République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale Polytechnique Département de Génie Chimique

MEMOIRE Présenté pour l'obtention du diplôme de MAGISTER En Génie Chimique

Par KHITOUS Mohamed

THEME

Modélisation de l'adsorption des métaux lourds sur la biomasse « *Pleurotus mutilus* » en mode dynamique

Soutenu publiquement le 26/04/2011 devant le jury composé de :

Mme R. DERRICHE Mr A. SELATNIA Mr E.H. BENYOUSSEF Mme F. MOHELLEBI Mr K. LOUHAB Professeur à l'ENPPrésidenteProfesseur à l'ENPRapporteurProfesseur à l'ENPExaminateurMaître de Conférences à l'ENPExaminatriceProfesseur à l'Université de BoumerdèsExaminateur

Année universitaire 2010/2011

REMERCIEMENTS

Au terme de ce mémoire nous tenons à remercier tout naturellement en premier lieu Dieu le tout puissant qui nous a donné la force, le courage et la patience de bien mener ce travail.

Ce travail a été réalisé sous la direction de Monsieur Ammar SELATNIA, Professeur à l'Ecole Nationale Polytechnique d'Alger, qu'il trouve ainsi l'expression de notre profonde reconnaissance pour son aide, sa disponibilité, ses encouragements et ses précieux conseils durant le déroulement de ce travail. Si ce travail, a pu faire l'objet de communications nationale et internationales c'est bien grâce à ses directives et son soutien.

Nos sincères remerciements à Madame R. DERRICHE, Professeur à l'Ecole Nationale Polytechnique d'Alger, qu'elle trouve l'expression de nos grande satisfaction pour l'honneur qu'elle nous fait, en acceptant de présider le jury de ce mémoire.

Nous remercions également Monsieur E.H. BENYOUSSEF, Professeur à l'ENP, Mme F. MOHELLEBI, Maître de Conférence à l'ENP et Monsieur K. LOUHAB, Professeur à l'Université de Boumerdès, pour avoir accepté de juger ce modeste travail.

Nos remerciements vont également à Monsieur S. MOUSSOUS, Doctorant à l'Ecole Militaire Polytechnique de Bordj El Bahri, pour son aide et les informations qu'il mis à notre disposition. Nous lui dirons simplement et très sincèrement Merci.

Nous adressons aussi nos vifs remerciements aux enseignants du département de génie chimique, qu'ils trouvent ici l'expression de notre profonde sympathie et nos vifs remerciements.

Enfin, nos sentiments vont également à toutes les personnes qui ont contribué de près ou de loin à la réalisation de ce travail.

Dédicace

Je remercie le bon Dieu le miséricordieux, le tout puissant pour avoir exaucé mes vœux ;

Je dédie ce modeste travail :

- A la mémoire mon père d'abord.
- A ma tendre mère qui ma comblée d'amour et d'affection.
- A mes frères et sœurs.
- A tous mes amis: Richidi, Ouadah, Kaouas, Salah, Maamar et mes collègues.
- A tous ceux qui me sont chers.
- A tous ceux qui m'ont soutenu de près ou de loin.

SOMMAIRE

Introduction générale	1
Partie Théorique	
Chapitre I	
Pollution des eaux par les métaux lourds	
I.1 Introduction	3
I.2 Définition des métaux lourds	3
I.3 Sources de pollution par les métaux lourds	3
I.3.1 Les sources naturelles	4
I.3.2 Les sources d'origine artificielle	4
I.4 Forme des métaux lourds dans les eaux	5
I.5 Norme de rejet des métaux lourds dans l'eau	6
I.6 Teneurs limites des métaux lourds dans l'eau potable	
I.7 Toxicité des métaux lourds	8
L8 Conclusion	9

Chapitre II Généralités sur l'adsorption

II.1 Introduction	
II.2 Définition	12
II.3 Type d'adsorption	12
II.3.1 Adsorption physique ou physisorption	13
II.3.2 Adsorption chimique ou chimisorption	13
II.4 Les principaux types d'adsorbants	14
II.4.1 Le charbon actif	14
II.4.2 Les zéolites	15
II.4.3 Les gels de silice	15
II.4.4 Alumines activées	15
II.5 Structure poreuse et surface spécifique de l'adsorbant	15
II.5.1 Structure poreuse des adsorbants	15
II.5.2 La surface spécifique des adsorbants	16
II.6 Les différents processus de transport dans les adsorbants	17
II.6.1 Transfert de masse externe (diffusion externe)	18
II.6.2 Transfert de masse interne dans les pores (diffusion interne)	20
II.6.3 Diffusion superficielle sur la surface du solide	21
II.6.4 Diffusion combinée	21
II.7 Cinétique d'adsorption	25
II.8 Isothermes d'adsorption	26
II.8.1 Classification des isothermes d'adsorption	27
II.8.2 Modélisation des isothermes d'adsorption	27
II.8.2.1 Isotherme linéaire	28
II.8.2.2 Isotherme de Freundlich	
II.8.2.3 Isotherme de Langmuir	29
II.8.3 Conclusion	30
II.9 Adsorption dynamique	31
II.9.1 La méthode stochastique	31
II.9.2 La méthode mathématique	
II.9.3 Méthode de la zone de transfert de matière	31
II.10 Modèles préétablis décrivant les courbes de percée	33
II.10.1 Modèle de Bohart et d'Adams	

II.10.2 Modèle du Temps de Service (BDST)	
II.10.3 Modèle de Clark	
II.10.4 Modèle de Yoon-Nelson	
II.10.5 Modèle de Wolborska	

Chapitre III

Biosorption des métaux lourds

Diosorption des metadas	
III.1 Introduction	44
III.2 Définition de la biosorption	44
III.2.1 Domaines d'application de la biosorption	44
III. 3 Les biosorbants	44
III.3.1 Sources et provenances des biosorbants	45
III.3.2 Avantages de l'utilisation des biosorbants	45
III.4 Nature de la biomasse utilisée dans la biosorption	45
III.4.1 Biosorption par des cellules vivantes	45
III.4.2 Biosorption par des cellules mortes	46
III.5 Mécanismes de la biosorption des métaux lourds	46
III.6 Description des biomasses	46
III.6.1 Classification des biomasses	46
III.6.1.1 Les bactéries	46
III.6.1.2 Les algues	46
III.6.1.3 Les champignons	47
III.7 Description de la biomasse Pleurotus mutilus	
III.7.1 Morphologie de la <i>Pleurotus mutilus</i>	47
III.7.2 Taxonomie	47
III.7.3 Composition de la paroi cellulaire	47
III.7.3.1 Structure de la chitine et la chitosane	48
III.7.3.2 Structure du glucane	49
III.7.3.3 Structure du Glycoprotéines	49
III.8 Conclusion	50
Chapitre IV	

Caractérisation de la biomasse Pleurotus Mutilus

IV.1 Introduction	53
IV.2 Prétraitement physique	.53
IV.3 Caractéristiques physico-chimiques de l'adsorbant	53
IV.3.1 Granulométrie	53
IV.3.2 Masse volumique apparente	.53
IV.3.3 Surface spécifique	54
IV.3.4 Titrage potentiomètrique	.54
IV.3.5 La charge globale de la biomasse	.55
IV.3.6 La capacité d'échange ionique	56
IV.4 Détermination des caractéristiques structurales	.58
IV.4.1 Analyse par spectroscopie Infra Rouge (IR) de la surface de la biomasse.	.58
IV.4.2 Analyse structurale par Spectrométrie de Fluorescence X	.59
Partie Expérimentale	
Chapitre V	
Biosorption du Cadmium sur une colonne à lit fixe des eaux par les métaux lourds	
V.1 Introduction	.62
V.2 Dispositif expérimental	.62

V.3.2 Influence de la hauteur du biosorbant	65
V.3.3 Influence de la concentration initiale	67
V. 3.4 Influence du pH de la solution initiale	68
V.4 Conclusion Chapitre VI	70
Modélisation de l'adsorption dynamique des ions Cd ⁺² sur la biomasse Pleurotus M	lutilus
VI.1 Introduction VI.2	72
Définition	72
VI.3 Description du modèle	72
VI.4 Hypothèses simplificatrices	73
VI.5 Equations de bilan	72
VI.6 Résolution de l'équation du modèle	78
VI.7 Validation du modèle	84
Chapitre VII	
Résultats et discussion relatives à la modélisation des courbes de percée expérimer	ntales
VII.1 Introduction	86
VII.2 Définition	86
VII.3 Isotherme d'adsorption des ions Cd ⁺² dans un système fermé	86
VII.4 Modélisation de la courbe de percée	87
VII.5 Résultats et discussion	87
VII.5.1 Estimation du $(k_1 a)_{ad}$ à partir des corrélations empiriques	87
VII 5 2 Effet de la concentration initiale	88
VII 5 3 Effet de la hauteur du lit	89
VII 5 4 Effet du déhit d'alimentation	91
VII 6 Validation du modèle mathématique	93
VII.7 Conclusion	
Chapitre VIII	
Application des solutions analytiques à la prédiction des courbes de percée	
VIII.1 Introduction	98
VIII.2 Solutions analytiques proposées dans la littérature	98
VIII.2.1 Diffusion superficielle	
VIII.2.2 Diffusion superficielle avec résistance externe dans le film	
VIII.2.3 Diffusion superficielle, Diffusion poreuse avec résistance externe da	ans le
film	101
VIII.3 Méthode de résolution	100
VIII.4 Organigramme du calcul	103
Chapitre IX	
Résultats et discussion relatives à l'application des solutions analytiques à la prédi des courbes de percée expérimentales	iction
IX.1 Introduction	106
IX.2 Détermination des paramètres physiques et cinétiques de modélisation	106
IX.2.1 Application du modèle de Morris et Weber à la cinétique d'élimination	ı de
Cd ²⁺ en système batch	106
IX.2.2 Détermination de la constante de vitesse K_1 à partir du modèle cinétique	ue du
pseudo premier ordre	107
IX.2.3 Détermination de la constante de vitesse K_2 du modèle cinétique du pse	eudo
second ordre	107

IX.2.4 Détermination du coefficient de transfert de matière externe	k_f à partir du
modèle de Spahn et Schlünder	108
IX.2.5 Détermination de la constante d'équilibre apparente	111
IX.3 Résultats et discussion	112
IX.3.1 Dans le cas d'une diffusion superficielle sans résistance extern	ie dans le
film	112
IX.3.2 Dans le cas d'une diffusion superficielle avec résistance extern	ie dans le
film	114
IX.3.3 Dans le cas d'une diffusion superficielle et diffusion poreuse a	vec résistance
externe dans le film	115
IX.4 Conclusion	117
Chapitre X	
Application des modèles mathématiques prédictifs à la modélisation de	la cinétique
d'adsorption du Cadmium sur colonne à lit fixe	
X.1 Introduction	118
X.2 Modèle de Clark	118
X.3 Modèle de Wolborska	
X.4 Modèle de Yoon et Nelson	123
X.5 Modèle Bed Depth Service Time (BDST)	
X.6 Conclusion	
Conclusion générale et perspectives	
ANNEXES	
(A, B, C, D, E, F, J, H, I, G, K)	

Liste des tableaux

Chapitre I

Tableau I.1 Les valeurs moyennes des émissions des métaux lourds dans le monde	.5
Tableau I.2 Formes de quelques métaux dans les eaux	.6
Tableau I.3 Les teneurs limites en métaux lourds	.7
Tableau I.4 Teneurs limites des métaux lourds dans l'eau potable en (µg/L)	8
Tableau I.5 Toxicité de quelques métaux lourds	.9
Chapitre II	
Tableau II.1 Comparaison entre l'adsorption physique et l'adsorption chimique	4
Tableau II.2 Répartition des pores d'un adsorbant1	6
Tableau II.3 Relations décrivant le comportement d'une adsorption en lit fixe	33
Chapitre IV	
Tableau IV.1 Caractéristiques physico-chimiques du biosorbant	54
Tableau IV.2 Les différentes bandes d'absorption infrarouge relatives aux groupements	
fonctionnels présents dans la biomasse Pleurotus mutilus brute	59
Chapitre V	
Tableau V.1 Valeurs expérimentales obtenues en fonction du débit d'alimentation	64
Tableau V.2 Valeurs expérimentales obtenues pour différentes hauteurs du lit	66
Tableau V.3 Valeurs des paramètres obtenus expérimentalement pour différentes	
concentrations initiales des ions Cd ²⁺	58
Tableau V.4 Valeurs des paramètres obtenus expérimentalement en fonction du pH de la	
solution initiale	69
Tableau V.5 Comparaison des capacités d'adsorption des ions Cd ²⁺ par différents types	
d'adsorbant	70
Chapitre VII	
Tableau VII.1 Paramètres des modèles de Langmuir et Freundlich relatifs à l'adsorption de	S
ions Cd ²⁺ par la biomasse « <i>Pleurotus mutilus</i> »	36
Tableau VII.2 Valeurs du $(k_L a)_{cal}$ estimées à partir des corrélations empiriques	87
Tableau VII.3 Conditions expérimentales et résultats relatifs à l'adsorption des ions Cd ²⁺	
sur la biomasse « <i>Pleurotus mutilus</i> » en colonne à lit fixe	95
Chapitre X	
Tableau X.1 Paramètres du modèle de Clark relatifs aux différents essais1	18
Tableau X.2 Paramètres du modèle de Wolborska relatifs aux différents essais	21
Tableau X.3 Paramètres du modèle de Yoon et Nelson relatifs aux différents essais12	23
Tableau X.4 Paramètres du modèle BDST relatifs aux différents essais1	26
ANNEXES	

(A, B, C, D, E, F, J, H, I, G, K, L)

Liste des figures

Chapitre II

Figure II.1 Représentation des phénomènes de physisorption et chimisorption S/L12 Figure II.2 Représentation schématique de la surface interne et externe d'un adsorbant16
Figure II.3 Schéma du mécanisme de transport d'un adsorbat au sein d'un grain :
1 - diffusion externe; $2 - diffusion$ interne (dans les pores); $3 - diffusion$ en
surface17
Figure II.4 Classification des isothermes d'adsorption26
Figure II.5 Progression du front de la zone de transfert de matière à travers un lit
d'adsorbant31
Chapitre III
Figure III.1 Aspect morphologique du <i>Pleurotus mutilus</i> 47
Figure III.2 Schéma de la structure de la paroi cellulaire fongique48
Figure III.3 Structure de <i>la chitine</i> et de <i>la</i> chitosane49
Figure III.4 Structure du β-glucane
Figure III.5 Structure du Glycoprotéine
Chapitre IV
Figure IV.1 Evolution du pH en fonction des volumes de HCl et NaOH ajoutés à la solution
contenant la biomasse brute55
Figure IV.2 Evolution de la charge globale de la biomasse brute en fonction du pH du
milieu
Figure IV.3 Evolution de la charge globale de la biomasse brute en fonction du pH du milieu
compris entre 7 et 856
Figure IV.4 Evolution de la capacité d'échange ionique en fonction du Ph57
Figure IV.5 Spectre infrarouge de la biomasse brute <i>Pleurotus</i> mutilus
Figure IV.6 Histogramme de l'analyse par spectrométrie de fluorescence X de la biomasse
Pleurotus mutilus
Chapitre V
Figure V.1 Dispositif expérimental des essais de la biosorption sur colonne à lit fixe62
Figure V.2 Courbes de percée obtenues en fonction du débit d'alimentation63
Figure V.3 Courbes de percée obtenues en fonction de la hauteur du lit de biosorbant65
Figure V.4 Courbes de percée obtenues en fonction de la concentration initiale
Figure V.5 Courbes de percée obtenues en fonction du pH du milieu69
Chapitre VI
Figure VI.1 Bilan de matière d'un élément de volume du lit fixe73
Figure VI.2 Représentation d'une colonne à lit fixe73
Chapitre VII Figure VII 1 Courbon do noncée relatives à l'adacentien des ions Cd^{+2} sur la biennesse
Figure vII.1 Courbes de percee relatives à l'adsorption des ions Cd sur la biomasse D^{1}
« Pleurotus mutius » (1=25°C, C_0 =50 mg/l, Q=20 ml/mn, H=10 cm)
Figure v11.2 Courbes de percee relatives à l'adsorption des ions Cd sur la biomasse
« Pleurotus mutilus » (1=25°C, C_0 =40 mg/l, Q=20 ml/mn, H=10 cm)88
Figure VII.3 Courbes de percee relatives à l'adsorption des ions Cd ⁻² sur la biomasse
« Pleurotus mutilus » ($1=25$ °C, C ₀ =20 mg/l, Q=20 ml/mn, H=10 cm)89
Figure VII.4 Courbes de percee relatives à l'adsorption des ions Cd ⁻² sur la biomasse
« Pleurotus mutilus » ($T=25$ °C, $C_0=20$ mg/l, $Q=20$ ml/mn, $H=15$ cm)89
Figure VII.5 Courbes de percee relatives à l'adsorption des ions Cd sur la biomasse
« Pleurotus mutilus » ($T=25$ °C, $C_0=20$ mg/l, $Q=20$ ml/mn, $H=10$ cm)90
Figure VII.6 Courbes de percée relatives à l'adsorption des ions Cd ⁺⁺ sur la biomasse
\sim <i>Pleurotus mutilus</i> \sim (T=25 °C, C ₀ =20 mg/l, Q=20 ml/mn, H=13 cm)90

Figure VII.7 Courbes de percée relatives à l'adsorption des ions Cd ⁺² sur la biomasse
« Pleurotus mutilus » (T=25°C, C ₀ =20 mg/l, Q=10 ml/mn, H=10 cm)91
Figure VII.8 Courbes de percée relatives à l'adsorption des ions Cd ⁺² sur la biomasse
« Pleurotus mutilus » (T=25°C, C ₀ =20 mg/l, Q=5 ml/mn, H=10 cm)91
Figure VII.9 Courbes de percée relatives à l'adsorption des ions Cd ⁺² sur la biomasse
« <i>Pleurotus mutilus</i> » (T=25°C, C ₀ =20 mg/l, Q=20 ml/mn, H=10 cm)92
Figure VII.10 Effet du débit d'alimentation sur le coefficient volumétrique global $(k_I a)_{Cal}$
en phase liquide relatif à l'adsorption des jons Cd^{+2} sur la biomasse « <i>Pleurotus</i>
mutilus » (T= 25° C C ₀ = 20 mg/l O= 20 10 et 5 ml/mn H= 10 cm)
Figure VII 11 Effet du débit d'alimentation sur le du temps de demi adsorption relatif à
L'adsorption des jons Cd^{+2} sur la biomasse « <i>Pleurotus mutilus</i> » (T=25°C
$C_0 = 20 \text{ mg/l} 0 = 20 10 \text{ et 5 ml/mn} \text{H} = 10 \text{ cm}$
Figure VII 12 Validité du modèle relative à l'étude de l'influence de la concentration initiale
$(T-25^{\circ}C C_{\circ}-20 40 \text{ et } 50 \text{ mg/l} 0-20 \text{ ml/mn} \text{ H}-10 \text{ cm})$ 94
Figure VII 13 Validité du modèle relative à l'étude de l'influence du débit d'alimentation
$(T-25^{\circ}C C_{0}-50 mg/l O-5 10 et 20 ml/mn H-10 cm)$ 94
Figure VII 14 Validité du modèle relative à l'étude de l'influence de la hauteur du lit
$(T-25^{\circ}C, C_{2}-50 \text{ mg/l}, O-20 \text{ ml/mn}, H-10, 13 \text{ et } 15 \text{ cm})$ 05
$(1-25 \text{ C}, \text{C}) = 50 \text{ mg/r}, Q=20 \text{ mm/rm}, \Pi=10, 15 \text{ C}(15 \text{ Cm}) \dots 55$
Figure VIII 1 Représentation d'une intégration par la méthode des trapèzes 102
Figure VIII.1 Representation d'une integration par la methode des trapezes
Chanitre IX
Figure IX 1 Application du modèle de Morris et Weber à la cinétique d'élimination des jons
Cd^{2+} en système batch
Figure IX 2 Application du modèle cinétique du pseudo premier ordre
Figure IX.2 Application du modèle cinétique du pseudo second ordre
Figure IX 4 Application du modèle du modèle de Spahn et Schlünder 109
Figure IX.4 Application du modele du modele de Spain et Semunder
Figure IX.5 Courbes de percée simulées et expérimentales relatives à la biosorption des ions
Cd^{2+} nour une concentration initiale de 50 mg/I 112
Figure IX 7 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
du débit d'alimentation sur la biosorntion des ions Cd^{2+}
Figure IX 8 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
de la hauteur du lit sur la biosorntion des jons Cd^{2+}
Figure IX 0 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
de la hauteur du lit sur la biosorption des jons Cd^{2+} 114
Figure IX 10 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
du débit d'alimentation sur la biosorption des ions Cd^{2+} 114
Figure IX 11 Courbes de percée simulées et expérimentales relatives à la biosorption des ions
Cd^{2+} pour une concentration initiale de 50 mg/L 115
Figure IX 13 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
de la hauteur du lit sur la biosorntion des jons Cd^{2+} 115
Figure IX 14 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence
du débit d'alimentation sur la biosorntion des ions Cd^{2+} 116
Figure IX.15 Courbes de percée simulées et expérimentales relatives à la biosorption des ions
Cd^{2+} nour une concentration initiale de 50 mg/L 116
Chapitre X
Figure X.1 Application du modèle de Clark aux résultats expérimentaux obtenus pour
différents débits d'alimentation
Figure X.2 Application du modèle de Clark aux résultats expérimentaux obtenus pour

différentes concentrations initiales119
Figure X.3 Application du modèle de Clark aux résultats expérimentaux obtenus pour
différentes hauteurs du lit120
Figure X.4 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour
différentes concentrations initiales122
Figure X.5 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour
différentes hauteurs du lit122
Figure X.6 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour
différents débits d'alimentation123
Figure X.7 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus
pour différentes concentrations initiales124
Figure X.8 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus
pour différentes hauteurs du lit125
Figure X.9 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus
pour différents débits d'alimentation125
Figure X.10 Application du modèle BDST aux résultats expérimentaux obtenus pour
différentes hauteurs du lit127
Figure X.11 Application du modèle BDST aux résultats expérimentaux obtenus pour
différents débits d'alimentation127
Figure X.12 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus
pour différentes concentrations initiale128

Nomenclature

A	: Surface d'échange concernée par la diffusion externe	(cm^2)
A	: Constante de Clark	/
a	: Concentration de la biomasse	(1
b C	: Constante de Langmuir	(1.mg)
C	Concentration de la solution à l'Instant t	(mg/l)
C	Concentration initiale	(mg/l)
$C_0 A$: Concentration hindale	(mg/l)
$C_{\rm A}(l)$: Concentration à l'état d'équilibre	(mg/l)
$C_{A}(e)$: Concentration de l'acide	(mole/l)
C_a	: Concentration de la base	(mole/l)
	: Concentration de la base	(mg/l)
C_e	: Concentration du constituant <i>i</i> en phase fluide dans les pores	$(mol m^{-3})$
$C_{p,i}$: Concentration de l'adsorbat à l'interface solide - liquide	(mg/l)
C_s	· Canacité utile	(mg/σ)
C_{u}	: Concentration initiale de l'alimentation	(mg/g)
	. Conférient de diffusion aviele	$\left(\frac{2}{2}\right)$
D_L	: Coefficient de diffusion affactif	(cm/min)
D_{eff}	: Coefficient de diffusion dans la film	(m/s)
D_f	: Coefficient de diffusion malégulaire du soluté	$\frac{\text{cm}}{\text{s}}$
D_M	: Coefficient de diffusion moléculaire du solute	(cm / s) $(m^2 s^{-1})$
$D_{m,i}$: Coefficient de diffusion effectif du constituent i	(III .8) $(\text{m}^2/\text{s}^{-1})$
$D_{e,i}$. Coefficient de diffusion poreuse	(m^2/a^{-1})
D_p	: Coefficient de diffusion poreuse	(III/S)
a_{P}		$\begin{pmatrix} 11 \end{pmatrix}$
D_s	: Coefficient de diffusion decrivant la diffusion de surface en phase adsorbée	(m^{-}/s^{-})
F	: Constante de Faraday = 96500C	(C/mole)
F	: Capacité fractionnaire	(%)
Н	: Hauteur du lit fixe	(cm)
H_{z}	: Hauteur de la Z.T.M	(cm)
J _s	: Densité de flux de matière par diffusion superficielle	$(m^2.s)$
J_p	: Flux de matière du à la diffusion poreuse	(m^{2}/s)
K	: Constante de Boltzmann	/
<i>k</i>	: Constante globale de la vitesse de la réaction	(\min^{-1})
K _{BA}	: Coefficient de taux d'adsorption	$(\text{L.mg}^{-1}.\text{min}^{-1})$
K _C	: Constante de Clark	/
$k_{\rm C}$: Constante d'équilibre	/
KD	: Constante de proportionnalité, designe souvent sous le nom du	/
1	Coefficient de partage	$(m a^{-1})$
K_{f}	: Coefficient de transfert de matiere externe	(m.s)
K_1	: Constante de vitesse du pseudo premier ordre en	(\min^{-1})
K_2	: Constante de vitesse du pseudo second ordre	$(g.mg^{-1}.min^{-1})$
$K_{\mathrm{f}r}$: Paramètre de Freundlich	$(mg^{1-1/11}.g^{-1}.L^{1/11})$
K_L	: Coefficient de transfert de matière global	(cm.min ⁻¹)
k_L	: Coefficient de transfert de matière individuel	$(\operatorname{cm.min}^{-1})$
$K_L a$: Coefficient de transfert de matière volumétrique global	(\min^{-1})
K_{YN}	: Constante de proportionnalité	(\min^{-1})

m	: Masse de l'adsorbant	(g)
m_1	: Masse du pycnomètre remplie avec de la biomasse	(g)
m_0	: Masse du pycnomètre vide	(g)
N_0	: Capacité d'adsorption	$(mg.L^{-1})$
n	: Paramètre de Freundlich	/
Q	: Débit d'alimentation	(m^3/mn)
q	: Capacité d'échange ionique	(mg/g)
$q_{ m e}$: Quantité adsorbée au temps d'équilibre	$(mg.g^{-1})$
q_i	: Quantité adsorbée de composé <i>i</i>	$(mol.kg^{-1})$
$q_{ m t}$: Quantités adsorbée à n'importe quel instant t	$(mg.g^{-1})$
q_0	: Capacité d'adsorption maximale	(mg/l)
Rp	: Rayon de la particule d'adsorbant	(mm)
r	: Constante de Clark	/
S	: Surface spécifique de la biomasse	(m^{2}/g)
Т	: Température	(K)
t	: Temps de fonctionnement	(mn)
tp	: Temps de percée	(mn)
ts	: Temps de saturation	(mn)
<i>t</i> _{1/2}	: Temps nécessaire pour adsorber 50% dans la courbe de percée	(mn)
	Temps auquel la moitie de la quantité est adsorbée en batch	(mn)
U	: Vitesse d'écoulement	(cm/mn)
U_t	: Accomplissement partiel de l'équilibre	/
U_z	: Vitesse de déplacement de la Z.T.M	(cm/mn)
U_0	: Vitesse d'écoulement du fluide	(cm.min ⁻¹)
V	: Volume de la solution à traitée	(ml)
Vp	: Volume de percée	(ml)
V_s	: Volume de saturation	(ml)
V_1	: Volume de l'acide ou de la base ajouté à la solution contenant	(ml)
V	de la biolitasse	(m1)
v ₂	de la biomasse	(IIII)
$X_{\rm e}$: Concentration à l'équilibre	(mg/l)
Ζ	: Hauteur du lit fixe d'adsorbant	(cm)
Z_0	: Hauteur de la zone d'adsorption	(cm)
Sh	: Nombre de Sherwood	(kJ/mol)
Re	: Nombre de Reynolds	(kJ/mol)
Sc	: Nombre de Schmidt	(kJ/mol)
	Lettres grecques	
σ	: Epaisseur du film limite	(cm)
$ ho_{_f}$: Masse volumique de la phase fluide	(kg.m ⁻³)
$ ho_{\scriptscriptstyle P}$: Masse volumique des grains d'adsorbant	$(kg.m^{-3})$
δ	: Epaisseur du film	(m)
τ_{P}	: Facteur de tortuosité dans les grains d'adsorbant	/
$\sigma_{_i}$: Diamètre des molécules du constituant <i>i</i>	(cm)
eta_{a}	: Coefficient cinétique pour le transfert de masse externe	(\min^{-1})
$oldsymbol{eta}_0$: Coefficient de transfert de masse externe avec dispersion axiale	(min ⁻¹)
u _{sf}	: Vitesse superficielle d'écoulement	(m.min ⁻¹)

	Liste des abréviations	
${\cal E}_P$: Porosité de la particule	/
ν	: Vitesse de déplacement du front d'adsorption	(cm.min^{-1})
$\mu_{_j}$: Viscosité du solvant j	(Pa.s)
$\mu_{_f}$: Viscosité de la phase fluide	(Pa.s)

- HSDM : Homogeneous surface diffusion model Z.T.M : Zone de transfert de matière

Introduction Générale

Introduction générale

La croissance démographique et l'industrialisation augmente la quantité et la diversité des déchets rejetés dans l'environnement, donnant naissance à de nouveaux problèmes de pollution (virus, métaux lourds, micropolluants...etc.). De nos jours, la protection et la dépollution de l'environnement sont un axe de recherche d'une importance capitale dans le Les eaux de domaine industriel. surface constituent une source importante d'approvisionnement en eau potable. Pour rendre ces eaux utilisables, nous procéderons à leur traitement en leur faisant subir des modifications physico-chimiques et biologiques dans une chaîne de traitement spécifié.

Différentes techniques de traitement et d'épuration des effluents industriels ont été utilisées pour éliminer ou diminuer la toxicité des substances contenues dans ces rejets.

Cependant, depuis une vingtaine d'années, différents chercheurs ont montré que les matériaux biologiques comme les biomasses sont capables de fixer les métaux lourds même à des faibles concentrations.

Plusieurs études concernant les milieux poreux ont été effectuées ces dernières années, du fait de leurs importances sans cesse grandissantes dans l'industrie. Une des applications envisagées est la séparation sur lit fixe d'adsorbant. Malheureusement, la mauvaise connaissance des phénomènes régissent la diffusion dans les solides rend de tels procédés difficiles à concevoir.

Dans ce contexte, notre travail a pour objet la modélisation de la cinétique d'adsorption en continu dans une colonne à lit fixe lors de l'élimination des ions Cd^{2+} par une biomasse d'origine végétale « *Pleurotus mutilus* ». Les courbes de percée simulées seront comparées avec les résultats expérimentaux.

A cet effet, nous avons divisé notre travail en deux parties bien distinctes, comportant chacune un aspect théorique sur la modélisation de la cinétique d'adsorption et un aspect application relatif à l'application des modèles mathématiques aux résultats expérimentaux.

La première partie est consacrée exclusivement à l'étude bibliographique. Elle est divisée en quatre chapitres comportant des généralités sur la pollution des eaux par les métaux lourds, des généralités sur l'adsorption suivie par l'étude de la biosorption des métaux lourds, une caractérisation de la biomasse et une présentation des différents modèles applicables à la modélisation de la cinétique d'adsorption en régime dynamique.

La deuxième partie en revanche est dédiée à la modélisation, elle est aussi divisée en six chapitres, on y présentera une étude expérimentale de la biosorption du Cadmium sur une colonne à lit fixe, la modélisation des courbes de percée expérimentales, l'application de

1

quelques solutions analytiques existant dans la littérature relatives aux différents mécanismes de diffusion intervenant dans le processus d'adsorption et l'utilisation des modèles mathématiques préétablis à la modélisation de la cinétique d'adsorption en continu, ainsi que leurs comparaison avec les résultats expérimentaux relatifs aux courbes de percée. Nous terminerons le travail par une conclusion générale et des perspectives.

Partie Théorique

Chapitre

Pollution des eaux par les métaux lourds

I.1 Introduction

La présence et la diversité des polluants rendent souvent difficile le choix d'un traitement des eaux usées. D'une manière générale, il est important, avant de définir tout procédé, d'avoir une connaissance précise de la composition des eaux de rejets ainsi que la forme des micropolluants qui s'y trouvent.

I.2 Définition des métaux lourds

Bien que le terme « métaux lourds » soit abondamment utilisé, et ce même dans la littérature scientifique, il n'a pas de réelle définition scientifique ou juridique unanimement reconnue [1].

Certains auteurs définissent les métaux lourds selon leur densité importante (de 3,5 à 6 g/cm³). D'autres les définissent en fonction de leur masse atomique ou de leur numéro atomique. Le terme métal lourd impliquant une notion de toxicité, il est souvent utilisé pour l'Arsenic ou le Sélénium. Parmi les éléments les plus couramment désignés par le terme métal lourd on retrouve : le Vanadium, le Chrome, le Cobalt, le Nickel, le Cuivre, le Zinc, l'Arsenic, le Sélénium, le Plomb, le Cadmium, le Mercure,...etc. Le terme « éléments traces » est aussi souvent utilisé pour décrire ces mêmes éléments, car ils se retrouvent souvent en très faible quantité dans les eaux [1].

La classification des métaux lourds est d'ailleurs souvent discutée, car certains métaux lourds toxiques ne sont pas particulièrement lourds comme le Zinc, tandis que certains éléments toxiques ne sont pas tous des métaux lourds comme l'Arsenic par exemple.

Pour ces différentes raisons, la plupart des scientifiques préfèrent à l'appellation métaux lourds l'appellation (éléments métalliques en traces), ou éléments traces, dans certaines publications anciennes l'appellation de (métal pesant) est souvent utilisée [2].

Certains métaux lourds peuvent être essentiels à la vie à très faibles doses (oligoéléments : le Sodium, le Magnésium, le Calcium,...etc.), car ils sont impliqués dans le métabolisme cellulaire, mais ils sont tous potentiellement toxiques à forte concentration [2].

Parmi les métaux lourds non essentiels à la vie, il faut citer les métaux lourds comme le Nickel, le Cadmium, le Mercure et le Plomb. On compte actuellement plus de 65 éléments qui possèdent des propriétés métalliques et qui peuvent être considérés comme métaux lourds [2].

3

I.3 Sources de pollution par les métaux lourds

Chaque année, des millions de tonnes de métaux lourds sont extraits et ensuite dispersés dans la biosphère.

Aujourd'hui, l'évolution de la ville est un aspect pesant dans la dégradation de l'environnement, d'une façon générale, et dans le développement industriel, en particulier.

Les aspects globaux qui expliquent l'interaction du couple environnement / ville (zone industrielle et eau usée), leurs implications sur la vie humaine sont vastes et complexes. Les sources de la pollution peuvent être d'origine naturelle ou artificielle [3].

I.3.1 Les sources naturelles [3]

Les métaux lourds se retrouvent dans tous les compartiments de l'environnement. Les réserves les plus importantes se trouvent dans les roches et/ou les sédiments océaniques. Les gisements naturels ; deviennent des sources de contamination des eaux dans les situations suivantes :

- L'exploitation des mines ;
- L'érosion qui transporte les métaux vers les sols, les eaux de surface et les sédiments ;
- Des éruptions volcaniques terrestres ou sous marines ;

On estime que les volcans libèrent en moyenne annuellement dans le monde près de 800 à 1400 tonnes de Cadmium.

Il y a donc des sources de contamination naturelles; une fois en circulation, les métaux se distribuent dans tous les compartiments de la biosphère: terre, air et océan.

I.3.2 Les sources d'origine artificielle

L'activité humaine n'a apporté aucun changement dans les volumes des métaux lourds existants. Il n' y a ni création, ni suppression. Elle a surtout changé la répartition des métaux lourds. Le tableau suivant présente les valeurs moyennes des émissions des métaux lourds dans le monde [4].

EI EMENT	FLUX LIE A L'HOMME	FLUX NATUREL	
ELEMENI	(TONNE/ANNEE)	(TONNE/ANNEE)	
Cuivre	35.000	28.000	
Cadmium	53.000	31.000	
Zinc	132.000	45.000	
Plomb	331.000	12.000	
Nickel	52.000	29.000	

Tableau I.1 Valeurs moyennes des émissions des métaux lourds dans le monde [4].

I.4 Forme des métaux lourds dans les eaux [5]

La composition des eaux usées est très hétérogène. Ces eaux renferment de nombreuses substances organiques ou minérales qui se trouvent en suspension ou dissoutes.

Les métaux lourds dans les eaux peuvent se manifester sous les formes suivantes:

- Colloïdale ;
- Soluble ;
- En suspension ;

Le tableau qui suit indique les différentes formes sous lesquelles on trouve les métaux lourds dans les eaux.

METAUX LOURDS	SYMBOLE CHIMIQUE	FORME DES METAUX DANS LES EAUX			
		Cd en suspension			
Cadmium	Cd		Sous forme ionique		
		Cd dissous	Sous forme complexe		
		Cr er	n suspension (Cr (OH) $_3$)		
Chrome	Cr	Cr dissous	Cr^{+6}		
			Cr ⁺³		
		Pb en suspension (phosphate, carbonate, hydroxyde, sulfure)			
Plomb	Pb	Pb dissous Pb ⁺²			
		Cu en suspension			
Cuivre	Cu	Cu dissous	Sous forme ionique Cu ⁺² essentiellement, mais possibilité de Cu ⁺¹		
			Sous forme complexe		
	Sn en suspension (Oxyo		n suspension (Oxyde,)		
Etain Sn Sn dissous Sn ⁺² ,		on dissous Sn ⁺² , Sn ⁺⁴			
Ni e		Ni en suspension [Ni(OH) ₂ , Cyanure de Ni, carbonate]			
Nickel	Ni		Ni ionique Ni ⁺²		
		Ni dissous	Ni complexe (Cyanure, EDTA,)		

Tableau I.2 Formes de quelques métaux lourds dans les eaux [4].

I.5 Normes de rejet des métaux lourds dans l'eau [6, 7]

Pour chaque pays, des normes de rejet des eaux résiduaires ont été établies en donnant la concentration maximale que pourraient contenir ces eaux pour chaque métal jugé nocif à l'environnement. Le tableau I.3 présente les teneurs limites en métaux lourds dans les ordures ménagères (déchet sec), les boues d'épuration, les eaux industrielles et dans les égouts publics.

	TENEUR	TENEUR	TENEUR	TENEUR	TENEUR
	MOYENNE DANS	MOYENNE	MOYENNE	MOYENNE	MOYENNE
МЕТАІ	LES EAUX	DANS LES	DANS LES DANS LES		DANS LES
WIETAL	INDUSTRIELLES	ORDURES	SOLS SECS	BOUES	EGOUTS
	(mg/L)	MENAGERES	(mg/Kg)	D'EPURATION	PUBLICS
		(g/T)		(g/T) MES	(mg/Kg)
Cadmium	0.2	1.6	3	10	0.1
Chrome	0.01	-	200	100	2
Mercure	0.01	1.0	1.5	10	-
Nickel	5.0	48	75	200	2.0
Plomb	1.0	800	300	80	2.0
Zinc	5.0	-	300	300	2.0

 Tableau I.3 Teneurs limites en métaux lourds [8, 9].

(g/T) MES : gramme par tonne de matière en suspension.

I.6 Teneurs limites des métaux lourds dans l'eau potable

Les normes de potabilité admises pour les métaux lourds sont données dans le tableau suivant qui représente le seuil fixé par l'organisation mondiale de la santé (OMS).

METAL	TENEURS LIMITES DES METAUX LOURDS DANS L'EAU POTABLE EN (μg /L).	
Cadmium	5	
Chrome	50	
Nickel	50	
Mercure	1.0	
Plomb	50	
Sélénium	10	
Zinc	200	
Cuivre	100	
Aluminium	200	
Fer	200	
Arsenic	50	

Tableau I.4 Teneurs limites des métaux lourds dans l'eau potable en (μ g /L) [10, 11].

I.7 Toxicité des métaux lourds [12]

Les métaux lourds peuvent s'introduire dans notre organisme par le biais des aliments (poisson, viande et produits agricoles) et de l'eau potable, tandis que l'ingestion des fragments de peinture peut exposer les enfants au plomb. Le plomb, le mercure et le cadmium sont trois métaux lourds liés à des effets nocifs sur la santé de l'homme.

Même une faible exposition à ces métaux, si elle est chronique, peut avoir de graves répercussions sur la santé. Du fait qu'il est impossible de dégrader ou de détruire les métaux lourds, ils ne sont pas décomposés et s'accumulent dans le corps humain; ils se concentrent dans le foie, les reins, le cerveau, le squelette et les tissus kératinisés tels que les cheveux et les ongles.

L'exposition aux métaux lourds a été liée aux troubles du développement, à divers cancers, à l'atteinte rénale et même, dans certains cas, à la mort.

On montre sur le tableau I.5 la toxicité de quelques métaux lourds.

Tableau I.5 Toxicité de quelques métaux lourds [12].

Métal	Toxicité
Plomb	Trouble du système nerveux, affection du foie et des reins
Cadmium	Affectations respiratoires, Troubles rénaux
Mercure	Troubles du système nerveux (mémoire, fonctions sensorielles de coordination)
Nickel	Maladies respiratoires, asthme, malformations congénitales, cancers
Chrome	Cancers, troubles dermatologiques, anémie.

I.8 Conclusion

D'après ce chapitre, nous pouvons retenir les conclusions suivantes :

- Le grand danger que présente le rejet d'une eau polluée par les métaux lourds sur la santé de l'homme et l'environnement.
- Le problème posé par ces eaux résiduaires industrielles est réel dans le monde.

Références bibliographiques

[1] T. Deschamps, M. Benzaazoua, B. Bussiere, T. Belem, M. Mbonimpa, «Mécanismes de rétention des métaux lourds en phase solide : cas de la stabilisation des sols contaminés et des déchets industriels », La revue en sciences de l'environnement, Vol.7, No2, Septembre, Canada, 2006.

[2] G. Sautel, C. Roulph, P. Le Clerc, « *Biofixation du cadmium par la bactérie Pseudomonas Putida* », Récents progrès en génie des procédés, Vol.15, p. 203-208, 1991.

[3] R. Leygoniel, «Les métaux lourds dans l'air, Sources d'émissions, Mesures, Effets », Pollution atmosphériques, p.63-70, 1993.

[4] M. Di Bendetto, « *Méthodes spectrométriques d'analyse et de caractérisation* », Ecole des Mines de Saint-Étienne, 1997.

[5] M. Dore, « Chimie des oxydants de traitement des eaux », Ed Lavoisier, 1989, Paris.

[6] « *Essais des eaux, dosage de fer méthode par spectrométrie à la phénothroline* », Norme Afnor N° (T90-017).

[7] A. Kattab, «*Traitement des eaux, les eaux potable* », Office des publications universitaires, Alger, 1992.

[8] J. Lucpotelon, « *La dégradation de la qualité des eaux potables dans les réseaux* », Office international de l'eau, Document technique Hors Série N⁰14, France.

 [9] J.C. Boueglin, « Traitement des distinations finales des boues résiduaires », Technique de l'ingénieur, N° J3944, 2001.

[10] « Directive qualité pour l'eau de boisson », OMS (Organisation Mondiale de la Santé),
 Vol 2, 2^{ème} édition, Genève, 2000.

[11] J. Rodier, «Analyse des eaux », Ed.Massou, 7^{ème} édition, 1984.

[12] H. Hammi, «La pollution des eaux par les métaux lourds », Les III^{ème} Olympiades Tunisiennes de Chimie, 2010.

Chapitre

Généralités sur l'adsorption

II.1 Introduction

La fixation d'un constituant d'une solution fluide sur un milieu solide est appelée adsorption. On peut comprendre son mécanisme en tenant compte de tous les phénomènes mis en jeu. Ceci a fait l'objet de plusieurs travaux de recherche.

Il semble que ce terme a été introduit pour la première fois par KAYSER en 1881, pour décrire un phénomène de condensation de gaz sur une surface solide, phénomène découvert plutôt par FANTANE et SCHEELS vers 1777. Par contre, l'utilisation et la mise en œuvre du processus d'adsorption sont bien plus anciennes [1].

Dans ce chapitre, nous présenterons brièvement les notions de base du transfert de masse utilisées dans notre étude, des généralités sur l'adsorption ainsi que les différents processus mis en œuvre, puis quelques modèles mathématiques existant dans la littérature. Enfin, nous mettrons l'accent sur l'étude de l'adsorption en continu dans une colonne à lit fixe et la modélisation des courbes de percée expérimentales.

II.2 Définition

L'adsorption est le processus au cours duquel des molécules d'un fluide (gaz ou liquide), appelé **adsorbat**, viennent se fixer sur la surface d'un solide, appelé **adsorbant**.

Par la surface du solide, on sous-entend les surfaces externes et internes engendrées par le réseau de pores et cavités à l'intérieur de l'adsorbant [2].

II.3 Type d'adsorption [3]

La force de cette adsorption, et la nature des liens qui unissent les molécules adsorbées, au solide varient proportionnellement selon les systèmes. Il est cependant possible de séparer l'adsorption en deux types ; déjà reconnus depuis longtemps, il s'agit de l'adsorption chimique ou chimisorption et de l'adsorption physique ou physisorption comme le montre la figure suivante :

II.3.1 Adsorption physique ou physisorption

Dans le cas de l'adsorption physique, la fixation des molécules d'adsorbat se fait essentiellement par les forces de *Van Der Waals* et les forces dues aux interactions électrostatiques de polarisation, dipôle et quadripôle pour les adsorbants ayant une structure ionique [4].

L'adsorption physique se produit sans modification de la structure moléculaire. Elle est parfaitement réversible (c'est à dire que les molécules adsorbées peuvent être facilement désorbées en diminuant la pression ou en augmentant la température) [5].

II.3.2 Adsorption chimique ou chimisorption

L'adsorption chimique implique un transfert d'électrons entre l'adsorbat et la surface du solide. Il y a formation d'une liaison qui spécifie cette adsorption, et qui est favorisée par absorption ou dégagement de la chaleur. Dans le cas de l'adsorption chimique, le processus résulte d'une réaction chimique avec formation de liens chimiques entre les molécules d'adsorbat et la surface de l'adsorbant. L'énergie de liaison mise en jeu est beaucoup plus importante que dans le cas de l'adsorption physique [6].

Le tableau II.1 montre une comparaison entre l'adsorption chimique et l'adsorption physique.

Type de l'adsorption	ADSORPTION PHYSIQUE	ADSORPTION CHIMIQUE
Type de liaison	Liaison de VAN DER WAALS	Liaison chimique
Température du processus	Relativement faible comparée à la température d'ébullition de l'adsorbat	Plus élevée que la température d'ébullition de l'adsorbat
Individualité des molécules	L'individualité des molécules est conservée	Destruction de l'individualité des molécules
Cinétique	Rapide, indépendante de la température	Très lente
Chaleur d'adsorption	Inférieur à 10 Kcal/mole	Supérieure à 10 Kcal/mole
Energie mise en jeu	Faible	Elevée
Type de formation	Mono et multicouches	Mono couche seulement
Nature de la chaleur d'adsorption	Exothermique	Exothermique et endothermique

Tableau II.1	Comparaison	entre l'adsor	ption phys	sique et l'adso	rption chimic	me [7].
Labicau II.I	Comparation	chuic i dusoi	puon phys	sique et i duso	puon emine	1uc [/].

II.4 Les principaux types d'adsorbants

Au sens strict, tous les solides sont des adsorbants. Cependant, seuls les adsorbants ayant une surface spécifique suffisante (surface par unité de masse) peuvent avoir des intérêts pratiques. Les adsorbants industriels les plus courants sont les suivants : le charbons actif, les zéolites, les gels de silice et les alumines activées. Les zéolites se distinguent des trois autres types d'adsorbants par leurs structures cristallines conduisant à des micropores réguliers de taille uniforme [8].

II.4.1 Le charbon actif [9, 10]

Le charbon actif est obtenu à partir de la carbonisation et de l'activation de produits naturels organiques ou minéraux comme le bois et la coque de fruits.

Dans le cas des procédés dits physiques, le matériau brut est carbonisé à 600-700 C° durant 24 à 72 heures en présence d'un oxydant de type de vapeur d'eau ou O_2 . L'activation dite chimique s'effectue en une seule phase où la carbonisation ou l'activation se fait à 400 à 600C° pendant cinq heures en présence de sels métalliques comme ZnCl₂ et/ou d'acide phosphorique. L'opération finale est le broyage et le tamisage.

Le charbon actif est l'adsorbant le plus anciennement connu industriellement. Il contient des plaquettes de carbone ou graphite microcristallin.

II.4.2 Les zéolites [11]

Les zéolites sont également des matériaux adsorbants microporeux, le nom de zéolite lui même est dérivé de la capacité de conserver les molécules d'eau. Un zéolite est un assemblage cristallin de cage d'aluminosilicates cristallisés.

En effet les anneaux ont des ouvertures de taille définie, ce qui entraîne des effets de tamis moléculaires. Actuellement, plus de 120 types de structures élémentaires naturelles ou synthétiques ont été signalées. Elles sont classées selon un code par L'INTERNATIONAL ZEOLITE ASSOCIATION.

II.4.3 Les gels de silice [8]

Les gels de silice (SiO₂, nH₂O) peuvent être obtenus par précipitation de la silice en faisant réagir une solution de silicate de sodium avec un acide minéral (sulfurique ou chlorhydrique). Le gel obtenu est ensuite lavé, séché et activé. La structure des pores est créée par l'agglomération des microparticules sensiblement sphériques de dimension à peu près uniforme comprise entre 2 et 20 nm.

Les utilisations principales des gels de silice sont le séchage, la séparation des composés aromatiques, le traitement du gaz naturel, ...etc.

II.4.4 Alumines activées [8]

Les alumines activées sont obtenues par déshydratation thermique du trihydrate d'alumine. Comme les gels de silice, les alumines activées sont très hydrophiles et sont couramment utilisées pour le séchage.

II.5 Structure poreuse et surface spécifique de l'adsorbant

II.5.1 Structure poreuse des adsorbants

En théorie tous les solides sont des adsorbants. Dans l'industrie, les solides les plus utilisés sont les résines, les charbons actifs, les zéolites, les gels de silice et les alumines activées. Les capacités d'adsorption particulièrement élevées de ces matériaux sont en partie liées à leurs structures poreuses très développées et leurs grandes surfaces spécifiques [12].

La classification des pores proposée par Dubinin [13] et adoptée actuellement par l'Union Internationale de Chimie Pure et Appliquée (IUPAC) est fondée sur leurs tailles. Trois catégories de pores ont été définies :

- les micropores dont le rayon est inférieur à 2 nm ;
- les mésopores dont le rayon est compris entre 2 et 50 nm ;
- les macropores dont le rayon est supérieur à 50 nm ;

Chaque type de pores joue un rôle particulier dans le phénomène d'adsorption. Les micropores déterminent pratiquement à eux seuls la capacité d'adsorption d'un charbon actif : ils représentent presque la totalité de la surface et du volume offertes à l'adsorption (Tableau II.2). Les macropores et les mésopores constituent les voies de passage vers les micropores. **Tableau II.2** Répartition des pores d'un adsorbant [13].

Désignation	Rayon moyen des pores (nm)	Volume poreux (cm ³ .g ⁻¹)	Surface spécifique $(m^2.g^{-1})$
Micropores	< 2	0,2-0,6	400 - 900
Mésopores	2 - 50	0,02 - 0,1	20 - 70
Macropores	> 50	0,2-0,8	0,5-2

II.5.2 La surface spécifique des adsorbants

La surface spécifique ou aire massique est la surface totale par unité de masse d'adsorbant accessible aux molécules. La surface spécifique cumule la surface intérieure de tous les pores constituant le grain d'adsorbant. La surface spécifique comprend la surface externe et la surface interne d'un adsorbant (Figure II.2) [14].

Figure II.2 Représentation schématique de la surface interne et externe d'un adsorbant [15].

La surface interne est la surface microporeuse représentée par les parois des micropores. La surface externe est la surface non-microporeuse qui comprend les parois des mésopores et des macropores ainsi que la surface non poreuse de l'échantillon.

D'un point de vue physique, la différence entre la surface interne et la surface externe est que la valeur de l'énergie d'adsorption peut être jusqu'à deux fois plus grande sur les parois des micropores que sur la surface externe. Ce phénomène s'explique par la présence de deux parois opposées proches créant une double interaction pour une molécule adsorbée dans un micropore. Une autre différence essentielle entre l'adsorption dans les micropores et les pores plus grands réside dans les mécanismes même de l'adsorption. L'adsorption graduelle multicouche ne s'opère que dans les mésopores et macropores [14].

II.6 Les différents processus de transport dans les adsorbants

Au cours de l'adsorption d'une espèce sur un solide, le transfert de masse des molécules se fait de la phase fluide vers le centre de l'adsorbant. Ce processus s'opère au sein d'un grain d'adsorbant en plusieurs étapes (Figure II.3).

Figure II.3 Schéma du mécanisme de transport d'un adsorbat au sein d'un grain :

1 – diffusion externe ; 2 – diffusion interne (dans les pores) ; 3 – diffusion en surface [15].

II.6.1 Transfert de masse externe (diffusion externe)

En supposant que la solution est à tout instant homogène, en particulier dans le film liquide autour du grain. Dans ce film, l'agitation ne se propage pas et le transport des solutés échangés avec le solide s'effectue par diffusion moléculaire [15].

L'expression mathématique de la diffusion à travers le film selon la loi de Fick est :

$$\frac{\mathrm{d}\mathbf{C}(t)}{\mathrm{d}t} = \frac{3\mathrm{D}_m}{\mathrm{R}_n \sigma} \left(\mathbf{C}(t) - \mathrm{C}_{\mathcal{S}}(t) \right) \tag{II.1}$$

Avec :

 D_m : Coefficient de diffusion moléculaire du soluté dans la solution (cm²/s).

 σ : Epaisseur du film liquide (cm).

C : Concentration de l'adsorbat dans la solution (mg/l).

C_s : Concentration de l'adsorbat à l'interface solide –liquide (mg/l).

R _p : Rayon de la particule adsorbante (cm).

t: Temps (s).

Les modèles suivants considèrent la diffusion externe comme étape cinétiquement limitante.

Modèle de Spahn et Schlünder (1975) [16]

La variation de la concentration du soluté en phase liquide obéit à l'équation (II.2) :

$$V \frac{dC(t)}{dt} = -k_f A(C(t) - C_s(t))$$
(II.2)

Avec :

A : est la surface d'échange concernée par la diffusion externe (m^2) .

 k_f : est le coefficient de transfert de matière externe (m/s).

C_s : est la concentration de l'ion à l'interface solide- liquide (mg/l).

V : Volume de la solution (m^3) .

Ces auteurs estiment que la concentration peut être considérée comme négligeable aux premiers instants à la surface du matériau. Dans ces conditions, l'équation s'écrit :

$$V\frac{dC(t)}{dt} = -k_f AC(t)$$
(II.3)

Après intégration :

$$-\operatorname{Ln}\frac{\mathrm{C}(\mathrm{t})}{\mathrm{Co}} = k_f \frac{\mathrm{A}}{\mathrm{V}} \mathrm{t}$$
(II.4)

Le tracé de $Ln \frac{C(t)}{Co}$ en fonction du temps permet de connaître le coefficient $k_f \frac{A}{V}$. Dans le cas des particules sphériques le rapport $\frac{A}{V}$ vaut $\frac{6 \text{ m}}{d_P V \rho_p}$. Avec :

IVEC .

- m : Masse des particules (kg).
- V : Volume de la solution (m^3) .
- d _p : Diamètre moyen des particules (m).
- ρ_P : Masse volumique des particules (kg/m³).
Une méthode plus rapide pour déterminer k_f dérivée de la condition aux limites de l'équation (II.3), est alors définie par :

$$Lim\left[\frac{d\left(\frac{C_{t}}{C_{o}}\right)}{dt}\right]_{t\to 0} = k_{f} \frac{A}{V}$$
(II.5)

Le coefficient de transfert correspondant k_f peut être estimé par des corrélations obtenues de manière empirique pour les milieux granulaires. Un exemple de ce type de corrélations est celle de Ranz et Levenspiel [17], valable pour les systèmes gazeux et liquides:

$$Sh = 2 + 1.8 \operatorname{Re}^{0.5} \operatorname{Sc}^{1/3}$$
 (10 < Re < 10³) (II.6)

 $O\hat{u}$:

Sh : est le nombre de Sherwood: $Sh = \frac{k_f d_P}{D_m}$

Re : est le nombre de Reynolds : Re = $\frac{\rho_f u_{Sf} d_P}{\mu_f}$

Sc : est le nombre de Schmidt : $Sc = \frac{\mu_f}{\rho_f D_m}$

Avec :

 k_f : Coefficient de transfert de matière externe (m.s⁻¹).

- d_P : Diamètre des grains d'adsorbant (m).
- D_m : Coefficient de diffusion moléculaire (m².s⁻¹).
- u_{Sf} : Vitesse superficielle d'écoulement (m.s⁻¹).
- μ_f : Viscosité de la phase fluide (Pa.s).

 ρ_f : Masse volumique de la phase fluide (kg.m⁻³).

Mehmet et al [18] ont calculé la constante de diffusion dans le film par la relation suivante :

$$D_f = 0.23 \frac{R_P \delta}{t_{1/2}} \frac{q}{C_0}$$
(II.7)

Avec :

q : Quantité adsorbée dans la phase solide (mg/g).

 D_f : Coefficient de diffusion dans le film (cm²/s).

 δ : Epaisseur du film (cm).

 C_0 : Concentration initiale de l'alimentation (mg/L).

 R_P : Rayon de la particule (cm).

 $t_{1/2}$: Temps au bout du quel la moitie de la quantité est adsorbée en batch (min).

Dans leurs études, ils ont mis en évidence que la diffusion dans le film est l'étape limitante, si seulement si, le coefficient D_f est compris entre 10^{-6} et 10^{-8} cm²/s.

Le coefficient de transfert de masse k_f dépend de l'agitation du milieu. Sa valeur est de l'ordre de 10⁻² cm/s (*Levin* [19]).

II.6.2 Transfert de masse interne dans les pores (diffusion interne)

Le transfert de matière interne a lieu dans le fluide remplissant les pores; les molécules se propagent de la surface des grains vers leur centre à travers les pores.

Ces transferts sont généralement décrits par des coefficients de diffusion effectifs qui regroupent plusieurs phénomènes de migration :

- diffusion moléculaire ;
- diffusion de Knudsen (impliquée quand le libre parcours moyen de la molécule est plus grand que la taille des pores) ;

Pour un système liquide, quand la taille des molécules est très faible par rapport à celle des pores, la limitation cinétique provient essentiellement de la diffusion moléculaire :

$$D_{e,i} = \frac{\varepsilon_P D_{m,i}}{\tau_P} \tag{II.8}$$

Où :

 $D_{e,i}$: est le coefficient de diffusion effectif du constituant *i* (m².s⁻¹);

 τ_p : est le facteur de tortuosité dans les grains d'adsorbant ;

 ε_P : est la porosité de la particule ;

 $D_{m,i}$: est le coefficient de diffusion moléculaire du constituant i (m².s⁻¹);

La diffusivité moléculaire d'un constituant peut être estimée à partir de la viscosité du solvant en utilisant la formule de Stokes-Einstein :

$$D_{m,i} = \frac{KT}{3\pi \,\mu_J \,\sigma_i} \tag{II.9}$$

Où :

K : est la constante de Boltzmann ;

 μ_j : est la viscosité du solvant *j* (Pa.s) ;

T : est la température (K) ;

 σ_i : est le diamètre des molécules du constituant *i* (cm) ;

II.6.3 Diffusion superficielle sur la surface du solide

Dans le cas de la diffusion superficielle, les molécules du soluté diffusent sur la surface interne des pores, en migrant d'un site actif à l'autre tout en restant à l'état adsorbé. Ce type de diffusion de surface est une étape limitante au flux de matière au sein de la particule adsorbante. Cette migration étant quantifiée par le coefficient D_s , la densité du flux de matière s'exprime selon la relation suivante :

$$J_{s} = -\rho_{p} D_{s} \frac{\partial q}{\partial r}$$
(II.10)

Où :

 J_s : est la densité du flux de matière par diffusion superficielle (m²/s).

 ρ_p : est la masse volumique de la particule adsorbante (kg/m³).

q : est la quantité adsorbée dans la phase solide (mg/g).

 D_s : est le coefficient de diffusion décrivant la diffusion de surface en phase adsorbée (m².s⁻¹). r : est le rayon de la particule (m).

Le coefficient de diffusion superficielle D_s ainsi que le coefficient de diffusion poreuse D_p sont fonctions, non seulement, de la nature et de la taille du soluté mais aussi de la structure poreuse de la particule adsorbante [20].

II.6.4 Diffusion combinée

La relation suivante décrit le flux total de matière dû à la diffusion interne, correspondant à la somme des flux de matière J_p et J_s :

$$J = J_{P} + J_{S} = \varepsilon_{P} D_{P} \frac{\partial C}{\partial r} - \rho_{P} D_{S} \frac{\partial q}{\partial r}$$
(II.11)

Où :

 J_p : est le flux de matière dû à la diffusion poreuse (m²/s).

 \mathcal{E}_{p} : est la porosité de la particule.

q : est la quantité adsorbée dans la phase solide (mg/g).

r : est la distance radiale par rapport au centre de la particule en (m).

Les données de la littérature montrent que plusieurs auteurs ne font pas la distinction entre la diffusion poreuse et la diffusion superficielle. Il a été introduit un coefficient de diffusion effectif D_{eff} regroupant les influences des deux composantes de la diffusion interne (Noll et al [21]). En s'appuyant sur les travaux de Fritz et al [22], de Komiyama et Smith [23], Mckay [24] et Keith [25] définissent D_{eff} de la façon suivante :

$$D_{eff} = D_p + \rho_P D_S \frac{\partial q_i}{\partial C_{P,i}}$$
(II.12)

Où :

 ρ_P : est la masse volumique apparente des grains d'adsorbant (kg.m⁻³);

 q_i : est la quantité adsorbée de composé i (mol.kg⁻¹);

 $C_{p,i}$: est la concentration du constituant *i* en phase fluide dans les pores (mol.m⁻³).

La diffusion du soluté à l'intérieur de la particule se fait sous l'effet du gradient de concentration, cette diffusion peut se faire [26, 27] :

- a) soit à l'état libre, dans le liquide intraparticulaire, cette migration est caractérisée par un coefficient de diffusion poreuse D_p.
- b) Soit à l'état lié, d'un site à un site adjacent, le coefficient de diffusion superficielle D_s caractérise cette étape.

D'après Uzun et coll [28], la diffusion superficielle est dominante à faible température et pour les particules de faible porosité.

Modèle de Morris et Weber (1963)

Weber et Morris [29] ont établi un modèle pour décrire la diffusion intraparticulaire en supposant cette dernière dominante. Dans ce modèle, la vitesse d'adsorption est considérée comme étant indépendante de la vitesse d'agitation et la diffusion externe est négligeable par rapport à la vitesse globale d'adsorption. Ce modèle permet de déterminer le coefficient cinétique de diffusion K_i , il s'écrit :

$$q = K_i t^{0.5} + C (II.13)$$

Où K_i est le coefficient de vitesse de diffusion intraparticulaire (mg/g.min^{1/2}).

On évalue les valeurs de K_i et C en portant q en fonction du temps à la puissance un demi. Les valeurs de C donnent une idée sur l'épaisseur de la couche limite et les valeurs des coefficients de la régression linéaire renseignent sur la validité du modèle.

Dans le cas où la diffusion de surface est dominante, Zhou [30] a déterminé pour l'adsorption en réacteur agité discontinu le coefficient D_s par l'équation suivante :

$$D_s = \frac{\pi}{36} \left(\frac{R_P K_i}{q_e} \right)^2 \tag{II.14}$$

Avec :

 K_i : est le coefficient de vitesse de diffusion intraparticulaire (mg/g.min^{1/2}).

 D_s : est le coefficient de diffusion superficielle (m²/s).

 R_p : est le rayon de la particule (m).

 q_e : est la quantité adsorbée dans la phase solide à l'équilibre (mg/g).

D'après *Neretnieks* [31], l'effet de la diffusion poreuse est négligeable vis-à-vis de la diffusion en surface et ce dernier est le mécanisme de transport limitant dans la plupart des cas.

Van liet [32], ayant étudié à la fois ces deux types de diffusion a conclu qu'il était tout à fait envisageable de modéliser la diffusion intraparticulaire par un coefficient de diffusion effective unique. *Hellferich* [33] a relié le temps de demi-réaction $t_{1/2}$ au coefficient de diffusion poreuse par la relation suivante :

$$t_{1/2} = 0.03 \frac{R_P^2}{D_P} \tag{II.15}$$

Si la diffusion poreuse est limitante, la valeur du coefficient de diffusion poreuse D_p doit se situer entre 10^{-11} et 10^{-13} cm²/s.

Les équations du modèle HSDM (Homogeneous Surface Diffusion Model) sont les suivantes [34]:

$$\frac{\partial q}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_s r^2 \frac{\partial q}{\partial r} \right)$$
(II.16)

A l'interface solide/liquide $(r = R_p)$: $k_f (C - C_s) = D_s \rho_p \frac{\partial q}{\partial r}$ (II.17)

Où :

r : est le rayon de la particule (cm) ;

 ρ_p : est la masse volumique de la particule en (kg/cm³);

 D_s : est le coefficient de diffusion superficielle (cm²/s) ;

 C_s : est la concentration du soluté sur la surface de la particule (mg/l);

Au moyen de l'outil informatique, les coefficients de diffusion k_f et D_s sont obtenus quand l'adéquation entre l'expérience et la simulation est le meilleur possible.

Cependant, pour un système adsorbant/soluté donné, la capacité à déterminer les coefficients du modèle HSDM est fonction de la valeur du nombre de Biot.

Le nombre de Biot se définit comme suit :

$$Biot = \frac{k_f R_P C_0}{D_S \rho_P q_0} \tag{II.18}$$

 q_0 étant la capacité d'adsorption pour $C_e = C_0$.

Si *Biot* << 1, le transfert de masse externe est le mécanisme dominant et le modèle HSDM n'est pas approprié pour la détermination du coefficient D_s .

II.7 Cinétique d'adsorption en système fermé

L'équilibre d'adsorption dépend surtout de la vitesse de transfert. Cette dernière dépend des caractéristiques du système étudié (résistance externe et interne qui imposent la vitesse globale d'adsorption) [35]. Il existe plusieurs modèles dans la littérature permettant de décrire la cinétique d'adsorption, nous citons :

Modèle cinétique du pseudo premier ordre

Lagergren a prouvé que le taux d'adsorption des corps dissous sur l'adsorbant est basé sur la capacité d'adsorption et suit une équation du pseudo premier ordre (Ho [36], Ricordel [37], Uzun [38]). La forme non linéaire de l'équation du pseudo premier ordre étant la suivante :

$$\frac{dq_t}{dt} = K_1 (q_e - q_t) \tag{II.19}$$

Où :

 q_e et q_t sont les quantités adsorbées (mg.g⁻¹) à l'équilibre et à l'instant (t) respectivement.

 K_1 : est la constante de vitesse du pseudo premier ordre en (min⁻¹).

Après l'application des conditions aux limites : $q_t = 0$ à t = 0 et $q_t = q_t$ à t = t, l'équation (II.19) devient :

$$Ln(q_e - q_t) = Lnq_e - K_1 t \tag{II.20}$$

La constante de vitesse K_1 est déduite de la pente de la droite représentant $Ln (q_e - q_t)$ en fonction du temps.

Modèle cinétique du pseudo second ordre [39]

La cinétique du pseudo second ordre est représentée par l'équation suivante :

$$\frac{dq}{dt} = K_2 (q_e - q_t)^2 \tag{II.21}$$

L'intégration de l'équation (II.21) mène à :

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$$
(II.22)

Où (K_2) est la constante de vitesse du pseudo second ordre (g.mg⁻¹.min⁻¹).

La constante de vitesse K_2 est déterminée à partir de l'ordonnée à l'origine de la droite représentant t/q_t en fonction du temps.

Modèle cinétique réversible du premier ordre

Le modèle de *Kumar* et *al* [40] se repose sur une cinétique simple d'ordre un réversible, qui peut corréler les vitesses de la réaction entre un solide et un liquide.

Ce modèle s'exprime comme suit :

$$-\frac{dC}{dt} = k_{ad}C - k_{d\acute{e}s}(C_0 - C)$$
(II.23)

Avec :

 (k_{ad}) et $(k_{dés})$ sont les constantes de vitesse d'adsorption et de désorption respectivement en (\min^{-1}) .

C: est la concentration du soluté dans la phase liquide à instant (t) en (mg/L).

 C_0 : est la concentration initiale du soluté dans la phase liquide en (mg/L).

L'équation (II.23) devient :

$$-\frac{dC}{dt} = (k_{ad} + k_{dés}) C - k_{dés} C_0$$

A l'équilibre, nous avons :

$$K = \frac{k_{ad}}{k_{dés}} = \frac{C_0 - C_e}{C_e}$$
(II.24)

Où :

 C_e : est la concentration du soluté dans la phase liquide à l'équilibre (mg/L).

K : est la constante d'équilibre.

D'où : $k_{d\acute{e}s}C_0 = (k_{ad} + k_{d\acute{e}s}) C_e$

En tenant compte les équations (II.23) et (II.24), on abouti à l'équation suivante :

$$Ln\left(\frac{C_0 - C_e}{C - C_e}\right) = (k_{ad} + k_{des}) t$$
(II.25)

Avec:
$$k = k_{ad} + k_{dés}$$
 (II.26)

Où (k) est la constante de vitesse d'adsorption globale (min⁻¹).

II.8 Isothermes d'adsorption [41, 15]

Les capacités des adsorbants à adsorber les différents constituants d'un mélange constituent le facteur le plus déterminant pour les performances de la majorité des procédés d'adsorption. Il est par conséquent essentiel de bien connaître les propriétés d'équilibre adsorbat-adsorbant pour pouvoir concevoir et dimensionner correctement les procédés d'adsorption.

Une isotherme d'adsorption représente la relation entre la concentration d'une substance en solution et la quantité adsorbée à une température constante. Les isothermes d'adsorption sont souvent employées pour établir la capacité maximale d'adsorption des métaux sur des adsorbants. Ces isothermes sont ensuite corrélées par des modèles mathématiques qui doivent représenter au mieux les isothermes d'équilibre expérimentales dans une plage étendue de concentration et température.

II.8.1 Classification des isothermes d'adsorption [42]

La majorité des isothermes d'adsorption observées peuvent être classées en cinq types (Figure II.4).

Figure II.4 Classification des isothermes d'adsorption.

Les isothermes de type I sont généralement obtenues dans le cas des adsorbants microporeux avec une saturation progressive des sites d'adsorption sensiblement équivalents.

Les isothermes de type II et III sont observées avec les adsorbants ayant des distributions larges des tailles des pores avec une transition continue de l'adsorption en monocouche à l'adsorption en multicouche jusqu'à la condensation capillaire.

Une isotherme de type IV peut résulter de la formation de deux couches successives d'adsorbat à la surface du solide quand les interactions entre les molécules d'adsorbat et la surface du solide sont plus fortes que les interactions entre les molécules adsorbées. Dans ce cas, les sites d'adsorption de la seconde couche ne commencent à se remplir que quand la première couche est à peu près complète.

Enfin, l'**isotherme de type V** traduit l'existence d'interactions intermoléculaires importantes, l'interaction entre les molécules d'adsorbat et le solide étant faible.

II.8.2 Modélisation des isothermes d'adsorption

La modélisation de l'adsorption d'un soluté en phase liquide sur un matériau solide emprunte certaines relations utilisées pour l'étude de l'adsorption de gaz dans des conditions réversibles. La représentation la plus utilisée est l'isotherme d'adsorption qui exprime, à une température constante, la relation entre la quantité d'adsorbat adsorbée par unité de masse d'adsorbant et la concentration d'adsorbat en solution. L'équation générale s'écrit :

$$q_e = \left(C_0 - C_e\right) \frac{\mathbf{V}}{\mathbf{m}} \tag{II.27}$$

Où :

 q_e : est la quantité du composé adsorbé par unité de masse d'adsorbant (mg/g).

 C_0 : est la concentration initiale d'adsorbat (mg/l).

C_e : est la concentration d'adsorbat à l'équilibre (mg/l).

V : est le volume de la solution (l).

m : est la masse de l'adsorbant (g).

L'isotherme d'adsorption du produit considéré est obtenue en traçant la courbe $q_e = f(C_e)$.

Plusieurs isothermes ont été établies pour décrire les concentrations à l'équilibre, nous citons :

II.8.2.1 Isotherme linéaire

Ce type d'isotherme est le premier en terme de simplicité puisqu'il se limite tout simplement à :

$$q_e = K_D C_e \tag{II.28}$$

Où (K_D) est la constante de proportionnalité, désigné souvent sous le nom du coefficient de partage.

La description de l'adsorption à l'aide d'un coefficient de distribution présente l'avantage de la simplicité. L'adsorption d'un métal peut souvent être considérée comme linéaire lorsque sa concentration est faible devant celle des autres cations présents en solution et le domaine de validité est souvent restreint.

L'utilisation d'un K_D donne dans certains cas de très bons résultats comme le montrent les travaux de *Rengarj et al* [43], qui ont étudié l'adsorption du chrome sur trois types de résines échangeuses d'ions. Ce résultat est relativement peut fréquent et l'utilisation de K_D est en général très critiquée.

Yong et al [44] font remarquer que très peu d'isothermes obtenues expérimentalement ont un comportement linaire. K_D est une fonction dépendante des conditions physicochimiques de la solution aqueuse (présence de complexant, de certains compétiteurs), quantités adsorbées et de pH.

II.8.2.2 Isotherme de Freundlich

Le modèle décrit par Freundlich est peut être le plus largement utilisé, bien qu'il soit empirique. Ici l'affinité (l'énergie de liaison) est supposée décroître exponentiellement avec l'augmentation de la saturation de la surface.

L'équation de cette isotherme prend la forme suivante :

$$q_e = K_{\rm fr} C_e^{1/n} \tag{II.29}$$

Où (K_{fr}) et (n) sont des constantes caractéristiques du système adsorbant – adsorbat déduites expérimentalement à une température donnée.

Certains auteurs attachent moins d'importance à ce modèle car il ne permet pas la mesure d'un maximum d'adsorption. Néanmoins, le coefficient de Freundlich K_{fr} est un indicateur intéressant de la quantité adsorbée (*Nozoozi* et *al* [45]). K_{fr} peut être pris comme un indicateur de comparaison de différents matériaux. L'ajustement des paramètres K_{fr} et n est rendu plus facile en écrivant l'équation (II.29) sous forme logarithmique.

$$Lnq_e = LnK_{fr} + \frac{1}{n}LnC_e \tag{II.30}$$

L'équation (II.30) est celle d'une droite de pente 1/n et d'ordonnée à l'origine *Ln K_{fr}*. La valeur de n décrit la nature de l'adsorption.

- Lorsque 0,1 < n < 1 l'adsorption est favorable.
- Lorsque n >>1 l'adsorption est plus importante (*KathiKcyam* et *al* [46]).
- Lorsque n=1, il y'aurait une répartition constante du soluté entre l'adsorbant et la phase liquide.
- Lorsque n=0 l'adsorption est irréversible.

Les constantes, déterminées en test batch, sont affectées par de nombreux facteurs comme les propriétés du matériau, le pH et la température de la solution.

L'isotherme de Freundlich a été largement utilisée pour décrire l'adsorption des métaux lourds sur différents types d'adsorbants.

II.8.2.3 Isotherme de Langmuir

L'isotherme de Langmuir repose sur les hypothèses suivantes :

- L'adsorption est localisée, c'est-à-dire que la molécule adsorbée est située sur un site bien défini du matériau adsorbant.
- Chaque site n'est susceptible de fixer qu'une molécule.
- A de fortes concentrations en soluté, la surface du matériau est saturée par une monocouche de soluté adsorbé (q_m).
- L'adsorption est réversible.
- La surface du matériau est homogène et les interactions entre les molécules adsorbées ne sont pas considérées : l'énergie d'adsorption de tous les sites est donc identique et indépendante de la présence des molécules adsorbées sur les sites voisins.

Ce modèle est basé sur un équilibre thermodynamique entre deux phénomènes : l'adsorption et la désorption (adsorption réversible), caractérisées respectivement par une constante de vitesse k_1 et une constante de vitesse k_2 . La relation suivante traduit cette double cinétique :

$$\frac{dq}{dt} = k_1 C(q_m - q) - k_2 q \tag{II.31}$$

A l'équilibre $\frac{dq}{dt} = 0$, nous obtenons la relation de Langmuir donnée ainsi :

$$q_e = \frac{q_m b C_e}{1 + b C_e} \tag{II.32}$$

Où :

 q_m : est la capacité d'adsorption maximale (mg/g).

b : est la constante de Langmuir, elle représente le rapport des constantes de vitesse d'adsorption (k_1) et de désorption (k_2) .

Il existe deux linéarisations possibles de la relation de Langmuir (*Juang* et *al* [47]). L'équation (II.33) est suggérée pour des concentrations à l'équilibre relativement faibles alors que l'équation (III.34) est satisfaisante essentiellement pour des échelles de concentrations élevées (*Mckay* [48]).

Forme I
$$\frac{C_e}{q_e} = \frac{1}{q_0} \cdot C_e + \frac{1}{q_m \cdot b}$$
 (II.33) Forme II $\frac{1}{q_e} = \frac{1}{q_m \cdot b} \cdot \frac{1}{C_e} + \frac{1}{q_m}$ (II.34)

II.8.3 Conclusion

D'après cette étude, on peut conclure les principaux résultats suivants :

- Une isotherme d'adsorption doit être déterminée expérimentalement dans des conditions précises, de température, de pH et de force ionique notamment.
- Les conditions physico-chimiques de détermination de l'isotherme sont alors très particulières et sa validité n'est plus assurée en dehors de ces conditions.
- Les isothermes d'adsorption sont basées sur des hypothèses simplificatrices.

II.9 Adsorption dynamique

Les lits fixes sont les configurations d'adsorbeurs les plus utilisées dans le traitement des eaux. Le profil de concentration à la sortie en fonction des variables de sortie tels que le temps et le volume traité représente un aspect critique du design d'un lit fixe.

Pour décrire l'adsorption du soluté dans le cas d'une phase liquide circulant à travers le lit d'adsorbant, on utilise des relations de transfert entre la phase mobile (liquide) et la phase fixe (solide). Pour cela, le profil de concentration dans les deux phases doit être connu en fonction du temps et un calcul mathématique permet d'écrire sous forme d'équations les différentes étapes se déroulant lors du processus. Trois approches sont possibles :

II.9.1 La méthode stochastique [41]

Le phénomène qui se déroule dans la colonne d'adsorption est considéré comme aléatoire. L'évolution de la concentration dans les deux phases ne suit aucune règle définie et l'étude doit donc faire l'objet d'une analyse statistique.

II.9.2 La méthode mathématique [15]

Cette méthode tient compte de tous les paramètres intervenants dans le processus d'adsorption. Elle consiste en une description mathématique de la distribution de l'adsorbant entre les deux phases. Elle est avantageuse pour deux raisons:

- Elle permet une description complète du mécanisme d'adsorption.
- Les relations mathématiques une fois établies, l'influence des divers paramètres peut être prédite.

Mais tenir compte de tous les facteurs intervenant dans le processus est un travail difficile et fastidieux, de plus la résolution des équations globales nécessite toujours des considérations simplificatrices, ce qui fait que les solutions trouvées sont des cas limités.

II.9.3 Méthode de la zone de transfert de matière [49]

Ce concept a été élaboré par Mickaelis pour des lits de résines échangeuses d'ions puis appliqué aux lits d'adsorbants par Lukchis. C'est une méthode simple et efficace qui permet de trouver rapidement les corrélations pour les systèmes d'adsorption dynamique. Cette méthode ne peut être appliquée que si les hypothèses suivantes sont vérifiées :

- Un lit uniforme ;
- Un débit volumique et une concentration uniforme dans la phase liquide ;
- Pas de changement de phase ;
- Une énergie d'adsorption négligeable ;
- Pas d'interaction entre les molécules adsorbées ;

La figure (II.5) illustre le schéma théorique d'avancement du front d'adsorption (Zone de transfert). La portion de garnissage où se tient le transfert de matière est appelée zone de transfert où front d'adsorption. En fonction du temps cette zone se déplace dans l'adsorbeur pour atteindre la sortie du lit. En fin de cycle, la concentration de sortie (C) est égale à celle de l'entrée (C_0) et le lit est complètement saturé.

Les différentes relations, décrivant le comportement d'une adsorption dynamique en lit fixe et permettant de caractériser le système, sont obtenues à partir de la courbe de percée qui donne l'évolution de la concentration de l'adsorbat à la sortie de la colonne. Ces relations sont rassemblées dans le tableau II.3.

Figure II.5 Progression du front de la zone de transfert de matière à travers un lit d'adsorbant.

Relation	Notation	Définition	Calcul mathématique
Volume de percée	V _p	Mesure de la quantité d'eau traitée jusqu'au temps de percée	$V_p = D.t_p$
Capacité fractionnaire	F	Mesure de l'efficacité de l'élimination de l'adsorbant	$F = \frac{\int_{V_p}^{V_s} (C_0 - C) dV}{C_0 (V_s - V_p)}$
Hauteur de la Z.T.M	Hz	Mesure de la vitesse d'élimination du soluté par l'adsorbant	$H_Z = \frac{(V_s - V_p)}{V_p + F(V_s - V_p)}$
Vitesse de déplacement de la Z.T.M	Uz	Mesure de la vitesse de saturation du lit d'adsorbant	$U_{Z} = \frac{H}{V_{p} + F(V_{s} - V_{p})}$
Capacité utile	Cu	Mesure de la quantité de soluté adsorbé par gramme d'adsorbant	$C_U = \frac{1}{m} \int_{V_p}^{V_s} (C_0 - C) dV$
Volume de saturation	Vs	Mesure du volume traité à la saturation	$V_s = D.t_s$

Tableau II.3 Relations décrivant le comportement d'une adsorption en lit fixe [41].

Avec :

t_p et t_s : sont les temps de percée et de saturation respectivement en (min).

D : Débit d'alimentation (m³/min).

 C_o : Concentration de la solution à traiter (mg/L).

Z : Hauteur du lit d'adsorbant (m).

m : Masse de l'adsorbant (g).

II.10 Modèles préétablis décrivant les courbes de percée

La conception réussie d'un procédé de fixation dans une colonne exige la prévision du profil de la courbe de percée. Cette prévision permet de gérer au mieux le filtre en terme de qualité d'eau fournie, de longévité des cycles d'adsorption et du coût de traitement. Dans un premier temps, l'approche expérimentale était la plus envisagée par les chercheurs et de nombreuses études expérimentales, dans des conditions simples et précises ont été entreprises pour élucider les mécanismes de transfert liquide-solide mis en jeu. A partir de ces travaux, des modèles ont été formalisés. Ainsi, un premier modèle basé sur l'évolution de la concentration du soluté dans le liquide et dans le solide a permis de définir de façon semi-empirique, seulement le temps de percée (t_p) et donc la durée d'utilisation du filtre. Plus tard,

un deuxième modèle intégrant des bilans de matière, une équation de transfert externe et une équation empirique d'adsorption a donné une simulation de l'ensemble de la courbe de percée mais demande la détermination des constantes de corrélation à définir expérimentalement. Récemment, une troisième approche, plus sophistiquée, a pu être développée sur la base de connaissance de mécanismes physiques. Un ensemble d'équation a été proposés intégrant les bilans de matière, les transferts externes et internes avec des mécanismes diffusionnels ainsi que des équations décrivant l'écoulement du liquide dans l'adsorbeur.

II.10.1 Modèle de Bohart et d'Adams

Bohart et Adams [50] ont établi des équations fondamentales décrivant le rapport entre (C/C_0) et (t) pour l'adsorption dans une colonne à lit fixe. Bien que le travail original de Bohart et d'Adams a été effectué pour le système d'adsorption gaz-charbon de bois, cette approche globale peut être appliquée avec succès dans la description quantitative d'autres systèmes. Ce modèle est donné par l'équation suivante :

$$Ln\left(\frac{C_{0}}{C}-1\right) = \frac{K_{BA}N_{0}Z}{U_{0}} - K_{BA}C_{0}t$$
(II.35)

Où :

t: le temps de fonctionnement (min);

C : la concentration de la solution à l'instant t (mg.L⁻¹);

 C_0 : la concentration initiale de la solution (mg.L⁻¹);

 K_{BA} : le coefficient de taux d'adsorption (L.mg⁻¹.min⁻¹) ;

 N_0 : la capacité d'adsorption dynamique par volume du lit (mg.L⁻¹);

Z : la hauteur du lit (cm) ;

 U_0 : la vitesse d'écoulement (cm.min⁻¹);

En traçant $Ln\left(\frac{C_0}{C}-1\right)$ en fonction de (t), la pente conduit à la détermination de K_{BA} et N₀.

II.10.2 Modèle du Temps de Service (BDST)

Ce modèle est proposé par Dole et Koltz en 1946 appelé aussi Bed Depth Service Time (BDST). Son expression est une combinaison du modèle de Bohart et Adams (1920) et celle de Thomas (1944), il a été utilisé la première fois par Hutchins en 1973 (*Baral* et *al* [51]). Le modèle BDST se base sur l'hypothèse qui suppose que les forces de la diffusion intraparticulaire et la résistance au transfert de masse externe soient négligeables, et que la cinétique d'adsorption soit contrôlée par les réactions chimiques de surface.

L'adsorption dans une colonne à lit fixe est un processus auquel un transfert de masse continu se passe entre les deux phases (la phase liquide et la phase solide). La concentration du soluté entre les deux phases est en fonction du temps de contact et de la hauteur de la zone d'adsorption.

Le modèle Bed Depth Service Time (BDST) décrit une relation entre le temps de service de la colonne et la hauteur du lit fixe. Il est exprimé par la relation suivante [52]:

$$Ln\left[\frac{C_{0}}{C}-1\right] = Ln\left(e^{(k_{ads}N_{0}/U)Z}-1\right) - k_{ads}C_{0}t$$
(II.36)

Dans cette équation ($e^{(k_{ads}N_0/U)Z} >> 1$), donc :

$$Ln\left(e^{(k_{ads}N_0/U)Z} - 1\right) \cong \frac{k_{ads}N_0}{U}Z$$
(II.37)

Hutchins a proposé une relation entre le temps de service (t) de la colonne et la hauteur du lit fixe (Z). Elle est donnée par l'équation suivante :

$$t = \frac{N_0}{C_0 U} Z - \frac{1}{k_{ads} C_0} Ln \left(\frac{C_0}{C} - 1\right)$$
(II.38)

Avec :

t: est le temps de service en (mn).

Z : est la hauteur du lit fixe en (cm).

 C_0 : est la concentration initiale de la solution en (mg/L).

C : est la concentration de la solution à l'instant t en (mg/L).

U: est la vitesse superficielle du liquide en (cm/s).

 $k_{\it ads}$: est la constante de vitesse d'adsorption en (L.mg $^{-1}.mn^{-1}).$

 N_0 : est la capacité d'adsorption dynamique du lit fixe en (mg/L).

Ce modèle est un moyen simple pour connaître les performances d'une colonne, il est exprimé par l'équation suivante :

$$t_{P} = \frac{N_{0}}{C_{0}U} \left(Z - Z_{0} \right) \tag{II.39}$$

Avec :

 t_p : Temps de percée (min).

 Z_0 : Hauteur de la zone d'adsorption (cm).

La longueur de la zone de transfert de masse correspond à la hauteur critique du lit Z_0 , définie comme étant la profondeur minimale pour que le biomatériau empêche intimement le dégagement du polluant dans la solution de l'effluent, elle est donnée par la relation suivante :

$$Z_0 = \frac{U}{K_{ads}N_0} Ln\left(\frac{C_0}{C} - 1\right)$$
(II.40)

En faisant varier la hauteur du lit Z, la pente de la droite $t_P = f(Z)$, permet de calculer la capacité maximale d'adsorption N_0 . On peut également avoir une estimation du terme Z_0 qui représente la hauteur minimale du front d'adsorption. Cependant, ce modèle n'est applicable que si le tracé de t_P (pour C/C₀=0,5) en fonction du temps est une droite qui passe par l'origine, dans le cas contraire le modèle ne sera plus approprié pour dégager les paramètres clés nécessaire à prédire les courbes de percée et pour le design d'une installation.

II.10.3 Modèle de Clark

Ce modèle est développé par Clark [53] a été basé sur l'utilisation de concept de transfert de masse ainsi que la relation de Freundlich pour ce qui est des paramètres d'équilibre ($K_{\rm fr}$) et (1/n).

$$\left(\frac{C_0}{C}\right)^{n-1} - 1 = Ae^{-rt} \tag{II.41}$$

Où :

n : Paramètre de Freundlich.

A et r : Constantes de Clark.

Avec :

$$A = \exp\left(\frac{K_C N_0 Z}{U}\right) \tag{II.42}$$

$$r = K_C C_0 \tag{II.43}$$

Où :

 N_0 : la capacité d'adsorption dynamique par volume du lit (mg.L⁻¹).

 C_0 : la concentration initiale de la solution (mg.L⁻¹).

K_C: la constante de Clark.

U : la vitesse d'écoulement (cm/mn).

Z : la hauteur du lit (cm).

Linéarisation de l'équation (II.41) donne :

$$Ln\left[\left(\frac{C_0}{C}\right)^{n-1} - 1\right] = LnA - rt$$
(II.44)

A partir du tracé de Ln $[(C_0/C)^{n-1}-1]$ en fonction du temps, on peut déterminer (*r*) et (*A*).

II.10.4 Modèle de Yoon et Nelson

Yoon et Nelson [54] ont proposé un modèle pour l'adsorption des vapeurs et des gaz par le charbon actif en continu. Il est moins compliqué que d'autres modèles, il n'exige aucune donnée détaillée portée sur les caractéristiques de l'adsorbat, le type d'adsorbant, et les propriétés physiques de l'adsorption sur lit.

L'équation mathématique de ce modèle est donnée par la forme linéaire suivante :

$$Ln\left(\frac{C}{C_{0}-C}\right) = K_{YN}t - t_{1/2}K_{YN}$$
(II.45)

Avec :

 K_{YN} : Constante de proportionnalité (min⁻¹)

 $t_{1/2}$: Temps nécessaire pour adsorber 50% dans la courbe de percée (min)

Cette approche nécessite le tracé de $Ln\left(\frac{C}{C_0 - C}\right)$ en fonction du temps pour déterminer

les paramètres K_{YN} et $t_{1/2}$.

II.10.5 Modèle de Wolborska

Wolborska [55] a proposé un modèle basé sur les équations générales du transfert de matière pour des mécanismes de diffusion dans le domaine de faible concentration de la courbe de percée. Le modèle de Wolborska est donné par l'équation suivante :

$$Ln\frac{C}{C_{0}} = \frac{\beta_{a}C_{0}}{N_{0}}t - \frac{\beta_{a}Z}{U_{0}}$$
(II.46)

Avec:
$$\beta_{a} = \frac{U_{0}^{2}}{2D} \left(\sqrt{1 + \frac{4\beta_{0}D}{U_{0}^{2}}} - 1 \right)$$
 (II.47)

Où :

 N_0 : la capacité d'adsorption dynamique par volume du lit (mg.L⁻¹).

 β_a : Coefficient cinétique pour le transfert de masse externe (min⁻¹)

D: Coefficient de diffusion axiale (cm²/min)

 β_0 : Coefficient de transfert de masse externe avec dispersion axiale négligeable (min⁻¹).

 U_0 : Vitesse superficielle du fluide (cm/min)

Z: Hauteur du lit fixe (cm).

Wolborska a observé que pour une faible hauteur du lit ou un débit élevé de la solution, la diffusion axiale est négligeable et $\beta_a = \beta_0$. La vitesse de migration (cm.min⁻¹) est donnée par la relation suivante, connue sous le nom de loi de Wicke :

$$\nu = \frac{U_0 C_0}{N_0 + C_0} \tag{II.48}$$

A partir du tracé de $Ln \frac{C}{C_0}$ en fonction du temps, on peut déterminer le coefficient cinétique de transfert de masse β_a et la capacité d'adsorption N₀.

On peut également calculer la vitesse de déplacement du front d'adsorption v en utilisant l'équation (II.48).

Références bibliographiques

[1] A. Gherbia, « *Biosorption des ions Ni*⁺² issus d'une solution synthétique et d'un effluent industriel, sur la biomasse Pleurotus mutilus en mode dynamique », Mémoire de magister à l'Ecole Normale Supérieure de Kouba, 2009.

[2] M.F. Edeline, « L'épuration physico-chimique des eaux, Théorie et technologie », 4 ^{ème} édition, Liège, 1998.

[3] M. Metidji, A.E.A. Khiter, « *Etude de la rétention des ions Ni*⁺² issus d'une solution aqueuse et d'un effluent industriel sur la biomasse Pleurotus Mutilus en mode dynamique », PFE à l'USTHB, 2008.

[4] G. Arditti, « Technologies chimiques industrielles », Tome (III), Ed.Egrolles, Paris, 1968.

[5] Z. Birane et R. Nehatti, « *Modélisation de la'adsorptionsur charbon actif des matières organiques naturelles des eaux potables traitées au niveau de la station de Boudouaou* », PFE à l'université de Blida, 1997.

[6] C.E.Chitour, « *Physico-chimie des surfaces II, l'adsorption gaz-solide et liquide-solide* », OPE, Alger, 2004.

[7] M. Bouafia, «*Traitement des eaux usées cyanurées par biosorption sur une biomasse Pleurotus mutilus* », Mémoire de magister, ENSKA, Alger, 2006.

[8] L. Ming. Sun et F. Meunier, « Adsorption en Adsorbants », Technique d'ingénieur, Article J 2 730, 2004.

[9] D. Horbez, « Utilisation de la dialyse et de l'électrodialyse dans le traitement des effluents liquides », Récents progrès en génie des procédés N⁰25, Vol 7, 1993.

[10] C.E.Chitour, « Physico- Chimie des surfaces gaz- solide ». Vol 2, OPU, Alger, 1992.

[11] L. Robert, « Adsorption, opérations unitaires », Technique d'ingénieur N° J 230, J 231, J
1302, A 245, Paris, 1999.

[12] M. Chabani, « *Etude de la dénitratations par adsorption sur résines échangeuses d'ions*», Thèse de Doctorat d'état, USTHB, 2007.

[13] M. Dubinin, I. Akad, Nauk SSSR, Ser. Khim, 1979.

[14] S.J. Gregg, K.S. Sing, « Adsorption, surface area and porosity », Academic Press, London, 1982.

[15] Y. Richidi, « *Elimination des nitrates par adsorption sur l'ambrilite IRA 410* », Mémoire de Magister, USTHB, 2010.

[16] H. Spahn and U. Schlünder, « *The scale-up of activated carbon columns for water purification, based on results from batch tests-I. Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests », Chem. Eng. Sci, 30, p. 529-537, 1975.*

[17] O. Levenspiel et D. Kunii, « Fluidization Engineering », Wiley, 1969.

[18] E. A. Mehmet, D. Sukru, O.r. Celalettin et K. Mustafa, *« Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics »*, Journal of Hazardous, 2006.

[19] D. Levins and J. Glastonbury, « *particle fluid mass transfer in stirred vessel* », Trans. Inst.Chem .Eng 50 (2), p. 132-140, 1972.

[20] R. Aguilair, « Influence du diamètre de la particule de charbon actif sur l'adsorption de micropolluants », Master à l'université de Limoges, 2007.

[21] K.E. Noll, V. Gouranis, W.S. Hou, « Adsorption technology for air and water pollution control », Lewis Publishers, 1992.

[22] W. Fritz, E.U. Schlunder, « *Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon* », Chemical Engineering Sciences, 29, p. 1279-1282, 1974.

[23] H. Komiyama, J.M. Smith, « *Surface diffusion in liquid-filled pores* », *American Institute* Chemical Engineering Journal, 20, p. 1110-1117, 1974.

[24] G. Mckay, « Solution to the homogeneous surface diffusion model for batch adsorption systems using orthogonal collocation », Chemical Engineering Journal, 81, p. 213-221, 2001.

[25] K. Miyabe, S. Takeuchi, « *Estimation of surface diffusion coefficient in liquid phase adsorption* », Canadian Journal of Chemical Engineering, 76, p. 887-892, 1998.

[26] D. Chatzopoulos, A. Varma, « Aqueous-phase adsorption and desorption of toluene in activated carbon fixed beds: experiments and model », Chemical Engineering Sciences, 50, p. 127-141, 1995.

[27] Y. Sudo, D. Misic, M. Suzuki, « *Concentration dependence of effective surface diffusion coefficient in aqueous phase adsorption on activated carbon* », Chemical Engineering Sciences, 33, p. 1287-1290, 1978.

[28] I. Uzun, « *Kinetics of adsorption of reactive dyes by chitosane, Dyes and Pigments* », 70, p. 76-83, 2006.

[29] W.J. Weber and W.E. Morris, «*Kinetics of adsorption on carbon from solutions* », *J. sanit*, 1963.

[30] M. Zhou, G. Martin, S. Taha, F. Sant'Anna, « *Comparaison de modèles et modélisation d'isotherme en phase liquide d'adsorption sur charbon actif* », Water Research, 32, p. 1109-1118, 1998.

[31] I. Neretnieks, « Adsorption of components having a saturation isotherm », Chemical Engineering Technology, 46, p. 781-795, 1974.

[32] B.M. Van liet, W.J. Weber and H. Hozumi, *« Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents »*, Wat Res., 4, p. 1719-1728, 1983.

[33] F. Hellferich, « *Ion Exchange* », Mc Graw Hill Book Company Inc, New York, USA, 1962.

[34] N.K. Traegner et M.T. Suidan, « *Parameter evaluation for carbon adsorption* », J. Environ. Eng, 115, p. 109-128, 1989.

[35] S.E. Chitour, « physico-chimie des surfaces, l'adsorption gaz-solide et liquide-solide », 2^{ème} édition augmentée, tome 2, Alger, 2004.

[36] Y.S. Ho, G. Mckay, « Sorption of dye from aqueous solution by peat », Chem. Eng. J, 70, p. 115-124, 1998.

[37] S. Ricordel, S. Taha, I. Cisse, G. Dorange, *«Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Separation and purification Technology »*, 24, p. 389-401, 2001.

[38] I. Uzun, « *Kinetics of adsorption of reactive dyes by chitosane. Dyes and Pigments* », 70, p. 76-83, 2006.

[39] B. Noroozi, G.A. Sorial, H. Bahrami, M. Arami, *« Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent-Silkworm pupa »*, Journal of Hazardous Materials B139, p. 167-174, 2007.

[40] K.V. Kumar, S. Sivanesan, V. Ramamurthi, « Adsorption of malachite green onto *Pithophora sp, a fresh water algae: Equilibrium and kinetic modelling* », Process Biochemistry, 40, p. 2865-2872, 2005.

[41] M. Kebir, «*Elimination du chrome hexavalent par adsorption sur un matériau cellulosique* », Mémoire de Magister, USTHB, 2009.

41

[42] J.A. Stephen, G. Quan, M. Ronan, A.J. Pauline, *« Comparison of optimised isotherm models for basic dye adsorption by kudzu »*, Bioresearch Technology, p. 143-152, 2003.

[43] S. Rengaraj, K.J. Cheol, K. Younghun, Y. Jongheop, «*Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H* », Journal of Hazardous Materials, B102, p. 257-275, 2003.

[44] R.N. Yong, B.P. Warkentin, «*Principles of contaminant transport in solids* », E.D.Elsevier, p. 327, 1992.

[45] B. Noroozi, G.A. Sorial, H. Bahrami, M. Arami, *« Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—Silkworm pupa »*, Journal of Hazardous Materials, B139, p. 167-174, 2007.

[46] T. Karthikeyan, S. Rajgopal, R.M. Lima, « *Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon* », Journal of Hazardous Materials, B124, p. 192-199, 2005.

[47] R.J. Juang, F.C. WU, R.L. TSENG, «Adsorption isotherms of phenolics compounds from aqueous solutions onto activated carbon fibers », Journal of Chemical Engineering, 41, p. 487-492, 1996.

[48] G. Mckay, «Adsorption of dyestuffs from aqueous solutions using activated carbon I: equilibrium and batch contact-time studies », Journal of Chem. Technol. Biotechnol, 32, p. 759-772, 1982.

[49] A. Namanne, « Adsorption- biodégradation du phénol par Pseudomonas Aeruginosa immobilisé sur du charbon actif en grains », Thèse de doctorat, Ecole Nationale Polytechnique, Alger, 2006.

[50] G. Bohart, E.N. Adams, « Some aspects of the behavior of charcoal with respect to chlorine », J. Am. Chem. Soc. 42, p. 523-544, 1920.

42

[51] S. Baral, N. Das, T.S. Ramulu, S.K. Sahoo, « removal of Cr (VI) by thermally actived weed Salvinia cucullatta on a fixed bed column », Journal of Hazardous Materials, 161, p. 1427-1435, 2009

[52] V. Christian, « Removal of lead (II) ions from synthetic and real effluents using immobilised Pinus sylvestrics sawdust, Adsorption in a fixed bed column », Journal of Hazardous Materials, B123, p. 135-144, 2005.

[53] R.M. Clark, « *Evaluating the cost and performance of field-scale granular activated carbon systems* », Environ Sci Technol, 21, p. 573-580, 1987.

[54] Y.H. Yoon., J.H. Nelson, « *Application of gas adsorption kinetics, A theoretical model for respirator cartridge service time* », Am. Ind. Hyg. Assoc, J. 45, p. 509-516, 1984.

[55] A. Wolborska, « Adsorption on activated carbon of p-nitrophenol from aqueous Solution », Water Res, 23, p. 85-91, 1989.

Chapitre

Biosorption des métaux lourds

III.1 Introduction

Les métaux lourds sont des polluants dangereux, qui peuvent être accumulés par les organismes vivants. Parmi les méthodes utilisées pour l'élimination de ces métaux, la biosorption semble la plus avantageuse [1].

Les métaux lourds sont extrêmement préoccupants pour l'environnement et peuvent être piégés efficacement par ces micro-organismes. Ces dernières années, plusieurs tentatives ont été enregistrées dans de nombreux laboratoires afin d'utiliser des adsorbants biologiques tels que les champignons, les algues et les bactéries pour traiter les eaux chargées en métaux lourds.

Dans ce contexte, nous citons quelques travaux de recherches : Lodeiro et al [2] ont utilisé une macroalgue *Cystoseira baccata* pour la biosorption des ions Cd (II) et Pb (II) d'une solution aqueuse, Runping Han et al [3] ont étudié la biosorption dynamique des ions Cu (II) et Pb (II) d'une solution aqueuse sur de la paillette.

III.2 Définition de la biosorption

La biosorption est le terme général utilisé pour décrire la propriété que possèdent certaines biomasses à capter les ions métalliques, des composés organiques ou inorganiques et des radionucléides à leurs surfaces [4].

III.2.1 Domaines d'application de la biosorption [5, 6]

La biosorption a fait l'objet de plusieurs travaux de recherche au cours de ces dernières années et présente une option intéressante pour le traitement de divers types de polluants. L'utilisation de cette dernière semble intéressante dans les domaines d'application suivants:

- La détoxication et la décontamination des eaux ;
- La valorisation des ions métalliques (principalement les métaux précieux) ;
- La récupération des métaux lors du traitement des minerais ;
- L'épuration des eaux résiduaires ;

III. 3 Les biosorbants [7]

Il existe un grand choix de biosorbants pouvant être utilisés dans l'élimination des polluants. Ces matériaux sont classés selon l'origine ou le mode d'obtention.

Les algues, les bactéries et les champignons se sont avérées être des biosorbants puissants des divers polluants pouvant exister dans les effluents industriels.

III.3.1 Sources et provenances des biosorbants [6, 7]

La majorité des cellules vivantes ou mortes peuvent être utilisées comme des biosorbants, car elles offrent un arrangement et une structure commodes aux processus appropriés pouvant être adaptés aux phénomènes de biosorption. Ces matériaux ont généralement :

- Une structure macroscopique ;
- Des pores de très faible diamètre ;
- Une bioaccumulation des polluants ;

Les divers biosorbants sont :

- Obtenus gratuitement à partir des déchets agricoles et industriels ;
- Disponibles dans la nature en quantité importante ;
- Cultivés car elles ont une croissance rapide ;
- Conçus à partir d'autres microorganismes ;

III.3.2 Avantages de l'utilisation des biosorbants [6]

Les biosorbants offrent plusieurs avantages, car ils ont :

- Une bonne capacité de fixation des ions métalliques ;
- Une bonne sélectivité envers les ions ;
- Une disponibilité à des prix bas des biosorbants existant dans la nature ;
- Une possibilité de régénération et de valorisation des ions adsorbés ;
- Ne nécessitant pas beaucoup d'équipements ;
- Ne produisant pas de déchets notables ;

L'utilisation des biomasses mortes offre plus d'avantages par rapport aux vivantes :

- Une meilleure capacité d'adsorption ;
- Une insensibilité à la toxicité des métaux lourds ;
- Stockables à l'état sec ;

III.4 Nature de la biomasse utilisée dans la biosorption

Un nombre important de biosorbants est utilisé particulièrement pour décontaminer les eaux chargées en métaux lourds, on distingue :

III.4.1 Biosorption par des cellules vivantes

Dans les procédés qui utilisent des biomasses actives pour l'élimination des polluants, l'apport d'éléments nutritifs nécessaires à la croissance cellulaire et la connaissance approfondie du métabolisme microbien, sont d'une importance cruciale. L'inconvénient d'utiliser des cellules vivantes est que ces dernières sont plus ou moins sensibles à la toxicité des métaux ou des composés organiques et cela limite leurs capacités d'adsorption [8].

III.4.2 Biosorption par des cellules mortes

Les biomasses mortes présentent l'avantage d'être insensibles à la toxicité des polluants. Dans ce cas, la fixation est totalement passive. Les microorganismes peuvent fixer les ions métalliques à l'état sec et peuvent être recyclés plusieurs fois sans être dégradés [8].

III.5 Mécanismes de la biosorption des métaux lourds

L'assimilation des métaux lourds par la surface des micro-organismes est dépendante de l'interaction entre le métal toxique et les différents groupements qui existent sur la paroi cellulaire comme les groupements carboxyliques, hydroxyles, sulfates, phosphates et amines.

Les interactions sont reliées par les processus d'échange ionique, complexation et adsorption physique [8].

III.6 Description des biomasses

La biosorption se base sur la propriété que possèdent certaines biomasses à capter des ions métalliques ou des complexes ou des composés organiques sur les parois cellulaires [8].

III.6.1 Classification des biomasses [8]

Un nombre important de biomasses est utilisé particulièrement pour décontaminer les eaux usées, on distingue :

III.6.1.1 Les bactéries

Les bactéries sont des procaryotes (absence de membrane nucléaire, l'ADN se trouve diffusé dans le cytoplasme). Ce sont les plus petits organismes connus, doués de métabolismes, et capables de croître et de se diviser au dépend de substances nutritives.

III.6.1.2 Les algues

Les algues sont des organismes végétaux, généralement aquatiques, pratiquant la photosynthèse, telles que les fucus (algues pluricellulaires) et les diatomées (algues unicellulaires).

- Algue brune : phéophycée.
- Algue rouge : rhodophycée.
- Algue verte : chlorophycée.
- Algue bleue (microbiologie): cyanobactérie.

III.6.1.3 Les champignons

Un champignon est un eucaryote défini par une structure filamenteuse appelée «mycélium», qui est la partie végétative des champignons et qui les différencies des autres micro-organismes.

III.7 Description de la biomasse Pleurotus mutilus

La biomasse brute « *Pleurotus mutilus* » utilisée au cours de ces expériences a été récupérée au niveau de l'unité BIOTIC de Médéa relevant de l'entreprise SAIDAL. C'est un sous produit de l'activité industrielle de cette entreprise issue de la production des antibiotiques. Pour une utilisation adéquate de cette biomasse dans la fixation des ions, elle a subi un traitement préalable pour augmenter ses capacités adsorbantes. Le nom le plus commun de cette biomasse est *Omphalina mutila* [9].

III.7.1 Morphologie de la Pleurotus mutilus [10]

Nous pouvons décrire la morphologie de cette espèce comme suit :

- Chapeau 0,5-3cm, plan-convexe parfois à aspect pétaloïde.
- Marge onduleuse plus ou moins incisée, lisse, blanc à crème et palissant en blanc d'aspect soyeux.
- Lames décurrentes, moyennement serrées, plus ou moins fourchues.
- Stipe central ou latéral, totalement et très finement ruineux, 0,5-1,5 x 0,2-0,4 cm.
- Chair très mince et fragile, blanche, insipide et inodore.

III.7.2 Taxonomie [9]

- Le règne : fungi
- Classe : basidiomycètes
- Ordre : tricholomatales
- Famille : pleurotus
- Espèce : pleurotus mutilus

Figure III.1 Aspect morphologique du *Pleurotus mutilus* [9].

III.7.3 Composition de la paroi cellulaire

La paroi cellulaire est le siège des phénomènes de biosorption. La paroi cellulaire contient en effet une forte proportion de chitine et/ou chitosane comme le montre la figure (III.2) ainsi que des groupements anioniques qui présentent un pouvoir adsorbant élevé vis-à-vis de la plupart des cations métalliques et celui ce qui confirme bien que la paroi cellulaire de notre biomasse contient en effet une forte proportion de chitine et chitosane [10, 11, 12, 13].

Figure III.2 Schéma de la structure de la paroi cellulaire fongique [11].III.7.3.1 Structure de la chitine et la chitosane [12, 13]

La *chitine* est un polysaccharide de structure linéaire. C'est un polymère de *N-acétyl-glucosamine* (*N-acétyl-D-glucose-2-aminé*) reliés entre eux par une liaison du type β -1,4 comme illustre la figure (III.3), il se trouve chez les animaux particulièrement les crustacées, chez les mollesses et les insectes.

Il est le composé majeur des squelettes extérieurs et dans certains champignons (le cas de la *Pleurotus mutilus*). Elle possède une structure cristalline constituée de nombreuses fibres organisées. Cette structure lui donne une rigidité et résistance de leur paroi.

La *chitosane* est un polysaccharide composé de la distribution aléatoire de *D*glucosamine liée en β -(1-4), les polysaccharides (parfois appelés glycanes) sont une forme de glucides appelés dans le langage courant des sucres. La figure (III.3) montre la structure de *la chitine* et *la chitosane*.

Figure III.3 Structure de *la chitine* et de *la chitosane* [12].

III.7.3.2 Structure du glucane

La structure chimique du β - glucane change d'une mycètes à une autre. Sa structure contient des polysaccharides liés (1-3) au β - glucose, et un petit pourcentage liés en (1-6) au β - glucose [14].

Figure III.4 Structure du β -glucane [14].

III.7.3.3 Structure du Glycoprotéines

Les glycoprotéines sont un groupe de protéines conjuguées constituées de protéines et de glucides. Les protéines sont des macromolécules constituées de longues chaînes d'acides aminés (les éléments de base). Un acide aminé est une molécule organique possédant un squelette carboné et deux fonctions : une amine (-NH₂) et un acide carboxylique (-COOH).

Les glucides famille de molécules dont la formule chimique brute est dans la plupart des cas $C_n(H_2O)_n$, ce qui explique qu'ils sont également nommés hydrates de carbone [11].

Figure III.5 Structure du Glycoprotéine [11].

III.8 Conclusion

Cette étude montre l'importance que présente la mise en œuvre d'un biosorbant pour éliminer la pollution d'une eau résiduaire par les métaux lourds. Cependant compte tenu de la disponibilité d'une matière solide relative au rejet de l'unité de SAIDAL à savoir la *Pleurotus mutilus*, il nous semble plus économique d'opter pour son utilisation pour capter les ions métalliques en solution.

Références bibliographiques

[1] F. Yuzhu, « Column stadies for biosorption of dyes from aqueous solution on immobilised Aspergillus Niger fungal biomass », Water Research, 29, p. 465-472, 2003.

[2] P. Lodeiro, J.L. Barriada, *« The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: Kinetic and equilibrium studies »*, Environmental Pollution, 142, p. 264-273, 2006.

[3] R. Han, J. Zhang, W.Zou, H.Xiao, J.Shi, L.Hongmin, *« Biosorption of copper (II) and lead (II) from aqueous solution by chaff in a fixed-bed column »*, Journal of Hazardous Materials, B133, p. 262–268, 2006.

[4] M. Al-Qunaibit, M. Khalil, A. Al-Wassi, *« The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris »*, Chemosphere, 60, p. 412-418, 2005.

[5] K. Vijayaraghavan, J.B. Jegan, K. Palanivelu, M. Velan, *« Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column »*, Chemosphere 60, p. 419-426, 2005.

[6] S.S. Ahluwalia, D. Goyal, « *Microbial and plant derived biomass for removal of heavy metals from wastewater* », Bioresource Technology, 98, p. 2243-2257, 2007.

[7] U. Kumar, M. Bandyopadhyay, «Fixed bed column study for Cd (II) removal from wastewater using treated rice husk », Journal of Hazardous Materials, B129, p. 253-259, 2006.

[8] D. Gaujous, « La pollution des milieux aquatiques », Ed Lavoisier, France, 1995.

[9] A. Gherbia, « *Biosorption des ions Ni*⁺² issus d'une solution synthétique et d'un effluent industriel, sur la biomasse Pleurotus mutilus en mode dynamique », Mémoire de magister à l'Ecole Normale Supérieure de Kouba, 2009.

[10] A. Zümriye, «Application of biosorption for the removal of organic pollutants », a review, Process Biochemistry, 40, p. 997-1026, 2005.

[11] A. Bray, L. Raff, R. Watson, « *Biologie moléculaire de la cellule* », Flammarion médecine sciences, Décembre, 1988.

[12] E. Guibal, « *Interactions of metal ions with chitosan-based sorbents* », Separation and Purification Technology, 38, p. 43-74, 2004.

[13] Y. Bal, K.E. Bal, O.L. Bouamrane, A. Lallam, « *Copper (II) uptake by Pleurotus mutilus biomass, chitin and chitosan* », Minerals Engineering, 19, p. 1456-1458, 2006.

[14] E. Carbonero, A. Helena, « A â-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus », Carbohydrate Polymers, 66, p. 252-257, 2006.

Chapitre

Caractérisation de la biomasse *Pleurotus Mutilus*
IV.1 Introduction

L'interprétation des différents phénomènes intervenant dans le processus de biosorption du Cadmium nécessite la caractérisation de la biomasse brute. L'objectif de ce chapitre est la détermination des différents paramètres qui nous permettent de définir leurs propriétés intrinsèques qui ont une relation avec les phénomènes d'adsorption.

IV.2 Prétraitement physique

La biomasse fongique *Pleurotus mutilus* se trouve après l'extraction de la *Pleuromutiline* sous forme de flocs humides, d'une couleur jaunâtre et avec une odeur caractéristique. Elle subit différents prétraitements physico-chimiques pour éliminer les impuretés et augmenter leurs capacités d'adsorption [1].

La biomasse brute a été lavée plusieurs fois à l'eau distillée, afin de la débarrasser de toutes les impuretés issues des procédés d'extraction d'antibiotique et les poussières dues à l'exposition à l'air libre. Ensuite elle est séchée dans une étuve à 50 C° pendant 24 h. Broyée puis tamisée et conservée dans des boites en polyéthylène en fonction de leur granulométrie.

IV.3 Caractéristiques physico-chimiques de l'adsorbant

IV.3.1 Granulométrie [1]

Les différentes granulométries des poudres sont obtenues par broyage, suivi d'un tamisage à l'aide d'un tamiseur de marque RETCH (type AS200), et à travers un certain nombre de tamis de dimensions de maille différentes. Nous avons recueilli différentes fractions de biomasse dont les particules ont une granulométrie comprise entre 50 et 500 µm.

IV.3.2 Masse volumique apparente [2]

Pour mesurer la densité apparente, on introduit une quantité de biomasse dans un pycnomètre de volume V= 50 cm³, on pèse le pycnomètre vide (m₀) et avec la biomasse (m₁).

$$\rho_{app} = \frac{m_1 - m_0}{V} \tag{IV.1}$$

Avec :

 ρ_{app} : est la masse volumique apparente (g/cm³).

m₁ : est la masse du pycnomètre remplie avec de la biomasse (g).

 m_0 : est la masse du pycnomètre vide (g).

IV.3.3 Surface spécifique [1]

La surface spécifique représente la surface totale par unité de masse de la biomasse. Elle est calculée à partir de l'expression suivante :

$$S = \frac{6}{\rho_{app}d_{P}}$$
(IV.2)

Avec :

S : est la surface spécifique de la biomasse (m^2/g) .

 $\rho_{_{app}}$: est la masse volumique apparente du biosorbant (g/m³).

d_p : est le diamètre moyen du grain du biosorbant (m).

L'ensemble des résultats relatifs aux caractéristiques physico-chimiques de la biomasse « *Pleurotus mutilus* » brute, sont présentés au tableau (IV.1).

Paramètres	Biomasses brute		
Granulométrie (µm)	100-200	125-250	315-400
ρ_{app} (g/cm ³)	0,57	0 ,53	0,43
$S(m^2/g)$	0,070	0,060	0,039

Tableau IV.1 Caractéristiques physico-chimiques du biosorbant.

IV.3.4 Titrage potentiomètrique [3, 4]

Le titrage potentiomètrique est une méthode qui permet à la fois d'avoir une idée sur les groupements existant sur la surface ainsi que la détermination de la charge globale de la biomasse. Il est possible de faire une détermination qualitative des groupements carboxyliques et amines présents sur la paroi de la biomasse.

Les essais sont réalisés comme suit :

Le titrage potentiomètrique a été réalisé en utilisant une série d'erlenmeyrs contenant 1g de biomasse (lavée et séchée), en présence des solutions de 50 ml de KNO₃ (0,1 mole/l). Ces solutions ont été maintenues sous agitation pendant 2 heures à l'aide d'un multi-agitateur de marque GFL[®] (type : 3015). Ensuite différents volumes de base ou d'acide (NaOH / HCl) de concentration (0,1 mole/l) sont ajoutés à ces solutions. Ces dernières sont maintenues sous agitation pendant 24 heures. Les différents essais ont été réalisés à la température ambiante. On mesure le pH à l'équilibre à l'aide d'un pH-mètre de marque HANNA (Type: pH211).

Gherbia [1] a tracé la courbe du titrage potentiomètrique en rapportant le pH du milieu en fonction des volumes de HCl et NaOH ajoutés.

Figure IV.1 Evolution du pH en fonction des volumes de HCl et NaOH ajoutés à la solution contenant la biomasse brute.

A partir de la figure (IV.1), nous constatons que nous avons deux valeurs de pK_a à savoir : $pK_a = pH = 5$ et $pH = pK_a = 8,5$, relatives à la libération ou l'attraction des ions H⁺ par les groupements (-COOH) et (-NH₂) présents sur la surface de la biomasse [5].

IV.3.5 La charge globale de la biomasse [4]

La charge globale de la biomasse est l'une des caractéristiques la plus importante. Pour connaître l'évolution de la charge de la biomasse en fonction du pH, Gherbia [1] a utilisé les données du titrage potentiomètrique, en se servant de la relation suivante :

Charge(C/m²) =
$$\frac{\left[C_{a}\right] - \left[C_{b}\right] + \left[OH^{-}\right] - \left[H_{3}O^{+}\right]}{S \times a} \times F$$
(IV.3)

$$\mathbf{C}_{a} = \frac{\mathbf{0.1} \times \mathbf{V}_{HCl}}{\mathbf{V}_{total}} \tag{IV.4}$$

$$C_{b} = \frac{0.1 \times V_{NaOH}}{V_{total}}$$
(IV.5)

$$\mathbf{a} = \frac{1}{\mathbf{V}_{\text{total}}} \tag{IV.6}$$

Avec :

[OH⁻] : Concentration des ions hydroxyde dans la solution (mole/l).

[H₃O⁺]: Concentration des ions hydronium dans la solution (mole/l).

S : Surface spécifique (m^2/g) .

- F : Constante de Faraday (C/mole)= 96500 C.
- C_a: Concentration de l'acide (mole/l).
- C_b : Concentration de la base (mole/l).
- a : Concentration de la biomasse (g/l).

La figure suivante représente l'évolution de la charge globale de la biomasse brute en fonction du pH du milieu.

Figure IV.2 Evolution de la charge globale de la biomasse brute en fonction du pH du milieu.

Figure IV.3 Evolution de la charge globale de la biomasse brute en fonction du pH du milieu compris entre 7 et 8.

L'observation de cette figure montre l'évolution de la charge de la biomasse dans le milieu acide et basique. En milieu acide, la charge globale de la surface de la biomasse brute est positive, elle s'annule à un pH=8 (figure V.3). Elle est négative pour des pH >8.

IV.3.6 La capacité d'échange ionique [6, 1]

Dans les mêmes conditions que le titrage potentiomètrique de la biomasse, Gherbia [1] a fait le titrage potentiomètrique de l'eau distillée en absence de la biomasse. Dans ces conditions, des volumes de solutions de HCl (0,1M) et de NaOH (0,1M) sont ajoutés à l'eau distillée. Ces solutions sont maintenues sous agitation pendant 24 heures. Des pH stables sont ainsi mesurés. La capacité d'échange ionique est calculée à partir de la relation suivante :

$$q = \frac{C(V_1 - V_2)}{1000 \times m}$$
(IV.7)

Avec :

- q : La capacité d'échange ionique (mol/g).
- C : La concentration de l'acide ou de la base ajoutée (mol/L).
- V₁ : Le volume de l'acide ou de la base ajouté à la solution contenant la biomasse (L).
- V_2 : Le volume de l'acide ou de la base ajouté à la solution en absence de la biomasse (L).

m : La masse de la biomasse (g).

La figure suivante montre l'évolution de la capacité d'échange ionique en fonction du pH.

Figure IV.4 Evolution de la capacité d'échange ionique en fonction du pH.

Cette figure permet de suivre l'évolution de la quantité des groupements OH⁻ et H⁺ présents sur la surface de la biomasse en fonction du pH de la solution.

Pour des valeurs du pH inférieures à 8, Gherbia [1] a procédé au titrage du mélange (biomasse brute et eau distillée), ainsi que de l'eau distillée seule, avec une solution de HCl (0,1M). Nous constatons que lorsque le pH augmente, la quantité des ions OH⁻ diminue sur la surface de la biomasse.

Pour des valeurs du pH supérieures à 8, Gherbia [1] a procédé au titrage du mélange (biomasse brute et eau distillée), ainsi que de l'eau distillée seule, avec une solution de NaOH

(0,1M). Nous constatons que lorsque le pH augmente, la quantité des ions H^+ augmente sur la surface de la biomasse.

IV.4 Détermination des caractéristiques structurales

IV.4.1 Analyse par spectroscopie Infra Rouge (IR) de la surface de la biomasse

Pour connaître les différents groupements chimiques existants sur la paroi de la biomasse, Selatnia et Coll [2] ont effectué une analyse spectroscopique à infrarouge.

Le phénomène d'absorption dans le domaine infrarouge est lié aux phénomènes de vibration moléculaire, ce qui implique une variation du moment dipolaire et donc création d'un champ magnétique. Chaque vibration de groupement donne naissance à une bande d'absorption qui lui correspond à une certaine intensité qui varie en général d'un groupement à un autre et qu'ils utilisent pour l'analyse qualitative des groupements présents sur la surface de la biomasse.

Cette analyse a été réalisée à l'aide d'un spectrophotomètre type FTIR 4800S (Perkin Elmer). Les différents groupements présents à la surface de la biomasse sont montrés sur la figure (IV.5).

Figure IV.5 Spectre infrarouge de la biomasse brute Pleurotus mutilus.

La première vibration enregistrée à 3438,2286 cm⁻¹ correspond soit aux groupements -OH présents sur les molécules N- acétyle-glucosamines (chitine), Polysaccharides (glucane : polymère du glucose), ou les glycoprotéines, soit aux groupements (N-H) relatives aux amines présents sur N- acétyle-glucosamines ou les glycoprotéines.

La seconde vibration enregistrée à 2924,18208 cm⁻¹ correspond aux groupements –CH relatifs aux groupements (–CH₂–).

La vibration due au groupement de la double liaison (-C=O) est observée à une vibration à 1640,030 cm⁻¹ correspond à la fonction amide primaire, secondaire ou acide carboxylique.

Une liaison (-C-O) se manifeste à 1085,9594 cm⁻¹ qui représente les groupements d'acide carboxylique.

Les résultats de l'analyse par spectroscopie infra rouge, les fréquences de vibration et les groupements fonctionnels sont illustrés dans le tableau (IV.2).

Tableau IV.2 Les différentes bandes d'absorption infrarouge relatives aux groupements fonctionnels présents dans la biomasse *Pleurotus mutilus* brute [1].

Nombre d'onde (cm ⁻¹)	Groupements fonctionnels
	-OH aux molécules
3438,2285	-NH (Amine primaire : $-NH_2$)
	-NH (relative aux amides primaires : -N-C-O)
2924,18	-CH (relative aux groupements -CH ₂ -)
1640.030	-C=O (amides primaires, secondaires)
1040,050	(acides carboxyliques)
1085,95	-C-O- (acides carboxyliques)

IV.4.2 Analyse structurale par Spectrométrie de Fluorescence X [1]

La spectrométrie de fluorescence X (FX ou XRF pour X-Ray fluorescence) est une technique permettant l'analyse de la matière minérale. Cette technique utilise des phénomènes physiques qui ont été découverts et développés dans le domaine de la physique quantique (effet photoélectrique, émission spontanée, diffraction des rayons X).

On place l'échantillon à analyser sous un faisceau de rayons X. Sous l'effet des rayons X, l'échantillon entre en résonance et réémet lui-même des rayons X qui lui sont propres; c'est la fluorescence. Si l'on regarde le spectre en énergie des rayons X fluorescents; nous déduisons des pics caractéristiques des éléments présents. Ces éléments sont alors identifiés et la hauteur des pics permet de déterminer la quantité des éléments. L'analyse a été réalisée au niveau du centre de recherche nucléaire de Draria (Alger).

Les résultats de la fluorescence aux rayons X sont présentés sur la figure (IV.6), elle représente la composition de la biomasse *Pleurotus mutilus* en pourcentage (%).

Ces résultats montrent que la biomasse *Pleurotus mutilus* contient 43,5% en poids de matières organiques et (100-43,5%) de matières minérales.

Figure IV.6 Histogramme de l'analyse par spectrométrie de fluorescence X de la biomasse *Pleurotus mutilus* [1].

Références bibliographiques

[1] A. Gherbia, « *Biosorption des ions Ni*⁺² issus d'une solution synthétique et d'un effluent industriel, sur la biomasse Pleurotus mutilus en mode dynamique », Mémoire de magister à l'Ecole Normale Supérieure, Kouba, 2009.

[2] A. Selatnia, A. Madani, M.Z. Bakhti, L. Kertous, Y. Mansouri, R. Yous, *«Biosorption of Ni⁺² from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass »*, Minerals Engineering, 17, p. 903-911, 2004.

[3] S. Markai, Y. Andrès, G. Montavon. B.Grambow, « *Study of intéraction between europium (III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility »*, Journal of colloid and interface Science, 262, p. 351-361, 2003.

[4] N. Chubar, J. R. Carvalho, M. J. N. Correira, « *Crok biomass as biosorbent for Cu (II), Zn (II) and Ni (II). Colloids and surfaces A: Physicochem* », Engineering Aspects, 230, p. 57-65, 2004.

[5] Y. Bal et A. Bouamrane, « *Copper (II) uptake by Pleurotus mutilus biomass, chitin and chitosan* », Minerals Engineering, 19, p. 1456-1458, 2006.

[6] N. Chubar, R. Jorge, «*Corck biomass as biosorbent for Cu (II), Zn (II) and Ni (II)* », Colloids and Surfaces, a: Physicochemical, Engineering Aspects, 230, p. 57-65, 2004.

Partie Expérimentale

Chapitre

Biosorption du Cadmium sur une colonne à lit fixe

V.1 Introduction

L'objectif principal de ce chapitre est de trouver les meilleures conditions de l'adsorption dynamique en lit fixe des ions Cd^{2+} par une biomasse brute la *Pleurotus mutilus*. Moussous et Coll [1] ont réalisé différents essais en tenant compte de l'influence des différents paramètres opératoires tels que le débit d'alimentation, la hauteur du lit fixe et la concentration initiale des ions Cd²⁺ de la solution à traiter sur la capacité d'adsorption de la biomasse. Les résultats expérimentaux obtenus par Moussous et Coll [1] ont fait l'objet de notre étude de modélisation.

V.2 Dispositif expérimental

Le dispositif expérimental utilisé dans cette étude est représenté sur la figure (V.1). Il est constitué des éléments suivants :

- 1. Un réservoir d'alimentation et de stockage de la solution à traiter.
- 2. Une pompe d'alimentation permettant de faire circuler le liquide dans la colonne.
- 3. Un support du lit en forme de tamis qui permet de supporter le lit de biomasse.
- 4. Un tamis pour éviter le déplacement des grains du biosorbant.
- 5. Un lit de biomasse « Pleurotus mutilus» de granulométrie donnée.
- 6. Une colonne en verre de 1,5 cm de diamètre.
- 7. Un réservoir de récupération.
- 8. Un régulateur du courant pour régler le débit de circulation de la solution à traiter.

Figure V.1 Dispositif expérimental des essais de la biosorption sur colonne à lit fixe.

V.3 Résultats et discussion

V.3.1 Influence du débit d'alimentation

Différentes études antérieures sur la biosorption des différents polluants (métaux lourds, matières organiques,...etc.) ont montré que le débit d'alimentation est un paramètre essentiel dans le processus d'adsorption.

Afin d'examiner l'influence du débit d'alimentation sur la biosorption des ions Cd²⁺, la concentration initiale et la hauteur du lit sont maintenues constantes. Le débit d'alimentation varie de 5 à 20 ml/min. Il a été étudié sous les conditions opératoires suivantes :

•	Concentration initiale en ions Cd ²⁺	C ₀ =50 mg/L.
•	Débit d'alimentation	Q=5, 10 et 20 ml/min.
•	pH de la solution	pH=4.
•	Température	T=25 °C.
•	Quantité de la biomasse brute	m=10 g.
•	Hauteur du lit d'adsorbant	H =10 cm.
•	Granulométrie de la biomasse brute	315 - 400 µm.

La figure (V.2) montre l'évolution de la concentration des ions Cd^{2+} à la sortie de la colonne en fonction du temps pour différents débits d'alimentation.

Figure V.2 Courbes de percée obtenues en fonction du débit d'alimentation [1].

Les résultats expérimentaux relatifs aux courbes de percée obtenues sont rassemblés dans le tableau (V.1).

Q (ml/min)	5	10	20
Q (l/h)	0,3	0,6	1,2
t _p (h)	23	10,5	2
t _s (h)	48,5	25,5	22
$M_0(mg)$	727,5	765	1320
M (mg)	207,803	226,98	693,035
M _{ad} (mg)	519,69	538,01	626,96
$(\mathbf{Q}_0)_{exp} = \mathbf{M}_{ad} / \mathbf{M}_{bio}$ (mg/g)	51,96	53,80	62,69
Rendement d'adsorption (%) M _{ad} /M ₀	71,43	70,32	47,49

Tableau V.1 Valeurs expérimentales obtenues en fonction du débit d'alimentation.

Où :

t _p : est le temps de percée (h).

t_s: est le temps de saturation (h).

M₀: est la quantité d'adsorbat introduite dans la colonne (mg).

M : est la quantité d'adsorbat restante (mg).

M_{ad}: est la quantité adsorbée par la biomasse (mg).

M_{bio}: est la masse de la biomasse (g).

 $(Q_0)_{exp}$: est la capacité d'adsorption expérimentale (mg/g).

Le fait que la section de la colonne soit uniforme, la vitesse du flux à travers le lit est directement proportionnelle au débit volumique. Les résultats montrent que le temps de percée, le temps de saturation et la quantité adsorbée par la biomasse diminuent avec l'augmentation du débit d'alimentation. De plus, la quantité adsorbée $(Q_0)_{exp}$ ne varie pas d'une manière significative lorsque le débit d'alimentation passe de la valeur 5 à 10 ml/min.

Cependant, l'augmentation de la vitesse superficielle est nettement défavorable sur le rendement d'adsorption. On trouve par contre qu'une légère variation de la quantité adsorbée est obtenue pour des débits plus faibles.

L'augmentation du débit réduit efficacement le volume à traiter et diminue également le temps de fonctionnement, ce qui mène à la diminution du temps de contact entre l'adsorbat et la biomasse et réduire ainsi la capacité d'adsorption de la biomasse (voir Tableau V.1).

Ces résultats sont aussi en bon accord avec ceux de la littérature, lorsque le débit est faible, le temps de contact dans la colonne est élevé, la diffusion intra-particulaire devient effective et meilleure est la capacité d'adsorption. Par contre, à haut débit d'alimentation, le biosorbant atteint rapidement la saturation et la distribution du liquide n'est pas uniforme dans la colonne, ce qui conduit à une faible diffusion du soluté dans la biomasse.

V.3.2 Influence de la hauteur du biosorbant

L'adsorption des ions Cd^{2+} a été étudiée pour différentes hauteurs du lit de biomasse brute de 10, 13 et 15cm. Le débit volumique et la concentration initiale de la solution d'alimentation sont maintenues constantes à 20 ml/min et 50 mg/l respectivement.

Les courbes de percée obtenues avec les différentes hauteurs du biosorbant sont représentées sur la figure (V.3) sous les conditions opératoires suivantes :

•	Concentration initiale en ions Cd ²⁺	$C_0 = 50 \text{ mg/l}.$
•	Débit d'alimentation	Q= 20 ml/min.
•	pH de la solution	pH=4.
•	Température	$T = 25 \ ^{\circ}C.$
•	Hauteur du lit de biosorbant	H =10, 13 et 15 cm.
•	Granulométrie de la biomasse brute	315-400 µm.

Figure V.3 Courbes de percée obtenues en fonction de la hauteur du lit [1].

Les résultats expérimentaux relatifs aux courbes de percée obtenues sont rassemblés dans le tableau (V.2).

H (cm)	10	13	15
$\mathbf{t}_{\mathbf{p}}\left(\mathbf{h}\right)$	2	4,5	6,5
$\mathbf{t}_{s}\left(\mathbf{h} ight)$	22	22	23,5
$\mathbf{M}_{0}\left(\mathbf{mg} ight)$	1320	1320	1410
M (mg)	693,035	409,77	349,71
M _{ad} (mg)	626,96	910,22	1060,28
$(Q_0)_{exp} = M_{ad}/M_{bio}(mg/g)$	62,69	70,01	70,68
Rendement d'adsorption (%) M _{ad} /M ₀	47,49	68,95	75,19

Tableau V.2 Valeurs expérimentales obtenues pour différentes hauteurs du lit.

Les résultats obtenus (figure V.3) montrent que la cinétique d'adsorption en continu suit un profil de la forme S produit par un système d'adsorption idéal, et que la courbe de percée varie en fonction de la hauteur du lit (10, 13 et 15 cm). Par contre une légère variation est constatée entre 13 et 15 cm. Ce déplacement des fronts d'adsorption par la variation de la hauteur du lit peut s'expliquer par un phénomène de transfert de matière qui prend place dans ce processus. En effet, quand la hauteur est faible, le soluté n'a pas assez de temps pour diffuser dans toute la masse adsorbante. Par conséquent, nous observons une réduction

importante du temps de percée dans la courbe de percée lorsqu'on passe de 15 à 10 cm, du fait de la réduction du volume du lit à traiter.

De plus, nous avons constaté une augmentation de la capacité d'adsorption avec l'augmentation de la hauteur du lit (Tableau V.2) de 10 à 15 cm. Cette augmentation n'est pas importante lorsqu'on passe de 13 à 15 cm par suite de la faible variation de la hauteur. Ceci est dû à l'augmentation de la surface spécifique de l'adsorbant qui offre plus de sites actifs de fixation de l'adsorbat et permet ainsi d'augmenter le volume du liquide à traiter. De plus, l'augmentation de la hauteur du lit entraîne l'augmentation du temps de contact entre l'adsorbant et l'adsorbat, d'où l'accroissement du rendement d'adsorption.

V.3.3 Influence de la concentration initiale

L'influence de la concentration initiale en ions Cd²⁺ de la solution d'alimentation sur la capacité d'adsorption de la biomasse brute a été étudiée pour une gamme de concentrations initiales de 20, 40 et 50 mg/l. Elle a été étudiée sous les conditions opératoires suivantes :

•	Débit d'alimentation	Q= 20 ml/min.
•	pH de la solution	pH=4.
•	Température	T=25 °C.
•	Quantité de la biomasse	m=10g.
•	Hauteur du lit	H = 10 cm.
•	Granulométrie de la biomasse brute	315- 400 µm.

Les courbes de percée obtenues pour différentes concentrations initiales en ions Cd²⁺ sont illustrées dans la figure (V.4).

Figure V.4 Courbes de percée obtenues en fonction de la concentration initiale [1].

L'ensemble des résultats expérimentaux obtenus pour différentes concentrations initiales en ions Cd²⁺ sont rassemblés dans le tableau (V.3).

Tableau V.3 Valeurs des paramètres obtenus expérimentalement pour différentes

C ₀ (mg/l)	50	40	20
t _p (h)	2	8	11,5
$\mathbf{t}_{\mathbf{s}}(\mathbf{h})$	22	20	30
$M_0(mg)$	1320	960	720
M (mg)	693,035	146,48	121,96
M _{ad} (mg)	626,96	813,51	598,03
$(Q_0)_{exp} = M_{ad}/M_{bio}$	62,69	81,35	59,80
(mg/g)			
Rendement			
d'adsorption (%)	47,49	84,74	83,06
M_{ad}/M_0			

concentrations initiales des ions Cd^{2+} .

Le tableau (V.3), montre que les temps de percée et de saturation diminuent généralement avec l'augmentation de la concentration initiale des ions Cd^{2+} . En passant d'une concentration de 20 à 50 mg/l, les temps de percée et de saturation passent de (11,5h à 2h) et de (30h à 22h) respectivement. De plus, pour une concentration initiale de 40mg/l, nous avons remarqué une augmentation significative de la capacité d'adsorption de la biomasse.

Nous avons constaté que l'augmentation de la concentration initiale entraîne la diminution des temps de percée et de saturation. En effet, l'augmentation de la concentration initiale de la solution à traiter provoque un accroissement de la vitesse de déplacement de la zone de transfert de matière, donc on atteint rapidement la saturation, alors le rendement d'adsorption est meilleur pour les faibles concentrations.

Des résultats similaires sont obtenus avec les travaux de L.Valdman [2] lors de l'étude de l'adsorption du Zinc et Cadmium sur une biomasse résiduaire de l'*Alga-Sargassum SP*.

V.3.4 Influence du pH de la solution initiale

L'influence du pH de la solution initiale sur la capacité d'adsorption de la biomasse brute a été étudiée pour différents pH à savoir 2, 4 et 6. Il a été étudié sous les conditions opératoires suivantes :

• Débit d'alimentation		Q= 20 ml/min.

Quantité de la biomasse m=10g. Hauteur du lit H = 10 cm.Granulométrie de la biomasse brute 315- 400 µm.

Les courbes de percée expérimentales obtenues pour différents pH sont représentées dans la figure (V.5).

Figure V.5 Courbes de percée obtenues en fonction du pH du milieu [1].

Les paramètres expérimentaux obtenus relatifs aux courbes de percée sont rassemblés dans le tableau (V.4).

Tableau V.4 Valeurs des paramètres obtenus expérimentalement en fonction du pH de la

solution initiale.

pН	2	4	6
t _p (h)	0,5	2	2,5
t _s (h)	2	22	26
$M_0(mg)$	120	1320	1560
M (mg)	20,58	693,035	545,23
$M_{ad}(mg)$	99,41	626,964	1014,76
$(Q_0)_{exp} = M_{ad}/M_{bio}$	9,94	62,696	101,47
(mg/g)			
Rendement			
d'adsorption (%)	82,84	47,497	65,04
M_{ad}/M_0			

Les temps de percée et de saturation diminuent généralement avec la diminution du pH. Nous constatons qu'en passant d'un pH égal à 2 à 6, les temps de percée et de saturation passent de (0,5 à 2,5h) et de (2 à 26h) respectivement. De plus, la capacité d'adsorption de la biomasse augmente fortement lorsque le pH augmente.

L'analyse de ces résultats nous a permis de faire une comparaison avec d'autres types d'adsorbants. L'ensemble des résultats de la littérature sont mentionnés dans le tableau (V.5) ci-dessous.

					1
Biosorbant	Capacité d'adsorption (mg/g)	рН	Τ (°C)	Concentration initiale (mg/l)	Références
Pleurotus mutilus	90,98	4	25	50	Moussous et Coll [1] (2008)
Rhizopus arrhizus	26,8	6-7	-	10-600	Fourest et Roux (1992)
Streptomyces noursei	3,4	6	30	1-110	Mattuschka et Straube (1993)
Mucor rouxii (NaOH pretreated)	20,31	6	-	10	Yan et Viararaghavan (2003)
Rhizopus arrhizus	17,67	3,5	30	75	Dursun et al. (2003)
Aspergillus niger	5,8	3	30	75	Dursun et al. (2003)
Phanerochaete chrysosporium	15,2	4,5	27	50	Li et al. (2004)
B. cinerea (NaOH pretreated)	23,40	5	25	150	T. Akar, S. Tunali (2005)

Tableau V.5 Comparaison des capacités d'adsorption des ions Cd²⁺ par différents types d'adsorbant.

L'analyse de ces résultats montre que la biomasse morte « *Pleurotus mutilus* » présente une capacité d'adsorption importante par rapport à d'autres types d'adsorbant.

V.4 Conclusion

D'après cette étude, on peut conclure les principaux résultats obtenus concernant :

- La mise en œuvre d'une biomasse fongique « *Pleurotus mutilus* » capable d'adsorber les métaux lourds avec une bonne capacité d'adsorption et un coût minimal.
- La biosorption en continu du cadmium par la biomasse « *Pleurotus mutilus* » est favorisée par les faibles vitesses de circulation, les grandes hauteurs du lit et les faibles concentrations initiales.

Références bibliographiques

[1] S. Moussous, A. Selatnia, G.A. Gunter, «*Biosorption des ions Cd*⁺² par la biomasse *Pleurotus mutilus en mode dynamique* », Journées de chimie, à l'EMP, Bordj El Bahri, 28-30 Mars, 2009.

[2] E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, « *Process Biochemistry* », Vol 36, p. 869-873, 2001.

Chapitre

Modélisation de l'adsorption dynamique des ions Cd⁺² sur la biomasse *Pleurotus Mutilus*

VI.1 Introduction

L'objectif de ce chapitre est de recenser et d'étudier les différents phénomènes et les hypothèses proposées pour modéliser la cinétique d'adsorption en lit fixe. Pour la modélisation, nous avons proposé un modèle qui puisse représenter le fonctionnement du lit fixe sur une large gamme de conditions opératoires.

VI.2 Définition

La modélisation d'un procédé d'adsorption en lit fixe consiste à décrire mathématiquement l'ensemble des processus physiques qui se produisent à l'intérieur du lit, en établissant les bilans de matière, pour la phase fluide et pour la phase solide. Dans notre cas, nous nous limiterons à l'adsorption en phase liquide.

VI.3 Description du modèle

Avant de discuter des hypothèses nécessaires pour la formulation du modèle, nous introduisons d'abord le processus physique considéré dans le phénomène, à savoir le transport par convection et la dispersion axiale qui sont les mécanismes du transfert de masse dans la phase liquide.

A l'intérieur de la particule, les molécules peuvent diffuser par diffusion superficielle, diffusion poreuse, ou les deux au même temps.

Bautista et Col [1] ont proposé le mécanisme cinétique de l'adsorption de α -Amylase sur l'*Aspergillus Oryzane* dans une colonne à lit fixe. Le modèle a tenu compte de la résistance au transfert de masse interne et externe comme le cas d'un flux piston non idéal le long de la colonne.

VI.4 Hypothèses simplificatrices

Dans la présente étude, afin de formuler le modèle général correspondant à l'adsorption dans une colonne à lit fixe, les hypothèses suivantes sont considérées :

- L'adsorption est isotherme (une température uniforme dans la colonne).
- Les particules du lit sont sphériques et il n'y a aucun changement de la géométrie.
- Un écoulement piston idéal dans la colonne.
- Un équilibre local se passe entre les deux phases, il est supposé rapide.
- La porosité du lit est supposée constante (le diamètre des particules est constant).
- La vitesse du flux est uniforme et indépendante de la position dans la colonne (perte de charge négligeable au sein de la colonne).
- L'équilibre d'adsorption est représenté par les isothermes de Freundlich ou de Langmuir.

 L'approche simplificatrice pour modéliser le phénomène d'adsorption suppose que la durée du processus microscopique de transfert de matière dans les sites d'adsorption ainsi que celle du processus d'adsorption subséquent est trop courte devant la durée associée par le processus macroscopique du transport du fluide.

VI.5 Equations de bilan

En se basant sur les hypothèses ci-dessus, le bilan de matière global sur un volume de contrôle A.dZ (figure VI.1) d'un lit fixe est donné ainsi :

Bilan de matière

Entrée \pm Réaction chimique = Sortie + Accumulation

Figure VI.1 Bilan de matière d'un élément de volume du lit fixe.

Figure VI.2 Représentation d'une colonne à lit fixe.

Réaction chimique = 0, pas de réaction en phase solide.

Alors le bilan s'écrit comme suit :

Entrée - Sortie = Accumulation

Dans le cas d'un transfert unidirectionnel suivant la direction axiale Z, on peut écrire :

$$N\Big|_{Z} - N\Big|_{Z+dZ} = Accumulation \tag{VI.1}$$

 $Ou(N|_Z)$ et $(N|_{Z+dZ})$ sont les densités du flux de matière total aux positions (Z) et (Z+dZ) respectivement, exprimées en mg/m².s.

C'est-à-dire :
$$\left(N\Big|_{Z} - \frac{\partial N}{\partial Z} dZ - N\Big|_{Z}\right) = Accumulation$$
 (VI.2)

Le transfert de masse est régi par le transport par convection et diffusion moléculaire dans la phase fluide, c'est-à-dire :

$$N = J + T \tag{VI.3}$$

Avec :

T : est le flux de transfert de matière par convection exprimé en mg/m^2 .s. Il est donné par l'expression suivante :

$$T = C U \tag{VI.4}$$

Où :

C : est la concentration du soluté transféré dans la phase liquide en mg/m³.

U : est la vitesse moyenne superficielle du liquide en (m/s), elle est déterminée à partir du débit volumique par l'expression suivante :

$$U = \frac{F}{A} = \frac{4F}{\pi D^2}$$
(VI.5)

Où :

F : est le débit volumique du liquide en (m^3/s) .

A : est la section de la colonne en (m^2) .

D : est le diamètre intérieur de la colonne en (m).

J : est le flux de transfert de matière par diffusion moléculaire exprimé en $(mg/m^2.s)$. On peut l'exprimé par la première loi de Fick :

$$J = -D_L \frac{\partial C}{\partial Z} \tag{VI.6}$$

Avec :

 D_L : est le coefficient de diffusion en (m²/s) dans le cas d'une diffusion dans un milieu poreux. Il est exprimé en fonction du coefficient de diffusion moléculaire selon la formule de Suzuki et Smith suivante [2]:

$$D_L = 0.44 D_m + 0.83 U d_p \tag{VI.7}$$

Où :

 D_m : est le coefficient de diffusion moléculaire en (m²/s).

 d_p : est le diamètre des particules en (m).

La diffusion dans un milieu poreux se fait que dans la phase fluide. Le volume du fluide poreux est égal au volume total multiplié par la porosité du lit.

En considérant les équations (VI.2), (VI.3), (VI.4) et (VI.6), on aboutit à l'équation suivante :

$$\underbrace{\left(\varepsilon D_{L} \frac{\partial^{2} C}{\partial Z^{2}}\right) A dZ}_{\text{Diffusion}} + \underbrace{\left(-U \frac{\partial C}{\partial Z}\right) A dZ}_{\text{Convection}} = \underbrace{\varepsilon \frac{\partial C}{\partial t} A dZ}_{\text{Accumulation dans}} + \underbrace{\rho(1-\varepsilon) \frac{\partial q}{\partial t} A dZ}_{\text{Accumulation dans}}$$
(VI.8)

Avec :

q: est la concentration en métal dans la phase solide en (mg/g), elle représente la quantité adsorbée, elle est déterminée par l'isotherme d'adsorption.

 ρ : est la masse volumique apparente des particules du lit en (g/m³).

En divisant l'équation (VI.8) sur AdZ :

$$\left(\varepsilon D_L \frac{\partial^2 C}{\partial Z^2} - U \frac{\partial C}{\partial Z}\right) = \varepsilon \frac{\partial C}{\partial t} + \rho \left(1 - \varepsilon\right) \frac{\partial q}{\partial t}$$
(VI.9)

En divisant l'équation (VI.9) sur la porosité du lit (ε) , on obtient l'équation finale du bilan global gouvernant le transfert d'un soluté lors de l'adsorption sur une colonne à lit fixe donnée ainsi :

$$U_{0}\left[\frac{\partial C}{\partial Z}\right]_{t} + \left[\frac{\partial C}{\partial t}\right]_{Z} + \rho \frac{(1-\varepsilon)}{\varepsilon} \left[\frac{\partial q}{\partial t}\right]_{Z} = D_{L} \frac{\partial^{2} C}{\partial Z^{2}}$$
(VI.10)

Avec :

 U_0 : est la vitesse d'écoulement du liquide en (m/s), elle est donnée par [3]:

$$U_0 = \frac{F}{A\varepsilon} = \frac{U}{\varepsilon}$$
(VI.11)

Où ε est la porosité du lit.

Avec :

$$\varepsilon = \frac{V_{Vide}}{V_{total}} = \frac{V_{total} - V_{particules}}{V_{total}}$$
(VI.12)

 V_{total} : est le volume du lit en (m³).

$$V_{total} = \mathbf{A} \cdot \mathbf{L} = \frac{\pi}{4} D^2 \mathbf{L}$$
(VI.13)

Où :

L : est la hauteur du lit de particules en (m).

 V_{Vide} : est le volume du vide en (m³).

 $V_{particules}$: est le volume des particules, il est déterminé à partir de la masse volumique apparente des particules, exprimé en (m³).

$$V_{particules} = \frac{M_{particules}}{\rho}$$
(VI.14)

Où $M_{particules}$ est la masse des particules en (g).

La signification de chaque terme du bilan de matière global est citée ci-après :

 $D_L \frac{\partial^2 C}{\partial Z^2}$: est la quantité transférée par diffusion à travers la colonne, elle s'appelle aussi le

terme diffusif.

$$-U_0 \left[\frac{\partial C}{\partial Z}\right]_t$$
: est la quantité du métal introduite dans la colonne par convection.
 $\left[\frac{\partial C}{\partial t}\right]_z$: est le terme d'accumulation dans la phase liquide.

$$\rho \frac{(1-\varepsilon)}{\varepsilon} \left[\frac{\partial q}{\partial t} \right]_{Z}$$
: est la quantité adsorbée par le lit dans un temps donné

Isotherme de Langmuir

L'expression relative à l'isotherme d'adsorption est la suivante :

$$q_e = \frac{q_m b C_e}{1 + b C_e} \tag{VI.15}$$

Avec :

 C_e : est la concentration du soluté dans la phase liquide à l'équilibre en (mg/L).

b : est l'affinité d'adsorption.

 q_m : est la capacité d'adsorption maximale en (mg/g).

 q_e : est la capacité d'adsorption à l'équilibre en (mg/g).

Isotherme de Freundlich

L'expression relative à l'isotherme d'adsorption est la suivante :

$$q_e = K_{Fr} \left(C_e \right)^{1/n} \tag{VI.16}$$

Où K_{Fr} et n sont les paramètres de Freundlich.

Dans le cas où l'isotherme de Freundlich décrit l'équilibre d'adsorption, on aura :

$$\frac{\partial q}{\partial C} = \frac{K_{Fr}}{n} C^{\frac{1-n}{n}}$$
(VI.17)

Alors l'équation (VI.10) prendra la forme suivante :

$$\frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial Z^2} - \rho \frac{(1-\varepsilon)}{\varepsilon} \frac{K_{Fr}}{n} C^{\frac{1-n}{n}} \frac{\partial C}{\partial t} - U_0 \frac{\partial C}{\partial Z}$$
(VI.18)

Dans le cas où l'isotherme de Langmuir décrit l'équilibre d'adsorption :

Alors:
$$\frac{\partial q}{\partial C} = \frac{q_m b}{(1+bC)^2}$$
 (VI.19)

Et l'équation (VI.10) aura la forme suivante :

$$\frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial Z^2} - \rho \frac{(1-\varepsilon)}{\varepsilon} \frac{q_m b}{(1+bC)^2} \frac{\partial C}{\partial t} - U_0 \frac{\partial C}{\partial Z}$$
(VI.20)

Plusieurs chercheurs ont simplifié ce modèle. Certains ont négligé le terme diffusif en supposant que l'influence du coefficient de diffusion sur la performance de la courbe de percée (c'est-à-dire le comportement d'adsorption) soit négligeable devant le terme convectif (le transport). D'autres (Wang et Zhang [4]) ont obtenu la même courbe de percée par résolution numérique (par la méthode de collocation orthogonale des équations différentielles) du modèle précédent avec et sans terme diffusif.

Dans plusieurs modèles comme celui de Adams-Bohart et Clark [5], qui ont été développés à l'origine pour les systèmes d'adsorption gaz-solide, la diffusion est considérée comme négligeable par rapport à la convection lors du déplacement de l'adsorbat à travers les solutions aqueuses.

Selon Carberry et Wendel [6], l'impact de la diffusion est négligeable lorsque la hauteur du lit dépasse cinquante fois le diamètre de la particule, qui est le cas dans notre étude.

Dans notre étude, nous éliminons le terme relatif à la diffusion. Alors le bilan de matière global de l'espèce adsorbé est réduit sous cette forme :

$$U_{0} \left[\frac{\partial C}{\partial Z} \right]_{t} + \left[\frac{\partial C}{\partial t} \right]_{Z} + \rho \frac{(1 - \varepsilon)}{\varepsilon} \left[\frac{\partial q}{\partial t} \right]_{Z} = 0$$
(VI.21)

La vitesse d'adsorption peut être décrite par le modèle de la force motrice linéaire en terme du coefficient de transfert de masse global en phase liquide [7] sous la forme suivante :

$$\rho \frac{\partial q}{\partial t} = \varepsilon K_L a(C - C_e) \tag{VI.22}$$

Où :

a : est l'aire interfaciale du lit d'adsorbant en (m^2/m^3) .

- K_L : est le coefficient de transfert de matière global dans la phase liquide en (m/s).
- C_e : est la concentration du soluté dans la phase liquide à l'équilibre en (mg/m³).
- C: est la concentration du soluté dans la phase liquide à l'instant t en (mg/m³).

Avec:
$$a = \frac{6(1 - \varepsilon)}{d_p}$$
 [8] (VI.23)

 d_p : est le diamètre des particules en (m).

Conditions initiales

t = 0; $0 \langle Z \langle L ; C(Z,0) = 0; q(Z,0) = 0$

Conditions aux limites

$$Z = 0; C(0,t) = C_0$$
$$Z = L; t > 0; \frac{\partial C(Z,t)}{\partial Z} \Big|_{Z=L} = 0$$

La première condition aux limites permet de dire que la concentration initiale de l'adsorbat à l'entrée de la colonne est constante et égale à C_0 . La dernière condition aux limites, suppose que le liquide atteint sa concentration de sortie dès qu'il quitte le lit. La condition initiale montre que le liquide et l'adsorbant sont exempts en soluté avant le lancement de l'expérience.

VI.6 Résolution de l'équation du modèle

L'écriture des bilans nous conduit à un système d'équations aux dérivées partielles. On peut considérablement simplifier ce modèle en le linéarisant autour d'un point de fonctionnement en tenant compte des hypothèses simplificatrices précédentes.

Les concentrations dans les phases liquide et solide sont liées par l'isotherme d'adsorption :

$$C_e = f(q) \tag{VI.24}$$

Ou bien : $q = g(C_e)$ (VI.25)

L'équation (VI.21) peut se mettre sous une forme plus simplifiée en utilisant la méthode de combinaison des variables qui consiste à diminuer le nombre des variables en mettant une relation entre celles-ci par l'intermédiaire d'une nouvelle variable.

Selon l'approche du tracé d'onde constant (Constant Wave Pattern), l'onde se déplace avec une vitesse du flux constante U_c .

On fait un changement de variable pour définir le temps ajusté donné par :

$$\tau = t - \frac{Z}{U_c} \tag{VI.26}$$

 τ : est un temps relatif qui représente la différence entre le temps réel (depuis le lancement de l'expérience) et le temps de résidence du fluide local [6].

Puis la concentration en phase liquide va s'écrire en fonction du temps ajusté τ .

D'après l'équation (VI.26), nous avons :

$$t = \tau + \frac{Z}{U_c} \quad \Leftrightarrow \quad \left(\frac{\partial t}{\partial \tau}\right)_Z = 1$$
$$Z = (t - \tau)U_c \quad \Leftrightarrow \quad \left(\frac{\partial Z}{\partial \tau}\right)_t = -U_c$$

En plaçant l'équation (VI.26) dans (VI.21), il conduit à l'équation suivante :

$$\left(1 - \frac{U_0}{U_c}\right) dC + \frac{\rho(1 - \varepsilon)}{\varepsilon} dq = 0$$
(VI.27)

Par intégration, on aura :

$$\int_{0}^{C} \left(1 - \frac{U_0}{U_c}\right) dC + \int_{0}^{q} \frac{\rho(1 - \varepsilon)}{\varepsilon} dq = 0$$
(VI.28)

A partir de l'isotherme d'équilibre, nous avons :

$$q = q_0$$
, $C = C_0$
 $q = q$, $C = C$

En tenant compte de ces dernières relations dans l'équation (VI.28), nous aboutissons au système d'équations suivantes :

$$\left(1 - \frac{U_0}{U_c}\right)C_0 + \frac{\rho(1 - \varepsilon)}{\varepsilon}q_0 = 0$$
(VI.29)

$$\left(1 - \frac{U_0}{U_c}\right)C + \frac{\rho(1 - \varepsilon)}{\varepsilon}q = 0$$
 (VI.30)

Où C_0 est en équilibre avec q_0 .

Par combinaison entre l'équation (VI.29) et (VI.30), on trouve la condition du tracé constant de la courbe de percée donnée par le modèle du flux linéaire [8]:

$$\frac{q}{q_0} = \frac{C}{C_0} \tag{VI.31}$$

Qui représente la fonction de dérivation de la courbe de percée du processus d'adsorption en colonne à lit fixe.

Le flux d'adsorption devient :

$$\rho \frac{dq}{d\tau} = \varepsilon K_L a (C - C_e) \tag{VI.32}$$

D'après les équations (VI.21), (VI.31) et (VI.32), on obtient :

$$\frac{\rho q_0}{C_0} \frac{dC}{d\tau} = \varepsilon K_L a \left[C - f \left(q_0 \frac{C}{C_0} \right) \right]$$
(VI.33)

Par intégration et réarrangement par la condition aux limites suivante :

$$\tau = \tau_{\frac{1}{2}}, \ C = \frac{C_0}{2}$$

Où $\tau_{\frac{1}{2}}$ est le temps ajusté lorsque l'adsorbant retient la moitié de la concentration initiale.

En supposant un coefficient volumétrique global ($K_L a$) constant, c'est-à-dire qu'il est indépendant du temps, on aura :

$$\int_{\frac{C_0}{2}}^{C} \frac{1}{C - f\left(q_0 \frac{C}{C_0}\right)} dC = \int_{\tau_{1/2}}^{\tau} \varepsilon K_L a \frac{C_0}{\rho q_0} d\tau$$
(VI.34)

Puis: $\tau = \tau_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \int_{\frac{C_0}{2}}^{C} \frac{1}{C - f\left(q_0 \frac{C}{C_0}\right)} dC \qquad (VI.35)$

Avec:
$$\tau - \tau_{\frac{1}{2}} = \left(t - \frac{Z}{U_c}\right) - \left(t_{\frac{1}{2}} - \frac{Z}{U_c}\right) = t - t_{\frac{1}{2}}$$
 (VI.36)

En injectant l'équation (VI.36) dans (VI.35), où à la sortie de la colonne d'adsorption (c.à.d à Z=L) la courbe de percée peut être représentée par l'équation suivante :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \int_{\frac{C_0}{2}}^{C} \frac{1}{C - f\left(q_0 \frac{C}{C_0}\right)} dC$$
(VI.37)

D'après l'équation (VI.16) relative à l'isotherme d'adsorption de Freundlich, nous avons :

$$C_e = \left(\frac{q}{K_{Fr}}\right)^n = f(q) \tag{VI.38}$$

En tenant compte l'équation (VI.38), on obtient :

$$f\left(q_0 \frac{C}{C_0}\right) = \left(\frac{q_0}{K_{Fr}C_0}C\right)^n$$
(VI.39)

En tenant compte les équations (VI.37), (VI.38) et (VI.39), nous obtenons :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \int_{\frac{C_0}{2}}^{C} \frac{1}{C - \left(\frac{q_0 C}{C_0 K_{Fr}}\right)^n} dC$$
(VI.40)

En posant :
$$x = \frac{C}{C_0}$$
 (VI.41)

Alors : $dC = C_0 dx$

L'équation (VI.40) devient :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \int_{x=0.5}^x \frac{1}{x - \frac{x^n}{C_0} \left(\frac{q_0}{K_{Fr}}\right)^n} dx$$
(VI.42)

On note :
$$\frac{1}{C_0} \left(\frac{q_0}{K_{Fr}}\right)^n = Cte$$
 (VI.43)

L'équation (VI.42) devient :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \int_{x=0.5}^x \frac{1}{x - Cte x^n} dx$$
(VI.44)

On sait que : $x - Cte x^n = x(1 - Cte x^{n-1})$

On pose:
$$\frac{1}{x - Ctex^n} = \frac{a}{x} + \frac{b}{1 - cte x^{n-1}}$$
 (VI.45)

Par distribution et séparation des variables, on trouve :

$$a - a\operatorname{Cte} x^{n-1} + bx = 1$$

Par identification, on obtient : $b = Cte x^{n-2}$ (VI.46)

Et:
$$a = 1$$
 (VI.47)

En considérant les équations (VI.44), (VI.45), (VI.46) et (VI.47), après intégration on trouve :

$$\int_{x=0.5}^{x} \frac{1}{x - Cte \ x^{n}} dx = \int_{x=0.5}^{x} \frac{1}{x} dx + \int_{x=0.5}^{x} \frac{Cte \ x^{n-2}}{1 - Cte \ x^{n-1}} dx$$
(VI.48)

$$\int_{x=0.5}^{x} \frac{1}{x - Cte \ x^{n}} \, dx = Ln \left[x \right]_{0.5}^{x} - \frac{1}{n-1} Ln \left[1 - Cte \ x^{n-1} \right]_{0.5}^{x} \tag{VI.49}$$

En injectant l'équation (VI.49) dans (VI.44) et après intégration, on aboutit à l'équation ci-dessous :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \left[Ln 2x - \frac{1}{n-1} Ln \frac{1 - Cte x^{n-1}}{1 - Cte 2^{1-n}} \right]$$
(VI.50)

On sait que q₀ est en équilibre avec C₀, alors on peut les relier par l'isotherme de Freundlich :

$$q_{0} = K_{Fr} C_{0}^{\frac{1}{n}}$$
(VI.51)
Avec :
$$\frac{1}{C_{0}} \left(\frac{q_{0}}{K_{Fr}}\right)^{n} = 1$$

D'où :
$$Cte = 1$$

D'où l'équation finale du modèle pour décrire la cinétique d'adsorption dans la zone de transfert de matière :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} \left[Ln 2x - \frac{1}{n-1} Ln \frac{1-x^{n-1}}{1-2^{1-n}} \right]$$
(VI.52)

En mettant :

$$f(x) = \left[Ln2x - \frac{1}{n-1} Ln \frac{1-x^{n-1}}{1-2^{1-n}} \right]$$
(VI.53)

L'équation (VI.52) devient :

$$t = t_{\frac{1}{2}} + \frac{\rho q_0}{\varepsilon K_L a C_0} f(x)$$
(VI.54)

La valeur du coefficient de transfert de matière global dans la phase liquide K_L est déterminée à partir du nombre de Sherwood qui représente le groupe adimensionnel approprié caractérisant le transfert de matière dans le film liquide, il est analogue au nombre du Nusselt en transfert de chaleur.

Le nombre de Sherwood est donné par la relation suivante [8] :

$$Sh = \frac{k_L d_p}{D_m}$$
(VI.55)

Où k_L est le coefficient de transfert de matière individuel dans la phase liquide en (m/s). Il est égal au coefficient de transfert de matière global K_L dans le cas où la résistance au transfert de matière est localisée dans le film relatif à la phase liquide (on néglige la résistance dans la phase solide).

On peut écrire :

$$r_L = R_L$$
 (VI.56) \Leftrightarrow $\frac{1}{K_L} = \frac{1}{k_L}$ (VI.57)

Où :

 r_L : est la résistance partielle relative à la phase liquide en (s/m).

 R_L : est la résistance globale relative à la phase liquide en (s/m).

Le coefficient de diffusion moléculaire de l'ion en solution métallique est approximativement de l'ordre de $10^{-9} m^2 / s$.

La corrélation de Ranz et Marshall [9] est largement appliquée aux réacteurs à lit fixe. Elle est exprimée par la relation suivante :

$$Sh = 2.0 + 0.6 Sc^{\frac{1}{3}} \text{Re}^{\frac{1}{2}}$$
 (VI.58)

Cette équation montre que le nombre de Sherwood tend vers une valeur limite de 2.0 pour des vitesses faibles.

:
$$\operatorname{Re} = \frac{\rho_L U_0 \varepsilon d_p}{\mu}$$
(VI.59)

 $Sc = \frac{\mu}{\rho_L D_m} \tag{VI.60}$

Où :

Re : est le nombre de Reynolds.

Sc : est le nombre de Schmidt.

 μ : est la viscosité dynamique du liquide en Poiseuille.

 ρ_L : est la masse volumique du liquide en (g/m³).

 D_m : est le coefficient de diffusion moléculaire en (m²/s).

 d_p : est le diamètre des particules en (m).

 U_0 : est la vitesse interstitielle du liquide en (m/s).

VI.7 Validation du modèle

La validation du modèle consiste à tracer la courbe f(x) (équation VI.54) en fonction du temps en utilisant les données expérimentales. Dans le cas où courbe f(x) en fonction du temps est une droite, nous disons alors que le modèle représente bien les résultats expérimentaux. Dans le cas contraire, le modèle n'est pas applicable à nos résultats expérimentaux. Dans le cas où le modèle est applicable, la pente et l'ordonnée à l'origine nous permettent de déterminer le coefficient du transfert de matière volumétrique $(K_L a)$ dans la phase liquide. Les valeurs de $(K_L a)$ expérimentales seront comparées aux valeurs théoriques obtenues à partir des corrélations empiriques.

Références bibliographiques

[1] L. F. Bautista, M. Martinez, J. Aracil, « *Adsorption of α-Amylase in a fixed bed: Operating efficiency and kinetics Modelling* », AIChE Journal, 49, p. 2631-2641, 2003.

[2] M. Suzuki, J.M. Smith, Chem. Eng, J.3, p. 256, 1972.

[3] A. Hatzikioseyian, « *Application of simplified rapid equilibrium models in simulating experimental breackthrough curves from fixed bed biosorption reactors* », Hydrometallurgy, 59, p. 395-406, Manchester, 2001.

[4] Y. Zhang, K. Wang, « *Modeling of the adsorption breackthrough behaviors of* Pb^{+2} *in a fixed bed of ETS-10 adsorbent* », Chemical Engineering Journal, 145, p. 7-15, Canada, 2008.

[5] R. Gonzalez, « Modeling the adsorption of Cr (III) from aqueous solution onto Agave lechuguilla biomass, Study of the advective and dispersive transport », Journal of Hazardous Materials, 161, p. 360-365, 2009.

[6] J. Carberry, S. Wendel, « A computer *Model of the fixed catalytic reactor: the adiabatic and quasi-adiabatique cases* », M. AIChE J, 9(123), p. 129-133, 1963.

[7] B.C. Pan, F.W. Meng, « *Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent* », Journal of Hazardous Materials, B124, p. 74-80, 2005.

[8] D.M. Ruthven, « *Principles of adsorption and adsorption processes* », New York, John Wiley, 1984.

[9] W. E. Ranz et W. R. Marshall, Chem Eng, Prog 48, p. 173, 1952.
Chapitre

Résultats et discussion relatifs à la modélisation des courbes de percée expérimentales

VII.1 Introduction

Dans ce chapitre, nous présenterons les courbes de percée issues de la modélisation et leur comparaison avec les courbes expérimentales suivant les différentes conditions opératoires ainsi que le calcul des coefficients de transfert de matière volumétriques.

VII.2 Définition

La solution traverse l'adsorbant et le métal (polluant) est éliminé par son transfert de la phase liquide vers l'adsorbant. La portion de garnissage où se tient le transfert de matière est appelée zone de transfert ou front d'adsorption. En fonction du temps, cette zone se déplace dans l'adsorbeur pour atteindre la sortie du lit. En fin de cycle, la concentration de sortie (C) est égale à celle de l'entrée (C₀) et le lit est complètement saturé. L'ensemble du phénomène est illustré par une courbe de percée.

VII.3 Isotherme d'adsorption des ions Cd⁺² dans un système fermé

Les paramètres des modèles de Freundlich et Langmuir sont déterminés graphiquement en exprimant Ln (q_e) en fonction de Ln (C_e) et $\left(\frac{C_e}{q_e}\right)$ en fonction de (C_e)

respectivement.

Les différents paramètres relatifs à l'application des modèles de Langmuir et Freundlich sont rassemblés dans le tableau VII.1.

Tableau VII.1 Paramètres des modèles de Langmuir et Freundlich relatifs à l'adsorption desions Cd2+ par la biomasse « Pleurotus mutilus ».

Adsorbant	Adsorbat	Modèle de 1	Modèle de Langmuir					
		K _{Fr}	1/n	R^2	q _m	b	\mathbf{R}^2	
		$(mg^{1-1/n}.g^{-1}.L^{1/n})$	1/11		$(mg.g^{-1})$	$(L.mg^{-1})$	IX .	
Pleurotus mutilus	Cd ²⁺	3,13	0,81	0,972	0,04	0,00	0,70	

En comparant les coefficients de régression linéaire obtenus par les deux modèles, nous avons constaté que le modèle de Freundlich représente mieux l'équilibre d'adsorption en régime statique.

VII.4 Modélisation de la courbe de percée

Il existe dans la littérature de nombreux modèles disponibles pour décrire les courbes de percée autant analytiques que numériques. L'avantage des solutions analytiques est leur simplicité d'application par rapport à la complexité des solutions numériques.

Dans le modèle établi précédemment, nous avons présenté une méthode analytique permettant de décrire et suivre l'adsorption du soluté à travers une colonne à lit fixe. Ceci en se basant sur les conditions aux limites et les corrélations empiriques permettant d'estimer le coefficient de transfert de matière volumétrique dans la phase liquide $(k_L a)$.

Cette méthode présente l'avantage de pouvoir déterminer le coefficient de transfert de masse expérimental $(k_L a)_{exp}$ à partir des résultats expérimentaux obtenus. Le calcul du $(k_L a)_{cal}$ théorique se fait à partir des corrélations empiriques [1].

Moussous et Col [2] ont réalisé plusieurs expériences afin d'étudier l'influence des différents paramètres opératoires sur la cinétique d'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » en continu. L'ensemble des paramètres opératoires retenus sont : la concentration initiale, la hauteur du lit fixe et le débit d'alimentation de la solution à traiter. Cette étude a été faite en faisant varier l'un des paramètres opératoires tout en gardant les deux autres constants.

VII.5 Résultats et discussion

Nous avons illustré sur les figures ci-dessous les courbes de percée expérimentales et celles obtenues par la modélisation en fonction des différents paramètres opératoires.

VII.5.1 Estimation du $(k_L a)_{cal}$ à partir des corrélations empiriques

En utilisant les équations empiriques citées précédemment au chapitre VI (équation (VI.50)), nous avons estimé les coefficients volumétriques $(k_L a)_{cal}$. L'ensemble des valeurs obtenues sont illustrées dans le tableau VII.2.

Conditions	Effet de la concentration			Effet du	ı débit	Effet de la	
expérimentales	Initiale			d'alime	ntation	hauteur du lit	
Debit (ml/mn)	20	20	20	10	5	20	20
Concentration initiale	50	40	20	50	50	50	50
(mg/L)							
Hauteur du lit (cm)	10	10	10	10	10	13	15
$(k_L a)_{cal} (h^{-1})$	833,44	833,44	833,44	659,81	537,27	833,44	833,44

Tableau VII.2 Valeurs du $(k_L a)_{cal}$ estimées à partir des corrélations empiriques.

VII.5.2 Effet de la concentration initiale

Les courbes de percée expérimentales et celles issues de la modélisation en fonction des différentes concentrations initiales sont représentées sur les figures suivantes :

Figure VII.1 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=50 mg/l, Q=20 ml/mn, H=10 cm).

Figure VII.2 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=40 mg/l, Q=20 ml/mn, H=10 cm).

VII.5.3 Effet de la hauteur du lit

Nous avons illustré sur les figures suivantes les courbes de percée expérimentales et simulées en fonction des différentes hauteurs du lit :

Figure VII.4 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=20 ml/mn, H=15 cm).

Figure VII.5 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=20 ml/mn, H=10 cm).

Figure VII.6 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=20 ml/mn, H=13 cm).

VII.5.4 Effet du débit d'alimentation

Nous avons illustré sur les figures suivantes les courbes de percée expérimentales et celles issues de la modélisation en fonction des différents débits d'alimentation :

Figure VII.7 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=10 ml/mn, H=10 cm).

Figure VII.8 Courbes de percée relatives à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=5 ml/mn, H=10 cm).

Pour vérifier l'influence du débit d'alimentation sur la cinétique d'adsorption en continu, nous avons représenté sur les figures (VII.10) et (VII.11) l'évolution du coefficient volumétrique global $(k_L a)_{Cal}$ trouvé à partir des corrélations empiriques en fonction de la vitesse superficielle du liquide ainsi que l'évolution du temps de demi adsorption obtenu d'après notre modèle en fonction de l'inverse de la vitesse superficielle du liquide.

Figure VII.10 Effet du débit d'alimentation sur le coefficient volumétrique global $(k_L a)_{Cal}$ en phase liquide relatif à l'adsorption des ions Cd⁺² sur la biomasse « *Pleurotus mutilus* » (T=25°C, C₀=20 mg/l, Q=20, 10 et 5 ml/mn, H=10 cm).

Figure VII.11 Effet du débit d'alimentation sur le temps de demi adsorption relatif à l'adsorption des ions Cd^{+2} sur la biomasse « *Pleurotus mutilus* » (T=25°C, C_0 =20 mg/l, Q=20, 10 et 5 ml/mn, H=10 cm).

1 / U (h/cm)

D'après les figures (VII.10) et (VII.11), nous constatons une bonne dépendance linéaire de l'influence du temps de demi adsorption et du coefficient volumétrique global $(k_La)_{Cal}$ en fonction de la vitesse superficielle du liquide dont les coefficients de corrélation sont supérieurs à 0,99 dans les deux cas. De plus, nous remarquons que le temps de demi adsorption diminue avec l'augmentation du débit d'alimentation. Par contre le coefficient volumétrique global $(k_La)_{Cal}$ augmente légèrement, lorsque le débit d'alimentation augmente.

Ceci s'explique par une variation linéaire du coefficient volumétrique global avec le débit d'alimentation [3]. Pan et Meng [1] ont trouvé une tendance similaire lors leur étude sur l'adsorption en colonne du phénol et p-nitrophénol sur la résine NDA-100.

VII.6 Validation du modèle mathématique

Chapitre VII

Comme nous avons cité au chapitre VI, le tracé du terme f(x) en fonction du temps nous a permis de prédire les courbes de percée. Par la suite, les droites trouvées permettront la détermination des coefficients de transfert de matière volumétriques $(k_L a)_{exp}$ dans la phase liquide. Une comparaison entre les valeurs expérimentales avec celles données par les corrélations empiriques de transfert de matière a été faite. Les résultats obtenus sont regroupés dans le tableau VII.3.

Figure VII.12 Validation du modèle relative à l'étude de l'influence de la concentration initiale (T=25°C, C₀=20, 40 et 50 mg/l, Q=20 ml/mn, H=10 cm).

Figure VII.13 Validation du modèle relative à l'étude de l'influence du débit d'alimentation $(T=25^{\circ}C, C_0=50 \text{ mg/l}, Q=5, 10 \text{ et } 20 \text{ ml/mn}, H=10 \text{ cm}).$

Nous avons illustré dans le tableau VII.3, les conditions opératoires optées pour chaque étude ainsi que les coefficients volumétriques $(k_L a)$ expérimentaux obtenus.

Tableau VII.3 Conditions expérimentales et résultats relatifs à l'adsorption des ions Cd²⁺sur la biomasse « *Pleurotus mutilus* » en colonne à lit fixe.

Conditions	itions Effet de la			Effet du débit			Effet de la hauteur		
expérimentales	concentration Initiale			d'alimentation			du lit		
Débit (ml/mn)	20	20	20	20	10	5	20	20	20
Concentration	50	40	20	50	50	50	50	50	50
initiale (mg/L)									
Hauteur du lit (cm)	10	10	10	10	10	10	10	13	15
Porosité du lit	0,288	0,288	0,288	0,288	0,288	0,288	0,288	0,288	0,288
Température (K)	298	298	298	298	298	298	298	298	298
$t_{1/2}(h)$									
Expérimental	11	15,5	21	11,5	17	35,5	9.5	15	15,01
Calculé	10,98	15,6	21,06	11,59	17,45	35,08	9,16	15,14	15,15
$(k_L a)_{\exp}(h^{-1})$	736,12	924	1154,31	708,53	1030,67	581,10	742,26	1067,38	1233.01
$(k_L a)_{Cal}(h^{-1})$	833,44	833,44	833,44	833,44	659,81	537,27	833,44	833,44	833,44
% d'erreur	13,22	9,80	27.79	14.98	35.98	7,54	10,94	28,06	47,94

Avec : % d'erreur = $\frac{\left| (k_L a)_{exp} - (k_L a)_{cal} \right|}{(k_L a)_{exp}} \times 100$ (VII.1)

Après avoir vérifié la validation de l'équation finale établie précédemment (Voir l'équation (III.57)), le tracé de f(x) en fonction du temps permet de déterminer le coefficient volumétrique global $(k_L a)_{exp}$.

Il s'avère que l'équation du modèle permet de représenter l'évolution de la concentration en sortie de la colonne en fonction du temps dans la zone de transfert de matière avec un coefficient de corrélation supérieur à 0,9 dans tous les cas. Par contre, en dehors du domaine de la zone de transfert de matière, c'est-à-dire dans la zone de saturation (pour C/C_o supérieur à 0,9), nous constatons un faible écart entre les valeurs exprimées par le modèle et valeurs expérimentales.

Dans la plupart des cas, nous remarquons que la courbe simulée se rapproche mieux des points expérimentaux pour $(C/C_0) < 0.9$. Pour $(C/C_0) > 0.9$, une faible divergence a été constatée. Ceci peut être dû à la validation des corrélations empiriques utilisées pour l'estimation du $(k_L a)_{cal}$.

VII.7 Conclusion

Dans ce chapitre, un modèle basé sur la théorie du tracé d'onde constant [1, 4] (Constant Pattern Wave Approach Theory) et l'isotherme de Freundlich sont utilisées pour prédire la courbe de percée de l'adsorption en continu des ions Cd^{+2} sur la biomasse morte « *Pleurotus mutilus* » en fonction des différentes conditions opératoires. Les courbes de percée simulées montrent qu'il est capable de représenter au mieux la cinétique d'adsorption en continu (pour C/C₀ < 0,9) avec un décalage plus ou moins important dans la zone de saturation (pour C/C₀ > 0,9).

Deux paramètres importants $(t_{1/2})$ et $(k_L a)$ peuvent être déterminés à partir de la pente et l'ordonnée à l'origine du tracé de la courbe f(x) (équation VI.54) en fonction du temps en utilisant les données expérimentales. Ils sont reliés directement aux conditions opératoires à savoir la concentration initiale, la hauteur du lit et le débit d'alimentation de la solution à traiter. De plus, on peut constater que la valeur de $(k_L a)$ augmente et $(t_{1/2})$ diminue linéairement avec le débit d'alimentation. D'autre part, la valeur de $(t_{1/2})$ et $(k_L a)$ sont approximativement proportionnelles avec la hauteur du lit fixe.

Références bibliographiques

[1] B.C. Pan, F.W. Meng, « *Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent* », Journal of Hazardous Materials, B124, p. 74-80, 2005.

[2] S. Moussous, A. Selatnia, G.A. Gunter, «*Biosorption des ions Cd*⁺² par la biomasse *Pleurotus mutilus en mode dynamique* », Journées de chimie, à l'EMP, Bordj El Bahri, 28-30 Mars, 2009.

[3] J.M. Chern, Y.W. Chien, « Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves », Water Res 36, p. 647-655, 2002.

[4] D.M. Ruthven, « *Principles of adsorption and adsorption processes* », United States, Wiley, 1984.

Chapitre

Application des solutions analytiques à la prédiction des courbes de percée expérimentales

VIII.1 Introduction

Dans ce chapitre, nous avons proposé les différents cas existant dans la littérature pour représenter la cinétique d'adsorption en lit fixe. Pour cela, nous présenterons quelques solutions analytiques proposées correspondant à une diffusion superficielle avec ou sans résistance externe dans le film ainsi qu'une diffusion superficielle et poreuse avec résistance externe dans le film.

VIII.2 Solutions analytiques proposées dans la littérature

Plusieurs solutions analytiques ont été proposées dans la littérature pour décrire la cinétique d'adsorption en lit fixe. Nous citerons quelques solutions analytiques possibles permettant de décrire la cinétique d'adsorption du soluté sur des particules adsorbantes.

Dans ce cas, les solutions analytiques permettront d'estimer les paramètres cinétiques, d'adsorption, structurels du lit fixe et de simuler son fonctionnement afin d'optimiser ses conditions opératoires.

VIII.2.1 Diffusion superficielle sans résistance externe dans le film

Dans ce cas, la résistance au transfert externe est négligeable et la diffusion superficielle est le mécanisme de transport limitant. Dans ces conditions, Rosen [1, 2] a proposé une solution analytique donnée par l'équation suivante :

$$\frac{C}{C_0} = \frac{1}{2} + \frac{2}{\pi} \int_0^\infty \exp\left[-\xi H_1(\lambda)/5\right] \sin\left[2\lambda^2 \tau/15 - \xi H_2(\lambda)/5\right] \frac{d\lambda}{\lambda}$$
(VIII.1)

Où :

t: est le temps de fonctionnement en (s).

 D_s : est le coefficient de diffusion superficielle en (m²/s).

C : est la concentration du soluté dans la phase liquide en (g/m^3) .

K : est la constante d'équilibre apparente.

Z : est la hauteur du lit fixe en (m).

R : est le rayon de la particule en (m).

 U_0 : est la vitesse interstitielle du liquide en (m/s).

 λ : est un paramètre adimensionnel de non linéarité, il représente la variable d'intégration.

 H_1 et H_2 sont des fonctions hyperboliques dépendantes de λ et données par les équations suivantes :

$$H_{1}(\lambda) = \lambda [\sinh(2\lambda) + \sin(2\lambda)] / [\cosh(2\lambda) - \cos(2\lambda)] - 1$$
 (VIII.2)

$$H_{2}(\lambda) = \lambda [\sinh(2\lambda) - \sin(2\lambda)] / [\cosh(2\lambda) - \cos(2\lambda)]$$
(VIII.3)

Avec ξ et τ sont des constantes adimensionnelles définies ainsi :

$$\xi = \frac{15D_s}{R^2} \frac{KZ}{U_0} \frac{(1-\varepsilon)}{\varepsilon}$$
(VIII.4)

$$\tau = \left(\frac{15D_s}{R^2}\right) (t - Z/U_0)$$
(VIII.5)

VIII.2.2 Diffusion superficielle avec résistance externe dans le film

En considérant une résistance externe due au film, Rosen [1, 2] a proposé la solution analytique suivante :

$$\frac{C}{C_0} = \frac{1}{2} + \frac{2}{\pi} \int_0^\infty \exp\left[-\xi \mathbf{H}'_1(\lambda, \upsilon)/5\right] \sin\left[2\lambda^2 \tau/15 - \xi \mathbf{H}'_2(\lambda, \upsilon)/5\right] \frac{d\lambda}{\lambda}$$
(VIII.6)

Où H₁' et H₂' sont des fonctions hyperboliques compliquées de λ et v définies par :

$$H_{1}(\lambda, \nu) = \left[H_{1} + \nu \left(H_{1}\lambda^{2} + H_{2}^{2}\right)\right] / \left[\left(1 + \nu H_{1}\right)^{2} + \left(\nu H_{2}\right)^{2}\right]$$
(VIII.7)

$$H'_{2}(\lambda, \upsilon) = H_{2}/[(1 + \upsilon H_{1})^{2} + (\upsilon H_{2})^{2}]$$
 (VIII.8)

v : est une constante adimensionnelle définie par :

$$\upsilon = \frac{D_s K}{R_p k_f} \tag{VIII.9}$$

Avec :

 k_{f} : est le coefficient de transfert de matière externe en (m/s).

 D_s : est le coefficient de diffusion superficielle en (m²/s).

VIII.2.3 Diffusion superficielle, diffusion poreuse avec résistance externe dans le film

En considérant une diffusion superficielle et poreuse avec résistance externe au film, Kawazoe et Takeuchi [3] ont proposé une solution analytique donnée par l'équation cidessous :

$$\frac{C}{C_0} = \frac{1}{2} + \frac{2}{\pi} \int_0^\infty \exp\left[-\xi H_1(\lambda, \upsilon)/5\right] \sin\left[2\lambda^2 \tau/15 - \xi H_2(\lambda, \upsilon)/5\right] \frac{d\lambda}{\lambda}$$
(VIII.10)

 H_1 et H_2 sont des fonctions hyperboliques compliquées de λ et ν données par les équations suivantes :

$$H_{1}^{\prime}(\lambda,\upsilon) = \left[H_{1}(\phi_{1}) + \upsilon \left(H_{1}(\phi_{1})\lambda^{2} + H_{2}(\phi_{2})^{2}\right)\right] / \left[(1 + \upsilon H_{1}(\phi_{1}))^{2} + (\upsilon H_{2}(\phi_{2}))^{2}\right]$$
(VIII.11)

$$H_{2}(\lambda, \upsilon) = H_{2}(\phi_{2}) / \left[(1 + \upsilon H_{1}(\phi_{1}))^{2} + (\upsilon H_{2}(\phi_{2}))^{2} \right]$$
(VIII.12)

Où :

$$H_{1}(\phi_{1}) = \phi_{1}[\sinh(2\phi_{1}) + \sin(2\phi_{1})] / [\cosh(2\phi_{1}) - \cos(2\phi_{1})] - 1$$
(VIII.13)

$$H_{2}(\phi_{2}) = \phi_{2}[\sinh(2\phi_{2}) - \sin(2\phi_{2})] / [\cosh(2\phi_{2}) - \cos(2\phi_{2})]$$
(VIII.14)

Et :

$$\phi_1 = \frac{h}{\sqrt{2}} \left[\sqrt{H_1^2(\lambda) + H_2^2(\lambda)} - H_1(\lambda) \right]^{\frac{1}{2}}$$
(VIII.15)

$$\phi_{2} = \frac{h}{\sqrt{2}} \left[\sqrt{H_{1}^{2}(\lambda) + H_{2}^{2}(\lambda)} + H_{1}(\lambda) \right]^{\frac{1}{2}}$$
(VIII.16)

Avec :

$$h = \left[\frac{3\left(D_{s} / r_{c}^{2}\right)}{K\left(\varepsilon_{P} D_{P} / R_{P}^{2}\right)}\right]^{\frac{1}{2}}$$
(VIII.17)

Où :

 r_c : est le rayon poreux de la particule en (m).

 $\varepsilon_{\scriptscriptstyle p}$: est la porosité de la particule.

 R_n : est le rayon de la particule en (m).

 D_p : est la diffusivité poreuse en (m²/s).

VIII.3 Méthode de résolution

Après avoir formulé les solutions analytiques trouvées dans la littérature relatives à l'adsorption du soluté dans un milieu poreux, un programme en Fortran a été élaboré pour représenter l'évolution du rapport C/C_0 en fonction du temps.

Dans tous les cas, C/C₀ va se calculer à partir d'une intégrale dépendant du temps et ayant pour variable d'intégration λ .

Le calcul de cette intégrale sera effectué par la méthode des trapèzes : le domaine d'intégration $[0, \infty]$ est divisé en plusieurs sous intervalles de longueur fixée et pour chaque intervalle [a, b], on effectue une intégration par la méthode développée ci-dessous :

Soit à calculer l'intégrale suivante bornée sur l'intervalle [a, b] :

$$I = \int_{a}^{b} f(x)dx$$
 (VIII.18)

Pour calculer l'intégrale d'une fonction f(x) sur un intervalle [a, b] par la méthode des trapèzes, on divise l'intervalle [a, b] en (n) sous intervalles égaux et nous faisons une approximation sur chacun des sous intervalles de la fonction à intégrer par un segment de droite. On obtient ainsi (n) trapèzes. La valeur (S) de l'intégrale de f(x) sur l'intervalle [a, b] est la somme des aires des (n) trapèzes (voir figure VIII.1).

En notant:
$$h = \frac{b-a}{n}$$
 (VIII.19)

On a :

$$S = h \times \left[\frac{f(a) + f(a+h)}{2} + \frac{f(a+h) + f(a+2 \times h)}{2} + \dots + \frac{f(a+(n-1) \times h) + f(b)}{2} \right]$$
(VIII.20)

Où:
$$S = h \times \left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(a + i \times h) \right]$$
 (VIII.21)

Figure VIII.1 Représentation d'une intégration par la méthode des trapèzes.

La boucle sur le temps est effectuée dans le programme principal. Ce dernier fait appel à des subroutines qui calculent l'intégrale sur l'intervalle[a, b] avec comme variable d'intégration λ . La fonction sous l'intégrale est calculée pour les différentes valeurs de λ en utilisant plusieurs fonction imbriquées les unes dans les autres.

Pour un temps donné, la fonction sous l'intégrale est dans tous les cas de la forme (EXP*SIN) donc il s'agit d'une sinusoïde amortie. Pour cette raison, le calcul de l'intégrale sera poursuivi jusqu'à l'obtention d'une valeur suffisamment faible de la fonction. Cette valeur sera comparée au critère de convergence donné. Enfin, les résultats de l'exécution du programme seront envoyés vers un fichier origine où on trace les courbes de percée correspondantes aux solutions analytiques.

VIII.4 Organigramme du calcul

Nous avons montré sur la figure VIII.2, l'organigramme poursuivi pour tracer les courbes de percée simulées à partir des solutions analytiques.

Figure VIII.2 Organigramme du programme de simulation.

Références bibliographiques

- [1] J. B. Rosen, J. Chem. Phys, 20, p. 387, 1952.
- [2] J. B. Rosen, Ind. Eng. Chem, 46, p. 1590, 1954.
- [3] K. Kawazoe, Y. Takeuchi, J. Chem. Eng. Japan 7, p. 431, 1974.

Chapitre

Résultats et discussion relatifs à l'application des solutions analytiques à la prédiction des courbes de percée expérimentales

IX.1 Introduction

Dans ce chapitre, nous présenterons les paramètres cinétiques d'adsorption et les courbes de percée obtenues par l'application de quelques solutions analytiques existant dans la littérature.

IX.2 Détermination des paramètres physiques et cinétiques de modélisation

Nous avons donc commencé par estimer les équilibres thermodynamiques d'adsorption, les coefficients de diffusion et de transfert de matière à différentes conditions opératoires. Ces paramètres ont été estimés à partir des expériences effectuées sur un montage expérimental circulant en batch et des corrélations empiriques de transfert de matière.

IX.2.1 Application du modèle de Morris et Weber à la cinétique d'élimination de Cd²⁺ en système batch

Le Modèle de Morris et Weber [1] est donné par la relation suivante :

$$q = k_i t^{0.5} + C \tag{IX.1}$$

En traçant q en fonction de \sqrt{t} , on peut déduire le coefficient de transfert de masse intraparticulaire k_i qui est la pente de la droite.

Figure IX.1 Application du modèle de Morris et Weber à la cinétique d'élimination des ions Cd^{2+} en système batch.

Où:
$$D_s = \frac{\pi}{36} \left(\frac{R_P k_i}{q_e} \right)^2$$
 (IX.2)

On déduit donc : $D_s = 1,41.10^{-6} cm^2 / min$

IX.2.2 Détermination de la constante de vitesse *K*₁ à partir du modèle cinétique du pseudo premier ordre

La cinétique du pseudo premier ordre [2] peut s'écrire par l'équation suivante :

$$Ln(q_e - q_t) = Ln q_e - K_1 t$$
 (IX.3)

La constante de vitesse K_I est déduite de la pente de la droite représentant $Ln (q_e - q_t)$ en fonction du temps.

Figure IX.2 Application du modèle cinétique du pseudo premier ordre.

On trouve : $K_1 = 0.1358 \text{ min}^{-1}$

IX.2.3 Détermination de la constante de vitesse *K*₂ du modèle cinétique du pseudo second ordre

Dans ce cas, Le modèle cinétique du pseudo second ordre [3] est exprimé sous cette forme :

$$\frac{t}{q_{t}} = \frac{1}{K_{2}q_{e}^{2}} + \frac{t}{q_{e}}$$
(IX.4)

La constante de vitesse K_2 est déterminée à partir de l'ordonnée à l'origine de la droite représentant t/q_t en fonction du temps.

Figure IX.3 Application du modèle cinétique du pseudo second ordre. On trouve : $K_2 = 6,43.10^{-3} \text{ g.mg}^{-1}.mn^{-1}$

Nous constatons d'après la figure (IX.3) ci-dessus que l'adsorption du cadmium sur la biomasse « *Pleurotus Mutilus* » suit une cinétique du pseudo second ordre. Ceci se justifie par la valeur du coefficient de régression linéaire (\mathbb{R}^2) de la courbe relative à ce modèle qui est égal à 1.

IX.2.4 Détermination du coefficient de transfert de matière externe k_f à partir du

modèle de Spahn et Schlünder [4]

La variation de la concentration du soluté en phase liquide obéit à l'équation suivante:

$$V\frac{dC(t)}{dt} = -k_f A(C(t) - C_s(t))$$
(IX.5)

Où :

A : est la surface d'échange externe des particules (m^2) .

k f : est le coefficient de transfert de matière externe (m/min).

 C_s : est la concentration de l'ion à l'interface solide-liquide (g/m³).

C : est la concentration de l'ion dans la phase liquide (g/m^3) .

V : est le volume de la solution (m^3) .

Ces auteurs estiment que la concentration peut être considérée comme négligeable aux premiers instants à la surface de la biomasse ($C_s \approx 0$). Dans ces conditions, l'équation s'écrit :

$$V\frac{dC(t)}{dt} = -k_f AC(t)$$
(IX.6)

Après intégration :

$$-\operatorname{Ln}\frac{\mathrm{C}(\mathrm{t})}{\mathrm{Co}} = \mathrm{k}_{\mathrm{f}} \frac{\mathrm{A}}{\mathrm{V}} \mathrm{t}$$
(IX.7)

Figure IX.4 Application du modèle du modèle de Spahn et Schlünder. On trouve : $k_f \frac{A}{V} = 0,1302 \text{ min}^{-1}$

Dans le cas des particules sphériques le rapport $\frac{A}{V}$ vaut $\frac{6 \text{ m}}{d_P V \rho_p}$ [1].

Avec :

m : est la masse des particules (g).

V : est le volume de la solution (L).

 d_p : est le diamètre moyen des particules (m).

 $\rho_{\rm p}$: est la masse volumique des particules (g/L).

Nous avons : $\frac{m}{V} = 3 \text{ g/L}$ D'où : $\frac{A}{V} = 0.95 \text{ cm}^{-1}$ Donc : $k_f = 0.137 \text{ cm}/\text{min}$

Dans le cas d'une diffusion superficielle et diffusion poreuse, la porosité de la particule est déterminée à partir du volume poreux par l'équation suivante :

$$\varepsilon_{p} = \frac{V_{Poreux}}{V_{Particule}}$$
(IX.8)

Où :

 V_{poreux} : est le volume poreux de la particule en (cm³).

 $V_{\text{particule}}$: est le volume de la particule en (cm³).

Le volume poreux est déterminé approximativement à partir de la surface spécifique (voir Tableau II.2).

Avec:
$$S = 0.06 m^2 / g$$

Où S est la surface spécifique de la particule en (m^2/g) .

D'où : $V_{poreux} \approx 0.2 \, cm^3 / g$

On sait que : $\rho_p = 0.53g / cm^3$

Donc le volume total d'un gramme de particules est de $1,887 \text{ cm}^3$, alors que le volume poreux est de $0,2 \text{ cm}^3$.

La porosité de la particule est le rapport entre les deux, c'est-à-dire :

$$\varepsilon_{P} = \frac{\text{Volume poreux de la particule}}{\text{Volume total de la particule}}$$
(IX.9)

D'où :
$$\varepsilon_p = \frac{0.2}{1,887} = 0.106$$

De plus : $V_{particule} = \frac{4\pi}{3} R_p^3$ (IX.10) et $V_{poreux} = \frac{4\pi}{3} r_c^3$ (IX.11)

Avec :

 R_p : est le rayon de la particule en (m).

 r_c : est le rayon du pore en (m).

De l'équation (IX.9), (IX.10) et (IX.11), on a :

$$\varepsilon_p = \left(\frac{r_c}{R_p}\right)^3 \tag{IX.12}$$

D'où : $r_c = 0.84.10^{-2} cm$

Le coefficient de diffusion poreuse D_p est donné par l'équation suivante [5]:

$$D_p = \frac{0.03.R_p}{t_{1/2}}$$
(IX.13)

Avec :

 $t_{1/2}$: représente le temps pour lequel l'adsorbant retient la moitié de la concentration initiale en système batch. Il est déterminé d'après la cinétique d'adsorption du cadmium pour une concentration initiale de 50 mg/L.

Figure IX.5 Cinétique d'adsorption du cadmium pour une concentration

initiale de 50 mg/L.

A partir de la courbe de la figure IX.5, nous déduisons pour C/Co=0,5, la valeur $t_{1/2} = 5.87 \text{ min}$.

D'où :
$$D_P = 1,63.10^{-6} \text{ cm}^2 / \text{min}$$

On peut aussi le déterminer par la relation semi-empirique suivante :

$$D_p = \frac{\varepsilon_p D_m}{\tau_p} \tag{IX.14}$$

Où :

 D_p : est le coefficient de diffusion poreuse en (m².s⁻¹);

 ε_{P} : est la porosité de la particule adsorbante ;

- D_m : est le coefficient de diffusion moléculaire du constituant (m².s⁻¹);
- τ_{P} : étant la tortuosité du matériau adsorbant de valeur généralement comprise entre 2 et 6.

Par exemple, lorsque τ_p égal à 6, le coefficient de diffusion poreuse est 10,6.10⁻⁶ cm²/min.

IX.2.5 Détermination de la constante d'équilibre apparente

La constante d'équilibre est déterminée à partir du modèle cinétique réversible du premier ordre (Equation (II.24)) [6].

A l'équilibre, nous avons :
$$K = \frac{k_{ad}}{k_{dés}} = \frac{C_0 - C_e}{C_e}$$
 (IX.15)

 $O\hat{u}(k_{ad})$ et $(k_{dés})$ sont les constantes de vitesse d'adsorption et de désorption respectivement en (min⁻¹).

K : est la constante d'équilibre apparente.

 C_0 : est la concentration initiale du soluté dans la phase liquide en (mg/L).

 C_e : est la concentration du soluté dans la phase liquide à l'équilibre en (mg/L). Elle est déterminée d'après l'isotherme d'adsorption pour une concentration initiale de 50 mg/L.

Nous avons : $C_e = 0.6 \text{ mg/L}$ D'où : K=82,33

IX.3 Résultats et discussion

Nous avons illustré sur les figures ci-dessous les différents résultats obtenus lors de l'application de quelques solutions analytiques correspondant à un mécanisme de diffusion superficielle avec et sans résistance externe dans le film ainsi qu'en présence de la diffusion poreuse avec résistance externe dans le film.

IX.3.1 Dans le cas d'une diffusion superficielle sans résistance externe dans le film

Figure IX.6 Courbes de percée simulées et expérimentales relatives à la biosorption des ions Cd²⁺ pour une concentration initiale de 50 mg/L.

Figure IX.7 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence du débit d'alimentation sur la biosorption des ions Cd²⁺.

Figure IX.8 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence de la hauteur du lit sur la biosorption des ions Cd²⁺.

Figure IX.9 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence de la hauteur du lit sur la biosorption des ions Cd²⁺.

Figure IX.10 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence du débit d'alimentation sur la biosorption des ions Cd²⁺.

IX.3.3 Dans le cas d'une diffusion superficielle et diffusion poreuse avec résistance

externe dans le film

Figure IX.13 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence de la hauteur du lit sur la biosorption des ions Cd²⁺.

Figure IX.14 Courbes de percée simulées et expérimentales relatives à l'étude de l'influence du débit d'alimentation sur la biosorption des ions Cd²⁺.

Figure IX.15 Courbes de percée simulées et expérimentales relatives à la biosorption des ions Cd²⁺ pour une concentration initiale de 50 mg/L.

A partir de l'application des solutions analytiques à la modélisation des courbes de percée expérimentales, nous constatons que les deux solutions analytiques relatives à un mécanisme de diffusion superficielle avec ou sans résistance externe dans le film, ont donné des meilleurs résultats de simulation pour toutes les conditions opératoires. Elles nous permettent de vérifier aussi que la résistance globale au transfert de matière est loin d'être négligeable.

D'autre part, le mécanisme relatif à une diffusion superficielle et poreuse avec résistance externe dans le film, montre que les courbes de percée simulées présentent un décalage par rapport aux points expérimentaux. Donc la diffusion poreuse n'intervient pas lors de notre étude.

IX.4 Conclusion

L'application des solutions analytiques proposées dans la littérature nous permet de valider la solution analytique correspondant à un mécanisme de diffusion superficielle avec ou sans résistance externe dans le film. De plus, on peut conclure que la solution analytique relative à un mécanisme de diffusion superficielle décrit mieux la cinétique d'adsorption en continu. Par contre, la diffusion poreuse peut être considérée comme négligeable dans notre étude.

Références bibliographiques

[1] W.J. Weber and W.E. Morris, « Kinetics of adsorption on carbon from solutions », J. sanit, 1963.

[2] I. Uzun, « *Kinetics of adsorption of reactive dyes by chitosane. Dyes and Pigments* », 70, p. 76-83, 2006.

[39] B. Noroozi, G.A. Sorial, H. Bahrami, M. Arami, *« Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent-Silkworm pupa »*, Journal of Hazardous Materials B139, p. 167-174, 2007.

[4] H. Spahn, U. Schlünder, « *The scale-up of activated carbon columns for water purification, based on results from batch tests-I. Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests », Chem Eng Sci, 30, p. 529-537, 1975.*

[5] F. Hellferich, « *Ion Exchange* », Mc Graw Hill Book Company Inc, New York, USA, 1962.

[6] K.V. Kumar, S. Sivanesan, V. Ramamurthi, *« Adsorption of malachite green onto Pithophora sp, a fresh water algae: Equilibrium and kinetic modelling »*, Process Biochemistry, 40, p. 2865-2872, 2005.

Chapitre

Application des modèles mathématiques prédictifs à la modélisation de la cinétique d'adsorption du Cadmium sur colonne à lit fixe
X.1 Introduction

L'objectif principal de cette partie, réside dans la modélisation des courbes de percée obtenues lors de l'adsorption des ions métalliques sur colonne à lit fixe en fonction de divers paramètres opératoires tels que la concentration initiale, le débit d'alimentation et la hauteur du lit fixe, en appliquant les modèles mathématiques prédictifs existant dans la littérature (Clark, Yoon et Nelson, Wolborska et Bed Depth Service Time). Ces modèles, nous permettront d'exprimer les différents paramètres contrôlant les performances de l'adsorption en régime dynamique.

X.2 Modèle de Clark [1]

La détermination des paramètres de l'équation de Clark (r) et (A) se fait en traçant le $\begin{bmatrix} c \\ r \end{bmatrix}$

terme $Ln\left[\left(\frac{C_0}{C}\right)^{n-1} - 1\right]$ en fonction du temps, dont les paramètres (r) et (A) sont la pente et

l'ordonnée à l'origine respectivement. Les paramètres de l'équation de Clark et les coefficients de corrélation (R^2) pour toutes les conditions opératoires sont regroupés dans le tableau X.1.

Concentration initiale	Hauteur du	Débit	r		
(mg/L)	lit (cm)	(ml/min)	(min ⁻¹)	Α	\mathbf{R}^2
50			0,0047	3,564	0,9606
40	10	20	0,0056	28,525	0,9914
20			0,006	395,44	0,9387
	15		0,0047	98,57	0,9669
50	13	20	0,0082	211,66	0,9454
	10		0,0061	246,21	0,9730
		20	0,0082	3557,8	0,9443
50	10	10	0,0071	258,4	0,9805
		5	0,0032	143.59	0,98497

Tableau X.1 Paramètres du modèle de Clark relatifs aux différents essais.

Nous remarquons que les coefficients de corrélation obtenus lors de la régression linéaire sont acceptables, ce qui montre la bonne convergence du modèle de Clark avec les résultats expérimentaux.

Nous avons constaté que le paramètre (A) augmente avec l'augmentation du débit alors qu'il diminue en augmentant la concentration initiale. Par contre, la hauteur du lit n'a pas une influence très significative dans notre étude.

Figure X.1 Application du modèle de Clark aux résultats expérimentaux obtenus pour différents débits d'alimentation.

Figure X.2 Application du modèle de Clark aux résultats expérimentaux obtenus pour différentes concentrations initiales.

Figure X.3 Application du modèle de Clark aux résultats expérimentaux obtenus pour différentes hauteurs du lit.

X.3 Modèle de Wolborska [2]

La détermination des paramètres du modèle de Wolborska se fait dans le domaine des faibles concentrations. Ces paramètres seront calculés à partir du tracé de $Ln \frac{C}{C_0}$ en fonction du temps en tenant compte de la partie linéaire. La qualité d'ajustement permet l'acquisition des paramètres empiriques (β_0 et N_o) avec une bonne précision. Le coefficient de transfert de masse β_0 représente l'effet combiné du transfert de matière externe et la dispersion axiale. En revanche, ce modèle permet de déterminer également la vitesse du déplacement du front d'adsorption (v).

Les valeurs des paramètres de ce modèle relatives aux essais en fonction du débit d'alimentation, de la concentration initiale et de la hauteur du lit fixe ainsi que les coefficients de corrélation sont illustrées dans le tableau X.2.

Concentration initiale (mg/L)	Hauteur du lit (cm)	Débit (ml/min)	$egin{array}{c} eta_a \ ({ m min}^{-1}) \end{array}$	N ₀ (mg/L)	Q ₀ (mg/g)	v (cm/min)	\mathbf{R}^2
50 40 20	10	20	13,79 14,66 12,09	21534,54 23081,07 18467,05	56851,18 55394,57 66481,38	26,12 10 ⁻³ 19,51 10 ⁻³ 12,20 10 ⁻³	0,98 0,97 0,98
50	15 13 10	20	3,94 4,48 2,86	37912,37 44877,05 46122.46	71275,25 91134,93 121763,29	14,86 10 ⁻³ 12,55 10 ⁻³ 12,22 10 ⁻³	0,99 0,94 0,95
50	10	20 10 5	5,22 0,59 0,56	53292,24 25627,82 24643,67	140691,51 39210,56 35856,54	10,5 10 ⁻³ 11 10 ⁻³ 5,71 10 ⁻³	0,94 0,95 0,96

L'application du modèle de Wolborska montre que la valeur de β_a augmente avec l'augmentation du débit d'alimentation. L'accroissement de la turbulence, sous l'effet de l'augmentation du débit, provoque une réduction de l'épaisseur de la couche limite du film entourant la particule adsorbante et par conséquence, il améliore le transfert de masse [3].

Nous constatons aussi que la valeur de N_o augmente avec l'augmentation du débit d'alimentation et la concentration initiale de la solution à traiter, donc il est possible de travailler avec des débits et des concentrations élevées pour saturer efficacement l'adsorbant. Au contraire, l'augmentation de la hauteur diminue la capacité volumétrique de saturation. Ceci montre que la biomasse fongique *Pleurotus mutilus* mettra plus de temps pour atteindre la saturation en ions métalliques.

Figure X.4 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour différentes concentrations initiales.

Figure X.5 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour différentes hauteurs du lit.

Figure X.6 Application du modèle de Wolborska aux résultats expérimentaux obtenus pour différents débits d'alimentation.

X.4 Modèle de Yoon et Nelson [4]

Ce modèle a été développé par Yoon et le Nelson pour étudier le comportement de percée d'adsorption. Les valeurs de K_{YN} (la constante de proportionnalité) et de $t_{1/2}$ (temps nécessaire pour adsorber 50 % dans la courbe de percée) ont été déterminées à partir du tracé

de $Ln\left(\frac{C}{C_0 - C}\right)$ en fonction du temps pour différentes conditions opératoires. Ces valeurs sont

regroupées dans le tableau X.3.

Concentration initiale (mg/L)	Hauteur du lit (cm)	Débit (ml/min)	K _{YN} (min ⁻¹)	t _{1/2} (min)	\mathbf{R}^2
50 40 20	10	20	6,8 10 ⁻³ 7,410 ⁻³ 10,6 10 ⁻³	648,09 919,38 1254,53	0,98 0,99 0,98
50	15 13 10	20	10,5 10 ⁻³ 10,5 10 ⁻³ 8,1 10 ⁻³	867,61 869,79 556,96	0,97 0,97 0,97
50	10	20 10 5	7,2 10 ⁻³ 8,5 10 ⁻³ 4,2 10 ⁻³	633,33 1039,12 2116,67	0,98 0,97 0,97

	Tableau X.3 Paramèt	tres du modèle de	Yoon et Nelson	relatifs aux	différents essais.
--	---------------------	-------------------	----------------	--------------	--------------------

D'après le tableau X.3, nous avons constaté qu'en augmentant la concentration initiale et le débit d'alimentation, la constante de proportionnalité (K_{YN}) augmente et le temps ($t_{1/2}$) diminue. Dans tous les cas, les coefficients de régression linéaire (\mathbb{R}^2) sont supérieurs à 0,95. Le modèle donne un bon ajustement des données expérimentales. Par contre, lorsqu'on augmente la hauteur du lit, les paramètres ($t_{1/2}$) et (K_{YN}) augmentent simultanément.

Les figures suivantes montrent les courbes de percée expérimentales et celles relatives à l'application du modèle de Yoon et Nelson aux résultats expérimentaux.

Figure X.7 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus pour différentes concentrations initiales.

Figure X.8 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus pour différentes hauteurs du lit.

Figure X.9 Application du modèle de Yoon et Nelson aux résultats expérimentaux obtenus pour différents débits d'alimentation.

X.5 Modèle Bed Depth Service Time (BDST) [5, 6]

Le modèle Bed Depth Service Time (BDST) décrit une relation entre le temps du service de la colonne et la hauteur du lit fixe. Hutchins [7] a proposé une relation entre le temps du service (t) de la colonne et la hauteur du lit fixe (Z) (voir chapitre II).

Le tracé du temps en fonction de $Ln\left(\frac{C_0}{C}-1\right)$ permet de déterminer la valeur de la

capacité d'adsorption dynamique du lit fixe (N₀) et la constante de vitesse d'adsorption (k_{ads}) pour différentes conditions opératoires. Le tableau X.4 rassemble les résultats relatifs à l'application du modèle BDST.

Concentration initiale (mg/L)	Hauteur du lit (cm)	Débit (ml/min)	k _{ads} (L.mg ⁻¹ .min ⁻¹)	N ₀ (mg.L ⁻¹)	\mathbf{R}^2
20 40 50	10	20	1,98 10 ⁻⁴ 1,18 10 ⁻⁴ 0,96 10 ⁻⁴	14,51 10 ⁴ 16,21 10 ⁴ 17,14 10 ⁴	0,9817 0,9953 0,9820
50	15 13 10	20	1,98 10 ⁻⁴ 1,96 10 ⁻⁴ 1,94 10 ⁻⁴	13,65 10 ⁴ 13,13 10 ⁴ 13,06 10 ⁴	0,9716 0,9739 0,9798
50	10	20 10 5	2,22 10 ⁻⁴ 1.71 10 ⁻⁴ 8,40 10 ⁻⁵	4710,01 19535,41 19912,33	0,9805 0,9673 0,9687

Tableau X.4 Paramètres du modèle BDST relatifs aux différents essais.

Les figures ci-dessous représentent les résultats expérimentaux et les courbes de percée relatives à l'application du modèle BDST aux différents essais.

Figure X.10 Application du modèle BDST aux résultats expérimentaux obtenus pour différentes hauteurs du lit.

Figure X.11 Application du modèle BDST aux résultats expérimentaux obtenus pour différents débits d'alimentation.

Figure X.12 Application du modèle BDST aux résultats expérimentaux obtenus pour différentes concentrations initiales.

Nous avons observé que les coefficients de corrélation de la régression linéaire sont acceptables et supérieurs à 0,96 pour toutes les conditions opératoires. Ceci montre une bonne concordance du modèle BDST avec les données expérimentales.

De plus, nous constatons que la capacité d'adsorption dynamique du lit fixe (N₀) augmente en augmentant le débit d'alimentation et la hauteur du lit. En augmentant la hauteur du lit et le débit d'alimentation, la constante de vitesse d'adsorption (k_{ads}) augmente. Par contre, elle diminue avec l'augmentation de la concentration initiale.

X.6 Conclusion

La comparaison entre les courbes de percée expérimentales et simulées nous a permis de constater que le modèle de Wolborska, modèle de Clarck, modèle Bed Depth Service Time (BDST) et le modèle de Yoon et Nelson décrivent de façon satisfaisante les données expérimentales.

Références bibliographiques

[1] R.M. Clark, « *Evaluating the cost and performance of field-scale granular activated carbon systems* », Environ Sci Technol, 21, P. 573-580, 1987.

[2] A. Wolborska, « Adsorption on activated carbon of p-nitrophenol from aqueous Solution », Water Res, 23, P. 85-91, 1989

[3] M. Kebir, «*Elimination du chrome hexavalent par adsorption sur un matériau cellulosique* », Thèse Magister, USTHB, 2009.

[4] Y.H. Yoon., J.H. Nelson, « *Application of gas adsorption kinetics, A theoretical model for respirator cartridge service time* », Am. Ind. Hyg. Assoc, J. 45, P. 509-516, 1984.

[5] R.S. Ramalho, « Introduction to Wastewater Treatment Process », 2nd ed, Academic Press, New York, 1983.

[6] G. McKay, M.J. Bino, Environ. Pollut, 66, p. 33-53, 1990.

[7] V.C. Taty Costodes et al, « *Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestrics sawdust, Adsorption on a fixed bed column* », Journal of Hazardous Materials, B 123, P. 135-144, 2005.

Conclusion Générale

Conclusion générale

Les ressources en eau, menacées par les activités humaines (ménagères, agricoles et industrielles), et par les changements climatiques, sont devenues un problème majeur, auquel le monde entier, à tout stade de développement quel qu'il soit, attache aujourd'hui une très grande importance.

Aujourd'hui, l'eau potable est bien sûr le point essentiel de l'inquiétude des opinions publiques et des dirigeants, mais à long terme il est clair pour tous, que tout rejet polluant, en particulier peu biodégradable ou toxique, est une menace pour les réserves d'eau potable. Il convient donc de réduire au maximum les émissions polluantes au niveau des effluents.

L'objectif de cette étude était de proposer un modèle capable de prévoir et de représenter la courbe de percée lors de l'adsorption du cadmium par une biomasse fongique *«Pleurotus mutilus »* dans une colonne à lit fixe. Ceci en étudiant l'influence des différentes conditions opératoires à savoir : la concentration initiale de l'adsorbat, le débit d'alimentation de l'effluent et la hauteur du lit d'adsorbant.

L'étude expérimentale a montré que la biosorption en continu du cadmium par la biomasse « *Pleurotus mutilus* » est favorisée par les faibles vitesses de circulation, les grandes hauteurs du lit et les faibles concentrations d'adsorbat. De plus, le modèle de Freundlich représente d'une façon satisfaisante l'équilibre d'adsorption en régime statique.

Pour la modélisation, nous avons élaboré un modèle mathématique qui puisse suivre le comportement d'adsorption en lit fixe. Ceci en tenant compte des hypothèses simplificatrices et des phénomènes mis en jeu. Ce modèle a permis de décrire d'une manière satisfaisante les courbes de percée expérimentales.

Concernant les coefficients de transfert de matière, les résultats sont en bon accord avec ceux de la littérature. De plus, les coefficients de transfert de matière globaux estimés expérimentalement sont relativement proches aux valeurs données par les corrélations.

Ensuite, nous avons appliqué quelques solutions analytiques existant dans la littérature qui consistent à décrire les mécanismes intervenant dans le processus d'adsorption. On peut conclure que le modèle correspondant à un mécanisme de diffusion superficielle avec et sans résistance externe dans le film décrit fidèlement les données expérimentales. Par contre, la diffusion poreuse peut être considérée comme négligeable dans notre étude.

Enfin, des modèles préétablis à savoir : le modèle de Wolborska, Yoon et Nelson, Clarck et Bed Depth Service Time (BDST) ont été appliqués aux données expérimentales. Ces modèles décrivent fidèlement les courbes de percée expérimentales. En perspective, tout en estimant avoir atteint notre objectif tracé pour cette étude, il serait intéressant de mener d'autres études sur l'adsorption des polluants sur colonne à lit fixe notamment en ce qui concerne :

Le développement d'autres modèles mathématiques généralisés qui permettent l'estimation des coefficients de transfert de matière dans les milieux poreux en lit fixe.

Toujours dans cette perspective, il serait souhaitable de rechercher d'autres types d'adsorbants capables d'éliminer la pollution des eaux avec une bonne capacité d'adsorption. Il serait aussi intéressant d'aborder l'aspect numérique par la méthode des volumes finis ou d'autres méthodes.

Liste des annexes

Tableau A.1 Résultats expérimentaux relatifs à					
l'isotherme d'équilibre					
$C_0 (mg/L)$	C _e (mg/L)	$q_e (mg/g)$			
30	0,4	9,867			
40	0,6	13,133			
60	0,6	19,800			
70	1,2	22,933			
80	1,5	26,167			
90	2	29,333			
100	2,75	32,417			
150	2,8	49,067			
200	3	65,667			
250	4,1	81,967			
300	5	98,333			
400	6	131,333			
500	8	164,000			
600	8,8	197,067			
700	12	229,333			
800	14	262,000			
900	18	294,000			
1000	37	321,000			
1200	38	387,333			
1400	45	451,667			
1600	50	516,667			
1800	57	581,000			
2000	60	646,667			
2200	70	710,000			
2400	100	766,667			
2600	250	783,333			
2800	451	783,000			
3000	651	783,000			

 $\begin{array}{c} \textbf{Annexe A} \\ \textbf{R} \acute{e} sultats expérimentaux relatifs à l'isotherme d'équilibre et la cinétique d'élimination \\ des ions Cd^{+2} par biomasse «$ *Pleurotus mutilus* $» pour C_0=50 mg/L \end{array}$

Tableau A.2 Résultats expérimentaux relatifs à la cinétique						
d'élimination des ions Cd^{+2} pour C ₀ =50 mg/L						
Temps (min)	C (mg/L)	q (mg/g)				
0	50,00	16,333				
5	27,40	16,484				
10	13,60	16,576				
15	0,00	16,667				
30	0,00	16,667				
45	0,00	16,667				
60	0,00	16,667				
75	0,00	16,667				
90	0,00	16,667				
105	0,00	16,667				
120	0,00	16,667				

Annexe B Résultats expérimentaux relatifs à l'étude de l'influence des conditions opératoires sur l'adsorption des ions Cd⁺² sur colonne à lit fixe

Tableau B.1	Résultats expérimentaux	relatifs à l'influence de l	a concentration initiale
Tompo (mp)	Concentration finale en	Concentration finale en	Concentration finale en
Temps (mn)	mg/l pour $ m C_0=50~mg/l$	mg/l pour $C_0=40~mg/l$	mg/l pour $C_0=20~mg/l$
0	0	0	0
30	0	0	0
60	0	0	0
90	0	0	0
120	0	0	0
150	0	0	0
180	0	0	0
210	0	0	0
240	2,76875	0	0
270	3,17875	0	0
330	4,40 5 70375	0	0
360	8 40875	0	0
300	9 22875	0	0
420	9 265	0	0
450	9,60125	0	0
480	10.70375	0	0
510	11.80875	0	0
540	12,395	0,1375	0
570	15,79125	0,32625	0
600	20,8225	0,34375	0
630	24,48875	1,47875	0
660	24,9425	3,0425	0
690	26,085	5,62125	0
720	28,43	8,07875	0
750	33,455	9,11875	0
780	36,28875	10,76	0
810	38,10875	12,34	0
840	39,87125	13,80875	0
870	42,3725	15,72875	0.25975
900	45,4925	20.43	0,23675
930	40,955	20,43	0,7275
990	49 7225	24,915	0.9575
1020	49 9975	27 42625	1 0725
1050	50	29.71625	1.90625
1080		30.495	3 28125
1110		21 5425	4 08625
1110		31,3423	4,00025
1140		33,07025	0,1/0/0
11/0		34,42	6,5375
1200		35,86375	8,39125
1230		37,25125	9,00875
1260		39,0375	10,13
1290		40	11,96875
1320			13.40125
1350			14 08125
1380			15 08875
1300			10,00070
1410			16,38625
1440			17,66125
1470			19,6825
1500			19,96625
1530			20

Tableau B.2 Résultats expérimentaux relatifs à l'influence du débit d'alimentation					
T	Concentration finale en	Concentration finale en	Concentration finale en		
Temps (mn)	mg/l pour $q_0=5 \text{ ml/mn}$	mg/l pour $q_0=10 \text{ ml/mn}$	mg/l pour $q_0=20 \text{ ml/mn}$		
0	0	0	0		
30	0	0	0		
60	0	0	0		
90	0	0	0		
120	0	0	0		
150	0	0	0		
180	0	0	0		
210	0	0	0		
240	0	0	2,76875		
270	0	0	3,17875		
300	0	0	4,48		
330	0	0	5,79375		
360	0	0	8,65875		
390	0	0	9,22875		
420	0	0	10,39		
450	0	0	12,10125		
480	0	0	12,49375		
510	0	0	13,05875		
540	0	0	16,145		
570	0	0	17,04125		
600	0	0	19,5725		
630	0	0	21,98875		
660	0	0	24,25125		
690	0	0 45125	25,40		
720	0	0,45125	20,43		
730	0	1,01075	36,62625		
810	0	1 245	37 85875		
840	0	1 22875	40.49625		
870	0	7 8475	44 68		
900	0	11 025	45 4925		
930	0	12,7075	46.955		
960	0	14.0475	48,69625		
990	0	20.56375	49.87625		
1020	0	26,81625	50		
1050	0	30.21			
1080	0	33,37625			
1110	0	35,945			
1140	0	37,2125			
1170	0	39,01875			
1200	0	39,21			
1230	0	40,1625			
1260	0	41,9375			
1290	0	42,89			
1320	0	44,63			
1350	0	46,8275			
1380	0	48,5			
1410	0	50			
1440	0	50			
1470	0,0625				
1500	0,61375				
1530	0.91625				
1560	0.8375				
1500	0.96275				
1090	0,00373				

1620	1,895	
1650	3,34875	
1680	4,5225	
1710	6,00875	
1740	8,1825	
1770	8,4225	
1800	10,2775	
1830	12,4175	
1860	14,96125	
1890	15,19	
1920	17,69375	
1950	19,65125	
1980	20,7325	
2010	21,82625	
2040	23,36125	
2070	23,69375	
2100	24,99875	
2130	25,26125	
2160	28,24625	
2190	29,5075	
2220	30,755	
2250	33,68125	
2280	34,72625	
2310	36,0975	
2340	37,37625	
2370	37,49875	
2400	37,5	
2430	37,56375	
2460	38,7075	
2490	38,84875	
2520	39,13625	
2550	40,9925	
2580	43,23625	
2610	44,44875	
2640	45,1325	
2670	47,19125	
2700	47,55375	
2730	50	

Tableau B.3 Résultats expérimentaux relatifs à l'influence de la hauteur du lit				
T	Concentration finale en	Concentration finale en	Concentration finale en	
Temps (mn)	mg/l pour H=10 cm	mg/l pour H=13 cm	mg/l pour H=15 cm	
0	0	0	0	
30	0	0	0	
60	0	0	0	
90	0	0	0	
120	0	0	0	
150	0	0	0	
180	0	0	0	
210	0	0	0	
240	2,76875	0	0	
270	3,17875	0	0	
300	4,48	0	0	
330	8,29375	0	0	
360	9,65875	0	0	
390	11,72875	0	0	
420	12,89	0	0	
450	18,35125	0	0	
480	20,70375	0	0	
510	23,05875	0	0	
540	24,895	0	0	
570	25,79125	0	0	
600	27,0725	0	0	
630	30,73875	0	1,78	
660	31,75125	1,64375	3,9775	
690	33,585	7,5975	7,0125	
720	38,43	10,29	10,535	
750	39,705	11,87	12,2075	
780	41,37625	12,255	15,60125	
810	44,35875	16,24625	19,815	
840	45,62125	19,99625	21,16375	
870	47,18	23,45375	23,90875	
900	47,9925	25,77625	25,705	
930	49,455	30,80625	33,0275	
960	49,94625	34,96	38,2475	
990	50	37,16875	40,96375	
1020		42,5075	45,17625	
1050		45,44	47,39625	
1080		48,19375	48,88375	
1110		49,94625	49,98375	
1140		50	50	

Annexe C

Bilan du transfert de masse intraparticulaire dans le pore d'une particule adsorbante

Le transfert de masse intraparticulaire est dû à la diffusion des molécules à travers les pores, l'équation de conservation macroscopique peut s'exprimer par l'équation suivante :

$$\varepsilon_{p} \frac{\partial C}{\partial t} + (1 - \varepsilon_{p})\rho_{p} \frac{\partial q}{\partial t} = D_{p} \left(\frac{\partial^{2} C}{\partial r^{2}} + \frac{2}{r} \frac{\partial C}{\partial r} \right)$$
(1)

Avec :

r : est la distance radiale par rapport au centre de la particule en (μm) .

 ε_p : est la porosité de la particule.

 $\rho_{\scriptscriptstyle p}$: est la masse volumique de la particule en (Kg/m³).

 D_p : est la diffusivité poreuse en (m²/s).

En supposant un équilibre instantané :
$$\frac{\partial q}{\partial t} = \frac{\partial C}{\partial t} \frac{\partial q}{\partial C}$$
 (2)

Après réarrangement, l'équation (VI.26) devient :

$$\frac{\partial C}{\partial t} = \frac{D_p \left(\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} \right)}{\left[1 + \rho_p \frac{\partial q}{\partial C} \left(\frac{1 - \varepsilon_p}{\varepsilon_p} \right) \right]}$$
(3)

Avec la condition initiale suivante :

$$t = 0, 0 \langle r \langle R \rangle, C = 0 \text{ et } q = 0$$

Où :

R : est le rayon de la particule en (μm) .

La condition de la symétrie de révolution au centre de la particule est exprimée par :

$$r = 0, t \rangle 0 \qquad ; \frac{\partial C}{\partial r} = 0$$

$$\tag{4}$$

Sur la surface externe de la particule, l'équation de continuité s'écrit de la forme :

$$r = R, t \rangle 0; k_f (C - C_s) = D_p \frac{\partial C}{\partial r}$$
 (5)

Annexe D

Résultats obtenus relatifs à la modélisation des courbes de percée expérimentales

Tableau D.1 Résultats simulés relatifs à l'influence de la concentration initiale					
Courbe de percée simulée		Courbe de p	ercée simulée	Courbe de p	ercée simulée
pour C ₀	=20 mg/l	pour $\tilde{C}_0=40 \text{ mg/l}$		pour $\hat{C}_0=50 \text{ mg/l}$	
t (mn)	C/C ₀	t (mn)	C/C ₀	t (mn)	C/C ₀
834,39	0,013	418,34	0,003	336,60	0,055
910,14	0,030	471,53	0,008	349,28	0,064
896,75	0,031	474,90	0,009	382,89	0,090
932,78	0,048	579,50	0,037	410,49	0,116
942,53	0,054	642,79	0,076	455,40	0,168
996,63	0,095	707,82	0,141	467,78	0,185
1057,81	0,164	754,18	0,202	468,31	0,185
1086,75	0,204	771,58	0,228	473,21	0,192
1151,85	0,309	797,41	0,269	488,70	0,214
1162,21	0,327	820,99	0,309	503,51	0,236
1214,45	0,420	842,20	0,345	511,12	0,248
1231,78	0,450	869,37	0,393	552,95	0,316
1263,76	0,507	900,23	0,448	611,40	0,416
1319,38	0,598	936,26	0,511	653,96	0,490
1367,78	0,670	987,35	0,595	659,32	0,499
1393,22	0,704	1005,66	0,623	672,97	0,522
1435,23	0,754	1049,87	0,686	701,85	0,569
1500,97	0,819	1095,98	0,743	770,06	0,669
1589,66	0,883	1113,46	0,762	814,79	0,726
1970,55	0,984	1138,88	0,789	847,32	0,762
2386,00	0,998	1200,15	0,842	882,89	0,797
		1225,83	0,861	943,65	0,847
		1286,04	0,897	1051,63	0,910
		1366,20	0,931	1129,73	0,939
		1566,34	0,976	1246,05	0,966
				1590,92	0,994
				2485,17	1,000

Tableau D.2 Résultats simulés relatifs à l'influence de la hauteur du lit				du lit	
Courbe de percée simulée		Courbe de p	ercée simulée	Courbe de percée simulée	
pour H=10 cm		pour H=13 cm		pour H=15 cm	
t (mn)	C/C ₀	t (mn)	C/C ₀	t (mn)	C/C ₀
216,60	0,055	532,175	0,033	536,12	0,036
229,28	0,064	682,485	0,152	608,77	0,080
262,89	0,090	722,981	0,206	670,98	0,140
333,61	0,166	744,308	0,237	725,06	0,211
354,04	0,193	749,315	0,245	747,54	0,244
382,45	0,235	798,342	0,325	789,84	0,312
397,44	0,258	841,892	0,400	839,34	0,396
462,93	0,367	881,824	0,469	854,97	0,423
490,03	0,414	909,257	0,516	887,04	0,478
517,23	0,461	972,771	0,616	908,47	0,514
538,76	0,498	1033,058	0,699	1004,63	0,661
549,44	0,516	1070,069	0,743	1091,51	0,765
564,97	0,541	1187,400	0,850	1149,66	0,819
611,86	0,615	1289,304	0,909	1281,10	0,904
625,68	0,635	1471,850	0,964	1404,71	0,948
651,99	0,672	2142,906	0,999	1570,43	0,978
733,47	0,769	532,175	0,033	2382,51	1,000
759,32	0,794	682,485	0,152		
797,63	0,828	722,981	0,206		
886,15	0,887	744,308	0,237		
937,46	0,912	749,315	0,245		
1024,85	0,944	798,342	0,325		
1091,32	0,960	841,892	0,400		
1342,22	0,989	881,824	0,469		
1782,91	0,999	909,257	0,516		
		972,771	0,616		
		1033,058	0,699		
		1070,069	0,743		
		1187,400	0,850		
		1289,304	0,909		
		1471,850	0,964		
		2142,906	0,999		

Tableau D.3 Résultats simulés relatifs à l'influence du débit d'alimentation					
Courbe de percée simulée		Courbe de percée simulée		Courbe de percée simulée	
pour $q_0=$	=5 ml/mn l	pour q_0	=10 ml/mn	pour q_0	=20 ml/mn
t (mn)	C/C ₀	t (mn)	C/C ₀	t (mn)	C/C ₀
1201.38	0,001	690	0,009	366,60	0,055
1418,72	0,012	697,2	0,020	379,28	0,064
1462,66	0,018	703,8	0,024	412,89	0,090
1452,59	0,017	714,6	0,025	440,49	0,116
1456.03	0,017	721,2	0,025	489,24	0,173
1549,84	0,038	751,74	0,157	497,78	0,185
1627,63	0,067	810,21	0,221	514,37	0,208
1673,48	0,090	837,92	0,254	537,32	0,242
1720,97	0,120	858,99	0,281	542,39	0,250
1778,53	0,164	955,18	0,411	549,57	0,261
1784,30	0,168	1047,44	0,536	587,15	0,323
1826,31	0,206	1101,47	0,604	597,69	0,341
1870,49	0,248	1156,86	0,668	627,02	0,391
1919.30	0.299	1207.28	0.719	654.83	0.440
1923,55	0,304	1234,72	0,744	681,16	0,485
1969,17	0,354	1277,76	0,780	695,47	0,509
2004,11	0,393	1282,65	0,784	731,85	0,569
2023.33	0.415	1308.11	0.803	800.06	0.669
2042.78	0.437	1361.76	0.839	850,56	0.733
2070.26	0.467	1394.98	0.858	872.63	0.757
2076.25	0.474	1467.66	0.893	926.74	0.810
2099.98	0.500	1600.15	0.937	1048.11	0.894
2104,79	0,505	1783,91	0,970	1081,63	0,910
2161,07	0,565	,	,	1159,73	0,939
2185,92	0,590			1324,92	0,974
2211,34	0,615			1774,51	0,998
2275,19	0,674			,	,
2299,84	0,695				
2334,11	0,722				
2368,43	0,748				
2371,86	0,750				
2371,90	0,750				
2373,69	0,751				
2407,20	0,774				
2411,53	0,777				
2420,48	0,783				
2483,53	0,820				
2576,92	0,865				
2639,73	0,889				
2680,98	0,903				
2850,11	0,944				
2891,98	0,951				
2931,88	0,978				

Annexe E Résultats obtenus relatifs à l'application de la solution analytique relative à un mécanisme de diffusion superficielle sans résistance au transfert externe à la modélisation des courbes de percée

Tableau E.1 Résultats simulés par les solutions				
analytique	analytiques relatifs à l'influence de la concentration			
initiale dans le cas d'une diffusion superficielle sans				
	résistance au transfert externe			
Courb	e de percée simulée pour Co=50 mg/l			
t (mp)	$C_0 = 50 \text{ mg/r}$			
0	0,000			
50	0,000			
00	0,000			
90	0,000			
120	0,000			
190	0,000			
160	0,000			
210	0,000			
240	0,01526			
270	0,03266			
300	0,05244			
330	0,07461			
360	0,09917			
390	0,12611			
420	0,15543			
450	0,18714			
480	0,22124			
510	0,25771			
540	0,29657			
570	0,33782			
600	0,38144			
630	0,42744			
660	0,47582			
690	0,52658			
720	0,57972			
750	0,63523			
780	0,69312			
810	0,75338			
840	0,81602			
870	0,88103			
900	0,94841			
930	1,00000			
960	1,00000			

Tableau E.2 Résultats simulés par les solutions analytiques relatifs à l'influence de la				
hauteur	hauteur du lit dans le cas d'une diffusion superficielle sans résistance au transfert externe			
Courbe de percée simulée		Courbe de percée simulée	Courbe de percée simulée	
pour H=10 cm		pour H=13 cm	pour H=15 cm	
t (mn)	C/C ₀	C/C ₀	C/C ₀	
0	0,000	0,000	0,000	
30	0,000	0,000	0,000	
60	0,000	0,000	0,000	
90	0,000	0,000	0,000	
120	0,000	0,000	0,000	
150	0,000	0,000	0,000	
180	0,000	0,000	0,000	
210	0,000	0,000	0,000	
240	0,02328	0,000	0,000	
270	0,04982	0,000	0,000	
300	0,08043	0,000	0,000	
330	0,11382	0,000	0,000	
360	0,15127	0,000	0,000	
390	0,19236	0,000	0,000	
420	0,23708	0,000	0,000	
450	0,28543	0,000	0,000	
480	0,33741	0,000	0,000	
510	0,39302	0,000	0,000	
540	0,45225	0,000	0,000	
570	0,51510	0,000	0,000	
600	0,58158	0,000	0,000	
630	0,65166	0,000	0,04477	
660	0,72536	0,04804	0,09109	
690	0,80267	0,09756	0,13978	
720	0,88359	0,14946	0,19086	
750	0,96810	0,20374	0,24431	
780	1,00000	0,26039	0,30014	
810	1,00000	0,31942	0,35835	
840	1,00000	0,38082	0,41893	
870	1,00000	0,44460	0,48188	
900		0,51074	0,54720	
930		0,57926	0,61489	
960		0,65014	0,68496	
990		0,72339	0,75739	
1020		0,79901	0,83219	
1050		0,87700	0,90935	
1080		0,95734	0,98888	
1110		1,00000	1,00000	
1140		1,00000	1,00000	
1170		1,00000	1,00000	
1200		1,00000	1,00000	

Tableau E.3 Résultats simulés par les solutions analytiques relatifs à l'influence du débit			
d'alimer	ntation dans le cas d'un	e diffusion superficielle sans ré	ésistance au transfert externe
Courbe de percée simulée		Courbe de percée simulée	Courbe de percée simulée
ро	our q=5 ml/mn	pour q=10 ml/mn	pour q=20 ml/mn
t (mn)	C/C ₀	C/C ₀	C/C ₀
0	0,000	0,000	0,000
30	0,000	0,000	0,000
60	0,000	0,000	0,000
90	0,000	0,000	0,000
120	0,000	0,000	0,000
150	0,000	0,000	0,000
180	0,000	0,000	0,000
210	0,000	0,000	0,02167
240	0,000	0,000	0,03522
270	0,000	0,000	0,05062
300	0,000	0,000	0,06788
330	0,000	0,000	0,08700
360	0,000	0,000	0,10798
390	0,000	0,000	0,13082
420	0,000	0,000	0,15551
450	0,000	0,000	0,18206
480	0,000	0,000	0,21047
510	0,000	0,000	0,24073
540	0,000	0,000	0,27285
570	0,000	0,000	0,30683
600	0,000	0,000	0,34266
630	0,000	0,000	0,38035
660	0,000	0,000	0,41989
690	0,000	0,000	0,46129
720	0,000	0,000	0,50453
750	0,000	0,000	0,54964
780	0,000	0,000	0,59659
810	0,000	0,03886	0,64540
840	0,000	0,07862	0,69606
870	0,000	0,11998	0,74857
900	0,000	0,16296	0,80293
930	0,000	0,20756	0,85914
960	0,000	0,25377	0,91720
990	0,000	0,30159	0,97711
1020	0,000	0,35103	1,00000
1050	0,000	0,40208	1,00000
1080	0,000	0,45474	1,00000
1110	0,000	0,50901	1,00000
1140	0,000	0,56490	
1170	0,000	0,62239	
1200	0,000	0,68150	
1230	0,000	0,74221	
1260	0,000	0,80454	
1290	0,000	0,86847	
1320	0,000	0,93402	
1350	0,000	1,0000	
1380	0,000	1,0000	
1410	0,000	1,0000	
1440	0,000	1,0000	
1470	0,000		
1500	0,000		
1530	0,000		
1560	0,000		

1590	0,000	
1620	0,02539	
1650	0,05083	
1680	0,07679	
1710	0,10328	
1740	0,13030	
1770	0,15785	
1800	0,18592	
1830	0,21453	
1860	0,24366	
1890	0,27332	
1920	0,30351	
1950	0,33422	
1980	0,36547	
2010	0,39724	
2040	0,42954	
2070	0,46237	
2100	0,49572	
2130	0,52961	
2160	0,56402	
2190	0,59896	
2220	0,63443	
2250	0,67042	
2280	0,70694	
2310	0,74399	
2340	0,78157	
2370	0,81968	
2400	0,85831	
2430	0,89747	
2460	0,93716	
2490	0,97737	
2520	1,00000	
2550	1,00000	
2580	1,00000	
2610	1.00000	

Annexe F

Résultats obtenus relatifs à l'application de la solution analytique relative à un mécanisme de diffusion superficielle avec résistance externe au transfert à la modélisation des courbes de percée

Tableau F.1 Résultats simulés par les solutions				
analytiques relatifs à l'influence de la concentration				
initiale dans le cas d'une diffusion superficielle avec				
ré	résistance externe dans le film			
Courbe	le percée simulée pour Co-50 mg/l			
30	0,000			
60	0,000			
90	0,000			
120	0,000			
150	0,000			
180	0,000			
210	0,000			
210	0,000			
240	0.03232			
270	0,03232			
300	0,03203			
330	0,07418			
300	0,03003			
390	0,12000			
420	0,13460			
430	0,10052			
400 510	0.22007			
510	0.20581			
540	0,29301			
570	0,33701			
600	0,30050			
630	0,42054			
660	0,47487			
690	0,52559			
720	0,57868			
750	0,63415			
780	0,69199			
810	0,75221			
840	0,81480			
870	0,87976			
900	0,94709			
930	1,00000			
960	0 1,00000			
990	1,00000			
1020	1,00000			

Table	Tableau F.2 Résultats simulés par les solutions analytiques relatifs à l'influence de la			
hauteur du lit dans le cas d'une diffusion superficielle avec résistance externe dans le film				
Courbe de percée simulée		Courbe de percée simulée	Courbe de percée simulée	
p	our H=10 cm	pour H=13 cm	pour H=15 cm	
t (mn)	C/C ₀	C/C ₀	C/C ₀	
0	0,000	0,000	0,000	
30	0,000	0,000	0,000	
60	0,000	0,000	0,000	
90	0,000	0,000	0,000	
120	0,000	0,000	0,000	
150	0,000	0,000	0,000	
180	0,000	0,000	0,000	
210	0,000	0,000	0,000	
240	0,01678	0,000	0,000	
270	0,03623	0,000	0,000	
300	0,05836	0,000	0,000	
330	0,08316	0,000	0,000	
360	0,11063	0,000	0,000	
390	0,14078	0,000	0,000	
420	0,17360	0,000	0,000	
450	0,20909	0,000	0,000	
480	0,24726	0,000	0,000	
510	0,28809	0,000	0,000	
540	0,33160	0,000	0,000	
570	0,37777	0,000	0,000	
600	0,42661	0,000	0,000	
630	0,47811	0,000	0,04391	
660	0,53228	0,04712	0,09018	
690	0,58912	0,09659	0,13883	
720	0,64861	0,14845	0,18986	
750	0,71077	0,20268	0,24327	
780	0,77559	0,25928	0,29905	
810	0,84306	0,31827	0,35721	
840	0,91319	0,37962	0,41774	
870	0,98598	0,44335	0,48065	
900	1,00000	0,50945	0,54592	
930	1,00000	0,57792	0,61357	
960	1,00000	0,64876	0,68359	
990		0,72196	0,75597	
1020		0,79754	0,83073	
1050		0,87547	0,90784	
1080		0,95577	0,98732	
1110		1,00000	1,00000	
1140		1,00000	1,00000	
1170		1,00000	1,00000	

Tableau F.3 Résultats simulés par les solutions analytiques relatifs à l'influence du débit			
d'alimen	tation dans le cas d'un	e diffusion superficielle avec ré	sistance externe dans le film
Courbe	e de percée simulée	Courbe de percée simulée	Courbe de percée simulée
ро	our q=5 ml/mn	pour q=10 ml/mn	pour q=20 ml/mn
t (mn)	C/C ₀	C/C ₀	C/C ₀
0	0,000	0,000	0,000
30	0,000	0,000	0,000
60	0,000	0,000	0,000
90	0,000	0,000	0,000
120	0,000	0,000	0,000
150	0,000	0,000	0,000
180	0,000	0,000	0,000
210	0,000	0,000	0,000
240	0,000	0,000	0,01326
270	0,000	0,000	0,02863
300	0,000	0,000	0,04611
330	0,000	0,000	0,06571
360	0,000	0,000	0,08742
390	0,000	0,000	0,11125
420	0,000	0,000	0,13719
450	0,000	0,000	0,16524
480	0,000	0,000	0,19540
510	0,000	0,000	0,22768
540	0,000	0,000	0,26206
570	0,000	0,000	0,29856
600	0,000	0,000	0,33717
630	0,000	0,000	0,37789
660	0,000	0,000	0,42072
690	0,000	0,000	0,46565
720	0,000	0,000	0,51270
750	0,000	0,000	0,56185
780	0,000	0,000	0,61311
810	0,000	0,03810	0,66647
840	0,000	0,07780	0,72194
870	0,000	0,11911	0,77952
900	0,000	0,16204	0,83919
930	0,000	0,20658	0,90097
960	0,000	0,25274	0,96485
990	0,000	0,30051	1,00000
1020	0,000	0,34989	1,00000
1050	0,000	0,40089	1,00000
1080	0,000	0,45350	
1110	0,000	0,50772	
1140	0,000	0,56355	
1170	0,000	0,62099	
1200	0,000	0,68005	
1230	0,000	0,74071	
1260	0,000	0,80298	
1290	0,000	0,86687	
1320	0,000	0,93236	
1350	0,000	0,99946	
1380	0,000	1,00000	
1410	0,000	1,00000	
1440	0,000	1,00000	
1470	0,000		
1500	0,000		
1530	0,000		
1560	0,000		

1590	0,000	
1620	0,02489	
1650	0,05030	
1680	0,07624	
1710	0,10271	
1740	0,12970	
1770	0,15723	
1800	0,18528	
1830	0,21386	
1860	0,24296	
1890	0,27260	
1920	0,30276	
1950	0,33346	
1980	0,36468	
2010	0,39642	
2040	0,42870	
2070	0,46150	
2100	0,49484	
2130	0,52870	
2160	0,56308	
2190	0,59800	
2220	0,63344	
2250	0,66941	
2280	0,70591	
2310	0,74294	
2340	0,78049	
2370	0,81857	
2400	0,85718	
2430	0,89632	
2460	0,93598	
2490	0,97617	
2520	1,00000	
2550	1,00000	
2580	1,00000	

Annexe G

Résultats obtenus relatifs à l'application de la solution analytique relative à un mécanisme de diffusion superficielle et poreuse avec résistance externe dans le film à la modélisation des courbes de percée

Tableau (Tableau G.1 Résultats simulés par les solutions			
analytiques	analytiques relatifs à l'influence de la concentration			
initiale dans le cas d'une diffusion superficielle et				
poreuse avec résistance externe dans le film				
Courbe	$\frac{1}{2} \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^$			
t (mn)	C/C			
20	0			
<u> </u>	0			
90	0			
120	0			
150	0			
180	0			
210	0			
240	0.01487			
270	0.03108			
300	0.04894			
330	0.06844			
360	0.08958			
390	0.11237			
420	0,13680			
450	0.16287			
480	0,19058			
510	0,21993			
540	0,25092			
570	0,28356			
600	0,31783			
630	0,35374			
660	0,39129			
690	0,43048			
720	0,47131			
750	0,51377			
780	0,55787			
810	0,60361			
840	0,65098			
870	0,69999			
900	0,75063			
930	0,80291			
960	0,85682			
990	0,91236			
1020	0,96953			
1050	1,0000			
1080	1,0000			
1110	1,0000			

Tableau G.2 Résultats simulés par les solutions analytiques relatifs à l'influence de la					
hauteur du lit dans le cas d'une diffusion superficielle et poreuse avec résistance externe					
		dans le film			
Courbe	e de percée simulée	Courbe de percée simulée	Courbe de percée simulée		
n	our $H-10 \text{ cm}$	pour H=13 cm	pour H-15 cm		
t (mn)					
			0		
30	0	0	0		
60	0	0	0		
90	0	0	0		
120	0	0	0		
150	0	0	0		
130	0	0	0		
210	0	0	0		
240	0.01487	0	0		
270	0.03112	0	0		
300	0.04902	0	0		
330	0,04302	0	0		
360	0,00007	0	0		
390	0.11261	0	0		
420	0.13709	0	0		
450	0.16323	0	0		
480	0 19101	0	0		
510	0.22044	0	0		
540	0.25151	0	0		
570	0.28422	0	0		
600	0.31859	0	0		
630	0.35459	0	0.03744		
660	0.39224	0.03884	0.07578		
690	0 43153	0.07855	0 11575		
720	0 47247	0 11989	0 15737		
750	0.51504	0 16288	0,20064		
780	0.55926	0.20751	0.24554		
810	0.60512	0.25378	0.29208		
840	0.65262	0,30169	0.34027		
870	0.70176	0.35124	0.39009		
900	0,75253	0,40243	0,44156		
930	0,80495	0,45526	0,49466		
960	0,8590	0,50972	0,54939		
990	0,91469	0,56582	0,60577		
1020	0,97202	0,62356	0,66378		
1050	1,0000	0,68293	0,72342		
1080	1,0000	0,74394	0,78470		
1110	1,0000	0,80658	0,84762		
1140		0,87085	0,91217		
1170		0,93676	0,97834		
1200		1,0000	1,0000		
1230		1,0000	1,0000		
1260		1,0000	1,0000		

Tableau G.3 Résultats simulés par les solutions analytiques relatifs à l'influence du débit				
d'alime	ntation dans le cas d'u	dans le film	euse avec résistance externe	
Courbe	e de percée simulée	Courbe de percée simulée	Courbe de percée simulée	
no	a=5 ml/mn	pour $q=10 \text{ ml/mn}$	pour $a=20 \text{ ml/mn}$	
t (mn)	C/C_{2}			
0	0	0		
30	0	0	0	
60	0	0	0	
00	0	0	0	
120	0	0	0	
120	0	0	0	
190	0	0	0	
210	0	0	0	
210	0	0	0.0140	
240	0	0	0,0149	
270	0	0	0,0310	
300	0	0	0,0488	
360	0	0	0,0003	
300	0	0	0,0093	
390	0	0	0,1120	
420	0	0	0,1304	
450	0	0	0,1023	
460	0	0	0,1900	
510	0	0	0,2192	
540	0	0	0,2501	
570	0	0	0,2826	
600	0	0	0,3168	
630	0	0	0,3525	
660	0	0	0,3900	
690	0	0	0,4290	
720	0	0	0,4697	
750	0	0	0,5120	
780	0	0	0,5559	
810	0	0	0,6015	
840	0	0,04987	0,6487	
870	0	0,10006	0,6975	
900	0	0,15188	0,7480	
930	0	0,20533	0,8001	
960	0	0,26041	0,8538	
990	0	0,31711	0,9091	
1020	0	0,37543	0,9661	
1050	0	0,43538	1,0000	
1080	0	0,49696	1,0000	
1110	0	0,56016	1,0000	
1140	0	0,62497		
1170	0	0,69141		
1200	0	0,75947		
1230	0	0,82915		
1260	0	0,90045		
1290	0	0,9/33/		
1320	0	1,0000		
1350	0	1,0000		
1380	0	1,0000		
1410	0			
1440	0			
1470	0			
1500	0			
1530	0			
1560	0			
------	---------	--		
1590	0			
1620	0,03616			
1650	0,07208			
1680	0,10862			
1710	0,14577			
1740	0,18354			
1770	0,22192			
1800	0,26091			
1830	0,30051			
1860	0,34073			
1890	0,38155			
1920	0,42299			
1950	0,46505			
1980	0,50771			
2010	0,55099			
2040	0,59488			
2070	0,63938			
2100	0,68449			
2130	0,73022			
2160	0,77655			
2190	0,82350			
2220	0,87106			
2250	0,91923			
2280	0,96801			
2310	1,00000			
2340	1,00000			
2370	1,00000			

Résultats obtenus relatifs à l'application du modèle de Wolborska aux résultats			
	expérimentaux pour di	fférentes conditions opér	ratoires
Tableau H	.1 Application du modèle	de Wolborska aux résult	ats expérimentaux pour
	différentes c	concentrations initiales	1 1
Temps (mn)	C/C_0 pour $C_0=50$ mg/l	C/C_0 pour $C_0=40$ mg/l	C/C_0 pour $C_0=20$ mg/l
0	0,00647	3,416E-09	1,034E-07
30	0,00843	7,321E-09	1,531E-07
60	0,01098	1,569E-08	2,268E-07
90	0,01429	3,362E-08	3,360E-07
120	0,01861	7,205E-08	4,978E-07
150	0,02424	1,544E-07	7,374E-07
180	0,03156	3,309E-07	1,092E-06
210	0,04109	7,090E-07	1,618E-06
240	0,05351	1,519E-06	2,397E-06
270	0,06967	3,256E-06	3,552E-06
300	0,09072	6,977E-06	5,262E-06
330	0,11813	1,495E-05	7,795E-06
360	0,15382	3,204E-05	1,155E-05
390	0,20029	6,866E-05	1,711E-05
420	0,26081	1,471E-04	2,534E-05
450	0,33960	3,153E-04	3,754E-05
480	0,44220	6,757E-04	5,561E-05
510	0,57580	1,448E-03	8,239E-05
540	0,74977	3,103E-03	1,221E-04
570	0,97629	6,650E-03	1,808E-04
600		1,425E-02	2,679E-04
630		3,054E-02	3,968E-04
660		6,544E-02	5,878E-04
690		1,402E-01	8,708E-04
720		3,005E-01	1,290E-03
750		6,440E-01	1,911E-03
780			2,831E-03
810			4,194E-03
840			6,213E-03
870			9,205E-03
900			1,364E-02
930			2,020E-02
960			2,993E-02
990			4,433E-02
1020			6,568E-02
1050			9,729E-02
1080			1,441E-01
1110			2,135E-01
1140			3,163E-01
1170			4,686E-01
1200			6,942E-01
1230			1 028

Annexe H

Tableau H.2 Application du modèle de Wolborska aux résultats expérimentaux pour différents débits d'alimentation			
Temps (mp)	C/C_{0} pour $a=5$ ml/mn	C/C_{0} pour $q=10$ ml/mp	C/C_{0} pour $q=20$ ml/mp
	$1.6E_{-12}$	3 5E-07	0 001
30	2.5E-12	5,52-07	0,001
50 60	2,5L-12 3 9E-12	8 3E-07	0.001
00	6 1E-12	1 3E-06	0,007
120	0,1L-12 0.5E-12	1,32-00	0,002
120	3,5L-12 1 5E-11	3.0E-06	0,002
180	2 3E-11	1 5E-06	0.002
210	3 6F-11	6 9E-06	0.002
240	5 5E-11	1 1E-05	0.003
270	8 6F-11	1 6E-05	0.004
300	1.3E-10	2.5E-05	0.004
330	2.1E-10	3.8E-05	0.005
360	3.2E-10	5.8E-05	0.006
390	5.0E-10	8.9E-05	0.007
420	7.8E-10	0.000	0.008
450	1,2E-09	0,000	0,009
480	1,9E-09	0,000	0,010
510	2,9E-09	0,000	0,012
540	4,6E-09	0,001	0,014
570	7,1E-09	0,001	0,016
600	1,1E-08	0,002	0,018
630	1,7E-08	0,003	0,021
660	2,7E-08	0,004	0,024
690	4,1E-08	0,006	0,028
720	6,4E-08	0,010	0,033
750	1,0E-07	0,015	0,038
780	1,6E-07	0,023	0,044
810	2,4E-07	0,035	0,051
840	3,7E-07	0,053	0,059
870	5,8E-07	0,082	0,069
900	9,0E-07	0,125	0,079
930	1,4E-06	0,191	0,092
960	2,2E-06	0,293	0,106
990	3,4E-06	0,448	0,123
1020	5,3E-06	0,687	0,143
1050	8,2E-06	1,051	0,165
1080	1,3E-05		0,192
1110	2,0E-05		0,222
1140	3,1E-05		0,257
1170	4,8E-05		0,298
1200	7,4E-05		0,345
1230	0,000		0,400
1260	0,000		0,463
1290	0,000		0,536
1320	0,000		0,621
1350	0,001		0,719
1380	0,001		0,833
1410	0,002		0,965
1440	0,003		
1470	0,004		
1500	0,006		
1530	0,010		
1560	0,015		
1090	0,023		
1020	0,055		
UCOL	0,000		

1680	0,086	
1710	0,134	
1740	0,208	
1770	0,323	
1800	0,503	
1830	0,781	

Tableau H.3 Application du modèle de Wolborska aux résultats expérimentaux pour			
	différe	entes hauteurs du lit	
Temps (mn)	C/C_0 pour H=10 cm	C/C_0 pour H=13 cm	C/C_0 pour H=15 cm
0	0,003	7,0E-11	2,1E-08
30	0,004	1,8E-10	4,1E-08
60	0,006	4,4E-10	8,2E-08
90	0,009	1,1E-09	1,6E-07
120	0,013	2,7E-09	3,2E-07
150	0,018	6,9E-09	6,4E-07
180	0,025	1,7E-08	1,3E-06
210	0,035	4,3E-08	2,5E-06
240	0,050	1,1E-07	5,1E-06
270	0,071	2,7E-07	1,0E-05
300	0,100	6,8E-07	2,0E-05
330	0,141	1,7E-06	4,0E-05
360	0,198	4,2E-06	7,9E-05
390	0,280	1,1E-05	0,000
420	0,395	2,7E-05	0,000
450	0,558	6,7E-05	0,001
480	0,788	0,000	0,001
510		0,000	0,002
540		0,001	0,005
570		0,003	0,010
600		0,007	0,019
630		0,016	0,038
660		0,041	0,076
690		0,103	0,151
720		0,258	0,300
750		0,646	0,596

Tableau I.1 Application du modèle de Clark aux résultats expérimentaux pour			
T a rea a (rea a)	C/C C/C C C C C C C C C C	concentrations initiales C/C mass C 40 mass 1	<u>C/C</u>
Temps (mn)	C/C_0 pour $C_0=50$ mg/l	C/C_0 pour $C_0=40$ mg/l	C/C_0 pour $C_0=20$ mg/1
20	0,002	5,2E-07	
50 60	0,002	1,0E-00 2 1E-06	3.65E-11
90	0,004	4 1E-06	7 86E-11
120	0.009	8 0E-06	1 69E-10
150	0.013	1.6E-05	3.63E-10
180	0.019	3.0E-05	7.80E-10
210	0,027	5,8E-05	1,67E-09
240	0,038	0,000	3,58E-09
270	0,051	0,000	7,66E-09
300	0,069	0,000	1,64E-08
330	0,090	0,001	3,49E-08
360	0,116	0,001	7,41E-08
390	0,145	0,002	1,57E-07
420	0,179	0,004	3,32E-07
450	0,217	0,006	6,98E-07
480	0,258	0,010	1,46E-06
510	0,301	0,016	3,04E-06
540	0,346	0,024	6,29E-06
570	0,393	0,036	1,29E-05
600	0,439	0,053	2,62E-05
630	0,485	0,074	5,27E-05
660	0,530	0,101	0,000
690	0,573	0,135	0,000
720	0,614	0,174	0,000
750	0,653	0,218	0,001
780	0,689	0,267	0,001
810	0,722	0,320	0,002
840	0,753	0,374	0,004
870	0,780	0,430	0,008
900	0,800	0,465	0,013
930	0,820	0,536	0,020
900	0.867	0,309	0.047
1020	0.883	0,630	0.069
1020	0,898	0,000	0.097
1080	0,910	0,757	0.132
1110	0.921	0,789	0.174
1140	0.931	0.818	0.221
1170	0,940	0,843	0,274
1200	0,948	0,865	0,331
1230	0,954	0,885	0,390
1260	0,960	0,901	0,449
1290	0,965	0,916	0,507
1320	0,970	0,928	0,563
1350	0,974	0,939	0,616
1380	0,977	0,948	0,665
1410	0,980	0,956	0,709
1440	0,983	0,963	0,749
1470	0,985	0,968	0,785
1500	0,987	0,973	0,816
1530	0,989	0,977	0,843
1560	0,990	0,981	0,867
1590	0,991	0,984	0,887
1620	0,993	0,986	0,905
1650	0,993	0,988	0,919

Annexe I Résultats obtenus relatifs à l'application du modèle de Clark aux résultats expérimentaux pour différentes conditions opératoires

1680	0,994	0,990	0,932
1710	0,995	0,992	0,943
1740	0,996	0,993	0,952
1770	0,996	0,994	0,960
1800	0,997	0,995	0,966
1830	0,998	0,996	0,972
1860	1,000	0,996	0,976
1890		0,997	0,980
1920		0,997	0,983
1950		0,998	0,986
1980		1,000	0,991

Tableau I.2 Application du modèle de Clark aux résultats expérimentaux pour différente débite d'alimentation			
	C/C noun $a=5$ ml/mm	C/C noun $a = 10 m l/m n$	C/C nour $r=20$ m ¹ /mn
Temps (mn)	C/C_0 pour q=3 mi/mi	C/C_0 pour q=10111/1111	C/C_0 pour q=20 mi/mi
0	5,9E-10	4,8E-11	6,7E-16
30	8,8E-10	1,2E-10	1,9E-15
60	1,3E-09	3,0E-10	5,4E-15
90	2,0E-09	1,3E-10	
120	3,0E-09	1,82-09	
150	4,5E-09	4,4E-09	
210	0,7E-09	27E 09	
210	1,02-00	2,72-00	2 0E 12
240	2.2E.09	1 6E 07	9 5 12
300	2,3L-00	3.8E-07	2 4 E-11
330	5,4E-08	0.3E-07	6 0E-11
360	7.6E-08	2 2E-06	2 0E-10
300	1 1E-07	5.2E-06	5.6E-10
420	1,1E-07	1 2E-05	1 6E-09
450	2.5E-07	2 8E-05	4 5E-09
480	3 7E-07	6 5E-05	1 3E-08
510	5,72 07	0.000	3 6E-08
540	8 3E-07	0,000	1 0E-07
570	1 2E-06	0,000	2 8E-07
600	1,22,00	0.001	7 7E-07
630	2 7E-06	0.003	2 1E-06
660	4 0E-06	0.005	5 7E-06
690	5.8E-06	0.010	1 5E-05
720	8.6E-06	0.018	4 0E-05
750	1.3E-05	0.031	0.000
780	1,8E-05	0.050	0,000
810	2 7E-05	0.077	0.001
840	3.9E-05	0 113	0.001
870	5 6E-05	0 159	0.003
900	8.1E-05	0.214	0.007
930	0.000	0.277	0.014
960	0.000	0.344	0.026
990	0.000	0.414	0.046
1020	0.000	0.484	0.076
1050	0,000	0,551	0,118
1080	0,001	0,614	0,173
1110	0,001	0,672	0,240
1140	0,001	0,723	0,315
1170	0,002	0,768	0,396
1200	0,002	0,807	0,476
1230	0,003	0,840	0,554
1260	0,004	0,868	0,626
1290	0,006	0,892	0,690
1320	0,008	0,911	0,746
1350	0,010	0,928	0,794
1380	0,014	0,941	0,834
1410	0,018	0,952	0,867
1440	0,022	0,961	0,894
1470	0,028	0,968	0,916
1500	0,036	0,974	0,934
1530	0,044	0,979	0,948
1560	0,055	0,983	0,959
1590	0,066	0,986	0,968
1620	0,080	0,989	0,975
1650	0,096	0,991	0,980

1680	0,113	0,993	0,984
1710	0,133	0,994	0,988
1740	0,154	0,995	0,990
1770	0,178	0,996	0,992
1800	0,203	0,997	0,994
1830	0,230	0,997	0,995
1860	0,258	0,998	0,996
1890	0.287	0,998	0.997
1920	0.317	0.999	0,998
1950	0.348	0.999	0,998
1980	0.380	0.999	0,999
2010	0.411	0.999	0.999
2040	0.443	0,999	0,999
2070	0.474	1.000	0.999
2100	0.505	.,	0,999
2130	0.535		1,000
2160	0.565		1,000
2190	0.593		
2220	0.621		
2250	0.647		
2280	0.672		
2310	0,696		
2340	0,719		
2370	0 740		
2400	0,740		
2400	0,700		
2450	0.796		
2400	0,730		
2520	0.828		
2550	0.842		
2580	0.855		
2610	0,867		
2640	0.878		
2670	0.889		
2700	0.898		
2730	0,907		
2760	0.915		
2700	0.923		
2820	0,929		
2850	0,936		
2880	0.941		
2910	0.946		
2940	0.951		
2970	0,956		
3000	0.959		
3030	0.963		
3060	0,966		
3090	0,969		
3120	0,972		
3150	0.975		
3180	0.977		
3210	0,079		
3240	0,079 0 081		
3270	0,001		
3300	0,000		
0000	0,004		

Tableau I.3 Application du modèle de Clark aux résultats expérimentaux pour			
différentes hauteurs du lit			
Temps (mn)	C/C_0 pour H=10 cm	C/C_0 pour H=13 cm	C/C_0 pour H=15 cm
0	0,001	1,1E-10	2,9E-09
30	0,001	3,2E-10	7,4E-09
60	0,002	9,1E-10	1,9E-08
90	0.004	2.6E-09	4.8E-08
120	0.007	7.3E-09	1.2E-07
150	0.011	2.1E-08	3.0E-07
180	0.019	5.8E-08	7.6E-07
210	0.029	1.6E-07	1.9E-06
240	0.045	4.5E-07	4.7E-06
270	0.066	1.2E-06	1 1E-05
300	0.094	3 4F-06	2 7E-05
330	0.128	9 1E-06	6 4F-05
360	0,120	2 4E-05	0.000
390	0.218	6.2E-05	0,000
420	0.272	0.000	0.001
450	0.329	0,000	0.002
480	0,323	0.001	0.002
510	0,449	0.002	0,006
540	0,509	0,002	0.012
570	0,509	0,005	0,012
570 600	0,305	0,009	0,022
600	0,619	0,016	0,037
630	0,668	0,034	0,060
660	0,713	0,058	0,092
690	0,753	0,094	0,135
720	0,789	0,143	0,188
750	0,820	0,203	0,250
/80	0,847	0,275	0,319
810	0,870	0,353	0,391
840	0,891	0,434	0,464
870	0,908	0,513	0,535
900	0,922	0,589	0,602
930	0,935	0,657	0,662
960	0,945	0,718	0,717
990	0,954	0,770	0,764
1020	0,962	0,814	0,805
1050	0,968	0,851	0,840
1080	0,973	0,881	0,869
1110	0,978	0,905	0,894
1140	0,981	0,925	0,914
1170	0,984	0,941	0,930
1200	0,987	0,953	0,943
1230	0,989	0,963	0,954
1260	0,991	0,971	0,963
1290	0,992	0,977	0,970
1320	0,994	0,982	0,976
1350	0,995	0,986	0,981
1380	0,996	0,989	0,985
1410	0,996	0,991	0,988
1440	0,997	0,993	0,990
1470	0,997	0,995	0,992
1500	0,998	0,996	0,994
1530	0.998	0.997	0.995
1560	0.999	0.997	0.996
1590	0.999	0.998	0.997
1620	1,000	0,999	0,998

Annexe J Résultats obtenus relatifs à l'application du modèle de Yoon et Nelson aux résultats expérimentaux pour différentes conditions opératoires

Tableau J.1 Application du modèle de Yoon et Nelson aux résultats expérimentaux				
	pour différentes concentrations initiales			
Temps (mn)	C/C_0 pour $C_0=50$ mg/l	C/C_0 pour $C_0=40$ mg/l	C/C_0 pour $C_0=20$ mg/l	
0	0,012	0,001	1,7E-06	
30	0,015	0,001	2,3E-06	
60	0,018	0,002	3,2E-06	
90	0,022	0,002	4,4E-06	
120	0,027	0,003	6,0E-06	
150	0,033	0,003	8,2E-06	
180	0,040	0,004	1,1E-05	
210	0,048	0,005	1,6E-05	
240	0,059	0,007	2,1E-05	
270	0,071	0,008	2,9E-05	
300	0,086	0,010	4,0E-05	
330	0,103	0,013	5,5E-05	
360	0,124	0,016	7,6E-05	
390	0,147	0,020	0,000	
420	0,175	0,024	0,000	
450	0,206	0,030	0,000	
480	0,242	0,037	0,000	
510	0,281	0,046	0,000	
540	0,324	0,057	0,001	
570	0,370	0,070	0,001	
600	0,419	0,086	0,001	
630	0,469	0,105	0,001	
660	0,520	0,128	0,002	
690	0,571	0,155	0,003	
720	0,620	0,186	0,003	
750	0,667	0,222	0,005	
780	0,710	0,263	0,006	
810	0,750	0,308	0,009	
840	0,787	0,357	0,012	
870	0,819	0,410	0,017	
900	0,847	0,464	0,023	
930	0,872	0,520	0,031	
960	0,893	0,575	0,042	
990	0,911	0,628	0,057	
1020	0,926	0,678	0,077	
1050	0,939	0,724	0,103	
1080	0,950	0,766	0,136	
1110	0,959	0,804	0,178	
1140	0,966	0,837	0,229	
1170	0,972	0,865	0,290	
1200	0,977	0,889	0,359	
1230	0,981	0,909	0,435	
1260	0,985	0,926	0,514	
1290	0,987	0,939	0,593	
1320	0,990	0,951	0,667	
1350	0,992	0,960	0,733	
1380	0,993	0,968	0,791	
1410	0,994	0,974	0,839	
1440	0,995	0,979	0,877	
1470	0,996	0,983	0,908	
1500	0,997	0,987	0,931	
1530	0,998	0,989	0,949	
1560	0,998	0,991	0,962	
1590	0,998	0,993	0,972	
1620	0,999	0,994	0,980	

1650	0,999	0,996	0,985
1680	0,999	0,996	0,989
1710	0,999	0,997	0,992
1740	0,999	0,998	0,994
1770	1,000	0,998	0,996
1800		0,999	0,997
1830		0,999	0,998
1860		0,999	0,998
1890		0,999	0,999
1920		0,999	0,999
1950		1,000	0,999
1980			1,000

Tableau J.2 Application du modèle de Yoon et Nelson aux résultats expérimentaux			
	pour differe	ents debits d'alimentation	
Temps (mn)	C/C_0 pour q=5 ml/mn	C/C_0 pour q=10 ml/mn	C/C_0 pour q=20 ml/mn
0	0,000	0,000	9,1E-07
30	0,000	0,000	1,3E-06
60	0,000	0,000	1,8E-06
90	0,000	0,000	2,5E-06
120	0,000	0,000	3,5E-06
150	0,000	0,001	4,8E-06
180	0,000	0,001	6,7E-06
210	0,000	0,001	9,4E-06
240	0,000	0,001	1,3E-05
270	0,000	0,001	1,8E-05
300	0,000	0,002	2,6E-05
330	0,001	0,002	3,6E-05
360	0,001	0,003	5,0E-05
390	0,001	0,004	6,9E-05
420	0,001	0,005	9,7E-05
450	0.001	0.007	0.000
480	0.001	0.009	0.000
510	0.001	0.011	0,000
540	0.001	0.014	0,000
570	0,001	0.018	0.001
600	0.002	0.023	0,001
630	0.002	0.020	0,001
660	0,002	0,038	0,001
600	0,002	0,030	0,007
720	0,002	0,049	0,002
720	0,003	0,002	0,003
730	0,003	0,079	0,004
760	0,004	0,100	0,005
810	0,004	0,125	0,007
840	0,005	0,100	0,010
870	0,005	0,192	0,014
900	0,006	0,235	0,020
930	0,007	0,283	0,027
960	0,008	0,338	0,037
990	0,009	0,397	0,051
1020	0,010	0,459	0,070
1050	0,011	0,523	0,095
1080	0,013	0,586	0,128
1110	0,014	0,646	0,170
1140	0,016	0,702	0,222
1170	0,018	0,753	0,285
1200	0,021	0,797	0,358
1230	0,023	0,835	0,437
1260	0,026	0,867	0,520
1290	0,030	0,894	0,602
1320	0,034	0,916	0,678
1350	0,038	0,934	0,746
1380	0,043	0,948	0,804
1410	0,049	0,959	0,851
1440	0,055	0,968	0,889
1470	0.062	0.975	0,918
1500	0.069	0.980	0.940
1530	0.078	0.985	0.956
1560	0.087	0.988	0.968
1590	0.098	0,991	0.977
1620	0,110	0,993	0,983

1650	0,123	0,994	0,988
1680	0,137	0,996	0,991
1710	0,153	0,997	0,994
1740	0,170	0,997	0,996
1770	0.188	0.998	0.997
1800	0.208	0.998	0.998
1830	0.230	0.999	0.998
1860	0.253	0.999	0,999
1890	0.277	0.999	0,999
1920	0.303	0.999	0,999
1950	0,330	1,000	1,000
1980	0.359	.,	.,
2010	0.388		
2040	0.418		
2070	0 449		
2100	0.481		
2130	0.512		
2160	0.544		
2100	0.575		
2130	0,605		
2250	0,000		
2280	0,664		
2310	0,691		
2340	0,717		
2370	0.742		
2400	0.765		
2430	0.787		
2460	0.808		
2490	0.826		
2520	0.844		
2550	0.860		
2580	0.874		
2610	0.887		
2640	0.899		
2670	0,910		
2700	0,920		
2730	0.929		
2760	0.937		
2790	0.944		
2820	0,950		
2850	0,956		
2880	0,961		
2910	0,965		
2940	0,969		
2970	0,973		
3000	0,976		
3030	0,979		
3060	0,981		
3090	0,983		
3120	0,985		
3150	0,987		
3180	0,989		
3210	0,990		
3240	0,991		
3270	0,992		
3300	0,993		

Tableau J.3 Application du modèle de Yoon et Nelson aux résultats expérimentaux			
pour différentes hauteurs du lit			
Temps (mn)	C/C_0 pour H=10 cm	C/C_0 pour H=13 cm	C/C_0 pour H=15 cm
0	0,011	0,000	0,000
30	0,014	0,000	0,000
60	0,018	0,000	0,000
90	0,022	0,000	0,000
120	0,028	0,000	0,000
150	0,036	0,001	0,001
180	0,045	0,001	0,001
210	0.057	0.001	0.001
240	0.072	0.001	0.001
270	0.089	0.002	0.002
300	0.111	0.003	0.003
330	0 138	0.003	0.004
360	0 169	0.005	0.005
390	0,206	0,006	0.007
420	0.249	0,009	0,009
450	0.297	0.012	0.012
480	0.350	0.016	0.017
510	0,407	0.022	0.023
540	0,467	0,022	0.023
540	0,407	0,030	0,031
570	0,527	0,041	0,042
600	0,587	0,056	0,057
630	0,645	0,075	0,076
660	0,698	0,099	0,101
690	0,747	0,131	0,134
720	0,790	0,172	0,174
750	0,827	0,221	0,225
780	0,859	0,280	0,284
810	0,886	0,348	0,352
840	0,909	0,422	0,427
870	0,927	0,501	0,505
900	0,942	0,579	0,583
930	0,954	0,653	0,657
960	0,963	0,721	0,724
990	0,971	0,779	0,783
1020	0,977	0,829	0,831
1050	0,982	0,869	0,871
1080	0,986	0,901	0,903
1110	0,989	0,926	0,927
1140	0,991	0,945	0,946
1170	0,993	0,959	0,960
1200	0,995	0,970	0,970
1230	0,996	0,978	0,978
1260	0,997	0,984	0,984
1290	0,997	0,988	0,988
1320	0,998	0,991	0,991
1350	0,998	0,994	0,994
1380	0,999	0.995	0,995
1410	0.999	0.997	0.997
1440	0.999	0.997	0.998
1470	0.999	0.998	0.998
1500	1,000	0.999	0.999
1530	.,	0,999	0,999
1560		0,999	0 999
1590		0.999	0,999
1620		1 000	1 000
1020		1,000	1,000

Tableau K.1 Application du modèle BDST aux résultats expérimentaux pour			
	différentes c	concentrations initiales	
Temps (mn)	C/C_0 pour $C_0=50$ mg/l	C/C_0 pour $C_0=40$ mg/l	C/C ₀ pour C ₀ =20 mg/l
0	0,01119	0,00106	1,359E-06
30	0,01373	0,00133	1,879E-06
60	0,01683	0,00166	2,596E-06
90	0,02063	0,00207	3,587E-06
120	0,02525	0,00259	4,956E-06
150	0,03066	0,00324	0,649E-06
210	0,03771	0,00404	<u> </u>
240	0.05597	0.00630	1,000E 00
270	0.06797	0.00787	2.497E-05
300	0,08231	0,00982	3,450E-05
330	0,09936	0,01224	4,768E-05
360	0,11948	0,01526	6,588E-05
390	0,14303	0,01900	9,103E-05
420	0,17032	0,02364	1,258E-04
450	0,20160	0,02938	1,738E-04
480	0,23697	0,03645	2,401E-04
510	0,27641	0,04516	3,318E-04
540	0,31966	0,05582	4,584E-04
570	0,36625	0,06882	6,334E-04
600	0,41548	0,08457	8,750E-04
630	0,46646	0,10353	1,209E-03
660	0,51816	0,12616	1,669E-03
720	0,50940	0,15266	2,303E-03
720	0,61932	0,18408	
780	0 71108	0.26066	6.060E-03
810	0.75169	0.30590	8.354E-03
840	0,78829	0,35522	1,151E-02
870	0,82078	0,40782	1,583E-02
900	0,84924	0,46263	2,174E-02
930	0,87387	0,51835	2,980E-02
960	0,89498	0,57362	4,071E-02
990	0,91291	0,62711	5,540E-02
1020	0,92802	0,67766	7,496E-02
1050	0,94068	0,72437	1,007E-01
1080	0,95123	0,76664	1,340E-01
1110	0,95998	0,80418	1,762E-01
1140	0,90722	0,03097	2,201E-01
1200	0,97319	0,00310	2,099E-01
1200	0,97009	0,00910	4 381E-01
1260	0 98541	0.92612	5 186E-01
1200	0.98810	0.94002	5.982E-01
1320	0.99031	0.95143	6.729E-01
1350	0,99211	0,96077	7,397E-01
1380	0,99357	0,96837	7,971E-01
1410	0,99477	0,97453	8,444E-01
1440	0,99574	0,97952	8,823E-01
1470	0,99654	0,98355	9,120E-01
1500	0,99718	0,98680	9,347E-01
1530	0,99771	0,98941	9,519E-01
1560	0,99814	0,99151	9,647E-01
1590	0,99848	0,99320	9,742E-01
1620	0,99877	0,99455	9,812E-01
1650	0,99900	0,99564	9,863E-01

Annexe K Résultats obtenus relatifs à l'application du modèle BDST aux résultats expérimentaux pour différentes conditions opératoires

1680	0,99918	0,99651	9,901E-01
1710	0,99934	0,99720	9,928E-01
1740	0,99946	0,99776	9,948E-01
1770	0,99956	0,99821	9,962E-01
1800	0,99964	0,99857	9,973E-01
1830	0,99971	0,99885	9,980E-01
1860	0,99976	0,99908	9,986E-01
1890	0,99981	0,99927	9,990E-01
1920	0,99984	0,99941	9,992E-01
1950	0,99987	0,99953	9,995E-01
1980	0,99990	0,99962	9,996E-01

Tableau K.2 Application du modèle BDST aux résultats expérimentaux pour différents débits d'alimentation			
Tompo (mp)	C/C nour $a=5$ ml/mn	C/C nour $a=10ml/mn$	C/C nour $a=20$ m ¹ /mn
		C/C_0 pour q=10mm/mm	C/C_0 pour q=20 mi/mi
0	9,763E-05	0,00011	0,00912
30	1,112E-04	0,00014	0,01138
60	1,207E-04	0,00018	0,01419
90	1,444E-04	0,00023	0,01769
120	1,645E-04	0,00030	0,02202
150	1,875E-04	0,00040	0,02738
180	2,136E-04	0,00051	0,03401
210	2,434E-04	0,00067	0,04216
240	2,773E-04	0,00087	0,05217
270	3,159E-04	0,00114	0,06440
300	3,600E-04	0,00148	0,07925
330	4,101E-04	0,00192	0,09717
360	4,673E-04	0,00250	0,11861
390	5,323E-04	0,00326	0,14404
420	6,065E-04	0,00424	0,17385
450	6,910E-04	0,00551	0,20831
480	1,812E-U4	0,00716	0,24/5/
510	8,969E-04	0,00931	0,29150
540	1,022E-03	0,01209	0,33970
570	1,164E-03	0,01568	0,39148
600	1,326E-03	0,02032	0,44581
630	1,511E-03	0,02630	0,50147
660	1,721E-03	0,03398	0,55710
690	1,960E-03	0,04379	0,61133
720	2,233E-03	0,05628	0,66293
750	2,543E-03	0,07206	0,71093
780	2,897E-03	0,09183	0,75462
810	3,300E-03	0,11634	0,79362
840	3,758E-03	0,14635	0,82784
870	4,279E-03	0,18250	0,85740
900	4,873E-03	0,22522	0,88261
930	5,548E-03	0,27458	0,90386
960	6,317E-03	0,33015	0,92161
990	7,191E-03	0,39090	0,93631
1020	8,185E-03	0,45524	0,94841
1050	9,316E-03	0,52111	0,95831
1080	1,060E-02	0,58625	0,96638
1110	1,206E-02	0,64851	0,97293
1140	1,372E-02	0,70609	0,97823
1170	1,560E-02	0,75777	0,98252
1200	1,774E-02	0,80289	0,98597
1230	2,016E-02	0,84137	0,98875
1260	2,291E-02	0,87352	0,99098
1290	2,602E-02	0,89993	0,99277
1320	2,954E-02	0,92132	0,99421
1350	3,351E-02	0,93846	0,99537
1380	3,801E-02	0,95205	0,99629
1410	4,308E-02	0,96276	0,99703
1440	4,879E-02	0,97115	0,99763
1470	5,522E-02	0,97770	0,99810
1500	6,243E-02	0,98278	0,99848
1530	7,052E-02	0,98672	0,99878
1560	7,957E-02	0,98977	0,99903
1590	8,967E-02	0,99213	0,99922
1620	1,009E-01	0,99394	0,99938
1650	1,134E-01	0,99534	0,99950

1680	1,272E-01	0,99642	0,99960
1710	1,424E-01	0,99725	0,99968
1740	1,591E-01	0,99788	0,99975
1770	1,773E-01	0,99837	0,99980
1800	1,972E-01	0,99875	0,99984
1830	2.186E-01	0.99904	0.99987
1860	2.417E-01	0.99926	0.99990
1890	2.665E-01	0.99943	0,99992
1920	2.927E-01	0.99957	0.99993
1950	3.205E-01	0.99967	0.99995
1980	3.495E-01	0.99974	0.99996
2010	3.797E-01	0.99980	0.99997
2040	4,109E-01	0,99985	0.99997
2070	4.428E-01	0.99988	0.99998
2100	4.752E-01		0,99998
2130	5 078E-01		0,99999
2160	5 404F-01		0,00000
2190	5 726E-01		
2220	6.042E-01		
2250	6.349E-01		
2280	6 646E-01		
2310	6 930E-01		
2340	7 201E-01		
2370	7 456E-01		
2400	7,400E 01		
2430	7,000E 01		
2460	8 126E-01		
2400	8 316E-01		
2520	8 491E-01		
2550	8 651E-01		
2580	8 796E-01		
2610	8 928E-01		
2640	9.046E-01		
2670	9 153E-01		
2700	9 249E-01		
2730	9 335E-01		
2760	9.411E-01		
2700	9.480E-01		
2820	9 540E-01		
2850	9 594E-01		
2880	9.642E-01		
2000	9.685E-01		
2940	9 722E-01		
2970	9 755E-01		
3000	9 785E-01		
3030	9,705E-01		
3060	9,810E-01		
3000	9 853E-01		
3120	9,055E-01		
3150	0,071E-01 0,887E-01		
3180			
3210	9 912 -01		
3240	9,912L-01 9,922E-01		
3240	0,020E-01		
3210	0,002L-01		
3300	3,3410-01	1	1

Tableau K.3 Application du modèle BDST aux résultats expérimentaux pour			
différentes hauteurs du lit			
Temps (mn)	C/C_0 pour H=10 cm	C/C_0 pour H=13 cm	C/C_0 pour H=15 cm
0	0,01004	8,578E-05	8,502E-05
30	0,01281	0,00012	0,000118
60	0,01632	0,00016	0,000163
90	0,02078	0,00023	0,000226
120	0,02642	0,00031	0,000313
150	0,03354	0,00043	0,000433
180	0,04250	0,00059	0,000599
210	0,05371	0,00082	0,000829
240	0,06768	0,00113	0,001148
270	0,08495	0,00156	0,001589
300	0,10613	0,00215	0,002199
330	0,13183	0,00297	0,003042
360	0,16262	0,00410	0,004208
390	0,19895	0,00565	0,005817
420	0,24106	0,00778	0,008038
450	0,28888	0,01071	0,011096
480	0,34190	0,01472	0,015299
510	0,39919	0,02021	0,021061
540	0,45938	0,02769	0,028929
570	0,52077	0,03783	0,039618
600	0,58155	0,05148	0,054036
630	0,63995	0,06971	0,073301
660	0,69448	0,09375	0,098718
690	0,74405	0,12497	0,131695
720	0,78804	0,16470	0,173567
750	0,82623	0,21397	0,225298
780	0,85877	0,27315	0,287091
810	0,88606	0,34160	0,358000
840	0,90864	0,41735	0,435719
870	0,92711	0,49721	0,516730
900	0,94209	0,57721	0,596871
930	0,95414	0,65336	0,672154
960	0,96378	0,72238	0,739514
990	0,97145	0,78225	0,797209
1020	0,97754	0,83220	0,844808
1050	0,98235	0,87256	0,882875
1080	0,98614	0,90433	0,912571
1110	0,98913	0,92883	0,935290
1140	0,99148	0,94742	0,952413
1170	0,99333	0,96135	0,965174
1200	0,99478	0,97170	0,974604
1230	0,99591	0,97934	0,981530
1260	0,99680	0,98495	0,986593
1290	0,99750	0,98905	0,990281
1320	0,99804	0,99205	0,992963
1350	0,99847	0,99423	0,994908
1380	0,99880	0,99581	0,996317
1410	0,99906	0,99696	0,997338
1440	0,99927	0,99780	0,998076
1470	0,99943	0,99840	0,998610
1500	0,99955	0,99884	0,998996
1530	0,99965	0,99916	0,999275
1560	0,99973	0,99939	0,999476
1590	0,99979	0,99956	0,999622
1620	0,99983	0,99968	0,999727

الموضوع : تمثيل ظاهرة إمتزاز المعادن الثقيلة بواسطة الكتلة الحيوية « Pleurotus Mutilus » داخل عمود مثبت.

ملخص

تهدف در استنا إلى إنشاء نموذج رياضي لتمثيل حركية الامتزاز أثناء إز الة شوارد الكادميوم باستمرار بواسطة الكتلة الحيوية « Pleurotus Mutilus » في عمود محمل بكتلة حيوية ثابتة. لتطوير النموذج قمنا بتشكيل نموذج رياضي لمتابعة كيفية تثبيت شوارد الكادميوم على الكتلة الحيوية مع تغيير العوامل التجريبية المتمثلة في التركيز الأولي ، إرتفاع عمود الكتلة الحيوية و سرعة السائل المراد إز الة شوارده. بعد ذلك قمنا بتطبيق عدة حلول تحليلية مقترحة في المراجع لتمثيل البيانات التجريبية المتمثلة في التركيز الأولي ، إرتفاع مختلف المظاهر التجريبية لظاهرة انتشار شوارد الكادميوم التي تدخل في عملية الامتزاز. أخيرا ، تم تطبيق بعض النماذج الرياضية الموجودة في المراجع مثل عملية الامتزاز. أخيرا ، تم تطبيق بعض النماذج الرياضية الموجودة في المراجع مثل : يون و نيلسون ، دوبروسكا، كلارك و

كلمات سرية : الامتزاز، نموذج رياضي، عمود مثبت، الحركية.

Titre : Modélisation de l'adsorption des métaux lourds sur la biomasse « *Pleurotus Mutilus* » en mode dynamique.

Résumé

L'objectif principal de notre étude est de modéliser la cinétique d'adsorption en continu lors de l'élimination des ions Cd^{+2} par une biomasse « *Pleurotus Mutilus* » dans une colonne à lit fixe. Nous avons établi un modèle mathématique permettant de représenter le fonctionnement du lit fixe en faisant varier les paramètres opératoires à savoir : la concentration initiale, la hauteur du lit fixe et le débit d'alimentation de la solution à traiter.

De plus, quelques solutions analytiques proposées dans la littérature ont été utilisées dans la modélisation des courbes de percée expérimentales. Elles permettent de prendre en compte les mécanismes de diffusion intervenant dans le processus d'adsorption.

Enfin, quelques modèles mathématiques préétablis à savoir : le modèle de Yoon et Nelson, Wolborska, Clarck et Bed Depth Service Time (BDST) ont été utilisés pour modéliser les données expérimentales.

Mots clés : Adsorption, modélisation, colonne à lit fixe, cinétique.

Title : Modeling of dynamic adsorption of heavy metals on biomass « Pleurotus Mutilus ».

Abstract

The principal objective of our study is to modelise the continuous flow adsorption kinetics during the removal of Cd^{+2} ions by a biomass « *Pleurotus Mutilus* » in a fixed bed column. We have developed a mathematical model to describe the breakthrough curves in a fixed bed with varying experimental parameters that are : the inlet feed concentration, the depth of the fixed bed and the volumetric flow rate of effluent solution.

In addition, some analytical solutions proposed in the literature were applied to modelling experimental breakthrough curves. They may be describing the different diffusion mechanisms involved in adsorption process.

Finally, pre-established mathematical models namely : Yoon and Nelson model, Wolborska, Clarck and Bed Depth Service Time model (BDST), have been tested to describe the experimental data.

Key words : Adsorption, modeling, fixed bed column, kinetics.