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Abstract: 

This memory describes a fuzzy type-1 and type-2 position control scheme designed for manipulator 

robot. The first is the fuzzy logic type-1 and the second is the fuzzy logic type-2. We focus our interest 

to study the performances of fuzzy logic controller type-1, and then the application of this control to the 

manipulator robot PUMA560 3DOF, the second controller type-2 will be studied and will be applied to 

the manipulator robot PUMA560 3DOF.Finally we present a comparative study between these 

strategies; the computer simulation results on three links robot manipulators, in two cases ideal and 

noisy system with two trajectory for each one (Circle trajectory, LEAHY trajectory). 

Key word: Manipulator robot PUMA560, fuzzy logic controller type-1, fuzzy logic controller type-2. 

 

Résumé:  

Ce mémoire consiste à présenter deux types  de commande floue d’un robot manipulateur  

PUMA, le premier est la commande floue type-1, et le deuxième est la commande floue type-2. Nous 

intéressons à l’évaluation des performances de la commande floue type-1, puis l’application de cette 

technique au robot manipulateur PUMA 3DDL, la deuxième technique de commande floue type-2 est 

appliquée au robot manipulateur PUMA 3DDL, enfin nous présentons une étude comparative des deux 

stratégies de commande, deux cas idéal et avec bruit avec deux trajectoires pour chaque cas (trajectoire 

cercle, trajectoire LEAHY).  

Mot clé : robot manipulateur PUMA560, Régulateur flou Type-1, Régulateur flou Type-2.  
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General Introduction 
 
 
 
 

The use of industrial robots became identifiable as a unique device in the 1960s. Since then, their 

field of application evolved from rather simple tasks like welding and painting to those requiring 

more precision, such as assembly tasks. 

 

Control theory provides tools for designing and evaluating algorithms to realize desired motions 

or force application. The methods of linear control are not well suited for the control problem of 

robotic arms. This is due to the fact that robotic arms constantly move among widely separated 

regions of their workspace such that no linearization valid for all regions can be found. On the 

other hand, nonlinear control methods used in robot arms’ applications should however face the 

major difficulty resulting from the dynamic modeling of robots, the indetermination of their 

parameters [3]. Preferred methods are those which reduce or eliminate the undesired effects 

generated by this indetermination. Another difficulty in robot arm control is the coupling effects 

of the coriolis and centrifugial forces that might be canceled in a single axis mode operation 

where the joints are activated sequentially. Existing methods of nonlinear control are also used in 

robotics in order to eliminate the above mentioned coupling effect like the Individual Joint PID 

control method [3] and the PD-plus-gravity control method [3]. 

 

Among the recent control methods, fuzzy control methods grab nowadays the attention of many 

researchers. In fact, these methods do not require the knowledge of the dynamic model of the 

controlled system. This feature becomes one of the major importances when dealing with 

complex nonlinear systems. Moreover, the dynamic modeling of robot arms shows a dependency 

on their mechanical parameters, subject to lifetime modifications (friction factors affected by the 

abuse of joints), and on their dynamical parameters that vary with the performed task (centers of 

gravity of the links affected by tool’s replacements). These considerations also give advantage to 

fuzzy control methods on other nonlinear methods as a result of their robustness towards 

perturbations affecting the system. 
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The first fuzzy logic controller was introduced by Mamdani in 1974 [7]. It is equivalent to two-

input fuzzy PI controllers, where error and change of error were used as the inputs of the 

inference system. Mamdani’s work also introduced the most common and robust fuzzy reasoning 

method, called Zadeh–Mamdani min– max gravity reasoning. Different comparative studies, like 

[5], prove that Zadeh– Mamdani min–max gravity scheme is the best reasoning scheme if the 

nonlinearity variation is a main concern. 

 

Although control methods, especially nonlinear control methods, had greatly evolved, the 

proportional-integral-derivative (PID) control method is still widely used in all domains [2]. The 

success of the PID control is attributed to its simplicity (in terms of design and tuning) and to its 

good performance in a wide range of operating conditions. However, the neccesity of retuning 

the PID controllers characterizes their major disadvantage when the controlled plant is subject to 

disturbances or when it presents complexities (non-linearities). 

 

The main objective of this memory is to study and analyse the type-1 and type-2 fuzzy logic 

controller structures to the trajectory tracking control of a robotic arm containing high 

nonlinearities. Performance evaluation of the closed loop system will focus on the ability of the 

fuzzy controller's structures, in terms of tracking precision, to control the arm. 

 

This memory is divided into 4 chapters. Chapter 1 introduces the three degrees of freedom robot 

arm PUMA560 and its dynamic model [1]. In chapter 2 the main ideas underlying type-1 fuzzy 

logic, and the application of this powerful computational theory to the problems of modeling, 

control. We discuss in some detail type-1 fuzzy set theory, fuzzy reasoning, and fuzzy inference 

systems. At the end, we also illustrate these concepts with PUMA560 3DOF that show the 

applicability of type-1 fuzzy logic. The importance of type-1 fuzzy logic as a basis for 

developing intelligent systems has been recognized in several areas of application. Chapter 3 the 

basic concepts, notation, and theory of type-2 fuzzy logic, which is a generalization of type-1 

fuzzy logic, type-2 fuzzy logic enables the management of uncertainty in a more complete way, 

this is due to the fact that in type-2 membership functions we also consider that there is 

uncertainty in the form of the functions, unlike type-1 membership functions in which the 

functions are considered to be fixed and not uncertain. We describe type-2 fuzzy set theory, type-

2 fuzzy reasoning, and type-2 fuzzy systems. At the end chapter 4 provides a comparative 

evaluation of the type-1 and type-2 fuzzy logic controller by using simulation result from chapter 

2 and chapter3.   
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Chapter 1 
 
 
Modeling rigid manipulator robot 
 
 
 
 
1.1.1 Introduction 

 

The control and simulation of robots requires the development of different mathematical models. 

Several levels of modeling –geometric, kinematic and dynamic- are needed depending on the 

objectives, the constraints of the task and the desired performance. 

 

Obtaining these models is not an easy task. The difficulty varies according to the complexity of 

the kinematics of the mechanical structure and its degrees of freedom. For that we take the 

dynamic model of PUMA560 from [1].  

 

In this memory we interested by fuzzy control of robot then this chapter show some 

mathematical tools witch using for modeling robot, the aim of modeling to simplifies and 

estimate the values of the geometric and dynamic parameters of the robot. Besides to find a 

control law on robot controller with reduced number of operations. 

 

1.1.2 Description of the geometry of serial robots [4] 

 

A serial robot is composed of a sequence of n+1 links and n joints. The links are assumed to be 

perfectly rigid. The joints are either revolute or prismatic and are assumed to be ideal (no 

backlash, no elasticity). 

  

The links are numbered such that link 0 constitutes the base of the robot and link n is the 

terminal link (Figure 1.1). Joint j connects link j to link j – 1 and its variable is denoted jq . In 

order to define the relationship between the location of links, we assign a frame jR attached to 

each link j, such that: 

- The jz axis is along the axis of joint j. 
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- The jx  axis is aligned with the common normal between jz  and 1jz . If jz and 1jz  are parallel 

or collinear, the choice of jx is not unique. The intersection of jx and jz defines the origin jO . In 

the case of intersecting joint axes, the origin is at the point of intersection of the joint axes. 

- The jy  axis is formed by the right-hand rule to complete the coordinate system  jjj zyx ,, . 

The transformation matrix from frame 1jR  to frame jR is expressed as a function of the 

following four geometric parameters (Figure 1.2): 

• j : the angle between 1jz and jz about 1jx . 

• jd : the distance between 1jz  and jz  along 1jx . 

• j : the angle between 1jx  and jx  about jz . 

• jr : the distance between 1jx  and jx  along jz . 

 

 

 

 

 

 

 

 

Figure 1.1. Robot with simple open structure. 
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The variable of joint j, defining the relative orientation or position between links j - 1 and j, is 

either j or jr , depending on whether the joint is revolute or prismatic respectively. This is 

defined by the relation: 

jjjjj rq                                                                               (1.1) 

with:  

 0j if joint j is revolute. 

 1j if joint j is prismatic. 

 jj   1 . 

 

The transformation matrix defining frame jR  relative to frame 1jR  is given as (Figure 1.2): 

 

       jjjjj
j rzTranszRotdxTransxRotT ,,,,1   

         

























1000

0

jjjjjjj

jjjjjjj

jjj

CrCCSSS

SrSCCSC

dSC







                                                   (1.2) 

 

 

NOTES: 

 The frame 0R  is chosen to be aligned with frame 1R when 01 q . This means that 0z is 

aligned with 1z , whereas the origin 0O  is coincident with the origin 1O  if joint 1 is 

Figure 1.2. The geometric parameters in the case of a simple open structure. 
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revolute, and 0x  is parallel to 1x  if joint 1 is prismatic. This choice makes 01  , 01 d  

and 01 q . 

 In a similar way, the choice of the nx axis to be aligned with 1_nx  when 0nq  

makes 0nq . 

 If joint j is prismatic, the jz  axis must be taken to be parallel to the joint axis but can 

have any position in space. So, we place it in such a way that 0jd or 01 jd . 

 If jz  is parallel to 1jz , we place jx  in such a way that 0jr  or 01 jr . 

 

In this memory we interesting by PUMA560 robot then we show example of geometric 

description for this robot. 

 

Example1.1:  Geometric description of the PUMA560 [1] 

 

 

 

Figure 1.3: The Puma 560 is shown along with the DH 
parameters and body frames for each link in the chain. 
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This example demonstrates the 3D chain kinematics on a classic robot manipulator, the PUMA 

560, shown in Figure 1.3. The procedure is to determine appropriate body frames to represent 

each of the links. The first three links allow the hand (called an end-effector) to make large 

movements, and the last three enable the hand to achieve a desired orientation. There are six 

degrees of freedom, each of which arises from a revolute joint. The body frames are shown in 

Figure 1.3, and the corresponding DH parameters are given in Table 1.1. Each transformation 

matrix iT is a function of i . The other parameters are fixed for this example. Only 

61 ,   are allowed to vary. The parameters from Table 1.1 may be substituted into the 

homogeneous transformation matrices to obtain: 

 

                                                     (1.3) 

                                                  (1.4) 

                                                 (1.5) 

Table 1.1: The DH parameters. 
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                                              (1.6) 

                                                   (1.7) 

                                                    (1.8) 

Note that 3a and 3d are negative in this example (they are signed displacements, not distances). 

 

1.2.1 Dynamic modeling of serial robots 

 

The dynamics of robot manipulators whereas the kinematic equations describe the motion of the 

robot without consideration of the forces and torques producing the motion, the dynamic 

equations explicitly describe the relationship between force and motion [6]. The equations of 

motion are important to consider in the design of robots, in simulation and animation of robot 

motion, and in the design of control algorithms. We introduce the so-called Euler-Lagrange 

equations. 

 

In order to determine the Euler-Lagrange equations in a specific situation, one has to form the 

Lagrangian of the system, which is the deference between the kinetic energy and the potential 

energy. 

 

1.2.2 The EULER-LAGRANGE equations 

 

In general, for any system of the type considered, an application of the Euler- Lagrange [6] 

equations leads to a system of n coupled, second order nonlinear ordinary deferential equations 

of the form:  
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ni
q

L

q

L

dt

d
i

ii

,,1 











                                                 (1.9) 

 

The order, n, of the system is determined by the number of so-called gener- alized coordinates 

that are required to describe the evolution of the system. We shall see that the n Denavit-

Hartenberg joint variables serve as a set of generalized coordinates for an n-link rigid robot. 

 

1.2.3 Kinetic Energy for an n-Link Robot 

 

Now consider a manipulator consisting of n links. The linear and angular velocities of any point 

on any link can be expressed in terms of the Jacobian matrix and the derivative of the joint 

variables. Since in our case the joint variables are indeed the generalized coordinates, it follows 

that, for appropriate Jacobian matrices 
ivJ  and 

iwJ  , we have that[6]: 

 

                                                             qqJwqqJv
ii wivi   ,                                           (1.10)  

                                                         wwvmvK TT 
2

1

2

1
                                                    (1.11) 

                                                          TRIR                                                                         (1.12) 

 

Where R is the orientation transformation between the body attached frame and the inertial 

frame. 

 

Now suppose the mass of link i is im  and that the inertia matrix of link i, evaluated around a 

coordinate frame parallel to frame i but whose origin is at the center of mass, equals iI . Then 

from (1.15) it follows that the overall kinetic energy of the manipulator equals   

 

                             qqJqRIqRqJqJqJmqK
n

i
w

T

iii

T

wv
T
vi

T

iiii
 




12

1
                         (1.13) 

 

In other words, the kinetic energy of the manipulator is of the form: 

 

                                                       qqDqK T 
2

1
                                                                 (1.14) 
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Where  qD is a symmetric positive definite matrix that is in general configuration dependent. 

The matrix D is called the inertia matrix. 

 

1.2.4 Potential Energy for an n-Link Robot 

 

Now consider the potential energy term. In the case of rigid dynamics, the only source of 

potential energy is gravity. The potential energy of the i-th link can be computed by assuming 

that the mass of the entire object is concentrated at its center of mass and is given by [6]: 

 

                                                  ici
T

i mrgP                                                                       (1.15) 

 

Where g is vector giving the direction of gravity in the inertial frame and the vector cir gives the 

coordinates of the center of mass of link i. The total potential energy of the n-link robot is 

therefore:     

 

                                                



n

i
ici

T
n

i
i mrgPP

11

                                                            (1.16) 

 

1.3.1 PUMA 560 robot Dynamics:  

 

The dynamic model used for PUMA560 it is[1]: 

 

                         )(]).[(].).[().( 2 qGqqCqqqBqqM                                             (1.17) 

Where, 

)(qB : nxn(n-1)/2 matrix of Coriolis torques 

)(qC : nxn matrix of Centrifugal torques 

][ qq  : n(n-1)/2x1 vector of joint velocity products given by:      

          T
nnnnn qqqqqqqqqqqqqq ].,.,...,.,.,.,...,.,.[ 12423213121


  

][ 2q : nx1 vector given by: ],....,,[
22

2

2

1 nqqq   

 

The  position  of  zero  joint  angles  and  coordinate  frame  attachments  to  the  PUMA  arm  

are  shown  in  Figure 1.3  above.  The  modified  Denavit-Hartenberg  parameters,  assigned  

according  to  the  method  presented  in  [3] are  listed  in  Table 1.2. 
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i 
1i  

 reesdeg  

i  1ia  

 meters  

id  

 meters  

1 0 1q  0 0 

2 -90 2q  0 0.2435 

3 0 3q  0.4318 -0.0934 

Table 1.2 Modified  Denavit  - Hartenberg  Parameters 

 

The  mass  of  links 2 through 6  of  the  PUMA  arm  are  reported  in  Table 1.3,  the mass of  

link 1  in  not  included  because  that link was  not  removed  from  the base.  Separately  

measured  mass  and  inertia  terms  are  not  required  for  link  one  because that  link rotates 

only  about  its  own  2  axis. 

 

Link Mass 

Link2 17.40 

Link3 4.80 

                                                          Table 1.3 Link Mass[1] 

 

The positions of the centers of gravity are reported in Table 1.4 the dimensions zyx randrr ,  refer  

to  the  x,  y  and  z  coordinate of  the  center  of  gravity  in  the  coordinate  frame  attached  to 

the  link. 

 

Link xr  yr  
zr  

Link 2 0.068 0.006 -0.016 

Link 3 0 -0.070 0.014 

Table 1.4 Centers of Gravity. 

 

 

 

 

 

 

Table 1.5 Diagonal Terms of the Inertia Dynamics and Effective Motor Inertia. [1] 

 

Link 
xxI  yyI  zzI  motorI  

Link 1 - - 0.35 1.14  27.0  

Link 2  %3130.0    %5524.0    %3539.0    54.071.4   

Link 3 0.066 0.0125 0.086  09.083.0   
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                                             Table 1.6 Motor  and  Drive Parameter[1] 

 

1.3.2 Using PUMA Robot as 3-DOF Robot: 

 

Recall that only three links of PUMA robot are used in this thesis, the configuration space 

equation same (1.17), 

 

With, 

Matrix A is a symmetric 6x6 matrix: 

                     



















333231

232221

131211

)(

aaa

aaa

aaa

qA                                                  (1.18) 

Where, 

 23.2..2

2.23.23.2.

5

1110731111

SCI

SCISCISSICCIIIa m




 

2.23.2. 98412 CICISIa   

23.813 CIa   

 3..2 562222 SIIIIa m   

6523 3. ISIa   

6333 IIa m   

1221 aa  , 1331 aa   and 2332 aa   

 

While matrix B is: 



















0000000

000000

0000

)( 223

123113112

b

bbb

qB                                                (1.19) 

 

 

 

 Joint 1 Joint 2 Joint 3 

Gear Ration 62.61 107.36 53.69 

Maximum Torque(N-m) 97.6 180.4 89.4 

Break Away Torque (N-m) 6.3 5.5 2.6 
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Where, 

)2.21.()23.21.(]23.223.2..[2 1110753112 SSISSISCICISCIb   

)23.21.(]23.23.2..[2 1075113 SSISCICCIb   

]23..[2 8123 SIb   

Matrix C is: 

                                  



















0

0

0

)(

3231

2321

1312

cc

cc

cc

qC                                                          (1.20) 

Where, 

 

2.23.2. 98412 SISICIc   

23..5.0 812313 SIbc   

)2.21.(.5.0)23.21.(.5.023.223.2..5.0 111075311221 SSISSISCICISCIbc   

3..5.0 522323 CIbc   

)23.21.(.5.023.23.2..5.0 107511331 SSISCICCIbc   

3.52332 CIcc   

 

And matrix G is: 

                                                      



















3

2

0

)(

g

gqg                                                                         (1.21) 

2.23.2. 3212 SgSgCgg   

23.23 Sgg   

 

Where, 

 

Si = sin(θi), Ci = cos(θi), Cij = cos(θi+ θj), Sijk = sin(θi +θj +θk),  

CCi = cos(θi).cos(θi) and  Csi = cos(θi).sin(θi) 

 

Tables 1.7 and 1.8 contain the computed values for the constants appearing in the equations of 

forces of motion, 
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Table 1.7 Inertiel Constants ( 2.mkg )[1] 

 

5.02.371 g  20.044.82 g  

50.002.13 g   

Table 1.8 Gravitational Constants (N.m) [1] 

 

The three degree of freedom PUMA robot has the same configuration space equation general 

form as its 6-DOF convenient. In this type, the last three joints are blocked so they keep their 

initial states while the robot is moving. Using the configuration equation of the robot, and by 

setting the last joints as zero always, we can define a general equation that allows us to use 

PUMA robot as a 3-DOF robot.  

 

To find the kinematics of the 3-DOF robot, a new D-H coordinate system is established, and a 

homogenous transformation matrix relating the rd3  coordinate frame to the first coordinate 

frame is developed. 

 

 Tqqqq 321 ......   , 

 

   Tqqqqqqqq 0......0...0...0...... 323121
   , 

 

   Tqqqq
2

3

2

2

2

1
2 ......   , 

 

 

05.043.11 I  07.075.12 I  

05.038.13 I  02.069.04 I  

031.0372.05 I  016.0333.06 I  

029.0298.07 I  014.0134.08 I  

012.00238.09 I  0022.00213.010 I  

0070.00142.011 I  27.014.11 mI  

54.071.42 mI  093.0827.03 mI  
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The angular acceleration is found as to be: 

 

  )().().().( 21 qgqqCqqqBqAq     

 

Now let    )().().( 2 qgqqCqqqBI   IqAq ).(1  

 

   2

313

2

21232123311132111211 ..... qcqcqqbqqbqqbI    

    2

2

323

2

1213222322 ... gqcqcqqbI    

  3

2

232

2

13133 .. gqcqcI    

  

1.4 Conclusion  

  

In this chapter we give some background mathematical to modeling robot we talking about 

geometric description and dynamic modeling and about other modeling we let it in Appendix A 

same direct model geometric and direct model kinematics. 

 

And next we give some dynamic model description for PUMA560 robot for more detail about 

this robot see this [1], after we explain how can we using PUMA560 as 3DOF robot for control it 

by type-1 and type-2 fuzzy logic controller in the next chapters.             
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Chapter 2 
 
 
Type-1 Fuzzy logic controller 
 
 
 
 
2.1.1 Introduction 

 

This chapter introduces the basic concepts, notation, and basic operations for the   type-1 fuzzy 

sets that will be needed in the following chapters. Type-2 fuzzy sets as well as their operations 

will be discussed in the next chapter. For this reason, in this chapter we will focus only on type-1 

fuzzy logic. Since research on fuzzy set theory has been underway for over 30 years now, it is 

practically impossible to cover all aspects of current developments in this area. Therefore, the 

main goal of this chapter is to provide an introduction to and a summary of the basic concepts 

and operations that are relevant to the study of type-1 fuzzy sets. 

 

Fuzzy logic controller (FLC) which used in this memory is Mamdani method, or used to call 

Max-Min method. 

 

2.2.1 Fuzzy set theory  

 

Fuzzy logic was first proposed by Zadeh (1965) and is based on the concept of fuzzy sets[8]. 

Fuzzy set theory provides a means for representing uncertainty. In general, probability theory is 

the primary tool for analyzing uncertainty, and assumes that the uncertainty is a random process. 

However, not all uncertainty is random, and fuzzy set theory is used to model the kind of 

uncertainty associated with imprecision, vagueness and lack of information.  

Conventional set theory distinguishes between those elements that are members of a set and 

those that are not, there being very clear, or crisp boundaries. Figure 2.1 shows the crisp set 

'medium temperature'. Temperatures between 20 and 30'C lie within the crisp set, and have a 

membership value of one. 

 

The central concept of fuzzy set theory is that the membership function M, like probability 

theory, can have a value of between 0 and 1 [13] [14]. In Figure 2.2, the membership function  
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has a linear relationship with the x-axis, called the universe of discourse U. This produces a 

triangular shaped fuzzy set. Fuzzy sets represented by symmetrical triangles are commonly used 

because they give good results and computation is simple. Other arrangements include non-

symmetrical triangles, trapezoids, Gaussian and bell shaped curves [15] [16]. 

 

Let the fuzzy set 'medium temperature' be called fuzzy set M. If an element u of the universe of 

discourse U lies within fuzzy set M, it will have a value of between 0 and 1. This is expressed 

mathematically as [11]: 

 

                                                 ( ) [ ]1,0∈uMμ                                                                              (2.1) 

 

When the universe of discourse is discrete and finite, fuzzy set M may be expressed as [11]: 

 

                                                ( )∑
=

=
n

i
iiM uuM

1

μ                                                                      (2.2) 

 

In equation (2.2) '/' is delimiter. Hence the numerator of each term is the membership value in 

fuzzy set M associated with the element of the universe indicated in the denominator. When 

n=11, equation (2.2) can be written as: 

 

50/045/040/0
35/33.030/67.025/120/67.015/33.010/05/00/0

+++
+++++++=M             (2.3) 

 

 

 

 

 

 

 

 

 

 

 

 

       

0 10 20 30 40 50

μ Medium
Temperature

1.0- 
Membership 

Function 0.8- 

0.6- 

0.4- 

0.2- 

Temperature (°C) 
Figure 2.1 Crisp set (medium temperature). 
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2.2.2 Basic fuzzy set operations 

 

Let A and B be two fuzzy sets within a universe of discourse U with membership functions Aμ  

and Bμ  respectively. The following fuzzy set operations can be defined as: 

 

Equality: Two fuzzy sets A and B are equal if they have the same membership function within a 

universe of discourse U. 

 

                               ( ) ( ) Uuallforuu BA ∈= μμ                                                         (2.4) 

 

Union: The union of two fuzzy sets A and B corresponds to the Boolean OR function and is 

given by: 

 

              ( ) ( ) ( ) ( ){ } Uuallforuuuu BABABA ∈== +∪ μμμμ ,max                       (2.5) 

 

Intersection: The intersection of two fuzzy sets A and B corresponds to the Boolean AND 

function and is given by: 

 

              ( ) ( ) ( ){ } Uuallforuuu BABA ∈=∩ μμμ ,min                                           (2.6) 

 

Complement: The complement of fuzzy set A corresponds to the Boolean NOT function and is 

given by: 

 

               ( ) ( ) Uuallforuu AA ∈−=− μμ 1                                                              (2.7) 

 

0 10 20 30 40 50

μ  Medium
Temperature

1.0- 
Membership 

Function 0.8- 

0.6- 

0.4- 

0.2- 

Universe of Discourse (Temperature (°C)) 

Figure 2.2 Fuzzy set 'medium temperature' 

M 
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Example 2.1[8] 

 

Find the union and intersection of fuzzy set low temperature L and medium temperature M 

shown in Figure 2.3. Find also the complement of fuzzy set M. using equation (2.2) the fuzzy 

sets for n=11 are: 

 

 

 

 

 

 

 

 

 

 

50/040/035/33.0
30/67.025/120/67.015/33.010/05/00/0

50/035/030/0
25/33.020/67.015/110/67.05/33.00/0

++++
++++++=

++++
+++++=

L

LL

M

L

                             (2.8) 

 

a - Union: Using equation (2.5) 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) 50/0,0max

40/0,0max35/33.0,0max30/67.0,0max
25/1,33.0max20/67.0,67.0max15/33.0,1max
10/0,67.0max5/0,33.0max0/0,0max

+
++++

+++
++=+

L

uMLμ

                               (2.9) 

 

( )
50/040/035/33.0

30/67.025/120/67.015/110/67.05/33.00/0
++++

++++++=+

L

uMLμ           (2.10) 

 

b- Intersection: Using equation (2.6) and replacing 'max' by 'min' in equation (2.9) gives: 

 

( )
50/030/0

25/33.020/67.015/33.010/05/00/0
+++

+++++=∩

L

uMLμ                           (2.11)         

 

 

0 10 20 30 40 50

μ  Medium
Temperature

1.0-
Membership 

Function 0.8-

0.6-

0.4- 

0.2-

Universe of Discourse (Temperature (°C)) 

Figure 2.3 Overlapping sets 'low' and 'medium temperature'. 

M L 
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Equations (2.10) and (2.11) are shown in Figure 10. 4. 

 

c- Complement: Using equation (2.7): 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) 50/0140/01

35/33.0130/67.0125/1120/67.01
15/33.0110/015/010/01

−++−+
−+−+−+−+
−+−+−+−=−

L

uMμ
                          (2.12) 

 

Equation (2.12) is illustrated in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5 The complement of fuzzy set M. 

 

 

 

 

 

0 10 20 30 40 50

μ  
L M 

1.0- 
Membership 

Function 0.8- 

0.6- 

0.4- 

0.2- 

Universe of Discourse (Temperature (°C)) 

Figure 2.4 'Union' and 'intersection' functions. 

( )uML+μ

( )uML∩μ
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2.2.3 Fuzzy relations 

 

An important aspect of fuzzy logic is the ability to relate sets with different universes of 

discourse. Consider the relationship: 

 

                                         IF L THEN M                                                                 (2.13) 

 

In equation (2.13) L is known as the antecedent and M as the consequent. The relationship is 

denoted by: 

 

                                         MLA ×=                                                                     (2.14) 

 

Or:      

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }⎥⎦

⎤
⎢
⎣

⎡
=×

kMjLMjL

kMLML

vuvu
vuvu

ML
μμμμ
μμμμ

,min,min
,min,min

1

111

L

L
                             (2.15) 

 

Where juu →1  and kvv →1  are the discretized universe of discourse. Consider the statement: 

 

                                                                                                             (2.16) 

 

Then for the fuzzy sets L and M defined by equation (2.8), for U from 5 to 35 in steps of 5 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×

33.0,0min1,0min0,0min

33.0,67.0min1,67.0min0,67.0min
33.0,33.0min1,33.0min0,33.0min

LL

MMMMM

LL

LL

ML                           (2.17) 

 

Which gives: 

                     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

0000000
0000000
33.033.033.033.033.000
33.067.067.067.033.000
33.067.0167.033.000
33.067.067.067.033.000
33.033.033.033.033.000

ML                                              (2.18) 

IF L is low THEN M is medium 
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Several such statements would form a control strategy and would be linked by their union 

 

                      nAAAAA LL+++= 321                                                                (2.19) 

 

2.2.4 Fuzzy logic control [8] 

 

The basic structure of a Fuzzy Logic Control (FLC) system is shown in Figure 2.6. Fuzzy logic 

controller (FLC) which used in this memory is Mamdani. 

 

The fuzzification process 

 

Fuzzification is the process of mapping inputs to the FLC into fuzzy set membership values in 

the various input universes of discourse. Decisions need to be made regarding 

(a) Number of inputs 

(b) Size of universes of discourse 

(c) Number and shape of fuzzy sets. 

 

A FLC that emulates a PD controller will be required to minimize the error e(t) and the rate of 

change of error de/dt, or ce. 

 

The size of the universes of discourse will depend upon the expected range (usually up to the 

saturation level) of the input variables. Assume for the system about to be considered that e has a 

range of ± 6 and ce a range of ± 1. 

 

The number and shape of fuzzy sets in a particular universe of discourse is a trade- off between 

precision of control action and real-time computational complexity. In this example, seven 

triangular sets will be used. 

 

Each set is given a linguistic label to identify it, such as Positive Big (PB), Positive Medium 

(PM), Positive Small (PS), About Zero (Z), Negative Small (NS), Negative Medium (NM) and 

Negative Big (NB). The seven set fuzzy input windows for e and ce are shown in Figure 2.7. If 

at a particular instant, e(t)= 2.5 and de/dt =ce = -0.2, then, from Figure 2.7, the input fuzzy set 

membership values are: 
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( ) ( )
( ) ( ) 3.06.0

4.07.0
==
==

cece
ee

zNS

PMPS

μμ
μμ

                                                         (2.20) 

 

The fuzzy rulebase 

 

The fuzzy rule base consists of a set of antecedent-consequent linguistic rules of the form 

 

                           PSisuTHENNSisceANDPSiseIF                                            (2.21) 

 

This style of fuzzy conditional statement is often called a 'Mamdani'-type rule, after Mamdani 

(1976) who first used it in a fuzzy rulebase to control steam plant. 

 

The rulebase is const ructed using a priori knowledge from either one or all of the following 

sources: 

(a) Physical laws that govern the plant dynamics 

(b) Data from existing controllers. 

(c) Imprecise heuristic knowledge obtained from experienced experts. 

 

If (c) above is used, then knowledge of the plant mathematical model is not required. The two 

seven set fuzzy input windows shown in Figure 2.7 gives a possible 7 x 7 set of control rules of 

the form given in equation (2.21). It is convenient to tabulate the two-dimensional rulebase as 

shown in Figure 2.8. 

 

Fuzzy inference 

 

Figure 2.8 assumes that the output window contains seven fuzzy sets with the same linguistic 

labels as the input fuzzy sets. If the universe of discourse for the control signal u(t) is ±9, then 

the output window is as shown in Figure 2. 9. 

 

Assume that a certain rule in the rulebase is given by equation (2.22) 

 

                                CuTHENBisceANDAiseIF =                                                  (2.22) 
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From equation (2.5) the Boolean OR function becomes the fuzzy max operation, and from 

equation (2.6) the Boolean AND function becomes the fuzzy min operation. Hence equation 

(2.22) can be written as 

                                                                                                                    (2.23)                   

Equation (2.23) is referred to as the max-min inference process or max-min fuzzy reasoning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Fuzzy Logic Control

Figure 2.7 Seven set fuzzy input windows for error (e) and rate of change of error (ce).

( ) ( ) ( )( )[ ]ceeu BAC μμμ ,minmax=
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In Figure 2.7 and equation (2.20) the fuzzy sets that were 'hit' in the error input window when 

e(t) = 2.5 were PS and PM. In the rate of change input window when ce = -0.2, the fuzzy sets to 

be 'hit' were NS and Z. From Figure 2.8, the relevant rules that correspond to these 'hits' are: 

 

                
PSuTHEN

ZisceANDPSiseIFOR
NSisceANDPSiseIFOR

=

L

                                                             (2.24) 

 

Figure2.8 Tabular structure of a linguistic fuzzy rulebase. 

Figure2.9 Seven set fuzzy output window for control signal (u). 
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PMuTHEN

ZisceANDPMiseIFOR
NSisceANDPMiseIFOR

=

L

                                                  (2.25) 

 

Applying the max-min inference process to equation (2.24) 

 

             ( ) ( ) ( )( ) ( ) ( )( )[ ]ceeceeu ZPSNSPSPS μμμμμ ,min,,minmax=                        (2.26) 

 

Inserting values from equation (2.20) 

 

                            
( ) ( ) ( )[ ]

[ ] 6.03.0,6.0max
3.0,7.0min,6.0,7.0minmax

==
=uPSμ

                                             (2.27) 

 

Applying the max-min inference process to equation (2.25) 

 

           ( ) ( ) ( )( ) ( ) ( )( )[ ]ceeceeu ZPMNSPMPM μμμμμ ,min,,minmax=                              (2.28) 

 

Inserting values from equation (2.20) 

 

                          
( ) ( ) ( )[ ]

[ ] 4.03.0,4.0max
3.0,4.0min,6.0,4.0minmax

==
=uPSμ

                                            (2.29) 

 

Fuzzy inference is therefore the process of mapping membership values from the input windows, 

through the rulebase, to the output window(s). 

 

The defuzzification 

 

Defuzzification is the procedure for mapping from a set of inferred fuzzy control signals 

contained within a fuzzy output window to a non-fuzzy (crisp) control signal. The centre of area 

[9, 10, 11] method is the most well known defuzzification technique, which in linguistic terms 

can be expressed as: 

 

                      
areasofSum

areaofmomentsfirstofSumsignalcontrolCrisp =                                    (2.30) 
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For a continuous system, equation (2.30) becomes: 

 

                                                  ( )
( )
( )∫

∫=
duu

duuu
tu

μ

μ
                                                                    (2.31) 

                                             

Or alternatively, for a discrete system, equation (2.30) can be expressed as: 

 

                                                   ( )
( )

( )∑

∑

=

== n

i
i

n

i
ii

u

uu
kTu

1

1

μ

μ
                                                               (2.32) 

 

For the case when e(t) = 2.5 and ce = -0 .2, as a result of the max-min inference process 

(equations (2.27) and (2.29)), the fuzzy output window in Figure 2.9 is 'clipped', and takes the 

form shown in Figure 2.10.  

 

From Figure 2.10, using the equation for the area of a trapezoid: 

 

                                              

( )

( ) 96.0
2

6.362.0

52.2
2

4.266.0

=
+

=

=
+

=

PS

PS

Area

Area
                                                    (2.33) 

 

From equation (2.30) 

 

( ) ( ) ( ) 83.3
96.052.2

696.0352.2
=

+
×+×

=tu
                                              (2.34) 

 

Hence, for given error of 2.5, and a rate of change of error of -0.2, the control signal from the 

fuzzy controller is 3.83. 
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Example 2.2 [8] 

 

For the input and output fuzzy windows given in Figure 2.7 and 2.9, together with the fuzzy 

rulebase shown in Figure 2.8, determine: 

 

(a) The membership values of the input windows e and ce. 

(b) The max-min fuzzy inference equations. 

(c) The crisp control signal u(t). 

when e = -3 and ce = 0 

 

Solution 

 

(a) When e = -3 and ce = 0 .3 are mapped onto the input fuzzy windows, they are referred to as 

fuzzy singletons. From Figure 2.7 

 

                               ( ) ( ) 5.05.03 ==−= eee NMNS μμ                                            (2.35) 

 

ce = 0 .3, using similar triangles: 

                                       
( )

( )3.033.033.0
1

−
=

ceZμ                                                  (2.36) 

( ) 09.0=ceZμ  

 

 

 

Figure 2.10 Clipped fuzzy output window due to fuzzy inference. 
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And 

( )
3.033.0

1 cePSμ
=  

                                   ( ) 91.0=cePSμ                                                            (2.37) 

 

(b) The rules that are 'hit' in the rulebase in Figure 2.8 are 

 

                                
NSuTHEN

PSisceANDNSiseIFOR
ZisceANDNSiseIFOR

=

L

                                               (2.38) 

 

                                
NMuTHEN

PSisceANDNMiseIFOR
ZisceANDNMiseIFOR

=

L

                                               (2.39) 

 

Applying max-min inference to equation (2.38): 

 

                        ( ) ( ) ( )( ) ( ) ( )( )[ ]ceeceeu PSNSZNSNS μμμμμ ,min,,minmax=                       (2.40) 

 

Inserting values into (2.40): 

 

                       
( ) ( ) ( )[ ]

[ ] 5.05.0,09.0max
91.0,5.0min,09.0,5.0minmax

==
=uNSμ

                                   (2.41) 

 

and similarly with equation (2.39) 

 

( ) ( ) ( )( ) ( ) ( )( )[ ]ceeceeu PSNMZNMNM μμμμμ ,min,,minmax=  

( ) ( ) ( )[ ]
[ ] 5.05.0,09.0max

91.0,5.0min,09.0,5.0minmax
==

=uPSμ
                                       (2.42) 

 

Using equations (2.41) and (2.42) to 'clip' the output window in Figure 2.9, the output window is 

now as illustrated in Figure 2.11. 
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(c) Due to the symmetry of the output window in Figure 2.11, from observation, 

 the crisp control signal is: 

 

( ) 5,4−=tu  

 

 
 

 

2.3 Trajectory generation 

 

The dynamics of the robot requires the imposition of a realizable trajectory of reference in order 

to ensure the displacement of the end effector of the robot from an initial point 0q to the end 

point endq with acceptable control on the articulation. The choice of this trajectory is connected to 

the evolution of the position, the speed and the acceleration desired of each articulation. 

 

Then in this memory (FLC) which used is Mamdani and for testing this controller we use tow 

trajectory first a circle in space and second LEAHY trajectory. 

 

 

 

 

 

 

 

 

 

Figure 2.11 Fuzzy output window for Example 2.2. 



Chapter 2                                                                                                                           Type-1 Fuzzy logic controller                     

 31

First circle in space:  

 

                                                    
⎪
⎩

⎪
⎨

⎧

−=
=
=

t
t

*2
*2
0

3

2

1

θ
θ
θ

                                                                    (2.43)              

   

 
 

 

Second LEAHY trajectory:  

 

For the robot of the PUMA type there exists a cycloid trajectory test Figure 2.13 proposed by 

LEAHY[17]. The different articulation move respectively from position {-50°, -135°, 135°} to 

the position      {45,-85°,30°} in a time of movement equal to 1,5 seconds. 

 

This trajectory is selected because it excites all the dynamics of this arm manipulator. 

 

( )

( )
( ) ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=

≤≤⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
0

02sin2
2

0

dienddii

endenddi

end
endend

i
di

di

tD
ttfort

ttfor
t

t
t

tD

θθ
θ

ππ
π

θ

θ p                        (2.44) 

 

Figure 2.12 Circle in space 
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2.4 Type-1 Fuzzy control of PUMA560 with 3DOF 

In Figure 2.14 we show the structure type-1 FLC of PUM560 with 3DOF, the regulator which 

we use is five classes, do mean has 25 rule bases, the rule base table in Figure 2.15 and in 

Figure2.16 fuzzy sets for error and change error and out put of control T. All the gains of type-1 

fuzzy controller we do tuning until get good positions with lower error in ideal case. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 LEAHY trajectory 

Figure 2.14 Structure type-1 FLC of PUMA560 3DOF 

teta1 

teta2 

teta3 

 

desiredteta1 

desiredteta2 

desiredteta3 

error1 Ge1 

Gde1

error2 Ge2 

Gde2

error3 Ge3 

Gde3

T1

T2

T3

T1

T2

T3

teta1 

teta2 

teta3 
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Velocity error 

 

Position 

error 

 LN SN Ze SP LP 

LN LN LN LN SN Ze 

SN LN LN SN Ze SP 

Ze LN SN Ze SP LP 

SP SN Ze SP LP LP 

LP Ze SP LP LP LP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Fuzzy set for each articulation. 

Error = e (rad)  

( )eμ   

Change in Error = ce (rad/s) 

( )ceμ   

The control T (Nm) 

( )Tμ   

Figure 2.15 Rule Base table[39]
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2.4.1 Result of simulation with circle trajectory 

 

 
Figure 2.17 Position of joints 1,2,3 (rad) 

 

 
Figure 2.18 Position error of joints 1,2,3 (rad) 

 

 
Figure 2.19 Velocity of joints 1,2,3 (rad/s) 
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Figure 2.20 Velocity error of joints 1,2,3 (rad/s) 

 

 
Figure 2.21 Torque inputs of the robot joints 1,2,3 (Nm). 

 

 
Figure 2.22 Position of joints 1,2,3 (rad) with white noisy in measure of position. 
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Figure 2.23 Position error of joints 1,2,3 (rad) with white noisy.  

 

 
Figure 2.24 Torque inputs of the robot joints 1,2,3 (Nm) with white noisy. 

 

2.4.2 Result of simulation with LEAHY trajectory 

 

 
Figure 2.25 Position of joints 1,2,3 (rad). 
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Figure 2.26 Position error of joints 1,2,3 (rad). 

 

 

 
Figure 2.27 Velocity of joints 1,2,3 (rad/s). 

 

 

 
Figure 2.28 Velocity change error of joints 1,2,3 (rad/s). 
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Figure 2.29 Torque inputs of the robot joints 1,2,3 (Nm). 

 

 

 
Figure 2.30 Position of joints 1,2,3 (rad) with white noisy. 

 

 

 
Figure 2.31 Position error of joints 1,2,3 (rad) with white noisy. 
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Figure 2.32 Torque inputs of the robot joints 1,2,3 (Nm) with white noisy. 

 

By visual inspection from from Figures 2.17 to Figure 2.32 we can show that:  

• Good position in ideal case and with low position error. 

•  Bad position in presence of uncertainty big position error. 

• The positions and velocities of joints are continuous. 

• The control torques of the joints 1,2,3 are limited and don’t pass the maximum torque for 

each joints. 

 

2.5 Conclusion   

 

In this chapter, we have studies and developed type-1 fuzzy controller applies to the problem of 

the following of trajectory of robots manipulators we have tests two trajectory rings and 

trajectory of LEAHY, the experience and knowledge of human experts are needed to decide both 

the membership functions and the rules based on the available linguistic or numeric information. 

The simulation effectuated on the robot manipulator PUMA560 with 3DOF. The results of 

simulations prove that type-1 FLC have good position with low error in ideal case (In uncertainty 

absence) but with uncertainty presence have bad position. In the following chapters, we will 

perform and analysis of the interval type-2 FLC responses with same robot.   
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Chapter 3 
 
 
Type-2 Fuzzy logic controller 
 
 
 
 
3.1.1 Introduction 

 

We introduce in this chapter a new area in fuzzy logic, which is called type-2 fuzzy logic were 

initially defined by Zadeh [21][24]. Basically, a type-2 fuzzy set is a set in which we also have 

uncertainty about the membership function. Of course, type-2 fuzzy systems consist of fuzzy if-

then rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a 

generalization of conventional fuzzy logic (type-1) in the sense that uncertainty is not only 

limited to the linguistic variables but also is present in the definition of the membership 

functions. 

   

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge that is used to build 

these rules is uncertain. Such uncertainty leads to rules whose antecedents or consequents are 

uncertain, which translates into uncertain antecedent or consequent membership functions [22]. 

Type-1 fuzzy systems (like the ones seen in the previous chapter), whose membership functions 

are type-1 fuzzy sets, are unable to directly handle such uncertainties. We describe in this 

chapter, type-2 fuzzy systems, in which the antecedent or consequent membership functions are 

type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves are type-1 

fuzzy sets; they are very useful in circumstances where it is difficult to determine an exact 

membership function for a fuzzy set [22].  

 

In what follows, we shall first introduce t is characterized by a type-2 membership function he 

basic concepts of type-2 fuzzy sets, and type-2 fuzzy reasoning after we explain how we can 

apply it on PUMA560 manipulator robot with simulation result.   
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3.2 Notations and terminologies  

 

3.2.1 Type-2 Fuzzy sets  

 

A type-2 fuzzy set, denoted X , is characterized by a type-2 membership function A ( x ,u )μ % , 

where x X∈ and [ ]xu J 0 ,1∈ ⊆ can write it same as[27] [30]: 

 

  [ ]xAA { ( x ,u ), 0 ( x ,u ) 1 x X , u J 0 ,1 }μ= ≤ ≤ ∀ ∈ ∀ ∈ ⊆%
%                                                 (3.1) 

With:  

  

x X∈ : Primary variable. 

xu J∈ : Secondary variable. 

 

The equations (3.1) show that the membership function of type-2 fuzzy set A ( x ,u )μ %  is three-

dimensional.    

A% Can also be expressed as: 

 

[ ]
x

xA
x X u J

A ( x ,u ) ( x ,u ) ; J 0 ,1μ
∈ ∈

= ∈∫∫ %
%                                                                             (3.2) 

 

Where ∫∫ denotes union over all admissible x  and u . For discrete universes of discourse ∫ is 

replaced by∑ . 

 

3.2.2 Representation type-2 membership function  

  

A two-dimensional graphic of type-2 membership function is shown on figure 3.1. [28] 
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                                  Figure 3.1 Triangular membership  function 
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Figure 3.2 is a three-dimensional representation the of type-2 membership function. In this case 

x  and u  are as discrete [27]. 

3.2.3 vertical-slice 

 

At each value of x , say xx ′= , the 2D plane whose axes are u and ( )uxA ,~ ′μ is called a vertical slice [27] 

[30] of ( )uxA ,~μ . A secondary membership function is a vertical slice of ( )uxA ,~μ . It is It ( )uxxA ,~ ′=μ  

for Xx ∈′  and [ ]xu J 0 ,1′∀ ∈ ⊆ . 

The figure 3.3 has five vertical slices associated with it. The secondary membership function at x = 20, is 

in figure 3.4 
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Figure 3.3 Fuzzy set for x=20. 

 

3.2.4 Secondary membership function  

 

It represents a secondary set of type-1. For all x X′∈  and [ ]xu J 0 ,1′∀ ∈ ⊆ , secondary 

membership function is given by [27] [29]: 

 

[ ]
x

x x xA A
u J

( x ,u ) ( x ) f ( u ) u avec J 0 ,1 et 0 f ( u ) 1μ μ
′

′ ′ ′
∈

′ ′≡ = ∈ ≤ ≤∫% %                              (3.3) 

  

Since x ; x X′ ′∀ ∈ , we can omit dot in A ( x )μ ′%  and adopt the notation A ( x )μ %  for the secondary 

membership function, which is a type-1 fuzzy membership function.   

 

While being based on the concept of the secondary sets, it is possible to reinterpret a type-2 

fuzzy set as being the union of all the secondary sets, as follows:  

 

       AA { ( x , ( x )) x X }μ= ∀ ∈%
%                                                                                                (3.4) 

 

Or same as: 

 

[ ]
x

x xA
x X x X u J

A ( x ) x f ( u ) u x avec J 0 ,1μ
∈ ∈ ∈

⎡ ⎤
= = ⊆⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫%

%                                                 (3.5) 
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In the case X  and xJ are discrete, the equation (3.5) becomes:    

 

[ ]
i i i x

i i x i i xA
x X x X u J

A ( x ) x f ( u ) u x avec J 0 ,1μ
∈ ∈ ∈

⎡ ⎤
= = ⊆⎢ ⎥

⎣ ⎦
∑ ∑ ∑%

%                                           (3.6) 

 

3.2.5 Primary membership 

 

The domain of a secondary membership function is called the primary membership of x  [27] 

[29]. In (3.5), xJ  is the primary membership of x , where for [ ]xx X , J 0 ,1∀ ∈ ⊆ . 

 

3.2.6 Secondary membership grade   

 

The amplitude of a secondary membership function is called a secondary grade[30], denote 

by xf ( u ) . 

 

3.2.7 Footprint of uncertainty (FOU)  

 

Uncertainty in the primary memberships of a type-2 fuzzy set A%  consists of a bounded region 

that we call the footprint of uncertainty (FOU) [27] [30]. It is the union of all primary 

memberships. 

 

x
x X

FOU ( A ) J
∈

=% U                                                                                                  (3.7) 

 

The shaded region in Figure 3.2 is the FOU. Other examples of FOUs are given in (3.4). The 

term footprint of uncertainty is very useful, because it not only focuses our attention on the 

uncertainties inherent in a specific type-2 membership function, whose shape is a direct 

consequence of the nature of these uncertainties, but it also provides a very convenient verbal 

description of the entire domain of support for all the secondary grades of a type-2 membership 

function. It also lets us depict a type-2 fuzzy set graphically in two-dimensions instead of three 

dimensions, and in so doing lets us overcome the first difficulty about type-2 fuzzy sets-their 

three-dimensional nature which makes them very difficult to draw. The shaded FOUs imply that 

there is a distribution that sits on top of it-the new third dimension of type-2 fuzzy sets. 
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What that distribution looks like depends on the specific choice made for the secondary grades. 

When they all equal one, the resulting type-2 fuzzy sets are called interval type-2 fuzzy sets. 

Such sets are the most widely used type-2 fuzzy sets to date. 

 

3.2.8 Upper and lower membership function  

 

An “upper membership function” and a “lower membership functions” are two type-1 

membership functions that are bounds for the FOU of a type-2 fuzzy set A% . The upper 

membership function is associated with the upper bound of ( )AFOU ~  and denote by Au ( x )% . The 

lower membership function is associated with the lower bound of ( )AFOU ~  and denote 

by Au ( x )% [27] [30]. 

 

A

A

u ( x ) FOU ( A ) x X

u ( x ) FOU ( A ) x X

= ∀ ∈

= ∀ ∈

%

%

%

%
                                                                              (3.8) 

 

3.2.9 Principal membership function  

 

The principal membership function of type-2 fuzzy set, denote prin
A ( x )μ % is defined as the union 

of all the points which satisfied the following condition[27] [30]: 

 

[ ]prin
x xA

x X

( x ) u x , x X ,u J 0 ,1 , f ( u ) 1μ
∈

= ∀ ∈ ∈ ⊆ =∫%                                                     (3.9)   

 

3.3 Operations of type-2 fuzzy sets  

 

In this section we describe the set theoretic operations of type-2 fuzzy sets [19] [20]. We are 

interested in the case of type-2 fuzzy sets, whose secondary membership functions are type-1 

fuzzy sets. To compute the union, intersection, and complement of type-2 fuzzy sets, we need to 

extend the binary operations of minimum (or product) and maximum, and the unary operation of 

negation, from crisp numbers to type-1 fuzzy sets. The tool for computing the union, 

intersection, and complement of type-2 fuzzy sets is Zadeh’s extension principle [18]. 
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3.3.1 Extension principle  

 

1 nA ,...,A , n  type-1 fuzzy sets whose universe of discourses are 1 nX ,...,X  respectively. The 

principle of extension of Zadeh announces that the image of the sets 1 nA ,...,A  by a relation f is a 

type-1 fuzzy set defined as [18]: 

 

1 n

1 1 n n

1 n A 1 A n 1 n
x X x X

f ( A , ,A ) ( x ) ( x ) f ( x , ,x )
∈ ∈

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ μ ∗⋅ ⋅ ⋅∗μ ⋅ ⋅ ⋅∫ ∫                                   (3.10) 

 

* denote T-norm, 
iA i( x )μ is grade membership of ix in set iA . 

 

3.3.2 Union of type-2 fuzzy sets (JOIN operation)  

 

Consider two type-2 fuzzy sets A%  and B% defined on universe of discourse X and their 

secondary membership function A ( x )μ % and B ( x )μ %  respectively. 

 

Union of A%  and B% , denote by A B% %U is type-2 fuzzy set its membership function 

A B ( x ,v )μ % %U
is defined by[27] [30]: 

 

[ ]A B
x

xA B A B
x X x X v J 0 ,1

A B ( x ,v ) ( x ) x h (v ) v xμ μ
∈ ∈ ∈ ⊆

⎡ ⎤
⎢ ⎥⇔ = =
⎢ ⎥⎣ ⎦

∫ ∫ ∫
% %U

% %% %U U
% %U                                (3.11) 

   

xh (v ) : Secondary membership grade of the union set. 

A B
xJ % %U : Primary membership of the type-2 fuzzy set A B% %U . 

 

Secondary membership function of the union set: 

 

[ ] [ ]BA B A
xx x

x x x BA
w J 0 ,1v J u J 0 ,1

h (v ) v f ( f ( u ) u , g (w ) w ) f ( ( x ), ( x ))μ μ
∈ ⊆∈ ∈ ⊆

= ≡∫ ∫ ∫
% % %U

% %                  (3.12) 

 

xf ( u ) and xg (w ) are secondary membership grade of the sets A% and B% . 

A
xJ %  and B

xJ %  primary membership A% and B%  respectively. 

By the principle of extension in the equation (3.17), it comes: 
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[ ] [ ]B BA A
x xx x

x x x x BA
w J 0 ,1 w Ju J 0 ,1 u J

f ( f ( u ) u , g (w ) w ) f ( u ) g (w ) f ( u ,w ) ( x ) ( x )μ μ
∈ ⊆ ∈∈ ⊆ ∈

= ∗ ≡∫ ∫ ∫ ∫
% % % %

% %U (3.13) 

 

U Denote union, if f is maximum operation denote it by ∨ , secondary membership function of 

union set is: 

 

  
BA
xx

x xA B
w Ju J

( x ) f ( u ) g (w ) ( u w ) ; x Xμ
∈∈

= ∗ ∨ ∈∫ ∫
% %

% %U
                                                   (3.14) 

 

In the discrete case, the equation (3.19) is same as: 

 

BA
j xi x

x i x j i jA B
w Ju J

( x ) f ( u ) g (w ) ( u w )μ
∈∈

= ∗ ∨∑ ∑
% %

% %U
                                                        (3.15) 

 

3.3.3 Intersection of type-2 fuzzy sets (MEET operation) 

 

the intersection of the A% and B% , denote by A B% %I , is type-2  fuzzy set their membership 

function A B ( x ,v )μ % %I
 defined by [27] [30]: 

 

A B A B
x X

A B ( x ,v ) ( x ) xμ μ
∈

⇔ = ∫% %% %I I
% %I                                                                          (3.16) 

 

The secondary membership function of the intersection set is: 

 

BA
xx

x x BA B A
w Ju J

f ( u ) g (w ) ( u w ) ( x ) ( x )μ μ μ
∈∈

= ∗ ∧ ≡∫ ∫
% %

% % %%I
I                                            (3.17) 

 

∩ : MEET operation. 

∧ : MIN operation. 

 

In the discrete case the equation (3.17) it becomes same as: 

  

BA
j xi x

x i x j i jA B
w Ju J

( x ) f ( u ) g (w ) ( u w )μ
∈∈

= ∗ ∧∑ ∑
% %

% %I
                                                           (3.18) 
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3.3.4 Complement of type-2 fuzzy set  

 

The complement of the A% , denote A% , is a type-2 fuzzy set associated with membership 

function
A

( x ,v )μ %   defined by[27]: 

 

A A
x X

A ( x ,v ) ( x ) xμ μ
∈

⇔ = ∫% %
%                                                                         (3.19) 

 

By applying the extension principle, the secondary membership function of the complement set 

is: 

 

A
x

x AA
u J

( x ) f ( u ) ( 1 u ) ( x ) ; x Xμ μ
∈

= − ≡ ¬ ∈∫
%

%%                                              (3.20)  

¬ : NEGATION operation. 

 

In the discrete case the equation (3.20) becomes: 

 

A
i x

x i iA
u J

( x ) f ( u ) ( 1 u )μ
∈

= −∑
%

%                                                                          (3.21) 

 

Example 3.1 Type-2 fuzzy set operations: 

 

In this example we illustrate the union, intersection and complement operations for two type-2 

fuzzy sets A%  and B% , and for a particular element x for which the secondary membership 

functions in these two sets are ( ) 2.0/8.01.0/5.0~ +=xAμ  and 9.0/9.05.0/4.0~ +=Bμ . Using in 

the operations the minimum t-norm and the maximum t-conorm, we have the following results: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

{ } { }
9.0/8.05.0/4.0

9.0/8.0,5.0max5.0/4.0,4.0max
9.0/8.05.0/4.09.0/5.05.0/4.0

9.02.0/9.08.05.02.0/4.08.0
9.01.0/9.05.05.01.0/4.05.0

9.0/9.05.0/4.02.0/8.01.0/5.0~~~~

+=
+=

+++=
∨∧+∨∧

+∨∧+∨∧=

+∪+=∪=
∪

xxx BABA μμμ
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

{ } { }
2.0/8.01.0/5.0

2.0/8.0,4.0max1.0/5.0,4.0max
2.0/8.02.0/4.01.0/5.01.0/4.0

9.02.0/9.08.05.02.0/4.08.0
9.01.0/9.05.05.01.0/4.05.0

9.0/9.05.0/4.02.0/8.01.0/5.0~~~~

+=
+=

+++=
∧∧+∧∧

+∧∧+∧∧=

+∩+=∩=
∩

xxx BABA μμμ

 

 

( ) ( ) ( ) 8.0/8.09.0/5.02.01/8.01.01/5.0~ +=−+−=x
A

μ  

 

3.4 General type-2 fuzzy system  

 

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, [22]. A higher-type 

number just indicates a higher “degree of fuzziness”. Since a higher type changes the nature of 

the membership functions, the operations that depend on the membership functions change; 

however, the basic principles of fuzzy logic are independent of the nature of membership 

functions and hence, do not change. Rules of inference like Generalized Modus Ponens or 

Generalized Modus Tollens continue to apply. 

 

The structure of the type-2 fuzzy rules is the same as for the type-1 case because the distinction 

between type-2 and type-1 is associated with the nature of the member-ship functions. Hence, 

the only difference is that now some or all the sets involved in the rules are of type-2. In a type-1 

fuzzy system, where the output sets are type-1 fuzzy sets, we perform defuzzification in order to 

get a number, which is in some sense a crisp (type-0) representative of the combined output sets. 

In the type-2 case, the output sets are type-2, so we have to use extended versions of type-1 

defuzzification methods. Since type-1 defuzzification gives a crisp number at the output of the 

fuzzy system, the extended defuzzification operation in the type-2 case gives a type-1 fuzzy set 

at the output. Since this operation takes us from the type-2 output sets of the fuzzy system to a 

type-1 set, we can call this operation “type reduction” and call the type-1 fuzzy set so obtained a 

“type-reduced set”. The type-reduced fuzzy set may then be defuzzified to obtain a single crisp 

number; however, in many applications, the type-reduced set may be more important than a 

single crisp number[22] [29]. 

 

Type-2 sets can be used to convey the uncertainties in membership functions of type-1 fuzzy 

sets, due to the dependence of the membership functions on available linguistic and numerical 
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information. Linguistic information, in general, does not give any information about the shapes 

of the membership functions. When membership functions are determined or tuned based on 

numerical data, the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the 

membership functions. In all such cases, any available information about the linguistic/numerical 

uncertainty can be incorporated in the type-2 framework. However, even with all of the 

advantages that fuzzy type-2 systems have, the literature on the applications of type-2 sets is 

scarce. We think that more applications of type-2 fuzzy systems will come in the near future as 

the area matures and the theoretical results become more understandable for the general public in 

the fuzzy arena [30]. 

 

The general structure of a type-2 fuzzy controller (type-2 fuzzy controller: T2FC) is represented 

in figure 3.4 

 

Rules Base

Inference Engine 

Fuzzifier 

Fuzzy output
Sets 

Fuzzy  input
Sets 

Defuzzifier 

Type-reducer Type-reduced
Set(Type-1) 

Real output 
Crisp output

Real input 
Crisp inputs 

 
Output Processing 

 
Figure 3.4 Type-2 Fuzzy Controller structure [29] 

 

This structure is similar to that of the type-1 fuzzy controller. However, their differences in: 

- The type of the membership function used. 

- Procedure of adopted defuzzifier. In a T2FC, a block of reduction of the type is essential 

to convert the type-2 fuzzy set to a type-1fuzzy set. 
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3.4.1 Fuzzification 

 

In this memory, we will consider only singleton fuzzification(Crisp input), in the input fuzzy set. 

 

3.4.2 Rules 

 

In the type-1 case, we generally have "IF-THEN" rules, where the lth rule has the form 

":" 2211
ll

pp
lll GisyTHENFisxandandFisxandFisxIFR K                                  (3.22)  

Where ix 's are inputs, l
iF 's are antecedent sets ( )pi ,,1 KK= , y is the output, and lG  are 

consequent sets. 

 

The distinction between type-1 FLS and type-2 FLS is associated with the nature of the 

membership function, which is not important while forming rules, hence, the structure of the 

rules remains exactly the same in the type-2 FLS case, the only difference being that now some 

or all of the sets involved are of type-2, so, the lth rule in a type-2 FLS has the form 

 

 "~~~~:" 2211
ll

pp
lll GisyTHENFisxandandFisxandFisxIFR K                                    (3.23) 

 

Where ix 's are inputs, l
iF~ 's are antecedent sets ( )pi ,,1 KK= , y is the output, and lG~  are 

consequent sets, It is not necessary that all the antecedents and the consequent be type-2 fuzzy 

sets. As long as one antecedent or the consequent set is type-2, we will have a type-2 FLC. 

 

3.4.3 Inference Engine 

 

In general, the Rules we use will have multiple antecedents connected by ands. Just as in the 

type-1 case, we can connect these multiple antecedents by the meet operation (corresponding to 

t-norm in the type-1 case).Different rules can be combined using the join operation 

(corresponding to t-conorm in the type-1 case), or during defuzzification. 

 

The output of the inference engine [22] [29] consists of the fired consequent fuzzy sets. Each one 

of which is modified from a consequent fuzzy set by a degree of firing. This degree of firing is 
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obtained, in general, as a result of t-norm (meet) and t-conorm (join) operations on membership 

grades of the inputs.  

 

The relation (3.23) is interpreted as a fuzzy implication type-2 defined by: 

 
l l l l

1 pR : F ... F G× × → %% %                                                                                                            (3.24) 

 

This relation is described by the membership function same as: 

l l l l l l
1 p i

p

1 p 1 p iR F ... F G F G
i 1

( x ,..., x , y ) ( x ,..., x , y ) ( x ) ( y )μ μ μ μ
× × →

=

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
% %% % % II                           (3.25) 

l l
1 pF ... F× ×% % Denote the Cartesian product of l l

1 pF ,...,F% % . 

 

3.4.4 Type-Reduction  

 

Observe, from figure 3.4, that the defuzzifier block in the type-1 FLC is replaced by two blocks: 

type-reducer and defuzzifier. We consider type-reduction in this subsection. 

 

In a type-1 FLC, where the output sets are type-1 fuzzy sets, we perform defuzzification in order 

to get a number which is in some sense a crisp (type-0) representative of the combined output 

sets. In the type-2 case, the output sets are type-2, so we have to use "extended principle" of 

type-1 defuzzification methods. Since type-1 defuzzification gives a crisp number at the output 

of the FLS, the extended defuzzification operation in the type-2 case gives a type-1 fuzzy set at 

the output. Since this operation takes us from the type-2 output sets of the FLC to a type-1 set, 

we call this operation "type-reduction" [22] [30]  and call the type-1 set so obtain a single crisp 

number, however, in many application, the type reduced set may be more important than a single 

crisp number. 

 

There exist many kinds of type-reduction, such as centroid, center-of-sets, height and modified 

height, the details of which are given in [22][ 30]. In this memory, for illustrative purposes, we 

focus on center-of-sets type-reduction. 
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Center-of-sets type-reduction  

 

In this method[30], each set of the consequence  lG%  is replaced by its centroid. If the set of 

output lG%  is of type-2, its centroid  lG
C %  is a type-1 fuzzy set. Then the weighted average of all 

the centroid is calculated, associating with each centroid lG
C %  a weight equal the degree of 

activation of the lth rule is given by l
i

p

l F
i 1

E ( x ) ( x )μ
=

= %I . Procedure of calculation of the type-

reduced set ceY ( x ) is: 

1. Discretize the output space Y into a suitable number of points, and compute the centroid 

lG
C % of each consequent set on the discretized output space. These consequent centroid 

sets can be computed ahead of time and stored for future use. 

2. Compute the degree of firing, lE ( x )  associated with the lth consequent. 

3. Discretize the domain of each lG
C % into a suitable number of lM  points, l 1 ,...,M= . 

4. Discretize the domain of each lE ( x )  into a suitable number of points, say lN l 1 ,...,M= . 

5. Enumerate all the possible combinations{ }1 M 1 Mc ,...,c ,e ,...,e such that ll G
c C∈ % and l le E∈ . 

The total number of combinations will be
M

l l
l 1

M N
=
∏  

6. Compute the center-of-sums type-reduced set using (3.26). 

 

l lG
1 M 1 M

M

l l
M M l 1

ce l 1 C l l 1 E l M
c c e e

l
l 1

c e
Y ( x ) ... ... Sup ( c ) ( e )

e
μ μ =

= =

=

⎡ ⎤= ℑ ∗ℑ⎣ ⎦

∑
∫ ∫ ∫ ∫

∑
%

                              (3.26) 

Where ℑ  and ∗  indicate the T-norm chosen.  

 

3.4.5 Defuzzification 

 

To obtain a crisp output from the type-2 FLS, we can defuzzifiy the type-reduced set[22] [30]. 

The most natural way of doing this seems to be by finding the centroid of the type-reduced set, 

however, there exist other possibilities, like choosing the unity membership point in the type-

reduced set.    
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The defuzzification makes to transform the linguistic output of the type-reduction to numeric 

valued. Several methods of defuzzification were proposed in the literature [32]. But the most 

used method is: 

 

Centre of area 

 

The defuzzification determines the X-coordinate of the center of gravity CGy ∗ [22] [30] of the 

fuzzy function: 

 

Y
y

CG
Y

y

y ( y )dy
y

( y )dy

μ

μ
∗ =

∫

∫
                                                                                                 (3.27) 

In the discrete case: 

 

i Y i
i

CG
Y i

i

y ( y )
y

( y )

μ

μ
∗ =

∑
∑

                                                                                                (3.28) 

 

3.5 Interval type-2 Fuzzy controller  

 

3.5.1 Interval type-2 fuzzy set 

 

An interval type-2 fuzzy set A~ in X is defined as: 

 

( ) xuuxA
àJuXxJuXx xx ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
== ∫∫∫∫

⊆∈∈⊆∈∈ ]1,[]1,0[

/1,/1~                                                                (3.29) 

 

Where x is the primary variable with domain X, u is the secondary variable, which has domain 

xJ at each x∈X, xJ [22] is called the primary membership of x. For interval type-2 sets, the 

secondary grades of A~  all equal 1 [22][25] [26]. 
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3.5.2 MEET and JOIN for Interval set  

 

- The meet under minimum or product t-norms of n interval type-1 sets 1 nA ,...,A having 

domains [ ] [ ]1 1 n nl , r ,..., l , r  respectively, where [ ] [ ]i il , r 0 ,1 , i 1 ,..,n⊆ =  is an interval set 

with domain[ ]1 n 1 nl ... l , r ... r∗ ∗ ∗ ∗ such as[26] [31]: 

[ ]1 n 1 n

n

i w l ... l ,r ... r
i 1

1A w∈ ∗ ∗ ∗ ∗
=

= ∫I                                                                                               (3.30) 

* Chosen t-norms. 

- The join under maximum t-norms of n interval type-1 sets 1 nA ,...,A 1 nA ,...,A having 

domains [ ] [ ]1 1 n nl , r ,..., l , r  respectively, where [ ] [ ]i il , r 0 ,1 , i 1 ,..,n⊆ =  is an interval set 

with domain [ ]1 n 1 nl ... l , r ... r∨ ∨ ∨ ∨  such as: 

 

[ ]1 n 1 n

n

i w l ... l ,r ... r
i 1

1A w∈ ∨ ∨ ∨ ∨
=

= ∫U                                                                                             (3.31) 

∨ Denote max operation. 

 

3.5.3 Inference  

 

In interval type-2 fuzzy system using the minimum or product t-norms operations, the lth 

activated rule l
i

p
l

1 pF
i 1

F ( x ,..., x )μ
=

=%I gives us interval determined by tow extreme 

l
1 nf ( x ,..., x ) and l

1 nf ( x ,...,x ) same as[26]: 

 

l l l l l
1 n 1 n 1 nF ( x ,...,x ) f ( x ,..., x ), f ( x ,...,x ) f , f⎡ ⎤ ⎡ ⎤= ≡⎣ ⎦ ⎣ ⎦                                           (3.32) 

With lf and lf  are given as: 

 

l l
1 p

l l
1 p

l
1 pF F

l
1 pF F

f ( x ) ... ( x )

f ( x ) ... ( x )

μ μ

μ μ

= ∗ ∗

= ∗ ∗

% %

% %

                                                                                              (3.33) 
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The output set lB
( y )μ % of the lth activated rule lR is type-2 fuzzy set: 

 

l l l l
l lG G

lB b f ( y ) , f ( y )
1( y ) , y Ybμ μ

μ
⎡ ⎤∈ ∗ ∗⎣ ⎦

= ∈∫
% %

%                                                                   (3.34) 

 

( ) ( )yy lB
N
lB ~1~ μμ == U                                                                                                          (3.35) 

 

lG
( y )μ % and lG

( y )μ % represent upper and lower membership function of the set lG
( y )μ % . 

 

3.5.4 Type-reduction and Defuzzification  

 

After fuzzification, fuzzy inference, type-reduction and defuzzification [26] [31] [33], we obtain 

a crisp output. For an interval type-2 FLC, this crisp output is the center of the type-reduced set, 

we know that for an interval type-2 FLC, regardless of singleton or non-singleton fuzzification, 

and minimum or product t-norm, the result of input and antecedent operations (firing strength) is 

an interval type-1 set which is determined by its left-most and right-most points lf and lf . The 

fired output consequent set lB
( y )μ % of rule lR  can be obtained from the fired interval strength 

using (3.33). Then the fired combined output consequent set lB
( y )μ %  can be computed using 

(3.35). 

 

There exist many kinds of type-reduction, such as centroid, center-of-sets, height and modified 

height, the details of which are given in [22] and [33]. In this memory, for illustrative purposes, 

we focus on center-of-sets type-reduction, which can be expressed as: 

 

( ) [ ]
[ ] [ ] ∑

∑
==

=

=

⎥⎦
⎤

⎢⎣
⎡∈⎥⎦

⎤
⎢⎣
⎡∈∈

∫∫∫∫ M

i

i

M

i

ii

ffffffwwwwww
rl

MM

f

wf
yyFFWWy

MMMM
r

M
l

M
rl

l

1

1

,,,,,,

11
cos 1,,,,,

11111

KK (3.36) 
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Where COSy an interval set is determined by two end points ( )rl yandy , 

[ ] [ ] ii
r

i
l

iiiii WwwWwfff ,,;, =∈∈  is the centroid of the interval type-2 consequent set G~  (the 

centroid of a type-2 fuzzy set is described in Appendix C). 

Observe that ( )MM
COS FFWWy KK 11 ,,,  is an interval type-1 set. So, to find 

( )MM
COS FFWWy KK 11 ,,,  we just need to compute the two end-points of this interval. 

Unfortunately, no closed-form formula is available for COSy . 

∑

∑

=

== M

i

i

M

i

ii

f

wf
y

1

1                                                                               (3.37) 

 

The maximum value of y is ry , and the minimum value of y is ly . From (3.37), we see that y is a 

monotonic increasing function with respect to iw , so,  ry  is only associated with i
rw , and 

similarly ly  is only associated with i
lw . In the COS type-reduction method, the two end-points 

of COSy , ( )rl yandy  depend on a mixture of 
ii forf  values. In this case, ( )rl yandy  can be 

represented as: 

∑

∑

=

== M

i

i
l

M

i

i
l

i
l

l

f

wf
y

1

1                                                                                    (3.38) 

 

Where i
lf  denotes the firing strength membership grade either ( )ii forf  contributing to the 

right-most point ly , similarly to ry . 

∑

∑

=

== M

i

i
r

M

i

i
r

i
r

r

f

wf
y

1

1                                                                                   (3.39) 

Where i
rf  denotes the firing strength membership grade either ( )ii forf  contributing to the 

right-most point ry . 
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In order to compute ( )rl yandy , we need to compute { }Mif i
l ,,2,1, K= and{ }Mif i

r ,,2,1, K= . 

This can be done using the exact computational procedure given in [31] [33]. Here we briefly 

provide the computation procedure for ry . Without loss of generality, assume the i
rw s are 

arranged in ascending order M
rrr www ≤≤ K21 . 

1. Compute y in (3.39) by initially setting Mifor
ff

f
ii

i
r ,,1

2
K=

+
= where ( )ii fandf  

have been previously computed using (3.33) and let yy =′ . 

2. Find ( )11 −≤≤ MRR  such that 1+≤′≤ R
rr

R
r wyw . 

3. Compute y in (3.37) when rr
ii

r
ii

r yysetthenRiforffandRiforff =′′=≤= ,, f . 

4. If  yy ′≠′′  then go to step 5. If yy ′=′′  then stop, and set yyr ′′= . 

5. Set y′ equal to y ′′ , and return to step 2. 

 

This 5 step computation procedure has been proven to converge to the exact solution in no more 

than M iterations [31] [33]. Observe that in this procedure, the number R is very important. 

For
ii

r
ii

r ffRiforandffRi ==≤ ,, f , so ry  can be represented as: 

 

( )M
rr

MRR
rr wwffffyy ,,,,,,,, 111

KKK
+

=                                                        (3.40) 

 

The procedure for computing ly  is very similar. Just replace i
l

i
r wbyw , and in step 2, find 

( )11 −≤≤ MLL  , such that 1+≤′≤ L
ll

L
l wyw , and in step 3 

LiforffandLiforff ii
l

ii
l f=≤= , . Then ly can be represented as: 

( )M
ll

MRR
rr wwffffyy ,,,,,,,, 111

KKK
+=                                                        (3.41) 

Because COSy  is an interval set, we defuzzify it using the average of ( )rl yandy , and hence, the 

defuzzified output of an interval type-2 FLC is: 

        
2

rl yy
Centroidofoutput

+
=                                                          (3.42) 
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3.6 Interval type-2 Fuzzy control with PUMA560 3DOF 

In Figure 3.6 we show the structure interval type-2 FLC with PUM560 3DOF, the regulator 

which we use is five classes, do mean has 25 rule bases, the rule base table in Figure 3.7 and in 

Figure3.8 fuzzy sets for error and change error and out put of control T. All the gains of Interval 

type-2 fuzzy controller we do tuning until get good positions with lower error in ideal case. 

 

 

  

Figure 3.5 Karnik-Mendel Algorithms to locate Centroid on Interval type-
2 set [31].
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Error = e (rad) 

( )eμ   

Change in Error = ce (rad) 

( )ceμ  

The control T  (Nm) 

( )Tμ   

Figure 3.8 Fuzzy set type-2 for each articulation. 

Figure 3.7 Rule Base table[39] 

Figure 3.6 Structure Interval type-2 FLC with PUMA560 3DOF 
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3.7 Result of simulation with tow trajectory 

We use same trajectory which used in chapter 2, a circle in space and LEAHY trajectory.  

3.7.1 Result of simulation with circle trajectory 

 

 
Figure 3.9 Position of joints 1,2,3 (rad). 

 

 

Figure 3.10 Position error of joints 1,2,3 (rad). 

 

 
Figure 3.11 Velocity of joints 1,2,3 (rad/s). 
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Figure 3.12 Velocity error of joints 1,2,3 (rad/s). 

 

 

 
Figure 3.13 Torque inputs of the robot joints 1,2,3 (Nm). 

 

 

 
Figure 3.14 Position of joints 1,2,3 (rad) with white noisy in measure of position. 
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Figure 3.15 Position error of joints 1,2,3 (rad) with white noisy. 

 

3.7.2 Result of simulation with LEAHY trajectory 

 

 
Figure 3.16 Position of joints 1,2,3 (rad). 

 

 
Figure 3.17 Position error of joints 1,2,3 (rad). 

 
 
 
 
 
 
 
 
 



Chapter 3                                                                                                                              Type-2 Fuzzy logic controller  

 64

 

 
Figure 3.18 Velocity of joints 1,2,3 (rad/s). 

 

 
Figure 3.19 Velocity change error of joints 1,2,3 (rad/s). 

 

 
Figure 3.20 Torque inputs of the robot joints 1,2,3 (Nm). 
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Figure 3.21 Position of joints 1,2,3 (rad) with white noisy. 

 
Figure 3.22 Position error of joints 1,2,3 (rad) with white noisy. 

By visual inspection from Figure 3.9 to Figure 3.22 we can show that: 

• Good position in ideal case and with white noisy.  

• The positions errors in tow case approximately are equals and are both low. 

• The positions and velocities of joints are continuous. 

• The control torques of the joints 1,2,3 are limited and don’t pass the maximum torque for 

each joints. 

• The good performances are with trajectory of LEAHY because it excites all the dynamics 

of robot PUMA560. 

3.8 Conclusion  

In this chapter, we have presented the main ideas underlying type-2 fuzzy logic and we have 

only started to point out the many possible applications of this powerful computational theory.  

We have discussed in some detail type-2 fuzzy set theory, fuzzy reasoning and fuzzy inference 

systems. At the end, we apply type-2 fuzzy modeling with the Mamdani approaches on 

PUMA560 3DOF. The results of simulations prove that Interval type-2 FLC have good with low 

error and accepted control torques of the joints. In the following chapters, we will perform a 

comparative analysis of the type-1 FLC and interval type-2 FLC responses.  
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Chapter 4 

 

 
Comparative study between Type-1 FLC and Type-2 FLC  
 

 

 

 

4.1 Introduction 

 

We describe in this section the comparison of the simulation results of both approaches. As a 

performance measure we will use the Integral of Square Error (ISE) and Integral of Square 

Torque (IST)[36]. 

 

4.2 Comparative study 

 

We simulated fuzzy logic controller type-1 and type-2 for PUMA560 3DOF with tow trajectory 

test, with and without noisy.  

 

4.2.1 Comparative study between fuzzy logic controller type-1 and type-2 in theory 

 

Type-1 fuzzy set is a generalization of the crisp set, whose membership grades can only be 0 or 1 

Figure 4.3. A type-1 FLC is constructed completely by type-1 fuzzy sets. It contains four 

components rule base, fuzzifier, inference engine and defuzzifier, as shown in Figure 4.1. 

The fuzzy model introduced by Mamdani is also known as the Mamdani model. It is the most 

widely model used by FLCs. The results reported in this memory assume this model. 

Type-l FLC, whose membership functions are type-1 fuzzy sets Figure 4.3, are unable to directly 

handle fuzzy membership functions. Type-2 FLC, the subject of this research memory, in which 

antecedent or consequent membership functions are type-2 fuzzy sets Figure 4.4, can handle 

fuzzy membership functions. 
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Figure 2.2 shows the schematic diagram of a type-2 FLC. It is similar to its type-1 counterpart, 

the major difference being that at least one of the fuzzy sets in the rule base is type-2. Hence, the 

outputs of the inference engine are type-2 sets and a type-reducer is needed to convert them into 

a type-1 set before defuzzification can be carried out. 

Since the outputs of the inference engine are type-2 fuzzy sets, they must be type-reduced before 

the defuzzifier Figure 4.2 (b) can be used to generate a crisp output. This is the main structural 

difference between type-1 and type-2 FLCs. 

The concept of type-2 fuzzy sets was introduced by Zadeh [21] [24] as an extension of the 

concept of an ordinary fuzzy set, a type-1 fuzzy set. Type-2 fuzzy sets have grades of 

membership that are themselves fuzzy [21] [24]. A type-2 membership grade can be any subset 

in [0,1] - the primary membership, and corresponding to each primary membership, there is a 

secondary membership (which can also be in [0,1]) that defines the possibilities for the primary 

membership. A type-1 fuzzy set is a special case of a type-2 fuzzy set; its secondary membership 

function is a subset with only one element, unity. Type-2 fuzzy sets allow us to handle linguistic 

uncertainties, as typified by the adage "words can mean different things to different people. 

A general formula for the extended sup-star composition of type-2 relations is given by Karnik 

and Mendel [22] [33]. Based on this formula, Karnik and Mendel [22]-[37] established a 

complete type-2 FLC theory to handle uncertainties in system parameters. 

Similar to a type-1 FLC, a type-2 FLC includes fuzzifier, rule base, fuzzy inference engine, and 

output processor, as shown in Figure. 4.2a [22]. The output processor includes type-reducer and 

defuzzifier, as shown in Figure 4.2b; it generates a type-1 fuzzy set output (from the type-

reducer) or a crisp number (from the defuzzifier). These type-2 FLC are again characterized by 

IF-THEN rules, but their antecedent or consequent sets are now type-2. Type-2 FLC can be 

used when the circumstances are too uncertain to determine exact membership grades, such as 

when training data is corrupted by noise. 

The most commonly used fuzzifier is a singleton; but, such a fuzzifier is not adequate when data 

is corrupted by measurement noise. In this case, a nonsingleton fuzzifier, that treats each 

measurement as a fuzzy number, should be used. The theory and applications of a type-1 FLC 

with nonsingleton fuzzifier are presented in [38].  

One major disadvantage of type-2 FLC is that they may not be suitable for real-time applications 

because they require large computational power, especially when there are many memberships 

function and the rule base is large. 

In Table 4.1 we resume some differences characteristics between type-1 FLC and type-2 FLC. 

 



Chapter 4                                                                                         Comparative study between Type-1 FLC and Type-2 FLC  

 68

 
Figure 4.1 A type-1 FLC 

 

 
                   Figure 4.2 the structure of a type-2 FLC. The structure of the 

output processing block is shown in Figure (b). 
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Figure 4.3 Membership function type-1 fuzzy set.  

 
Figure 4.4 Membership function interval type-2 fuzzy set.  

 

FLC Type-1 Type-2 

Grades of membership Crisp Fuzzy 

Type-reducer Don't need need 

Computational Small Large 

Program Easy Hard 

Table 4.1 Some differences characteristics between type-1 FLC and interval type-2 FLC. 

 

4.2.2 Comparative study simulation response of PUMA560 3DOF  

The comparison between type-1 FLC and type-2 FLC by using simulated result for Chapter 2 

and chapter 3, In almost all the cases the results for type-2 FLC are better than type-1 FLC. The 

noise witch use is white noise it's integral of square in Table 4.2, noisy energy represent around 

6% from maximum magnitude of position joint for LEAHY trajectory and 2% from maximum 

magnitude of position joint for Circle trajectory. 

Integral of Square Error (ISE)[36] 

[ ]∫=
endt

dtteISE
0

2)(  

Integral of Square Torque (IST) 

( )[ ]∫=
endt

dttTIST
0

2  

 Joint 1 Joint 2 Joint 3 

Energy of Noise 0.1075 0.0244 0.1075 

Table 4.2 Energy of Noise 
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4.2.2.a Comparative study for a circle trajectory  

Simulation 1a: Ideal case using a type-1 FLC 

In this simulation, we did not add uncertainty data (Noise) to the joints, the joints response is 

illustrated in Figure 4.5.  In Table 4.3, we listed the obtained values of ISE and IST for this 

simulation. 

Simulation 2a: Ideal case using a type-2 FLC 

Here, we used the same test conditions of simulation 1a, but in this case, we use the controller’s 

algorithm with type-2 fuzzy logic, its output sequence is illustrated in Figure 4.5, and the 

corresponding the obtained values of ISE and IST are listed in Table 4.3.  

 

The results of Simulation 1a and Simulation 2a obtained are summarized in same figure, by 

visual inspection; we can observe that:  

• In Figure 4.5 shows the joint’s response to a circle trajectory. Note, that both responses 

are very similar. 

• In Figure 4.6 shows the position error of joints 1,2,3 for a circle trajectory.  Note, in this 

case the lower errors were obtained with type-1 FLC. 

• In Figure 4.7 shows the joint’s input torque (Control). Note that both controls are very 

similar but in type-1 FLC we can see there is some pick and interval type-2 FLC without 

pick. 

Using the ISE and IST in ideal case we can get a quantitative comparison in Table 4.3, where we 

can observe small differences favoring the results obtained using a type-1 FLC. We can observe 

in Table 4.3 that using a type-1 FLC we got the lower errors, but with higher torque.  

 
Figure 4.5 This graphic shows the joint’s response to a circle trajectory. 
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Figure 4.6 This graphic shows the position error of joints 1,2,3 for a circle trajectory.   

 
Figure 4.7 This graphic shows the joint’s input torque (Control). 

 

Simulation 3a: PUMA560 with uncertainty (White noisy) uses a type-1 FLC. 

In this case, we simulated with white noise in measurement joints position the energy of these 

noisy in Table 4.2. We are showing in Figure 4.8, the joint’s position, Figure 4.9 the position 

error, and Figure 4.10 the input torque (the input control). 

Simulation 4a: PUMA560 with uncertainty using a type-2 FLC. 

In this simulation, we introduced uncertainty in the joint, in the same way as in Simulation 3a.  

We can easily appreciate in Figure 4.8 and Figure 4.9 and 4.10, we can observe that the lower 

errors are obtained using a type-2 FLC but with little higher torque. 

By visual inspection; we can observe that: 

• In Figure 4.8 This response was obtained with uncertainty presence (White noise), 

compare the joint’s position produced by type-1 and type-2 FLCs.  Note that quite the 

opposite of Figure 4.5, a type-2 FLC works much better than a type-1 FLC when the 
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system has uncertainty. The overshoot error is lower for a type-2 FLC this note is clear in 

Figure 4.9. 

• In Figure 4.9 This response was obtained with uncertainty presence (White noise), 

compare the position errors produced by type-1 and type-2 FLCs. The overshoot error is 

very lower for a type-2 FLC. 

• In Figure 4.10 This response shows the joint’s input torque (Control) with uncertainty 

presence (White noise).  Note that both controls are very similar but in type-1 FLC we 

can see there is some pick and type-2 FLC without pick. 

Using the ISE and IST with uncertainty presence (White noise) we can get a quantitative 

comparison in Table 4.3, where we can observe better response simulation 4a, the results 

obtained using a type-2 FLC with uncertainty presence (White noise). We can observe in Table 

4.3 that using a type-2 FLC we got the lower errors, but with higher torque. 

 
Figure 4.8 This graphic was obtained with uncertainty presence (White noise), compare the 

joint’s position produced by type-1 and type-2 FLCs.   

 
Figure 4.9 This graphic was obtained with uncertainty presence (White noise), compare the 

position errors produced by type-1 and type-2 FLCs. 
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Figure 4.10 This graphic shows the joint’s input torque (Control) with uncertainty presence 

(White noise).   

 

 
Type-1 Type-2 

Ideal case Case with Noise Ideal case Case with Noise 

ISE 

Joint 1 7.1513e-005 0.0180 9.0242e-005 9.54E-004 

Joint 2  3.8241e-004 0.0173 8.9158e-004 0.0091 

Joint 3 1.7454e-004 0.0204 2.4183e-004 0.0016 

IST 

Joint 1 4.6148 5.5391 3.9309 3.6299 

Joint 2 1167.3 1179.4 1236.5 1112.7 

Joint 3 41.2833 34.3775 49.2460 47.5294 

Table 4.3 The integral square error and torque for each joint 

 

4.2.2.b Comparative study for LEAHY trajectory  

Simulation 1b: Ideal case using a type-1 FLC 

In this simulation, we did not add uncertainty data (Noise) to the joints, the joints response is 

illustrated in Figure 4.11.  In Table 4.4, we listed the obtained values of ISE and IST for this 

simulation. 

 

Simulation 2b: Ideal case using a type-2 FLC 

Here, we used the same test conditions of simulation 1b, but in this case, we use the controller’s 

algorithm with type-2 fuzzy logic, its output sequence is illustrated in Figure 4.11, and the 

corresponding the obtained values of ISE and IST are listed in Table 4.4. By visual inspection, 

we can observe that the output system responses of the simulation 1b, and this one, are very 

similar, they are almost overlapped, also we can observe that: 
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• In Figure 4.11 shows the joint’s response to LEAHY trajectory. Note, that both responses 

are similar. 

• In Figure 4.12 shows the position error of joints 1,2,3 for a LEAHY trajectory. Note, in 

this case the lower errors were obtained with type-2 FLC the opposite of Figure 4.5 and 

4.6. 

• In Figure 4.13 shows the joint’s input torque (Control). Note that both controls are very 

similar but in type 1 we can see there is pick with big magnitude and type 2 little  pick 

with small magnitude. 

Using the ISE and IST  in ideal case we can get a quantitative comparison in Table 4.4, where 

we can observe better response in simulation 2b, the results obtained using a type-2 FLC, the 

opposite result of simulation with a circle trajectory in ideal case. We can observe in Table 4.4 

that using a type-2 FLC we got the lower errors, but with higher torque. 

 
Figure 4.11 This graphic shows the joint’s response to LEAHY trajectory. 

 
Figure 4.12 This graphic shows the position error of joints 1,2,3. 
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Figure 4.13 This graphic shows the joint’s input torque (Control). 

 

Simulation 3b: PUMA560 with uncertainty (White noisy) uses a type-1 FLC. 

In this case, we simulated with white noise in measurement joints position the energy of these 

noisy in Table 4.2. We are showing in Figure 4.14, the joint’s position, Figure 4.15 the position 

error, and Figure 4.16 the input torque (the input control). 

 

Simulation 4b: PUMA560 with uncertainty using a type-2 FLC 

In this simulation, we introduced uncertainty in the joint, in the same way as in Simulation 3b.  

By visual inspection; we can observe that: 

• In Figure 4.14 This graphic was obtained with uncertainty presence (White noise), 

compare the joint’s position produced by type-1 and type-2 FLCs.  Note type-2 FLC 

works much better than a type-1 FLC when the system has uncertainty. The overshoot 

error is lower for a type-2 FLC. 

• In Figure 4.15 This graphic was obtained with uncertainty presence (White noise), 

compare the position errors produced by type-1 and type-2 FLCs. The overshoot error is 

very lower for a type-2 FLC. 

• In Figure 4.16 shows the joint’s input torque (Control) with uncertainty presence (White 

noise), the control of Type-2 FLC has higher torque than control of Type-1 FLC in this 

case. 

Using the ISE and IST with uncertainty presence (White noise) we can get a quantitative 

comparison in Table 4.4, where we can observe better response simulation 4b, the results 

obtained using a type-2 FLC with uncertainty presence (White noise). We can observe in Table 

4.4 that using a type-2 FLC we got the lower errors, but with higher torque. 
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Figure 4.14 This graphic was obtained with uncertainty presence (White noise), compare the 

joint’s position produced by type-1 and type-2 FLCs. 

 
Figure 4.15 This graphic was obtained with uncertainty presence (White noise), compare the 

position errors produced by type-1 and type-2 FLCs. 

 
Figure 4.16 This graphic shows the joint’s input torque (Control) with uncertainty presence 

(White noise). 
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Type-1 Type-2 

Ideal case Case with Noise Ideal case Case with Noise 

ISE 

Joint 1 3.5049e-005 0.0233 8.3459e-006 6.1410e-004 

Joint 2 5.0374e-004 0.0090 3.1026e-005 2.4411e-004 

Joint 3 1.8468e-004 0.0294 7.2785e-006 0.0015 

IST 

Joint 1 19.5889 56.1187 33.8643 69.1709 

Joint 2 324.6382 603.4121 361.2606 520.5616 

Joint 3 45.6840 94.5778 52.6138 359.4308 

Table 4.4 The integral square error and torque for each joint 

 

4.2.3 Comparison simulation result for a circle and LEAHY trajectory   

 

From section 4.2.2 with using Table 4.3 and Table 4.4 we can resume our result comparative in 

error and energy about type-1 and type-2 FLC for PUMA560 with 3DOF in Table 4.5 it is 

clearly type-2 FLC is better. 

 

 

Circle trajectory LEAHY trajectory 

Type-1 Type-2 Type-1 Type-2 

Ideal Noisy Ideal Noisy Ideal Noisy Ideal Noisy

Position error Better Bad Good Good Good Bad Better Good 

Table 4.5 Comparative position error for tow trajectory. 

 

4.3 Conclusion  

 

We observed and quantified using ISE and IST that in systems without uncertainties (ideal robot) 

is a better choice to select a type-1 FLC since it works similar to type-2 FLC, and it is easier to 

program and simulate it.  

Unfortunately, real robot are inherently noisy and nonlinear, since any element in the system 

contributes with deviations of the expected measures because of thermal noise, electromagnetic 

interference, etc., moreover, they add nonlinearities from element to element in the model of 

robot. In this case, robot with uncertainty is a better choice to select a type-2 FLC since it doesn’t 

affect by uncertainty.    
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General Conclusion 
 
 
 

In this memory, a type-1 and Interval type-2 FLC are developed for the control of PUMA560 

3DOF manipulators in the presence of dynamical modeling. To alleviate the naturally inherited 

high computational complexity of type-2 FLCs, interval membership functions are adopted. The 

controllers are also compared in similar operating conditions. Numerical simulations showed the 

superiority of type-2 FLC in compensating for high-magnitude uncertainties. This finding   

confirms the theoretical credentials associated to type-2 FLCs in their higher tolerance to the 

imprecise modeling of fuzzy controllers, namely the fuzzy membership functions and knowledge 

base. 

 

We are concluding that using type-2 FLC in real applications can be a better choice since the 

amount of uncertainty in real systems, mostly, is difficult to estimate. But when uncertainty in 

real system is negligible, we can consider it as an ideal system. In this case, it is a better choice 

to select a type-1 FLC since it works similar to type-2 FLC, and the size of type-1 FLC program 

is shorter than type-2 FLC, so it is faster and easier to program and simulate it.  

 

Future work: 

  Implementation interval type-2 fuzzy controller with PUMA560 robot. 

 Optimize the structural and parametric of interval type-2 fuzzy controller. 

 Hybridization interval type-2 fuzzy controller with other robust control such as sliding 

mode and backstepping ... ... 
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Appendix   A 
 
 
Direct geometric model 

 

The Direct Geometric Model (DGM) is the set of relations that defines the location of the end 

effector of the robot as a function of its joint coordinates. For a serial structure, it may be 

represented by the transformation matrix nT0 as: 

 

    n
n

n TqTqTT 1
22

1
11

00                                                             A.01 

 

This relation can be numerically computed using the general transformation matrix j
j T1 given 

by equation [1.2]. 

 

The direct geometric model of a robot may also be represented by the relation: 

 

 qfX                                                                                    A.02 

 

Where q is the vector of joint variables such that: 

 

 nqqqqq 321  

 

Inverse Geometric Model 

 

The direct geometric model of a robot provides the location of the end-effector  in terms of the 

joint coordinates. The problem of computing the joint variables corresponding to a specified 

location of the end-effector is called the inverse geometric problem. This problem is at the center 

of computer control algorithms for robots. It has in general a multiple solution and its complexity 

is highly dependent on the geometry of the robot. The model that gives all the possible solutions 

for this problem is called the Inverse Geometric Model (IGM). 
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Direct kinematic model 

 

The direct kinematic model of a robot manipulator gives the velocity of the end-effector X  in 

terms of the joint velocities q  . It is written as: 

 

 qqJX                                                                             A.03 

 

Where  qJ denotes the (mxn) Jacobian matrix. 

 

Inverse kinematic model 

 

The inverse kinematic model gives the joint velocities q for a desired end-effector velocity X this 

model is equivalent to the inverse differential model, which determines the differential variation 

of the joint variables dq corresponding to a given differential displacement of the end-effector 

coordinates dX. We obtain the inverse kinematic model by solving a system of linear equations 

analytically or numerically. 
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Appendix   B 
 
 

Membership Functions 

 

Defines the membership function of a fuzzy set in an analytic expression that allows the 

membership grade for each element in the defined universe of discourse to be calculated 

Commonly used “shapes” of membership functions are: 

 

Triangular functions, defined as 
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Trapezoidal functions, defined as 
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Linguistic Operators 

 

Fuzzy sets are able to deal with linguistic quantifiers or ‘hedges’. Hedges such as more or less, 

very, not very, slightly, etc, correspond to modifications in the membership function of the fuzzy 

set involved. 
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Linguistic terms are usually used to define each system variable in the fuzzy sets such as PB 

(positive big), PM (positive medium), PS (positive small), ZE (Zero), NS ( negative small), NM 

( negative medium), NB (negative big), etc. Selection of membership functions based on the 

range and shape for a variable is somewhat a subjective design choice. 

• Symmetrically distribute the fuzzy sets across the defined universe of discourse. 

• Use an odd number of fuzzy sets for each variable. 

• Overlap adjacent fuzzy sets to ensure no crisp value fails to correspond to any set. 

• Use triangular or trapezoidal membership functions as these require less computation. 
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Appendix   C 
 

 

Centroid of an Interval Type-2 Set 

 

Observe, from (C.01), that the centroid of an interval type-2 set A
~

, whose domain is discretized 

into N points, is given as: 

 









N

l
l

N

ll

A

x

C
N

1

1
~ 1

1 





                                                                C.01 

 

Where l  belongs to some interval in [0, 1]. Equation (C.01) has the same form as (3.36) except 

for the fact that lx  in (C.01) are crisp numbers unlike iw  in (3.36), therefore. The same 

computational procedure described above can be used to compute
A

C ~  with the lx  and l  in 

(C.01) corresponding to iw and if  in (3.36), respectively. Note that in this case, lx  are crisp If 

N is very large, in Step (4), we can check if yy   instead of yy   for some 

predecided . 
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