexions entre les différentes couches.
- b1,2 : Matrice des biais.

REMERCIEMENTS

Je tiens avant tout à remercier très vivement la personne sans laquelle tout ceci n'existerait pas : il m'importe en effet d'exprimer toute ma gratitude à Mr le professeur Chems Eddine Chitour mon directeur de thèse. Ses questions pertinentes, son ouverture d'esprit, ses conseils et ses encouragements m'ont permis de réaliser ce travail.

Je remercie les membres du jury: Monsieur Guermouche, professeur à l'université de Bab Ezzouar; Madame Derriche, professeur à l'Ecole Polytechnique; Madame Mefti, chargé de cours à l'Ecole Polytechnique; Monsieur Boukhetala, maître de conférence à l'Ecole Polytechnique; Monsieur Hadjadj Aoul, professeur à l'Ecole Polytechnique. Je les remercie pour l'attention et la considération qu'ils ont accordées à mon travail.

Enfin, je tiens à remercier tous mes amis pour le soutien et l'aide qu'ils n'ont cessé de me prodiguer.

A mes parents avec toute ma gratitude

INTRODUCTION

GENERALE

INTRODUCTION GENERALE

La connaissance des propriétés physico-chimiques du pétrole et des fractions pétrolières a toujours été un souci majeur pour l'ingénieur en génie chimique, raffinage et pétrochimie. La maîtrise de toutes les étapes de séparation et de transformation des produits pétroliers, depuis l'acheminement du pétrole des puits jusqu'au stockage des produits finis passe par une parfaite connaissance des caractéristiques du pétrole et ses dérivés.

La détermination de ces caractéristiques commence par des essais préliminaires sur le pétrole brut et ses différents produits. Des méthodes d'analyse ont été développées et normalisées pour déterminer les principales propriétés physico-chimiques qui vont conditionner leurs traitements ultérieurs et pour que les contrôles effectuer par les différentes parties soit comparables. Ces spécifications correspondent, souvent, à des normes (ASTM, AFNOR, DIN, ...).

L'expérience fournit une partie des propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important.

Dans le but de contourner ces contraintes, des corrélations ont été proposées par différents auteurs depuis plus d'un demi-siècle. Elles se basent notamment sur la loi des états correspondants et les méthodes de contributions de groupes.

Dans la présente étude, nous proposons une méthode de prédiction des propriétés physiques des hydrocarbures purs basée sur la relation *structure-propriété* en utilisant le principe de contribution de groupes et la technique des réseaux de neurones artificielles. (CG-RNA)

Dans le premier chapitre de cette étude, nous présentons les différentes corrélations utilisées pour déterminer ou prédire les propriétés physiques d'un hydrocarbure pur, ces corrélations se basent pour la plupart sur la méthode de contribution de groupes.

Le second chapitre de ce document est réservé à une brève introduction aux réseaux de neurones artificiels (RNA) en se basant sur le modèle qui nous intéresse dans notre étude et les causes qui nous ont poussé à choisir ce modèle.

Dans troisième chapitre, nous présentons les résultats de simulation obtenus pour les propriétés physiques des hydrocarbures ainsi que les résultats de comparaisons effectués avec d'autres corrélations. Nous montrerons, en définitive, la pertinence du modèle proposé.

Une extension de notre étude aux mélanges d'hydrocarbures simples et complexes a été faite, c'est l'objet du quatrième et dernier chapitre.

Chapitre I

CARACTERISATION

DES

HYDROCARBURES

DIFFERENTES METHODES DE CARACTERISATION DES HYDROCARBURES

Introduction :

La modélisation d'un processus chimique requière la connaissance de quelques propriétés physiques. Habituellement ces propriétés peuvent être trouvées dans des bases de données ou dans la littérature. Mais, il arrive que nous soyons confronté à des cas où ces propriétés ne sont pas disponibles. Dans le cas idéal ces propriétés doivent être mesurées dans le laboratoire mais à cause de multiples raisons, temps de manipulation long, produit chimique pur non disponible, ou bien protocole opératoire non disponible ..., ces propriétés ne peuvent être obtenues expérimentalement. C'est pourquoi elles doivent donc être estimées ou prédites.

Indépendamment de l'expérience ou du raisonnement thermodynamique, une propriété peut être déterminée par des méthodes d'estimations ou de prédictions, les unes étant plus précises que d'autres. Nous présentons dans ce chapitre les différentes méthodes de caractérisation des hydrocarbures. Une attention particulière est donnée à la méthode de contribution de groupes du fait qu'elle représente la base de notre travail dans cette étude.

I.1 Les équations d'état :

L'intérêt d'une équation d'état est de permettre de prévoir avec une assez bonne précision le comportement volumétrique des fluides, l'évolution des fonctions thermodynamiques avec la température et la pression ainsi que les équilibres de phases.

Une équation d'état est une relation entre les variables de pression, volume, température et composition, de forme générale :

$$f(P, V, T, Xi,...)=0$$
 (1)

La plus simple des équations d'état est représentée par l'équation des gaz parfaits P V = n R T, cette équation représente une approximation d'autant meilleure que la pression est faible. Dans le cas des fluides réels, de nombreuses équations d'état ont été proposées visant à améliorer la représentation de ces fluides pour lesquels les forces d'interaction entre molécules ne sont plus négligeables. Parmi les équations d'état qui existent, les équations d'état cubiques sont très largement utilisées dans les modèles de simulation, en production et dans le traitement des hydrocarbures de gisements.

Les équations d'état cubiques se présentent sous la forme d'une série en volume de puissance un, deux et trois. Parmi ce type d'équations, les plus connues sont celles de Van Der Waals V.D.W (1873), Redlich-Kwong R.K (1949), Soave-Redlich-Kwong S.R.K (1972) et Peng-Robinson P.R (1976). Les deux dernières équations ont connu cependant le plus grand succès. Ce type d'équations a pour forme générale l'expression suivante:

$$P = \frac{RT}{V-b} - \frac{a}{V^2 + ubV + wb^2}$$
(2)

u et *w* sont des constantes qui dépendent de l'équation d'état. Les paramètres *a* et *b* s'expriment en fonction des coordonnées critiques.

Des équations plus complexes que les équations précédentes, faisant intervenir un nombre plus important de paramètres, ont été proposées pour des situations particulières. Ces équations dites équations d'état non cubiques présentent l'inconvénient d'être en général d'ordre supérieur à trois et de conduire, de ce fait, à des calculs plus fastidieux. Parmi elles, nous pouvons citer les équations d'état du Viriel, Benedict, Webb et Rubin BWR (1951) ou encore de Beattie-Bridgeman (1928) etc.

Les équations d'état présentées précédemment peuvent être étendues aux mélanges en utilisant des règles de mélanges permettant de relier les paramètres des équations d'état appliquées aux mélanges à ceux des corps purs. Dans le cas des équations d'état cubiques, les règles de mélanges usuelles sont les suivantes lorsque la composition est définie en fractions molaires xi :

$$b = \sum b_{i} \cdot x_{i} \qquad a = \sum \sum x_{i} x_{j} \cdot \sqrt{a_{i} \cdot a_{j}} \cdot (1 - k_{ij}) \qquad (3)_{i} (4)$$

Les termes k_{ij} sont des termes correctifs appelés coefficients d'interaction, caractéristiques du binaire ij considéré. L'introduction de ce terme est nécessaire lorsque les constituants i et j sont formés par des molécules très dissemblables, soit par leur volume molaire, soit par leur nature chimique.

Une autre façon d'étendre les équations d'état aux mélanges, consiste à considérer les paramètres pseudo-critiques. Cette procédure est généralement appliquée dans le cas des mélanges complexes dont la composition n'est pas connue, tels que les fractions pétrolières.

A partir des équations d'état, il est possible de calculer les fonctions thermodynamiques telles que l'enthalpie, l'entropie ou l'énergie libre pour des conditions de température et de pression fixées, en se référant aux conditions du gaz parfait. En effet, connaissant l'équation d'état, il est possible d'intégrer les expressions donnant l'enthalpie et l'entropie molaires, soient:

$$H = H^{\circ} + \int_{0}^{P} \left[V - T \left(\frac{\partial V}{\partial T} \right) \right] dP$$
(5)

$$S = S^{\circ} + \int_{0}^{P} \left[\frac{R}{P} - \left(\frac{\partial V}{\partial T} \right) \right] dP - R \ln \frac{P}{P^{\circ}}$$
(6)

 H° représente l'enthalpie d'une mole de gaz parfait qui n'est fonction que de la température et S° l'entropie d'une mole de gaz parfait à la température T et à la pression de référence P° (habituellement $P^{\circ}=10$ Pa).

L'application des équations d'état aux hydrocarbures lourds est une opération délicate, due principalement aux propriétés critiques et au facteur acentrique de ces hydrocarbures qui sont difficilement accessibles expérimentalement. Pour résoudre ce problème, certains auteurs se sont proposés de modifier les équations d'état en appliquant les méthodes de contributions de groupes pour la détermination de leurs paramètres et éviter ainsi l'utilisation des paramètres critiques.

Parmi ces auteurs, nous citons Bondi (1964) qui a proposé une méthode de contributions de groupes pour la détermination du paramètre *b* de l'équation d'état de Van Der Waals. Carrier et coll. (1988) ont proposé quant à eux une modification de l'équation de Peng-Robinson dans laquelle le paramètre *b* et le facteur acentrique sont exprimés en terme de contributions. Coniglio et coll.(1993) ont amélioré la méthode de Carrier en appliquant des contributions de type Boundi aux deux paramètres *a* et *b*. Enfin, plus récemment, Soave et coll.(1995) ont proposé une méthode de contributions de groupes pour la détermination du covolume de l'équation d'état de Redlich-Kwong.

I.2 Loi des états correspondants :

La loi des états correspondants constitue un élément de simplification dans la prévision des propriétés thermodynamiques des fluides réels. Cette loi affirme que les propriétés dépendantes des forces intermoléculaires sont reliées aux paramètres critiques de la même manière pour tous les composés; autrement dit, la fonction reliant les propriétés réduites est indépendante de la nature de la substance, soit:

$$f(Tr, Pr, Vr)=0$$
(7)

Les termes Tr, Pr et Vr représentent respectivement les température, pression et volume réduits.

Sur la base de cette loi, de nombreuses corrélations ont été développées pour l'estimation des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs.

La première application de la loi des états correspondants consiste dans la corrélation des données P-V-T, en exprimant le facteur de compressibilité Z comme fonction des paramètres réduits Pr et Tr. Cette corrélation a été traduite sous forme de diagrammes généralisés.

Cependant, il a été démontré que cette loi à deux paramètres ne s'applique que pour les molécules non polaires; c'est le cas par exemple des molécules sphériques telles que le méthane, l'azote, l'argon, etc. C'est ainsi, qu'il a été proposé d'introduire un troisième paramètre pour représenter l'ensemble des fluides, en plus de la pression et de la température réduite.

Parmi les corrélations à 3 paramètres, les plus connues sont celles utilisant, soit le facteur de compressibilité critique, soit le facteur acentrique comme troisième paramètre.

I.2.1 Corrélations fondées sur le facteur de compressibilité critique :

Le facteur de compressibilité critique est défini par :

$$Zc = Pc Vc/(R Tc)$$
(8)

Le choix de ce facteur comme troisième paramètre pour développer des corrélations des états correspondants, repose sur l'examen des divergences entre le comportement des fluides réels et la loi des états correspondants à deux paramètres. En effet, cette dernière prévoit qu'au point critique, le facteur de compressibilité critique a la même valeur pour tous les corps, soit Zc=Z(1,1)=0.27. Or, il n'en est rien, puisque celui-ci varie de 0.232 pour l'eau à 0.3 pour l'hydrogène, tout en restant néanmoins voisin de 0.27. L'application de cette loi à 3 paramètres aux données P-V-T des fluides réels implique l'existence d'une fonction unique Z = f(Tr, Pr, Zc) pour représenter chaque classe de composés ayant même facteur de compressibilité critique. Lydersen Greenkom et Hougen (1955) ont développé des tables donnant les valeurs de Z en fonction de Pr et Tr pour différentes valeurs de Zc.

I.2.2 Corrélations fondées sur le facteur acentrique

Le second paramètre utilisé dans la nouvelle formulation de la loi des états correspondants est le facteur acentrique ω , défini par Pitzer (1955) pour exprimer la non sphéricité des molécules :

$$\omega = -\log Pr^{S} - 1 \quad \text{à} \quad Tr = 0.7 \tag{9}$$

Pr^s est la pression de saturation réduite et Tr la température réduite.

Appliquée au facteur de compressibilité Z, la loi des états correspondants exprime Z comme une fonction linéaire du facteur acentrique:

$$Z = Z^{(0)} + \omega Z^{(1)}$$
 (10)

 $Z^{(0)}$ est un terme relatif au fluide simple obéissant à la loi des états correspondants à deux paramètres et $Z^{(1)}$ un terme correctif tenant compte des déviations par rapport à cette dernière loi, dues à la forme et à la dimension des molécules.

Les applications fructueuses de cette loi aux propriétés P-V-T des fluides réels a encouragé le développement de corrélations similaires pour d'autres propriétés qui dépendent des forces intermoléculaires. Ainsi, Curl et Pitzer (1958) ont développé des corrélations sous la forme :

$$L = L^{(0)} + \omega L^{(1)}$$
(11)

L est une propriété thermodynamique donnée, tels que l'enthalpie résiduelle et l'entropie résiduelle ou encore le coefficient de fugacité.

Sur la base de cette corrélation, Lee et Kesler (1975) ont traduit les valeurs des termes $L^{(0)}$ et $L^{(1)}$ sous forme tabulée et sous forme graphique pour différentes valeurs de la température et pression réduites. Ces tables et diagrammes de maniement aisé, concernent différentes propriétés.

Ces auteurs ont proposé une nouvelle formulation de l'équation de Pitzer qui consiste à calculer la valeur L d'une propriété thermodynamique exprimée en fonction des coordonnées réduites, pour un fluide dont le facteur acentrique est ω , à partir des valeurs respectives L⁽⁰⁾ et L⁽¹⁾ de cette propriété pour un fluide simple tel que $\omega = 0$ et pour un fluide de référence (n-octane) tel que $\omega = \omega^{(r)}$ en posant:

$$L = L^{(0)} + \frac{\omega}{\omega^{(r)}} (L^{(r)} - L^{(0)})$$
(12)

Dans le cas du facteur de compressibilité Z, l'équation précédente prend la forme suivante :

$$Z = Z^{(0)} + \frac{\omega}{\omega^{(r)}} (Z^{(r)} - Z^{(0)})$$

(13)

Les termes $Z^{(0)}$ et $Z^{(1)}$ s'expriment en fonction des coordonnées réduites en choisissant une équation d'état.

I.3 Méthodes empiriques :

Ce sont des méthodes basées essentiellement sur l'expérience où l'on essaie de caractériser les hydrocarbures à partir de propriétés facilement accessibles par expériences. Parmi elles, il y a la méthode de contribution de groupes.

LES METHODES DE CONTRIBUTION DE GROUPES

I.3.1 Principe

Toute propriété macroscopique est fonction de la structure moléculaire qui régit les forces intermoléculaires et leur magnitude. A titre d'exemple, la structure moléculaire conditionne la capacité de stockage d'énergie d'une molécule et par conséquent, sa capacité calorifique. Cette correspondance étant établie, il découle que chaque liaison, atome ou groupement d'atomes constitutif d'une molécule donnée, apporte sa contribution aux

propriétés macroscopiques de la substance étudiée. Ceci suggère que toute propriété macroscopique d'une substance peut être calculée à partir des contributions des groupements chimiques constituant la molécule.

Les méthodes basées sur ce concept portent le nom de méthodes de contributions de groupes et ont pour objectif principal de rapporter les propriétés des corps purs à leur structure moléculaire. Le développement de ce type de corrélations possède, dans la plupart des cas, un caractère purement empirique. Toutefois, le concept en lui-même possède un fondement théorique basé sur la thermodynamique statistique.

I.3.2 Corrélations de contribution de groupes

Des centaines de corrélations de contribution de groupes ont été proposées depuis le milieu des années cinquante à la suite des tout premiers travaux effectués par Lydersen en 1955 pour les propriétés critiques.

Leurs formes et leurs précisions sont assez variées. Du point de vue forme, les corrélations de contribution de groupes établies par différents auteurs ont connu une évolution importante dans le temps et ce, en raison de la nécessité qui est rapidement apparue de tenir compte de l'environnement du groupe ou de l'atome dont on évalue la contribution. Quant à la précision avec laquelle on peut prédire les propriétés des corps purs à l'aide de ce type de corrélations, elle dépend largement du choix des motifs structuraux. Un facteur également important réside dans le nombre et l'exactitude des données expérimentales que fournit la littérature et dans le choix de la fonction mathématique pour représenter les données expérimentales. Cette dernière doit en effet, permettre un bon lissage des données expérimentales et extrapoler convenablement les propriétés aux composés à grande masse moléculaire.

Parmi ces corrélations, les plus simples sont celles établies pour des séries homologues de composés chimiques et qui lient les propriétés en fonction de la longueur de la chaîne. D'autres, plus élaborées, décomposent la valeur d'une propriété donnée en contributions qui sont attribuées aux différents groupes constitutifs de la molécule. Il s'agit là d'une approche particulièrement intéressante du fait qu'elle permet de ramener le traitement d'un très grand nombre de composés chimiques à celui d'un nombre nettement plus restreint de groupements chimiques rencontrés dans la plupart des composés organiques.

Dans ce type de corrélations, généralité et simplicité d'une part, imprécision d'autre part, vont souvent de pair. Généralement, les méthodes de contribution de groupes élaborées sont le fruit d'un heureux compromis entre ces diverses exigences.

C'est dans un tel contexte que se place une série de travaux menés par divers auteurs tels que Benson et al. (1969), Rihani et Doraiswamy (1965) pour la prédiction des propriétés thermodynamiques, ou encore Lydersen (1955), Joback (1984), Ambrose (1980), Klincewicz et Reid (1984), Constantinou et Gani (1994, 1995) dans le cas des propriétés critiques, etc.

L'extension de ce concept aux mélanges a été suggérée pour la première fois par Langmuir (1925) et depuis, plusieurs méthodes ont été développées pour l'estimation des propriétés des mélanges et plus particulièrement les grandeurs d'excès et les coefficients d'activité. Les méthodes les plus connues sont, sans nul doute, la méthode proposée par Abrams et Prausnitz (1975) et connue sous le nom de méthode UNIFAC et, la méthode ASOG développée par Derr et Deal (1969).Ces deux méthodes font intervenir dans leurs expressions la différence de taille et de forme des constituants d'un mélange par le biais d'un terme dit combinatoire et, des interactions entre groupes différents par l'intermédiaire d'un terme résiduel. Les deux méthodes sont similaires de part leur principe, elles diffèrent par la définition des groupes et les modèles utilisés pour exprimer les termes combinatoire et résiduel. Elles présentent des limitations quant à leur applicabilité aux systèmes dont les constituants présentent une trop grande différence de volume molaire, malgré la prise en compte, dans le modèle, de ce facteur par le terme combinatoire.

I.3.3 Méthodes de prédiction des propriétés physiques des Hydrocarbures purs

I.3.3.1 Description des méthodes de prédiction des propriétés critiques

La connaissance des propriétés critiques est indispensable dans le traitement des mélanges d'hydrocarbures où la coexistence d'une phase gazeuse et d'une phase liquide est fréquente. Ils permettent de prévoir le comportement des fluides dans un large intervalle de température et de pression et de définir ainsi les conditions d'existence de leurs différentes phases. Ce sont également les paramètres clés de la prédiction des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs par la loi des états correspondants.

a. Température Critique

Nous allons présenter six méthodes de contribution de groupes pour l'estimation de la température critique qui sont : Lydersen³, Ambrose⁴, Klincewicz et Reid⁵, Fedors⁶, Joback²⁰, et Skander et Chitour²³.

Historiquement, la méthode de Lydersen, développée en 1955, était considérée comme la méthode la plus précise pour l'estimation de la température critique (Tc) des hydrocarbures^{7,8}. En 1978 Ambrose a utilisé une quantité considérable de nouvelles données pour développer une, plus précise mais aussi plus complexe, méthode de prédiction. Klincewicz et Reid ont utilisé les données ramassées par Ambrose pour établir une nouvelle méthode aussi précise que celle de Ambrose mais pas aussi complexe. Plus récemment, Joback a exploité les nouvelles données critiques rendues disponibles depuis les travaux de Lydersen en 1955 pour développer une méthode qui est tout aussi précise que celle de Ambrose. Klincewicz et Reid et Joback seront les plus utiles, mais la méthode de Ambrose inclus des groupements qui ne sont pas disponible dans les méthodes citées plus haut. La méthode de Lydersen reste importante pour la comparaison, et pour cause, elle était le modèle standard pendant plus de vingt ans.

La cinquième méthode, celle de Fedors⁶ est importante parce qu'elle ne requière pas la température d'ébullition comme c'est le cas des autres méthodes. Cette méthode n'est pas aussi précise, mais peut s'avérer très utile si on ne dispose pas de la température d'ébullition. Enfin, pour terminer, nous ajoutons la méthode développée par Skander et Chitour²³ qui se base sur les contributions de groupes et qui donne des résultats tout aussi précis que les méthodes citées plus haut.

LYDERSEN³, Température Critique

$$Tc = Tb / [0.567 + \Sigma \Delta_{TL} - (\Sigma \Delta_{TL})^{2}]$$
(14)

Où, Δ_{TL} représente les contributions de différents groupements (Annexe1 Tableau 1).

AMBROSE⁴, Température Critique

$$Tc = Tb (1 + \Phi_T + \Sigma \Delta_{TA}) / (\Phi_T + \Sigma \Delta_{TA})$$
(15)

Où, Δ_{TA} contributions de différents groupements (Annexe1 Tableau 2). Φ_T : 1.570 pour les Perfluocarbons, 1.242 Ailleurs.

KLINCEWICZ-REID⁵, Température Critique

$$Tc = 45.4 - 0.77 \text{ MM} + 1.55 \text{ Tb} + \Sigma \Delta_{TK}$$
(16)

Où, Δ_{TK} représente les contributions de différents groupements (Annexe1 Tableau 3).

FEDORS⁶, Température Critique

$$Tc = 535 \log_{10} (\Sigma \Delta_{TF})$$
 (17)

(18)

Où, Δ_{TA} contributions de différents groupements (Annexe1 Tableau 5).

JOBACK²⁰, Température Critique

Tc = Tb / $[0.584 + 0.965 \Sigma \Delta_{TJ} - (\Sigma \Delta_{TJ})^2]$

Où, Δ_{TJ} contributions de différents groupements (Annexe1 Tableau 4).

SKANDER-CHITOUR²³, Température Critique

$$Tb/Tc = 3.75032^{e} - 02 - 3.52119^{e} - 03 \Sigma \Delta Tc_{i} + 6.74016^{e} - 01 (\Sigma \Delta Tc_{i})^{1.9189e - 01}$$
(19)

Où, ΔTc_i contributions de différents groupements.

Erreurs attendues

Klincewicz et Reid⁵, Reid, Prausnitz et Poling²¹ et Joback²⁰ avait fait une analyse complète sur les erreurs des différentes méthodes citées (sauf, bien sur, celle plus récente de Skander-Chitour). En utilisant la base de données de 396 composés polaires, organiques et organométalliques développée par Ambrose⁹, ils avait trouvé que l'erreur moyenne obtenue en utilisant la méthode de Ambrose était de 0.7% avec 95% des erreurs au dessous de 3.7%. Tandis que celle de Joback était de 0.8%. La méthode de Klincewicz et Reid avait une erreur moyenne de 1.2% avec 95% des erreurs au dessous de 4.3%. La méthode de Lydersen présentait une erreur moyenne de 1.4% avec 95% des erreurs inférieurs à 5.1%. La méthode de Fedors a montré une erreur moyenne de 4%. La méthode de Skander et Chitour montre une déviation moyenne de 0.4%.

b. Pression Critique

Six méthodes de contribution de groupes sont présentées pour la pression critique. Comme pour la température critique la méthode de Lydersen a été pour longtemps la référence. Ambrose¹⁰ a utilisé les nouvelles données mesurées depuis Lydersen et a amélioré cette dernière méthode. Klincewicz et Reid⁵ ont pris une approche légèrement différente pour leur corrélation, ce qui en a résulté une méthode différente de celle de Lydersen ou de Ambrose avec des contributions de groupes plus simples. Joback, comme pour Ambrose, a profité des nouvelles données disponibles mais a gardé une forme très similaire à celle de Lydersen. Comme pour la température critique, la méthode de Ambrose est la plus précise. Klincewicz et Reid⁵ proposent aussi une méthode plus simple qui n'inclus pas les contributions de groupes, celle la utilise la masse molaire et le nombre d'atomes de carbone présent dans la molécule. Les résultats sont cependant moins précis que ceux des méthodes précédentes.

Plus récemment, Skander et Chitour ont proposé de nouvelles méthodes basées sur les contributions de groupes et qui tiennent compte des différentes interactions qui existent dans la molécule.

LYDERSEN, Pression Critique

$$Pc = MM / (0.34 + \Sigma \Delta_{TL})^2$$

(20)

Où, Δ_{TL} contributions de groupes (Annexe1 Tableau 1)

AMBROSE, Pression Critique

$$Pc = MM / [1.01325 (\Phi_{P} + \Sigma \Delta_{PA})^{2}]$$
(21)

Où, MM : masse molaire

 Δ_{PA} : contributions des différents groupements (Annexe1 Tableau 2). (FP : 1.00 pour les Perfluocarbons, 0.339 Ailleurs.

KLINCEWICZ-REID (Contribution de Groupes), Pression Critique

$$Pc = MM / [1.01325 (0.348 + 0.0159 MM + \Sigma \Delta_{PK})^{2}]$$
(22)

 Δ_{PK} contributions de différents groupements (Annexe1 Tableau 3).

KLINCEWICZ-REID (Simple), Pression Critique

 $Pc = MM / [1.01325 (0.335 + 0.009 MM + 0.019 n_A)^2]$ (23)

Où, n_A nombre d'atomes dans le composé

JOBACK, Pression Critique

 $Pc = [(0.113 + 0.0032 n_A - \Sigma \Delta_{PJ})^{-2}]/1.01325$ (24)

Où, n_A nombre d'atomes dans le composé Δ_{PJ} contributions de différents groupements (Annexe1 Tableau 4).

SKANDER-CHITOUR, Pression Critique

 $(1/Pc)^{0.376621} = 0.232562 + 0.0305702 \Sigma \Delta Pc_{i} + 0.0620589 (\Sigma \Delta Tc_{i})^{0.829137}$ (25)

Où, ΔPc_i contributions de différents groupements.

Erreurs attendues

Comme pour les erreurs dans l'estimation de la température critique, les meilleurs résultats, mis a part la méthode de Skander et Chitour, sont obtenus par les méthodes de Klincewicz et Reid⁵, Reid, et. col.²¹ et Joback²⁰. Reid et col. et Joback ont utilisé une base de données de 390 composés et ont trouvé une erreur moyenne de 2.1 bar ou 5.2% pour la méthode de Joback, comparée à 4.6% pour la méthode de Ambrose (95% des erreurs <13%), 8.9% pour la méthode de Lydersen (95% des erreurs <38%) et 7.8% de Klincewicz (95% des erreurs <25%). En final, la méthode simple de Klincewicz et Reid a une erreur moyenne de 12%.

Pour ce qui concerne la corrélation de Skander et Chitour la déviation moyenne constatée sur 357 hydrocarbures purs est de 4.6%.

c. Volume Critique

Le volume critique, troisième des propriétés critiques, est d'habitude le plus difficile à mesurer, par conséquent la base de données le concernant est réduite. Mais, il arrive que la valeur expérimentale de la température et de la pression critique du composé soit disponible. Dans ce cas, il est plus judicieux d'utiliser les équations des états correspondants pour déterminer le volume critique, ces dernières donnent de meilleurs résultats que les méthodes de contribution de groupes²². Nous présentons ici six méthodes de contributions de groupes, Lydersen³, Ambrose¹⁰, Klincewicz et Reid⁶, Joback²⁰ et Fedors¹², Skander et Chitour²⁸.

Les méthodes de contributions de groupes ont suivi le même développement que celui de la température et de la pression critique. La méthode de Lydersen a été améliorée par Joback et par celle, plus complexe, de Ambrose, tandis que Klincewicz et Reid ont simplifié celle de Ambrose. La méthode de Fedors est la plus simple et c'est la seule recommander par le DIPPR²². Aussi, comme pour la température et la pression critique, Klincewicz et Reid ont présenté une méthode, plus simple, qui n'utilise ni les contributions de groupes ni les états correspondants. Cette méthode se base seulement sur la masse molaire du composé et le nombre d'atomes.

_ _ _ _ _ _ _

LYDERSEN, Volume Critique	
$Vc = 40 + \Sigma \Delta_{VL}$	(26)
Où, Δ_{VL} contributions de différents groupements (Annexe1 Tableau 1).	
AMBROSE, Volume Critique	
$Vc = 40 + \Sigma \Delta_{VA}$	(27)
Où, Δ_{VA} contributions de différents groupements (Annexe1 Tableau 2).	
KLINCEWICZ-REID (CG), Volume Critique	
$Vc = 25.2 + 2.8 MM + \Sigma \Delta_{VK}$	(28)
Où, Δ_{VK} contributions de différents groupements (Annexe1 Tableau 3).	
KLINCEWICZ-REID (Simple), Volume Critique	
$Vc = 20.0 + 0.088 MM + 13.4 n_A$	(29)
FEDORS, Volume Critique	
$Vc = 26.5 + \Sigma \Delta_{VF}$	(30)
Où, Δ_{VF} contributions de différents groupements (Annexe1 Tableau 6).	
JOBACK, Volume Critique	
$Vc = 17.5 + \Sigma \Delta_{VJ}$	(31)
Où, Δ_{VJ} contributions de différents groupements (Annexe1 Tableau 4).	
SKANDER-CHITOUR ²³ , Volume Critique	
$Vc = 5.32007 * \Sigma \Delta Vc_i$	(32)
Où, ΔVc_i contributions de différents groupements.	

Erreurs attendues

Klincewicz et Reid ont évalué trois des méthodes données ici. Utilisant la base de données de Ambrose, qui contient 200 éléments pour le volume critique, la méthode de Lydersen donne une erreur moyenne de 3.1% (95% des erreurs <10%), celle de Ambrose 2.8% (95% des erreurs <9.6%), Klincewicz et Reid 2.9% (95% des erreurs <8.5%). La méthode simple de Klincewicz et Reid donne une erreur moyenne de 5.2%. L'erreur reportée sur la méthode de Fedors (citée dans sa publication¹²) est de 3.15% sur 160 composés. Reid et. col. et Joback ont reporté une erreur moyenne de 2.3%, pour 310 composés, sur la méthode de Joback.

En ce qui concerne la méthode de Skander et Chitour, l'erreur moyenne reportée est de 1.7 %. Lors de la comparaison de cette méthode avec d'autres de contributions de groupes, elle s'avère meilleure uniquement dans le cas des paraffines branchées, pour le reste elle est soit similaire soit légèrement moins performante.

I.3.3.2 Description des méthodes de prédiction des propriétés thermiques

a. Facteur Acentrique

Le facteur acentrique ω a été proposé par Pitzer¹⁴ (1955) pour caractériser la nonsphéricité des molécules, de telle façon que se facteur s'annule pour les molécules sphériques les plus simples telles l'Argon, le Xénon et le Krypton. Il a été défini par l'équation suivante :

$$\omega = -\log P_{VR} (@ T_{R} = 0.7) - 1.000$$
(33)

Où, P_{VR} : Pression de vapeur réduite.

Ce facteur est rarement calculé à partir de sa définition, tant que la valeur de la pression de vapeur à $T_R = 0.7$, ou la courbe de la pression de vapeur en fonction des points critiques, est souvent inconnue.

Pour le calcul du facteur acentrique, nous proposons cinq méthodes. Les corrélations de Pitzer¹⁴ pour le calcul de la pression de vapeur et de la chaleur de vaporisation peuvent être utilisées pour le calcul de ω .

PITZER¹⁴, Facteur Acentrique à partir de P_V

$$\omega = [\log_{10} P_{VR} - P^{(0)}] / P^{(1)}$$
(34)

Où, $P^{(0)}$ et $P^{(1)}$ fonctions de T_R . (Annexe1 Tableau 17)

PITZER, Facteur Acentrique à partir de H_V

$\omega = \left[\left(H_{VAP} / T \right) - S^{(0)} \right]$] / S ⁽¹⁾ .	(35)
$\omega = [(\Pi_{VAP} / \Gamma) = 3$]/5.	(55

Où, $S^{(0)}$ et $S^{(1)}$ fonctions de T_R . (Annexe1 Tableau 18)

EDMISTER²⁵, Facteur Acentrique

$$\omega = (3/7). \left[\log \left(P_c \right) / \left(\left(T_c / T_b \right)^{-1} \right) \right]^{-1.000}.$$
(36)

SKANDER, SOUAHI, CHITOUR³⁶, Facteur Acentrique

$$\omega = a + b N + c N^2 + d N^3 + e N^4$$
(37)

Où a, b, c et d : constantes pour différentes familles (Annexe 1 Tableau 19).

LEE-KESLER⁴⁴, Facteur acentrique

 $\omega = \alpha / \beta$, $\theta = T_{\rm b}/T_{\rm c}$;

 $\alpha = -\ln P_c - 5.92714 + 6.09648 \ \theta^{-1} + 1.28862 \ln \theta - 0.169347 \ \theta^6.$ (38) $\beta = 15.2518 - 15.6875 \ \theta^{-1} - 13.4721 \ln \theta + 0.43577 \ \theta^6.$

I.3.3.3 Description des méthodes de prédiction des propriétés de transport

a. Densité

La densité est un paramètre très important dans la plupart des calculs de dimensionnement des équipements tels que : capacité de stockage, hauteur des colonnes, compresseurs et dimensions des pipes. Elle intervient également dans les calculs d'équilibre liquide-vapeur et comme paramètre pour estimer d'autres propriétés physiques.

La densité d'une substance est le rapport entre sa masse volumique à une température donnée T et celle de l'eau à une température standard, généralement prise égale à 4°C. Elle est notée d_{4}^{T} . La densité standard se mesure à 20°C.

Les anglo-saxons utilisent la notion de *spécific gravity*, notée SpGr et définie pour deux températures identiques de 60°F (15.55°C). La SpGr est reliée à la densité à 15°C par la relation suivante:

SpGr =
$$1.002 d_4^{15}$$
 (39)

Nous proposons ici trois méthodes pour l'estimation de la densité des liquides saturés : Gunn et Yamada et Rackett.

Méthode de Gunn et Yamada : cette méthode des états correspondants a été choisie à cause de son applicabilité générale, sa haute précision et le large domaine de température qu'elle couvre.

GUNN & YAMADA²⁶, Densité liquide

$$1/ρ = V_{SC} V_{R}^{(0)} (1-ω Γ)$$
(40)

$$V_{SC} = R T_c / P_C (0.2970 - 0.0967 \omega)$$
(41)

$$V_{R}^{(0)} = 0.33593 - 0.33953 T_{R} + 1.51941 T_{R}^{2} - 2.02512 T_{R}^{3} + 1.11422 T_{R}^{4}$$
(42)
$$0.2 \le T_{R} \le 0.8$$

$$V_{R}^{(0)} = 1.0 + 1.3(1-T_{R})^{0.5} \log_{10}(1-T_{R}) - 0.50879(1-T_{R}) - 0.91534(1-T_{R})^{2}$$
(43)
 $0.8 \le T_{R} \le 1.0$

 $\Gamma = 0.29607 - 0.09045 T_R - 0.04843 T_R^2$

Erreurs attendues : L'erreur moyenne reportée par Gunn et Yamada sur 32 composés différents est inférieure à 0.5% avec une déviation maximale < 2.2%. Dans l'intervalle de température inférieure à T_R =0.8 les déviations maximales étaient < 0.5%

Méthode de Rackett¹⁹ : cette corrélation, très simple, se base sur les propriétés critiques T_c, P_c et V_c et donne de bon résultats.

Rackett, Densité liquide

$$1/\rho = R T_C/P_C Z_{RA}^{(1+(1-T))2/7)}$$
(45)

$$Z_{RA} = P_c V_c / (RT_c)$$
(46)

Erreurs attendues : Spencer et Adler²⁷ ont étudiés l'estimation de la densité liquide sur 75 hydrocarbures, 71 autres composés organiques et 19 inorganiques par cette méthode. L'erreur moyenne trouvée était inférieure à 0.5% pour toutes les catégories excepté les acides organiques et les alcools qui variait entre 1% et 1.5%.

(44)

(47)

(49)

(50)

SKANDER, SOUAHI, CHITOUR³⁶, Densité liquide

$$d_4^{20} = a + b / [1 + (N/c)^d]$$

Où a, b, c et d : constantes pour différentes familles (Annexe 1 Tableau 8).

Les auteurs évaluent l'écart moyen absolu inférieur à 1.3%.

b. Volume Molaire

Le volume molaire d'un corps pur est le volume qu'occupe une mole de ce corps à une température donnée T et une pression donnée P. Il est relié à la masse molaire M et à la densité d par la relation suivante:

$$V_{\rm M} = M / d^{\rm T}_4 \tag{48}$$

Le volume molaire à la température d'ébullition normale a été corrélé avec une méthode de contribution de groupes par Le Bas (1915) et Fedors (1974). Schotte (1992) a proposé une autre méthode de contribution de groupes applicable aussi bien pour les hydrocarbures que les non- hydrocarbures. Constantinou, Gani et O'Conneli (1995) ont établi une méthode de contribution de groupes pour la prédiction du volume molaire à 298K. Leur équation est de la forme :

CONSTANTINOU, GANI ET O'CONNELI, Volume Molaire

Le volume au point d'ébullition peut être estimé à partir d'autres types de corrélations telles que celles proposées par Tyn et Calus (1975) qui exprime le volume molaire en fonction du volume critique.

Skander, Souahi et Chitour (2000) ont proposé une corrélation en fonction du nombre de groupements -CH2- pour l'estimation des volumes molaires au point d'ébullition des nalcanes, n-alkylcyclohexanes et n-alkylbenzènes :

SKANDER, SOUAHI ET CHITOUR³⁶, Volume Molaire

$$V_{M}$$
 (10⁻³ m³/Kmole) =a + b. N_c

Les constantes a et b sont déterminées pour chacune des familles homologues. (Annexe 1 Tableau 20)

I.3.3.4 Description des méthodes de prédiction des propriétés thermodynamiques

a. Capacité Calorifique

La capacité calorifique d'une substance est la quantité de chaleur qu'il faut fournir à l'unité de poids de cette substance pour augmenter sa température de un degré. Elle s'exprime en kJ/(kg.K) dans le système S.I. Elle est définie soit à pression constante C_P , soit à volume constant C_v :

$$Cp = (\delta H / \delta T)_{P}$$
(51)

et

$$C_{v} = (\delta U / \delta T)_{v}$$
(52)

La capacité calorifique à pression constante C_p est la plus fréquemment utilisée, notamment à la température standard de 298K. Les valeurs de cette dernière ont été tabulées pour un grand nombre de composés pris à l'état de gaz parfaits. Les variations de cette propriété avec la température ont été souvent exprimées sous la forme d'un polynôme de type :

 $C_p = A + B.T + C.T^2 + D.T^3$

(53)

A, B, C et D sont des constantes propres à chaque substance dont les valeurs sont données dans les tables.

La capacité calorifique des liquides peut également être estimée à partir des méthodes de contribution de groupes de Johnson et Huang (1955), Shaw (1969), Chueh et Swanson (1973) ou encore de Missenard (1965). Gilyazetdinov (1995) ont établi une méthode de contribution de groupes pour l'estimation des capacités calorifiques des hydrocarbures liquides en fonction de la température, ils préconisent d'utiliser leur méthode pour le calcul des capacités calorifiques des fractions pétrolières connaissant leur composition par famille chimique.

La capacité calorifique des corps purs pris à l'état de gaz parfaits peut être estimée à l'aide de la méthode publiée par Rihani et Doraiswamy (1965) qui exprime cette propriété sous la forme d'une fonction polynomiale de la température et dans laquelle les constantes de l'équation sont exprimées en terme de contribution de groupes.

Nous allons citer ici quelques corrélations pour l'estimation de la capacité calorifique d'un corps pur pris à l'état de gaz parfait (idéal).

RIHANI & DORAISWAMY²⁸, Capacité Calorifique (Gaz Idéal)

$$C_{P}^{\circ} = \Sigma \Delta a_{CR} + \Sigma \Delta b_{CR} T + \Sigma \Delta c_{CR} T^{2} + \Sigma \Delta d_{CR} T^{3}$$
(54)

Où, Δa_{CR} , Δb_{CR} , Δc_{CR} , et Δd_{CR} des contributions de groupes. (Annexe1 Tableau 9)

BENSON²⁹, Capacité Calorifique (Gaz Idéal)

La méthode de Benson et col., estime la capacité calorifique à des températures données : 300, 400, 500, 600, 800 et 1000 K. l'équation fondamentale utilisée par la méthode de Benson est :

$$C_{P}^{\circ}(K) = \Sigma \Delta_{CB}(T) / 4.1868$$

Où, Δ_{CB} les contributions de groupes à des températures spécifiques (Annexe1 Table 10).

A partir de cette équation et en utilisant la méthode de régression linéaire on obtient un polynôme de forme :

$$C_{P}^{\circ} = A_{C0} + B_{C0} T + C_{C0} T^{2} + D_{C0} T^{3}$$
(56)

Où, A_{C0} , B_{C0} , C_{C0} et D_{C0} : coefficients.

Joback²⁰ dans son étude sur la capacité calorifique des composés à l'état de gaz parfait a trouvé que la méthode de Benson présentait une erreur moyenne de 1.1%.

JOBACK²⁰, Capacité Calorifique (Gaz Idéal)

Cette méthode, comme celle de Rihani et Doraiswamy, utilise les contributions de groupes du premier ordre qui sont les coefficients d'un polynôme du troisième degré.

$$C_{P}^{\circ} = \Sigma \Delta a_{CJ} + \Sigma \Delta b_{CJ} T + \Sigma \Delta c_{CJ} T^{2} + \Sigma \Delta d_{CJ} T^{3}$$
(57)

Où, Δa_{CR} , Δb_{CR} , Δc_{CR} , et Δd_{CR} des contributions de groupes. (Annexe1 Tableau 21)

L'erreur moyenne reportée est de 1.4%. L'intervalle de température suggéré par Joback est de 298 à 1000 K.

(55)

SKANDER, SOUAHI ET CHITOUR³⁶, Capacité Calorifique

$$Cp^{\circ}_{298K} (J/mol.K) = a + b N + c N^{2} + d N^{3}$$
(58)

Où a, b, c et d : constantes pour différentes familles (Annexe 1 Tableau 11).

b. Enthalpie Standard de formation

L'enthalpie d'une substance est définie comme étant la quantité de chaleur contenue dans ce système dont l'état thermodynamique est défini par une pression P et une température T données.

Les variations d'enthalpies entre deux états fournissent la quantité de chaleur a fournir ou a éliminer pour passer de l'un à l'autre. L'enthalpie s'exprime en fonction de la capacité calorifique par la relation :

$$H = \int C_{\rm P}.dT + \lambda \tag{59}$$

 λ , étant l'enthalpie de changement d'état s'il a lieu.

Le calcul de l'enthalpie d'une substance nécessite le choix d'un état de référence. Le plus utilisé est celui du zéro absolu et pour lequel l'enthalpie est nulle. L'enthalpie de formation d'un corps pur est, quant à elle, définie par la quantité de chaleur nécessaire pour former ce corps à partir de ces éléments dans des conditions standard, définies normalement à 1 atmosphère et 298K. Par définition, l'enthalpie de formation des éléments est nulle.

Des corrélations de contribution de groupes sont proposées dans la littérature pour estimer l'enthalpie de formation standard des corps purs. Nous citons les méthodes de Benson²⁹ (1969), Franklin^{30,31}(1953), Joback (1984).

FRANKLIN^{30,31}, Enthalpie de Formation

$$\Delta H^{o}_{F298} = \Sigma \Delta_{HF} \tag{60}$$

Où, Δ_{HF} représente les contributions de groupes. (Annexe1 Tableau 12)

JOBACK, Enthalpie de Formation

$\Delta H^{\circ}_{F298} = \Sigma \Delta_{H1} + 68.29$	(61)
1290	

Où, Δ_{HJ} représente les contributions de groupes. (Annexe1 Tableau 13)

BENSON, Enthalpie de Formation

$$\Delta H^{o}_{F298} = \Sigma \Delta_{HB} / 4.1868$$

Où, Δ_{HB} représente les contributions de groupes. (Annexe1 Tableau 14)

Erreurs attendues : Reid et col¹. ont étudié les trois corrélations citées plus haut et ont trouvé pour la méthode de Benson présente une erreur moyenne de 0.9 % sur 28 composés, 1% pour la méthode de Franklin sur 23 composés et 3.4% pour la méthode de Joback sur 28 composés.

SKANDER, SOUAHI ET CHITOUR³⁶, Enthalpie de Formation

$$H_{f}^{o}_{298K} (kJ/mol) = a + b N + c N^{2} + d N^{3}$$
(63)

Où a, b, c et d : constantes pour différentes familles (Annexe 1 Tableau 15).

(62)

I.3.3.5 Description des méthodes de prédiction des propriétés spécifiques

a. Facteur de caractérisation de Watson K_{UOP}

Watson, Nelson et Murphy (1937) de la société U.O.P (Universal Oil Products) ont introduit la notion de facteur de caractérisation K_{UOP} pour discriminer entre les tendances des pétroles bruts et des fractions pétrolières. Ce facteur et donné par la relation suivante :

$$K_{UOP} = T_b^{1/3} / SpGr$$
(64)

Où T_b (°R) et SpGr sont respectivement la température d'ébullition et la spécific gravity à 60°F.

Ce paramètre intervient comme paramètre intermédiaire dans de nombreuses méthodes de calcul d'autres propriétés. Les valeurs de ce facteur pour les différentes familles d'hydrocarbures sont les suivantes :

Paraffines	: 13.1 - 13.5
Naphtènes	: 10.5 - 13.2
Aromatiques	: 9.5 - 12.5

Kitous et Chitour (1990) d'une part et, Bouamra et Chitour (1991) d'autre part, ont établi des corrélations permettant de prédire ce facteur connaissant la température d'ébullition et la densité à 20°C des paraffines, naphtènes et aromatiques. Skander et Chitour (1997) ont corrélé ce paramètre en fonction du nombre de groupements -CH2-.

Le K_{UOP} n'étant pas une propriété additive, il est possible d'estimer cette propriété dans le cas des mélanges simples et des fractions pétrolières à partir de la température d'ébullition et de la densité moyenne du mélange.

Whitson³² a proposé une corrélation qui relie le facteur K_{UOP} à la masse molaire et à la spécific gravity.

WHISTON, Kuop

 $K_{UOP} = 4.5579.M^{0.15178}.SpGr^{0.84573}$

SKANDER, SOUAHI ET CHITOUR³⁶, Kuop

 $K_{UOP} = a + b N + c N^2 + d N^3 + e N^4$

Où a, b, c, d et e: constantes pour différentes familles (Annexe 1 Tableau 16).

L'écart moyen reporté par les auteurs est inférieur à 0.1% et cela pour les cinq familles d'hydrocarbures étudiées.

BOUAMRA, CHITOUR⁴³, Kuop

Paraffines :	$Kuop = 11.07003 + 3.335759 \cdot 10^{-3} \cdot T_b + 2.159892 \cdot 10^{-6} d.$	(67)
Naphtènes :	Kuop = 36.35006+0.0080817.T _b -34.95683. d.	(68)
Aromatiques	: Kuop = 18.72537+5.731715.10 ⁻³ .T _b -11.6137. d.	(69)

(65)

(66)

I.3.3.6 Description des méthodes de prédiction des propriétés optiques

a-Indice de réfraction n²⁰_D:

L'indice de réfraction caractérise le changement de direction d'une onde passant d'un milieu à un autre. Il est égal au rapport entre le sinus de l'angle d'incidence et le sinus de l'angle de réfraction. Généralement, cet indice est mesuré par rapport à la raie D jaune du sodium de longueur d'onde 589.3 nm et à une température de 20°C. il est alors noté n^{20}_{D} .

L'indice de réfraction varie avec la température. En effet, lorsque la température augmente, la densité diminue, par suite, le faisceau lumineux rencontre moins de molécules sur son trajet et l'indice est plus faible. Cet effet de la température est traduit par la relation suivante :

$$n^{20}{}_{\rm D} = n^{\rm T}{}_{\rm D} - 4.10^{-4} ({\rm T} - 20) \tag{70}$$

L'indice de réfraction présente un grand intérêt non seulement pour les corps purs, mais aussi pour les mélanges de corps purs et les fractions pétrolières. Pour les hydrocarbures, l'indice de réfraction est d'autant plus petit que la teneur relative en hydrogène est plus élevée. Il varie dans le même sens que la densité.

L'indice de réfraction des hydrocarbures purs peut être calculé en utilisant différentes corrélations dont celles proposées par Lipkin et Martin ou encore Zidelkheir et Chitour (1993). Skander et Chitour (1997) ont établi des équations spécifiques à différentes familles d'hydrocarbures. Leurs expressions sont de la forme :

SKANDER-CHITOUR³⁶, Indice de réfraction

$$n_{20} = a + b / [1 + (N_c/c)^d]$$
(71)

LIPKIN-MARTIN, Indice de réfraction

$n_{ab} - ($	$69.878 d_{ab} = 0.4044 A d_{ab} = 0.797 A + 136 566$)/K (*	721
$\Pi_{20} - ($	$09.070.0_{20} = 0.4044.A.0_{20} = 0.797.A \pm 150.500$	9)/ N i (.	12)

A = 55.3-3516/(M+12).	(73)
$K = 5.543 d_{20} - 0.746 A + 126.683.$	(74)

avec : M : masse moléculaire.

I.4 Conclusion :

Le but de ce chapitre était de présenter diverses méthodes pour l'estimation de différentes propriétés physiques d'hydrocarbures purs. Parmi les méthodes proposées on dispose de méthodes basées sur les contributions de groupes et nécessitant ainsi la connaissance de la structure chimique du composé. La deuxième catégorie de méthodes exige quant à elle la connaissance de quelques propriétés physiques facile à mesurer telles que la température d'ébullition, la densité ou la masse moléculaire. En général, toutes ces méthodes présentent de faibles écarts par rapport aux valeurs expérimentales.

Enfin, notons que la liste des méthodes présentées dans cette étude est loin d'être exhaustive. Néanmoins, elles sont variées et permettent ainsi de choisir la méthode appropriée selon la disponibilité des données ainsi que la nature et la précision du résultat désirés.

Chapitre II

LES RESEAUX

DE

NEURONES

LES RESEAUX DE NEURONES

Introduction

Dans ce chapitre de présentation des réseaux de neurones, nous commençons par donner quelques définitions relatives aux neurones (biologique et formel) et aux réseaux de neurones non bouclés (ou statiques). En effet, c'est ce type de réseaux que nous avons utilisé dans le cadre de la résolution de problèmes de prédiction présentés dans ce mémoire. Nous présentons l'architecture de réseaux non bouclés la plus générale (les réseaux complètement connectés), puis une autre disposition dite à couches, notamment les réseaux à une seule couche cachée. Ensuite, nous justifions l'utilisation de cette dernière architecture en énonçant et commentant la propriété fondamentale de tels réseaux de neurones.

II.1 Définitions

Un réseau de neurones est une fonction paramétrée qui est la composition d'opérateurs mathématiques simples appelés neurones formels (ou plus simplement neurones) pour les distinguer des neurones biologiques. Dans ce chapitre, nous présentons les définitions relatives aux neurones et les différentes architectures de réseaux de neurones.

II.1.1 Le Neurone biologique

Le neurone est l'unité fonctionnelle de base du système nerveux. D'une espèce à une autre, il peut présenter des différences d'ordre fonctionnel ou anatomique, cependant divers points communs subsistent, et sont à la base de la cellule nerveuse.

Le neurone est une cellule constituée principalement de trois parties, qui ont un rôle bien défini, ce sont : les dendrites, le soma et l'axone (fig. II.1).

Fig. II.1 : neurone biologique

II.1.2 Les neurones formels

Un neurone est une fonction algébrique non linéaire, paramétrée, à valeurs bornées, de variables réelles appelées entrées.

Par souci de commodité, on commet fréquemment un abus de langage en désignant par le vocable "neurone linéaire" une fonction linéaire qui n'est pas bornée.

On a pris l'habitude de représenter un neurone formel comme indiqué sur la figure II.2.

Figure II.2 : Un neurone réalise une fonction non linéaire bornée y =f($x_1, ..., x_n$; $c_h ... c_p$) où les { x_i } sont les entrées et les { c_j } sont des paramètres

Les paramètres dont dépend la valeur de y peuvent intervenir de deux manières :

- Ils peuvent intervenir dans la fonction f elle-même,
- Ils peuvent intervenir dans l'argument de la fonction f.

Les réseaux d'ondelettes ou de fonctions radiales entrent dans la première catégorie : les paramètres ajustables sont le centre et la dilatation (pour les ondelettes), ou le centre et la largeur (pour les fonctions radiales).

Dans ce travail, nous avons toujours utilisé des neurones (ou fonctions) qui appartiennent à la seconde catégorie : l'argument de la fonction f est une combinaison linéaire des entrées du neurone (à laquelle on ajoute un terme constant, le *"biais")*. La combinaison linéaire est appelée *potentiel* ; les coefficients de pondération {*cj*} sont fréquemment appelés *"poids synaptiques"* (ou plus simplement *poids)* en référence à l'origine "biologique" des réseaux de neurones.

Le potentiel d'un neurone est donc calculé de la façon suivante :

$$v = c_0 + \sum_{i=1}^{n} c_i . x_i$$
 : potentiel du neurone

Le biais c_o peut être envisagé comme le coefficient de pondération de l'entrée n° 0, qui prend toujours la valeur de 1 :

$$v = \sum_{i=0}^{n} c_i . x_i$$
 , avec $x_0 = 1$

La valeur de la sortie du neurone est donc :

$$y = f(v) = f\left(c_0 + \sum_{i=1}^n c_i x_i\right)$$
 : sortie du neurone

La fonction f est appelée « fonction d'activation » ; la fonction sigmoïde (ou tangente hyperbolique) est la plus utilisée :

y = th(v)

Dans le présent mémoire, un neurone qui possède :

- une fonction d'activation sigmoïdale,
- et un potentiel défini par la somme pondérée des entrées,

est représenté comme indiqué sur la figure II.3a :

Figure II.3 : Symboles de neurones à fonction d'activation sigmoïde et linéaire

La figure II.3b représente un neurone linéaire.

II.1.3 Les réseaux de neurones non bouclés

Les fonctions non linéaires réalisées par les neurones décrits ci-dessus peuvent être combinées en un réseau de neurones. Dans un tel réseau, les entrées d'un neurone peuvent être soit les entrées du réseau, soit les sorties d'autres neurones.

Les valeurs des poids associés aux variables d'entrée des neurones sont en général déterminées par apprentissage ; certaines d'entre elles peuvent être fixées à l'avance si une étude préalable du problème le recommande.

Il existe deux types d'architectures de réseaux de neurones :

- les réseaux non bouclés (ou statiques)
- les réseaux bouclés (ou dynamiques).

Les réseaux de neurones bouclés sont utilisés pour la modélisation dynamique de processus non linéaires et pour leur commande. Notre travail ne se situe pas dans ce domaine ; nous ne présenterons donc que la famille des réseaux de neurones non bouclés.

Un réseau de neurones non bouclé réalise une (ou plusieurs) fonctions algébriques de ses entrées par composition des fonctions réalisées par chacun de ses neurones.

Dans un tel réseau, le flux de l'information circule des entrées vers les sorties sans "retour en arrière". Ainsi, si l'on représente le réseau comme un graphe dont les nœuds sont les neurones et les arêtes les connexions entre ceux-ci, le graphe d'un réseau non bouclé est acyclique.

Tout neurone dont la sortie est une sortie du réseau est appelé "neurone de sortie". Les autres, qui effectuent des calculs intermédiaires, sont des "neurones cachés".

Nous présentons deux types de réseaux de neurones : les réseaux complètement connectés et les réseaux à couches. Le réseau de neurones à une couche cachée et une sortie linéaire est un cas particulier de ce dernier type.

II.1.3.1 Les réseaux de neurones complètement connectés

La figure II.4 représente le réseau de neurones non bouclé le plus général possible : le réseau complètement connecté. Sur la figure, nous ne représentons pas les coefficients qui correspondent au "biais" (il suffit d'ajouter une entrée à valeur constante égale à 1 et portant le numéro 0).

Figure II.4 : Réseau de neurones non bouclé complètement connecté

Dans un réseau complètement connecté, les entrées puis les neurones (cachés et de sortie) sont numérotés (en italique sur le dessin), et, pour chaque neurone :

• ses entrées sont toutes les entrées du réseau ainsi que les sorties des neurones de numéro inférieur,

• sa sortie est connectée aux entrées de tous les neurones de numéro supérieur.

Un réseau de neurones non bouclé, complètement connecté, possède un nombre maximal de coefficients possible compte tenu du nombre de neurones qui le constituent, car les connexions de "retour en arrière" sont interdites.

II.1.3.2 Les réseaux de neurones à couches

Dans une architecture de réseaux à couches, les neurones cachés sont organisés en couches, les neurones d'une même couche n'étant pas connectés entre eux. De plus, les connexions entre deux couches de neurones non consécutives sont éliminées. La figure II.5 représente un réseau à une couche cachée :

Figure II.5 : Réseau de neurones non bouclé à une couche cachée

Les réseaux de neurones disposés suivant cette architecture sont aussi appelés "perceptrons multicouche" (ou MLP pour Multi-Layer Perceptrons). On trouve dans [Dreyfus 37] une perspective sur l'histoire et l'état de l'art des Perceptrons.

Une dernière architecture de réseau est très fréquemment utilisée, car elle possède des propriétés mathématiques intéressantes : les réseaux de neurones à une couche cachée et une sortie linéaire.

II.1.3.3 Les réseaux de neurones à une couche cachée et une sortie linéaire

La figure II.6 représente un réseau de neurones à une couche cachée (N_c neurones cachés) et une sortie linéaire.

Figure II.6 : Réseau de neurones non bouclé à une couche cachée et une sortie linéaire

En résumé

Pour résoudre les problèmes de prédiction des propriétés physiques des hydrocarbures, nous utilisons la famille des réseaux de neurones non bouclés ; dans cette famille, nous avons choisi de mettre en œuvre des réseaux de neurones à une couche cachée. Nous justifions à présent ce choix en présentant la propriété fondamentale de ce type de réseaux.

II.2 Propriété fondamentale des réseaux de neurones

La propriété fondamentale des réseaux de neurones est *l'approximation parcimonieuse*. Cette expression traduit deux propriétés distinctes : d'une part, les réseaux de neurones sont des approximateurs universels, et, d'autre part, une approximation à l'aide de réseau de neurones nécessite, en général, moins de paramètres ajustables que les approximateurs usuels.

II.2.1 Les réseaux de neurones sont des approximateurs universels

La propriété d'approximation universelle peut s'énoncer de la façon suivante [38] :

Toute fonction bornée suffisamment régulière peut être approchée uniformément, avec une précision arbitraire, dans un domaine fini de l'espace de ses variables, par un réseau de neurones comportant une couche de neurones cachés en nombre fini, possédant tous la même fonction d'activation, et un neurone de sortie linéaire.

Cette propriété est vraie pour les neurones présentés précédemment : neurones à fonction d'activation sigmoïdale, fonctions radiales, et ondelettes.

C'est cette propriété qui justifie notre choix de l'architecture de réseaux de neurones à une couche cachée. De plus, le seul degré de liberté qui subsiste pour la détermination de l'architecture du réseau est alors le nombre de neurones cachés, ce qui simplifie l'optimisation de l'architecture de réseaux, comme nous le verrons plus loin.

II.2.2 La parcimonie

Lorsque l'on veut modéliser un processus à partir des données, on cherche toujours à obtenir les résultats les plus satisfaisants possibles avec un nombre minimum de paramètres ajustables. Dans cette optique, Hornik [38] a montré que :

Si le résultat de l'approximation (c'est-à-dire la sortie du réseau de neurones) est une fonction non linéaire des paramètres ajustables, elle est plus parcimonieuse que si elle est une fonction linéaire de ces paramètres. De plus, pour des réseaux de neurones à fonction d'activation sigmoïdale, l'erreur commise dans l'approximation varie comme l'inverse du nombre de neurones cachés, et elle est indépendante du nombre de variables de la fonction à approcher. Par conséquent, pour une précision donnée, donc pour un nombre de neurones cachés donné, le nombre de paramètres du réseau est proportionnel au nombre de variables de la fonction à approcher.

Ces résultats s'appliquent aux réseaux de neurones à fonction d'activation sigmoïdale, puisque la sortie de ces neurones n'est pas linéaire par rapport à leurs coefficients. Ainsi, l'avantage des réseaux de neurones par rapport aux approximateurs usuels (tels que les polynômes) est d'autant plus sensible que le nombre de variables de la fonction à approcher est grand : pour des problèmes faisant intervenir une ou deux variables, on pourra utiliser indifféremment des réseaux de neurones, des polynômes, des réseaux d'ondelettes, etc. En revanche, pour des problèmes présentant trois variables ou plus, il est généralement avantageux d'utiliser des réseaux de neurones.
Bien entendu, cette propriété est démontrée de manière générale, et peut se révéler inexacte pour un problème particulier. Elle constitue néanmoins une justification fondamentale de l'utilisation des réseaux de neurones, et elle est avérée dans la très grande majorité des problèmes pratiques.

Rappelons que ces résultats concernent l'utilisation de réseaux de neurones pour l'approximation uniforme de fonctions connues ; il est pourtant rare que les réseaux de neurones soient mis en œuvre dans ce cadre. Nous allons montrer dans le paragraphe suivant que la technique des réseaux de neurones est généralement utilisée comme une méthode de *modélisation statistique*.

II.3 Réseaux de neurones et régression non linéaire

Dans la pratique, on n'utilise pas les réseaux de neurones pour réaliser des approximations de fonctions *connues*. Le plus souvent, le problème qui se pose à l'ingénieur est le suivant : il dispose d'un ensemble de mesures de variables d'un processus de nature quelconque (physique, chimique, économique, financier, ...), et du résultat de ce processus ; il suppose qu'il existe une relation déterministe entre ces variables et ce résultat, et il cherche une forme mathématique de cette relation, valable dans le domaine où les mesures ont été effectuées, sachant que : (1) les mesures sont en nombre fini, que (2) elles sont certainement entachées de bruit, et que (3) toutes les variables qui déterminent le résultat du processus ne sont pas forcément mesurées. En d'autres termes, l'ingénieur cherche un *modèle* du processus qu'il étudie, à partir des mesures dont il dispose, et d'elles seules : on dit qu'il effectue une modélisation "boîte noire". Dans le jargon des réseaux de neurones, les données à partir desquelles on cherche à construire le modèle s'appellent des *exemples*.

En quoi la propriété d'approximation parcimonieuse peut-elle être utile pour résoudre ce genre de problèmes ? Ce que l'ingénieur cherche à obtenir à l'aide de son modèle, c'est la "vraie" fonction qui relie la grandeur y que l'on veut modéliser aux variables $\{x\}$ qui la déterminent, c'est-à-dire la fonction que l'on obtiendrait en faisant une infinité de mesures de y pour chaque valeur possible de $\{x\}$: en termes de statistiques, l'ingénieur cherche la *fonction de régression* de la grandeur à modéliser. Cette fonction est inconnue, mais on peut en chercher une approximation à partir des mesures disponibles : les réseaux de neurones sont donc de bons candidats pour cela, si la fonction de régression cherchée est non linéaire.

Cette approximation est obtenue en estimant les paramètres d'un réseau de neurones au cours d'une phase dite *d'apprentissage*. C'est ici que la propriété d'approximation parcimonieuse des réseaux de neurones est précieuse : en effet, le nombre de mesures nécessaires pour estimer les paramètres de manière significative est d'autant plus grand que le nombre de paramètres est grand. Ainsi, pour modéliser une grandeur avec une précision donnée à l'aide d'un réseau de neurones, il faut *moins de données* que pour la modéliser, avec une précision comparable, à l'aide d'une régression linéaire multiple ; de manière équivalente, un réseau de neurones permet, avec les mêmes données disponibles, de réaliser une approximation plus précise qu'une régression linéaire multiple.

De manière générale, un réseau de neurones *permet donc de faire un meilleur usage des mesures disponibles que les méthodes de régression non linéaires conventionnelles.* Ce gain peut être considérable lorsque le processus à modéliser dépend de plusieurs variables : rappelons en effet que le nombre de paramètres (donc de mesures) varie *exponentiellement* pour les méthodes conventionnelles de régression non linéaire, alors qu'elle varie *linéairement* pour les réseaux de neurones.

Ainsi, à la lumière de cette propriété fondamentale, la technique des réseaux de neurones apparaît comme une puissante *méthode de régression non linéaire* : ce n'est donc rien d'autre qu'une extension des méthodes de régression linéaire ou multilinéaires proposées par tous les logiciels qui permettent de faire de la modélisation de données. Contrairement à une croyance répandue, elle ne relève donc pas de l'Intelligence Artificielle au sens classique du terme, mais elle constitue une branche des statistiques appliquées. Il ne faut donc pas être victime du vocabulaire anthropomorphique utilisé (neurones,apprentissage, etc.) ; Le tableau ci-dessous résume les équivalences entre le vocabulaire des statistiques et celui des réseaux de neurones.

RÉSEAUX DE NEURONES	STATISTIQUES
Choix de l'architecture	Choix de la famille de fonctions destinées à approcher la fonction de régression
Ensemble d'apprentissage	Observations
Apprentissage	Estimation des paramètres de l'approximation de la fonction de régression
Généralisation	Interpolation, extrapolation

En résumé

En raison des propriétés fondamentales que nous venons de mentionner, les réseaux de neurones sont capables d'intervenir dans la résolution de nombreux problèmes de modélisation et de classification à partir de mesures. Ainsi, il peut être avantageux de les mettre en œuvre pour toute application nécessitant de trouver, par des méthodes statistiques, une relation non linéaire entre des données numériques.

Il va de soi que les méthodes "neuronales", ont des limitations, et que leur mise en œuvre nécessite quelques précautions de bon sens qui découlent directement des paragraphes précédents :

• Tout d'abord, nous avons vu que l'apport des réseaux de neurones réside dans leur capacité à réaliser des approximations de fonctions de régression non linéaires ; avant d'utiliser des réseaux de neurones dans une application, il faut donc s'assurer de la nécessité d'un modèle non linéaire. En effet, la mise en œuvre d'un modèle linéaire est généralement plus simple que celle d'un réseau de neurones.

• D'autre part, l'utilisation des réseaux de neurones (et plus généralement, des méthodes statistiques) nécessite un échantillon représentatif de la population étudiée.

Notons enfin qu'il peut arriver que d'autres approximateurs donnent, pour un problème particulier, de meilleurs résultats (résultats plus précis avec le même nombre de paramètres ajustables, ou résultats aussi précis avec moins de paramètres ajustables) que les réseaux de neurones. Il est donc toujours possible, si l'on dispose de temps pour cela, de tester ces approximateurs.

II.4 Application des réseaux de neurones

Les réseaux de neurones servent aujourd'hui a toutes sortes d'applications dans divers domaines. Par exemple, on a développé un auto-pilote pour avion, ou encore un système de guidage pour automobile, on a conçu des systèmes de lecture automatique de chèques bancaires et d'adresses postales, on produit des systèmes de traitement du signal pour différentes applications militaires, un système pour la synthèse de la parole, des réseaux sont aussi utilisés pour bâtir des systèmes de vision par ordinateur, pour faire des prévisions sur les marchés monétaires, pour évaluer le risque financier ou en assurance, pour différents processus manufacturiers, pour le diagnostic médical, pour l'exploration pétrolière ou gazière, en robotique, en télécommunication, ...,.Bref, les réseaux de neurones ont aujourd'hui un impact considérable et, il y a fort à parier, que leur importance ira grandissant dans le futur.

Les réseaux de neurones ont été appliqués dans le Laboratoire de Valorisation des Energies Fossiles du département du Génie Chimique à l'Ecole Nationale Polytechnique dés 2002 pour la prédiction des propriétés physiques des hydrocarbures purs à partir de la Température d'ébullition et de la Densité [FEKRACHE, 39], une extension de cette étude aux mélanges de corps purs et des fractions pétrolières a été effectuée par K. Mezioud [40]. Une autre estimation de ces propriétés mais cette fois ci à partir de la structure des composés a été effectuée par A. Hachemaoui [41], ainsi qu'une panoplie de travaux allant dans le même domaine.

II.5 Conclusion

La propriété d'approximation parcimonieuse fait des réseaux de neurones d'excellents outils pour la résolution des problèmes de modélisation et de prédiction. C'est cette propriété qui nous pousse à utiliser les réseaux de neurones dans l'estimation et la prédiction des propriétés physiques des hydrocarbures purs. Les travaux déjà effectuer dans ce domaine donnent de bons résultats et nous encourage à exploiter les réseaux de neurones seuls ou en les combinant avec différentes méthodes utilisées dans la prédiction des propriétés physiques comme celle des contributions de groupes. C'est l'objet de la partie calcul présentée dans la partie suivante. Chapitre III

PRESENTATION DES RESULTATS

UTILISATION DU COUPLAGE CONTRIBUTION DE GROUPES-RESEAUX DE NEURONES ARTIFICIELS A LA DETERMINATION DES PROPRITETES PHYSIQUES

Le but de ce chapitre est de proposer des méthodes (ou réseaux) permettant le calcul des propriétés physiques des hydrocarbures purs appartenant aux familles chimiques les plus importantes. Ces méthodes se basent essentiellement sur la relation *structure-propriété (Quantitative structure-property relationships (QSPRs))*, en d'autres termes, les propriétés physiques sont fonction des groupements qui composent la molécule. Pour ce faire, on as d'abord commencer par recueillir une base de données, comportant des propriétés physiques de corps purs de différentes familles (DIPPR, TRC, API), composée d'environs 400 hydrocarbures, que nous avons divisés en deux parties. La première partie concerne les hydrocarbures non cycliques (Non Ring group) et qui comprend les paraffines (iso et normal) et les alcènes, la seconde quand à elle englobe les aromatiques et les naphtènes (groupe Cyclique, Ring group).

Le problème principal dans la prédiction de propriétés physiques d'hydrocarbures en fonction de leurs structures, donc des différents groupements qui les composent, réside dans le fait que deux isomères, qui ont la même structure (donc les mêmes données dans les équations de simulation), ont différentes propriétés, ce qui rend la prédiction, dans ce cas la, imprécise. Pour remédier à ce problème nous avons proposé de rajouter la Température d'ébullition comme facteur pouvant discriminer entre les différents isomères. Le choix de la température d'ébullition comme facteur discriminant, autre le fait que deux isomères ont différentes températures d'ébullition dans la majorité des cas, réside dans le fait que c'est une propriété largement disponible dans différentes bases de données ou dans la littérature et est facilement accessible expérimentalement dans le cas où nous serions confronté à de nouvelles molécules. Ce choix peut être discutable mais nous verrons plus loin que les résultats obtenus nous confortent dans notre démarche.

Un prétraitement de notre base de données a été effectué et qui consiste a disséqué les hydrocarbures en groupements principaux (ou groupements de premier ordre), ces groupements vont servir, en plus de la température d'ébullition, comme entrées aux réseaux (la sortie étant la propriété a simulée). Pour ce qui est de la première partie les entrées considérées sont : Tb, Ncarbones, -CH3, -CH2-, -CH<, >C<, =CH2, =CH- =C<, =C=. Pour la seconde, ce sont : Tb, Ncarbones, -CH3, -CH2-, -CH<, >C<, =CH2, =CH-, =C<.

Une partie de la base de données (environs 10%) a été extraite pour en faire une base de test qui va servir à tester et valider nos réseaux. Le reste, donc 90%, va servir à entraîner nos réseaux de neurones. Pourquoi 10% ? : nous avons juger utile de donner la priorité à la base d'entraînement et il n'y a pas de règle générale qui définie ces proportions.

Après avoir récolter une base de données, définie les entrées et sorties des réseaux, nous avons procédé à la programmation sous environnement MATLAB 6.5[®]. (Un exemple d'un programme d'entraînement est donné en Annexe 2).

Les propriétés physiques étudiées sont :

Température critique [K] Pression critique [Kpa] Volume critique [m3/Kgmol] Facteur acentrique ω Volume molaire [m3/Kgmol] Densité [Kg/m3] Chaleur de formation Hf° [KJ/Kgmol] Facteur de caractérisation Kuop Chaleur spécifique [J/mol.K] Indice de réfraction n20. Nous présentons dans cette partie les résultats obtenus lors de la simulation de nos réseaux avec la base de test. Un exemple de calcul sur différents isomères est présenté pour rendre compte du pouvoir discriminant des réseaux établis et justifier le rajout de la température d'ébullition comme *entrée supplémentaire* au réseau. Une comparaison avec différentes corrélations citées dans la littérature est présentée ainsi que des figures issues à la fin de l'apprentissage de chaque propriété.

III.1 Résultats de Simulation et Comparaison

III.1.1 Propriétés Critiques :

III.1.1.1 Température Critique :

<u>Première partie</u>: iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée : Base d'entraînement : Base de test : 7 260 hydrocarbures 20 hydrocarbures

Tableau III.1 : Résultats obtenus sur la base de test :

	Tc (données)	Tc (CG-RNA)	AAD (%)
	[K]	[K]	
2Ethyl1butene	510.4	509.88	0.10132
2Methyl1pentene	506.5	506.03	0.093016
2Octene	580.37	580.72	0.0593
2M2-pentene	517.59	517.29	0.057601
233triMethyl-1-butene	532.59	533.42	0.1542
4M-1,3pentadiene	538.15	539.63	0.27418
3,7dimethyl-1,6octadiene	640.37	640.37	3.0812e-010
1 Eicosene	767.74	766.09	0.21421
1C30 =	845.6	845.5	0.012265
n Décane	617.6	618.32	0.11745
n C20	768.00	768.00	6.6404e-005
nC30	863.00	842.72	2.3504
3Ethyl-pentane	540.64	538.2	0.45055
22diMethyl-hexane	549.87	551.84	0.35745
233triMethyl-pentane	573.56	574.11	0.09665
23diMethyl-heptane	589.65	591.47	0.30764
3M-3E-hexane	597.55	595.4	0.35935
2,2diM3E-pentane	590.55	587.51	0.51482
3M-nonane	603.04	607.49	0.73292
2,7diM-octane	613.54	615.19	0.26883
			0.3261

AAD % : Déviation absolue moyenne.

	Tc (données)	Tc (CG-RNA)	AAD%
	[K]	[K]	
n butane	425.199	425.573	0.088
Cis2-butene	435.578	434.026	0.35634
Trans2-butene	428.627	427.869	0.17677
1,2-butadiene	443.699	443.538	0.036167
1,3-butadiene	425	424.558	0.10402
3M-1butene	450.371	453.442	0.67718
2M-2butene	470.372	472.890	0.5325

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	11
Base d'entraînement :	142 hydrocarbures
Base de test :	12 hydrocarbures

Tableau III.3 : Résultat obtenu sur la base de test

	Tc (données)	Tc (CG-RNA)	AAD %
	[K]	[K]	
cycloDecane	667.04	656.51	1.5779
MCC5(methylCyclopentane)	572.10	567.39	0.8226
1cis2tr3-tri MCC5	579.82	579.56	0.0440
1cis4-diMethylCychexane	598.15	595.96	0.3663
1tr2tr4-triMethyCychexane	613.71	609.07	0.7553
i-Bcyclohexane	658.71	657.69	0.1548
Toluene	591.80	591.80	0.0000
1M4-EBZ	640.37	641.35	0.1526
p.cymene	650.00	661.22	1.6973
n-DecylBZ	752.00	752.96	0.1283
Pentene-BZ	664.60	664.60	0.0000
1M-Naphtalene	772.04	754.87	2.2236
			0.6602

Tableau III.4 : Quelques exemples de calcul

	Tc (données)	Tc (CG-RNA)	AAD (%)
	[K]	[K]	
1MCyclopentene	542	541.96	0.00599
3Mcyclopentene	535.7	535.67	0.0049
1cis2-MCC5	564.817	559.82	0.88432
1tr2-MCC5	553.148	554.61	0.26338
o-Xylene	630.372	631.80	0.22609
m-Xylene	617.049	617.45	0.06551

III.1.1.2 Pression Critique

<u>Première partie</u>: iso, n-Paraffines + Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	8	
Base d'entraînement :	260	hydrocarbures
Base de test :	20	hydrocarbures

Tableau III.5 : Résultats obtenus sur la base de test

	Pc (données)	Pc (CG-RNA)	AAD%
	[10 ⁻³ KPa]	[10-3 KPa]	
2Ethyl1butene	3.27	3.2816	0.35249
2Methyl1pentene	3.27	3.2766	0.20176
2Octene	2.7661	2.7647	0.052265
2M2-pentene	3.2826	3.2648	0.54107
233triMethyl-1-butene	2.8978	2.8979	0.0035146
4M-1,3pentadiene	3.5466	3.5476	0.027335
3,7dimethyl-1,6octadiene	2.5434	2.5434	5.7039e-009
1 Eicosene	1.0432	1.1038	5.4932
1C30 =	0.73092	0.7256	0.71893
n Décane	2.1076	2.1356	1.3132
n C20	1.16	1.16	3.9629e-009
nC30	0.868	0.795	8.3484
3Ethyl-pentane	2.8908	2.8335	1.9822
22diMethyl-hexane	2.5291	2.5208	0.33007
233triMethyl-pentane	2.8199	2.8247	0.17053
23diMethyl-heptane	2.4014	2.4314	1.2357
3M-3E-hexane	2.5534	2.5396	0.53928
2,2diM3E-pentane	2.5534	2.5226	1.2055
3M-nonane	2.1374	2.1767	1.8041
2,7diM-octane	2.0959	2.2025	4.8388
			1.4566

Tableau III.6 : Quelques exemples de calcul

	Pc(données)	Pc (CG-RNA)	AAD%
	[Kpa]	[KPa]	
n-butane	3796.62	3820.492	0.6248
Cis2-butene	4205.77	4188.244	0.4167
Trans2-butene	4102.35	4130.046	0.670
1,2-butadiene	4498.83	4501.057	0.04948
1,3-butadiene	4326.56	4336.683	0.2334
3M-1butene	3516.31	3519.38	0.0872
2M-2butene	3447.36	3462.314	0.432

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	12	2
Base d'entraînement :	142	hydrocarbures
Base de test :	12	hydrocarbures

Tableau III.7 : Résultat obtenu sur la base de test

	Pc Données	Pc (CG-RNA)	AAD %
cycloDecane	2.9646	2.9388	0.8703
MCC5(methylCyclopentane)	3.4754	3.4437	0.9109
1cis2tr3-tri MCC5	2.8978	2.8826	0.5255
1cis4-diMethylCychexane	2.9646	2.9678	0.1081
1tr2tr4-triMethyCychexane	2.6751	2.6632	0.4445
i-Bcyclohexane	3.1206	3.1206	0.0000
Toluene	4.1	4.1000	0.0003
1M4-EBZ	2.9385	2.8936	1.5291
p.cymene	2.73	2.7322	0.0819
n-DecyIBZ	1.7857	1.8070	1.1774
Pentene-BZ	3.46	3.4587	0.0367
1M-Naphtalene	3.66	3.3182	9.3381
			1.2519

Tableau III.8 : Quelques exemples de calcul

	Pc (données)	Pc (CG-RNA)	AAD%
1MCyclopentene	3770	3774.08	0.1081
3Mcyclopentene	4019.96	4023.71	0.0931
1cis2-MCC5	3447.36	3437.08	0.29809
1tr2-MCC5	3447.36	3479.38	0.9205
o-Xylene	3732.81	3732.22	0.0157
m-Xylene	3541.12	3540.79	0.0093

III.1.1.3 Volume Critique

<u>Première partie</u> : iso,n-Paraffines + Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	7	
Base d'entraînement :	260	hydrocarbures
Base de test :	20	hydrocarbures

Tableau III.9 : Résultats obtenus sur la base de test

	Vc (données)	Vc (CG-RNA)	AAD%
	[m3/Kg.mol]	[m3/Kg.mol]	
2Ethyl1butene	0.3535	0.3517	0.4990
2Methyl1pentene	0.3535	0.3503	0.9052
2Octene	0.4644	0.4666	0.4695
2M2-pentene	0.3509	0.3515	0.1672
233triMethyl-1-butene	0.4002	0.4044	1.0402
4M-1,3pentadiene	0.3333	0.3445	3.2488
3,7dimethyl-1,6octadiene	0.5566	0.5566	0.0001
1 Eicosene	1.1365	1.1294	0.6208
1C30 =	1.7164	1.7172	0.0456
n Décane	0.6020	0.6071	0.8411
n C20	1.1900	1.1900	0.0000
nC30	1.7235	1.7313	0.4505
3Ethyl-pentane	0.4160	0.4139	0.5025
22diMethyl-hexane	0.4780	0.4662	2.4700
233triMethyl-pentane	0.4550	0.4438	2.4681
23diMethyl-heptane	0.5150	0.5063	1.6881
3M-3E-hexane	0.4870	0.4884	0.2936
2,2diM3E-pentane	0.4860	0.4968	2.1816
3M-nonane	0.5817	0.5692	2.1512
2,7diM-octane	0.5897	0.5538	6.0898
			1.3066

Tableau III.10 : Quelques exemples de calcul

	Vc (données)	Vc (CG-RNA)	AAD%
	[m3/Kgmol]	[m3/Kgmol]	
n-butane	0.25499	0.2532	0.67622
Cis2-butene	0.23394	0.2338	0.03808
Trans2-butene	0.23815	0.2363	0.7380
1,2-butadiene	0.21897	0.2190	0.0359
1,3-butadiene	0.221	0.2151	2.669
3M-1butene	0.30206	0.2919	3.3516
2M-2butene	0.31957	0.3008	5.8665

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	10)
Base d'entraînement :	142	hydrocarbures
Base de test :	12	hydrocarbures

Tableau III.11 : Résultat obtenu sur la base de test

	Vc (données) [m3/Kgmol]	Vc (CG-RNA) [m3/Kgmol]	AAD %
CycloDecane	0.5691	0.5608	1.4549
MCC5(methylCyclopentane)	0.3680	0.3698	0.4736
1cis2tr3-tri MCC5	0.4161	0.4090	1.6943
1cis4-diMethylCychexane	0.4623	0.4414	4.5154
1tr2tr4-triMethyCychexane	0.4681	0.4748	1.4294
i-Bcyclohexane	0.5297	0.5264	0.6193
Toluene	0.3160	0.3156	0.1169
1M4-EBZ	0.4726	0.4727	0.0127
p.cymene	0.4784	0.4793	0.2030
n-DecyIBZ	0.8500	0.8496	0.0442
Pentene-BZ	0.4115	0.4109	0.1494
1M-Naphtalene	0.5230	0.5031	3.8081
			1.2101

Tableau III.12 : Quelques exemples de calcul

	Vc (données)	Vc (CG-RNA)	AAD%
	[m3/Kgmol]	[m3/Kgmol]	
1MCyclopentene	0.31119	0.3120	0.26705
3Mcyclopentene	0.2985	0.2989	0.1343
1cis2-MCC5	0.36772	0.3672	0.1442
1tr2-MCC5	0.3616	0.3642	0.7267
o-Xylene	0.36912	0.3728	0.98825
m-Xylene	0.37573	0.3742	0.40502

Commentaires

Les résultats obtenus lors de la simulation de notre base de test sont très satisfaisants, rappelons juste que les hydrocarbures cités dans la base de test n'ont pas servis à l'entraînement donc complètement inconnus du réseau, ces résultas démontre de la qualité de généralisation des réseaux établis. L'erreur moyenne obtenue est inférieure à 1.30% pour les trois propriétés critiques. Les quelques exemples de calcul donnés représentent en fait différents isomères, les résultats obtenus pour ces isomères sont satisfaisants et c'est ce qui justifie l'ajout de la température d'ébullition comme paramètre supplémentaire.

Dans ce qui suit, nous allons présenter une comparaison avec d'autres corrélations citées dans la littérature.

III.1.1.4 Comparaison avec d'autres corrélations

Une comparaison de notre méthode avec les corrélations citées dans la littérature a été effectuée. Cette étude concerne les propriétés critiques des hydrocarbures de notre base de test.

		Déviation moyenne absolue (%)	
	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
_ / .	CG-RNA	0.5260	0.4016
Temperature Critique	Corrélation de Lydersen ³	1.8349	2.6422
-	Corrélation de Klincewicz- Reid ⁵	2.0525	1.4065
	Corrélation de Joback ²⁰	1.2446	0.9425
	Corrélation de Skander- Chitour ²³	2.889	1.72786

Tableau III.13 : Deviations moyennes enregistrees par differentes correlations

		Déviation moyenne absolue (%)	
	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
	CG-RNA	0.9822	1.2260
Pression Critique	Corrélation de Lydersen ³	6.0778	13.051
	Corrélation de Klincewicz- Reid ⁵	9.3493	6.7274
	Corrélation de Skander- Chitour ²³	-	5.4180

		Déviation mo (yenne absolue %)
	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
	CG-RNA	1.482	1.337
Volume	Corrélation de Lydersen ³	7.266	6.0369
Critique	Corrélation de Klincewicz- Reid ⁵	4.528	4.0491
	Corrélation de Joback ²⁰	4.518	4.886
	Corrélation de Skander- Chitour ²³	3.4903	6.4141

Commentaires :

De la comparaison des différentes méthodes, la méthode CG-RNA proposée et appliquée aux corps purs donne de meilleurs résultats concernant les propriétés critiques, ce qui permet d'avancer que cette méthode approche mieux les valeurs expérimentales. Pour mieux constater cela nous proposons de montrer, dans ce qui suit, des figures obtenues lors de l'établissement de nos réseaux. Ces figures sont affichées par le logiciel MATLAB à la fin de l'entraînement des réseaux.

Fig.III.1 : Evolution de la Température critique en fonction du nombre de carbone.

Fig.III.2 : Evolution de la Pression critique en fonction du nombre de carbone (Nc).

Fig.III.3 : Evolution du Volume critique en fonction du nombre de carbone.

III.1.2 Propriétés Thermiques :

III.1.2.1 Facteur Acentrique $\boldsymbol{\omega}$:

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	11
Base d'entraînement :	260 hydrocarbures
Base de test :	20 hydrocarbures

Tableau III.14 : Résultats obtenus sur la base de test

	w (données)	w (CG-RNA)	AAD (%)
2Ethyl1butene	0.2670	0.2725	2.0107
2Methyl1pentene	0.2670	0.2686	0.5923
2Octene	0.3500	0.3441	1.6730
2M2-pentene	0.2721	0.2710	0.4328
233triMethyl-1-butene	0.1927	0.1932	0.2895
4M-1,3pentadiene	0.2230	0.2231	0.0365
3,7dimethyl-1,6octadiene	0.2596	0.2596	0.0000
1 Eicosene	0.8806	0.8871	0.7337
1C30 =	0.9211	0.9235	0.2626
n Décane	0.4885	0.4975	1.8201
n C20	0.9069	0.9069	0.0000
nC30	1.3072	1.2625	3.4204
3Ethyl-pentane	0.3140	0.3197	1.7833
22diMethyl-hexane	0.3430	0.3361	2.0219
233triMethyl-pentane	0.2900	0.2859	1.4239
23diMethyl-heptane	0.3852	0.3793	1.5371
3M-3E-hexane	0.3509	0.3426	2.3621
2,2diM3E-pentane	0.3301	0.3376	2.2409
3M-nonane	0.4628	0.4668	0.8496
2,7diM-octane	0.4479	0.4314	3.6816
			1.3586

Tableau III.15 : Quelques exemples de calcul

	w (données)	w (CG-RNA)	AAD%
n butane	0.201	0.2032	1.111
Cis2-butene	0.20295	0.2170	6.496
Trans2-butene	0.21818	0.2056	6.092
1,2-butadiene	0.25499	0.2549	0.000
1,3-butadiene	0.19494	0.1927	1.162
3M-1butene	0.209	0.2083	0.336
2M-2butene	0.28499	0.2852	0.091

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	16
Base d'entraînement :	142 hydrocarbures
Base de test :	12 hydrocarbures

Tableau III.16 : Résultat obtenu sur la base de test

	w (données)	w (CG-RNA)	AAD %
cycloDecane	0.5583	0.5470	2.0240
MCC5 (methyl	0.2330	0.2329	0.0148
Cyclopentane)			
1cis2tr3-tri MCC5	0.2829	0.2825	0.1446
1cis4-diMethylCychexane	0.2340	0.2413	3.0162
1tr2tr4-triMethyCychexane	0.2619	0.2611	0.3158
i-Bcyclohexane	0.3190	0.3178	0.3736
Toluene	0.2596	0.2597	0.0242
1M4-EBZ	0.3220	0.3252	0.9827
p.cymene	0.3730	0.3709	0.5718
n-DecylBZ	0.6750	0.6750	0.0005
Pentene-BZ	0.3160	0.3160	0.0116
1M-Naphtalene	0.3478	0.3373	3.0189
			0.8748

Tableau III.17 : Quelques exemples de calcul

	w (données)	w (CG-RNA)	AAD (%)
1MCyclopentene	0.2189	0.2223	1.5031
3Mcyclopentene	0.221	0.2179	1.4180
1cis2-MCC5	0.2689	0.2678	0.4406
1tr2-MCC5	0.2689	0.2661	1.0746
o-Xylene	0.3023	0.2960	2.1112
m-Xylene	0.326	0.3176	2.6157

Commentaires :

La simulation du facteur acentrique n'a pas été facile, cela s'est répercutée sur un temps de calcul assez long et a engendré des réseaux de neurones assez "grand" (11 neurones pour la première famille et 16 neurones pour les cycliques). On peut expliquer cela par le fait que les données suivent deux courbes pour le cas des paraffines et alcènes et sont assez éparpillées pour les cycliques (comme le montre les figures III.4). Néanmoins, les réseaux établis prédisent le facteur acentrique avec une assez bonne précision pour les deux familles étudiées.

Nous présentons dans ce qui suit une comparaison avec différentes corrélations citées dans la littérature.

III.1.2.2 Comparaison avec d'autres corrélations

Une comparaison de notre méthode avec les corrélations citées dans la littérature a été effectuée. Cette étude concerne les hydrocarbures de notre base de test.

Tableau III.18	: Déviations	moyennes	enregistrées	par	différentes	corrélations	

		Déviation moyenne absolue (%)		
	Méthodes	Aromatiques+Naphtènes	Paraffines + Alcènes	
	CG-RNA	0.8748	1.3586	
Facteur Acentrique	Corrélation de Lee-Kesler ⁴⁴	2.36	4.27	
	Corrélation de Skander- Chitour ³⁶		9.715	
	Corrélation de Edmister ²⁵	2.673	4.82	

Commentaire :

La comparaison de la méthode CG-RNA avec d'autres citées dans la littérature montre que les écarts par rapport aux données des tables sont meilleurs avec des déviations moyennes absolues inférieures à 1.36 %.

Les figures qui suivent montrent la variation du facteur acentrique par rapport au nombre de carbone dans la molécule, ces figures montrent que le facteur acentrique augmente avec le nombre de carbone et que les points prédis par le réseaux de neurone (schématisés par +) concordent avec les données des tables (schématisées par o) les écarts sont de fait faibles.

Fig.III.4 : variation du Facteur acentrique en fonction de Nc

III.1.3 Propriétés de Transport :

III.1.3.1 Densité :

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	9
Base d'entraînement :	260 hydrocarbures
Base de test :	20 hydrocarbures

Tableau III.19 : Résultats obtenus sur la base de test

	d20 (données) [Ka/m³]	d20 (CG-RNA) [Ka/m³]	AAD (%)
2Ethyl1butene	694.064	686.319	1.1158
2Methyl1pentene	684.583	682.951	0.2383
2Octene	723.067	724.439	0.1895
2M2-pentene	689.864	691.768	0.2752
233triMethyl-1-butene	707.846	709.513	0.2350
4M-1,3pentadiene	722.697	721.485	0.1676
3,7dimethyl-1,6octadiene	760.447	759.810	0.0837
1 Eicosene	798.789	799.573	0.0981
1C30 =	806.848	803.236	0.4476
n Décane	732.721	733.728	0.1373
n C20	790.669	790.534	0.0170
nC30	811.898	795.907	1.9695
3Ethyl-pentane	701.168	691.217	1.4192
22diMethyl-hexane	698.393	706.570	1.1573
233triMethyl-pentane	729.041	725.987	0.4188
23diMethyl-heptane	728.664	730.912	0.3076
3M-3E-hexane	744.02	733.664	1.3918
2,2diM3E-pentane	737.416	735.973	0.1957
3M-nonane	735.879	738.296	0.3274
2,7diM-octane	727.164	740.615	1.8162
AAD %			0.6004

Tableau III.20 : Quelques exemples de calcul

	d20 (données) [Ka/m³]	d20 (CG-RNA) [Ka/m ³]	AAD%
n butane	583.223	589.569	1.0765
Cis2-butene	625.953	618.323	1.2189
Trans2-butene	608.684	611.590	0.4752
1,2-butadiene	650.7	668.865	2.7158
1,3-butadiene	619.744	630.647	1.7289
3M-1butene	631.27	631.79	0.0838
2M-2butene	666.109	664.95	0.1735

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	8
Base d'entraînement :	142 hydrocarbures
Base de test :	12 hydrocarbures

Tableau III.21 : Résultat obtenu sur la base de test

	d20 (données)	d20 (CG-RNA)	AAD %
	[10 ⁻³ Kg/m ³]	[10 ⁻³ Kg/m ³]	
cycloDecane	0.8600	0.8569	0.3674
MCC5 (methylCyclopentane)	0.7724	0.7683	0.5311
1cis2tr3-tri MCC5	0.7734	0.7709	0.3226
1cis4-diMethylCychexane	0.7858	0.7811	0.6058
1tr2tr4-triMethyCychexane	0.7746	0.7789	0.5530
i-Bcyclohexane	0.7974	0.7867	1.3359
Toluene	0.8700	0.8700	0.0008
1M4-EBZ	0.8637	0.8702	0.7502
p.cymene	0.8600	0.8681	0.9348
n-DecylBZ	0.8579	0.8590	0.1352
Pentene-BZ	0.9096	0.9095	0.0047
1M-Naphtalene	1.0240	1.0383	1.3765
AAD %			0.5765

Tableau III.22 : Quelques exemples de calcul

	d20 (données) [Ka/m³]	d20 (CG-RNA) [Ka/m³]	AAD (%)
1MCyclopentene	784.52	784.3741	0.0186
3Mcyclopentene	976.385	976.2849	0.0102
1cis2-MCC5	775.908	774.4755	0.1846
1tr2-MCC5	754.757	752.3238	0.3224
o-Xylene	883.145	881.8303	0.1488
m-Xylene	866.882	866.6046	0.0319

Fig.III.5 : variation de la densité en fonction de Nc.

III.1.3.2 Volume Molaire :

<u>Première partie</u>: iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	5	
Base d'entraînement :	260	hydrocarbures
Base de test :	20	hydrocarbures
blogu TTT 22 · Décultate obtopue eur la base de test	F	-

Tableau III.23 : Résultats obtenus sur la base de test.

	Vm (données)	Vm (CG-RNA)	AAD (%)
	[m ³ /Kgmol]	[m ³ /Kgmol]	
2Ethyl1butene	0.1228	0.1253	1.9812
2Methyl1pentene	0.1246	0.1255	0.7739
2Octene	0.1567	0.1567	0.0150
2M2-pentene	0.1235	0.1230	0.4392
233triMethyl-1-butene	0.1402	0.1421	1.3113
4M-1,3pentadiene	0.1150	0.1153	0.2564
3,7dimethyl-1,6octadiene	0.1835	0.1834	0.0305
1 Eicosene	0.3540	0.3562	0.6189
1C30 =	0.5248	0.5254	0.1138
n Décane	0.1960	0.1948	0.5975
n C20	0.3585	0.3585	0.0015
nC30	0.5281	0.5282	0.0225
3Ethyl-pentane	0.1443	0.1448	0.3519
22diMethyl-hexane	0.1652	0.1621	1.8876
233triMethyl-pentane	0.1581	0.1583	0.1298
23diMethyl-heptane	0.1776	0.1760	0.8831
3M-3E-hexane	0.1741	0.1741	0.0230
2,2diM3E-pentane	0.1757	0.1753	0.2634
3M-nonane	0.1953	0.1943	0.4855
2,7diM-octane	0.1978	0.1946	1.6267
AAD %			0.5906

Tableau III.24 : Quelques exemples de calcul.

	Vm (données)	Vm (CG-RNA)	AAD%
n butane	0.1014	0.1002	1.1045
Cis2-butene	0.0912	0.0921	0.9967
Trans2-butene	0.0938	0.0929	0.9168
1,2-butadiene	0.0840	0.0840	0.0714
1,3-butadiene	0.0880	0.0882	0.3284
3M-1butene	0.1128	0.1134	0.5378
2M-2butene	0.1067	0.1031	3.2896

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	7
Base d'entraînement :	142 hydrocarbures
Base de test :	12 hydrocarbures

Tableau III.25 : Résultat obtenu sur la base de test.

	Vm (données)	Vm (CG-RNA)	AAD %
	[m ³ /K.mol]	[m ³ /K.mol]	
cycloDecane	0.1668	0.1686	1.0814
MCC5 (methylCyclopentane)	0.1283	0.1287	0.3338
1cis2tr3-tri MCC5	0.1466	0.1468	0.1284
1cis4-diMethylCychexane	0.1442	0.1450	0.5624
1tr2tr4-triMethyCychexane	0.1645	0.1635	0.6256
i-Bcyclohexane	0.1775	0.1787	0.6770
Toluene	0.1068	0.1060	0.7368
1M4-EBZ	0.1404	0.1400	0.3041
p.cymene	0.1577	0.1558	1.1818
n-DecyIBZ	0.2566	0.2564	0.1042
Pentene-BZ	0.1310	0.1310	0.0106
1M-Naphtalene	0.1398	0.1408	0.6642
AAD %			0.5342

Tableau III.26 : Quelques exemples de calcul.

	Vm (données) [m ³ /Kmol]	Vm (CG-RNA) [m ³ /Kmol]	AAD (%)
1MCyclopentene	0.105916	0.1071	1.1885
3Mcyclopentene	8.51 10 ⁻²	0.0849	0.1762
1cis2-MCC5	0.12781	0.1286	0.6838
1tr2-MCC5	0.131439	0.1313	0.0449
o-Xylene	0.121197	0.1228	1.3616
m-Xylene	0.1235	0.1229	0.4210

Fig.III.6 : variation du Volume molaire en fonction de Nc.

III.1.3.3 Comparaison avec d'autres corrélations

Une comparaison de notre méthode avec les corrélations citées dans la littérature a été effectuée. Cette étude concerne les propriétés critiques des hydrocarbures de notre base de test.

Tableau III.27 : Déviations moyennes enregistrées par différentes corrélations.

		Déviation moyenne absolue (%)	
	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
	CG-RNA	0.5765	0.6004
Densité	Corrélation de Rackett ¹⁹	3.187	2.826
	Corrélation de Skander- Chitour ³⁶	3.5003	2.407

		Déviation moyo (%	enne absolue)
Volume	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
molaire	CG-RNA	0.5342	0.5906
	Corrélation de SKANDER, SOUAHI et CHITOUR	9.6784	1.991

Commentaire :

Les déviations moyennes enregistrées par les réseaux de neurones par rapport aux valeurs de références sont satisfaisantes (inférieurs à 1%). La comparaison avec d'autres méthodes montre que les déviations sont meilleures et cela pour les deux propriétés étudiées.

III.1.4 Propriétés Thermodynamiques :

III.1.4.1 Chaleur Spécifique :

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée : Base d'entraînement :

400 hydrocarbures

6

Base de test : 60 hydrocarbures **Tableau III.28 :** Résultats obtenus sur la base de test (20 premiers éléments).

N°	Cp° (données)	Cp°(CG-RNA)	AAD (%)
	10 ⁻³ [J/mol.K]	10 ⁻³ [J/mol.K]	
HC1	0.1870	0.1874	0.2115
HC2	0.3235	0.3234	0.0228
HC3	0.4605	0.4647	0.8980
HC4	0.1401	0.1396	0.3280
HC5	0.1636	0.1662	1.5525
HC6	0.1909	0.1895	0.6934
HC7	0.1870	0.1909	2.0304
HC8	0.1921	0.1840	4.2151
HC9	0.2056	0.2114	2.7397
HC10	0.2146	0.2079	3.1188
HC11	0.2133	0.2118	0.6883
HC12	0.2141	0.2115	1.2328
HC13	0.2087	0.2119	1.5189
HC14	0.2122	0.2117	0.2349
HC15	0.2144	0.2365	9.3573
HC16	0.2328	0.2342	0.6123
HC17	0.2271	0.2371	4.2301
HC18	0.2292	0.2364	3.0511
HC19	0.2373	0.2324	2.0621
HC20	0.2280	0.2311	1.3432
			2.007

Note : la déviation moyenne obtenue pour toute la base de test est de : 2.5278 %

 Tableau III.29 : Quelques exemples de calcul.

	Cp°(données)	Cp°(CG-RNA)	AAD%
	[J/mol.K]	[J/mol.K]	
n butane	98.35	95.96	2.4257
Cis2-butene	80.2	79.83	0.4569
Trans2-butene	87.7	78.99	9.9302
1,2-butadiene	79.5	79.49	0.0046
1,3-butadiene	79.8	77.68	2.6471
3M-1butene	115	116.09	0.9432
2M-2butene	105	104.49	0.4834

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	6
Base d'entraînement :	138 hydrocarbures
Base de test :	12 hydrocarbures

Tableau III.30 : Résultat obtenu sur la base de test.

	Cp° (données)	Cp° (CG-RNA)	AAD %
	[10^-3 J/mol.K]	10^-3 [J/mol.K]	
HC1	0.1523	0.1476	3.0551
HC2	0.1435	0.1366	4.7753
HC3	0.1737	0.1725	0.7048
HC4	0.1817	0.1790	1.4689
HC5	0.2039	0.2039	0.0095
HC6	0.2048	0.2049	0.0500
HC7	0.2058	0.2037	1.0094
HC8	0.1990	0.2022	1.5999
HC9	0.1873	0.1866	0.3999
HC10	0.4454	0.4453	0.0157
HC11	0.1061	0.1085	2.1703
HC12	0.1345	0.1350	0.3375
			1.2997

Tableau III.31 : Quelques exemples de calcul.

	Cp (données) [J/mol.K]	Cp (CG-RNA) [J/mol.K]	AAD (%)
1MCyclopentene	101	100.51	0.4837
3Mcyclopentene	100	99.88	0.1172
1cis2-MCC5	134.1	127.17	5.1642
1tr2-MCC5	134.5	128.22	4.6688
o-Xylene	132.31	128.85	2.6109
m-Xylene	125.71	126.88	0.9286

Fig.III.7 : variation de la Chaleur spécifique en fonction de Nc.

III.1.4.2 Enthalpie Standard de Formation :

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :	
Nombre de neurones dans la couche cachée :	4
Base d'entraînement :	318 hydrocarbures
Base de test :	40 hydrocarbures

Tableau III.32 : Résultats obtenus sur la base de test.

			2.0065
HC20	-0.2413	-0.2452	1.6011
HC19	-0.2545	-0.2547	0.0761
HC18	-0.2544	-0.2564	0.8210
HC17	-0.2566	-0.2539	1.0309
HC16	-0.2636	-0.2583	2.0276
HC15	-0.2696	-0.2639	2.1608
HC14	-0.2338	-0.2302	1.5856
HC13	-0.2414	-0.2397	0.7114
HC12	-0.2313	-0.2343	1.3107
HC11	-0.2318	-0.2347	1.2661
HC10	-0.2422	-0.2465	1.7658
HC9	-0.2338	-0.2343	0.2057
HC8	-0.2257	-0.2196	2.7684
HC7	-0.2192	-0.2190	0.0962
HC6	-0.2185	-0.2152	1.4951
HC5	-0.1941	-0.1950	0.4615
HC4	-0.1759	-0.1785	1.4803
HC3	-0.4352	-0.4395	0.9983
HC2	-0.3114	-0.3123	0.2855
HC1	-0.1468	-0.1492	1.6309
	10 ⁻³ [kJ/mol]	10^{-3} [kJ/mol]	/
N°	H _€ ° ₂₀₉₄ (données)	H _€ ° ₂₀₈₁ (CG-RNA)	AAD (%)

L'écart moyen obtenue sur toute la base de test est de 1.7189 % avec un maximum de 10.5489 %.

Tableau III.33 : Quelques exemples de calcul.

	H _f ° _{298K} (données) [kJ/mol]	H _f ° _{298K} (CG-RNA) [kJ/mol]	AAD%
n butane	-126.19	-126.49	0.2392
Cis2-butene	-6.989	-9.42	25.8479
Trans2-butene	-11.178	-11.24	0.5621
1,2-butadiene	162.29	164.24	1.1907
1,3-butadiene	110.19	108.03	1.9526
3M-1butene	-28.969	-29.0	0.3375
2M-2butene	-42.57	-40.92	3.8909

Caractéristique du réseau :

Nombre de neurones dans la couche cachée :	15	
Base d'entraînement :	142	hydrocarbures
Base de test :	10	hydrocarbures

	H _f ° _{298K} (données)	H _f ° _{298K} (CG-RNA)	AAD %
	10 ⁻³ [kJ/mol]	10 ⁻³ [kJ/mol]	
HC1	-0.1381	-0.1381	0.0001
HC2	-0.1549	-0.1549	0.0078
HC3	-0.1127	-0.1117	0.9017
HC4	-0.1768	-0.1811	2.4278
HC5	-0.1333	-0.1345	0.8611
HC6	-0.1487	-0.1512	1.6925
HC7	0.0500	0.0501	0.0503
HC8	-0.0020	-0.0016	30.6017
HC9	-0.0419	-0.0419	0.0000
HC10	-0.1583	-0.1577	0.4106
			3.6954

Tableau III.34 : Résultat obtenu sur la base de test.

Tableau III.35 : Quelques exemples de calcul.

	H _f ° _{298K} (données)	H _f ° _{298K} (CG-RNA)	AAD (%)
	[kJ/mol]	[kJ/mol]	
1cis3tr5McycC6	-206.5	-212.63	2.883
1cis3tcis5McycC6	-215.2	-216.54	0.619
1cis2-MCC5	-129.5	-133.31	2.862
1tr2-MCC5	-136.6	-134.71	1.379
o-Xylene	19.08	17.64	7.531
m-Xylene	17.32	16.85	2.678

Fig.III.8 : variation de la l'enthalpie standard de formation en fonction de Nc.

III.1.4.3 Comparaison avec d'autres corrélations

Une comparaison de notre méthode avec les corrélations citées dans la littérature a été effectuée. Cette étude concerne les propriétés critiques des hydrocarbures de notre base de test.

Tableau III.38 : Déviations moyennes enregistrées par différentes corrélations.

		Déviation moyenne absolue (%)		
	Méthodes	Aromatiques+Naphtènes	Paraffines + Alcènes	
	CG-RNA	1.2997	2.007	
Chaleur Spécifique	Corrélation de RIHANI & DORAISWAMY ²⁸	6.913	5.832	
	Corrélation de BENSON ²⁹	9.254	7.687	
	Corrélation de Skander- Chitour ³⁶	6.411	2.694	

		Déviation moyenne absolue (%)	
	Méthodes	Aromatiques+Naphtènes	Paraffines + Alcènes
	CG-RNA	3.6954	2.0065
Enthalpie standard de	Corrélation de FRANKLIN ^{30,31}	4.591	3.8558
formation	Corrélation de BENSON ²⁹	6.311	4.2608
	Corrélation de JOBACK ²⁰	5.026	5.6625

Commentaire :

Les réseaux établis pour l'estimation des propriétés thermodynamiques étudiées donnent des écarts raisonnables par rapport aux valeurs expérimentales de ces propriétés. La comparaison effectuée avec d'autres corrélations montre que les écarts sont soit meilleurs ou équivalents. L'entraînement effectué sur l'enthalpie standard de formation n'a pas été aisé dans le cas des hydrocarbures cycliques. Cela, est sans doute, à cause des valeurs expérimentales qui sont assez éparses et avec des ordres de grandeurs différents(comme le montre la figure III.8).

III.1.5 Propriété Spécifique :

III.1.5.1 Facteur de caractérisation de Watson Kuop :

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau :

Nombre de neurones dans la couche cachée : Base d'entraînement : Base de test : 8 940 hydrocarbures 44 hydrocarbures

Tableau III.39 : Résultats obtenus sur la base de test (20 éléments).

N°	K _{UOP} (données)	K _{UOP} (CG-RNA)	AAD (%)
HC1	13.245	13.162	0.6249
HC2	12.637	12.745	0.8496
HC3	12.634	12.530	0.8230
HC4	12.531	12.470	0.4826
HC5	12.652	12.495	1.2546
HC6	12.450	12.087	3.0029
HC7	12.303	12.275	0.2276
HC8	12.288	12.314	0.2138
HC9	12.681	12.538	1.1366
HC10	12.528	12.397	1.0515
HC11	12.232	12.276	0.3636
HC12	12.484	12.357	1.0216
HC13	12.223	12.249	0.2160
HC14	12.044	12.084	0.3327
HC15	12.345	12.370	0.2085
HC16	12.358	12.221	1.1151
HC17	12.254	12.351	0.7851
HC18	12.301	12.264	0.2940
HC19	12.407	12.402	0.0397
HC20	12.368	12.452	0.6763
			0.7359

L'écart moyen enregistré sur toute la base de test est de 0.7123 avec une déviation maximum de 3.4788%.

Tableau III.40 : Quelques exemples de calcul.

	K _{UOP} (données)	K _{UOP} (CG-RNA)	AAD%
n butane	ND	13.28	
Cis2-butene	12.63	12.74	0.8525
Trans2-butene	12.95	12.7	1.3590
1,2-butadiene	12.17	12.17	0.0213
1,3-butadiene	ND	12.38	
3M-1butene	12.78	12.79	0.1125
2M-2butene	12.44	12.34	0.7757

Caractéristique du réseau :

Nombre de neurones dans la couche cachée : Base d'entraînement :

456 hydrocarbures

Base de test :

40 hydrocarbures

7

Tableau III.41 : Résultat obtenu sur quelques éléments de la base de test.

	K _{UOP} (données)	K _{UOP} (CG-RNA)	AAD %
HC1	10.63	10.47	1.4872
HC2	10.23	10.23	0.0225
HC3	10.58	10.32	2.4586
HC4	10.82	10.76	0.5206
HC5	10.78	10.75	0.2395
HC6	10.61	10.68	0.6948
HC7	10.73	10.93	1.8866
HC8	11.63	11.64	0.0894
HC9	11.28	11.29	0.1384
HC10	13.04	13.02	0.1459
HC11	11.73	11.70	0.1906
HC12	12.26	12.28	0.1647
			0.6699

L'écart moyen de toute la base de test est de 0.5654% **Tableau III.42 :** Quelques exemples de calcul.

	K _{UOP} (données)	K _{UOP} (CG-RNA)	AAD (%)
1MCyclopentene	10.92	11.08	1.4973
3Mcyclopentene	11.03	11.02	0.0825
1cis2-MCC5	11.28	11.46	1.6505
1tr2-MCC5	11.49	11.56	0.6768
o-Xylene	10.28	10.44	1.5448
m-Xylene	10.43	10.43	0.0115

Commentaires :

Les écarts moyens observés par rapport aux données de références sont inférieurs à 1% et ce malgré le nombre important des données a simulé.

Fig.III.9 : variation du facteur de caractérisation Kuop en fonction de Nc.

III.1.5.2 Indice de réfraction n20 :

<u>Première partie</u> : iso+n-Paraffines et Alcènes (Non-Ring group)

Caractéristique du réseau : Nombre de neurones dans la couche cachée : Base d'entraînement : Base de test :

6 596 hydrocarbures 90 hydrocarbures

Tableau III.39 : Résultats obtenus sur la base de test.

N°	n20 (données)	n20 (CG-RNA)	AAD (%)
HC1	1.3975	1.3986	0.0815
HC2	1.4289	1.4286	0.0191
HC3	1.4425	1.4403	0.1554
HC4	1.4501	1.4505	0.0294
HC5	1.4549	1.4561	0.0819
HC6	1.4583	1.4574	0.0631
HC7	1.3765	1.3723	0.3065
HC8	1.3886	1.3888	0.0122
HC9	1.4001	1.4025	0.1687
HC10	1.3985	1.3982	0.0237
HC11	1.4016	1.3978	0.2730
HC12	1.4205	1.4241	0.2518
HC13	1.4007	1.4055	0.3399
HC14	1.4062	1.4057	0.0371
HC15	1.3997	1.3990	0.0495
HC16	1.4141	1.4168	0.1928
HC17	1.4120	1.4078	0.3002
HC18	1.4106	1.4151	0.3163
HC19	1.4165	1.4188	0.1611
HC20	1.4225	1.4196	0.2044
			0.1534

L'écart moyen pour toute la base de test est de 0.1971%

 Tableau III.40 : Quelques exemples de calcul.

	n20 (données)	n20 (CG-RNA)	AAD%
n butane	1.3326	1.3388	0.4631
Cis2-butene	1.364	1.3761	0.8793
Trans2-butene	1.355	1.3698	1.0804
1,2-butadiene	ND	1.3683	
1,3-butadiene	ND	1.3659	
3M-1butene	1.3647	1.3746	0.7202
2M-2butene	1.3877	1.4027	1.0693

Caractéristique du réseau :

Nombre de neurones dans la couche cachée : Base d'entraînement :

Base de test :

5

452 hydrocarbures

60 hydrocarbures

Tableau III.41 : Résultat obtenu sur la base de test (12 premiers éléments).

	n20 (données)	n20 (CG-RNA)	AAD %
HC1	1.4958	1.4969	0.0717
HC2	1.4994	1.5044	0.3308
HC3	1.5412	1.5430	0.1173
HC4	1.5217	1.5289	0.4696
HC5	1.5390	1.5331	0.3844
HC6	1.5376	1.5370	0.0358
HC7	1.4909	1.4975	0.4378
HC8	1.5203	1.5191	0.0798
HC9	1.5117	1.5081	0.2378
HC10	1.5043	1.5043	0.0014
HC11	1.5076	1.4984	0.6085
HC12	1.4960	1.4959	0.0058
			0.2317

L'écart moyen obtenu sur toute la base de test est de 0.2127% **Tableau III.42 :** Quelques exemples de calcul.

	n20 (données)	n20 (CG-RNA)	AAD (%)
1MCyclopentene	1.4322	1.4298	0.1675
3Mcyclopentene	1.421	1.4191	0.1337
1cis2-MCC5	1.42217	1.4175	0.3283
1ter2-MCC5	1.412	1.4105	0.1062
o-Xylene	1.50545	1.506	0.0365
m-Xylene	1.49722	1.4979	0.0453

Commentaires :

L'écart moyen absolu observé sur toute la base de test est inférieur à 0.2%. Le calcul effectué sur les différents isomères donne de bons résultats avec des erreurs de même ordre de grandeur que pour les autres hydrocarbures quelque soit leur appartenance chimique.

Fig.III.10 : variation de l'indice de réfraction en fonction de Nc.

III.1.5.2 Comparaison avec d'autres corrélations

Une comparaison de notre méthode avec les corrélations citées dans la littérature a été effectuée. Cette étude concerne les propriétés critiques des hydrocarbures de notre base de test.

Tableau III.43 : Déviations moyennes enregistrées par différentes corrélations.

		Déviation moyenne absolue (%)	
Facteur de caractérisation Kuop	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
	CG-RNA	0.6699	0.7359
	Corrélation de Bouamra- Chitour ⁴³	6.257	2.706
	Corrélation de Skander- Chitour ³⁶	1.165	0.514

		Déviation moyenne absolue (%)	
Indice de réfraction	Méthodes	Aromatiques+ Naphtènes	Paraffines + Alcènes
n20	CG-RNA	0.2317	0.1534
	Corrélation de Lipkin-Martin	1.486	1.297

Commentaire :

Le tableau précédant montre que la méthode proposée est meilleur pour l'estimation du facteur de caractérisation ainsi que l'indice de réfraction. A noter juste, que lors de la comparaison, l'estimation du Kuop par les méthodes de Skander-Chitour et Bouamra-Chitour n'a concerné que les paraffines, ces deux méthodes sont inapplicable sur les alcènes.

III.2. Conclusion :

Les réseaux de neurones établis permettent une meilleure prédiction des propriétés physiques étudiées comparés aux méthodes conventionnelles citées dans la littérature. Les résultats obtenus présentent de faibles écarts par rapport aux données expérimentales y compris lors de la simulation des réseaux de neurones sur différents isomères. Ces résultats permettent de justifier le rajout de la température d'ébullition comme entrée supplémentaire à coté de la structure du composé.

Chapitre IV

APPLICATION

AU

MELANGES

APPLICATION AUX MELANGES

IV.1. Détermination des propriétés physiques des mélanges de composition finie

IV.1.1 Introduction

L'une des applications des réseaux de neurones établis est la prédiction des propriétés de mélanges de compositions finies, soit ceux dont la composition sont parfaitement connus. Pour ce types de mélanges, il suffit d'appliquer les règles de mélange conventionnelles de types règles de Kay (1936). Ces règles de mélanges sont basées sur le fait qu'il n'y a pas d'interactions entre les hydrocarbures, les grandeurs d'excès sont donc supposées négligeables :

$$\mathsf{P}_{\mathsf{m\acute{e}l}} = \sum \mathsf{P}_i X_i \tag{1}$$

X_i représente la fraction massique, molaire ou volumique du constituant *i* dans le mélange ; P_i est la valeur de la propriété du constituant *i* calculée par le réseau de neurones.

Dans cette partie du chapitre, nous nous sommes proposés d'appliquer les réseaux établis dans le chapitre précédent, à des mélanges binaires et ternaires de corps purs ainsi qu'a des fractions pétrolières légères, issues de la distillation TBP d'un pétrole brut algérien dont les caractéristiques physico- chimiques sont données en annexe (Annexe 3). En effet, l'analyse par chromatographie en phase gazeuse a permis de connaître leur composition détaillée en constituants individuels. L'application des règles d'additivité de type (1) pour calculer les propriétés moyennes de ces fractions est ainsi donc justifiée.

IV.1.2 Application des réseaux établis au calcul des propriétés des mélanges binaires et ternaires

Le problème auquel nous avons été confronté pour réaliser une telle étude a été la non disponibilité des données expérimentales pour toutes les propriétés étudiées. Le but étant de connaître l'applicabilité des réseaux établis pour les corps purs à la détermination des propriétés des mélanges de corps purs ou fractions pétrolières, nous proposons de mener cette étude sur deux propriétés physiques dont les valeurs ont été déterminées expérimentalement [42] à savoir la densité d20, l'indice de réfraction n20.

Les tableaux 4.1 et 4.2 résument les principaux résultats obtenus lors de l'application des règles de mélanges de types Kay sur des mélanges binaires et ternaires respectivement pour l'indice de réfraction et dans lesquels nous avons reporté les écarts moyens et maximums enregistrés par notre méthode de calcul par rapport à l'expérience. La composition des mélanges est donnée en Annexe 3.

_

 Tableau IV.1 : Calcul de l'indice de
 réfraction de différents mélanges binaires :

[Γ	[
		Méthode	
N°	n20°	proposée	AD%
M1	1,3859	1,3924	0,46991
M2	1,39	1,3964	0,46271
M3	1,3825	1,3888	0,45785
M4	1,4311	1,4375	0,44938
M5	1,3934	1,3965	0,22807
M6	1,4	1,4059	0,42101
M7	1,3883	1,3929	0,33079
M8	1,4044	1,4062	0,13434
M9	1,42	1,4175	0,17364
M10	1,3892	1,3937	0,32256
M11	1,4409	1,4510	0,6978
M12	1,4791	1,4842	0,34464
M13	1,402	1,4136	0,82468
M14	1,5021	1,5028	0,04964
M15	1,5003	1,5026	0,15538
M16	1,5029	1,5030	0,01106
M17	1,4798	1,4878	0,54218
M18	1,442	1,4413	0,04577
M19	1,4665	1,4685	0,13628
M20	1,4102	1,4079	0,15789
M21	1,4153	1,4098	0,38457
M22	1,411	1,4063	0,33454
M23	1,4494	1,4512	0,12775
M24	1,444	1,4483	0,29638
M25	1,4619	1,4604	0,09851
M26	1,4034	1,4031	0,02254
M27	1,388	1,3928	0,35097
M28	1,41	1,4116	0,11458
M29	1,4418	1,4492	0,51479
M30	1,4994	1,5000	0,04336
M31	1,4621	1,4641	0,1384
M32	1,4088	1,4066	0,15482
M33	1,4203	1,4282	0,55987
M34	1,4276	1,4238	0,26581
M35	1,4283	1,4244	0,27142
M36	1,4558	1,4601	0,29461
M37	1,4398	1,4427	0,20779
M38	1,461	1,4712	0,69452
M39	1,46	1,46141	0,09695
M40	1,4802	1,4875	0,49199
M41	1,466	1,47205	0,41115
AAD%			0,29978
MAD%			0,82468

Tableau IV.2 : Calcul de l'indice de réfraction de différents mélanges ternaires :

N°	n20°	Méthode proposée	AD %
1	1,3963	1,4007	0,3124
2	1,4119	1,4195	0,5400
3	1,4018	1,4079	0,4354
4	1,4332	1,4400	0,4722
5	1,4472	1,4575	0,7121
6	1,439	1,4463	0,5075
7	1,463	1,4731	0,6897
8	1,4155	1,4150	0,0368
9	1,4229	1,4228	0,0103
10	1,4712	1,4799	0,5941
11	1,4693	1,4772	0,5358
12	1,4256	1,4312	0,3927
13	1,4392	1,4389	0,0190
14	1,4726	1,4737	0,0749
15	1,471	1,5005	2,0066
16	1,424	1,4515	1,9289
17	1,4442	1,4607	1,1442
18	1,4877	1,4892	0,1010
19	1,484	1,4836	0,0289
20	1,4412	1,4377	0,2457
21	1,4059	1,4064	0,0372
22	1,4151	1,4178	0,1901
AAD%			0,5007
MAD%			2,0066

AD% : déviation absolue.

AAD % : écart moyen enregistré.

MAD % : écart maximum enregistré.

Les tableaux IV.3 et IV.4 représentent les valeurs des déviations moyennes absolues obtenues respectivement pour les mélanges binaires et ternaires lors de l'application des réseaux de neurones obtenus lors de la simulation de la densité (d20) sur les composés purs.

Tableau IV.3 : Calcul de la densité d20 de différents mélanges binaires :

mélanges binaires	Densité (DATA)	RNA-CG	AAD%
1	0.774	0.769	0.62994
2	0.7709	0.768	0.30219
3	0.7768	0.769	0.92353
4	0.7739	0.774	0.04113
5	0.7889	0.776	1.60636
6	0.7814	0.772	1.19823
7	0.7966	0.797	0.11968
8	0.7538	0.759	0.72441
9	0.8442	0.835	1.07456
10	0.8305	0.818	1.41006
11	0.8196	0.8216	0.24807
12	0.8487	0.8527	0.47403
13	0.794	0.7912	0.3435
14	0.8169	0.8184	0.18389
15	0.8684	0.8677	0.07981
16	0.8751	0.8605	1.69197
17	0.7863	0.7835	0.34574
18	0.8457	0.8293	1.97711
19	0.8622	0.8531	1.05934
20	0.8294	0.8262	0.38606
21	0.8683	0.8682	0.00399
22	0.8745	0.8614	1.51799
23	0.8713	0.8648	0.74962
24	0.7508	0.75182	0.13608
25	0.738	0.7414	0.46987
26	0.7667	0.7631	0.4644
27	0.7297	0.7260	0.50552
28	0.7418	0.7429	0.15812
29	0.7298	0.7312	0.2013
30	0.7586	0.7550	0.46931
31	0.7023	0.7060	0.52829
32	0.7769	0.7739	0.38279
33	0.7674	0.7697	0.30516
34	0.8144	0.8162	0.22237
35	0.8086	0.8180	1.15751
36	0.6721	0.6779	0.85739
37	0.679	0.6840	0.74058
38	0 6656	0 6724	1,0198

39	0.7593	0.7660	0.88201
40	0.6804	0.6877	1.07201
41	0.6958	0.7017	0.85121
42	0.6727	0.6797	1.03451
43	0.7181	0.72117	0.42333
44	0.7547	0.7515	0.4174
45	0.6819	0.6882	0.92945
46	0.7652	0.7695	0.56857
47	0.8336	0.8251	1.02198
48	0.7011	0.7100	1.26561
49	0.8714	0.8505	2.4456
50	0.8684	0.8461	2.63256
51	0.8751	0.8552	2.31603
52	0.8442	0.8406	0.41889
53	0.7942	0.7887	0.6895
54	0.8269	0.8188	0.98112
55	0.7238	0.7058	2.54524
56	0.7412	0.7293	1.62029
57	0.7313	0.7153	2.2278
58	0.7871	0.7813	0.73035
59	0.7678	0.7769	1.1808
60	0.8169	0.8212	0.52942
61	0.7143	0.7181	0.54218
62	0.6736	0.6794	0.86267
63	0.7208	0.7105	1.44683
64	0.7795	0.7668	1.64387
65	0.8714	0.8641	0.8434
66	0.8204	0.8155	0.59146
67	0.7209	0.7027	2.58904
68	0.7387	0.7434	0.63508
69	0.765	0.76678	0.23264
70	0.7669	0.7685	0.21315
71	0.7957	0.7771	2.38299
72	0.7503	0.7501	0.0212
73	0.8083	0.8046	0.45742
74	0.8134	0.8057	0.94454
75	0.842	0.8360	0.7163
76	0.816	0.8248	1.0768
AAD%			0.87754
MAD%			2.6325
1

Ē

N° du mélange	densité	RNA-CG	AAD%
77	0.774	0.7143	8.34777
78	0.7798	0.7717	1.05014
79	0.8693	0.8644	0.56016
80	0.7661	0.7639	0.2842
81	0.7543	0.7764	2.85475
82	0.7894	0.7995	1.26573
83	0.7948	0.7953	0.07111
84	0.6878	0.6968	1.29312
85	0.7209	0.7243	0.47777
86	0.7017	0.7038	0.30498
87	0.7636	0.7764	1.65598
88	0.7927	0.8093	2.05665
89	0.7715	0.7726	0.15388
90	0.8071	0.8077	0.07658
91	0.7431	0.7456	0.3446
92	0.7565	0.7606	0.54154
93	0.8226	0.8274	0.5808
94	0.8186	0.8265	0.96667
95	0.757	0.7645	0.98869
96	0.7834	0.7848	0.18062
97	0.8287	0.8343	0.67531
98	0.83	0.8565	3.10116
99	0.7446	0.7686	3.13398
100	0.795	0.8124	2.14516
101	0.8503	0.8571	0.79936
102	0.847	0.8470	0.00078
103	0.7897	0.7877	0.24414
104	0.721	0.7231	0.3
105	0.7368	0.7404	0.49807
AAD%			1.2053
MAD%			8.34777

Tableau IV.4 : Calcul de la densité d20 de différents mélanges ternaires :

_

Lors de cette étude, nous avons appliqué les différentes règles de mélanges : arithmétique, logarithmique et géométriques avec des fractions molaires, volumiques et massiques des différents composés. Nous avons choisis les règles qui donnent la meilleure déviation et qui sont résumé dans le tableau suivant :

Tableau IV.5	:	Les règles	de	mélanges	utilisées.
--------------	---	------------	----	----------	------------

	Densité d20	Indice de réfraction n20
Binaires	Moyenne logarithmique (%mol)	Moyenne logarithmique (%mass)
ternaires	Moyenne logarithmique (%mol)	Moyenne logarithmique (%mass)

Les résultats obtenus montrent une erreur acceptable par rapport aux valeurs expérimentales aussi bien pour les binaires que pour les ternaires. Nous pouvons avancer que les réseaux établis pour les hydrocarbures purs s'appliquent correctement aux mélanges de compositions finies. Les déviations enregistrées par rapport aux valeurs de références sont de même ordre de grandeur que celles obtenues dans le cas des hydrocarbures purs.

IV.1.3 Application des réseaux établis au calcul des propriétés des fractions légères ou mélanges à multi composants

Nous avons vu précédemment qu'on pouvait déterminer les propriétés des mélanges binaires et ternaires en utilisant les réseaux de neurones établis pour les corps purs et moyennant quelques règles de mélanges. Qu'en est-il des mélanges à composés multiples ou fractions pétrolières ?. C'est l'objet de cette étude, et pour ce faire nous avons étudié une fraction légère issue du brut d'El-Agreb dont les caractéristiques sont données en Annexe 3.

El-Agreb (Fraction n° : 4)	%mass	RNA-CG	RNA-CG
Noms	FR4	densité	N20
n-Butane	0.03	0.589	1.3388
i-Pentane	0.15	0.623	1.3628
n-Pentane	0.71	0.638	1.366
2,2-Diméthylbutane	0.03	0.652	1.3833
2,3-Diméthylbutane	0.70	0.662	1.3847
2-Méthylpentane	5.43	0.661	1.3808
3-Méthylpentane	4.80	0.665	1.3824
n-Hexane	30.46	0.667	1.3853
2,2-Diméthylpentane	0.50	0.683	1.3915
Méthylcyclopentane	8.51	0.749	1.4056
2,4-Diméthylpentane	1.96	0.680	1.3951
2,2,3-Triméthylbutane	0.19	0.693	1.3999
Benzène	7.39	0.858	1.5032
3,3-Diméthylpentane	0.38	0.693	1.4041
Cyclohexane	12.49	0.770	1.4242
2-Méthylhexane	6.91	0.686	1.3968
2,3-Diméthylpentane	1.80	0.694	1.4031
1,1-Diméthylcyclopentane	1.42	0.757	1.4105
3-Méthylhexane	6.39	0.681	1.3989
1-trans-3-Diméthylcyclopentane	1.46	0.751	1.4104
1-cis-3-Diméthylcyclopentane	1.36	0.749	1.4095
1-trans-2-Diméthylcyclopentane	2.23	0.752	1.4106
n-Heptane	3.61	0.688	1.3992
Méthylcyclohexane	0.80	0.768	1.4195
2,2-Diméthylhexane	0.08	0.706	1.4068
Ethylcyclopentane	0.04	0.774	1.4215
Toluène	0.13	0.843	1.5025
2,3-Diméthylhexane	0.06	0.714	1.4117
Moyenne LOG(mass%)		0.708	1.4045
Valeurs expérimentales		0.703	1.4032
AAD%		0.8307	0.0983

Tableau IV.6 : Calcul des propriétés physiques de la fraction n°4 du brut d'El-Agreb.

Comme pour les mélanges binaires et ternaires, les résultats obtenus pour les fractions légères ou mélanges multi composants sont satisfaisant avec un écart inférieur à 1%. Les réseaux de neurones établis pour les corps purs sont donc applicables aux mélanges de composition finie dont la composition est parfaitement connue et moyennant quelques règles de mélanges appropriées.

IV.2. Détermination des propriétés des fractions pétrolières dont la composition n'est pas connue

Dans cette partie, nous avons procédé à la détermination de la densité et de l'indice de réfraction des fractions pétrolières moyennes issues de la distillation TBP du brut d'El-Agreb. Ces fractions étant des mélanges complexes, il nous est donc impossible de leur appliquer des règles de mélanges comme dans le cas des fractions légères. Nous pouvons cependant estimer leurs propriétés moyennes à partir des différentes corrélations recommandées dans la littérature, ou encore à partir de la composition par familles chimique (composition PNA).

IV.2.1 Méthode basée sur la composition PNA

Cette méthode, établie par Daubert (1980), est basée sur les hypothèses des pseudo composants et de l'additivité des propriétés. Une fraction pétrolière est assimilée à un mélange ternaire composé d'une n-paraffine, d'un naphtène (n-alkylcyclohexane) et d'un aromatique (n-alkylbenzène), ayant les mêmes masses molaires que la fraction pétrolière. La propriété moyenne de la fraction est déduite ensuite à partir de la relation suivante :

$$P_{FP} = P_P X_P + P_N X_N + P_A X_A$$
⁽²⁾

 P_P , P_N , P_A sont les propriétés des trois pseudo composants.

 X_P , X_N et X_A sont quant à eux les fractions molaires en hydrocarbures paraffiniques, naphténiques et aromatiques contenus dans la fraction pétrolière et déterminés soit expérimentalement, soit d'une manière empirique par l'une des corrélations donnant la composition PNA citées dans la littérature.

Cette méthode a été largement utilisée par les chercheurs pour la prédiction des propriétés moyennes des mélanges complexes et les résultats obtenus se s'ont avérés assez probants. Dans le cadre de cette étude, nous nous proposons uniquement d'illustrer cette méthode par un exemple d'application. Ainsi, nous avons appliqué cette procédure au calcul de la densité et de l'indice de réfraction de trois fractions étroites issues de la distillation TBP du brut d'El-Agreb. Les propriétés P_P , P_N , P_A sont calculées à partir des réseaux de neurones établis dans le cas des hydrocarbures purs.

Dans le tableau 4.7, nous avons reporté les compositions PNA calculées par la corrélation de Riazi-Daubert (1986). Nous avons également présenté les valeurs des atomes de carbone des n-paraffines, n-alkylcyclohexanes et n-alkylbenzènes représentatifs de chaque fraction et déterminés à partir des masses molaires obtenues par la corrélation de Riazi-Daubert (1987).

$Nc_{P} = (M-2.016)/14.027$	(3)
$Nc_{N} = M/14.027$	(4)
$Nc_A = (M+6.048)/14.027$	(5)

M : masse molaire de la fraction.

Pour M>200g/mole

Xp=198,42 - 27,772 Ri - 15,643 c/h Xn=59,77 - 76,174 Ri + 6,8048 c/h Xa=100- (Xp - Xn)

Avec :

Ri=n20-(d20/2)

(9)

(6) (7)

(8)

	FP N°5	FP N°20	FP N°29
X _P	69	58.04	46.1
X _N	15.2	21.44	27.2
X _A	15.8	20.51	26.7
M(g/mole)	92.5	128.23	161.2
Ncp	6	9	11
Nc _N	7	9	11
Nc _A	7	10	12

Tableau IV.7 : Composition PNA et nombres de carbonedes pseudo composants représentatifs des fractions n°5,20 et 29 du brut d'El-
Agreb.

Les valeurs des propriétés calculées par cette méthode sont données dans le tableau suivant et sont comparées à celles obtenues expérimentalement.

Tableau IV.8 : Résultats et comparaison.

	FP N° 5			FP N°20			FP N°29		
	PNA	EXP	AAD%	PNA	EXP	AAD%	PNA	EXP	AAD%
Densité	0.7062	0.7043	0.269	0.76712	0.7651	0.263	0.79175	0.7897	0.259
Indice de réfraction	1.4093	1.4041	0.369	1.4364	1.4361	0.020	1.4489	1.4492	0.020

Les résultats obtenus par cette méthode sont très satisfaisants, on obtient des écarts inférieurs à 0.4% et ce malgré les différentes hypothèses émises. Cela peut s'expliquer par le fait que la densité et l'indice de réfraction sont des propriétés additives.

IV.3. Conclusion

Le but de ce chapitre était de savoir si on pouvait appliqué les réseaux de neurones établis pour la prédiction des propriétés physiques des corps purs aux mélanges de corps purs et éventuellement au fractions pétrolières. On a d'abord commencé par étudié des mélanges simples de deux et de trois composés, les résultats obtenus se sont avérés très satisfaisant ce qui nous as encourager à pousser notre étude plus loin en étudiant des mélanges complexes dont la composition est connue. Ces mélanges qui sont au fait des fractions pétrolières légères issues de la distillation du brut d'El-Agreb dont la compositions a été établie par CPG, les résultats obtenus sont , comme pour les mélanges binaires et ternaires, satisfaisant. Pour ce qui est des mélanges plus complexes dont la composition n'est pas connue (ce dont on a besoins pour appliquer nos réseaux) nous avons utilisé la méthode dite de PNA établie par Daubert et qui se base sur des hypothèses des pseudo composés, et malgré ces hypothèses on arrive a obtenir des résultats plus que satisfaisant dans le cas de la densité et de l'indice de réfraction. Cette étude aurait pu être développé à d'autres propriétés physiques si ce n'est le manque de données expérimentales.

CONCLUSION

CONCLUSION

Dans cette étude nous nous sommes intéressés à la prédiction d'une dizaine de propriétés physiques d'hydrocarbures purs par la méthode de contribution de groupes couplée aux réseaux de neurones artificiels.

Le premier chapitre de cette étude a été consacré à la présentation de la méthode de contribution de groupes, son principe, et les différentes corrélations utilisées pour la prédiction des propriétés physiques étudiées. Les différents paramètres de ces corrélations sont donnés en annexe pour permettre aux lecteurs de les utilisées pour d'éventuel applications.

Le deuxième chapitre, consacré aux réseaux de neurones artificiels, a pour but de rendre compte des capacités d'approximation universelles des réseaux de neurones et de ce fait justifier l'utilisation de ces derniers pour l'estimation et la prédiction des propriétés des hydrocarbures.

Dans le troisième chapitre, nous avons présenté les différents résultats obtenus lors de la simulation des réseaux de neurones établis sur les propriétés physiques étudiées. Les résultats obtenus présentent de faibles écarts par rapport aux données expérimentales et sont meilleurs comparés à d'autres méthodes citées dans la littérature.

Nous ne pouvions clore cette étude sans une application des réseaux établis sur des mélanges d'hydrocarbures simples et complexes. Des mélanges binaires, ternaires et à composés multiples ont été étudiés et les résultats obtenus sont satisfaisant, ce qui montre que les réseaux établis pour l'estimation des propriétés physiques des corps purs sont applicables aux mélanges moyennant quelques hypothèses.

La difficulté principale rencontrée lors de cette étude est la collecte des données pour les hydrocarbures purs ainsi que le manque de données expérimentales pour les propriétés des fractions pétrolières. Les données expérimentales mises à notre disposition nous ont permis d'étudier, malheureusement, que deux propriétés pour les mélanges d'hydrocarbures et fractions pétrolières à savoir la densité et l'indice de réfraction.

REFERENCES

BIBLIOGRAPHIQUES

REFERENCES

1. REID, ROBERT C.; PRAUSNITZ, John M.; SHERWOOD, Thomas K., "The properties of Gases and Liquids", 3rd ed., New York: McGraw-Hill, 1977.

2. DANNER, R.; DAUBERT, T. E., "Manuel for Predicting Chemical Process Design Data, Data Prediction Manual", Design Institute for Physical Property Data, American Institute of Chemical Engineering, New York, 1982.

3. LYDERSEN, A. L., "Estimation of Critical Properties of Organic Compounds", Univ. Wisconsin Coll. Eng. Exp. Stn. 3, Madison, Wis., April 1955.

4. AMBROSE, D., "Correlation and Estimation of Vapour-Liquid Critical Properties: I. Critical Temperatures of Organic Compounds", NPL Report Chem 92, September 1978, Teddington, UK.

5. KLINCEWICZ, K. M.; REID, R. C., "Estimation of Critical Properties with Group Contribution Methods", *AIChE J.*, 30(1): 137, 1984.

6. FEDORS, R. F., "A Relationship Between Chemical Structure and the Critical Temperature", *Chem. Eng. Commum.*, 16: 149, 1982.

7. GOLD, P. I., and G. J. OGLE, "Estimating Thermophysical Properties of Liquids Part 2-Critical Properties", *Chem. Eng.*, 75(21): 185, 1968.

8. SPENCER, C. F.; DAUBERT T. E., "A Critical Evaluation of Methods for the Prediction of Critical Properties of Hydrocarbons", *AIChE J.*, 19: 482, 1973.

9. AMBROSE, D., "Vapour-Liquid Critical Properties", NPL Report Chem 107, February 1980, Teddington, UK.

10. AMBROSE, D., "Correlation and Estimation of Vapour-Liquid Critical Properties: II. Critical Pressures and Critical Volumes of Organic Compounds", NPL Report Chem 98, May 1979, Teddington, UK.

11. REID, R. C., Personal Communication, September 1985.

12. FEDORS, R. F., "A Method to Estimate Critical Volumes", AIChE J., 25(1): 202, 1979.

13. HALM, R. L.; STIEL L. I., "Saturated Liquid and Vapor Densities for Polar Fluids", *AIChE J.*, 16(1): 3, 1970.

14. PITZER, K. S.; LIPPMAN D. Z.; CURL R. F.; HUGGINS C. M., et col, "The Volumetric and Thermodynamic Properties of Fluids: Compressibility Factor, Vapor Pressure and Entropy of Vaporization", J. Am. Chem. Soc., 77: 3433, 1955.

15. HALM, R. L.; STIEL, L. I, "A Fourth Parameter for the Vapor Pressure and Entropy of Vaporization of Polar Fluids", *AIChE J.*, 13(2): 351, 1967.

16. RIEDEL, L., "Eine neue universelle Dampfdruckformel", *Chemie-Ing.-Techn.*, 26: 83, 1954.

17. CARRUTH, G. F.; KOBAYASHI, R., "Extension to Low Reduced Temperatures of Three-Parameter Corresponding States: Vapor Pressure, Enthalpies and Entropies of Vaporization and Liquid Fugacity Coefficients", Ind. Eng. Chem. Fundam., 11(4): 509, 1972.

18. MILLER, C. O. M. Private Communication to E. Buck, Author of Physical Property Section Perry's Chemical Engineers Handbook, 6th Edition, 1984.

19. RACKETT, H. G., "Equation of State for Saturated Liquids", J. Chem. Eng. Data, 15(4): 514, 1970.

20. JOBACK, Kevin G., "A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques", MS Thesis, MIT, June 1982.

21. REID, Robert C.; PRAUSNITZ John M.; POLING, Bruce E., "The Properties of Gases & Liquids", 4th ed., New York: McGraw-Hill, 1987.

22. PREDICT, "Chemical Thermodynamic & Transport Properties of Interest to Chemical Engineers and Chemists", Version 4.0, Users Manual, Dragon Technology, Inc. P.O. Box 585Golden, CO 80402-0585, 1995.

23. SKANDER, N., "Evaluation des propriétés des pétroles bruts et des fractions pétrolières par méthodes d'analyse et par corrélations", Thèse de Doctorat, Ecole Nationale Polytechnique, Alger, 2004

24. RIAZY, M.R. ; AL SAHHAF, T.A., Ind. Eng. Chem. Res., vol.34, n°11, 4145-4148. 1995.

25. EDMISTER, W.C., « Applied Hydrocarbon Thermodynamics », Pet. Refiner, 37. 1958.

26. GUNN, R. D., YAMADA, T., « A Corresponding States Correlation of Saturated Liquid Volumes », AIChE J., 17(6) : 1341. 1971.

27. SPENCER, C. F., ADLER, S. B., « A Critical Review of Equations for Predicting Saturated Liquid Density », J Chem. Eng. Data, 23(1):82, 1978.

28. RIHANI, O. N., DORAISWAMY, L. K., « Estimation of Heat Capacity of Organic Compounds from Group Contributions », Ind. Eng. Chem. Fundam., 4(1) : 17,1965.

29. BENSON, S. W., BUSS, J. H., « Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties », J. Chem. Phys., 29(3) :546, 1958.

30. FRANKLIN, J. L., Ind. Eng. Chem., 41 :1070, 1949.

31. FRANKLIN, J. L., « Calculation of the Heats of Formation of Gaseous Free Radicals and Ions », J. Chem., Fundam., 4(4) : 389, 1965.

32. WHITSON, C. H., SPE Journal, 688, August 1983.

33. CHITOUR, C.E., « Thermodynamique des fluides réels », Edition OPU, Tome2, 1998.

34. CHITOUR, C.E., « Les propriétés thermiques », Edition OPU, Tome 3, 1998.

35. REID, R.C., PAUSNITZ, J.M., POLING, B.E., « The properties of Gases and liquids », 4^{th} Ed. McGraw Hill Book Compagny, 1987.

36. SKANDER, N., « Contribution à la détermination des propriétés physiques des mélanges d'hydrocarbures et de fraction pétrolières par des méthodes de contribution de groupes », Thèse de Magister, sous la direction de Pr.C.E.Chitour, Ecole Nationale Polytechnique, 1997.

37. DREYFUS, G., MARTINEZ, J.M, SAMUELIDES, M. et col,. « Réseaux de neurones, Méthodologie et applications », 2^{eme} Ed, Eyrolles, 2004.

38. HORNIK, K.; STINCHCOMBE M.; WHITE H., "Multilayer Feedforward Networksare Universal Approximators", Neural Networks Vol. 2, pp. 359-366, 1989.

39. FEKRACHE, Samir. « Contribution à la détermination des propriétés des hydrocarbures par réseaux de neurones artificiels », Projet de fin d'étude, sous la direction de Pr. C.E.Chitour, Ecole Nationale Polytechnique, 2002.

40. MEZIOUD, K., « Application des réseaux de neurones pour la prédiction des propriétés des hydrocarbures purs et des fractions pétrolières », Thèse de Magister, sous la direction de Pr. C.E.Chitour, Ecole Nationale Polytechnique, 2004.

41. HACHEMAOUI, A., « Application des réseaux de neurones artificiels dans la prédiction des propriétés des hydrocarbures purs et des fractions pétrolières », Thèse de Magister, sous la direction de Pr. C.E.Chitour, Ecole Nationale Polytechnique, 2004.

42. BENSELAMA, S., « Application des Règles de Mélanges pour le calcul des propriétés physiques des mélanges d'hydrocarbures et des fractions pétrolières », Thèse de Magister, sous la direction de Pr. C.E.Chitour, Ecole Nationale Polytechnique, 2005.

43. BOUAMRA, F., « Contribution à la détermination des propriétés physiques des fractions pétrolières lourdes », Thèse de Magister, sous la direction de Pr. C.E.Chitour, Ecole Nationale Polytechnique, 1991.

44. LEE, B.I., KESLER, M.G., Aiche Journal, 21, 510-527, 1975.

ANNEXES

Tableau1 Lydersen Critical Constants Group Contribution										
Group	Δ_{TL}	Δ_{PL}	Δ_{VL}	Group	Δ_{TL}	Δ_{PL}	Δ_{VL}			
-CH3 (non-ring)	0.020	0.227	55	-0- (ring)	0.014	0.120	8			
>CH2 (non-ring)	0.020	0.227	55	>C=O (non-ring)	0.040	0.290	60			
>CH- (non-ring)	0.012	0.210	51	>C=O (ring)	0.033	0.200	50			
>C< (non-ring)	0.000	0.210	41	-HC=O (aldehyde)	0.048	0.330	73			
=CH2 (non-ring)	0.018	0.198	45	-COOH (acid)	0.085	0.400	80			
=CH- (non-ring)	0.018	0.198	45	-COO- (ester)	0.047	0.470	80			
>C= (non-ring)	0.000	0.198	36	=0 (any other)	0.020	0.120	11			
=C= (non-ring)	0.000	0.198	36	-NH2	0.031	0.095	28			
≡CH (non-ring)	0.005	0.153	36	>NH (non-ring)	0.031	0.135	37			
≡C- (non-ring)	0.005	0.153	36	>NH (ring)	0.024	0.090	27			
>CH2 (ring)	0.013	0.184	45	>N- (non-ring)	0.014	0.170	42			
>CH- (ring)	0.012	0.192	46	>N- (ring)	0.007	0.130	32			
>C< (ring)	-0.007	0.154	31	-CN	0.060	0.360	80			
=CH- (ring)	0.011	0.154	37	-NO2	0.055	0.420	78			
>C= (ring)	0.011	0.154	36	-SH	0.015	0.270	55			
=C= (ring)	0.011	0.154	36	-S- (non-ring)	0.015	0.270	55			
-F	0.018	0.224	18	-S- (ring)	0.008	0.240	45			
-Cl	0.017	0.320	49	=S	0.003	0.240	47			
-Br	0.010	0.500	70	>Si<	0.026	0.468	94			
-I	0.012	0.830	95	>SiH-	0.040	0.513	94			
-OH (alcohol)	0.082	0.060	18	-SiH3	0.027	0.468	94			
-OH (phenols)	0.031	-0.020	3	>(-)Si-0-	0.025	0.730	157			
-O- (non-ring)	0.021	0.160	20	[>(-)Si-O-] cyclic	0.027	0.668	116			
Ν	Note: (-) indicates additional bonds on main element.									

Tableau 2 Ambrose Critical Constant Group Contributions									
Groups	Δ_{TA}	Δ_{PA}	Δ_{VA}	Groups	Δ_{TA}	Δ_{PA}	Δ_{VA}		
Alky	l Groups			Subséqu	ent Halo	gens			
C atoms [Totall]	0 138	0 226	55 1	-F (subséquent)	0 055	0 223	14		
>CH-	-0 043	-0 006	-8	-Br (subséquent)	0 055	05	67		
>C<	-0 12	-0 03	-17	-Cl (subséquent)	0 055	0 318	45		
double bond	-0 05	-0 065	-20	Rings	if Différe	ent			
triple bond	-0 2	-0 17	-40	-CH2	0 09	0 182	44 5		
Alipha	tic Grou	ps		>CH (fused ring)	0 03	0 182	44 5		
-0-	0 138	016	20	double bond	-0 03	0 387	-15		
>C0	0 22	0 282	60	-0-	0 09	016	10		
-CHO	0 22	0 22	55	-NH-	0 09	0 135	30		
-COOH	0 578	0 45	80	-S-	0 09	0 27	30		
-COOOC-	1 156	09	160	Are	omatics				
-COO-	0 33	0 47	80	benzène	0 448	0 924	286		
-N02	0 37	0 42	78	pyridine	0 448	0 85	260		
-NH2	0 208	0 095	30	C4H4(fused)	0 22	0 515	178		
-NH-	0 208	0 135	30	-F	0 08	0 183	14		
-OH	*	**	15	-Cl	0 08	0 318	45		
>N-	0 088	017	30	-Br	0 08	06	67		
-CN	0 423	0 36	80	-I	0 08	0 85	90		
-S-	0 105	0 27	55	-OH	0 198	-0 025	15		
-SH	0 09	0 27	55	Non-Halogen Sub	stitution	s on Aroi	matics		
>Si<	0 138	0 461	102 2	1st Subst	0 01	0	0		
>SiH(-)	0 371	0 507	102 2	Add'l Subst	0 03	0 02	0		
-SiH3	0 195	0 461	102 2	Ortho Pairs	-0 04	-0 05	0		
>Si(-)-0-	0 159	0 725	168 2	Ortho Pairs with- OH	-0 08	-0 05	0		
>Si(-)-0- cycl	0 131	0 663	125 8	Highly Fluonnat	ed, Perfl	uorocarb	ons		
-F (first)	018	0 223	14	-CF3,>CF2,>CF-	02	0 55	83		
-Br (first)	011	05	67	>CF2,>CF-(rng)	014	0 42	83		
-Cl (first)	011	0 318	45	mono H-	-0 05	-0 35	0		
-Br (first) with -F	018	05	67	double bond	-0 15	-0 5	0		
-Cl (first) with -F	018	0 318	45	double bond ring	-0 03	-05	0		
$* \Delta_{TA} (-0H) = 0 87 - 0$) 11 x n +	- 0 003 x	n ² , ** Δ_{P}	$(-0H) = 0 \ 10 - 0 \ 013 \times$: n, n = (Г _в - 314 1	L)/192		
Δ _{TA} (P	latt #) =	-0 023	x PLATT	, Δ_{PA} (Platt #) = -0 0	26 x PLA	ATT			

Tableau 3 Klincewicz & Reid Critical Constant Group Contributions										
Group	Δ_{TK}	Δ_{PK}	Δ_{VK}	Group	Δ_{TK}	Δ_{PK}	Δ_{VK}			
-CH3	-2.433	0.026	16.2	-CHO-	4.332	-0.196	-6.7			
>CH2 (non-ring)	0.353	-0.015	16.1	-COOH	-25.09	-0.251	-37			
>CH2 (ring)	4.253	-0.046	8.2	-COO- (non-ring)	8.89	-0.277	-28.2			
>CH- (non-ring)	6.266	-0.083	12.1	-NH2	-4.153	-0.127	-0.1			
>CH- (ring)	-0.335	-0.027	7.4	>NH (non-ring)	2.005	-0.18	53.7			
>C< (non-ring)	16.416	-0.136	8.95	>NH (ring)	2.773	-0.172	-8			
>C< (ring)	12.435	-0.111	-6.6	>N-	12.253	-0.163	-0.7			
=CH2	-0.991	-0.015	13.9	=N- (ring)	8.239	-0.104	-18.4			
=CH- (non-ring)	3.786	-0.05	9.8	-CN	-10.38	-0.064	12			
=CH- (ring)	3.373	-0.066	5.1	-SH	28.529	-0.303	-27.7			
>C= (non-ring)	7.169	-0.067	2.7	-S- (non-ring)	23.905	-0.311	-27.3			
>C= (ring)	5.623	-0.089	0.2	-S- (ring)	31.537	-0.208	-61.9			
=C=	7.169	-0.067	2.7	-F	5.191	-0.067	-34.1			
≡CH	-4.561	-0.056	7.5	-Cl	18.353	-0.244	-47.4			
≡C-	7.341	-0.112	3	-Br	53.456	-0.692	-148.1			
-OH	-28.93	-0.19	-24	-I	94.186	-1.051	-270.6			
-O- (non-ring)	5.389	-0.143	-26.1	-XCX [X=halogen]	-1.77	0.032	0.8			
-0- (ring)	7.127	-0.116	-36.6	-NO2	11.709	-0.325	-39.2			
>C0	4.332	-0.196	-6.7							
NOTE: in	-XCX, c	ount all	pairs, i.e	e. CF $_2$ has 1 -XCX, C	Cl₃ has 2	2 XCX				

Tableau 4 Joback Critical Constant Group Contributions											
Group	Δ _{TJ}	Δ_{PJ}	Δ_{VJ}	n _A	Group	Δ _{TJ}	Δ_{PJ}	Δ_{VJ}	n _A		
-CH3 (non-ring)	0.0141	-0.0012	65	4	-OH (phenols)	0.024	0.0184	-25	2		
>CH2 (non-	0.0189	0	56	3	-O- (non-ring)	0.0168	0.0015	18	1		
>CH- (non-ring)	0.0164	0.002	41	2	-0- (ring)	0.0098	0.0048	13	1		
>C< (non-ring)	0.0067	0.0043	27	1	>C=O (non-ring)	0.038	0.0031	62	2		
=CH2 (non-	0.0113	-0.0028	56	3	>C=O (ring)	0.0284	0.0028	55	2		
=CH- (non-ring)	0.0129	-0.0006	46	2	-HC=O (aldehyde)	0.0379	0.003	82	3		
>C= (non-ring)	0.0117	0.0011	38	1	-COOH (acid)	0.0791	0.0077	89	4		
=C= (non-ring)	0.0026	0.0028	36	1	-COO- (ester)	0.0481	0.0005	82	3		
≡CH (non-ring)	0.0027	-0.0008	46	2	=0 (any other)	0.0143	0.0101	36	1		
≡C- (non-ring)	0.002	0.0016	37	1	-NH2	0.0243	0.0109	38	3		
>CH2 (ring)	0.01	0.0025	48	3	>NH (non-ring)	0.0295	0.0077	35	2		
>CH- (ring)	0.0122	0.0004	38	2	>NH (ring)	0.013	0.0114	29	2		
>C< (ring)	0.0042	0.0061	27	1	>N- (non-ring)	0.0169	0.0074	9	1		
=CH- (ring)	0.0082	0.0011	41	2	-N=, HN= (non- ring)	0.0225	-0.01	0	1		
>C= (ring)	0.0143	0.0008	32	1	-N= (ring)	0.0085	0.0076	34	1		
-F	0.0111	-0.0057	27	1	-CN	0.0496	0.0101	91	2		
-Cl	0.0105	-0.0049	58	1	-NO2	0.0437	0.0064	91	3		
-Br	0.0133	0.0057	71	1	-SH	0.0031	0.0084	63	2		
-I	0.0068	-0.0034	97	1	-S- (non-ring)	0.0119	0.0049	54	1		
-OH (alcohol)	0.0741	0.0112	28	2	-S- (ring)	0.0019	0.0051	38	1		

Tableau 5									
redors critica	ai rempera		15						
Group	Δ_{TF}	Group	Δ_{TF}						
-CH3	1.79	-NH-	3.04						
-CH2-	1.34	-NH- (aromatic)	7.64						
>CH- (alone)	0.45	>N-	0.89						
>CH- (adjacent)	0.76	>N- (aromatic)	4.74						
>C<	-0.22	-N=	4.51						
=CH2	1.59	-S-S-	9.83						
=CH-	1.4	-S-	4.91						
>C=	0.89	-SH	5.36						
≡CH-	1.79	-F	2.1						
≡C-	2.46	-F (aromatic)	0.45						
=C=	1.03	-F (perfluoro)	0.54						
-COOH	10.72	-Cl	4.2						
-COOOC-(anhydride)	7.95	-Cl (disubstituted)	3.71						
-COO-	5.32	-Cl (trisubstituted)	3.17						
-00CC00- (oxalate)	6.25	-Br	5.58						
-CO-	5.36	-I	8.04						
-O- (non-aromatic)	1.56	-I (aromatic)	10.77						
-O- (aromatic)	2.68	3-membered ring	0.45						
-OH	5.63	5-membered ring	2.23						
-OH (aromatic)	9.65	6-membered ring	2.68						
-CHO	5.49	hetro (N,O,S) in ring	0.45						
-C≡N	8.49	sub on C= (non arom)	0.58						
-C=N (aromatic)	9.38	ortho sub in bz ring	1.16						
-NH2	4.56	conjugation, per =	0.13						
-NH2 (aromatic)	9.2								

Tableau 6 Fedors Critical Volume Group								
Group	DVF	DVF Group						
С	34.426	Si (siloxane)	126.483					
Н	9.172	Si (cyclic siloxane)	126.483					
0	20.291	3-Membered Ring	-15.824					
O (alcohols)	18	4-Membered Ring	-17.247					
N	48.855	5-Membered Ring	-39.126					
N (amines)	47.422	6-Membered Ring	-39.508					
F	22.242	Double Bond	5.028					
Cl	52.801	Triple Bond	0.7973					
Br	71.774	Additional Ring	35.524					
I	96.402							
S	50.866							
Si	86.174							

Tableau 7 Joback Point Property Group Contributions									
Group	Δ_{BJ}	Δ_{HJ}	Δ_{GJ}	Δ_{HVJ}	Group	Δ_{BJ}	Δ_{HJ}	Δ_{GJ}	Δ_{HVJ}
-CH3 (non-ring)	23.58	-76.45	-43.96	567	-OH (phenols)	76.34	-221.7	-197.4	2987
>CH2 (non-ring)	22.88	-20.64	8.42	532	-O- (non-ring)	22.42	-132.2	-105	576
>CH- (non-ring)	21.74	29.89	58.36	404	-0- (ring)	31.22	-138.2	-98.22	1119
>C< (non-ring)	18.25	82.23	116.02	152	>C=O (non-ring)	76.75	-133.2	-120.5	2144
=CH2 (non-ring)	18.18	-9.63	3.77	412	>C=O (ring)	94.97	-164.5	-126.3	1588
=CH- (non-ring)	24.96	37.97	48.53	527	-HC=O (aldehyde)	72.24	-162	-143.5	2173
>C= (non-ring)	24.14	83.99	92.36	511	-COOH (acid)	169.09	-426.7	-387.9	4669
=C= (non-ring)	26.15	142.14	136.7	636	-COO- (ester)	81.1	-337.9	-302	2302
≡CH (non-ring)	9.2	79.3	77.71	276	=0 (any other)	-10.5	-247.6	-250.8	1412
≡C- (non-ring)	27.38	115.51	109.82	789	-NH2	73.23	-22.02	14.07	2578
>CH2 (ring)	27.15	-26.8	-3.68	573	>NH (non-ring)	50.17	53.47	89.39	1538
>CH- (ring)	21.78	8.67	40.99	464	>NH (ring)	52.82	31.65	75.61	1656
>C< (ring)	21.32	79.72	87.88	154	>N- (non-ring)	11.74	123.34	163.16	453
=CH- (ring)	26.73	2.09	11.3	608	-N=, HN= (non-ring)	74.6	23.61	0	797
>C= (ring)	31.01	46.43	54.05	731	-N= (ring)	57.55	55.52	79.93	1560
-F	-0.03	-251.9	-247.2	-160	-CN	125.66	88.43	89.22	3071
-Cl	38.13	-71.55	-64.31	1083	-NO2	152.54	-66.57	-16.83	4000
-Br	66.86	-29.48	-38.06	1573	-SH	63.56	-17.33	-22.99	1645
-I	93.84	21.06	5.74	2275	-S- (non-ring)	68.78	41.87	33.12	1629
-OH (alcohol)	92.88	-208	-189.2	4021	-S- (ring)	52.1	39.1	27.76	1430

Tableau 8 Valeurs des constantes a, b, c et d de l'équation 47								
Familles	а	b	с	d	R^2			
n- Paraffines	0.069565408	0.77788982	2.17.53 177	-1.1203012	0.99997			
i-Paraffines	-0.045288085	0.889245338	1.8804242	-1.1074926	0.99993			
I-Olefines	0.021922861	0.8256286	1.8761174	-1.1380652	0.99995			
Naphtènes	0.74856893	0.091408515	9.3554691	-2.2602122	0.98			
Aromatiques	0.85429415	1.290834	1.6227784	3.0424927	0.990			

Г

Tableau 9 Rihani-Doraiswamy Ideal Gas Heat Capacity Group Contributions									
Group	∆a _{cr}	$\Delta b_{CR} \times 10^2$	$\Delta c_{CR} \times 10^5$	$\Delta d_{CR} \times 10^8$	Group	∆a _{cr}	Δb _{CR} x 102	Δc _{cr} x 105	Δd _{CR} x 108
-C⇔(⇔)	-1.388	1.5159	-1.069	0.2659	-S-	4.2256	0.1127	-0.026	-0.007
⇔C⇔(⇔)	0.1219	1.217	-0.855	0.2122	⇔S⇔	4.0824	-0.03	0.731	-0.608
3-membered ring	-3.532	-0.03	0.747	-0.551	-SO3H	6.9218	2.4735	1.776	-2.245
4-membered ring	-8.655	1.078	0.425	-0.025	-CH3	0.6087	2.1433	-0.852	0.1135
5-mem ring(pentane)	-12.29	1.8609	-1.037	0.2145	>CH2	0.3945	2.1363	-1.197	0.2596
5-mem ring(pentene)	-6.881	0.7818	-0.345	0.0591	=CH2	0.5266	1.8357	-0.954	0.195
6-mem ring(hexane)	-13.39	2.1392	-0.429	-0.187	>CH-	-3.523	3.4158	-2.816	0.8015
6-mem ring(hexene)	-8.024	2.2239	-1.915	0.5473	>C<	-5.831	4.4541	-4.208	1.263
-OH	6.5128	-0.135	0.414	-0.162	-CH=CH2	0.2773	3.458	-1.918	0.413
-0-	2.8461	-0.01	0.454	-0.273	>C=CH2	-0.417	3.8857	-2.783	0.7364
-CH(=0)	3.5184	0.9437	0.614	-0.698	-CH=HC- trans	-3.121	3.806	-2.359	0.5504
>C=0	1.0016	2.0763	-1.636	0.4494	-CH=HC- cis	0.9377	2.9904	-1.749	0.3918
-C=O(-OH)	1.4055	3.4632	-2.557	0.6886	>C=HC-	-1.471	3.3842	-2.371	0.6063
-C=O(-O-)	2.735	1.0751	0.667	-0.923	>C=C<	0.4736	3.5183	-3.15	0.9205
⇔0⇔	-3.734	1.3727	-1.265	0.3789	-CH=C=CH2	2.24	4.2896	-2.566	0.5908
-C≡N	4.5104	0.5461	0.269	-0.379	>C=C=CH2	2.6308	4.1658	-2.845	0.7277
-NC	5.086	0.3492	0.259	-0.244	-CH=C=CH-	-3.125	6.6843	-5.766	1.743
-NH2	4.1783	0.7378	0.679	-0.731	≡CH	2.8443	1.0172	-0.69	0.1866
>NH	-1.253	2.1932	-1.604	0.4237	HC⇔(⇔)arom	-1.457	1.9147	-1.233	0.2985
>N-	-3.468	2.9433	-2.673	0.7828	-F	1.4382	0.3452	-0.106	-0.003
⇔N⇔	2.4458	0.3436	0.171	-0.272	-Cl	3.066	0.2122	-0.128	0.0276
-NO2	1.0898	2.6401	-1.871	0.475	-Br	2.7605	0.4731	-0.455	0.142
-SH	2.5597	1.3347	-1.189	0.382	-I	3.2651	0.4901	-0.539	0.1782

Tableau 10A Benson Gas-Heat Canacity Hydrocarbon Group Contributions								
Hydrocarbons Groups					Δου			
	300	400	500	600	800	1000		
C-(C)(H)3	25.92	32.82	39.36	45 18	54 51	61.84		
C-(C)2(H)2	23.03	29.1	34 54	39.15	46 35	51.67		
C-(C)3(H)	19.01	25.12	30.02	33.7	38.98	42.08		
$C_{-}(C)^{4}$	18.3	25.12	30.81	34	36.72	36.68		
$C = -(H)^2$	21 35	26.63	31 44	35 59	42 16	47 19		
C = -(C)(H)	17 42	21.05	24 33	27 21	32.03	35 38		
$C = -(C)^2$	17 17	19.3	20.89	22.02	24.28	25 46		
C = -(C =)(H)	18.67	24 24	28.26	31.07	34.96	37.64		
C = -(C =)(C)	18 42	22.48	24.83	25.87	27.21	27 72		
$C = -(C\Phi)(H)$	18.67	24 24	28.26	31.07	34.96	37.64		
$C = -(C\Phi)(C)$	18 42	27.48	24.83	25.87	27.21	27 72		
C = -(C =)(H)	18.67	24 24	28.26	31.07	34.96	37.64		
$C = -(C \equiv)(C)$	18 42	22.48	24.83	25.87	27.21	27 72		
$C - (C =)(H)^3$	25.92	32.82	39.36	45 18	54 51	61.84		
C - (C =)2(H)2	19.68	28 47	35.17	40 14	47 31	52 75		
C - (C =)2(C)2	14 95	25.04	31 44	35.04	37.68	37.76		
$C^{-}(C^{-})^{2}(C)^{2}$	16 71	25.01	31 11	34 58	37 35	37 51		
$C - (C =)(C)(H)^2$	22.69	28.72	34.83	39.73	46.98	52 25		
C - (C =)(C)2(H)	17 42	24 74	30.73	34 29	39.61	42.66		
C - (C =)2(C)(H)	15.66	24 49	30.65	34 75	39.94	43 17		
C-(C≡)(H)3	25.92	32.82	39.36	45.18	54 51	61.84		
C-(C≡)(C)(H)2	20.72	27.47	33.2	38.02	45.47	51.04		
C-(C≡)(C)2(H)	16.71	23.49	28.68	32.57	38.1	41.45		
C-(CΦ)(H)3	25.92	32.82	39.36	45.18	54.51	61.84		
C-(Cf)(C)(H)2	24.45	31.86	37.6	41.91	48.11	52.5		
$C-(C\Phi)(C)2(H)$	20.43	27.88	33.08	36.63	40.74	42.91		
C-(CΦ)(C)3	18.3	28,43	33.87	36.76	38.48	37.51		
C-(CΦ)2(C)(H)	15.66	24.49	30.65	34.75	39.94	43.17		
C-(CΦ)2(C)2	14.95	25.04	31.44	35.04	37.68	37.76		
C-(CΦ)(C≡)(H)2	19.68	28.47	35.17	40.19	47.31	52.75		
C≡-(H)	22.06	25.08	27.17	28.76	31.28	33.33		
C≡-(C)	13.1	14.57	15.95	17.12	19.26	20.6		
C≡-(C=)	10.76	14.82	14.65	20.6	22.36	23.03		
C=-(Cí)	10.76	14.82	14.65	20.6	22.36	23.03		
СФ-(Н)	13.57	18.59	22.86	26.38	31.57	35.21		
СФ-(С)	11.18	13.15	15.41	17.38	20.77	22.78		
СФ-(C=)	15.03	16.62	18.34	19.76	22.11	23.49		
СФ-(С≡)	15.03	16.62	18.34	19.76	22.11	23.49		
CΦ-(CΦ)	13.94	17.67	20.47	22.06	24.12	24.91		
Ca	16.33	18.42	19.68	20.93	22.19	23.03		
$C\Phi f$ -($C\Phi$)2($C\Phi f$)	12.52	15.32	17.67	19.43	21.9	23.24		
$C\Phi f-(C\Phi)(C\Phi f)2$	12.52	15.32	17.67	19.43	21.9	23.24		
CΦf-(CΦf)3	8.71	11.93	14.65	16.87	19.89	21.52		
CΦ, Inc	dicates a d	arbon ato	om in a be	nzene rino	7			

Tableau 10B										
Benson Heat Capacity Hydrocarbon Next Nearest Neighbor Contributions										
Hydrocarbons Next Nearest Neighbors	Δ _{CB} 300	Δ _{CB} 400	Δ _{CB} 500	Δ _{CB} 600	Δ _{CB} 800	Δ _{CB} 1000				
Cis	-5.61	-4.56	-3.39	-2.55	-1.63	-1.09				
Ortho	4.69	5.65	5.44	4.9	3.68	2.76				
Hydrocarbons Corrections for Ring	Δ _{CB} 300	Δ _{CB} 400	Δ _{CB} 500	Δ _{CB} 600	Δ _{CB} 800	Δ _{CB} 1000				
Cyclopropane	-12.77	-10.59	-8.79	-7.95	-7.41	-6.78				
Cyclobutane	-19.3	-16.29	-13.15	-11.05	-7.87	-5.78				
Cyclobutene	-10.59	-9.17	-7.91	-7.03	-6.2	-5.57				
Cyclopentane	-27.21	-23.03	-18.84	-15.91	-11.72	-7.95				
Cyclopentene	-25.04	-22.4	-20.47	-17.33	-12.27	-9.46				
Cyclohexane	-24.28	-17.17	-12.14	-5.44	4.61	9.21				
Cyclohexene	-17.92	-12.73	-8.29	-5.99	-1.21	0.33				

Tableau 11 Valeurs des constantes a, b, c et d de l'équation 58									
Familles	а	b	с	d	R ²				
n- Paraffines	4.832523849	23.08950711	-0.012045986	19.8196.10-5	0.999996				
i-Paraffines	7.891028	22.520998	1.859598.10 ⁻²	-3.099334.10 ⁻⁴	0.9999996				
I-Olefines	-4.896526	22.875256	-3.486397.10 ⁻⁴	6.125165.10 ⁻⁶	0.999999997				
Naphtènes	-44.216611	26.658451	-0.1970655	3.230304.10 ⁻³	0.99996				
Aromatiques	-60.807854	24.050279	-6.025028.10-2	9.746174.10 ⁻⁴	0.999995				

Tableau 12 Franklin Ideal Gas Heat of Formation Group Contributions							
Group	ΔHF	Group	ΔHF				
-CH3	-10.12	-COOOC-	-102.6				
>CH2	-4.93	-CºN	29.5				
>CH-	-1.09	-NO2	-8.5				
>C<	0.8	-ONO	-10.9				
=CH2	6.25	-0N02	-18.4				
=C=	33.42	-N=C	44.4				
°C-	27.34	-NH2 (aromatic)	-6.4				
⁰CH	27.1	-SH	3.1				
-HC=CH2	15	-S-	10.6				
>C=CH2	16.89	⇔S⇔	7.8				
>C=C<	24.57	Ring Corrections					
>C=CH-	20.19	C3 cycloparaffin ring	24.22				
-HC=CH- (cis)	18.88	C4 cycloparaffin ring	18.4				
-CH=CH- (trans)	17.83	C5 cycloparaffin ring	4.94				
⇔CH2	10.08	C6 cycloparaffin ring	-0.45				
⇔CH-	12.04	Paraffin Br	anching				
⇔⇔CH	3.3	Side Chain with 2 or					
⇔⇔C-	5.57	more C atoms	0.8				
⇔⇔C⇔	4.28	3 adjacent >CH- grps	2.3				
-OH (primary alc)	-41.9	adjacent >C<&>CH-	2.5				
-OH (secondary alc)	-44.9	adjacent >C<&>C<	5.4				
-OH (tert alc)	-49.2	>C< not adjacent					
-OH (aromatic)	-46.9	to terminal C	1.7				
-CHO (aldehyde)	-33.9	Aromatic Br	anching				
>C=O (ketone)	-31.6	1,2 Dimethyl	0.6				
-COOH (acid)	-94.6	1,3 methyl ethyl	0.6				
-COO- (ester)	-79.8	1,2-methyl ethyl	1.4				
-O- (ether)	-27.2	1,2,3-trimethyl	1.4				
		** \Leftrightarrow resonating bond **					

	Tableau 13									
			Jobacl	k Point P	Property Group Co	ntributi	ons			
Group	ΔBJ	ΔHJ	ΔGJ	ΔHVJ	Group	ΔBJ	ΔHJ	ΔGJ	ΔHVJ	
-CH3 (non-	23.58	-76.45	-43.96	567	-OH (phenols)	76.34	-221.7	-197.4	2987	
>CH2 (non-	22.88	-20.64	8.42	532	-O- (non-ring)	22.42	-132.2	-105	576	
>CH- (non-	21.74	29.89	58.36	404	-O- (ring)	31.22	-138.2	-98.22	1119	
>C< (non-	18.25	82.23	116.02	152	>C=O (non-ring)	76.75	-133.2	-120.5	2144	
=CH2 (non-	18.18	-9.63	3.77	412	>C=O (ring)	94.97	-164.5	-126.3	1588	
=CH- (non-	24.96	37.97	48.53	527	-HC=O	72.24	-162	-143.5	2173	
>C= (non-	24.14	83.99	92.36	511	-COOH (acid)	169.09	-426.7	-387.9	4669	
=C= (non-	26.15	142.14	136.7	636	-COO- (ester)	81.1	-337.9	-302	2302	
oCH (non-ring)	9.2	79.3	77.71	276	=O (any other)	-10.5	-247.6	-250.8	1412	
°C- (non-ring)	27.38	115.51	109.82	789	-NH2	73.23	-22.02	14.07	2578	
>CH2 (ring)	27.15	-26.8	-3.68	573	>NH (non-ring)	50.17	53.47	89.39	1538	
>CH- (ring)	21.78	8.67	40.99	464	>NH (ring)	52.82	31.65	75.61	1656	
>C< (ring)	21.32	79.72	87.88	154	>N- (non-ring)	11.74	123.34	163.16	453	
=CH- (ring)	26.73	2.09	11.3	608	-N=, HN= (non-	74.6	23.61	0	797	
>C= (ring)	31.01	46.43	54.05	731	-N= (ring)	57.55	55.52	79.93	1560	
-F	-0.03	-251.9	-247.2	-160	-CN	125.66	88.43	89.22	3071	
-Cl	38.13	-71.55	-64.31	1083	-NO2	152.54	-66.57	-16.83	4000	
-Br	66.86	-29.48	-38.06	1573	-SH	63.56	-17.33	-22.99	1645	
-I	93.84	21.06	5.74	2275	-S- (non-ring)	68.78	41.87	33.12	1629	
-OH (alcohol)	92.88	-208	-189.2	4021	-S- (ring)	52.1	39.1	27.76	1430	

	Tableau 14a									
	Bens	on Ideal Gas	Heat of	Formation						
Group	ΔHB	Group	ΔHB	Group	ΔHB					
Si-(C)(H)3	-39.4	Si-(C)(F)3	-1191	Si-(0)4	-256.3					
Si-(C)2(H)2	-21.7	Si-(C)3(Br)	-166.7	0-(Si)(0)	-91.4					
Si-(C)3(H)	-38.6	Si-(C)3(I)	-80.4	0-(Si)2	-357					
Si-(C)4	-60.4	Si-(C)(H)(Cl)2	-359.8	0-(Si)(C)	-190.8					
Si-(Si)(H)3	40	Si-(C)2(H)(Cl)	-208.3	0-(Si)(H)	-283.1					
Si-(Si)2(H)2	40.9	Si-(0)(F)3	-1274	Si-(Si)(C)(0)2	-494.8					
Si-(Si)2(C)2	-18.3	Si-(0)3(Cl)	-656.8	C-(Si)(O)(H)2	-7.8					
Si-(Si)(C)3	-55.8	Si-(Si)(F)3	-1183	Si-(Cf)4	-57.1					
Si-(Si)4	169.9	Si-(Si)2(F)2	-795.7	Si-(Cf)2(Cl)2	-404.3					
C-(Si)(C)(H)2	-17.3	Si-(Si)(Cl)3	-493.2	Si-(Cf)(O)3	-196.2					
C-(Si)(C)2(H)	-2.2	Si-(Si)(0)3	-238.3	Si-(Cf)2(C)(H)	-38.6					
C-(Si)(H)3	-42.2	Si-(O)3(H)	-98.3	Cf-(Si)	28.7					
Si-(C)(Cl)3	-487.2	Si-(C)(O)3	-196	O-(Si)(Cf)	-217.6					
Si-(C)2(Cl)2	-364	Si-(C)2(O)2	-144.1	Ring Correc SiC3	62.9					
Si-(C)3(Cl)	-227.3	Si-(C)3(O)	-95.5	Ring Correc SiC4	41.2					

Tableau 14b									
Benson Ideal Gas Heat of Formation Boron									
Group	ΔHB	Group	ΔHB	Group	ΔHB				
B-(C)3	3.7	B-(C)2(O)	-52.7	B-(N)2(Cl)	-357.5				
C-(B)(C)(H)2	-13.2	B-(Cf)O)2	-218.5	B-(N)(CI)2	-412.7				
C-(B)(C)2(H)	4.7	B-(S)3	-279.5	B-(B)(CI)2	-244.6				
C-(B)(H)3	-42.2	S-(B)(C)	67.2	B-(0)2(Cl)	-321.4				
B-(Cf)3	3.7	S-(B)(Cf)	88.1	B-(0)(Cl)2	-374.7				
Cf-(B)	25.8	B-(N)3	-279.5	B-(C)2(Cl)	-175.2				
B-(0)3	-279.5	B-(C)2(N)	-131.3	B-(Cf)2(Cl)	-283.2				
B-(0)2(H)	-150.4	B-(C)(N)(O)	-199.5	B-(Cf)(Cl)2	-343.5				
B-(O)(H)2	-34.7	N-(B)(C)2	95.7	B-(C)2(Br)	-111.6				
B-(B)2(O)2	-142.2	N-(B)(C)(H)	-126	B-(Cf)2(Br)	-199.1				
O-(B)(C)	-170.9	B-(O)(F)2	-834.9	B-(Cf)(Br)2	-224.2				
O-(B)(H)	-255.7	B-(O)2(F)	-531.3	B-(C)2(I)	-35.8				
O-(B)(Cf)	-173.6	B-(B)(F)2	-715.9		•				
O-(B)(O)	-54.1	B-(C)(F)2	-806.2						

Tableau 15 Valeurs des constantes a, b, c et d de l'équation 63									
Familles	а	b	с	d	R ²				
n- Paraffines	-43.44470293	-20.63239874	0.001188612	-2.00246 10 ⁻⁵	0.999999995				
i-Paraffines	-51.89095	-20.332520	-1.409259 10 ⁻²	2.262777 10 ⁻⁴	0.9999997				
I-Olefines	82.020611	-20.619961	1.595699 10 ⁻³	-7.868482 10 ⁻⁶	0.99999998				
Naphtènes	3.191404	-22.465973	0.1015325	-1.724432 10 ⁻³	0.9999				
Aromatiques	2000.928699	-21.970164	6.746771 10 ⁻²	-1.067114 10 ⁻³	0.999996				

Tableau 16 Valeurs des constantes a, b, c et d de l'équation 66										
Familles	а	b	c	d	R ²					
n- Paraffines	13.909486	-0.33650895	0.030147353	-0.0010181378	0.998					
i-Paraffines	14.003789	-0.36034753	0.032094489	-0.0010793678	0.997					
I-Olefines	13.229271	-0.25047668	0.02465954	-0.0008465781	0.998					
Naphtènes	9.6887212	0.28659891	-0.011657066	0.00028317483	0.998					
Aromatiques	6.9049661	0.65480276	-0.03461062	0.00095134234	0.9996					

Tableau 17 Pitzer Vapor Pressure Parameters									
T _R	-P ⁽⁰⁾	-P ⁽¹⁾	T _R	-P ⁽⁰⁾	-P ⁽¹⁾				
1	0	0	0.56	1.818	2.12				
0.99	0.025	0.021	0.55	1.89	2.242				
0.98	0.05	0.042	0.54	1.965	2.37				
0.97	0.076	0.064	0.53	2.04	2.502				
0.96	0.102	0.086	0.52	2.13	2.66				
0.95	0.129	0.109	0.51	2.218	2.812				
0.94	0.156	0.133	0.5	2.315	2.962				
0.92	0.212	0.18	0.49	2.413	3.13				
0.9	0.27	0.23	0.48	2.515	3.31				
0.88	0.33	0.285	0.47	2.62	3.55				
0.86	0.391	0.345	0.46	2.73	3.695				
0.84	0.455	0.405	0.45	2.85	3.9				
0.82	0.522	0.475	0.44	2.97	4.1				
0.8	0.592	0.545	0.43	3.1	4.32				
0.78	0.665	0.62	0.42	3.24	4.54				
0.76	0.742	0.705	0.41	3.385	4.77				
0.74	0.823	0.8	0.4	3.54	5.01				
0.72	0.909	0.895	0.39	3.7	5.28				
0.7	1	1	0.38	3.87	5.56				
0.69	1.047	1.06	0.37	4.04	5.88				
0.68	1.096	1.12	0.36	4.22	6.24				
0.67	1.145	1.185	0.35	4.41	6.64				
0.66	1.198	1.25	0.34	4.6	7.08				
0.65	1.25	1.32	0.33	4.8	7.65				
0.64	1.308	1.39	0.32	5.005	8.3				
0.63	1.368	1.463	0.31	5.22	8.98				
0.62	1.424	1.545	0.3	5.45	9.94				
0.61	1.485	1.628	0.29	5.68	10.92				
0.6	1.544	1.71	0.28	5.91	11.96				
0.59	1.61	1.81	0.27	6.14	13.1				
0.58	1.68	1.908	0.26	6.38	14.25				
0.57	1.747	2.02	0.25	6.65	15.9				

	Pitzer He	Table eat of Vapo	au 18 rization Par	ameters	
T _R	S ⁽⁰⁾	S ⁽¹⁾	T _R	S ⁽⁰⁾	S ⁽¹⁾
1	0	0	0.66	14.62	20.5
0.99	2.57	2.83	0.64	15.36	21.8
0.98	3.38	3.91	0.62	16.12	23.2
0.97	4	4.72	0.6	16.92	24.6
0.96	4.52	5.39	0.58	17.74	26.2
0.95	5	5.96	0.56	18.64	27.8
0.94	5.44	6.51	0.54	19.56	29.84
0.92	6.23	7.54	0.52	20.55	32
0.9	6.95	8.53	0.5	21.6	34.22
0.88	7.58	9.39	0.48	22.7	36.48
0.86	8.19	10.3	0.46	24.05	38.8
0.84	8.79	11.2	0.44	25.5	41.14
0.82	9.37	12.1	0.42	27.05	43.5
0.8	9.97	13	0.4	28.83	46
0.78	10.57	13.9	0.38	30.7	49.2
0.76	11.2	14.9	0.36	32.8	53
0.74	11.84	16	0.34	35.1	57.4
0.72	12.49	17	0.32	37.55	63.6
0.7	13.19	18.1	0.3	40.2	71.5
0.68	13.89	19.3			

Tableau 19 Valeurs des constantes a, b, c, d et e de l'équation 37										
Familles	а	b	с	d	e					
n- Paraffines	-0.079527582	0.079687325	-0.0034314834	0.000127234	$-1.7280608.10^{-6}$					
i-Paraffines	-0.0025974192	0.051552277	-0.0007759696	2.7590721.10 ⁻⁵	-4.228451.10 ⁻⁷					
I-Olefines	-0.08826169	0.079644349	-0.0033336539	0.0001199689	1.5894413.10 ⁻⁶					
Naphtènes	0.31242039	-0.058323423	0.0085567993	-0.0003027334	3.7675247.10 ⁻⁶					
Aromatiques	-0.064026088	0.046877026	-0.000181745	2.7727473.10 ⁻⁶	-7.2277381.10 ⁻⁸					

Tableau 20Valeurs des constantes a et b de l'équation 50										
Familles	а	b								
n- Paraffines	31.61095	16.34356								
i-Paraffines	32.637048	16.345481								
I-Olefines	25.914029	16.355602								
Naphtènes	11.105721	16.43677								
Aromatiques	-9.3967414	16.512202								

	Tableau 21 Joback Ideal Gas Heat Capacity Group Contributions												
Group	∆a _C	Δb _{CJ}	Δc _C	∆d _⊂	Group $\Delta a_{CI} = \Delta b_{CI} = \Delta c_{CI}$				∆d _⊂				
		x 10 ²	x 10 ⁵	x 10 ⁸			x 10 ²	x 10 ⁵	x 10 ⁸				
-CH3 (non-ring)	4.66	-0.193	3.66	-2.31	-OH (phenols)	-0.672	2.66	-2.76	1.18				
>CH2 (non-ring)	-0.217	2.27	-1.3	0.285	-O- (non-ring)	6.1	-1.51	2.65	-1.31				
>CH- (non-ring)	-5.49	4.88	-6.34	2.86	-O- (ring)	2.92	-0.3	1.44	-0.922				
>C< (non-ring)	-15.80	10.2	-153	71.9	>C=O (non-ring)	1.54	1.6	-0.852	0.068				
=CH2 (non-ring)	5.64	-9.11	41	-24.6	>C=O (ring)	7.26	-1.98	5.63	-3.14				
=CH- (non-ring)	-1.91	2.5	-2.3	8.5	-HC=O (aldehyde)	7.37	-0.803	3.81	-2.36				
>C= (non-ring)	-6.72	4.97	-7.32	34.8	-COOH (acid)	5.75	1.02	1.92	-1.64				
=C= (non-ring)	6.55	-1.33	2.42	-12	-COO- (ester)	5.86	0.959	0.959	-1.08				
⁰CH (non-ring)	5.84	-0.647	2.64	-16.2	=O (any other)	1.63	0.469	0.304	-0.426				
°C- (non-ring)	1.88	0.481	-0.199	0.033	-NH2	6.42	-0.983	3.91	-2.33				
>CH2 (ring)	-1.44	2.04	-0.191	-0.429	>NH (non-ring)	-0.290	1.82	-1.16	0.251				
>CH- (ring)	-4.9	3.86	-3.83	1.49	>NH (ring)	2.83	-0.549	2.56	-1.5				
>C< (ring)	-21.7	13.3	-21.5	11.2	>N- (non-ring)	-7.43	5.42	-7.65	3.49				
=CH- (ring)	-0.51	1.37	-0.039	-3.8	-N=,HN=(non-ring)	1.36	-0.099	3.05	-2.12				
>C= (ring)	-1.97	2.42	-3.38	1.62	-N= (ring)	2.11	-0.092	1.04	-0.622				
-F	6.34	-2.18	4.56	-2.47	-CN	8.71	-1.75	4.4	-2.47				
-Cl	7.95	-2.3	4.46	-2.38	-NO2	6.18	-0.089	3.09	-2.12				
-Br	6.82	-1.55	3.24	-1.78	-SH	8.43	-1.81	4.42	-2.45				
-I	7.67	-1.53	3.02	-1.64	-S- (non-ring)	4.67	-0.134	0.96	-0.66				
-OH (alcohol)	6.13	-1.65	4.22	-2.36	-S- (ring)	4	0.115	0.661	-0.503				

Caractéristiques	Valeurs
Densité à 15°C	0.7926
°API	46.8
Viscosité Cinématique, cSt	
à 20°C	2.00
à 37.8°C	1.58
Tension de Vapeur Reid, Kg/cm ²	0.950
Teneur en eau et sédiment, %vol	Nulle
Teneur en eau par extraction,	Nulle
Point Eclair, Vase fermé, °C	<15
Soufre, %pds	0.0863

Caractéristiques physico- chimiques du pétrole brut d'El Agreb

Composition CPG de la fractions pétrolière FPN°4 issue de la distillation du brut d'El Agreb

N°	Constituants	% massiques
1	n-Butane	0.03
2	i-Pentane	0.15
3	n-Pentane	0.71
4	2,2-Diméthy lbutane	0.03
5	2.3 -D iméthy lbutane	0.70
6	2-Méthylpentane	5.43
7	3-Méthylpentane	4.80
8	n-Hexane	30.46
9	2,2-Diméthylpentane	0.50
10	Méthylcyclopentane	8.51
11	2,4-Diméthylpentane	1.96
12	2,2,3-Triméthylbutane	0.19
13	Benzène	7.39
14	3,3-Diméthylpentane	0.38
15	Cvclohexane	12.49
16	2-Méthylhexane	6.91
17	2.3-Diméthylpentane	1.80
18	I. 1-Diméthylcyclopentane	1.42
19	3-Méthylhexane	6.39
20	l-trans-3-Dimétliylcyclopentane	1.46
21	1 -cis-3 -Diméthy Icyclopentane	1.36
22	1-trans-2-Diméthylcyclopentane	2.23
23	n-Heptane	3.61
24	Méthvlcvclohexane	0.80
25	2,2-D iméth vlhexane	0.08
26	Ethylcyclopentane	0.04
27	Toluène	0.13
28	2.3-Diméthvlhcxane	0.06
	Total	100.00

Mélanges	Cl	C2	N1%	n2%	M1%	m2%	V1%	V2%	Densité
binaires	cvC6	MethcvC6	55	45.3	51	49.2	50.5	49.46	(melange)
2	cvC6	MethcvC6	22	78.4	19	80.9	18.9	81.07	0.774
3	, cyC6	, MethcyC6	83	17.3	80	19.7	80.2	19.85	0.771
4	cyC6	1,2dimcyC6	59	41.4	49	50.7	49.8	50.2	0.774
5	cyC6	1,2dimcyC6	30	70.2	23	77.4	22.9	77.07	0.774
6	cyC6	1,2dimcyC6	81	19.1	74	25.5	74.8	25.18	0.709
7	Bz	nC10	67	32.6	53	46.8	48.5	51.47	0.701
8	Bz	nC10	34	66.4	22	78.3	18.7	81.27	0.754
9	Bz	nC10	90	10.3	83	17.3	79.9	20.14	0.844
10	Bz	1,2dimcyC6	63	37	52	47.9	49.6	50.43	0.831
11	cyC6	Elhyl Bz	53	47.3	47	53.1	49.6	50.39	0.82
12	cyC6	Ethyl Bz	20	80	17	83.5	18.1	81.95	0.849
13	cyC6	EthylBz	82	18.5	78	22.3	79.5	20.47	0.045
14	cyC6	pentyl Bz	61	39.4	47	53.4	49.1	50.93	0.817
15	Bz	Ethyl Bz	25	74.5	20	79.9	19.9	80.12	0.868
16	Bz	Ethyl Bz	84	15.6	80	20.1	79.7	20.29	0.875
17	Toi	MethcyC6	22	77.7	21	78.8	19.3	80.68	0.786
18	Toi	MethcyC6	83	17	82	17.9	80.2	19.76	0.846
19	Toi	pentyl Bz	61	38.6	50	50.3	49.5	50.49	0.862
20	1,2dimetcyC6	Ter-butyl Bz	66	33.8	47	52.9	49.3	50.67	0.829
21	Bz	Ter-butylBz	49	50.8	24	76.5	23.3	76.74	0.868
22	Bz	Ter-butyl Bz	91	9.49	75	24.9	74.9	25.12	0.875
23	Bz	Ter-butyl Bz	76	24.4	49	50.5	49.1	50.87	0.871
24	cyC6	nC10	63	37.1	50	49.9	48.5	51.5	0.751
25	cyC6	nC10	31	68.6	21	78.7	20.2	79.78	0.738
26	cyC6	nC10	88	12	81	18.7	80.3	19.73	0.767
27	nC6	1,2dimcyC6	54	46.2	45	54.9	49.7	50.34	0.73
28	nC10	1,2dimcyC6	77	23.5	79	20.8	80.5	19.49	0.742
29	nC7	cyC6	42	58.3	46	54	49.3	50.75	0.73
30	nC7	cyC6	15	84.9	18	82.5	19.5	80.53	0.759
31	nC7	cyC6	74	25.9	77	22.7	79.5	20.5	0.702
32	nC14	1,2dimcyC6	37	62.8	49	51	50	49.98	0.777
33	cyC6	nC14	71	28.9	51	48.9	50.6	49.43	0.767
34	Bz	nC14	75	25.1	54	45.9	50.6	49.44	0.814
35	Ethyl-Bz	nC13	66	33.6	53	46.8	49.8	50.18	0.809
36	nC6	nC7	52	47.8	48	51.5	49.4	50.62	0.672
37	nC6	nC7	22	77.9	20	80.4	20.2	79.81	0.679
38	nC6	nC7	77	22.9	74	25.7	75	25.02	0.666
39	nC13	nC14	51	48.6	50	50.4	49.8	50.22	0.759
40	nC14	nC6	11	89.4	21	78.6	19.1	80.92	0.68
41	nC6	nC10	59	40.7	47	53.1	49.4	50.57	0.696
42	nC6	nC10	87	12.9	80	19.7	81.9	18.13	0.673
43	nC6	CYC6	45	54.9	46	54.3	49.8	50.19	0.718
44	nC6	CYC6	17	83.4	17	83.1	19.4	80.62	0.755
45	nC6	CYC6	78	22.2	78	21.8	80.9	19.14	0.682

Tableau 1 : densité des mélanges binaires.

46	nC6	Bz	41	59.1	43	56.8	50.4	49.64	0.765
47	nC6	Bz	14	85.7	16	84.4	19.7	80.3	0.834
48	nC6	Bz	73	26.7	75	24.8	80.1	19.86	0.701
49	Bz	Tol	54	46.5	49	50.6	49.1	50.92	0.871
50	Bz	Tol	22	78	19	80.7	19.1	80.94	0.868
51	BZ	Tol	83	16.7	81	19.1	80.7	19.31	0.875
52	Bz	CYC6	82	17.9	81	19	79.1	20.93	0.844
53	Bz	CYC6	23	76.5	22	77.8	20.1	79.86	0.794
54	Bz	CYC6	59	41.4	57	43.3	53.7	46.26	0.827
55	nC15	nC7	11	88.7	21	78.8	19.9	80.07	0.724
56	nC7	MetÇyC6	47	53.3	47	52.8	49.2	50.84	0.741
57	nC7	MetCyC6	64	35.6	65	35.1	66.6	33.37	0.731
58	nC7	EtBz	47	52.7	46	54.1	50.8	49.21	0.787
59	EtBz	nC6	52	47.8	57	42.6	50.7	49.35	0.768
60	EtBz	MetCYC6	52	48.4	54	46.4	50.6	49.39	0.817
61	MetCYC6	nC6	49	51	52	47.7	48.5	51.52	0.714
62	nC6	nC9	83	17.3	76	23.7	77.8	22.18	0.674
63	nC7	nCI0	59	40.8	51	49.5	51.1	48.86	0.721
64	nC7	Bz	45	55.2	51	49	56.2	43.79	0.78
65	Bz	EtBz	58	42.3	50	49.9	49.7	50.29	0.871
66	Bz	MetCyC6	60	40.4	54	46	50.7	49.29	0.82
67	nC7	nC13	88	12.1	80	20.2	80.8	19.25	0.721
68	nC10	ûC14	79	21.1	73	27.2	73.7	26.3	0.739
69	metCyC6	nC13	84	15.6	74	25.8	73.9	26.12	0.765
70	MetCYC6	nC14	85	14.6	74	25.7	74.1	25.86	0.767
71	nC7	Tol	38	61.8	40	59.8	45	55	0.796
72	nC6	Tol	52	48.4	50	50.1	56.7	43.31	0.75
73	nC13	Tol	30	69.6	47	53.3	50.1	49.91	0.808
74	metCYC6	Tol	47	52.8	49	51.2	51.8	48.23	0.813
75	Bz	nC14	89	11	76	24	73.4	26.62	0.842
76	nC13	EtBz	28	71.8	41	59.5	43.8	56.19	0.816

No	Const1	Const 2	Mconst1	Mconst2	m1(%)	m2(%)	%mol1	%mol2	%vol1	%vol2	n20°
	CONSCI	001302	Meenser	MCOHStz	1111(70)	1112(70)	70111011	70111012	700011	700012	1120
M1	nC6	nC7	86.2	100.2	48.49	51.51	52.25	47.7	49.38	50.62	1.3859
M2	nC6	nC7	86.2	100.2	19.62	80.38	22.11	77.9	20.19	79.81	1.39
М3	nC6	nC7	86.2	100.2	74.3	25.7	77.07	22.9	74.98	25.02	1.3825
M4	nC13	nC14	184	198.4	49.57	50.43	51.4	48.6	49.78	50.22	1.4311
M5	nC14	nC6	198	86.18	21.41	78.59	10.58	89.4	19.08	80.92	1.3934
M6	nC6	nC10	86.2	142.3	46.92	53.08	59.34	40.7	49.43	50.57	1.4
M7	nC6	nC10	86.2	142.3	80.32	19.68	87.08	12.9	81.87	18.13	1.3883
M8	nC6	CYC6	86.2	84.16	45.7	54.3	45.11	54.9	49.81	50.19	1.4044
M9	nC6	CYC6	86.2	84.16	16.93	83.07	16.6	83.4	19.38	80.62	1.42
M10	nC6	CYC6	86.2	84.16	78.18	21.82	77.78	22.2	80.86	19.14	1.3892
M11	nC6	Bz	86.2	78.11	43.25	56.75	40.86	59.1	50.36	49.64	1.4409
M12	nC6	Bz	86.2	78.11	15.56	84.44	14.31	85.7	19.7	80.3	1.4791
M13	nC6	Bz	86.2	78.11	75.19	24.81	73.31	26.7	80.14	19.86	1.402
M14	Bz	Tol	78.1	92.14	49.43	50.57	53.55	46.5	49.08	50.92	1.5021
M15	Bz	Tol	78.1	92.14	19.27	80.73	21.97	78	19.06	80.94	1.5003
M16	Bz	Tol	78.1	92.14	80.91	19.09	83.33	16.7	80.69	19.31	1.5029
M17	Bz	CYC6	78.1	84.16	81.01	18.99	82.13	17.9	79.07	20.93	1.4798
M18	Bz	CYC6	78.1	84.16	22.16	77.84	23.47	76.5	20.14	79.86	1.442
M19	Bz	CYC6	78.1	84.16	56.74	43.26	58.56	41.4	53.74	46.26	1.4665
M20	nC15	nC7	212	100.2	21.19	78.81	11.26	88.7	19.93	80.07	1.4102
M21	nC7	MCC6	100	98.19	47.22	52.78	46.71	53.3	49.16	50.84	1.4153
M22	nC7	MCC6	100	98.19	64.88	35.12	64.42	35.6	66.63	33.37	1.411
M23	nC7	EtBz	100	106.2	45.88	54.12	47.32	52.7	50.79	49.21	1.4494
M24	EtBz	nC6	106	86.18	57.39	42.61	52.23	47.8	50.65	49.35	1.444
M25	EtBz	MCC6	106	98.19	53.58	46.42	51.63	48.4	50.61	49.39	1.4619
M26	MCC6	nC6	98.2	86.18	52.3	47.7	49.04	51	48.48	51.52	1.4034
M27	nC6	nC9	86.2	128.3	76.3	23.7	82.73	17.3	77.82	22.18	1.388
M28	nC7	nC10	100	142.3	50.5	49.5	59.16	40.8	51.14	48.86	1.41
M29	nC7	Bz	100	78.11	50.97	49.03	44.76	55.2	56.21	43.79	1.4418
M30	Bz	EtBz	78.1	106.2	50.06	49.94	57.67	42.3	49.71	50.29	1.4994
M31	Bz	MCC6	78.1	98.19	54.03	45.97	59.63	40.4	50.71	49.29	1.4621
M32	nC7	nC13	100	184.4	79.78	20.22	87.89	12.1	80.75	19.25	1.4088
M33	nC10	nC14	142	198.4	72.84	27.16	78.9	21.1	73.7	26.3	1.4203
M34	MCC6	nC13	98.2	184.4	74.2	25.8	84.38	15.6	73.88	26.12	1.4276
M35	MCC6	nC14	98.2	198.4	74.31	25.69	85.39	14.6	74.14	25.86	1.4283
M36	nC7	Tol	100	92.14	40.19	59.81	38.19	61.8	45	55	1.4558
M37	nC6	Tol	86.2	92.14	49.93	50.07	51.6	48.4	56.69	43.31	1.4398
M38	nC13	Tol	184	92.14	46.69	53.31	30.45	69.6	50.09	49.91	1.461
M39	MCC6	Tol	98.2	92.14	48.79	51.21	47.2	52.8	51.77	48.23	1.46
M40	Bz	nC14	78.1	198.4	76.05	23.95	88.97	11	73.38	26.62	1.4802
M41	nC13	EtBz	184	106.2	40.5	59.5	28.16	71.8	43.81	56.19	1.466

Tableau 2 : Indice de réfraction des mélanges binaires

N° -	C1	C2	C3	n1%	n2%	n3%	ml%	m2%	m3%	densité
melange										
77	nHexane	N.Décane	C12	51.6	26.5	21.91	37.2	31.55	31.24	0.774
78	Cyc C6	MethyCyC6	1,2MCC6	39.14	33.4	27.44	33.2	33.05	33.78	0.7798
79	Bz	Ethyl Bz	Tertbutyl Bz	48.82	35.6	15.63	33.3	32.99	33.68	0.8693
80	nHexane	PentylBz	cycC6	33.16	25.7	41.19	28.2	37.55	34.23	0.7661
81	nDécane	cyC6	PentylBz	28.74	51.9	19.38	36.1	38.55	25.36	0.7543
82	nDécane	CyC6	Bz	19.97	36.5	43.52	30.5	32.99	36.51	0.7894
83	C13	cyC6	PentylBz	22.16	47.6	30.25	32.5	31.85	35.66	0.7948
84	nC6	nC7	nC9	39.35	34.1	26.57	33.2	33.43	33.37	0.6878
85	nC6	nC13	nC12	47.42	25.4	27.18	30.5	34.95	34.55	0.7209
86	nC7	nC13	nC6	37.28	21.8	40.92	33.1	35.62	31.26	0.7017
87	CyC6	BZ	nC6	32.32	38.2	29.48	33	36.2	30.81	0.7636
88	nC13	CyC6	BZ	15.3	37.4	47.31	29.2	32.56	38.24	0.7927
89	Mcyc6	Tol	nC7	25.85	43	31.18	26.4	41.15	32.47	0.7715
90	nC7	BZ	Tol	24.7	40.5	34.79	28	35.77	36.24	0.8071
91	nC7	CyC6	mCyC6	27.94	37.9	34.21	30	34.09	35.94	0.7431
92	nC10	CyC6	mCyC6	24.01	42.3	33.67	33.2	34.63	32.15	0.7565
93	nC10	BZ	Tol	19.25	44.2	36.55	28.7	36.11	35.23	0.8226
94	nC10	Tol	EtBz	22.4	42.1	35.46	29.4	35.84	34.74	0.8186
95	nC12	nC13	CyC6	24.2	23.6	52.19	32	33.82	34.14	0.757
96	nC13	Mcyc6	Tol	8.19	68.3	23.56	14.6	64.54	20.91	0.7834
97	nC13	CyC6	EtBz	6.59	27.3	66.14	11.5	21.8	66.67	0.8287
98	ΒZ	Tol	EtBz	29.2	37.2	33.58	24.6	36.97	38.44	0.83
99	ΒZ	Tol	nC6	34.21	23.7	42.06	31.5	25.78	42.72	0.7446
100	ΒZ	Tol	mCyC6	31.69	22.4	45.93	27.4	22.79	49.85	0.795
101	ΒZ	EtBz	nC13	29.17	62.5	8.33	21.8	63.5	14.69	0.8503
102	BZ	EtBz	mCyC6	29.06	52.6	18.39	23.5	57.78	18.71	0.847
103	CyC6	Mcyc6	EtBz	37.42	43.1	19.46	33.3	44.81	21.87	0.7897
104	CyC6	nC6	mCyC6	34.52	43.4	22.09	33	42.42	24.61	0.721
105	nC7	nC10	mCyC6	20.23	31.9	47.9	18	40.25	41.75	0.7368

Tableau 3	3	: densité	des	mélanges	ternaires.
I GOIGGO		- acristice	aco	menangeo	cernan cor

N٥	Const 1	Const 2	Const 3	m1(%)	m2(%)	m3(%)	mol1(%)	mol2(%)	mol3(%)	n20°
1	nC6	nC7	nC9	33.199	33.433	33.368	39.349	34.078	26.573	1.3963
2	nC6	nC13	nC12	30.497	34.947	34.557	47.418	25.399	27.183	1.4119
3	nC7	nC13	nC6	33.119	35.622	31.259	37.284	21.796	40.919	1.4018
4	CyC6	BZ	nC6	32.988	36.2	30.812	32.315	38.207	29.477	1.4332
5	nC13	CyC6	BZ	29.197	32.56	38.244	15.303	37.386	47.311	1.4472
6	mCyC6	Tol	nC7	26.378	41.149	32.473	25.849	42.97	31.181	1.439
7	nC7	BZ	Tol	27.986	35.773	36.241	24.703	40.507	34.79	1.463
8	nC7	CycC6	mCycC6	29.967	34.094	35.939	27.945	37.854	34.201	1.4155
9	nC10	CycC6	mCycC6	33.216	34.633	32.151	24.007	42.319	33.674	1.4229
10	nC10	BZ	Tol	28.656	36.112	35.233	19.253	44.194	36.554	1.4712
11	nC10	Tol	EtBz	29.419	35.837	34.745	22.402	42.14	35.458	1.4693
12	nC12	nC13	CyC6	32.04	33.823	34.137	24.203	23.606	52.191	1.4256
13	nC13	mCyC6	Tol	14.55	64.542	20.908	8.194	68.247	23.559	1.4392
14	nC13	CyC6	EtBz	11.534	21.795	66.67	6.5888	27.274	66.137	1.4726
15	BZ	Tol	EtBz	24.588	36.97	38.442	29.197	37.217	33.586	1.471
16	BZ	Tol	nC6	31.495	25.776	42.729	34.205	23.732	42.063	1.424
17	BZ	Tol	mCyC6	27.364	22.79	49.846	31.693	22.378	45.929	1.4442
18	BZ	EtBz	nC13	21.811	63.496	14.692	29.177	62.496	8.3274	1.4877
19	ΒZ	EtBz	mCyC6	23.514	57.781	18.706	29.062	52.545	18.393	1.484
20	CyC6	mCyC6	EtBz	33.325	44.807	21.868	37.416	43.121	19.463	1.4412
21	CyC6	nC6	mCyC6	32.968	42.42	24.613	34.524	43.383	22.093	1.4059
22	nC7	nC10	mCyC6	17.998	40.255	41.747	20.233	31.871	47.896	1.4151

Tableau 4	:	Indice	de	réfraction	des	mélanges	ternaires.
-----------	---	--------	----	------------	-----	----------	------------