République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire Présenté en vue de l'obtention du diplôme d'Ingénieur d'Etat en Génie Mécanique

Intitulé

ETUDE ANALYTIQUE ET EXPERIMENTALE D'UN CAPTEUR SOLAIRE PLAN

Présenté par MOUSSI Mohamed Lamine

Proposé et encadré par

M. SMAILI Arezki M. GUERGUEB Brahim M. SELLAMI Rabah Maitre de conférences, ENP Chargé de cours, ENP Chercheur, UDES

REMERCIEMENTS

Au terme de ce travail,

Je tiens à remercier mes promoteurs M. Arezki SMAILI et M. Brahim GUERGUEB pour leur soutien et leurs précieux conseils ainsi que l'ensemble des enseignants de l'Ecole Nationale Polytechnique -ENP- et ceux de l'ex Ecole Nationale Préparatoire aux Etudes d'Ingéniorat – ENPEI- pour leurs efforts et le savoir qu'ils ont su me transmettre tout au long de mon cursus universitaire.

Je tiens à remercier aussi mon encadreur M. Rabah SELLAMI pour son implication dans le projet ainsi que l'ensemble des employés de l'UDES pour leur collaboration et leur sympathie, et à leur tête, M. le directeur A. CHIKOUCHE de m'avoir ouvert les portes de son centre afin que je puisse y effectuer mon stage et MM. Faouzi et Zoubir pour leur sympathie, leur aide et leur disponibilité.

Je tiens également à remercier le Pr. Mourad HADDADI, professeur à l'Ecole Nationale Polytechnique, de m'avoir fait l'honneur de présider ce jury.

Je remercie aussi M. Hocine BENNOUR d'avoir accepté d'examiner et de critiquer ce modeste travail.

Je tiens à remercier particulièrement M. Salah AIT CHEIKH d'avoir participer au jury en qualité d'invité.

Je n'oublie pas bien sûr mes chers et tendres parents, ma mère, ma mère, ma mère (trois fois comme a dit Errassoul (qpssl), tata nora, tata nora, tata nora (ma deuxième maman), mon merveilleux père, tonton rabah, khtiti, tous mes frères et sœurs, qui m'ont accompagné et soutenu dans toutes mes épreuves, ainsi qu'à toute ma famille.

Je remercie également tous mes amis et mes proches qui m'ont soutenu et ont contribué à la réalisation de ce modeste travail.

Enfin, je tiens à remercier toutes les personnes qui ont participé de près ou de loin à la réalisation de ce mémoire.

DEDICACES

HMes très chers parents, Zoulikha, Nora, Rabah et Rabah,

Hucune dédicace, aucun mot ne saurait exprimer tout le respect, toute
l'affection et tout l'amour que je vous porte. Que ce travail, qui
représente le couronnement de vos encouragements incessants et de
votre patience, soit de mon immense gratitude et de mon éternelle
reconnaissance qui aussi grande qu'elle puisse être ne sera à la hauteur
de vos sacrifices et vos prières pour moi. Je prie Dieu, le tout puissant,
de vous protéger et de vous procurer santé, bonheur et longue vie,

Hkhtiti Imane, merci pour ta générosité, ta tendresse et ta gentillesse,

H mes frères : Hassen, Reda, Said, Mehdi et Nazim ainsi qu'à mes belles-sæurs,

H mes sæurs : Linda, Sonia, Hssia, Fatima et Lila ainsi qu'à mes beaux-frères,

H tous mes oncles et tantes et au reste de ma famille,

H tous mes amis, merci de m'avoir tant aidé chacun à votre façon, H tous mes professeurs et à leur tête Maman et Mme. Belloul, H toutes les personnes qui ont contribuées de près ou de loin à la réalisation de ce mémoire.

RESUME

La production d'eau chaude sanitaire constitue l'une des applications majeures de l'énergie solaire. Nous nous sommes proposé, dans ce travail, de faire l'étude de certains paramètres influant sur les performances des capteurs solaires plans, éléments de base de cette production.

Après une étude théorique approfondie sur le sujet, nous nous sommes penchés sur le volet expérimental. Nous avons commencé par réaliser des plaques absorbantes ainsi que des caissons en carton pour les contenir. Par la suite, ces capteurs nous ont permis d'évaluer l'impact du vitrage et celui du revêtement de l'absorbeur ainsi que celui de paramètres externes (rayonnement, vitesse du vent,...) sur leurs performances.

Mots clés : Chauffe-eau solaire, capteur plan, sélectivité spectrale, émissivité thermique, conversion photothermique, surfaces sélectives, vitrage solaire.

ABSTRACT

Solar water heating is one of the most important solar energy applications. The purpose of the present work is to study the effects of some parameters on solar plate collectors' performances.

After a detailed theoretical study, we focused on the experimental aspect. We began by the realization of the absorbing plates followed by the cardboard boxes which will contain them. Then, the collectors allowed us to assess the impact of the glazing, the absorber's coating and some external parameters (solar irradiance density, wind speed...) on their performances.

Keywords: Solar water heater, plate collector, spectral selectivity, thermal emissivity, photo thermal conversion, selective surfaces, solar glazing.

ملخص

إنتاج المياه الساخنة الصالحة هي أحد التطبيقات الرئيسية للطاقة الشمسية. اقترحنا في هذا العمل دراسة بعض المعايير التي توثر على فعالية المحصلات الشمسية، أساس هذا الإنتاج.

بعد در اسة نظرية شاملة حول هذا الموضوع ، ركزنا على الجانب التجريبي. بدأنا بإنجاز لوحات ماصة و صناديق من الورق المقوى لاحتوائها بعد ذالك، مكنتنا المحصلات من تقييم أثر الغطاء الزجاجي و غلاف الممتص و كذالك المعلمات الخارجية (الإشعاع، سرعة الرياح...) على فعاليتها

TABLES DES MATIERES

Remerciements Dédicaces Résumé Table des matières Liste des figures Liste des tableaux Nomenclature

INTROD	DUCTION	01
СНАРІ	TRE I : GENERALITES	
1.1	Notions d'astronomie et rayonnement solaire	03
1.1.1	Description du soleil	03
1.1.2	Déclinaison solaire	06
1.1.3	Constante solaire	07
1.1.4	Longitude et latitude	07
1.1.5	Repérage du soleil dans le ciel	08
1.1.6	Distribution spectrale du flux solaire	10
1.2	Rappel sur les modes de transfert de chaleur	15
1.2.1	Quelques grandeurs photométriques énergétiques	15
1.2.1.1	Luminance L	16
1.2.1.2	Emittance M	17
1.2.1.3	Eclairement E	17
1.2.2	Conduction	17
1.2.3	Convection	21
1.2.3.1	Définition	21
1.2.3.2	Régime d'écoulement.	22
1.2.4	Rayonnement	23
1.2.4.1	Définition	23
1.2.4.2	Absorption, réflexion et transmission de rayonnement	23
1.2.4.3	Emission du corps noir	24
1.2.4.4	Emission des corps réels	26
1.3	Applications de l'énergie solaire	27
1.3.1	Généralités	27
1.3.2	Conversion photothermique	27
1.3.2.1	Four solaire	29
1.3.2.2	Séchoir solaire	30
1.3.2.3	Distillateur solaire	31
1.3.2.4	Chauffage des piscines	32
1.3.2.5	Chauffage solaire des habitations	33
1.3.2.6	Eau chaude sanitaire	34
1.3.3	Conversion photovoltaïque	34

1.3.4	Conversion photo-ionique					
1.3.5	Conversion photochimique et photo-électrochimique					
1.4	Revue bibliographique					
CHAPIT	TRE 2 : TECHNOLOGIE DU CHAUFFE - EAU SOLAIRE					
2.1	Capteur solaire					
2.1.1	Types de capteurs solaires					
2.1.1.1	Capteur plan					
2.1.1.2	Capteur sous vide 41					
2.1.2	Différences entre les capteurs plans et sous vide					
2.2	Composants du capteur plan					
2.2.1	Couverture transparente					
2.2.1.1	Effet de serre					
2.2.1.2	Propagation du rayonnement dans les milieux semi-transparents					
2.2.1.3	Caractéristiques de la couverture transparente					
2.2.2	Absorbeur					
2.2.2.1	Définition					
2.2.2.1	Support					
2.2.2.3	Revêtement					
2.2.2.3	Réalisation de l'absorbeur					
2.2.3						
	Isolation thermique 65					
2.2.3.1	Généralités					
2.2.3.2	Matériaux utilisés					
2.2.4	Caisson					
2.3	Considérations pratiques					
2.3.1	Etanchéité					
2.3.2	Température					
2.3.3	Rayonnement ultraviolet					
2.3.4	Entartrage					
2.3.5	Corrosion					
2.4	Installation solaire					
2.4.1	Emplacement					
2.4.2	Orientation du capteur					
2.4.3	Inclinaison du capteur					
2.4.4	Tuyauteries					
2.4.5	Cuve de stockage					
2.4.6	Choix du montage					
2.4.6.1	Montage en série					
2.4.6.2	Montage en parallèle74					
2.4.7	Choix du système					
2.4.7.1	Système direct					
2.4.7.2	Système indirect					
2.4.7.3	Modèle en thermosiphon					
2.4.7.4	Modèle à circulation forcée					
∠.→./.→	1/10ucic a circulation forces					
	PDE 2. ETTIDE ANAL VITALLE ET DIMENCIANNENÆRNT					
CHAPII	TRE 3 : ETUDE ANALYTIQUE ET DIMENSIONNEMENT					
2.1	Dilay the mail and the control of					
3.1	Bilan thermique du capteur.					
3.1.1	Hypothèses					
3.1.2	Rendements d'un capteur					
3.1.2.1	Rendements thermiques du capteur					

3.1.2.2	Rendement optique du capteur	80				
3.1.3	Calcul des pertes du capteur	82				
3.1.3.1	Pertes optiques du capteur	82				
3.1.3.2	Pertes thermiques du capteur	82				
3.2	Etude thermique de l'absorbeur	88				
3.2.1	Loi de distribution de la température du fluide	95				
3.2.2	Facteur de conductance du capteur	96				
3.2.2	Rayonnement du seuil	97				
3.4	Pertes de charge	97				
3.4.1	Pertes de charge linéaires	97				
3.4.2	Pertes de charge singulières.	98				
3.4.2	1 cres de charge singuneres	70				
CHAPI	TRE 4 : ETUDE EXPERIMENTALE					
4.1	Réalisation des capteurs	100				
4.1.1	Réalisation des absorbeurs	100				
4.1.2	Réalisation des caissons	105				
4.2	Relevés et discussion.	109				
4.2.1	1 ^{er} et 2 ^{ème} jour	111				
4.2.1.1	Relevés	111				
4.2.1.2	Interprétation	113				
4.2.2	3 ^{ème} et 4 ^{ème} jour	114				
4.2.2.1	Relevés	114				
4.2.2.2	Interprétation	116				
4.2.3	5 ^{ème} jour	116				
4.2.3.1	Relevés	116				
4.2.3.2	Interprétation	118				
4.2.4	6 ^{ème} jour	119				
4.2.4.1	Relevés	119				
4.2.4.2	Interprétation	120				
4.2.5	Variation des performances du capteur 3	120				
4.3	Etude de validation	121				
4.3.1	Calcul de l'émissivité de l'absorbeur	121				
4.3.1.1	1 ^{er} point : 10h35	123				
4.3.1.2	2 ^{ème} point : 12h12	125				
4.3.1.3	3 ^{ème} point : 12h35	126				
4.3.2	Calcul d'erreurs	128				
4.3.3	Discussion	128				
	USION	130				
Bibliographie						
Annexes						

LISTE DES FIGURES

1.1	Coupe schématique du soleil	06					
1.2	Repérage d'un point à la surface de la terre	08					
1.3	Hauteur et azimut	09					
1.4	Repérage du soleil dans le ciel	10					
1.5	Répartition spectrale du flux solaire hors atmosphère						
1.6	Composition du rayonnement dans l'atmosphère	14					
1.7	Composantes du rayonnement solaire reçu au niveau du sol terrestre	14					
1.8	Répartition spectrale du flux solaire au niveau du sol terrestre	15					
1.9	Echange radiatif entre deux surfaces	16					
1.10	Schéma représentant la convention de signe pour un écoulement de chaleur par conduction	18					
1.11	Système de coordonnées cylindriques	19					
1.12	Système de coordonnées sphériques	20					
1.13	a Ecoulement en régime laminaire	22					
	b Ecoulement en régime turbulent	23					
1.14	Réflexion, absorption et transmission du rayonnement	24					
1.15	Four solaire	29					
1.16	Séchoir solaire.	30					
1.17	Distillateur solaire	31					
1.18	Schéma d'un appareil à distillation	32					
1.19	Moquette solaire pour chauffage de piscine	32					
1.20	Schéma d'une maison solaire passive	33					
1.21	Chauffe-eau solaire	34					
1.22	Champ de modules photovoltaïques	35					
2.1	Schéma principe d'une installation	39					
2.2	Constituants du capteur plan	40					
2.3	Capteur à tubes sous vide à circulation directe	41					
2.4	Capteur à tube sous vide «Heat-Pipe»	42					
2.5	•	43					
2.6	<u> •</u>	44					
2.7	Comparatif de l'isolation entre les capteurs plan et sous vide	45					
2.8	Transmission de vitrages en verre de diverses épaisseurs	47					
2.9	a Transmission du rayonnement solaire au travers de la vitre	48					
	b Absorption du rayonnement solaire par l'absorbeur	48					
	c Absorption du rayonnement infrarouge par la vitre	48					
	d Emprisonnement du rayonnement entre l'absorbeur et la vitre	49					
2.10	Analyse des échanges par rayonnement dans l'effet de serre	49					
2.11	Rayons incident, réfléchi et transmis	50					
2.12	Atténuation du rayonnement dans un milieu semi-transparent	51					
2.13	Variation de la transmittance en fonction de l'épaisseur du milieu	51					
2.14	Influence de l'angle d'incidence du rayonnement sur la transmission du verre	55					
2.15	Revêtement en peinture noire mate	58					

2.16	Clipsage et brasage des tubes sur la plaque	62					
2.17	tubes brasés ou clipsés sous la plaque absorbante	63					
2.18	Soudeuse laser YAG	63					
2.19	Absorbeur à tôles parallèles	64					
2.20	Plaque « ROLL BOND » avant et après gonflement						
2.21	Pourcentage du rayonnement intercepté en fonction de l'angle d'incidence	71					
2.22	Systèmes à poursuite mono et bi axial	71					
2.23	a Montage en série	74					
	b montage en parallèle	74					
2.24	a Système direct	75					
	b Système indirect	76					
2.25	a Modèle en thermosiphon	76					
	b Modèle à circulation forcée	78					
3.1	Echange radiatif entre le verre et l'absorbeur	81					
3.2	Indication des différentes surfaces du capteur	82					
3.3	Analogie électrique des flux thermiques à travers un capteur	83					
3.4	Coupe transversale de l'isolant	88					
3.5	Coupe transversale de l'absorbeur	89					
3.6	Distribution tridimensionnelle de température dans la plaque	90					
3.7	Bilan thermique élémentaire de la plaque absorbante	91					
3.8	Bilan thermique élémentaire du fluide	95					
4.1	Découpe des plaques en aluminium	100					
4.2	Nettoyage des plaques en aluminium avec de l'acétone	101					
4.3	Installation de peinture par immersion	101					
4.4	Bandelettes et plaques destinées à la réalisation du bain	102					
4.5	Dispositif de peinture	103					
4.6	Premier bain.	104					
4.7	Impuretés initialement présente dans la peinture sélective	105					
4.8	Montage des caissons	106					
4.9	Protection des caissons avec du papier aluminium	107					
4.10	Perçage des caissons et collage des thermocouples	108					
4.11	Capteur avec et sans vitrage	109					
4.12	Capteurs sur leur support	109					
4.13	Station météo de l'UDES	110					
4.14	Variation des températures durant la journée du 12/07/2010	112					
4.15	Variation des températures durant la journée du 13/07/2010	112					
4.16	Variation des températures durant la journée du 14/07/2010	114					
4.17	Variation des températures durant la journée du 15/07/2010	115					
4.18	Variation des températures durant la journée du 18/07/2010	117					
4.19	Variation des températures durant la journée du 22/07/2010	119					
4.20	Variation des performances du capteur à revêtement sélectif à 4 couches durant l'expérimentation	120					

LISTE DES TABLEAUX

1.1	Distribution de la température et de la densité suivant les différentes couches	06
1.2	Répartition spectrale du flux solaire hors atmosphère	11
1.3	Comparaison entre les énergies solaire et du corps noir	13
1.4	Unités des grandeurs photométriques dans le système énergétique	16
2.1	Caractéristiques optiques de certains matériaux transparents	54
2.2	Principaux revêtements sélectifs pour absorbeurs	61
2.3	Fibres pour isolation thermique	66
2.4	Propriétés typiques d'écume de polyuréthane	66
4.1	Répartition des thermocouples sur les capteurs solaires	111
4.2	Répartition des thermocouples sur les capteurs solaires	117
4.3	Conditions météorologiques au 5 ^{ème} jour à 10h35	123
4.4	Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5 ^{ème} jour à 10h35	123
4.5	Températures mesurées sur le capteur à revêtement classique vitré au 5 ^{ème} jour à 10h35	124
4.6	Conditions météorologiques au 5 ^{ème} jour à 12h12	125
4.7	Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5 ^{ème} jour à 12h12	125
4.8	Températures mesurées sur le capteur à revêtement classique vitré au 5 ^{ème} jour à 12h12	126
4.9	Conditions météorologiques au 5 ^{ème} jour à 14h04	126
4.10	Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5 ^{ème} jour à 12h35	127
4.11	Températures mesurées sur le capteur à revêtement classique vitré au 5 ^{ème} jour à 12h35	127
4.12	Analyse d'erreurs du calcul de validation	128

NOMENCLATURE

a_z	: Azimut	deg.
C	: Vitesse des ondes électromagnétiques	$m s^{-1}$
C_0	: Vitesse des ondes électromagnétiques dans le vide	$m s^{-1}$
C_p	: Capacité calorifique	$J kg^{-1} K^{-1}$
D_{H}	: Diamètre hydraulique	$^{ m m}_{ m W~m}^{ m -2}$
E	: Eclairement	W m
F.	: Rendement de l'ailette	
F'	: Facteur d'efficacité de la plaque absorbante	
F_R	: Facteur de conductance du capteur	-2
G_{i}^{*}	: Accélération de la gravité	$m s^{-2}$
G _i	: Eclairement solaire global incident	W m ⁻²
$G_{\rm s}$: Rayonnement de seuil	W m ⁻²
Gr	: Nombre de Grashof	1
h 1-	: Hauteur	deg.
h 1-	: Constante de PLANCK	$\frac{\mathrm{J}\;\mathrm{s}}{\mathrm{W}\;\mathrm{K}^{\text{-1}}\;\mathrm{m}^{\text{-2}}}$
h_c	: Coefficient de convection	
H :	: Force hydro-motrice	kg m ⁻²
i T	: Angle d'incidence	deg. W sr ⁻¹
I	: Intensité du rayonnement	W Sr W ⁻²
J 1-	: Radiosité	$\frac{{ m W m}^{-2}}{{ m W K}^{-1} { m m}^{-1}}$
k 1-	: Conductivité thermique	w к ш Ј К⁻¹
k_b	: Constante de BOLTZMANN	J K m ⁻¹
$egin{array}{c} k_{\lambda} \ L \end{array}$: Coefficient d'extinction correspondant à la longueur d'onde λ	
	: Distance entre la vitre et la plaque absorbante	${\rm W} \ {\rm m}^{-2} {\rm sr}^{-1} {\rm m}^{-1}$
$L_{\lambda,\theta}$: Luminance monochromatique : Luminance totale	$W \text{ m}^{-2} \text{ sr}^{-1}$
L _θ		
ṁ M	: Débit massique : Emittance totale	${ m kg\ s}^{-1}$ ${ m W\ m}^{-2}$
\mathbf{M}^0	: Emittance d'un corps noir	W m ⁻²
	·	W m ⁻³
M_{λ}	: Émittance monochromatique : Indice de réfraction du milieu	VV 111
n _i Nu	: Nombre de Nusselt	
Pr	: Nombre de Prandtl	
	: Flux thermique	W
q Ra	: Nombre de Rayleigh	**
Re	: Nombre de Rayleigh : Nombre de Reynolds	
S	: Surface	m^2
T	: Température	K
U	: Coefficient de pertes	$W K^{-1} m^{-2}$
V	: Vitesse d'écoulement	m s ⁻¹
ά	: Coefficient d'absorption	111 5
α	: Diffusivité thermique	$\mathrm{m}^2\mathrm{s}^{-1}$
β	: Angle d'inclinaison du capteur	deg.
δ	: Déclinaison solaire	deg.
ΔΡ	: Pertes de charge	Pa
3	: Coefficient d'émissivité thermique	
η	: Rendement thermique	
η_0	: Rendement optique	
$\theta_{\rm t}$: Angle de réfraction	deg.
λ	: Longueur d'onde	m
μ	: Viscosité dynamique	kg m ⁻¹ s ⁻¹
ν	: Viscosité cinématique	$m^2 s^{-1}$
ξ	: Coefficient de perte de charge singulière	
ρ	: Masse volumique	kg m ⁻³
'	1	3

 $\begin{array}{llll} \rho & : Coefficient de réflexion \\ \sigma & : Constante de STEFAN-BOLTZMANN & W m^{-2} K^{-4} \\ \tau & : Coefficient de transmission \\ \Phi & : Flux thermique & W \\ \Phi_L & : Latitude & deg. \\ \Psi & : Longitude & deg. \\ M & : Angle solide & sr \\ \end{array}$

INTRODUCTION

INTRODUCTION

Les hommes ont su capter et employer l'énergie solaire depuis l'antiquité pour plusieurs utilisations : les serres agricoles et la concentration des rayons solaires à l'aide de miroirs (Archimède au **Hème** siècle avant J.C., incendie la flotte romaine à SYRACUSE avec des miroirs plans groupés afin de former un grand miroir concave).

Délaissée par la suite, elle connaît un regain d'intérêt au **XVIIIème** siècle : Buffon, Lavoisier, H.B. de Saussure par exemple, construisaient des machines utilisant cette énergie. Jusqu'au début du **XXème** siècle, les recherches continuent et un certain nombre d'installations sont mises en exploitation. Leur but est toujours de produire de l'énergie mécanique, avec de l'air chaud ou de la vapeur chauffés par l'énergie solaire. Mais l'énergie produite n'était pas suffisante et l'énergie solaire est totalement supplantée par les énergies fossiles (charbon, gaz, pétrole)

Ces ressources énergétiques de la terre qui, en raison de leur abondance, ont longtemps semblé inépuisables apparaissent aujourd'hui limitées.

Il est maintenant universellement admis que les ressources d'énergies classiques vont s'épuiser dans environ deux à trois décennies et, les troubles internationaux liés à leur production montrent la précarité de cette ressource. Les problèmes ne sont souvent jugés dignes de solution que lorsqu'ils ont atteint les dimensions d'une crise. Amorcée au début de la décennie 70 par une poussée de l'inflation, par l'infléchissement de la rentabilité du capital et par la dégradation du système monétaire, elle s'est manifestée avec force entre 1974 et 1979 sous le choc provoqué par les hausses brutales du pétrole. Ce retournement a conduit à mener une étude prévisionnelle des consommations et des sources d'approvisionnement afin de mettre en œuvre une politique énergétique pour les prochaines décennies [1].

Si l'on admet qu'il n'existe aucune chance de survie sans énergie et que gérer c'est prévoir, le développement de nouvelles sources d'énergie prend donc un caractère impératif. C'est en ce sens qu'ont été développées les énergies nucléaire, éolienne, géothermique,... Des études ont montré que le recours à l'énergie solaire en tant que technologie énergétique est non seulement possible et économiquement rentable mais s'avère socialement désirable, voire indispensable dans certaines régions (milieu rural, régions éloignées ou isolées). Elle nous est dispensée à profusion et gratuitement, ne demandant qu'à être récoltée pour être utilisée à bon escient et n'étant la cause d'aucune pollution. La seule limitation à son emploi vient de sa discontinuité (non disponible d'une façon continue) : alternance des jours et des nuits, balancement saisonnier,... [1]

L'une des applications les plus répandues de l'énergie solaire est la production d'eau chaude sanitaire à l'aide de chauffe-eau solaire. Elle a été le domaine de développement de nombreuses technologies et du dépôt de nombreux brevets. En effet, la recherche de l'efficacité a fait que plusieurs études ont été menées afin d'optimiser tous les paramètres liés à l'amélioration du rendement des chauffe-eau solaires : l'isolation, la nature du vitrage, la nature du substrat de l'absorbeur et celle de son revêtement, etc.

Et c'est dans cette optique que ce travail a été entrepris. L'étude de tous les aspects étant très long et fastidieux, nous nous sommes concentrés sur l'étude du revêtement de l'absorbeur en comparant les performances des revêtements classiques et sélectifs ainsi que, sur l'impact de la présence ou non de vitrage.

Donc au final, quel est l'impact réel du vitrage ainsi que le revêtement et sa nature sur les performances du chauffe-eau solaire ?

Afin de répondre à cette problématique, nous entamons ce mémoire par un premier chapitre consacré aux généralités. Nous y présentons quelques données sur le gisement solaire, un petit rappel des principales lois régissant les différents modes de transfert thermique ainsi que les principales applications connues de l'énergie solaire.

Le second chapitre donne un aperçu sur les différentes technologies employées dans les chauffe-eau solaires. D'abord en citant les principaux types de collecteurs solaires présents sur le marché, puis en détaillant les composants du capteur plan et enfin en présentant quelques considérations et modèles d'installation employés en pratique.

Le chapitre suivant s'intéresse au volet thermique i.e. le bilan thermique du capteur où il sera question des différents types de rendement et des pertes thermiques ainsi que le bilan de l'absorbeur.

Le quatrième et dernier chapitre traitera de l'étude expérimentale menée à l'UDES. On y détaillera les étapes suivies pour la réalisation des capteurs avant de nous consacrer à l'étude comparative de leurs différentes performances, comparaison qui fait l'objet de ce mémoire.

GENERALITES

CHAPITRE 1

1.1. NOTIONS D'ASTRONOMIE ET RAYONNEMENT SOLAIRE :

1.1.1. Description du soleil :

Le soleil est une sphère gazeuse composée presque totalement d'hydrogène. Son diamètre est de 1 391 000 km (100 fois celui de la Terre), sa masse est de l'ordre de $1,9866.10^{30}$ kilogrammes et de densité moyenne 1,41 g / cm³. Il est situé à $149,45.10^6$ km de la terre.

Toute l'énergie du Soleil provient des réactions thermonucléaires de fusion qui s'y produisent et qui sont schématisées par le cycle de **BETHE** :

$$4H + 2e^{-}$$
 \longrightarrow $He + 2 V (neutrino) + 26,7 MeV (1-1)$

Elles transforment à chaque seconde 564.106.000 tonnes d'hydrogène H en 560.106.000 tonnes d'Hélium He. La différence de 4 millions de tonnes est dissipée sous forme d'énergie $(E = mC^2)$, ce qui représente une énergie totale de 36.10^{22} kW. [2]

Le soleil est un astre, et comme tous les astres, il est constitué de plusieurs couches bien distinctes qui vont former la structure interne du soleil et son atmosphère comme le montre la figure (1-1) [3]. Ces deux parties sont séparées par la surface du Soleil à 1 R_S définie comme étant la région dans laquelle le plasma devient subitement optiquement mince.

L'intérieur du soleil est formé de trois couches :

- Le cœur ou noyau $0 < R < 0.23R_S$:

Le noyau représente environ 40% de la masse totale du soleil est une zone particulièrement importante puisqu'il est le siège des réactions thermonucléaires donnant lieu à l'énergie dégagée par le Soleil sous forme de rayonnement. C'est de là que provient toute l'énergie solaire, traversant toutes les couches jusqu'à la surface, puis l'espace interplanétaire. La température est de l'ordre de 15 millions de Kelvin, la densité de 150.10³ kg.m⁻³ et La pression y est de 3.10¹⁶ Pa. Ce sont les fortes températures et pression qui permettent aux réactions thermonucléaires de s'initier.

- La zone radiative $0.23 R_S < R < 0.7 R_S$:

L'énergie libérée se propage tout d'abord sous forme de photons vers la surface à travers cette zone. Dans cette région opaque, les photons sont absorbés et réémis de nombreuses fois par les différents éléments qui composent le plasma. De ce fait, la traversée d'un photon dans la zone radiative dure en moyenne plus d'un million d'années, au lieu de seulement 2 secondes si cette région était optiquement mince.

A mesure que l'on s'approche de la surface, la densité décroît aux environs de 150 kg.m^{-3} , la pression décroît jusqu'à 6.10^{11} Pa, et la température passe de 8.10^6 à $1.3.10^6$ K.

On pense que cette zone contient entre un tiers et la moitié de la masse du Soleil.

- La zone de convection $0.7 R_S < R < 1 R_S$:

La zone de convection est la dernière couche interne du Soleil et s'étend jusqu'à la surface solaire. La température décroît suffisamment (jusqu'à 6000 K) pour que des atomes se forment. La densité aussi décroît considérablement. L'énergie n'est plus transportée par rayonnement mais par convection vers la surface : le rayonnement chauffe la matière qui monte, se refroidit à proximité de la surface et se renfonce alors. La signature de cette convection est visible au niveau de la photosphère sous la forme de granulation.

L'atmosphère solaire est, elle aussi, formée de trois couches :

- La photosphère :

La photosphère est la première couche, dont provient 99% de la lumière, de l'atmosphère solaire. C'est une zone d'environ 500 km d'épaisseur où la température décroît avec l'altitude de 5800K à 4200K (températures calculées à partir de la loi de WIEN : la photosphère rayonnant approximativement comme un corps noir).

Nous observons dans cette région tout un réseau de cellules de granulation quasicirculaires de rayons variant entre 800 et 30000 km constituant le sommet des cellules de convection sous-jacentes.

- La chromosphère:

La chromosphère est un milieu, très hétérogène, composé de structures diverses telles que les spicules, les fibrilles, les protubérances et les filaments qui s'étendent sur des hauteurs de plusieurs milliers de kilomètres qui s'étend de 500 à 2000 km d'altitude. Visible comme un fin liseré rougeâtre autour du Soleil lors des éclipses totales de Soleil, La particularité essentielle de cette couche de l'atmosphère du Soleil est que la température croît avec l'altitude, passant de 4200K à près de 10000K. Cette croissance de la température avec la distance au Soleil reste l'un des grands mystères de la physique solaire actuelle.

- La couronne:

La couronne est le nom que l'on donne à l'ensemble de l'atmosphère extérieure du Soleil qui s'étend jusque dans le milieu interplanétaire (la partie interne de la couronne interne s'étend sur un rayon de 1,5R_S). C'est un milieu très peu dense dont la température atteint quelques 2 millions de Kelvin (on le sait grâce à l'observation de certains ions qui ne peuvent exister qu'à des températures très élevées). Ce très fort gradient de température entre la chromosphère et la couronne se produit dans la région de transition dont l'épaisseur a été évaluée à quelques centaines de kilomètres. La couronne est souvent le siège de phénomènes violents comme les éruptions, qui se caractérisent par une brusque libération d'une quantité importante d'énergie, ou comme les éjections de masse coronale (en anglais Coronal Mass Ejection, CME), "bulles" de matière coronale qui s'envolent dans le milieu interplanétaire.

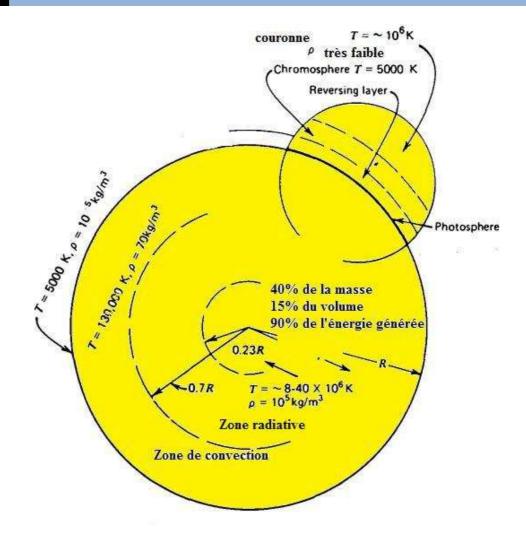


FIG 1-1: Coupe schématique du soleil [3]

Tableau 1-1: Distribution de la température et de la densité suivant les différentes couches

Distance/ centre (10 ⁴ km)	0	16	35	49	69,6
Température (10 ³ K)	15000	8000	3400	1300	6
Densité (g/cm³)	150	41	1	0,08	0

1.1.2. Déclinaison solaire :

La déclinaison solaire est l'angle δ formé par la direction du soleil et le plan équatorial terrestre. L'inclinaison de l'axe des pôles sur le plan de l'orbite terrestre entraîne le fait que la déclinaison solaire varie au cours de l'année entre -23° 27' au solstice d'hiver (21 décembre)

et + 23° 27' au solstice d'été (21 juin) en passant par 0° aux équinoxes de printemps (21 mars) et d'automne (21 septembre).

La déclinaison solaire peut être calculée par la formule approchée donnée par COOPER (1969) :

$$\delta = 23,45 \sin\left[\frac{360}{365}(284+j)\right] \tag{1-2}$$

Avec **j** : jour de l'année variant de 1 à 365.

1.1.3. Constante Solaire:

La Terre étant à une distance de $149,45.10^6$ km du Soleil, elle ne reçoit, donc, pas la totalité de l'énergie émise par le soleil. En fait, elle ne reçoit « que » environ $1,8.10^{17}$ W.

La valeur du flux de rayonnement solaire E reçu par une surface perpendiculaire aux rayons solaires placée à la limite supérieure de l'atmosphère terrestre (soit à environ 80 km d'altitude) varie au cours de l'année avec la distance Terre/Soleil qui varie saisonnièrement de \pm 1,6 % à cause de la nature elliptique de la trajectoire de la terre autour du soleil. Sa valeur moyenne E_0 est appelée la constante solaire, elle vaut E_0 = 1367 W.m⁻² [3].

En première approximation, on peut calculer la valeur de ${\bf E}$ en fonction du rang du jour de l'année ${\bf j}$ par :

$$E = 1367(1 + 0.033\cos 0.984j) \tag{1-3}$$

1.1.4. Longitude et latitude :

Tout point sur la surface de la terre est repéré par deux coordonnées angulaires : la latitude et la longitude (**figure 1-2**).

 La latitude est l'angle Φ_L formé, en un point donné, par la verticale en ce point avec le plan de l'équateur.

Elle varie de:

 Φ_L = - 90° pour l'hémisphère Sud jusqu'à Φ_L = + 90° pour l'hémisphère Nord en passant par Φ_L = 0° à l'équateur.

 La longitude est l'angle Ψ formé, en un lieu donné, par la verticale en ce pont et le plan méridien de GREENWICH en Angleterre. il existe 24 méridiens séparés chacun de 15° donnant ainsi naissance aux 24 fuseaux horaires. Les lieux situés à l'est sont comptée avec le signe positif $(+\Psi)$ et ceux situés à l'ouest avec un signe négatif $(-\Psi)$.

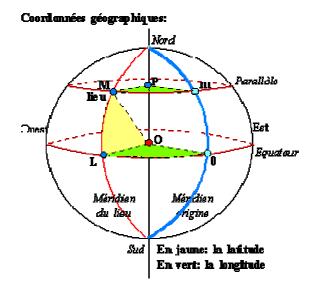


FIG 1-2 : Repérage d'un point à la surface de la terre

1.1.5. Repérage du Soleil dans le Ciel :

La position du soleil dans le ciel pour un lieu et un temps donnés peut être représentée selon deux systèmes de coordonnées :

A/ Un système de coordonnées horizontales constitué par le plan horizontal et la normale à ce plan. Il a comme coordonnées l'azimut a_z et la hauteur h.

- Azimut a_z est l'angle que fait la projection de la direction du soleil sur le plan du lieu, avec la direction du sud mesuré positivement vers l'ouest et négativement vers l'est.
- Hauteur h est l'angle que fait la direction du soleil avec sa projection. son complément avec la verticale est appelé angle Zénithal.

Ces deux angles sont fonction de la latitude du lieu, de la date (jour de l'année) et de l'heure de la journée. La figure (1-3) ci-dessous nous aide à mieux appréhender ces deux angles.

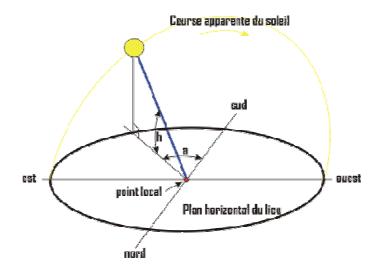


FIG 1-3: Hauteur et azimut

La hauteur et l'azimut sont exprimés en fonction de la latitude Φ_L , de la déclinaison solaire δ et de l'angle horaire \mathbf{m} par les relations [4] :

$$\sin h = \sin \Phi_L \sin \delta + \cos \Phi_L \cos \delta \cos \omega \tag{1-4}$$

$$\sin a_z = \frac{\cos \delta \sin \omega}{\cos h} \tag{1-5}$$

A midi vrai, on a : $m = 0 \longrightarrow \cos \omega = 1$. En remplaçant dans l'équation (1-4), on obtient :

$$\sin h = \sin \Phi_L \sin \delta + \cos \Phi_L \cos \delta = \cos(\Phi_L - \delta)$$

Soit encore:

$$\cos\left(\frac{\pi}{2} - h\right) = \cos(\Phi_L - \delta)$$

Et on trouve:

$$h = \frac{\pi}{2} - \Phi_L + \delta = h_{max} \tag{1-6}$$

Par contre dans le cas où on se positionnerait à l'heure du lever et du coucher du soleil, on aura : h=0 \longrightarrow Sin h=0.

En remplaçant dans l'équation (1-4), on aura :

$$\sin \Phi_L \sin \delta + \cos \Phi_L \cos \delta \cos \omega = 0$$

Soit encore:
$$\cos \omega = -\frac{\sin \Phi_L \sin \delta}{\cos \Phi_L \cos \delta} = -\tan \Phi_L \tan \delta$$

Et alors:

$$\omega = \cos^{-1}(-\tan\Phi_L\tan\delta) \tag{1-7}$$

Ce système de coordonnées est représenté par la figure (1-4A).

B/ Un système de cordonnées équatoriales qui prend comme référence le plan de l'équateur et qui a comme coordonnées la déclinaison solaire δ et l'angle horaire m. Il est représenté par la figure (**l-4B**).

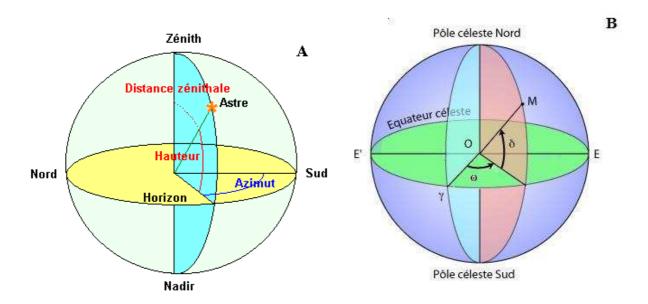


FIG 1-4: Repérage du soleil dans le ciel

1.1.6. Distribution spectrale du flux solaire :

Le tableau (1-2) ci-dessous montre la distribution spectrale du flux solaire hors atmosphère. Les données qui y sont présentées ont été recueillies grâce à des mesures faites en haute altitude ou carrément dans l'espace par le WRC : World Radiation Center.

Tableau 1-2 : Répartition spectrale du flux solaire hors atmosphère [3]

λ μm	G _{sc,λ} W/m² μm	$f_{0-\lambda}$	λ μm	$G_{sc,\lambda}$ W/m² μm	f ₀₋ 2	λ μm	$G_{sc,\lambda}$ W/m 2 μ m	f _{0-\lambda}
0.250	13.8	0.002	0.520	1820.9	0.243	0.880	965.7	0.621
0.275	224.5	0.005	0.530	1873.4	0.257	0.900	911.9	0.635
0.300	542.3	0.012	0.540	1873.3	0.271	0.920	846.8	0.648
0.325	778.4	0.023	0.550	1875.0	0.284	0.940	803.8	0.660
0.340	912.0	0.033	0.560	1841.1	0.298	0.960	768.5	0.671
0.350	983.0	0.040	0.570	1843.2	0.311	0.980	763.5	0.683
0.360	967.0	0.047	0.580	1844.6	0.325	1.000	756.5	0.694
0.370	1130.8	0.056	0.590	1782.2	0.338	1.050	668.6	0.720
0.380	1070.3	0.065	0,600	1765.4	0.351	1.100	591.1	0.743
0.390	1029.5	0.071	0.620	1716.4	0.377	1.200	505.6	0.783
0.400	1476.9	0.079	0.640	1693.6	0.401	1.300	429.5	0.817
0.410	1698.0	0.092	0,660	1545.7	0.424	1.400	354.7	0.846
0.420	1726.2	0.104	0.680	1492.7	0.447	1.500	296.6	0.870
0.430	1591.1	0.117	0.700	1416.6	0.468	1.600	241.7	0.890
0.440	1837.6	0.129	0.720	1351.3	0.488	1.800	169.0	0.921
0.450	1995.2	0.143	0.740	1292.4	0.507	2.000	100.7	0.941
0.460	2042.6	0.158	0.760	1236.1	0.526	2.500	49.5	0.968
0.470	1996.0	0.173	0.780	1188.7	0.544	3.000	25.5	0.981
0.480	2028.8	0.187	0.800	1133.3	0.561	3.500	14.3	0.988
0.490	1892.4	0.201	0.820	1089.0	0.577	4.000	7.8	0.992
0.500	1918.3	0.216	0.840	1035.2	0.593	5.000	2.7	0.996
0.510	1926.1	0.230	0.860	967.1	0.607	8.000	0.8	0.999

Avec:

 $G_{sc,\lambda}$: Flux solaire irradiant pour la longueur d'onde λ en $W/m^2.\mu m$.

 $f_{0-\lambda}$: Fraction cumulée de l'énergie solaire entre les longueurs d'ondes 0 et λ .

Les données du tableau (1-2) ont été compilées afin de générer la courbe représentée par la figure (1-5).

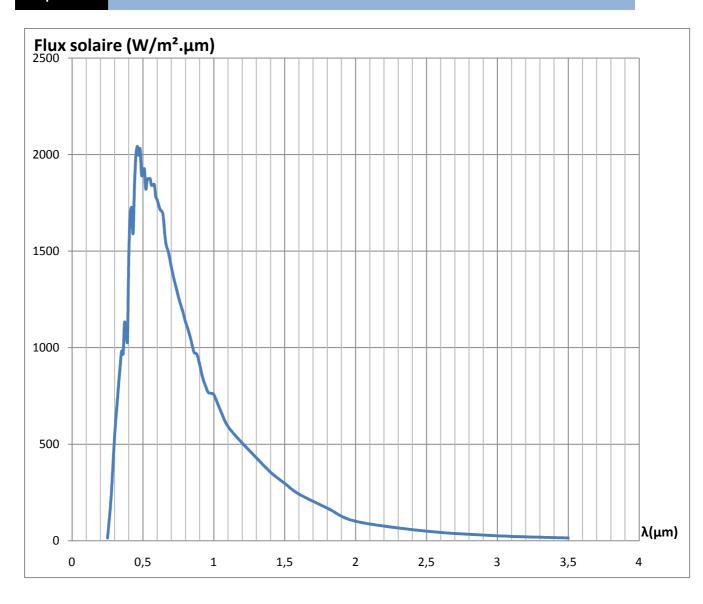


FIG 1-5: Répartition spectrale du flux solaire hors atmosphère

Des études entreprises par **THEKAEKARA** (1976) à partir des observations faites par des satellites de la **NASA**, ont permis d'assimiler le rayonnement du soleil aux rayonnement d'un corps noir porté à la température T = 5762 K.

Tableau 1-3 : Comparaison entre les énergies solaire et du corps noir

Nature du rayonnement	Longueur d'onde (µm)	Distribution énergétique solaire (%)	Distribution énergétique solaire du corps noir à 5762 K (%)
Ultra violet	λ<0,38	6,5	9,9
Visible	0,38<λ<0,78	48,0	46,4
Infrarouge	0,78<λ<∞	45,6	43,6

On note que l'écart entre les résultats obtenus est inférieur à 3%, ce qui permet de supposer que le soleil rayonne, approximativement, comme un corps noir à la température de 5762 K.

La figure (1-6) ci-dessous nous montre, de manière détaillée, la composition du rayonnement dans l'atmosphère de la terre. En effet, le rayonnement solaire incident à la limite de l'atmosphère se décompose, lors de sa traversée, en une composante directe qui atteint directement la surface terrestre et une composante diffuse qui atteint la surface après absorption et réflexion dans l'atmosphère. Au moins 30 % du rayonnement solaire 1ntercepté par la terre et son atmosphère est réfléchis vers l'espace. Une partie du rayonnement qui atteint la terre est diffusée dans toutes les directions au cours de la traversée de l'atmosphère, en rencontrant des molécules d'air, des aérosols et des particules de poussière (c'est ce rayonnement diffus, appartenant notamment à la frange bleue du spectre visible qui est responsable de la couleur bleue du ciel clair). D'autre part, la vapeur d'eau, le gaz carbonique et l'ozone de l'atmosphère absorbent 15 à 20 % du rayonnement solaire.

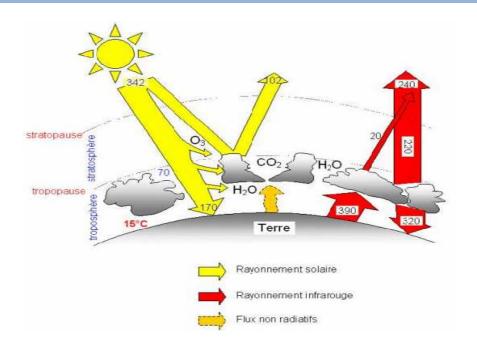


FIG 1-6 : Composition du rayonnement dans l'atmosphère

Quant à la figure (1-7), elle ne représente de manière plus générale que le rayonnement solaire reçu à la surface de la terre.

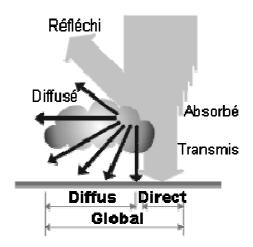


FIG 1-7: Composantes du rayonnement solaire reçu au niveau du sol terrestre

La somme du rayonnement solaire direct S et du rayonnement solaire diffus D constitue le rayonnement solaire global G. Le rayonnement solaire global est composé de rayonnement de différentes longueurs d'onde et intensités figure (1-8).

FIG 1-8: Répartition spectrale du flux solaire au niveau du sol terrestre [5]

1.2. RAPPEL SUR LES MODES DE TRANSFERT DE CHALEUR :

Avant de citer les différentes lois qui régissent le rayonnement thermique d'un corps porté à une température T et qui échange de l'énergie avec d'autres corps, il est recommandé de passer par quelques définitions concernant les grandeurs photométriques énergétiques fondamentales.

1.2.1. Quelques grandeurs photométriques énergétiques :

Ces grandeurs peuvent être:

- Monochromatique (notation par un indice λ) pour les longueurs d'onde comprises entre λ et $(\lambda+d\lambda)$ ou totale par intégration sur toutes les longueurs d'onde.
- Directionnelle (notation par un indice θ) dépendant de la direction d'émission ou hémisphérique par intégration sur le demi espace supérieur.

Comme il existe plusieurs grandeurs photométriques, il faut savoir transposer les données, dont on dispose, en paramètres utiles afin de pouvoir résoudre les problèmes

auxquels nous sommes confrontés. Pour ce faire, il existe un certain nombre de relations reliant les principales grandeurs entre elles [6].

Le tableau (1-4) ci après résume les unités à employer pour ces différentes grandeurs photométriques dans le système énergétique.

Grandeurs	Unités
Flux Ø	W
Intensité I	W.sr ⁻¹
Luminance L	W.m ⁻² .sr ⁻¹
Emittance M	W.m ⁻²
Eclairement E	W.m ⁻²
Quantité de lumière	J

Tableau 1-4: Unités des grandeurs photométriques dans le système énergétique

1.2.1.1. Luminance L :

C'est le flux émis par unité de surface apparente, par unité d'angle solide et par unité de longueur d'onde. C'est une grandeur directionnelle. Elle peut être monochromatique ou totale (**figure 1-9**).

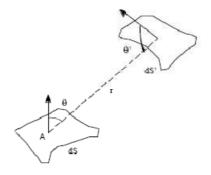


FIG 1-9: Echange radiatif entre deux surfaces

Si l'on considère un élément de surface dS émettant vers un élément de surface dS', on aura :

Luminance monochromatique

$$L_{\lambda,\theta} = \frac{d\emptyset}{d\Omega.dS.\cos\theta.d\lambda} \tag{1.8}$$

Luminance totale

$$L_{\theta} = \frac{d\emptyset}{d\Omega.dS.\cos\theta} \tag{1.9}$$

Avec:

 $d\Omega = \frac{ds'.cos \theta'}{r^2}$ L'angle solide sous lequel on voit, de S, la surface dS' et θ' l'angle entre la normale à dS' et la droite joignant les deux surfaces.

1.2.1.2. *Emittance M*:

C'est le flux émis par unité de surface dans tout le demi-espace supérieur. C'est une grandeur hémisphérique.

Emittance monochromatique

$$M_{\lambda} = \frac{d\emptyset}{dS.d\lambda} \tag{1.10}$$

Emittance totale

$$M = \frac{d\emptyset}{dS} \tag{1.11}$$

1.2.1.3. Eclairement E :

Contrairement à la luminance et à l'émittance qui sont des grandeurs relatives à la surface émettant un rayonnement, l'éclairement est une grandeur relative à la surface le recevant. On peut dire donc que la notion d'émittance est remplacée, dans le cas d'un rayonnement incident, par l'éclairement de la surface réceptrice.

Si dS est l'aire de la surface recevant un flux $d\emptyset$, alors :

$$E = \frac{d\emptyset}{dS} \tag{1.12}$$

1.2.2. Conduction [7]:

La conduction est un phénomène se traduisant par l'écoulement de la chaleur à travers un milieu qu'il soit solide, liquide ou gazeux dès l'instant qu'il existe un gradient de température plus ou moins important d'une région où la température est élevée vers une autre où elle est moindre, ou entre différents milieux mis en contact.

La transmission de chaleur se fait par contact direct sans un déplacement appréciable des molécules. Ce transfert d'énergie peut s'effectuer par contact élastique (par exemple dans les fluides) ou, par diffusion des électrons comme dans les métaux.

La conduction est le seul mécanisme au moyen duquel la chaleur peut s'écouler dans les corps solides. Cet écoulement a fait l'objet d'une convention visant à en normaliser le signe comme le montre la figure (1-10).

La relation fondamentale de la transmission de chaleur par conduction a été proposée par le savant Français J.B. J. FOURRIER en 1822. Elle établit que le flux de chaleur par conduction transmis dans le matériau est égal au produit des trois paramètres :

- **k** : Conductibilité thermique
- A : Aire de la section à travers laquelle s'écoule la chaleur
- $-\frac{dT}{dx}$: Le gradient de température

$$q = -kA\frac{dT}{dx} ag{1-13}$$

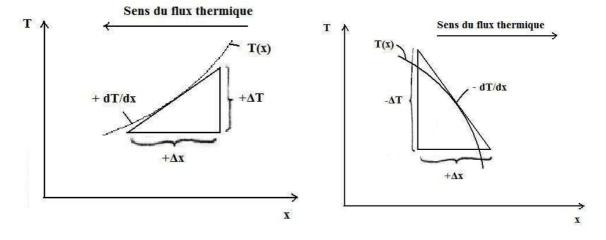


FIG 1-10 : Schéma représentant la convention de signe pour un écoulement de chaleur par conduction

L'équation générale de la conduction de chaleur régissant la répartition des températures et l'écoulement de chaleur par conduction dans un solide isotrope en coordonnées cartésiennes est la suivante :

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\dot{q}}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
 (1-14)

Où α est la diffusivité thermique : $\alpha = \frac{k}{\rho C}$

Elle peut, toutefois, être exprimée en coordonnées cylindriques (figure 1-11):

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$
(1-15)

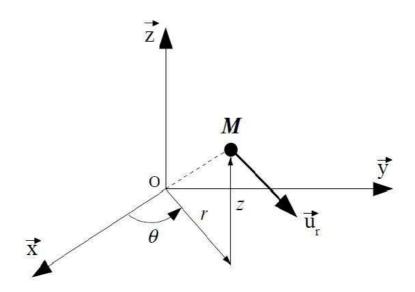


FIG 1-11: Système de coordonnées cylindriques

Ou alors en coordonnées sphériques (figure 1-12):

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) + \frac{1}{r^2\sin\phi}\frac{\partial}{\partial\phi}\left(\sin\phi\frac{\partial T}{\partial\phi}\right) + \frac{1}{r^2\sin^2\phi}\frac{\partial^2 T}{\partial\theta^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$
(1-16)

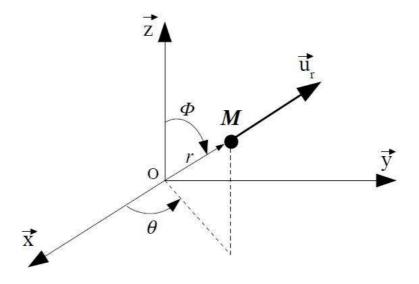


FIG 1-12 : Système de coordonnées sphériques

Cette équation, bien sûr, est une équation générale qui ne tient compte d'aucune hypothèse simplificatrice. En effet, elle décrit un phénomène de conduction quadridimensionnel c'est-à-dire qu'il y'a transmission de chaleur en tris dimensions en plus de la dimension temporelle (régime transitoire) en plus de la présence d'une source de chaleur.

Si le système ne contient pas de source de chaleur, l'équation se réduit à l'équation de FOURRIER :

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
 (1-17)

Dans le cas d'un régime permanent et en présence d'une source de chaleur, l'équation est appelée équation de POISSON :

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = 0 \tag{1-18}$$

Pour un régime permanent et en l'absence d'une source de chaleur, la répartition des températures doit satisfaire l'équation de LAPLACE :

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \tag{1-19}$$

Enfin, dans le cas le plus simple, quand l'écoulement de chaleur est permanent et unidimensionnel, on obtient l'équation suivante :

$$\frac{\partial^2 T}{\partial x^2} = 0 \qquad \Longrightarrow \qquad \frac{dT}{dx} = Cte \tag{1-20}$$

1.2.3. Convection [8]:

1.2.3.1. *Définition* :

La convection est un mode de transfert d'énergie par l'action combinée de la conduction, de l'accumulation de l'énergie et du mouvement du milieu. Ce mode d'échange de chaleur existe au sein des milieux fluides dans lesquels il est généralement prépondérant. C'est un mode de transfert où, s'effectuent simultanément, des transferts de masse et de chaleur.

Le transfert d'énergie par convection d'une surface dont la température est supérieure à celle du fluide qui l'entoure s'effectue en plusieurs étapes. D'abord, la chaleur s'écoule par conduction de la surface aux molécules du fluide adjacentes. L'énergie, ainsi transmise, sert à augmenter la température et l'énergie interne de ces molécules du fluide. Ensuite, les molécules vont se mélanger avec d'autres molécules situées dans une région à basse température et transférer une partie de leur énergie. Dans ce cas, l'écoulement transporte le fluide et l'énergie. L'énergie est, à présent, emmagasinée dans les molécules du fluide et elle est transportée sous l'effet de leur mouvement.

La transmission de chaleur par convection est désignée selon le mode d'écoulement du fluide par convection naturelle ou convection forcée. Lorsqu'on note la présence de courants dus, simplement, à la différence de masse volumique elle-même due au gradient de température et à un champ de forces extérieures (la pesanteur), on parle de convection naturelle ou bien libre. Par contre, si le mouvement du fluide est provoqué par une cause externe indépendante des différences de température (une pompe ou un ventilateur par exemple), le processus est appelé convection forcée.

L'étude du transfert de chaleur par convection permet de déterminer les échanges de chaleur se produisant entre un fluide et une paroi.

Le flux de chaleur transmis par convection, entre une surface et un fluide peut être évalué par la relation :

$$q_c = h_c. A. \Delta T \tag{1-21}$$

Avec:

 q_c : Flux de chaleur par convection.

A: Aire de la surface de transmission de chaleur.

ΔT : Différence entre la température de surface T_s et la température du fluide T_f.

h_c : Coefficient du transfert de chaleur.

Cette relation a été proposée par le savant Isaac NEWTON en 1701. Elle fut longtemps utilisée par les ingénieurs malgré que cette relation soit une définition de h_c .

La détermination du coefficient d'échange de chaleur par convection est difficile car le mécanisme de convection est très complexe.

1.2.3.2. Régime d'écoulement :

Compte-tenu du lien entre le transfert de masse et le transfert de chaleur, il est nécessaire de considérer le régime d'écoulement.

Considérons à titre d'exemple l'écoulement d'un fluide dans une conduite :

- En régime laminaire (**figure 1-13a**), l'écoulement s'effectue par couches pratiquement indépendantes.

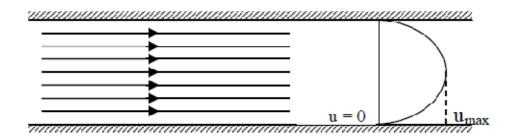


FIG 1-13: (a) Ecoulement en régime laminaire

Entre deux filets fluides adjacents les échanges de chaleur s'effectuent donc :

- Par conduction uniquement si l'on considère une direction normale aux filets fluides.

- Par convection et conduction (négligeable) si l'on considère une direction non normale aux filets fluides.

En régime turbulent (**figure 1-13b**), l'écoulement n'est pas unidirectionnel :

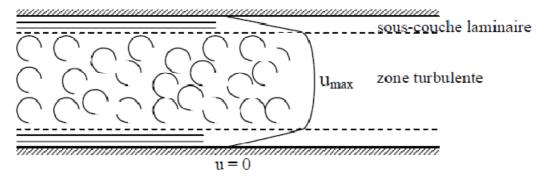


FIG 1-13: (b) Ecoulement en régime turbulent

L'échange de chaleur dans la zone turbulente s'effectue par convection et conduction dans toutes les directions. (Notons que la conduction est généralement négligeable par rapport à la convection).

1.2.4. Rayonnement [9]:

1.2.4.1. *Définition* :

On applique généralement le terme de rayonnement à tous les phénomènes qui se traduisent par la transmission de l'énergie au moyen des ondes électromagnétiques. Le rayonnement se propage à la vitesse de la lumière.

1.2.4.2. Absorption, réflexion et transmission du rayonnement :

Lorsqu'un rayonnement tombe sur un corps, une partie est absorbée, une autre réfléchie et une dernière transmise comme l'indique la figure (1-14). La relation entre l'énergie absorbée, réfléchie et transmise s'écrit :

$$\alpha + \tau + \rho = 1 \tag{1-22}$$

Dans laquelle:

 α : Coefficient d'absorption, c'est \grave{a} dire la fraction du rayonnement incident absorbé par le corps.

 τ : Coefficient de transmission, c'est à dire la fraction du rayonnement incident transmis à travers le corps.

 ρ : Coefficient de réflexion, c'est à dire la fraction du rayonnement incident réfléchi par la surface du corps.

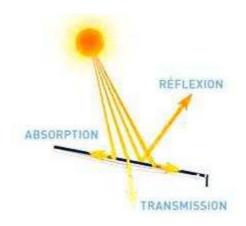


FIG 1-14: Réflexion, absorption et transmission du rayonnement

La réflexion du rayonnement peut soit être diffuse soit régulière.

Si une surface est bien polie et lisse, l'angle d'incidence sera égale à l'angle de réflexion et le rayonnement réfléchi se trouvera dans le plan d'incidence : c'est la réflexion régulière.

A contrario, la réflexion du rayonnement à partir d'une surface rugueuse se dirige pratiquement dans toutes les directions : c'est la réflexion diffuse.

1.2.4.3. Emission du corps noir :

Le corps noir est un concept théorique qui est tout simplement hors de portée de l'expérience du moins en considérant l'avancée technologique actuelle.

On appelle corps noir tout corps ayant la capacité d'absorber la totalité du rayonnement lui parvenant et qui, de ce fait, n'en réfléchie rien.

L'intérêt du corps noir réside dans le fait qu'il sert de référence pour définir les propriétés radiatives d'un corps réel.

A. Loi de STEFAN – BOLTZMANN:

La loi de STEFAN-BOLTZMANN stipule que le pouvoir émissif, émittance ou exitance d'un corps noir M^0 , émis par unité de surface, est directement proportionnel à la puissance quatrième de la température absolue.

$$M^0 = \sigma T^4 \tag{1-23}$$

Où:

 $\sigma = 5,67.10^{-8} \text{ W/m}^2.\text{K}^4$ est appelée constante de STEFAN-BOLTZMANN.

B. Loi de PLANCK:

Cette loi fixe la contribution respective de chaque longueur d'onde dans l'émission du corps noir. L'émittance monochromatique du corps noir est donnée par :

$$M_{\lambda}^{0} = \frac{2\pi hC^{2}\lambda^{-5}}{e^{\frac{hC}{k_{B}\lambda T}} - 1}$$
 (1-24)

Avec:

C= 2,99792458 m.s⁻¹ est la vitesse des ondes électromagnétiques dans le vide.

h = 6,6260.10⁻³⁴ J.s est appelée Constante de PLANCK.

 $k_B = 1,3806.10^{-23} \text{ J.K}^{-1}$ est appelée constante de BOLTZMANN.

Et donc, en sommant toutes les émittances monochromatiques d'un rayonnement donné, on peut obtenir le pouvoir émissif du corps noir défini par la loi de STEFAN-BOLTZMANN:

$$M^0 = \int_0^\infty M_\lambda^0 d\lambda \tag{1-25}$$

C. Loi du déplacement de WIEN:

La relation entre la longueur d'onde λ_{max} , à laquelle le pouvoir émissif monochromatique du corps noir M_{λ}^0 atteint son maximum, et la température absolue est donnée par la loi du déplacement de WIEN comme suit :

$$\lambda_{max}T = 2898 \tag{1-26}$$

1.2.4.4. Emission des corps réels :

On défini le pouvoir émissif total M par la quantité totale de rayonnement qu'émet un corps par unité de surface et de temps. Comme le corps noir n'est qu'un concept théorique, le flux du rayonnement thermique émis par un corps donné sera proportionnel à une propriété intrinsèque appelée émissivité, qui dépend de la nature physico-chimique, de l'état de surface de chaque corps; elle varie avec la longueur d'onde, la direction d'émission et la température de surface. Ce flux est donné par la relation suivante :

$$M = \varepsilon M^0 = \varepsilon \sigma T_p^4 \tag{1-27}$$

Avec:

 T_p : Température absolue de la surface du corps.

ε: Emissivité du corps.

A. Loi de KIRCHOFF:

La loi de KIRCHOFF relie les propriétés émissives et absorbantes d'un corps. Elle indique que pour chaque longueur d'onde et chaque direction de propagation du rayonnement émis par une surface ou incident sur celle-ci, l'émissivité et l'absorptivité monochromatiques directionnelles sont égales.

$$\varepsilon_{ox,\lambda} = \alpha_{ox,\lambda}$$
 (1-28)

B. Flux rayonné par une surface grise :

Nous avons vu plus haut que l'émittance d'un corprs réel est $M = \varepsilon M_o$.

E étant l'éclairement sur la surface S, on définit la radiosité J comme étant la somme de l'émittance de la surface et du flux réfléchi par unité de surface ρE.

$$J = \varepsilon M^0 + \rho E \tag{1-29}$$

Pour une surface opaque, on a : τ =0 \Longrightarrow $\rho = 1-\alpha$

Or, pour un corps gris, $\alpha = \varepsilon$ car $\varepsilon_{\lambda} = \varepsilon$ et $\alpha_{\lambda} = \alpha$.

D'où:

$$J = \varepsilon M^0 + (1-\varepsilon)E$$

Le flux net perdu par la surface S est la différence entre le flux émis et absorbé :

$$\emptyset_{p} = (\varepsilon M^{0} - \alpha E)S$$

Or $\alpha = \varepsilon$ donc : $\mathbf{Q}_p = \varepsilon \mathbf{S}(\mathbf{M}^0 - \mathbf{E})$

Et alors:

$$\emptyset_p = \frac{\varepsilon S}{1 - \varepsilon} (M^0 - J) \tag{1-30}$$

C. Echange entre deux plans parallèles :

L'échange thermique entre deux surfaces planes et parallèles de température T et T est donnée par la relation suivante :

$$\emptyset = \frac{\sigma S(T_0^4 - T_1^4)}{\frac{1}{\varepsilon_0} + \frac{1}{\varepsilon_1} - 1}$$
 (1-31)

1.3. APPLICATIONS DE L'ENERGIE SOLAIRE :

1.3.1. Généralités :

L'énergie solaire peut être convertie en plusieurs types d'énergie : chaleur, électricité, énergie chimique...etc. Et cela, au moyen de différents procédés qu'ils soient directs ou non. Les conversions directes comprennent les conversions photothermique, photoélectrique et photochimique.

Les conversions indirectes, quant à elles, utilisent la voie thermique et comprennent principalement, d'une part, les opérations purement thermiques qui ne font intervenir que des échanges de chaleur et d'autre part, les opérations thermodynamiques pour lesquelles on fait intervenir une source chaude et une source froide. Avec ces opérations thermodynamiques, l'énergie apparaît sous forme thermique ou mécanique (avec utilisation d'un fluide) ou bien sous forme électrique : thermoélectrique ou thermo-ionique.

1.3.2. Conversion photothermique:

Le processus de conversion le plus simple est la conversion photothermique consistant en une transformation directe du rayonnement solaire en chaleur. Quand le rayonnement solaire atteint la surface d'un corps, une partie du rayonnement est réfléchie, une autre partie traverse la matière (si bien sûr le matériau n'est pas opaque au rayonnement) et une troisième partie est absorbée.

Quand le corps est opaque, l'absorption du rayonnement qui n'a pas été réfléchie ou diffusée y est totale dans une couche du corps considéré, qui a une épaisseur plus au moins élevée (cette couche étant extrêmement mince s'il s'agit d'un métal).

L'énergie ainsi reçue se dissipe soit par conduction à l'intérieur du corps, soit par convection en surface ou alors par émission d'un rayonnement propre au corps en question et dépendant de la nature et de la température de sa surface.

La conversion photothermique de l'énergie solaire comporte des applications très diverses du fait que la plage des températures d'exploitation de ces applications est très vaste. Certaines applications permettent d'utiliser localement et à petite échelle le rayonnement solaire : elles sont dites « décentralisées », et d'autres, dites « centralisées » nécessitent une captation à grande échelle du rayonnement solaire dans le but d'obtenir des puissances énergétiques relativement importantes. Il est évident que toutes ces applications pourraient répondre à un grand nombre de besoins permettant ainsi de limiter le recours systématique aux formes d'énergies classiques. En effet, c'est ce type de conversion qui est utilisé dans les fours et les chaudières solaires, la distillation solaire, le séchage agricole, le chauffage de l'eau ou de l'air pour des usages domestiques. Nous décrirons succinctement quelques unes des applications les plus répandues.

Quatre catégories d'applications se dégagent en fonction de la température [10]:

- Applications aux basses températures solaires ($T < 60 \, \text{C}^{\circ}$): chauffage de l'eau sanitaire, chauffage des piscines.
- Applications aux moyennes températures solaires (60 C° < T < 150 C°): chauffage des habitations, réfrigération, climatisation, dessalement de l'eau de mer, production d'énergie mécanique.
- applications aux hautes températures solaires (150 C° < T < 800 C°): production d'énergie mécanique, production de vapeur, dissociation catalytique de l'eau.
- applications aux très hautes températures solaires (T > 800 C°): dissociation thermique de l'eau magnétohydrodynamique, thermo-électricité.

Nous nous limiterons dans ce chapitre à présenter les convertisseurs héliothermiques à basse et à moyenne température, leurs principes de fonctionnement et leurs bilans thermiques.

1.3.2.1. Four solaire :

Dans les fours solaires, le but est de concentrer le rayonnement au maximum.

Généralement, cette concentration est obtenue au moyen de miroirs paraboliques (figure **1-15**), qui exigent une construction particulièrement soignée.

Généralement, quand on parle de fours solaires, on pense aux installations à très hautes températures (jusqu'à 3000°C), cependant, il ne faut pas perdre de vue que des fours solaires à moyennes ou hautes températures seraient intéressants s'ils pouvaient être développés dans le monde au profit de certaines industries. Ces derniers types de fours font l'objet de diverses tentatives de mises au point, mais pour le moment, il paraît qu'ils ne sont pas encore entrés dans le domaine industriel.

FIG 1-15: Four solaire

Dans les fours solaires à très hautes températures, on sépare, généralement, en deux la fonction de captation du rayonnement solaire de façon à obtenir un système à foyer fixe; pour cela, il ya un dispositif orienteur mobile, comportant une ou plusieurs surfaces planes, réfléchissant les rayons solaires dans une direction fixe sur un miroir parabolique fixe, qui concentre le rayonnement vers une zone d'utilisation située autour du point focal du paraboloïde. Cependant, pour certaines applications, on peut préférer qu'il y ait une seule

surface réfléchissante pour capter et concentrer le rayonnement solaire. Dans ce cas, l'appareil doit être constamment dirigé vers le soleil.

La technologie des fours solaires est très coûteuse donc, réservée à des emplois spécifiques tels que la fusion de l'aluminium à 2050 °C pour obtenir du corindon ou celle du quartz en vue de l'obtention du verre de silice très pur. L'avantage de cette technologie réside dans l'obtention de produits de qualité nettement supérieure à celle obtenue au four électrique.

1.3.2.2. Séchoir solaire :

Un séchoir solaire (figure **1-16**) fonctionne sur le même principe qu'un chauffe-eau solaire sauf qu'au lieu de chauffer de l'eau, il chauffera de l'air.

Le séchage solaire permet de sécher les fruits, les plantes grâce au soleil sans que les rayons du soleil atteignent directement ce qui est séché ainsi la couleur, le goût et les propriétés du fruit ou de la plante sont conservées (vitamines, matières nutritives).

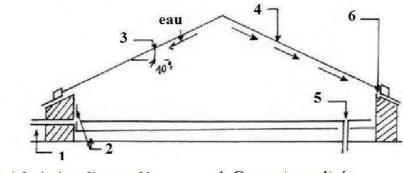
Son principe de fonctionnement est simple. En effet, il est constitué d'un capteur plan à air qui, en recevant le rayonnement solaire, en augmentera la température. L'air ainsi chauffé verra sa densité diminuer et montera, à travers une conduite, vers un caisson étanche et isolé où seront disposés les aliments à sécher. Une autre conduite relie le caisson au capteur ce qui fait que l'air fera un circuit fermé en thermosiphon. L'air frais plus lourd descend vers le capteur tandis que l'air chaud plu léger ira vers le caisson.

FIG 1-16: Séchoir solaire

1.3.2.3. Distillateur Solaire:

Le rayonnement solaire qui arrive sur la surface des fleuves, des lacs, des océans, et sur tous les points d'eau en général est absorbé en grande partie sous forme de chaleur faisant, ainsi, évaporer l'eau. La vapeur ainsi produite se mélange à l'air en mouvement sous l'action des vents. Lorsque le mélange air-vapeur est refroidi au point de rosée, la condensation peut se produire et l'eau douce se précipite sous forme de pluie.

FIG 1-17: Distillateur solaire


Un distillateur sert à reproduire, à plus petite échelle, le cycle de la production d'eau douce qui a lieu à la surface de la terre. Un distillateur solaire, comme le montre la figure 1-17 ci-dessus, est essentiellement constitué par un bac noirci contenant l'eau à distiller, recouvert par une surface transparente qui assure la transmission du rayonnement solaire et sert de surface de condensation. Le rayonnement incident transmis chauffe l'eau, une partie de celleci s'évapore et la vapeur dégagée vient se condenser sur la face intérieure de la couverture et s'écoule dans des gouttières prévues à cet effet. La couverture a un angle d'inclinaison minimum de 10° pour pouvoir recevoir le maximum de rayonnement et pour empêcher que l'eau distillée, qui s'écoule par gravité le long de la pente de la couverture, ne se mélange à l'eau brute.

La cuve est étanche et noircie pour bien absorber le rayonnement solaire afin de préchauffer l'eau brute. L'eau distillée est récupérée dans des gouttières en bas de la pente.

Dans une installation de distillation solaire, la production journalière est aléatoire. Elle dépend de l'intensité du rayonnement solaire : elle oscille entre 5 à 7 l/m² et par jour selon le

type de distillateur ; soit une production annuelle de 1,5 à 2,5 m³/m². Ces variations, à court et à long terme, nécessitent un stockage de l'eau distillée, la demande en eau étant généralement uniforme [1].

Si les besoins en douce sont faibles (quelques m³ par jour), la distillation solaire directe apparaît comme une solution intéressante présentant de nombreux avantages et pouvant s'adapter à des régions isolées ou éloignées.

- 1. Admission d'eau salée
- 2. Revêtement du bassin
- 3. Vitre avec pente (10-20°)
- 4. Couverture vitrée
- 5. Evacuation de la saumure
- 6. Gouttière évacuatrice de l'eau condensée

FIG 1-18: Schéma d'un appareil à distillation

1.3.2.4. Chauffage des piscines :

C'est l'application la plus simple de l'énergie solaire thermique active. Dans ces systèmes (figure **1-19**), la piscine elle même forme le système de stockage. Le plus souvent l'eau de la piscine circule directement dans les collecteurs qui parfois sont des collecteurs nus.

FIG 1-19: Moquette solaire pour chauffage de piscine

1.3.2.5. Chauffage solaire des habitations :

Le chauffage des locaux peut se faire avec des capteurs à air ou à eau. Dans les deux cas, le fluide circule dans des capteurs installés sur les toits et les façades des maisons ; à leur contact, il se charge en calories qui seront redistribuées dans le logement. Les deux techniques sont relativement voisines à une caractéristique près toutefois : pour la seconde voie, il est possible de stocker de l'énergie sous forme d'eau chaude dans des réservoirs de plusieurs mètres cubes s'affranchissant en partie du caractère intermittent de l'énergie solaire. Il n'est évidemment pas possible d'envisager de stocker de l'air chaud, par contre le système original de Trombe-Michel montré dans la figure 1-20 contourne la difficulté.

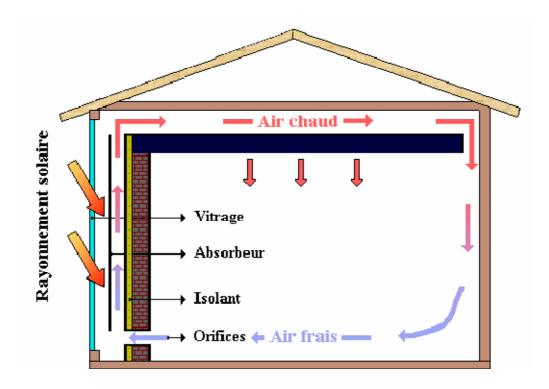


FIG 1-20 : Schéma d'une maison solaire passive

Le dispositif adopté revient à implanter des serres sur les façades verticales exposées au soleil. Les rayons solaires traversent le vitrage et sont absorbés par la surface réceptrice (le mur en béton). L'air chauffé entre la vitre et le mur, constituant une colonne de densité plus faible que celle de l'air de la pièce à chauffer, tend à monter et à pénétrer dans la pièce par une ouverture supérieure tandis que l'air de la pièce plus frais sort par une ouverture inférieure. Un tel système fonctionne sans aucune intervention mécanique et peut d'ailleurs continuer à fonctionner longtemps après le coucher du soleil, dans la mesure où le mur en

béton joue le rôle d'un accumulateur de chaleur, (un mur de 30 à 40 cm stocke près de la moitié des calories reçues, l'autre moitié étant transmise à l'air) [11].

1.3.2.6. Eau chaude sanitaire :

La production d'eau chaude sanitaire est actuellement l'application la plus répandue de l'énergie solaire thermique. L'installation classique appelée chauffe-eau solaire comprend essentiellement un groupe de capteurs (plans ou à vide), une capacité de stockage et généralement un dispositif de régulation et une source d'appoint.

FIG 1-21: Chauffe-eau solaire

1.3.3. Conversion photovoltaïque:

La conversion de la lumière en électricité, appelée effet photovoltaïque, a été découverte par E. Becquerel en 1839, mais il faudra attendre près d'un siècle pour que les scientifiques approfondissent et exploitent ce phénomène de la physique.

L'utilisation des cellules solaires débute dans les années quarante dans le domaine spatial. Les recherches d'après guerre ont permis d'améliorer leurs performances et leur taille mais il faudra attendre la crise énergétique des années septante pour que les gouvernements et les industriels investissent dans la technologie photovoltaïque et ses applications terrestres.

FIG 1-22: Champ de modules photovoltaïques

Elle est composée d'un matériau semi-conducteur (Silicium par exemple) qui absorbe l'énergie lumineuse et la transforme directement en courant électrique. Le principe de fonctionnement de cette cellule fait appel aux propriétés du rayonnement et celles des semi-conducteurs. La cellule photovoltaïque unité de base d'un système photovoltaïque, ne produit qu'une très faible puissance électrique, typiquement de 1 à 3 W avec une tension de moins d'un volt. Pour produire plus de puissance, les cellules sont assemblées pour former un module ou panneau (figure 1-22).

La technologie photovoltaïque est en plein essor: elle est, en effet, utilisée dans plusieurs secteurs tels que le domaine spatiale, les habitations et les industries isolées, les centrales de puissance et l'éclairage public. Aux quatre coins du monde, de nombreuses possibilités d'exploitation sont étudiées puis expérimentées dans l'espoir d'une commercialisation future. Toutefois, les prévisions de baisse des prix des modules photovoltaïques ont été trop optimistes et l'industrie photovoltaïque se trouve dans une situation difficile. En effet, la complexité des procédés de fabrication des modules photovoltaïques et les rendements de production trop faibles entraînent des coûts élevés qui freinent le volume des ventes. On peut espérer que, dans les années à venir, la technologie photovoltaïque arrive à "maturité" (procédés simplifiés, meilleurs rendements de production) et qu'alors l'augmentation du volume de production réduise le coût des modules [12].

1.3.4. Conversion thermo-ionique:

Tout gaz porté à une température supérieure à 2000 °C s'ionise spontanément en formant un plasma. Cette ionisation peut être obtenue grâce au rayonnement solaire qui

permet d'atteindre les hautes températures requises. Des recherches de laboratoire sont en cours pour obtenir, à partir d'un plasma, une différence de potentiel pouvant être utilisée pour produire la circulation d'un courant électrique dans un circuit. Cependant, des résultats industriellement exploitables n'ont toujours pas été obtenus [13].

1.3.5. Conversion photochimique et photo-électrochimique :

Les réactions qui se déroulent sous l'action de la lumière sont appelées réactions photochimiques.

Une part importante de cette discipline est consacrée à l'étude des changements chimiques découlant de l'absorption de la lumière par la matière. Les radiations impliquées dans des processus de type photochimique, où une excitation électronique, au niveau des couches de valence des atomes ou des orbitales moléculaires est le plus souvent considérée, appartiennent à un domaine de longueurs d'onde bien plus large que le seul spectre visible. La limite supérieure de ce domaine se situe quelque part dans l'infrarouge proche ($\lambda \approx 2~\mu m$); ce dernier s'étendant jusque dans l'ultraviolet lointain et n'étant limité conventionnellement qu'à partir de longueurs d'onde auxquelles la radiation est suffisamment énergétique pour provoquer l'excitation des électrons de couches profondes des atomes (rayons X).

Dans la nature, on peut trouver beaucoup d'exemples de réactions photochimiques ayant une importance fondamentale la plus connue étant la photosynthèse qui accomplit le stockage de l'énergie solaire sous forme de carburant [14].

A l'heure actuelle, les processus photochimiques sont utilisés dans la technique et l'industrie de manières très diverses. Les usages fondamentaux peuvent être classés selon la fonction attachée à la lumière :

- 1) La lumière en tant que réactif pour la synthèse de molécules B ou au contraire la photostabilisation de A afin d'éviter la formation non désirée de B.
- 2) La lumière en tant que vecteur d'information (stockage de signaux optiques sous forme chimique) comme pour la photographie.
- 3) La lumière en tant que vecteur énergétique (stockage de l'énergie lumineuse sous forme chimique).

1.4. REVUE BIBLIOGRAPHIQUE:

Enormément de travaux ont été dirigés dans le domaine de l'énergie solaire en raison surtout du très grand nombre de ses applications possibles. Une grande partie de ces travaux là touche la conversion photothermique du fait que ce fut, à ces débuts, une alternative très sérieuse aux énergies fossiles très largement utilisées à l'époque. Mais maintenant que ces procédés sont à la portée des particuliers et qu'ils sont entrés dans les mœurs, les études et les thèses qui y ont attrait se multiplient de plus en plus. Dans cette revue bibliographique, nous nous énumérerons quelques uns des travaux majeurs entrepris dans le domaine de la production d'eau chaude sanitaire par les capteurs solaires plans.

Il est clair que toutes ces études ont été menées afin de mieux caractériser les capteurs plans et de mieux connaître les phénomènes thermiques et optiques s'y produisant dans un seul but : en accroître le rendement. L'amélioration des performances des capteurs passe par l'optimisation de l'ensemble de leurs composants : le vitrage, l'isolation et bien sûr l'absorbeur. Les avancées les plus importantes ont été réalisées grâce, bien sûr, aux études faites sur les absorbeurs donnant naissance aux surfaces spectralement sélective.

Tabor (1956) avait déjà recommandé l'utilisation des surfaces sélectives afin d'améliorer le rendement des capteurs plans [15].

- R. B. Gillette (1960) lui emboita le pas en développant deux revêtements sélectifs [16]: le dépôt d'oxyde de cobalt et celui de chrome-nickel-vanadium ayant des absorptivités de 0,93 et 0,94 et des émissivités de 0,24 et 0,40 respectivement.
- J. Ahmadzadeh et M. Gascoigne (1976) [17] ont déterminé le rendement de capteurs solaires suivant la variation des températures en utilisant des surfaces absorbantes ayant des revêtements sélectifs et classiques avec des couvertures transparentes en verre à vitre et en verre anti-reflet en considérant même l'impact de l'évacuation de l'air se trouvant entre la vitre et l'absorbeur.
- A. Aubert, J. Spitz, J. M. Behaghel, S. Berthier, J. Lafait et J. Rivory (1979) [18] ont essayé de montrer l'intérêt des surfaces sélectives pour la conversion photothermique de l'énergie solaire. Ils ont décrit les divers phénomènes physiques susceptibles de conduire à la sélectivité spectrale et ont définit différents critères qui doivent intervenir lors du choix d'une surface sélective en rendant compte d'un certain nombre de résultats obtenus avec des matériaux tels que le noir de chrome et l'oxyde d'indium dopé.

Plus tard, A. Aubert (1981) s'est intéressé à la mesure du facteur d'émission des surfaces sélectives en décrivant deux appareils de mesure du facteur d'émission particulièrement adaptés à la caractérisation des surfaces sélectives [19]. Un appareil de mesure calorimétrique et un appareil de mesure optique.

Bien plus récemment, Z. Crnjak Orel, M. Klanjsek Gunde, A. Lencek et N. Benz (2000) [20] se sont intéressés à la préparation de différents types de peintures sélectives et à leur application sur différents substrat : acier inoxydable, cuivre et aluminium. Ils ont terminé en

calculant les performances des capteurs solaires à l'aide d'un modèle numérique dit à multinœuds dynamique.

Ensuite ces mêmes chercheuses, **Z**. Crnjak Orel et M. Klanjsek Gunde (2001) se sont intéressées à la préparation des surfaces sélectives [21], en combinant deux types de résines, des pigments variés et trois types de silice, puis à leur caractérisation

Une simulation numérique des propriétés optiques de revêtements sélectifs en cermet (association de céramique et de matériaux métalliques) a été développée par M. Reza Nejati, V. Fathollahi et M. Khaladji Asadi (2005) afin de calculer l'absorptivité et l'émissivité thermique de différentes configurations [22]. Les résultats obtenus se situent dans une plage de 0,91-0,97 pour l'absorptivité et de 0,02-0,07 pour l'émissivité.

Outre les articles, on retrouve aussi quelques ouvrages et rapports traitant de la sélectivité tels que celui présenté par C.E. Kennedy (2002) [23] décrivant les méthodes de caractérisation des surfaces sélectives, les différents types d'absorbeurs sélectifs ainsi que le domaine de température auquel ils sont exposés.

Il existe toutefois d'autres études ne traitant pas des composants du capteur en lui-même mais plutôt des conditions externes auxquelles il sera soumis telle que celle menée par M. Koehl (2001) sur la durabilité des matériaux utilisés pour l'énergie solaire et consistant en l'établissement d'une méthode de qualification des surfaces absorbantes. L'absorbeur est qualifié s'il a une durée de vie de 25 ans avec une perte maximale des performances optiques de 5%. Une autre faite par S. Kumar et S.C. Mullick (2010) traite du coefficient de convection du vent intervenant dans les échanges par convection entre la couverture transparente et le milieu extérieur en plaçant un capteur plan sur le toit d'un bâtiment durant une période de deux ans et ce, afin d'améliorer l'estimation du coefficient des pertes avant du capteur [24].

Cette liste de travaux donne un aperçu non exhaustif des études menées dans le domaine de la production d'eau chaude sanitaire à l'aide de chauffe-eau solaire muni de capteurs plans. Ce mémoire, qui vous est modestement présenté, reste toutefois l'un des tous premiers dans ce domaine à avoir été abordé à l'Ecole Nationale Polytechnique après bien sûr celui de MM. S. Meziani et A. Merinesse et dirigé par Mr. Younsi (1997) intitulé Etude des performances d'un chauffe-eau solaire.

TECHNOLOGIES DU CHAUFFE-EAU SOLAIRE

CHAPITRE 2

Tout système de conversion thermique de l'énergie solaire (figure **2-1**) comprend les éléments suivants :

- Un capteur solaire.
- Un circuit caloporteur permettant de transférer l'énergie absorbée par le capteur à l'appareil d'accumulation ou directement au point d'exploitation.
- Un stockage thermique.
- Un réseau de distribution.

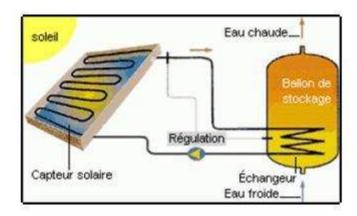


FIG 2-1: Schéma principe d'une installation

2.1. CAPTEUR SOLAIRE:

Le capteur solaire est l'élément de base pour la transformation de l'énergie solaire en chaleur et sera le plus souvent constitué de :

- Un absorbeur.
- Une isolation thermique.
- Une couverture transparente.
- Un caisson.

2.1.1. Types de capteurs solaires :

Actuellement, trois technologies coexistent dans le milieu du solaire thermique que l'on peut, toutefois, résumer en deux grandes familles de capteurs solaires thermiques :

- 1. Les capteurs solaires plans.
- 2. Les capteurs solaires sous vide.

D'autres systèmes un peu particuliers existent aussi sur le marché, notamment les capteurs auto-stockeurs qui ne seront pas présentés étant donné leur utilisation particulière ne convenant pas sous nos climats.

2.1.1.1. *Capteur plan*:

Le capteur plan (figure **2-2**) est constitué des éléments suivants, éléments que nous verrons plus en détail par la suite :

- La couverture transparente, qui assure l'effet de serre et évite le refroidissement de l'absorbeur en le protégeant du vent (pertes par convection).
- L'absorbeur où s'effectue l'absorption du rayonnement solaire et l'échange de chaleur avec le fluide caloporteur.
- L'isolation thermique arrière et latérale.
- Un caisson (coffre, coque ou cadre) qui renfermera ces différents éléments.

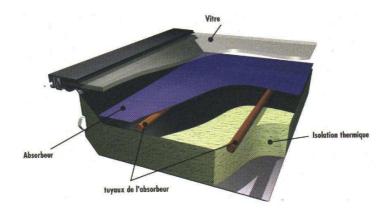


FIG 2-2: Constituants du capteur plan

Ce type de capteur, comme étant celui qui nous intéresse, sera abordé de manière plus détaillée ultérieurement.

2.1.1.2. Capteur sous vide:

A l'intérieur des capteurs plans règne la pression de l'air ambiant, grâce souvent, à des petites ouvertures pratiquées dans l'enveloppe du capteur. La circulation de l'air entre l'absorbeur et la plaque de couverture joue un rôle important dans le cadre des pertes énergétiques au niveau de la plaque absorbante. Il est, toutefois, possible de remédier à cette déperdition par convection en éliminant l'air du capteur, c'est-à-dire en utilisant des capteurs sous vide.

Il y a 4 familles de capteurs sous vide, et chacun dépend d'une technique spécifique [25]:

- a) Le capteur à tube sous vide à circulation directe
- b) Le capteur à tube sous vide à "Caloduc"
- c) Le capteur à tube sous vide à effet "Thermos"
- d) Le capteur à tube sous vide "Schott"

A. Capteur à tube sous vide à circulation directe :

Cette technique a été développée il y a une trentaine d'années afin d'améliorer les performances du capteur plan. En effet, la conception de l'absorbeur et les tuyaux de circulation du fluide caloporteur sont comme un capteur plan (figure 2-3). Sauf que l'ensemble est suffisamment étroit pour être glissé à l'intérieur d'un tube en verre (de longueur de ±2m et de ±10 cm de diamètre). Chaque tube est mis sous vide, de la même manière utilisée pour les tubes cathodiques des téléviseurs, assurant un très bas niveau de vide (10⁻⁵ Torr). Le principe est simple, mais la fabrication est difficile à cause des liaisons verre/métal nécessaires pour la circulation du fluide caloporteur.

Le capteur "Cortec" fabriqué en France par Giordano et le capteur "Vitosol 200" distribué par Viessmann sont des exemples.

FIG 2-3: Capteur à tubes sous vide à circulation directe

B. Capteur à tube sous vide à caloduc :

Dans la deuxième variante, nommée Heat-pipe (figure 2-4), l'absorbeur oblong est fixé à un caloduc dont les extrémités sont fermées après avoir y avoir fait le vide. Ce tube est partiellement rempli d'un fluide présentant une courbe d'ébullition intéressante pour l'application visée (souvent 2 g d'eau). L'extrémité fermée en dehors du tube est insérée dans un échangeur de chaleur spécialement conçu à cet effet, dans lequel circule le fluide caloporteur transférant la chaleur vers le ballon de stockage. L'échauffement de l'absorbeur provoque l'évaporation (ébullition) du fluide présent dans le tube fermé, ce qui refroidit l'absorbeur. Les vapeurs formées s'élèvent dans la partie supérieure du tube où se situe l'échangeur de chaleur et s'y refroidissent. Le refroidissement dans cet échangeur a pour effet de condenser la vapeur, qui revient alors dans la partie inférieure du tube et refroidit la bande absorbante. L'échangeur fait donc office ici de condenseur.

Ce système présente l'avantage important de permettre l'installation, dans la section de condensation du caloduc, d'un clapet à fermeture automatique empêchant, à partir de 85°C, les vapeurs d'atteindre le condenseur interdisant, ainsi, toute récupération de chaleur ultérieure. On peut, de la sorte, éviter un échauffement trop élevé du système ou une température trop élevée de l'eau pour le sanitaire.

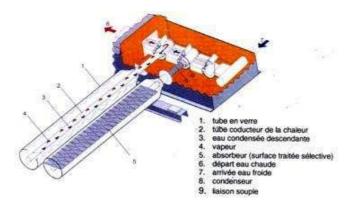


FIG 2-4: Capteur à tube sous vide «Heat-Pipe»

C. Capteur à bouteilles à tubes thermos :

Comme le montre la figure 2-5, ces capteurs utilisent une bouteille de verre à double paroi (d'une longueur de ± 2 m et d'un diamètre de ± 10 cm). Les deux parois sont reliées de

manière étanche à l'air au niveau du goulot. L'intérieur de la bouteille est soumis à l'air atmosphérique, tandis que l'espace compris entre les deux parois est sous vide.

La paroi extérieure est transparente tandis que la paroi intérieure est pour sa part pourvue, du côté sous vide, d'un revêtement à absorption sélective; de l'autre, elle est en contact avec deux profilés semi-circulaires métalliques, eux-mêmes en contact avec les branches de l'absorbeur en U. La chaleur se créant dans le revêtement absorbant par suite du rayonnement solaire se transmet via les bandes semi-circulaires aux tubes métalliques, d'où elle est évacuée par le fluide caloporteur.



FIG 2-5: Capteur à bouteilles à tubes thermos

Dans ce genre de capteur, le revêtement absorbant se trouve dans la partie sous vide, tandis que le système de refroidissement de l'absorbeur se trouve dans la bouteille thermos, ce qui permet de réduire les déperditions calorifiques.

La fabrication des tubes et l'assemblage des capteurs sont simplifiés, car il n'y a pas de soudures verre/métal. Par contre, les tubes "thermos sont particulièrement fragiles au point de liaison avec le collecteur, où la partie extérieure et la partie intérieure de chaque tube se rejoignent.

D. Capteur à tube sous vide "Schott":

Le tube sous vide fabriqué par l'entreprise Schott-Rohrglas en Allemagne utilise le principe "thermos" avec plusieurs perfections techniques.

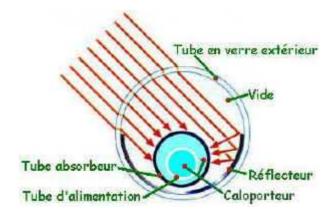


FIG 2-6: Capteur à tube sous vide "Schott"

D'abord, une partie de la paroi intérieure du tube extérieur est un réflecteur cylindrique et ensuite, le tube intérieur sert comme absorbeur aussi bien qu'échangeur de chaleur avec le fluide caloporteur. L'utilisation des métaux est réduite à des traitements de surface du tube et les différentes pièces du collecteur.

2.1.2. Différences entre les capteurs plans et sous vide [26] :

Le capteur sous vide, de par le vide qui entoure l'absorbeur, sera moins influencé par la température extérieure par rapport au capteur plan qui, lui, sera en contact au travers de la vitre et du caisson avec la température extérieure.

Les capteurs sous vide ont un rendement optique η_0 certes, inférieur aux capteurs plans mais, leurs coefficients de pertes le sont aussi ; en effet, comme le montre la figure (2-7) ci-dessous, un bon capteur plan arrive au niveau des tubes sous vide les moins performants.

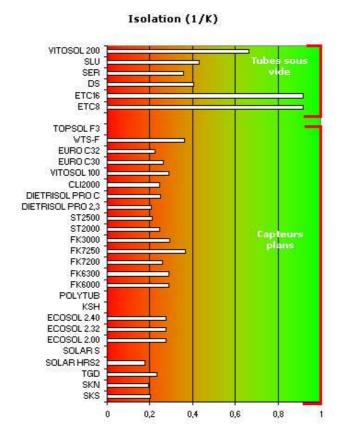


FIG 2-7: Comparatif de l'isolation entre les capteurs plan et sous vide [27]

Un autre avantage des capteurs sous vide du type heat-pipe est qu'il permet un arrêt de l'installation si la température augmente trop grâce au système de caloduc expliqué plus haut. Cela permet d'éviter de monter trop haut en température dans l'installation solaire et de limiter ainsi l'usure des différents composants et du fluide caloporteur.

Les capteurs à tubes sous vide ont une meilleure captation de la lumière du soleil, à laquelle ils réagissent même quand elle est diffuse comme c'est le cas en hiver.

Cependant, le coût des capteurs sous vide est nettement plus élevé que celui des capteurs plans qui sont souvent conseillés quand :

- On dispose d'une faible surface pour installer les capteurs.
- On veut les intégrer dans une toiture.
- Il n'est pas possible de placer les capteurs en direction du sud (les bouteilles peuvent être légèrement inclinées afin de diriger les absorbeurs vers le sud).

- Les capteurs sont installés sur toits plats ou en façade (possibilité d'inclinaison des bouteilles permettant d'orienter les absorbeurs).

2.2. COMPOSANTS DU CAPTEUR PLAN:

2.2.1. Couverture transparente:

La couverture a une fonction de protection de l'absorbeur, mais elle joue aussi un rôle important dans le bilan thermique en réduisant les pertes de chaleur par convection et rayonnement avec l'atmosphère. Le plus communément, c'est le verre qui est utilisé comme couverture transparente, du fait qu'il possède une propriété physique très intéressante : il laisse passer le rayonnement solaire mais est opaque au rayonnement infrarouge d'un émetteur tel que l'absorbeur, qui est alors bloqué entre celui-ci et la couverture provoquant ainsi un effet de serre.

La couverture doit présenter une bonne résistance aux chocs, aux brusques variations de températures ainsi qu'aux températures élevées.

La qualité du verre est caractérisée par le taux de transmission τ qui dépend de :

- La nature du verre.
- L'épaisseur du vitrage.
- L'angle d'incidence i.
- La nature du rayonnement (direct ou diffus).

Il est, généralement de l'ordre de 0,91 (voir figure **2-8** ci-dessous) même si pour certains verres, dit antireflets, il atteint 0,96 [28].

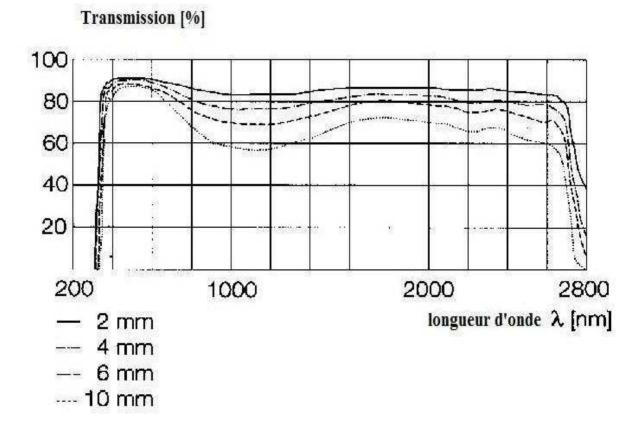


FIG 2-8: Transmission de vitrages en verre de diverses épaisseurs [28]

2.2.1.1. Effet de serre :

Cet effet résulte de la transmission sélective de certains matériaux, tels que le verre et quelques plastiques, qui sont quasiment transparent au rayonnement solaire pour des longueurs d'onde allant jusqu'à 3 voire 4 μm (lumière visible et infrarouges proches et moyens), mais qui sont, par contre, opaques pour les infrarouges lointains dont la longueur d'onde dépasse 4 μm .

De façon générale, si un corps se trouve entouré d'une paroi en verre, il recevra la partie du rayonnement solaire que le verre transmet. Le corps dont la température s'élèvera du fait de l'énergie qu'il absorbera ainsi, émettra en partie dans l'infrarouge, pour lequel, le verre est opaque.

Le rayonnement ainsi piégé se réfléchira sans cesse entraînant chaque fois une augmentation de température encore plus importante. Mais, si nous y regardons de plus près, nous constatons que ce phénomène se déroule en plusieurs étapes (figure 2-9) [29].

D'abord, le rayonnement solaire arrive sur la couverture transparente qu'il va traverser presque totalement et atteindre l'absorbeur.

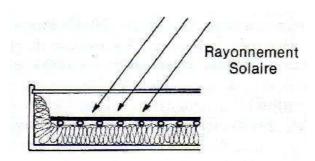


FIG 2-9: (a) Transmission du rayonnement solaire au travers de la vitre

Ensuite, l'absorbeur va absorber le rayonnement et s'échauffer commençant ainsi, à rayonner lui aussi, mais pas dans le même domaine de longueur d'onde que le soleil puisqu'il émettra entre 4 et 70 µm dans l'infrarouge lointain.

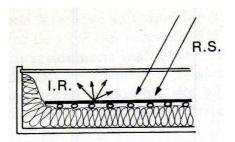


FIG 2-9: (b) Absorption du rayonnement solaire par l'absorbeur

Puis, ce rayonnement émis par l'absorbeur essaiera de sortir du capteur mais rencontrera la vitre. Or, si le verre est transparent au rayonnement solaire, il est, en revanche, opaque au rayonnement infrarouge, ce qui fait que la vitre absorbera tout le rayonnement émis par l'absorbeur.

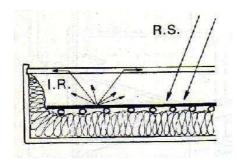


FIG 2-9: (c) Absorption du rayonnement infrarouge par la vitre

Enfin, en absorbant ce rayonnement, la vitre s'échauffe et commencera à rayonner par toute sa surface à peu près autant par ses deux faces. L'absorbeur recevra donc le rayonnement solaire augmenté de la moitié du rayonnement de la vitre : c'est l'effet de serre.

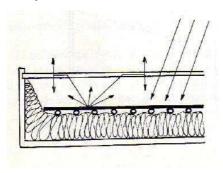


FIG 2-9: (d) Emprisonnement du rayonnement entre l'absorbeur et la vitre

La figure (2-10) ci-dessous explique tous les échanges thermiques, entre la vitre et l'absorbeur, tels que relatés précédemment tout en y ajoutant toutes les réflexions et absorptions parasites [29].

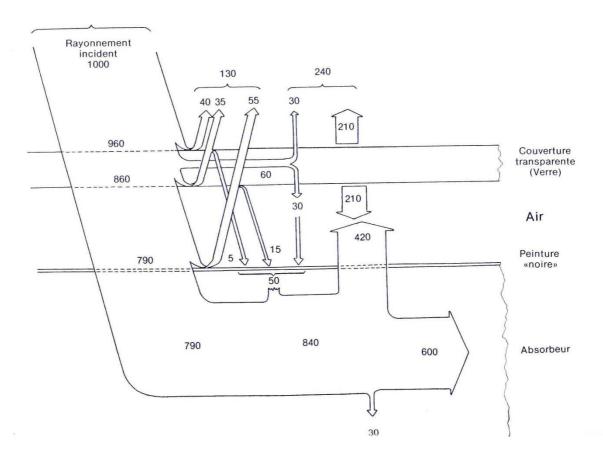


FIG 2-10 : Analyse des échanges par rayonnement dans l'effet de serre

2.2.1.2. Propagation du rayonnement dans les milieux semi-transparents :

A. Loi de DESCARTES:

Si n_1 et n_2 désignent les indices de réfraction de deux milieux séparés par le même plan, un rayon frappant l'interface avec une incidence i, sera partiellement réfléchi et partiellement réfracté (figure 2-11).

Le rayon réfracté aura une incidence θ_t telle que :

$$\frac{\sin i}{\sin \theta_t} = \frac{n_1}{n_2} \tag{2-1}$$

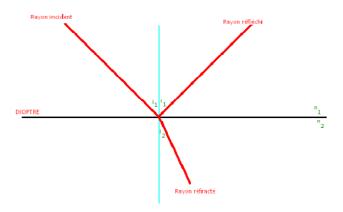


FIG 2-11: Rayons incident, réfléchi et transmis

B. Loi de BEER-LAMBERT ou loi de BOUGUER:

Soit $I_{\lambda 0}$ l'intensité d'un rayonnement pour la longueur d'onde, pénétrant selon la direction ox, dans un milieu semi-transparent.

A une profondeur de pénétration d'abscisse x (la surface étant l'origine des abscisses), le rayonnement subit une atténuation (comme le montre la figure 2-12) et n'aura plus qu'une intensité $I_{\lambda x}$, cette atténuation de l'intensité sur le trajet élémentaire dx peut s'écrire selon la loi de BEER-LAMBERT, loi de BEER-LAMBERT-BOUGUER ou, tout simplement, loi de BOUGUER pour les francophones, comme suit :

$$dI_{\lambda x} = -I_{\lambda x} k_{\lambda} dx \tag{2-2}$$

 \mathbf{k}_{λ} : Coefficient d'extinction correspondant à la longueur d'onde λ en m^{-1} .

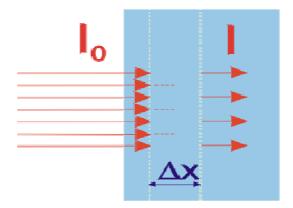


FIG 2-12: Atténuation du rayonnement dans un milieu semi-transparent

En intégrant l'équation (2-2) entre la surface et une certaine abscisse x, on trouve :

$$ln\frac{I_{\lambda x}}{I_{\lambda 0}} = -k_{\lambda}x$$

Et donc:

$$I_{\lambda x} = I_{\lambda 0} e^{-k_{\lambda} x} \tag{2-3}$$

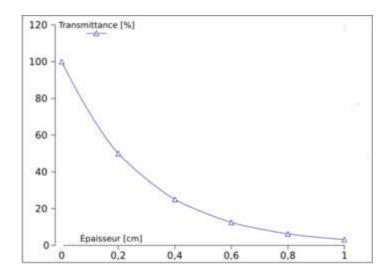


FIG 2-13 : Variation de la transmittance en fonction de l'épaisseur du milieu

On définit, alors, le coefficient de transmission correspondant à la longueur d'onde par la formule suivante:

$$\tau_{\lambda} = e^{-k_{\lambda}x} \tag{2-4}$$

Cependant, le coefficient de transmission reste quasiment constant dans un intervalle de longueur d'onde allant de 0,3 à 2,7 μ m (ce qui représente environ 97% du spectre solaire -voir tableau **1-2**-), par conséquent, on peut considérer le verre comme un corps gris, dans ce cas : $k_{\lambda} = k$ et donc : $\tau = e^{-kx}$

Pour une lame de verre d'épaisseur L on a :

$$\tau = e^{-\frac{kL}{\cos\theta_t}} \tag{2-5}$$

 θ_t : Angle de réfraction.

C. Loi de FRESNEL:

Le rayonnement incident, I_0 , peut être décomposé en deux composantes, l'une dans le plan d'incidence ($l_{0//}$), l'autre dans le plan perpendiculaire ($l_{0\perp}$). De même pour le rayonnement réfléchi I_r et transmis I_t .

On caractérise la réflectivité d'une interface par deux coefficients $\phi'_{//}$ et ϕ'_{\perp} correspondant aux deux directions de polarisation du rayon incident, dans les directions perpendiculaire et parallèle au plan d'incidence.

Ces coefficients sont donnés par les lois de FRESNEL [30] :

$$\varphi'_{//} = \frac{\tan(i-\theta_t)}{\tan(i+\theta_t)} \tag{2-6}$$

$$\varphi'_{\perp} = -\frac{\sin(i-\theta_t)}{\sin(i+\theta_t)} \tag{2-7}$$

Où:

i : Angle d'incidence.

 θ_t : Angle de réfraction.

D. Loi de STOCKS:

Pour une lame de verre d'épaisseur L, les coefficients de réflexion, de transmission et d'absorption, respectivement, seront donnés par les relations suivantes :

$$\varphi(\varphi',\tau') = \varphi'\left[\frac{1+\tau'(1-\varphi')^2}{1-\varphi'^2\tau'^2}\right]$$
 (2-8)

$$\tau(\varphi', \tau') = \frac{\tau'(1 - \tau')^2}{1 - \varphi'^2 \tau'^2}$$
 (2-9)

$$\alpha = 1 - \varphi - \tau \tag{2-10}$$

 φ' prenant successivement les valeurs $\varphi'_{//}$ et φ'_{\perp} , chacune de ces relations donne deux valeurs correspondant respectivement aux deux directions de polarisation du rayonnement incident.

 τ' possède une valeur unique :

$$\tau' = e^{-\frac{kL}{\cos\theta_T}} \tag{2-11}$$

Lorsque le rayon incident n'a pas une direction de polarisation privilégiée alors :

$$\varphi = \frac{1}{2} \left[\varphi \left(\varphi'_{//}, \tau' \right) + \varphi \left(\varphi'_{\perp}, \tau' \right) \right] \tag{2-12}$$

$$\tau = \frac{1}{2} \left[\tau \left(\varphi'_{//}, \tau' \right) + \tau \left(\varphi'_{\perp}, \tau' \right) \right] \tag{2-13}$$

2.2.1.3. Caractéristiques de la couverture transparente :

- A) Comme vu plus haut, le taux de transmission τ reste à peu près constant pour les longueurs d'onde λ allant de 0,3 à 2,7 μ m environ ce qui fait que, la transmittance du verre peut être considérée constante pour, en premier lieu, le rayonnement visible mais aussi pour quasiment tout le spectre solaire.
- **B**) D'après l'équation (2-11), on constate que, pour une augmentation de l'épaisseur du verre, la transmission du vitrage diminue exponentiellement. Toutefois, il faut garantir une épaisseur suffisante pour supporter les conditions atmosphériques.
- C) De façon contradictoire, la couverture transparente est donc, par l'effet de serre, à l'origine de l'échauffement de l'absorbeur, et par la réémission des rayons infrarouges le siège des pertes thermiques les plus importantes du capteur solaire.
- **D)** Le verre ordinaire réfléchit de 7 à 8% du rayonnement incident [29].

- E) La couverture transparente devra présenter une opacité totale aux infrarouges lointains variant de 4 à 30 μm [31].
- **F**) Les principaux matériaux généralement utilisés pour la couverture transparente d'un capteur plan sont décrits dans le tableau (**2-1**) ci-dessous :

Tableau 2-1 : Caractéristiques optiques de certains matériaux transparents

Matériaux	Indice de réfraction (n)	Epaisseur L (mm)	Coefficient de transmission τ
VERRE	1,518	3-4	0,840
LEXAN	1,586	3-4	0,840
TEFLON	1,343	0,05	0,960
TEDLAR	1,460	0,10	0,92
MYLAR	1,460	0,10	0,87
KYNAR	1,410	0,10	0,93
MARLEX	1,500	0,10	0,92

- **G**) En outre, la couverture transparente doit présenter une bonne résistance aux chocs et aux sollicitations mécaniques qui peuvent être dues à des variations de pression ou aux simples dilatations différentielles.
- **H**) La figure (2-14) ci-après montre l'influence de l'angle d'incidence i sur le taux de transmission pour des dispositifs simple et double vitrage.

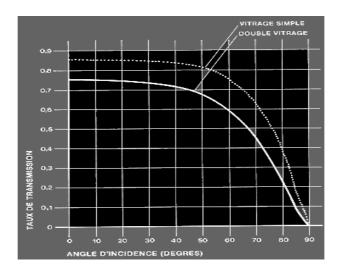


FIG 2-14: Influence de l'angle d'incidence du rayonnement sur la transmission du verre [32]

2.2.2. Absorbeur:

2.2.2.1. *Définition* :

L'absorbeur d'un capteur a pour rôle de transformer, en chaleur, le rayonnement électromagnétique qu'il reçoit et de transmettre cette chaleur au fluide caloporteur avec le minimum de pertes possibles ; Il se comporte comme un corps noir ayant des caractéristiques, d'absorption, proches de l'unité et une température d'équilibre qui peut atteindre 100 °C.

L'absorbeur est généralement en métal noirci par une couche de peinture synthétique appliquée de telle façon à ce qu'elle soit la plus fine possible.

Ses principales caractéristiques seront donc :

- un facteur d'absorption aussi proche que possible de l'unité,
- un pouvoir émissif dans l'infrarouge aussi faible que possible (très proche de 0),
- une bonne conductibilité et diffusivité thermique,
- une faible inertie thermique.

2.2.2.2. *Support* :

A. Absorbeurs métalliques :

 Cuivre: La plupart du temps, les absorbeurs sont réalisés au moyen d'un support en cuivre de 0,2 mm d'épaisseur. Le cuivre est, certes le meilleur matériau pour la réalisation des absorbeurs mais, c'est aussi le plus coûteux.

- Acier : Déjà très employé par les chauffagistes. En fait, de nombreux capteurs utilisent comme absorbeur des radiateurs extra plats de chauffage central.
- **Aluminium** : Il a une conductibilité appréciable ; de ces trois métaux, il semble le plus vulnérable à la corrosion.

Il faut en particulier éviter d'associer plusieurs métaux différents à une même circulation d'eau : en effet, cela peut produire un effet de pile très néfaste au bon fonctionnement du système.

B. Absorbeurs plastiques:

Les matières plastiques présentent, par rapport aux métaux, l'avantage d'être beaucoup plus légères et moins sensibles à la corrosion. En outre, elles peuvent être teintées dans la masse par incorporation d'un peu de noir de carbone, ce qui supprime le problème du décollement des peintures, mais elles ont pour inconvénients : leur mauvaise conductibilité et diffusivité thermique, ainsi qu'une médiocre résistance aux températures élevées. La seconde génération d'absorbeurs utilise les matières plastiques suivantes :

- Polypropylène : dont l'inertie chimique a été éprouvé même avec le chlore contenu dans l'eau des piscines. Il existe des absorbeurs d'un mètre carré de superficie pesant chacun deux kilogrammes. La mauvaise conductibilité est partiellement compensée par une grande surface d'échange.
- Polyphényloxyde (P.P.O): Commercialisé sous le nom de « NORYL », il résiste à la chaleur jusqu'à 150 °C malgré une conductibilité thermique 1500 fois plus faible que celle du cuivre, il sert à fabriquer des absorbeurs pour capteur tout en plastiques et dont les performances sont comparables à celles des capteurs métalliques.
- Polyamide: Le « RILSAN » est utilisé sous forme de tuyau enroulé à raison d'une centaine de mètres de long par capteur. Comme ce matériau est très souple (souplesse que l'on retrouve aussi pour le « NORYL »), 1e gel ne risque pas de détériorer le capteur. On peut donc, dans ce cas, faire l'économie de l'antigel et de l'échangeur de chaleur qui lui est, nécessairement, associé. La mauvaise conductibilité du matériau se trouve donc, pratiquement, compensée par cet avantage.

2.2.2.3. *Revêtement* :

A. Traitement de surface :

Nous avons vu plus haut que l'absorbeur est, généralement, en métal noirci par une couche de peinture synthétique pour pouvoir absorber la maximum d'énergie tout en en réémettant le minimum et obtenir ainsi, un rendement optimum.

Deux coefficients caractérisent ces absorbeurs :

α: Coefficient d'absorption variant de 0 à 1 et optimum à 1.

 ε : Coefficient d'émission variant de 0 à 1 et optimum à 0.

Nous verrons, ci-dessous, qu'il existe un type de revêtement appelé revêtement sélectif. La sélectivité d'un matériau est, par définition, la variation de ses propriétés optiques avec la fréquence de l'onde électromagnétique qu'il reçoit; le verre par exemple est quasiment transparent pour le domaine spectral visible et proche infrarouge mais opaque pour les longueurs d'onde supérieur à environ 2.5 µm.

En ce qui concerne la surface absorbante, il n'existe pas de corps dans la nature ayant les propriétés optiques idéales requises. Cependant, quelques matériaux comme le chrome ont un comportement sélectif favorable pour la conversion thermique de l'énergie solaire. En fait, en général, toutes les substances présentent des bandes d'absorption plus au moins larges, mais celles-ci ne sont pas, la plupart du temps, adaptées au problème qui nous intéresse. Il s'agit donc d'élaborer un matériau nouveau qui aurait les propriétés souhaitées ; une telle recherche est du domaine de la physico-chimie de solide.

En attendant une telle prouesse technologique, on peut employer certaines méthodes pour obtenir le résultat voulu : un traitement de surface. Ce traitement de surface consiste en la modification des propriétés optiques d'un support grâce au dépôt d'une ou plusieurs substances afin d'obtenir la sélectivité désirée, et cela par le biais de certains phénomènes physiques :

- Interférences constructives ou destructives.
- Effets de rugosités.
- Effets d'inhomogénéités.

La sélectivité de l'absorbeur est très importante : elle est améliorée par des traitements de surface qui font en sorte d'approcher les coefficients d'absorption et d'émission au maximum de leur niveau optimal ce qui fait que, le rayonnement solaire est très bien absorbé et le rayonnement infrarouge émis est, lui, très limité. Un tel traitement de surface est obtenu par des procédés électrochimiques ou électro-physiques. De nombreux progrès ont été réalisés dans ce domaine donnant naissance à différents types de revêtement.

B. Types de revêtements :

Il existe 2 grandes familles de revêtements applicables aux absorbeurs :

- Les revêtements classiques.
- Les revêtements sélectifs.

a. Revêtements classiques:

La peinture noire mate (figure 2-15) du commerce permet d'obtenir un très bon coefficient d'absorption compris entre 0,9 et 0,95 mais, compte tenu de l'augmentation de la température, cet absorbeur va à son tour rayonner une partie non négligeable de l'énergie reçue ce qui fait que le coefficient d'émission est, lui aussi, très élevé puisqu'il atteint 0,85 [33].

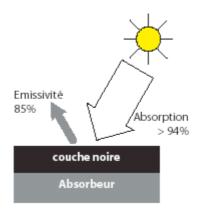


FIG 2-15 : Revêtement en peinture noire mate

b. Revêtements sélectifs :

• Définition :

Le plus souvent, une surface sélective résulte de l'association d'un film et d'un support métallique poli. Le film doit absorber l'énergie solaire et être transparent à

l'infrarouge, donc présenter une émissivité thermique faible. Le cuivre le nickel, l'argent et l'aluminium sont des exemples de métaux à faible émissivité thermique.

L'épaisseur du film absorbant doit rester faible, en général de quelques dixièmes de microns, car dans ce cas, la réflectance du métal de base dans l'infrarouge thermique (c'est-à-dire $\lambda > 2 \ \mu m$) n'est que très légèrement modifiée et l'émissivité de la surface est proche de celle de métal de base [34].

• Choix du revêtement sélectif :

Trois facteurs devront être pris en considération avant de choisir une solution à un problème donné [18]:

- Les propriétés optiques.
- La stabilité physicochimique.
- Le cout de réalisation des surfaces sélectives.

- Propriétés optiques :

Il est plus judicieux de considérer séparément les facteurs d'absorption α et d'émission ϵ que le rapport $\frac{\alpha}{\epsilon}$, parfois utilisé, et qui ne permet de déterminer que la température de stagnation du capteur, température atteinte lorsqu'aucune calorie n'en est extraite. Cette température, calculée à partir du bilan énergétique simplifié s'exprime en négligeant les pertes conductives et convectives par [10]:

$$T_{max} = \sqrt[4]{\left(\frac{\alpha}{\varepsilon} \frac{E^S}{\sigma} + T_0^4\right)}$$
 (2-14)

Partant de la même forme simplifiée du bilan énergétique, on peut également constater qu'une surface sélective dont les caractéristiques optiques locales sont α et ϵ aura un moins bon rendement, dans les mêmes conditions de fonctionnement qu'une surface dont les caractéristiques optiques sont $\alpha + \delta \alpha$ et $\epsilon + \delta \epsilon$, si la relation suivante est satisfaite [10]:

$$\frac{\delta\alpha}{\delta\varepsilon} > \sigma \frac{T_a^4 - T_0^4}{E^s} \tag{2-15}$$

Cette inégalité signifie que l'accroissement de l'énergie solaire absorbée est supérieur à l'accroissement des pertes radiatives. On peut ainsi évaluer l'intérêt de différents absorbeurs

sélectifs en tenant compte à la fois des propriétés optiques de l'absorbeur et des conditions de fonctionnement du capteur.

- Stabilité physicochimique :

La surface sélective devra supporter la température de fonctionnement, des cycles thermiques d'amplitude et de durée très variables, et surtout quelques accroissements de température atteignant parfois sa température de stagnation T_{max} , en cas d'arrêt de la circulation du fluide caloporteur.

Ces contraintes externes peuvent entrainer un certain nombre de détériorations de la surface sélective. Un premier type de détérioration peut être dû à un trop grand écart entre les coefficients de dilatation du substrat (en général cuivre, aluminium ou acier à faible teneur en carbone) et des matériaux composant la surface sélective. Un second type de détérioration est la diffusion d'une couche dans une autre : diffusion chimique ou par les joints de grains. Ce processus conduit dans les deux cas à une détérioration rapide.

Ce risque est particulièrement grand dans le cas ou la sélectivité est obtenue par effet d'interférences.

On peut réduire le risque de diffusion en interposant des barrières de diffusion entre les couches optiquement actives, mais il est bien évident que, plus l'empilement réalisé pour obtenir la sélectivité est complexe, plus grand est le risque de détérioration par inter-diffusion. Enfin, en plus de leur stabilité thermique, les surfaces sélectives doivent être chimiquement inertes, ou pour le moins présenter une cinétique de réaction extrêmement lente afin de résister aux divers types de corrosion auxquels elles peuvent être soumises [10].

- Cout de fabrication :

Ce sont actuellement les matériaux relativement bon marché associés aux techniques de préparation peu coûteuses (conversion chimique, électrolyse, dépôt chimique en phase vapeur, ...) qui présentent le plus d'intérêt.

Toutefois, la recherche en laboratoire s'est poursuivie ces dernières années sur des techniques d'élaboration plus sophistiquées, comme la technique PVD, qui pourraient être utilisées industriellement malgré un *a priori* un peu défavorable au niveau du coût des matériaux élaborés [10]. Le gain énergétique obtenu par l'utilisation de ces surfaces sélectives sera déterminant dans le choix de ce type de solution.

Réalisation des surfaces sélectives :

Il existe plusieurs méthodes de réalisation des surfaces sélectives. Parmi celles-ci, nous citerons:

- Le dépôt chimique en phase vapeur (C.V.D): Le substrat est exposé à un ou plusieurs précurseurs en phase gazeuse, qui réagissent et/ou se décomposent à la surface du substrat pour générer le dépôt désiré moyennant plusieurs réactions chimiques.
- Le dépôt physique en phase vapeur (P.V.D): C'est un groupe de méthodes de dépôt sous vide ne faisant intervenir aucune réaction chimique. On citera parmi ces méthodes l'évaporation sous vide et la pulvérisation cathodique (Sputtering).
- Le dépôt électrochimique : Cette technique utilise l'électrolyse pour réaliser des dépôts de matière sur le substrat.
- Le dépôt chimique : En fait, c'est la projection simultanée de deux solutions aqueuses (concrètement un oxydant et un réducteur). La réaction d'oxydoréduction à la surface du substrat permet de former un film métallique homogène et continu. La projection s'effectue à température ambiante avec un pistolet pneumatique
- La pulvérisation (spray) : Méthode connue du grand public puisque ce n'est que de la peinture appliquée au pistolet.
- L'oxydation anodique : Cette technique consiste en une électrolyse en milieu acide.

Pour obtenir une couche particulière, il faut évidemment rechercher le ou les procédés qui sont les mieux adaptés à sa réalisation.

Nous terminerons cette section par le tableau (2-2) qui résume les principaux revêtements sélectifs, leurs coefficients d'absorption et d'émission et les supports auxquels ils sont le plus souvent associés.

Tableau 2-2: Principaux revêtements sélectifs pour absorbeurs [35]

Revêtement sélectif	Support	Coefficient d'absorption	Coefficient d'émission
Chrome noir	Cuivre, acier	0,91-0,96	0,07-0,16

Revetement selectif	Support	Coefficient d'absorption	Coefficient d'emission
Chrome noir	Cuivre, acier	0,91-0,96	0,07-0,16
Cuivre noir	Cuivre, nickel,	0,81-0,93	0,11-0,17
	aluminium		
Nickel noir	Nickel, acier	0,89-0,96	0,07-0,17
Oxyde d'aluminium	Aluminium	0,9	0,1-0,4
Oxyde de fer	Acier	0,85	0,08

Il existe aussi un autre type de traitement de surface récemment mis au point appelé traitement sous vide [33]. Ce revêtement sélectif a été mis au point en 1995 et est facilement reconnaissable grâce à sa couleur bleu marine. Ce procédé consiste à déposer différents métaux tels que le titane sur la surface absorbante en présence du vide : le coefficient d'absorption ainsi obtenu est supérieur à 0,95 et celui de l'émission est inférieur à 0,05.

Ce procédé a pu prendre une grande place sur le marché grâce à :

- Ses performances,
- Sa faible consommation en énergie lors de la fabrication, qui est de l'ordre de 1kWh par m² d'absorbeur, c'est moins de 10% de l'énergie nécessaire pour les autres revêtements,
- -Son respect de l'environnement puisqu'il n'y a ni dégagements de gaz ou de solides ni pollution de l'eau.

2.2.2.4. Réalisation de l'absorbeur :

Pour la réalisation des absorbeurs, on distingue trois méthodes fondamentales :

- Plaque à tubes soudés,
- Plaque à tôles parallèles à voile d'eau,
- Plaque « ROLL BOND ».

A. Plaque à tubes soudés :

Dans le cas d'emploi de tubes, la chaleur a du mal à passer de la plaque absorbante au fluide circulant dans les tubes. Si on veut absolument utiliser des tubes, on déforme la plaque absorbante (clipsage figure 2-16A) ou on soude les tubes sur toute leur longueur (brasage figure 2-16B).

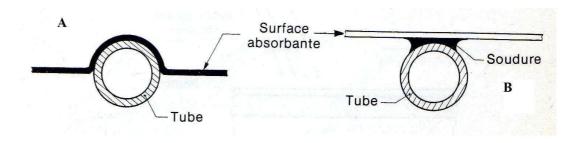


FIG 2-16: Clipsage et brasage des tubes sur la plaque

Le résultat final est schématisé par la figure (2-17).

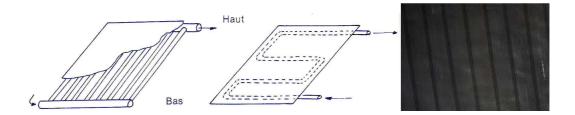


FIG 2-17: tubes brasés ou clipsés sous la plaque absorbante

La technologie ayant évolué, à présent, la soudure se fait par soudeuse laser qui garantit une excellente résistance aux températures extrêmes (stagnation). La solidité de la connexion est garantie par une soudure comprenant jusqu'à 1300 points de soudage par mètre [36].

La photo ci-après montre une soudeuse laser YAG, qui soude à froid les serpentins à la plaque absorbante, sans altérer les matériaux et avec un rendement, une précision et une productivité inégalés.

FIG 2-18: Soudeuse laser YAG

B. Plaque à tôles parallèles à voile d'eau :

Elle est réalisée, généralement, avec deux tôles en acier inoxydable, espacées de 2 à 4 mm, soudées sur des fers plats qui constituent des chicanes pour le fluide caloporteur. On obtient ainsi une surface d'échange élevée.

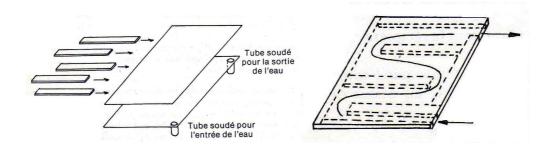


FIG 2-19 : Absorbeur à tôles parallèles

Pour ce faire, on prend 2 tôles planes de 0,8 mm d'épaisseur, qu'on va superposer en ayant intercalé auparavant des fers plats de 2 à 4 mm d'épaisseur et de 3 à 4 cm de largeur. Ces fers plats vont maintenir l'espace nécessaire à la circulation de l'eau tout en la dirigeant. Ensuite, on soude sur tout le périmètre de l'absorbeur. Les fers plats sont juste soudés par des points à leurs extrémités. Il faut aussi pointer par soudure les tôles sur les fers plats pour éviter le gonflement de l'absorbeur sous la pression du fluide caloporteur [29].

Ce type de réalisation repose sur le choix d'un matériau ayant une durabilité considérable et résistant à la corrosion.

C. Plaque « ROLL BOND »:

Ce procédé s'effectue en plusieurs étapes.

D'abord, on prépare les surfaces de deux tôles en alliage d'aluminium, par exemple, en déposant sur l'une des tôles une encre anti-soudure dans les zones réservées correspondant au dessin du circuit.

Ensuite, on relie les deux tôles, soit par co-laminage de l'une sur l'autre et puis découpe de la bande ainsi obtenue en plaques soit par pressage à chaud de l'une sur l'autre des tôles prédécoupées en plaques.

Enfin, on gonfle les canaux correspondant aux zones non soudées, par voie hydraulique ou pneumatique sous haute pression [37].

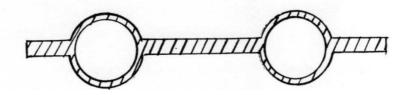


FIG 2-20: Plaque « ROLL BOND » avant et après gonflement

Ce système n'est plus utilisé sur les capteurs solaires, mais est toujours d'usage pour les échangeurs à l'intérieur des réfrigérateurs/congélateurs.

2.2.3. Isolation thermique:

2.2.3.1. Généralités :

L'absorbeur doit transmettre l'énergie captée au fluide en évitant les pertes thermiques par conduction, convection et rayonnement et c'est en ce la que l'isolation joue un rôle important puisqu'on place un isolant (laine de verre, polyuréthane,...) sur les partie arrière et latérale du capteur limitant, ainsi, les pertes par conduction vers l'extérieur.

La lame d'air, d'épaisseur **e**, située entre la couverture absorbante et l'absorbeur se comporte aussi comme un isolant vis-à-vis de la transmission par conduction mais, si **e** est trop importante, une convection naturelle intervient entraînant des pertes non négligeables. Et c'est en ce sens que CHAPMAN a proposé une condition pour garantir une épaisseur optimale :

$$e^3(T_u-T_e) < k$$

Avec:

k: Conductibilité du fluide considéré.

T_u: Température d'utilisation.

T_e: Température du réseau d'alimentation.

Ce qui nous donne en pratique des épaisseurs variant de 2 à 4 cm.

2.2.3.2. *Matériaux utilisés :*

Deux sortes de matériaux sont suggérées pour l'isolement de l'absorbeur :

A) Des fibres organiques caractérisées par des températures de fusions relativement élevées, des poids spécifiques et densités faibles (figure 2-3), et une bonne résistance aux conditions atmosphériques.

Tableau 2-3: Fibres pour isolation thermique

	Fibre de verre	Téflon	Dacron	Orlon	Nylon
T_R (°C)	315	274	150	135	120
Densité (kg/m³)	185 à 350	-	15 à 30	15 à 30	15 à 30

Avec:

T_R: Température de résistance.

B) Des écumes plastiques, telles que les écumes de polyuréthane, caractérisées par de faibles coefficients de conductibilité, de faibles poids spécifiques et une bonne longévité. Elles adhèrent fortement au bois, au métal et aux plastiques. Les écumes de polyuréthane deviennent très collantes immédiatement après avoir été mélangées mais cuisent rapidement dans les récipients les contenant.

Les écumes plastiques offrent la possibilité de construire de solides structures mixtes, avec un coût de montage minimal.

Tableau 2-4 : Propriétés typiques d'écume de polyuréthane

	Polyuréthane
k (W/m.°C)	0,018
T _{max} (°C)	177

Avec:

k : Coefficient de conductibilité thermique.

T_{max}: Température maximale de service.

2.2.4. Caisson:

La coque a trois fonctions principales :

- 1- Maintenir l'ensemble de façon rigide,
- 2- Assurer l'étanchéité,
- 3- Assurer une protection efficace aux différents composants du capteur contre les agents atmosphériques à long terme.

Les coffres des capteurs sont réalisés, la plupart du temps, en acier inoxydable ou en aluminium anodisé (l'anodisation offrant une résistance élevée aux agressions extérieures à un prix inférieur comparée à l'acier inoxydable).

En général, la coque est accrochée sur un support métallique en cornières ancré au sol qui amortira les contraintes liées au vent.

2.3. CONSIDERATIONS PRATIQUES:

Lors du passage de la théorie à la pratique, il se pourrait que certains problèmes, non définis par des équations, apparaissent à tous les niveaux du capteur et cela, dès la mise en marche du capteur ou bien après une certaine période. Il faut donc une étude préalable très poussée de ces contraintes pratiques pour pouvoir déterminer les matériaux à utiliser et les solutions les mieux indiquées à même de répondre à de telles exigences.

2.3.1. Etanchéité:

Le problème de l'étanchéité se pose à trois niveaux différents :

- 1.1 Au niveau de l'absorbeur : En fait, il faut que l'étanchéité de l'absorbeur soit assurée pour que le fluide caloporteur ne s'épande pas dans tout le capteur et ne le détériore définitivement.
- **2.1** Au niveau du caisson : le caisson doit être suffisamment étanche pour que l'humidité de l'air ambiant ou que de l'eau (eau de pluie par exemple) ne puissent pénétrer dans le capteur.
- **3.1** Au niveau du vitrage : Les joints sur le pourtour du vitrage doivent être parfaitement étanches pour qu'il n'y ait pas infiltration d'eau d'une part et d'autre part le moins de pertes par convection possible.

En effet, si l'étanchéité n'était pas suffisante, l'isolation arrière et latérale pourrait ne plus être assurée puisque certains matériaux tels que la laine de verre perdent leurs propriétés isolantes dès lors qu'elles sont humides. Même l'isolation de la face avant risque d'en pâtir, puisque l'humidité risque de se déposer par la suite sous forme de buée sur le vitrage diminuant ainsi notablement la transmittance de la couverture transparente. Enfin, l'humidité risque de détériorer le revêtement de l'absorbeur. L'étanchéité est, donc, un problème essentiel qu'il faut étudier en concordance avec la température.

2.3.2. Température :

Il est tout à fait clair que les températures maximales auxquelles sont confrontés les différents éléments du capteur sont atteintes en été en pleine journée alors même que nous n'en avons pratiquement plus besoin. Là encore il faut que chacun des éléments supporte ces températures sans risque de modifications ultérieures des caractéristiques; toutefois, les dilatations nécessaires doivent avoir lieu. En effet, les joints tout autour de la couverture transparente, en verre par exemple, doivent lui permettre de se dilater avec suffisamment de liberté pour ne pas se briser sous l'effet de la dilatation de la lame d'air qu'elle recouvre et ce, tout en assurant l'étanchéité.

2.3.3. Rayonnement ultraviolet:

Le rayonnement ultraviolet provient du rayonnement solaire. La partie U.V. non absorbée par l'atmosphère s'étend de 290 à 400 nm. Ces radiations représentant environ 5 % du spectre solaire sont potentiellement agressives. En effet, les photons de cette gamme de longueur d'ondes ont des énergies qui correspondent à celles de certaines liaisons chimiques, qui peuvent être de ce fait rompues [38]. L'absorption de ces photons par les matériaux organiques ne se traduit pas obligatoirement par une dégradation photochimique pure. La dégradation d'un polymère soumis au rayonnement en présence d'oxygène suit un processus complexe de réactions en chaînes dont l'amorçage peut être d'origine photochimique ou thermique (consécutivement à l'absorption des photons par des pigments ou additifs chromophores) [39]. La manifestation physique la plus évidente de cette dégradation est une coloration du matériau (jaunissement) souvent associée à une fragilisation. Là encore, le verre présente une bonne résistance aux U.V. contrairement aux plastiques.

2.3.4. Entartrage:

Quand le fluide caloporteur utilisé est de l'eau courante non traitée, il comporte des impuretés en suspension et des sels minéraux en solution qui, par réaction chronique avec le matériau contenant le fluide, peuvent se déposer et former, avec le temps, une couche obstruant le passage dans la tuyauterie de l'absorbeur (ce qui n'est pas sans nous rappeler une célèbre publicité). L'entartrage dépend évidemment de la nature de l'eau, mais aussi du matériau utilisé pour la tuyauterie. De surcroît, plus la canalisation est de faible diamètre, plus l'entartrage sera important et nocif. Il faut donc être prudent dans le cas d'absorbeurs à conduits étroits. Une des solutions est l'adjonction au fluide caloporteur d'un sel neutralisant les effets des sels qu'il contient.

2.3.5. Corrosion :

Il peut y avoir une attaque des matériaux contenant le fluide jusqu'à la création d'un orifice de part en part du tuyau. Là encore, ce sont les impuretés contenues dans l'eau qui sont la cause de cette dégradation. Les principaux agents corrosifs contenus dans l'eau courante sont les molécules d'oxygène et les ions chlorures; ces derniers étant souvent introduits artificiellement pour épurer l'eau et le rendre potable. Mais la corrosion peut être amorcée par le produit antitartre ou antigel. La corrosion est d'autant plus forte que les molécules d'eau sont accélérées; les points névralgiques sont donc les changements de diamètre, qui les premiers, seront attaqués. Il faut aussi faire attention aux points hauts d'un circuit qui pourraient être le siège d'une poche d'air, donc d'oxygène. La température peut aussi jouer le rôle de catalyseur : plus elle est élevée, plus les réactions chimiques sont rapides et plus la corrosion devient préoccupante.

2.4. INSTALLATION SOLAIRE:

2.4.1. Emplacement:

L'emplacement du capteur est le premier point à examiner. Bien que très important par ses conséquences thermiques, le choix de l'emplacement est souvent guidé par des considérations esthétiques. Donnons, néanmoins, quelques règles qu'il serait bon de suivre :

- A) Eviter les distances importantes entre le capteur et le lieu d'utilisation de l'énergie. Les déperditions thermiques dues à la tuyauterie deviennent rapidement importantes avec la distance et nécessitent alors une isolation parfaite et coûteuse.
- B) Préférer les endroits abrités du vent pour éviter que le capteur ne subisse des contraintes mécaniques dommageables mais surtout réduire les déperditions thermiques au niveau de la

surface de vitrage et de la face arrière. Une situation au sol des capteurs est donc préférable à une position élevée en toiture.

C) Limiter les effets de masques. On appelle masque, tout objet du paysage situe entre le soleil et le capteur et qui est donc susceptible de créer de l'ombre.

2.4.2. Orientation du capteur :

Le soleil se lève à l'est et se couche à l'ouest. Si donc, vous orientez les capteurs vers l'est, vous favorisez le fonctionnement le matin au détriment de celui de l'après-midi, et inversement.

Une telle solution peut être adoptée si des masques importants occultent soit le soleil levant, soit le soleil couchant. Par ailleurs, dans une journée de vingt quatre heures la période la plus froide se situant une demi-heure après le lever du soleil [40], il serait préférable d'orienter le capteur de quelques degrés vers l'ouest. Mais inversement, l'eau du réservoir étant plus chaude après une journée que le matin, le capteur a un rendement moins bon le soir.

En conclusion et de façon générale, dans l'hémisphère nord, les capteurs sont orientés plein sud, car c'est dans cette direction que l'énergie recueillie durant toute la journée est maximale toutefois, on peut s'écarter de cette direction de $\pm 15^{\circ}$ sans que le rendement soit notablement affecté [11].

2.4.3. Inclinaison du capteur :

L'inclinaison des panneaux par rapport à l'horizontale est donnée par la relation suivante [41]:

$$\beta = \Phi_L - \sin^{-1}\left(0.4\sin(N\frac{360}{365})\right)$$

Aux équinoxes du 21 mars et du 21 septembre, le soleil est perpendiculaire à l'Equateur. Au solstice du 21 juin, il est perpendiculaire au tropique du Cancer (hémisphère nord). Au solstice du 21 décembre, il est perpendiculaire au tropique du Capricorne (hémisphère sud).

Les panneaux solaires doivent être placés perpendiculairement au soleil pour obtenir un résultat optimal. En effet, le rayonnement intercepté sera maximal pour un angle d'incidence nul (rayons perpendiculaires à la surface du capteur) et nul pour un angle d'incidence de 90° (rayonnement rasant) comme le montre la figure (**2-21**). C'est pour cela que les capteurs solaires peuvent être à poursuites ou fixes.

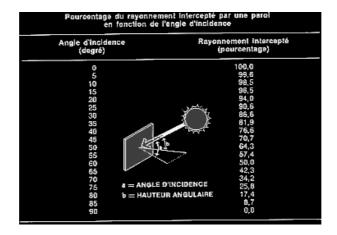


FIG 2-21 : Pourcentage du rayonnement intercepté en fonction de l'angle d'incidence [32]

L'idéal serait, donc, qu'il suive le soleil dans sa course afin de maximiser l'ensoleillement en gardant la surface active du module solaire perpendiculaire aux radiations solaires. Ce système est appelé capteur à poursuite (figure 2-22); seulement un tel système nécessite un important investissement.

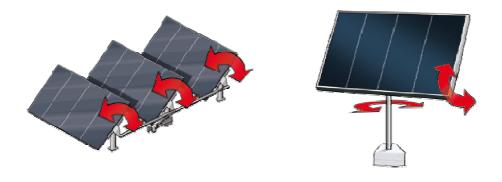


FIG 2-22: Systèmes à poursuite mono et bi axial

Différents systèmes d'orientation commerciaux sont disponibles et proposent conformément à leurs fiches de présentation des gains de l'ordre de **20-30** % selon les techniques et les technologies employées. Les techniques sont diverses mais peuvent être principalement subdivisées en deux catégories, les unes basées sur l'asservissement, les autres sur la préprogrammation de la trajectoire.

- 1- La première catégorie compte sur des capteurs qui détectent en permanence la position « surface active perpendiculaire aux radiations solaires ». Dans ce type de techniques, la poursuite s'effectue indépendamment de la zone dans laquelle le système sera situé. La poursuite est plus précise, mais il peut y avoir des pertes supplémentaires d'énergie dues à la consommation du système de commande qui est actif en permanence [42].
- **2-** La seconde catégorie est basée sur le fait que le soleil suit un trajet relativement périodique pour un observateur situé à un endroit donné sur la terre. La poursuite du soleil peut, dès lors s'effectuer par des techniques de pré-programmation de la trajectoire du soleil qui est gouvernée par des équations appelées « équations du temps » [43].

A l'opposé, les capteurs fixes, même s'ils ne sont pas au maximum de leur potentiel en permanence, présentent quelques avantages :

- Simplicité,
- Fiabilité,
- Ils ne nécessitent pas un entretien important,
- Ils peuvent faire partie intégrante d'une construction.
- Un investissement initial bien moins important que pour les systèmes à poursuite.

2.4.4. Tuyauteries:

La tuyauterie sert au transfert du fluide caloporteur.

Le circuit qu'elle décrit doit être le plus simple possible, c'est à dire qu'il doit :

- Etre court,
- Eviter les coudes et les changements de diamètre à cause des singularités (pertes de charge),
- Ne pas présenter de points hauts inutiles car l'air risque de s'accumuler gênant, ainsi,
 la circulation de l'eau et pouvant donner lieu à la corrosion.

La tuyauterie doit être fabriquée à partir d'un matériau inoxydable ou être traitée pour résister à la corrosion et doit aussi être calorifugé avec soin afin de diminuer les pertes thermiques pendant le transfert.

Aussi dans le cas d'un montage sans pompe, le diamètre des tuyaux sera établi par une étude des pertes de charge Les tuyaux doivent être calorifuges avec soin.

2.4.5. Cuve de stockage :

L'inconstance des conditions météorologiques (baisse des températures, baisse de l'éclairement, passage des nuages,...) empêche une utilisation directe de l'eau chauffée grâce au capteur et contraint à l'utilisation de cuves de stockage parfaitement calorifugée qui permettent d'emmagasiner l'eau chaude obtenue avec le moins de pertes possibles.

Pour ce faire, il convient de déterminer le volume de stockage optimal par rapport à la surface de captation puisqu'il n'est pas avantageux d'augmenter cette dernière si la cuve est petite. A contrario, un réservoir trop volumineux perd trop de chaleur et est plus difficile à réchauffer. En pratique, on admet un volume de stockage de 50 à 80 l/m² de surface de capteurs et de 1,3 à 1,7 fois la consommation en eau chaude sanitaire journalière du ménage (c'est-à-dire que pour une consommation de 50 l par jour et par habitant pour une famille de 4 personnes, il faudrait une cuve de stockage allant de 260 à 340 l) [33].

Il faut aussi que le réservoir soit placé à l'intérieur et en un lieu proche des capteurs pour raccourcir au maximum la tuyauterie et diminuer ainsi les pertes pendant le trajet de l'eau de l'absorbeur jusqu'au lieu de stockage.

2.4.6. Choix du montage :

2.4.6.1. Montage en série :

Lorsque les capteurs sont montés en série (figure **2-23a**), c'est la même eau qui va circuler dans tous les capteurs et va s'échauffer de plus en plus dans chacun d'eux.

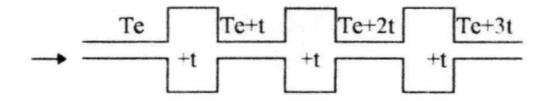


FIG 2-23 : (a) Montage en série

Pour le montage en série, les pertes de charge sont plus importantes que pour le second type ce qui ne permet pas un fonctionnement en thermosiphon et nécessitera l'utilisation d'une pompe de circulation.

2.4.6.2. Montage en parallèle :

Pour le montage en parallèle (figure **2-23b**), chaque capteur aura pour rôle de faire monter en un seul passage la température d'une partie du débit d'eau total.

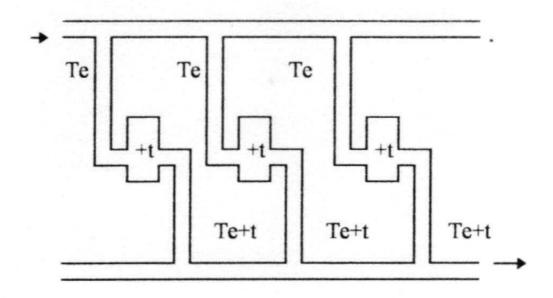


FIG 2-23 : (b) montage en parallèle

Le choix se portera sur le montage en parallèle si, nous voulons avoir un circuit en thermosiphon ou si les pertes de charge sont trop importantes.

2.4.7. Choix du système :

Il existe deux façons de classer les systèmes utilisés pour obtenir de l'eau chaude sanitaire selon :

- La présence ou non d'un échangeur.
- La présence ou non d'une pompe de circulation.

2.4.7.1. Système direct:

On appelle système direct (figure **2-24a**) tout système ne comportant pas d'échangeur c'est-à-dire qu'il ne sera constitué que des capteurs et d'une cuve de stockage, réunis par une double tuyauterie. Le fluide caloporteur est l'eau courante.

Il faudra inclure dans le montage un vase d'expansion pour permettre à l'eau de se dilater librement. Ce montage simple présente l'avantage de coûts d'installation réduits mais offre en contrepartie, un certain nombre de risques importants déjà envisagés : entartrage, corrosion, éclatement dû au gel.

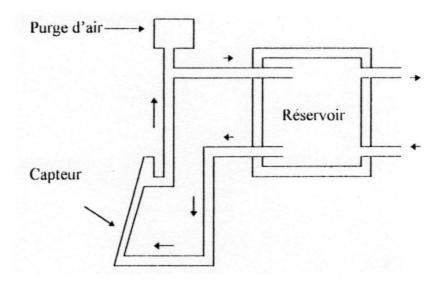


FIG 2-24: (a) Système direct

2.4.7.2. Système indirect :

Pour se prémunir contre les risques d'entartrage et de corrosion, une solution consiste à utiliser un échangeur qui sépare le circuit en deux : le circuit primaire incluant les capteurs et le circuit secondaire la cuve de stockage et l'utilisation. Dès lors, si l'on ne prend pas la précaution de renouveler souvent l'eau primaire et si aucune poche d'air n'existe, les dépôts de calcaires et la corrosion seront faibles, même si le fluide est de l'eau ordinaire (figure 2-24b). Contre le gel, il est alors possible de prévoir une évacuation automatique ou manuelle de l'eau pendant les périodes très froides.

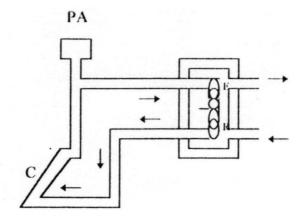


FIG 2-24: (b) Système indirect

2.4.7.3. Modèle en thermosiphon:

Dans les chauffe-eau à thermosiphon (figure **2-25a**), le fluide caloporteur circule par convection libre. Le mouvement du fluide résulte de la pression hydro-motrice « H », qui est produite uniquement par des variations de la densité comme conséquence de variations de la température. En effet, Tant qu'il est plus chaud, donc moins dense que l'eau stockée, le liquide primaire s'élève naturellement, par thermo-circulation.

Ce modèle est utilisé lorsqu'il y a possibilité de placer le ballon plus haut que les capteurs.

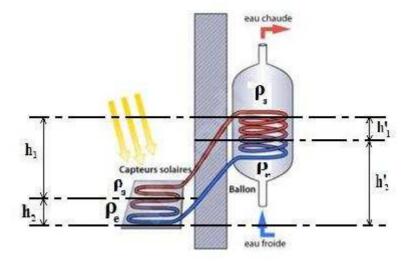


FIG 2-25: (a) Modèle en thermosiphon

Avant d'opter pour ce modèle, il est nécessaire de déterminer la force hydro-motrice [44].

$$H = h'_{2}\rho_{e} + h'_{1}\rho_{s} - h_{1}\rho_{s} - h_{2}\rho_{e}$$

$$H = \rho_e(h'_2 - h_2) - \rho_s(h_1 - h'_1)$$

En supposant que $h'_2 - h_2 \approx h_1 - h'_1 = h$, on aura :

$$H = h(\rho_e - \rho_s)$$

h est la dénivellation entre le milieu du capteur et celui du ballon de stockage (entre-axe capteur-ballon).

Ce mode de circulation présente un avantage d'autorégulation puisque le débit s'adapte au rayonnement capté (débit de l'ordre de 1,5 l/s). En revanche, il est impossible de limiter la température maximale du réservoir qui, en été et pendant les périodes de faible consommation, peut atteindre des valeurs considérables et provoquer de surchauffes qui mettent en jeu la sécurité des personnes et la vie de l'installation. Aussi, le chauffe-eau solaire à thermosiphon ne peut être utilisé en période de gel relativement prolongée.

2.4.7.4. Modèle à circulation forcée :

Si on se retrouve dans une configuration où il est impossible de placer la cuve plus haut que les capteurs ou si les pertes de charge sont trop importantes pour être vaincues par la circulation naturelle du fluide, on opte pour un chauffe-eau solaire à circulation forcée (figure 2-25b). Il comporte un circulateur et une régulation différentielle.

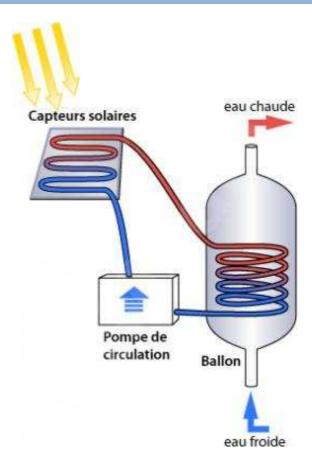


FIG 2-25 : (b) Modèle à circulation forcée

Le circulateur est une petite pompe électrique qui met en mouvement le liquide primaire tant que sa température dépasse celle de l'eau sanitaire du ballon solaire. Quant à la régulation différentielle, elle compare continuellement la température du capteur et celle de la partie basse ou médiane du ballon. Si le ballon est le plus chaud, la régulation arrête le fonctionnement du circulateur. A l'inverse, quand le capteur est plus chaud que le ballon, le circulateur est automatiquement remis en route.

Ce modèle facilite l'installation puisque le réservoir peut être placé n'importe où (pourvu que la pompe soit assez puissante) et donc seul le capteur sera placé sur le toit, et donc il est possible d'utiliser un ballon d'eau chaude standard qui n'aura pas à résister aux conditions extérieures. Cependant, il nécessite un entretien plus poussé puisque la pompe et son contrôleur sont assez fragiles.

ETUDE ANALYTIQUE ET DIMENSIONNEMENT

CHAPITRE 3

3.1. BILAN THERMIQUE DU CAPTEUR:

Le bilan énergétique par unité de surface du capteur s'écrit :

$$q_a = q_u + q_p + q_s \tag{3-1}$$

Où:

q_a désigne le flux solaire absorbé.

 $\mathbf{q}_{\mathbf{u}}$ est le flux utile récupéré par le fluide caloporteur.

 q_p est le flux perdu par le capteur.

 $\mathbf{q_s}$ est le flux stocké sous forme de chaleur vive dans les différents éléments du capteur lorsque le régime thermique est variable.

3.1.1. Hypothèses:

Pour simplifier notre étude, on a émis un certain nombre d'hypothèses [3]:

- 1- Le capteur est uniformément irradié,
- 2- Le ciel est considéré comme un corps noir à la température T_{cl},
- 3- Température homogène pour chaque élément,
- 4- Régime permanent,
- 5- Capteur à inertie thermique négligeable (faibles masse des composants et chaleurs spécifiques),
- 6- Les pertes thermiques vers l'avant et l'arrière se font vers la même température ambiante.
- 7- La poussière et les masques sur le capteur sont négligeables,
- 8- Ecoulement de chaleur unidimensionnel.

Les hypothèses 4 et 5 font que le flux stocké dans le capteur est négligeable : $q_s = 0$ et donc l'équation du bilan devient :

$$q_a = q_u + q_p \tag{3-2}$$

3.1.2. Rendements d'un capteur [5]:

3.1.2.1. Rendements thermiques du capteur :

Par référence aux machines thermiques, on utilise la notion de rendement du capteur mais, en fait, il existe deux définitions distinctes donnant lieu à deux rendements différents :

 Le rendement global instantané η défini comme étant le rapport entre le flux utile récupéré q_u sur l'éclairement solaire global incident G_i* sur le capteur tel que :

$$\eta = \frac{q_u}{G_i^* S} \tag{3-3}$$

• Le rendement interne instantané η_i (ou rendement de l'absorbeur) qui désigne le rapport entre le flux utile récupéré q_u sur le flux solaire absorbé q_a tel que :

$$\eta_i = \frac{q_u}{q_a} \tag{3-4}$$

Il est important de remarquer que les conditions d'utilisation (le flux solaire est une variable aléatoire) obligent à définir des rendements moyens sur un intervalle de temps ΔT , à préciser (jour, mois ou année), qui sont plus indicatifs des performances réelles du capteur.

Ces rendements moyens $\overline{\eta}$ sont définis en intégrant la relation du bilan (3-2) sur la période désirée :

$$\int_0^t q_a dt = \int_0^t q_u dt + \int_0^t q_p dt$$

Soit:

$$Q_a = Q_u + Q_p$$

Et donc:

$$\bar{\eta} = \frac{Q_u}{\int_0^t G_i^* S \, dt} \tag{3-5}$$

$$\overline{\eta}_{l} = \frac{Q_{u}}{Q_{a}} \tag{3-6}$$

3.1.2.2. Rendement optique du capteur :

Le **rendement optique instantané** du capteur est défini par le rapport entre le flux absorbé par celui-ci et le flux solaire global incident sur le capteur :

$$\eta_0 = \frac{q_a}{G_i^* S} \tag{3-7}$$

De même que précedemment, on peut définir le rendement optique moyen :

$$\overline{\eta_0} = \frac{Q_a}{\int_0^t G_i^* S \, dt} \tag{3-8}$$

Considérons un système verre - plaque absorbante comme l'indique la figure (3-1)

Les indices a et v désignent respectivement l'absorbeur et la couverture transparente en verre.

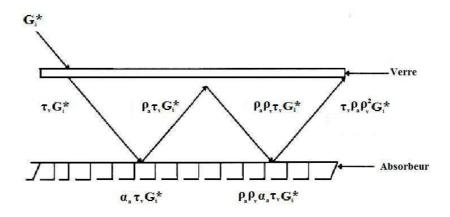


FIG 3-1: Echange radiatif entre le verre et l'absorbeur

Pour un flux solaire G_i^*S incident sur la surface du verre, seul $\tau_v G_i^*S$ sera transmis et arrivera à la surface de l'absorbeur où $\tau_v \alpha_a G_i^*S$ sera absorbé et $\tau_v \rho_a G_i^*S$ sera réfléchi. Le flux réfléchi sera à son tour partiellement réfléchi par le verre et renverra donc $\tau_v \rho_a \rho_v G_i^*S$ vers l'absorbeur.

Et donc, le flux solaire total absorbé consistera en la somme de ses absorptions et réflexions successives :

$$q_a = \tau_v \alpha_a G_i^* S(1 + \rho_v \rho_a + \rho_v^2 \rho_a^2 + \cdots)$$

Pour rappel et pour $|x| < 1 : \sum_{j=0}^{\infty} x^j = \frac{1}{1-x}$

Et donc, l'expression du flux absorbé devient :

$$q_a = \frac{\tau_v \alpha_a G_i^* S}{1 - \rho_v \rho_a} \tag{3-9}$$

On peut donc écrire l'équation du rendement optique du capteur d'une autre manière :

$$\eta_0 = \frac{\tau_v \alpha_a}{1 - \rho_v \rho_a}$$

Ces rendements sont reliés ensemble par la relation suivante :

$$\eta = \eta_0. \eta_i \tag{3-10}$$

3.1.3. Calcul des pertes du capteur :

Les flux de chaleur donnés ci-après le sont en fonction de la surface S qui est la surface d'ouverture du capteur (figure **3-2**).

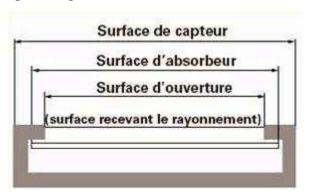


FIG 3-2: Indication des différentes surfaces du capteur

3.1.3.1. Pertes optiques du capteur :

Les pertes optiques du capteur sont données par la relation suivante :

$$q_0 = G_i^* S (1 - \eta_0)$$
 Et donc :

$$q_0 = G_i^* S \left(1 - \frac{\tau_v \alpha_a}{1 - \rho_v \rho_a} \right) \tag{3-11}$$

3.1.3.2. Pertes thermiques du capteur :

Nous diviserons le flux perdu par le capteur en deux parties :

$$q_p = q_{pav} + q_{par} \tag{3-12}$$

Avec:

 $\mathbf{q}_{\mathbf{pav}}$ est le flux perdu à l'avant du capteur.

 $\mathbf{q}_{\mathrm{nar}}$ est le flux perdu à l'arrière et par les faces latérales du capteur.

Une analogie électrique (figure 3-3) nous permet de mieux représenter les différentes pertes du capteur.

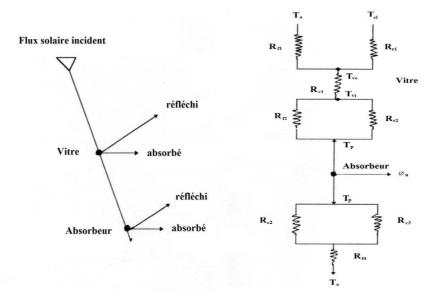


FIG 3-3: Analogie électrique des flux thermiques à travers un capteur

Avec:

 $\mathbf{R}_{\mathbf{f}1}$: Résistance au flux par convection entre la face extérieure du vitrage et le milieu ambiant.

 \mathbf{R}_{r1} : Résistance au flux par rayonnement entre la face extérieure du vitrage et le ciel.

 \mathbf{R}_{c1} : Résistance au flux par conduction à travers la vitre.

 $\mathbf{R}_{\mathbf{f2}}$: Résistance au flux par convection entre l'absorbeur et la vitre.

 \mathbf{R}_{r2} : Résistance au flux par rayonnement entre l'absorbeur et la vitre.

 \mathbf{R}_{c2} : Résistance au flux par conduction à travers les faces latérales du capteur.

 \mathbf{R}_{c3} : Résistance au flux par conduction à travers la face arrière du capteur.

 $\mathbf{R}_{\mathbf{f4}}$: Résistance au flux par convection vers l'arrière et les faces latérales du capteur.

 T_{ve} : Température de la face extérieure de la vitre.

 T_{vi} : Température de la face intérieure de la vitre.

T_a: Température de l'air ambiant.

T_p : Température de l'absorbeur.

 T_{cl} : Température du ciel. T_{cl} est estimée par la relation de Swinbank [3] :

 $T_{cl} = 0.0552 T_a^{1,5} [K]$

A. Pertes à l'avant du capteur :

On peut les diviser en deux parties :

 $\mathbf{q}_{\mathtt{pav1}}$: Pertes entre la vitre et le milieu extérieur.

 $\mathbf{q}_{\mathbf{pav2}}$: Pertes entre la vitre et l'absorbeur.

a. Pertes entre la vitre et le milieu extérieur :

Comme le montre la figure (3-3), il y a pertes par convection et par rayonnement.

Par convection:

$$q_{vav1f} = h_{f1}S(T_v - T_a)$$

Par rayonnement:

$$q_{pav1r} = \varepsilon_v \sigma S(T_v^4 - T_{cl}^4)$$

Avec:

 $\mathbf{h}_{\mathbf{f}\mathbf{l}}$: Coefficient d'échange de chaleur par convection entre la vitre et le milieu ambiant.

 ε_{v} : Emissivité du verre.

Et donc:

$$q_{pav1} = h_{f1}S(T_v - T_a) + \varepsilon_v \sigma S(T_v^4 - T_{cl}^4)$$
(3-13)

Cette équation peut aussi être écrite d'une autre manière :

$$q_{pav1} = (h_{f1} + h_{r1})(T_v - T_a)S = \frac{(T_v - T_a)S}{R_1}$$

Où:

 $h_{r1} = \frac{\varepsilon_v \sigma(T_v^4 - T_{cl}^4)}{(T_v - T_a)}$ est le coefficient d'échange par rayonnement entre la vitre et le ciel.

$$R_1 = \frac{1}{h_{f1} + h_{r1}}$$

b. Pertes entre la vitre et l'absorbeur :

Comme précédemment, il y a pertes par convection et par rayonnement.

Par convection:

$$q_{pav2f} = h_{f2}S(T_p - T_v)$$

Par rayonnement:

$$q_{pav2r} = \frac{\sigma S(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$

Avec:

 \mathbf{h}_{12} : Coefficient d'échange de chaleur par convection entre la vitre et l'absorbeur.

 ε_v : Emissivité du verre.

 ε_p : Emissivité de l'absorbeur.

Et donc:

$$q_{pav2} = h_{f2}S(T_p - T_v) + \frac{\sigma S(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
(3-14)

Cette équation peut aussi être écrite d'une autre manière :

$$q_{pav2} = (h_{f2} + h_{r2})(T_p - T_v)S = \frac{(T_p - T_v)S}{R_2}$$

Où:

$$h_{r2} = \frac{\sigma(T_p + T_v)(T_p^2 + T_v^2)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 est le coefficient d'échange par rayonnement entre la vitre et

l'absorbeur.

$$R_2 = \frac{1}{h_{f2} + h_{r2}}$$

En régime permanent, il y a équilibre thermique et donc :

$$\boldsymbol{q}_{pav} = \boldsymbol{q}_{pav1} = \boldsymbol{q}_{pav2}$$

En général, cette approche conduit toujours à un système non linéaire de (N + 2) inconnues. N étant le Nombre de vitres de capteur.

Bien que, la résolution d'un tel système peut se faire par ordinateur, on préfère souvent adopter l'approche de KLEIN qui a développé, en 1979, une formule empirique donnant une valeur approchée de U_{av} en se basant sur son propre travail de 1975 et sur ce lui de HOTTEL et WOERTZ en 1942 [3].

$$U_{av} = \left(\frac{N}{\left(\frac{C}{T_p}\right)\left[\frac{(T_p - T_a)}{(N+f)}\right]^e} + \frac{1}{h_{f1}}\right)^{-1} + \frac{\sigma(T_p + T_a)(T_p^2 + T_a^2)}{\left(\varepsilon_p + 0.00591Nh_{f1}\right)^{-1} + \frac{2N + f - 1 + 0.133\varepsilon_p}{\varepsilon_v} - N}$$
(3-15)

Où:

 U_{av} : Coefficient de pertes avant [W/m².K].

N : Nombre de couvertures transparentes.

 $f = (1 + 0.089h_{f1} - 0.1166h_{f1}\varepsilon_p)(1 + 0.07866N)$ est un facteur tenant compte de l'effet du vent.

 $C = 520(1 - 0.000051\beta^2)$ pour $0^{\circ} < \beta < 70^{\circ}$. (Pour $70^{\circ} < \beta < 90^{\circ}$, on utilise $\beta = 70^{\circ}$) est un facteur tenant compte de l'influence de l'inclinaison du capteur sur h_{fl} et h_{f2} .

$$e = 0.430 \left(1 - \frac{100}{T_p} \right)$$

 β : Inclinaison du capteur.

 $\varepsilon_{\rm v}$: Emissivité du verre.

ε_p: Emissivité de l'absorbeur.

T_a: Température ambiante.

T_p: Température de l'absorbeur.

 $\mathbf{h}_{\mathbf{f}\mathbf{1}}$: Coefficient d'échange de chaleur par convection avec le milieu extérieur.

Pour leur part, Malhotra et al. ont recommandé une autre équation qui donne des résultats bien meilleurs comparativement à ceux issus des autres équations [45]. Ceci est confirmé plus tard par Garg et Datta.

$$U_{av} = \left[\frac{N}{\left(\frac{C}{T_n}\right)^{\left(\frac{(T_p - T_a)L^3 \cos \beta}{(N+f)}\right)^{0,252}}} + \frac{1}{h_{f1}} \right]^{-1} + \frac{\sigma(T_p + T_a)\left(T_p^2 + T_a^2\right)}{\frac{1}{\varepsilon_p + 0,0425N(1 - \varepsilon_p)} + \frac{2N + f - 1}{\varepsilon_v} - N}$$
(3-16)

Où:

C = 204,429.

$$f = \left(\frac{T_a}{316,9}\right) \left(\frac{9}{h_{f1}} - \frac{30}{h_{f1}^2}\right) (1 + 0.091N)$$

L : Distance entre la vitre et la plaque absorbante.

B. Pertes à l'arrière du capteur :

Les pertes à l'arrière du capteur sont données par la formule suivante :

$$q_{par1} = \frac{S(T_p - T_a)}{\frac{e_1}{k} + \frac{1}{h_{f4}}} = \frac{(T_p - T_a)S}{R_{31}}$$

Où:

k : Conductivité thermique de l'isolant.

e₁: Epaisseur de l'isolant sur sa face arrière (figure 3-4).

 $\mathbf{h_{f4}}$: Coefficient de transfert par convection entre la face arrière du capteur et le milieu externe.

Toutefois, il est souvent possible de négliger la résistance par convection devant celle due à l'isolation [3], et donc :

$$q_{par1} = \frac{S(T_p - T_a)}{\frac{e_1}{k}} = \frac{(T_p - T_a)S}{R_{31}}$$
 (3-17)

$$R_{31} = \frac{e_1}{k}$$

On peut ainsi définir le coefficient de pertes arrières U_{ar} tel que :

$$U_{ar} = \frac{k}{e_1}$$

C. Pertes par les faces latérales du capteur :

La puissance perdue par les faces latérales du capteur est :

$$q_{par2} = \left[\left(\frac{e_2}{k} + \frac{1}{h_{vent}} \right) \frac{S}{S_{lat}} \right]^{-1} \left(T_p - T_a \right) S = \frac{(T_p - T_a)S}{R_{32}}$$
 (3-18)

Où:

 e_2 : Epaisseur de l'isolant sur ses faces latérales (figure 3-4).

 $S_{lat}=2(L_1+L_2)L_3$ est la surface des faces latérales du capteur.

$$R_{32} = \left(\frac{e_2}{k} + \frac{1}{h_{vent}}\right) \frac{S}{S_{lat}}$$

De même que précédemment, on définit le coefficient de pertes latérales U_{lat} :

$$U_{lat} = \frac{k}{e_2} \frac{S_{lat}}{S}$$

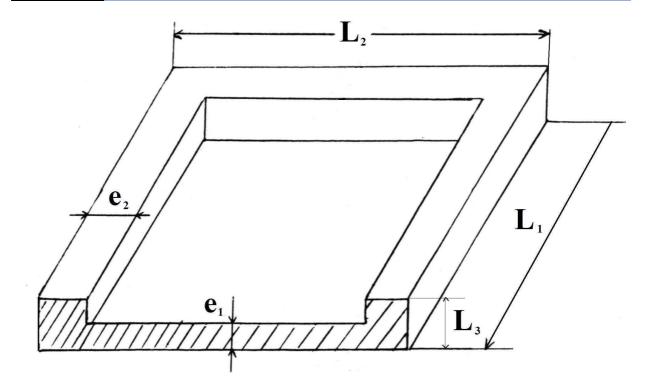


FIG 3-4: Coupe transversale de l'isolant

Si l'on suppose que toutes les pertes se font vers une température T_a (voir hypothèse simplificatrice numéro 6), alors en sommant les coefficients de pertes avants, latérales et arrières on obtient le coefficient de pertes globales U_L .

$$U_L = U_{av} + U_{ar} + U_{lat} \tag{3-19}$$

On peut écrire alors que :

$$q_p = U_L(T_p - T_a) \tag{3-20}$$

3.2. ETUDE THERMIQUE DE L'ABSORBEUR :

Le but de cette étude thermique est de voir l'influence de la construction de l'absorbeur sur le transfert de chaleur dans ce dernier vers le fluide.

Soit l la distance entre les axes des tubes, D_e leur diamètre extérieur et D_i leur diamètre intérieur (figure 3-5).

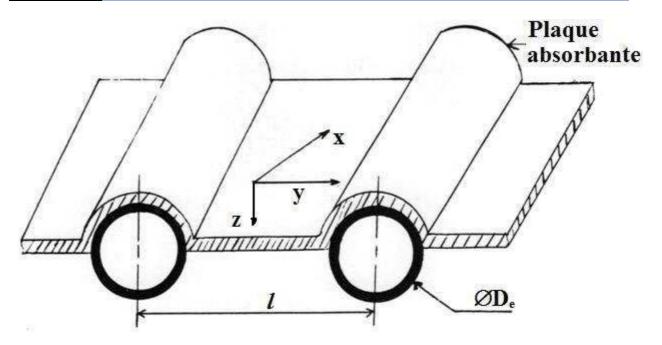


FIG 3-5 : Coupe transversale de l'absorbeur

Il faut néanmoins commencer par énoncer un certain nombre d'hypothèses [3]:

- La température de la plaque absorbante T_p est indépendante de la direction (oz) puisque la plaque absorbante est très mince; elle dépend uniquement des directions (ox) et (oy).
- 2) Le gradient de température autour des tubes est négligeable et donc les tubes seront à une température uniforme T_b.
- 3) Les variations de température suivant la direction de l'écoulement et entre les tubes peuvent être traitées indépendamment.

On obtient alors la distribution de la température de l'absorbeur (figure 3-6).

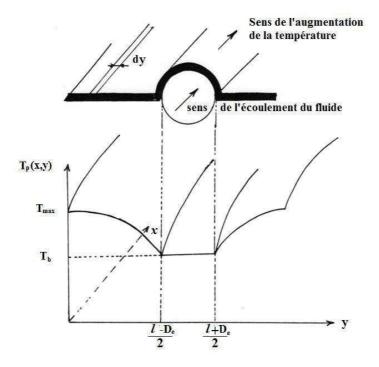


FIG 3-6 : Distribution tridimensionnelle de température dans la plaque

On distingue deux zones distinctes selon qu'il y ait un tube ou non.

-Ailette :
$$0 < y < \frac{l - D_e}{2}$$

-Tube :
$$\frac{l-D_e}{2} < y < \frac{l+D_e}{2}$$

D'après la figure (3-6), on peut remarquer que le gradient de température suivant (ox) est quasi nul et donc il sera négligé devant la variation suivant (oy).

$$\frac{\partial T_p}{\partial y} \gg \frac{\partial T_p}{\partial x}$$

a) Zone 1 :
$$0 < y < \frac{l - D_e}{2}$$

On commence par établir le bilan énergétique pour un élément fini dy (voir figure 3-7).

FIG 3-7 : Bilan thermique élémentaire de la plaque absorbante

Le bilan énergétique du morceau de plaque de longueur élémentaire dy est donné par :

$$\phi_a dy - k_p e \frac{dT_p}{dy} \Big|_{v} = -k_p e \frac{dT_p}{dy} \Big|_{v+dv} + U_L (T_p - T_a) dy$$
(3-21)

Où:

k_p : Conductivité thermique de la plaque.

e : Epaisseur de la plaque.

Øa: Densité du flux solaire absorbé par la plaque.

Or :
$$\frac{d}{dy} \left[\frac{dT_p}{dy} \Big|_{y+dy} - \frac{dT_p}{dy} \Big|_{y} \right] = \frac{d^2T_p}{dy^2}$$
 et donc, l'équation (3-20) s'écrira :

$$\frac{d^2T_p}{dy^2} = \frac{U_L}{k_p e} \left(T_p - T_a - \frac{\phi_a}{U_L} \right)$$
 (3-22)

Opérons le changement de variable suivant :

$$\begin{cases} \overline{T_p} = T_p - T_a - \frac{\phi_a}{U_L} \\ m^2 = \frac{U_L}{k_p e} \end{cases}$$

On obtient alors:

$$\frac{d^2\overline{T_p}}{dv^2} - m^2\overline{T_p} = 0 ag{3-23}$$

La solution de cette équation est donc de la forme :

$$\overline{T_p}(y) = C_1 \sinh(my) + C_2 \cosh(my)$$
 (3-24)

 C_1 et C_2 sont des constantes à déterminer par les conditions aux limites suivantes :

$$\begin{cases}
\frac{dT_p}{dy}\Big|_{y=0} = 0 \\
T_p\Big|_{y=\frac{l-D_e}{2}} = T_b
\end{cases}$$
(3-25)

Où:

 T_b est la température à la base de l'ailette.

De même que précédemment, en introduisant le changement de variable, les conditions aux limites deviennent :

$$\begin{cases}
\frac{d\overline{T_p}}{dy}\Big|_{y=0} = 0 \\
\overline{T_p}\Big|_{y=\frac{l-D_e}{2}} = T_b - T_a - \frac{\emptyset_a}{U_L}
\end{cases}$$
(3-26)

On trouve alors que:

$$\begin{cases} C_1 = 0 \\ C_2 = \frac{T_b - T_a - \frac{\emptyset_a}{U_L}}{\cosh\left[m\left(\frac{l - D_e}{2}\right)\right]} \end{cases}$$
 (3-27)

Finalement, l'équation de la distribution de température T_P en fonction de la direction (\mathbf{oy}) s'écrit :

$$\frac{T_p(y) - T_a - \frac{\phi_a}{U_L}}{T_b - T_a - \frac{\phi_a}{U_L}} = \frac{\cosh(my)}{\cosh\left[m\left(\frac{l - D_e}{2}\right)\right]}$$
(3-28)

Le flux transféré, par unité de longueur selon ox, à la base de la plaque en $y = \frac{l-D_e}{2}$ vers un tube s'écrit :

$$q'_{a} = -k_{p}e \frac{dT_{p}}{dy}\Big|_{y=\frac{l-D_{e}}{2}}$$

$$q'_{a} = \frac{\emptyset_{a} - U_{L}(T_{b} - T_{a})}{\cosh\left[m\left(\frac{l - D_{e}}{2}\right)\right]} \frac{k_{p}em}{U_{L}} \sinh\left[m\left(\frac{l - D_{e}}{2}\right)\right]$$

Comme
$$\frac{k_p e m}{U_L} = \frac{1}{m}$$
, on a:

$$q'_{a} = \frac{1}{m} \left[\emptyset_{a} - U_{L} (T_{b} - T_{a}) \right] \tanh \left[m \left(\frac{l - D_{e}}{2} \right) \right]$$
 (3-29)

L'équation (3-28) nous donne la quantité de chaleur d'un seul côté de tube il y en a deux alors, le flux de chaleur total est :

$$q'_{at} = 2q'_{a}$$

$$q'_{at} = (l - D_e)[\emptyset_a - U_L(T_b - T_a)] \frac{\tanh\left[m\left(\frac{l - D_e}{2}\right)\right]}{m\left(\frac{l - D_e}{2}\right)}$$
(3-30)

On peut alors introduire le rendement de l'ailette F tel que :

$$F = \frac{\tanh\left[m\left(\frac{l-D_e}{2}\right)\right]}{m\left(\frac{l-D_e}{2}\right)}$$
(3-31)

Et donc:

$$q'_{at} = (l - D_e)F[\phi_a - U_L(T_b - T_a)]$$
(3-32)

b) Zone 2:
$$\frac{l-D_e}{2} < y < \frac{l+D_e}{2}$$

Le tube gagne également un flux capté directement sur sa largeur apparente D_e supposée à la température uniforme T_b . Pour cette région, l'énergie transférée au tube est égale à :

$$q'_{t} = D_{e}[\phi_{a} - U_{L}(T_{b} - T_{a})]$$
(3-33)

Divisons l'absorbeur en parties égales, chacune se composant d'un tube de diamètre D_e et de deux ailettes (de largeur $\frac{l-D_e}{2}$) placées de part et d'autre de tube. Le gain thermique par unité de longueur suivant (ox) pour chaque élément (tube + ailettes) est :

$$q'_{u} = q'_{at} + q'_{t}$$

$$q'_{u} = [(l - D_{e})F + D_{e}][\emptyset_{a} - U_{L}(T_{b} - T_{a})]$$
(3-34)

Ce flux utile gagné par le tube est transmis au fluide à travers la résistance de conduction du tube d'épaisseur e_t et de conductivité thermique k_t la résistance de convection entre la paroi interne du tube et le fluide. Soit :

$$q'_{u} = \frac{T_b - T_f}{U_{af}} \tag{3-35}$$

Où:

T_f: Température du fluide.

$$U_{af} = U_t + U_b + U_f$$

 $U_t = \frac{e_t}{\pi k_t D_i}$: Résistance de conduction du tube.

 $U_f = \frac{1}{\pi h_i D_i}$: Résistance de convection fluide-tube.

 U_b : Résistance de contact entre la base de l'ailette et le tube. U_b est négligeable lorsque le contact thermique entre la base de l'ailette et le tube est bon (soudure ou matériau continu).

h_i: Coefficient d'échanges de chaleur par convection entre la paroi du tube et le fluide.

Donc, au final l'équation (3-34) devient :

$$q'_{u} = \frac{T_{b} - T_{f}}{\frac{e_{t}}{\pi k_{t} D_{i}} + \frac{1}{\pi h_{i} D_{i}}}$$
(3-36)

On peut éliminer T_b en égalant les deux expressions de q'_u et l'on obtient finalement l'expression du flux utile gagné par chaque tube par unité de longueur dans la direction (ox) de l'écoulement du fluide :

$$q'_{u} = \frac{[\emptyset_{a} - U_{L}(T_{f} - T_{a})][(l - D_{e})F + D_{e}]}{1 + U_{L}\left[\frac{e_{t}}{\pi k_{t}D_{i}} + \frac{1}{\pi h_{i}D_{i}}\right][(l - D_{e})F + D_{e}]}$$

Expression que l'on peut écrire de façon plus simple :

$$q'_{u} = lF'[\phi_{a} - U_{L}(T_{f} - T_{a})]$$
(3-37)

Avec:

$$F' = \frac{\frac{1}{U_L}}{l\left[\frac{1}{[(l-D_e)F+D_e]U_L} + \frac{e_t}{\pi k_t D_i} + \frac{1}{\pi h_i D_i}\right]}$$
(3-38)

F' apparaît comme le rapport de la résistance thermique au transfert entre la plaque et l'extérieur sur la résistance thermique au transfert entre le fluide et l'extérieur. F' est donc un nombre inférieur ou égal à l'unité appelé facteur d'efficacité de la plaque absorbante.

3.2.1. Loi de distribution de la température du fluide :

Considérons un tube de longueur L parmi les n tubes du capteur. Le fluide entre dans le tube à la température T_{fe} et en ressort à la température T_{fs} . D'après ce qui précède, chaque tube gagne un flux utile q'_u par unité de longueur dans le sens (ox) de l'écoulement du fluide et donc, q'_u et T_f sont fonction de x.

$$q'_{u}(x) = lF' [\emptyset_a - U_L(T_f(x) - T_a)]$$

Effectuons un bilan thermique sur la portion de fluide contenue dans un tube entre les distances x et x +dx à partir de l'entrée du tube (figure 3-8).

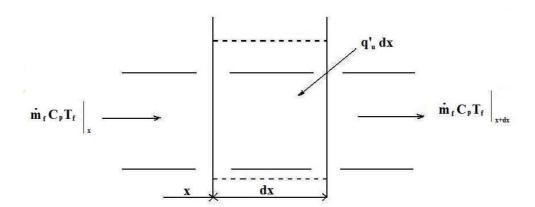


FIG 3-8 : Bilan thermique élémentaire du fluide

Avec:

 $\dot{m}_f = \frac{\dot{m}}{n}$: Débit massique du fluide parcourant le tube

n: Nombre de tubes.

m : Débit massique total du fluide parcourant les n tubes.

 C_p : Capacité calorifique du fluide.

Le bilan représenté par la figure (3-8) peut s'écrire :

$$\frac{m}{n}C_pT_f\Big|_{\mathcal{X}} + q'_u d\mathcal{X} = \frac{m}{n}C_pT_f\Big|_{\mathcal{X}+d\mathcal{X}}$$
(3-39)

En divisant l'équation (3-38) par dx, on obtient :

$$\dot{m}C_p \frac{dT_f}{dx} - nlF' \left[\phi_a - U_L(T_f - T_a) \right] = 0$$
(3-40)

En intégrant entre 0 et x et en supposant que U_L et F' ne dépendent pas de x, on obtient le profil de température longitudinal du fluide :

$$\frac{T_f(x) - T_a - \frac{\emptyset_a}{U_L}}{T_{fe} - T_a - \frac{\emptyset_a}{U_L}} = e^{-\frac{nlFtU_L}{\dot{m}C_p}x}$$
(3-41)

Et par intégration entre x = 0 et x = L, on obtient l'expression suivante de la température de sortie T_{fs} du fluide dans laquelle S = nlL est la surface de l'absorbeur :

$$\frac{T_{fs} - T_a - \frac{\emptyset_a}{U_L}}{T_{fe} - T_a - \frac{\emptyset_a}{U_L}} = e^{-\frac{SF/U_L}{\dot{m}C_p}}$$
(3-42)

On peut également calculer la température moyenne du fluide dans l'absorbeur par :

$$T_{fmoy} = \frac{1}{L} \int_0^L T_f(x) dx$$

Relation qui conduit à l'expression suivante :

$$T_{f_{moy}} = T_a + \frac{\phi_a}{U_L} + \left(T_{fe} - T_a - \frac{\phi_a}{U_L}\right) \frac{\dot{m}C_p}{SF'U_L} \left(1 - e^{-\frac{SF'U_L}{\dot{m}C_p}}\right)$$
(3-43)

3.2.2. Facteur de conductance du capteur :

Le flux utile gagné sur la surface totale de l'absorbeur S peut se calculer par $q_u = n \int_0^L q'_u dx$ et en utilisant l'expression de T_f .

Le calcul de cette intégrale conduit à :

$$q_u = SF_R \big[\emptyset_a - U_L (T_{fe} - T_a) \big]$$

Où F_R est le facteur de conductance du capteur défini comme étant le rapport de l'énergie utile à l'énergie du capteur si la température de l'absorbeur est à la température d'entrée du fluide caloporteur.

$$F_R = \frac{mC_p(T_{fs} - T_{fe})}{S[\phi_a - U_L(T_{fe} - T_a)]} = \frac{mC_p}{SU_L} \left(1 - e^{-\frac{SFtU_L}{mC_p}} \right)$$
(3-44)

Si $F_R = 1$, on a un absorbeur idéal.

3.3. RAYONNEMENT DU SEUIL:

Pour une valeur de T_{fe} donnée (par exemple la température en début de journée de l'eau issue d'un ballon de stockage redescendue à 45 °C pendant la nuit), il apparaît que l'éclairement solaire G_i^* atteignant un capteur doit être supérieur à une certaine valeur appelée rayonnement de seuil que nous noterons G_s^* pour que le flux utile soit positif. Cette valeur G_s^* est donnée par :

$$G_s^* = \frac{U_L(T_{fe} - T_a)}{\eta_0}$$

Cette valeur est importante en pratique car pour des valeurs de l'éclairement solaire inférieures à G_s^* , le flux utile est nul.

Il ne faut donc pas prendre en compte les valeurs $G_i^* < G_s^*$. On cherchera à obtenir un rayonnement de seuil le plus faible possible.

3.4. PERTES DE CHARGE :

Les frottements du fluide caloporteur dans les conduits entraînent des pertes de charge. La résistance de l'écoulement de l'eau dans le tuyau sera d'autant plus grande que :

- 1- Sa section ou son diamètre est petit.
- 2- Sa rugosité intérieure est grande.
- 3- Sa longueur est grande.
- 4- La vitesse du fluide est grande et donc création de plus grandes turbulences.

La connaissance des pertes de charge permet d'assurer un écoulement suffisant du fluide en convection naturelle (thermosiphon pour l'eau, effet de cheminée pour l'air) ou de calculer la puissance de la pompe de circulation ou du ventilateur en convection forcée [46].

Nous avons deux types de perte de charge :

- 1- Pertes de charge linéaires.
- 2- Pertes de charge singulières.

3.4.1. Pertes de charge linéaires :

Elles sont données par la relation :

$$\Delta P_L = \lambda \rho \frac{L}{D_H} \frac{V^2}{2}$$

Avec:

 $D_H = \frac{4S}{P}$: Diamètre hydraulique.

L : Longueur des colonnes de fluide.

λ : Facteur de pertes de charge linéaires dépendant du type d'écoulement. En effet :

$$\begin{cases} \lambda = \frac{64}{R_e} \ si \ R_e < 2000 \ (formule \ de \ Poiseuille) \\ \\ \frac{1}{\sqrt{\lambda}} = -2 \log_{10} \left(\frac{2,51}{R_e \sqrt{\lambda}} + \frac{\varepsilon}{3,7D} \right) \ si \ R_e > 2000 \ (corrélation \ de \ Colebrook - White) \end{cases}$$

V: Vitesse du fluide. La vitesse du fluide est régie par la relation de continuité :

$$\rho SV = Cte$$

Pour une circulation par thermosiphon:

$$\Delta P_L = \lambda \rho_c \frac{L_c}{D} \frac{V_c^2}{2} + \lambda \rho_h \frac{L_h}{D} \frac{V_h^2}{2}$$

Les indices c et h représentent le fluide froid et chaud respectivement.

3.4.2. Pertes de charge singulières :

Les pertes de charge singulières sont essentiellement dues aux accidents de canalisation, c'est-à-dire toute modification d'un trajet rectiligne. On peut y compter les coudes, les vannes ou robinets, les appareils de mesure, ...etc. La perte de charge singulière d'un accident peut se déterminer par calcul ou à l'aide de tables (abaque) où une construction graphique à partir de grandeurs simples donnera un résultat. Elles sont de la forme :

$$\Delta P_s = \xi \rho \frac{V^2}{2}$$

Avec:

 ξ : Coefficient de perte de charge singulière.

Afin de faciliter les calculs en bureau d'études, les industriels ont introduit la notion de longueur équivalente de conduite [46]. Les pertes de charge régulières et singulières sont converties pour déterminer la longueur équivalente L_{eq} de conduite que créerait la même perte de charge. Par exemple, la longueur équivalente L_{eq} d'une singularité, de coefficient de perte de charge ξ , est donnée par :

$$\lambda \rho \frac{L_{eq}}{D_H} \frac{V^2}{2} = \xi \rho \frac{V^2}{2}$$

Et donc:

$$L_{eq} = \xi \frac{D_H}{\lambda}$$

On détermine ainsi les pertes de charge totales ΔP telles que :

$$\Delta P = \Delta P_L + \Delta P_s$$

La connaissance du couple (**débit volumique**, **pertes de charges**) permet de sélectionner dans un catalogue constructeur la pompe ou le ventilateur adapté. Le constructeur fournit en effet pour chaque appareil sa courbe caractéristique de fonctionnement :

$$\Delta P = f(Q)$$
. Q étant le débit volumique.

Pour qu'il y ait circulation dans le cas du thermosiphon, il faut que :

$$\Delta P = \Delta P_L + \Delta P_s < H.g$$

ETUDE EXPERIMENTALE

CHAPITRE 4

A travers l'étude théorique, nous avons abordé tous les aspects liés au chauffe-eau solaire en nous basant bien sûr sur l'absorbeur, siège de la conversion photothermique, constitué de la plaque absorbante et de la tuyauterie. Cependant, à travers l'étude expérimentale, nous ne nous intéresserons qu'aux facteurs d'absorption et d'émissivité α et ϵ , respectivement, de l'absorbeur (qui sera réduit durant cette étude à une plaque en aluminium ayant des revêtements différents) et ce, en mesurant et en comparant les températures atteintes en différents endroits de différents capteurs sur une période de quelques jours.

4.1. REALISATION DES CAPTEURS :

La réalisation des capteurs passe par la réalisation :

- Des absorbeurs (plaques absorbantes),
- Des caissons des capteurs,
- Des couvertures transparentes.

4.1.1. Réalisation des absorbeurs :

Cette opération se fait en deux étapes. En effet, on commence par découper de petites plaques de dimensions 280 × 180 mm (figure 4-1) à partir d'une feuille d'aluminium à l'aide d'une scie-guillotine. Les plaques seront ensuite lavées avec du détergent ménager, séchées et nettoyées avec de l'acétone appliqué avec de l'essuie-tout afin d'éliminer les graisses qui pourrait compromettre le bon dépôt de la peinture sur la surface (figure 4-2).

FIG 4-1: Découpe des plaques en aluminium

FIG 4-2 : Nettoyage des plaques en aluminium avec de l'acétone

La dimension de ces plaques est justifiée par le fait que la quantité de peinture sélective en notre possession est très réduite : il a donc fallu diminuer la taille des futures plaques absorbantes afin que la peinture suffise.

Maintenant qu'elles ont été découpées, les plaques sont prêtes à être peintes.

Le revêtement se fera par le procédé de « **Dip-coating** » ou procédé de trempage-retrait (procédé sol-gel). En fait, c'est un procédé de peinture par immersion : Les plaques sont introduites dans un bassin contenant la peinture via un système mécanique garantissant une vitesse de progression précise et constante. La plaque sera entièrement immergée puis retirée à la même vitesse. On obtiendra, en fin de compte, une plaque qui, après séchage, sera utilisable.

FIG 4-3: Installation de peinture par immersion

Ayant choisi le procédé de peinture par immersion, nous avons été confrontés à deux problèmes importants :

- Nous ne disposions pas d'installation nous permettant d'introduire les plaques dans un bassin rempli de peinture de manière à pouvoir contrôler la vitesse.
- La quantité de peinture sélective en notre possession était faible (500 ml).

La vitesse de progression étant une vitesse relative entre la plaque et la peinture, le problème de l'infrastructure a pu être contourné en faisant que ce ne soit plus la plaque qui se mouvra mais bien la peinture qui s'écoulera.

Quant au problème de la quantité de peinture sélective, il a, donc, fallu concevoir un système à même de pallier cette insuffisance. Ce système consiste en un bain prismatique suffisamment grand pour que l'on puisse y introduire les plaques mais qui soit aussi étroit pour utiliser le minimum de peinture. Dans cette optique, nous avons découpé deux plaques de verre de dimensions 340×260 mm chez un vitrier en plus de trois bandelettes. Ensuite et comme précédemment, les plaques en verre ont été lavées dans le but d'éliminer les graisse qui pourraient compromettre l'adhérence de la silicone renforcée par le rayage des bandelettes en verre et des bordures des plaques avec du papier verre.

FIG 4-4: Bandelettes et plaques destinées à la réalisation du bain

On peut procéder au montage maintenant. On commence par appliquer la silicone sur les bordures de la plaque 1 et on pose les bandelettes. Ensuite, on en applique sur les joints pour garantir une étanchéité de parfaite du bain. Puis, on met en place le tube en cuivre servant à l'introduction et l'évacuation de la peinture. Et on termine par l'application de la silicone au dessus des bandelettes et on pose soigneusement la plaque 2.

On laisse le tout reposer pendant 24 heures (temps de séchage de la silicone).

Bien sûr, on veille à ce qu'il n'y ait aucune bulle d'air pour que le montage soit solide.

On utilisera des baguettes de reliure comme couvre-joints pour le côté esthétique et afin de renforcer l'action de la silicone.

Le tuyau en cuivre du bain sera relié, grâce à une conduite en caoutchouc, à une boite dans laquelle sera versée la peinture servant à revêtir les plaques en aluminium.

Ce dispositif sera complété par un support, préalablement fabriqué avec de la tôle et des fers plats, sur lequel sera disposé le bain (figure **4-5**).

FIG 4-5: Dispositif de peinture

L'étanchéité de ce bain a été vérifiée en versant de l'eau dans la boite en lieu et place de la peinture (l'eau ayant une viscosité inférieure à la peinture, le bain sera étanche pour la peinture aussi). N'ayant aucune fuite, l'utilisation de ce bain a été validée.

Il est utile de signaler qu'un premier bain, représenté dans la figure (4-6), a été réalisé en collant une plaque en verre sur une autre en aluminium à l'aide de bandelette en carton recouverte de scotch spécial aluminium le tout joint avec de la silicone. Ce bain n'a pas donné satisfaction puisqu'il ne garantissait pas une bonne étanchéité.

FIG 4-6: Premier bain

Ensuite, il a fallu régler la vitesse de l'écoulement qui est un paramètre très important de ce procédé. On a effectué un premier essai avec de la peinture sélective. On a fixé une équerre en guise de graduation sur le bain, et via un chronomètre, on a déterminé la vitesse de l'écoulement. Celle-ci a été jugée trop importante : on a donc introduit, dans le tuyau en caoutchouc, un autre tuyau, en cuivre celui-là, ayant une section plus faible de manière à générer un étranglement réduisant ainsi la vitesse jusqu'à atteindre un ordre satisfaisant.

Le dispositif de peinture étant prêt et l'étanchéité du bain étant vérifiée, le revêtement des plaques a pu être entamé.

Pour ce premier essai, on a utilisé la peinture sélective. Cette peinture sélective est, en fait, une résine siliconée dissoute dans du xylène. On a introduit la première plaque dans le bain. Cette première tentative a été concluante mais nous avons remarqué la formation d'un dépôt sur la partie inférieure de la plaque en plus de la présence d'une quantité assez importante d'impuretés. Ceci nous a amené à filtrer la peinture à l'aide d'une passoire.

FIG 4-7: Impuretés initialement présente dans la peinture sélective

Le dépôt, quant à lui, a été supprimé en fixant la plaque avec du ruban adhésif pendant l'immersion.

Ces derniers réglages étant faits, nous avons commencé par appliquer la peinture sélective sur quatre plaques en faisant varier le nombre de couches :

- 1 plaque ayant 2 couches,
- 1 plaque ayant 4 couches,
- 1 plaque ayant 5 couches.

Pendant l'application de la peinture, on veille à ce qu'il n'y ait pas d'étranglement au niveau du petit tuyau en PVC afin, d'une part, que la vitesse reste la plus constante possible et d'autre part afin de ne pas le fragiliser d'avantage et qu'il ne casse pas (en effet, le solvant de la peinture sélective attaque le PVC et le fragilise peu à peu).

L'application de la peinture sélective étant achevée, avec le même procédé, nous avons peint deux autres plaque avec de la peinture noire mate en une seule couche.

Au final, les plaques ont été mises à sécher au soleil.

4.1.2. Réalisation des caissons :

La seconde étape de la réalisation des capteurs solaire est la mise au point de leurs caissons, en carton d'épaisseur 12 mm, aux dimensions des plaques absorbantes et ce, en sept exemplaires.

On commence par découper les différentes pièces qui formeront les futurs caissons. Chaque caisson comportera les pièces suivantes :

- 2 plaques de dimensions 50×305 mm,
- 2 plaques de dimensions 50×180 mm,
- 1 plaque de dimensions 205×305 mm,
- 1 plaque de dimensions 180×280 mm.

Les pièces seront ensuite assemblées à l'aide de colle blanche comme le montre la figure (4-8), et les caissons seront laissés au repos durant 24 heures.

FIG 4-8: Montage des caissons

Après avoir séchés et dans le but d'en améliorer l'isolation, l'intérieur des caissons sera recouvert de papier aluminium fixé avec de la colle (comme celui utilisé en cuisine). L'extérieur, lui aussi, sera protégé avec de l'aluminium contre les rayons du soleil très nocifs pour le carton (figure **4-9**).

FIG 4-9: Protection des caissons avec du papier aluminium

Dès que la colle sèche, on perce un trou au centre de chaque caisson pour pouvoir y introduire les thermocouples nécessaires à la mesure des températures des plaques absorbantes.

Ensuite, on introduit les thermocouples par les trous percés et on les colle sur la face arrière des plaques absorbantes (figure **4-10**).

Les thermocouples sont utilisés pour la mesure de température. Ils permettent la mesure dans une grande gamme de températures : la mesure de température est basée sur un effet thermoélectrique : l'effet Seebeck qui a pour origine la différence de potentiel apparaissant à la jonction de deux matériaux soumis à une différence de température.

Il existe plusieurs types de thermocouples différents notés par des lettres latines (E, J, T, N, K,...). Tous sont utilisés pour une gamme précise de température de quelques degrés à quelques milliers de degrés. Les signaux électriques de ces sondes sont de l'ordre du microvolt au millivolt et non linéaires.

Reste à savoir qu'un thermocouple est un individu, dont les caractéristiques changent vite juste après sa fabrication, et restent très stables ensuite. Il est ainsi utile de « vieillir » un nouveau thermocouple en le portant pendant longtemps aux températures où il devra servir. Il faut ensuite l'étalonner.

Les thermocouples utilisés sont de type K. Le plus est composé de Chromel (alliage nickel + chrome) quant au moins, il est composé d'Alumel (alliage nickel + aluminium (5%) + silicium). Ce sont des thermocouples standards ayant une large gamme de température allant de -100 à 1370° C [47].

FIG 4-10: Perçage des caissons et collage des thermocouples

Après cela, les plaques absorbantes ont été mise en place à l'intérieur des caissons. Comme il ne restait plus que les vitres à mettre en place, il a fallu concevoir un système de fixation de manière à ce qu'elles restent amovibles (sinon on les aurait juste fixées avec de la silicone).

Les fixations consistent en lamelles d'aluminium - huit par caisson- découpées à partir de la feuille et fixées sur les coins des caissons avec du scotch.

Le gros problème de ce système de fixation et de la non utilisation de la silicone est l'étanchéité qui n'est pas du tout assurée ce qui fait qu'il y a des pertes par convection non négligeables.

FIG 4-11: Capteur avec et sans vitrage

On numérote les thermocouples de chaque caisson et on procède de même pour les câbles les reliant au data-logger de manière à ce qu'il n'y ait pas confusion et mélange des données lors des mesures.

Comme les différents capteurs testés doivent être mis dans les mêmes conditions atmosphériques et donc, en doivent être testés en même temps, on a réalisé un montage métallique à partir de cornières incliné d'environ 40° (39,85°) qui sert de support aux capteurs.

FIG 4-12: Capteurs sur leur support

4.2. RELEVES ET DISCUSSION:

Tout étant prêt, les mesures peuvent être entamées. Les relevés se feront sur le toit de l'UDES dans ce qui est appelé la station météo (figure **4-13**). En fait, c'est une petite chambre dotée de deux ordinateurs. Le premier, fonctionnant en continu, sert à relever les données météorologiques (rayonnement, vitesse du vent, température extérieure,...). Quant au second,

il ne fonctionne que lorsque le besoin s'en fait ressentir pour différentes expériences puisque c'est lui qui sera relié au data-logger qui transmettra les données relevés par les senseurs (thermocouples dans notre cas).

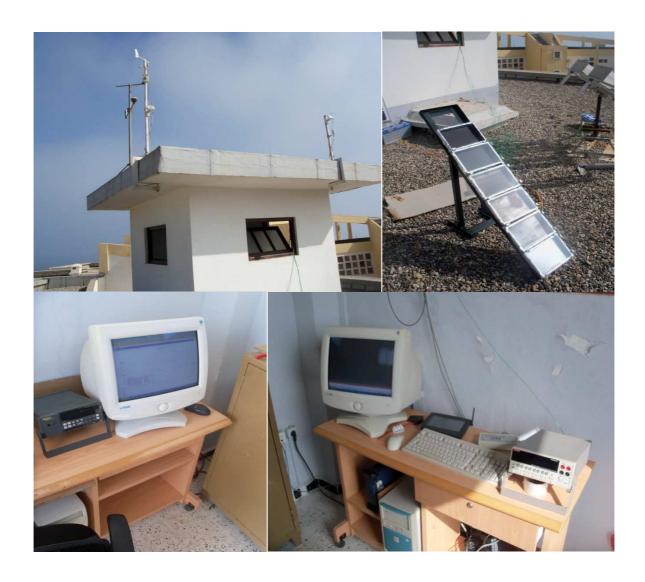


FIG 4-13 : Station météo de l'UDES

On raccorde les thermocouples de chaque capteur au câble correspondant (ceux-ci étant déjà reliés au data logger).

Les thermocouples sont numérotés suivant le (4-1) ci-dessous.

Tableau 4-1 : Répartition des thermocouples sur les capteurs solaires

Thermocouple	Capteur
1	Sans revêtement
2	Revêtement sélectif à 2 couches
3	Revêtement sélectif à 4 couches
4	Revêtement sélectif à 5 couches
5	Revêtement classique à 1 couche avec vitrage
6	Revêtement classique à 1 couche sans vitrage

On commence les relevés. Les données obtenues sont instantanément enregistrées dans un fichier Excel à l'aide d'un tableau dynamique (les premières valeurs enregistrées ne sont pas prises en compte car on attend que les plaques soient exposées depuis un certain temps pour que le régime se stabilise et, donc, devienne permanent).

Les 6 capteurs ont été exposés plein sud.

Nous présenterons les données sous forme de graphes, qu'on interprétera par la suite, et on portera en annexe les tableaux des relevés de températures effectués durant notre expérience.

4.2.1. 1^{er} et 2^{ème} jour:

4.2.1.1. Relevés :

Ayant fait les branchements le premier jour, nous n'avons pu commencer les mesures qu'à partir de 9h40. Le régime ne se stabilisant qu'à partir de 10h.

Les températures relevées sont représentées par les figures (4-14) et (4-15).

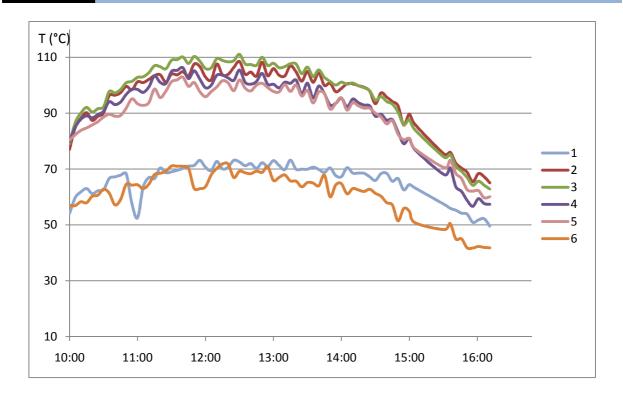


FIG 4-14 : Variation des températures durant la journée du 12/07/2010

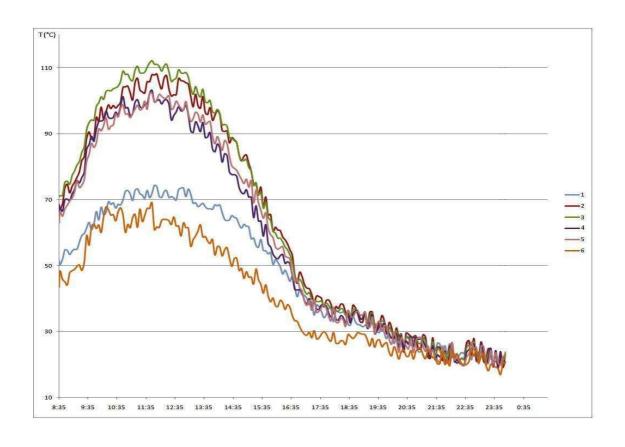


FIG 4-15 : Variation des températures durant la journée du 13/07/2010

On remarque de prime abord que les capteurs à revêtement sélectif sont ceux qui atteignent les températures les plus élevées, le capteur à revêtement sélectif à 4 couches étant le plus performant des six : il est même plus performant que le capteur à revêtement sélectif à 5 couches. Il atteint des températures nettement supérieur aux autres avec des écarts variant de 1 à 41°C environ. Mais cela n'est valable qu'en première partie de journée puisqu'à partir de 14h35 pour le 1^{er} jour et 14h57 pour le 2^{ème}, la tendance s'inverse et c'est le capteur à revêtement sélectif à 2 couches qui prend le dessus en affichant les températures les plus élevées.

Aussi les capteurs à revêtement sélectif à 5 couches et à revêtement classique vitré ont relativement des performances qui se chevauchent : il n'y a pas une domination nette de l'un sur l'autre mais plutôt alternance.

Enfin, on remarque que les températures les plus basses sont celles prises sur le capteur à revêtement classique non vitré avec des écarts pouvant dépasser 14°C (14h32 13/07/2010) avec l'autre capteur le moins performant (capteur sans revêtement).

4.2.1.2. Interprétation :

Les observations rapportées ci-dessus peuvent, en grande partie, être expliquées.

En premier lieu, le fait que les capteurs les plus performants aient un revêtement sélectif est tout à fait prévisible par la théorie puisque la raison d'être des peintures sélectives est d'améliorer le rendement des capteurs. En revanche, le fait que le capteur revêtement sélectif à 4 couches soit le plus performant des six et donc plus performant que le capteur revêtement sélectif à 5 couches pourrait nous interloquer. En effet, plus le nombre de couches augmente, plus le substrat s'imprègne des propriétés optiques de la peinture et donc plus l'absorptivité augmente et l'émissivité diminue; mais, l'observation est tout à fait justifiée puisqu'il faut savoir que la peinture est isolante et que donc trop augmenter le nombre de couches (et donc l'épaisseur du revêtement) augmente les propriétés isolantes et porte préjudice au bon fonctionnement de l'absorbeur: en effet, tel qu'observé, l'augmentation de l'épaisseur a même annulé l'avantage, que conférait la sélectivité au capteur à revêtement sélectif à 5 couches, sur le capteur à revêtement classique vitré. N'étant pas en mesure de quantifier l'épaisseur du revêtement des plaques, nous raisonnons en termes de nombre de couches: l'épaisseur du revêtement de l'absorbeur à 4 couches est l'épaisseur optimale. Par contre, l'inversement des tendances en milieu d'après-midi ne s'explique pas.

Enfin, le fait que les températures prises sur le capteur à revêtement classique non vitré soient inférieures à celles relevées sur le capteur sans revêtement nous indique très clairement que la

présence de vitrage apporte plus en termes de chaleur que le revêtement noir mate proprement dit.

En effet, il est clair que l'apport énergétique du revêtement classique, même s'il est conséquent demeure inférieur à celui du vitrage issu des actions combinées de l'effet de serre et de la protection contre les pertes par convection, beaucoup plus faibles grâce à lui.

4.2.2. 3^{ème} et 4^{ème} jour :

4.2.2.1. Relevés:

Le 3^{ème} et 4^{ème} jour, nous avons choisi d'ôter le vitrage de tous les capteurs pour essayer de voir le rôle que joue ce dernier dans l'augmentation de la température de la plaque absorbante. Les relevés sont donnés par les figures (**4-16**) et (**4-17**).

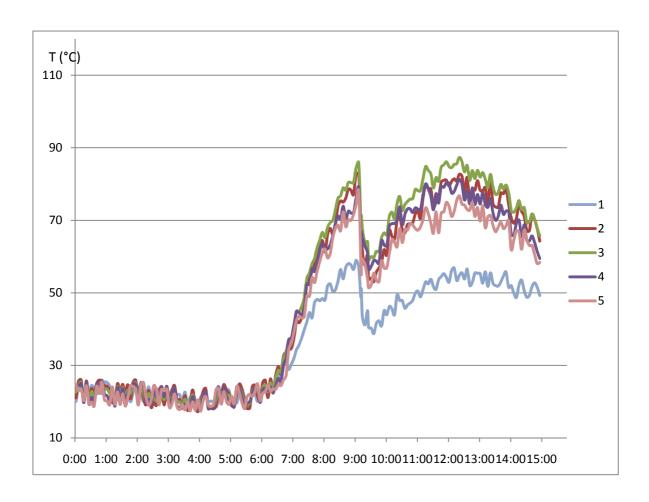


FIG 4-16 : Variation des températures durant la journée du 14/07/2010

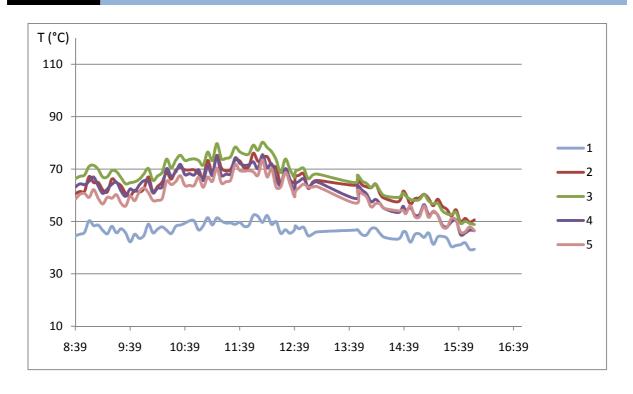


FIG 4-17: Variation des températures durant la journée du 15/07/2010

La courbe propre au capteur à revêtement classique non vitré n'a pas été incluse dans l'élaboration des graphes du fait qu'enlever son vitrage au capteur à revêtement classique vitré reviendrait à avoir 2 capteurs présentant la même configuration ce qui, vous en conviendrez, ne sert à rien (les relevés nous donneront raison puisque ce sont quasiment les mêmes températures obtenues tout au long de la journée).

On remarque en premier lieu l'importante chute d'une vingtaine de degrés survenue à 9h07. Ensuite et de manière générale, le retrait des couvertures transparentes se traduit très clairement par une baisse importante des températures mesurées allant de 10 à 42°C par rapport aux deux premiers jours. On notera aussi que, contrairement à ces derniers, les courbes se trouvent dans une plage de températures variant entre 7 et 13°C: En fait, il n'y a pas beaucoup d'écart entre les courbes des différents capteurs exception faite au capteur sans revêtement dont les performances sont de loin les plus faibles : en effet, le fait de lui retirer sa vitre a fait qu'il a perdu l'avantage que lui conférait l'effet de serre sur le capteur à revêtement classique non vitré.

4.2.2.2. *Interprétation*:

La baisse brutale de température est due à une augmentation sensible de la vitesse du vent qui est passé de 2,8 à 3,4 m/s mais surtout à une chute brusque de l'ensoleillement due au passage de nuages (données d'ensoleillement non disponibles pour ce créneau horaire mais la justification est vraie du fait que on a noté cette baisse d'éclairement en temps réel).

La baisse visible des températures est tout à fait normale quand on sait le rôle important que joue le vitrage dans l'augmentation de la température. Cette baisse est donc due, d'une part, aux grandes pertes par convection que subit le capteur et d'une autre part à la suppression de l'effet de serre. C'est pour cela que les capteurs ont relativement les mêmes performances hormis le capteur sans revêtement.

4.2.3. $5^{\text{ème}}$ jour :

4.2.3.1. Relevés:

Au 5^{ème} jour, nous avons changé de mode opératoire. En effet, on ne travaille plus qu'avec 2 capteurs : le capteur à revêtement sélectif à 4 couches ainsi que le capteur à classique vitré. Le choix s'est porté sur le capteur à revêtement sélectif à 4 couches du fait qu'il est le plus performant de tous. Le capteur à revêtement classique vitré, quant à lui, a été choisi pour pouvoir effectuer une comparaison significative avec le premier, la nature du revêtement étant le seul paramètre changé.

Le changement dans le mode opératoire apparait dans la nouvelle disposition des thermocouples qui sont, cette fois, au nombre de trois par capteur disposés sur la plaque absorbante, l'air entre la vitre et la plaque et sur la face interne de la couverture transparente.

Le thermocouple est fixé à la vitre à l'aide d'adhésif ; Celui mesurant la température de l'air est introduit de quelques centimètres à travers un petit trou préalablement percé dans la paroi du caisson du capteur à mi-chemin entre la vitre et la plaque.

Les thermocouples sont répartis tel qu'indiqué dans le tableau (4-2) ci-dessous.

Tableau 4-2 : Répartition des thermocouples sur les capteurs solaires

Thermocouple		Emplacement
Capteur à Revêtement sélectif à 4 couches	1	Vitre
	2	Air entre la vitre et la plaque
codenes	3	Plaque absorbante
Capteur à Revêtement classique à 1	4	Vitre
couche	5	Plaque absorbante
Couche	6	Air entre la vitre et la plaque

Les températures relevées sont tracées à la figure (4-18).

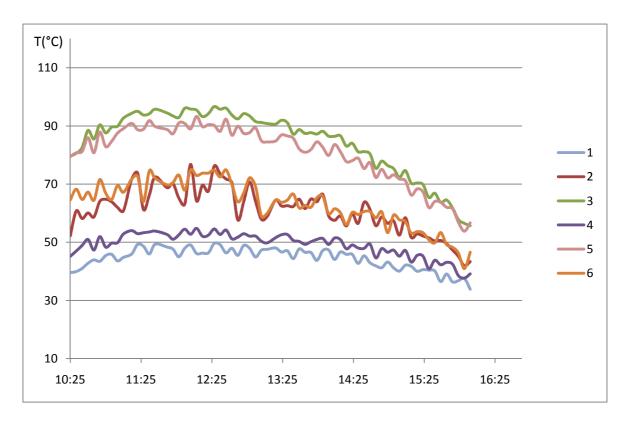


FIG 4-18 : Variation des températures durant la journée du 18/07/2010

La première observation que l'on pourrait faire serait que les températures obtenues sont relativement basses, compte tenu des relevés précédents, puisque on n'atteint même pas les 100 °C (96,681 °C à 12h27 sur la plaque absorbante du capteur à revêtement sélectif à 4 couches) alors que l'on dépassait les 110 °C.

Ensuite, on remarque que les courbes de températures sont quasiment réparties en trois groupes de deux. En effet, dans la partie inférieure du graphe, on retrouve le 1^{er} groupe constitué des courbes de températures des vitres juste au-dessous du second formé de celles de l'air entre la vitre et la plaque ; le 3^{ème} et dernier groupe présente les températures les plus élevées ce qui est tout à fait logique si l'on considère qu'il représente celles des plaques absorbantes.

Enfin, et même si cela n'est pas très clair en ce qui concerne l'air entre la vitre et la plaque, les températures de la vitre du capteur à revêtement classique vitré sont clairement plus importantes que celles de la vitre du capteur à revêtement sélectif à 4 couches alors que les températures mesurées sur la plaque absorbante de ce dernier sont plus élevées que celles mesurées au niveau du premier.

4.2.3.2. Interprétation :

Les températures sont plutôt basses à cause de la présence de beaucoup de vent ce jour là. Mais aussi parce que l'éclairement était plutôt faible puisqu'il n'atteignit que 901,50293W/m² à 12h35 alors qu'il se rapprochait des 1000 W/m² les jours précédents.

La répartition en groupes est prévisible puisque même si les températures enregistrées sont différentes, elles ont le même ordre de grandeur. En effet, chaque groupe possède un intervalle d'une dizaine de degrés.

Cependant, la remarque la plus importante reste sans conteste la dernière. Que la température de la vitre du capteur à revêtement classique vitré soit plus élevée que celle du capteur à revêtement sélectif à 4 couches alors même que la température de la plaque du premier est inférieure à celle du second est la transcription parfaite de ce que l'on a vu précédemment dans la partie théorique. En effet, on a vu dans le paragraphe consacré aux types de revêtement que la peinture sélective se caractérisait par une absorptivité élevée ainsi que par une émissivité très faible (contrairement au revêtement classique). Eh bien, c'est cette dernière qui explique l'observation faite : la grande émissivité de la peinture noire mate entraine un important échange radiatif entre l'absorbeur et son entourage entrainant ainsi la hausse de température de la vitre et de l'air se trouvant entre les deux.

4.2.4. $6^{\text{ème}}$ jour :

4.2.4.1. Relevés:

Pour ce dernier jour de mesure, nous avons, comme précédemment, ôté les vitres des deux capteurs. Du fait qu'il fallait tout remettre en ordre, on a dû arrêter l'expérience à la mijournée. La variation des températures relevées est donnée par la figure (4-19).

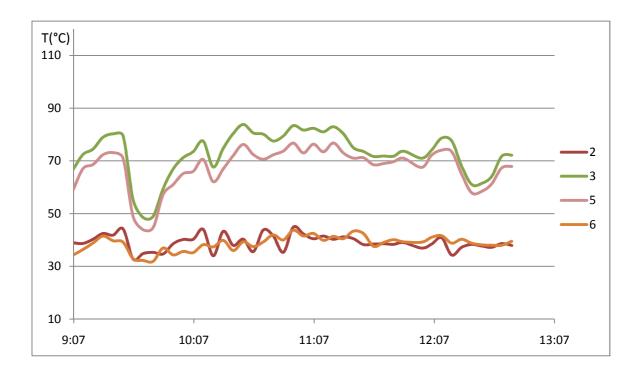


FIG 4-19 : Variation des températures durant la journée du 22/07/2010

On remarque déjà une chute brusque de température et cela à deux reprises ; en effet, la température passe de 79,5826 °C à 9h32 à 48,5416 °C 10 minutes plus tard pour le capteur à revêtement sélectif à 4 couches et de 71,0298 à 43,8786 °C pour le capteur à revêtement classique. L'autre chute arrive à 12h16 et s'étale sur 10 mn et fait passer la température de 77,6396 à 61,0834 °C pour le capteur 3 et de 73,5236 à 57,8897 °C pour le capteur à revêtement classique. Sinon, ce sont les mêmes remarques faites précédemment que l'on va éviter de répéter si ce n'est que retirer les vitres a encore diminué la température et qu'il n'y a plus que deux groupes ayant les mêmes caractéristiques que précédemment puisque le vitrage a été retiré.

4.2.4.2. Interprétation :

Même si pour la première chute les données de rayonnement ne sont pas disponibles, on note une notable augmentation de la vitesse du vent de 0 à 1,4 m/s. Par contre, pour la seconde, en plus de l'augmentation de la vitesse du vent de 0,4 à 0,9 m/s, on notera une baisse importante du rayonnement de 742,63851 à 634,59821 puis à 595,82105 W/m², baisse assez importante pour pouvoir justifier une telle chute des températures des capteurs.

4.2.5. Variation des performances du capteur 3 :

Afin de mieux visualiser l'impact des conditions météorologiques sur les performances des capteurs solaires, nous avons essayé de réunir les courbes des variations de température des plaques absorbantes du capteur à revêtement sélectif à 4 couches dans un seul et même graphe (figure **4-20**).

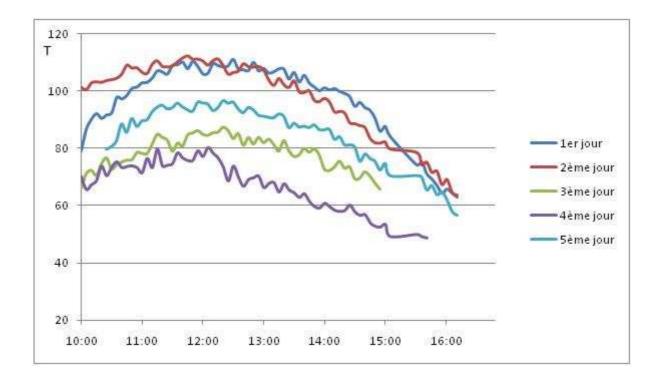


FIG 4-20 : Variation des performances du capteur à revêtement sélectif à 4 couches durant l'expérimentation

La comparaison est faite en 2 parties :

- Les jours de mesure avec vitrage (1^{er}, 2^{ème} et 5^{ème} jour).
- Les jours de mesure sans vitrage (3^{ème} et 4^{ème} jour).

Le 6^{ème} jour n'a pas été inclus puisqu'on n'a pu relever les températures que durant une période assez réduite comparée aux autres jours.

On voit clairement l'écart existant entre le premier et le second avec le 5^{ème} jour. En effet, alors que les deux premiers suivent relativement la même allure, les températures au 5^{ème} jour sont bien plus basses en raison de la faiblesse du rayonnement et de la vitesse du vent plus élevée.

De même pour le 3ème et 4ème jour, on note une assez grande différence entre les deux. Toutefois, cette fois-ci, la principale cause ne sera pas l'éclairement, qui est quasiment le même, mais plutôt la vitesse du vent. En effet, elle est en moyenne de 0,946 m/s pour le 3ème jour et de 1,602 m/s pour le jour suivant.

4.3. ETUDE DE VALIDATION:

4.3.1. Calcul de l'émissivité de l'absorbeur :

Dans cette étude, nous allons tenter de valider les mesures faites durant l'expérimentation : à l'aide des températures mesurées ainsi que les données météorologiques, nous tenterons d'aboutir à des valeurs de l'émissivité de l'absorbeur afin de les comparer à celles données par la littérature.

L'émissivité de l'absorbeur ϵ_p peut être déterminée à partir des équations (3-13) et (3-14) :

$$\begin{cases} q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) \\ q_{pav2} = h_{f2}(T_p - T_v) + \frac{\sigma(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1} \\ q_{pav1} = q_{pav2} \end{cases}$$
(4-1)

La nécessité de connaître la température de la vitre T_v saute aux yeux donc, il est impératif d'utiliser les données du $5^{\rm ème}$ jour.

L'émissivité du verre à vitre varie dans la littérature entre 0,88 et 0,89 (on la prendra égale à 0,89).

Il existe de nombreuses corrélations pour déterminer le coefficient h_{fl} . Le problème est qu'elles donnent toutes des valeurs très différentes. Pour les calculs ci-dessous, on prendra la formule proposée par Watmuff et al. (1977) [24]:

$$h_{fl} = 2.8 + 3V, V \le 5 \text{ m/s}$$
 (4-2)

Où: V étant la vitesse du vent.

Cependant, le paramètre le plus difficile à déterminer est le coefficient de convection entre l'absorbeur et la vitre h_{f2} . Plusieurs auteurs ont proposé des méthodes pour le déterminer, la

plus utilisée dans la littérature étant celle de Hollands et al. (1976) donnée par l'équation suivante [3] :

$$Nu = 1 + 1,44 \left[1 - \frac{1708(\sin 1.8\beta)^{1.6}}{R_a \cos \beta} \right] \left[1 - \frac{1708}{R_a \cos \beta} \right]^+ + \left[\left(\frac{(R_a \cos \beta)}{5830} \right)^{1/3} \right]^+$$
 (4-3)

Avec:

$$R_a = \frac{g(T_p - T_v)L^3Pr}{v^2T_{f2}}$$
 est le nombre de Rayleigh.

$$Pr = \frac{v}{\alpha}$$

$$h = \frac{Nu.k}{L}$$

T_{f2}: Température de l'air entre la vitre et l'absorbeur.

 β : Angle d'inclinaison des capteurs.

Il est à signaler que les termes ayant un exposant + sont pris égaux à zéro s'ils sont négatifs.

Le calcul du nombre de Rayleigh passe par la détermination des propriétés physiques de l'air à la température considérée en passant par des interpolations linéaires à partir des données disponibles dans l'annexe 3.

La distance inter paroi L est de 0,025 m dans notre cas (l'épaisseur des caissons étant de 5 cm et celle du carton utilisé de 1,2 cm).

Le système (4-1) peut être remplacé par le système (4-4) utilisant le coefficient des pertes avant (3-16) :

$$\begin{cases} q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) \\ q_{pav} = U_{qv}(T_p - T_a) \end{cases}$$

$$\begin{cases} U_{av} = \left[\frac{N}{\left(\frac{C}{T_p}\right)^{\left((T_p - T_a)L^3 \cos \beta/(N + f)\right)^{0.252}} + \frac{1}{h_{f1}} \right]^{-1} \\ + \frac{\sigma(T_p + T_a)(T_p^2 + T_a^2)}{\frac{1}{\varepsilon_p + 0.0425N(1 - \varepsilon_p)} + \frac{2N + f - 1}{\varepsilon_v} - N} \end{cases}$$

$$(4-4)$$

Les deux systèmes donnent des résultats très proches ; on emploiera donc le premier pour calculer l'émissivité en trois points différents pour les deux capteurs. Le calcul en suivant la procédure ci-dessous :

- 1- Détermination de la température du ciel T_{cl},
- 2- Détermination de h_{f1},
- 3- Détermination des propriétés physiques de l'air à la température T_{f2},
- 4- Détermination du nombre de Nusselt,
- 5- Détermination de h_{f2},
- 6- Calcul de q_{pav1},
- 7- Calcul de ε_p .

On a choisit des points aléatoirement.

4.3.1.1. 1^{er} point : 10h35 :

Le tableau (4-3) ci-dessous résume les conditions météorologiques sévissant à ce moment là.

Tableau 4-3 : Conditions météorologiques au 5^{ème} jour à 10h35

	Données		
T_a	27,5 °C	300,65 K	
V (m/s)	4,8		
$G_i^* (W/m^2)$	760,548828		

 $T_a = 300,65 \text{ K}$, donc $T_{cl} = 287,76 \text{ K}$.

 $V = 4.8 \text{ m/s donc } h_{f1} = 17.2 \text{ W/K.m}^2$

Capteur à revêtement sélectif à 4 couches :

Tableau 4-4 : Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5ème jour à 10h35

	Données	
$T_{\rm v}$	40,9929 °C	314,1429 K
T_{f2}	58,1675 °C	331,3175 K
T _p	82,6242 °C	355,7742 K

Pour $T_{f2} = 331,3175 \text{ K}$, on trouve :

$$\begin{cases} v = 1,889 \ 10^{-5} \ \text{m}^2 \text{s}^{-1} \\ k = 0,02858 \ W m^{-1} K^{-1} \\ Pr = 0,7011 \end{cases}$$

Alors: Ra = 37825,56 et donc à partir de l'équation (4-2), on obtient:

Nu = 3,9897.

Enfin, on aura : $h_{f2} = 4,561 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 377,6172 \text{ W}.$$

$$q_{pav2} = h_{f2} (T_p - T_v) + \frac{\sigma(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 et donc:

$$\varepsilon_{\rm p} = 0.56332$$
.

Capteur à revêtement classique vitré :

Tableau 4-5 : Températures mesurées sur le capteur à revêtement classique vitré au $5^{\grave{e}me}$ jour à 10h35

	Données	
T_{v}	48,8773 °C	322,0273 K
T_{f2}	64,708 °C	337,858 K
Tp	81,1997 °C	354,3497 K

Pour $T_{f2} = 337,858 \text{ K}$, on trouve :

$$\begin{cases} v = 1,956 \, 10^{-5} \, \text{m}^2 \text{s}^{-1} \\ k = 0,0291 \, W m^{-1} K^{-1} \\ Pr = 0,6997 \end{cases}$$

Alors: Ra = 26813,125 et donc à partir de l'équation (4-2), on obtient:

Nu = 3,7424.

Enfin, on aura : $h_{f2} = 4{,}3527 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 564,492 \text{ W}.$$

$$q_{pav2} = h_{f2}(T_p - T_v) + \frac{\sigma(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 et donc:

 $\varepsilon_{\rm p} = 1{,}015.$

4.3.1.2. $2^{\text{ème}}$ point : 12h12 :

Tableau 4-6 : Conditions météorologiques au 5^{ème} jour à 12h12

	Données		
Ta	28,9 °C	302,05 K	
V (m/s)	3,3		
$G_i^* (W/m^2)$	880,726013		

$$T_a = 302,05 \text{ K}$$
, donc $T_{cl} = 289,773 \text{ K}$.

$$V = 3.3 \text{ m/s donc } h_{f1} = 12.7 \text{ W/K.m}^2$$

Capteur à revêtement sélectif à 4 couches :

Tableau 4-7 : Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5^{ème} jour à 12h12

	Données	
$T_{\rm v}$	46,1201 °C	319,2702 K
T_{f2}	64,2083 °C	337,3583 K
T _p	95,4751 °C	368,6251 K

Pour $T_{f2} = 337,3583 \text{ K}$, on trouve :

$$\begin{cases} v = 1,951 \ 10^{-5} \ \text{m}^2 \text{s}^{-1} \\ k = 0,029 \ Wm^{-1}K^{-1} \\ Pr = 0,69978 \end{cases}$$

Alors: Ra = 41226,35 et donc à partir de l'équation (4-2), on obtient:

Nu = 3,052.

Enfin, on aura : $h_{f2} = 3,54 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 387,3474 \text{ W}.$$

$$q_{pav2} = h_{f2} \left(T_p - T_v \right) + \frac{\sigma \left(T_p^4 - T_v^4 \right)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_n} - 1}$$
 et donc:

$$\varepsilon_p = 0,487.$$

Capteur à revêtement classique vitré :

Tableau 4-8 : Températures mesurées sur le capteur à revêtement classique vitré au $5^{\text{ème}}$ jour à 12h12

	Données				
T_{v}	54,7851 °C	327,9351 K			
T_{f2}	72,9506 °C	346,1006 K			
T _p	93,2447 °C	366,3947 K			

Pour $T_{\rm f2}$ = 346,1006 K, on trouve :

$$\begin{cases} v = 2,04 \ 10^{-5} \ \text{m}^2 \text{s}^{-1} \\ k = 0,0297 \ Wm^{-1}K^{-1} \\ Pr = 0,69786 \end{cases}$$

Alors: Ra = 28562,62 et donc à partir de l'équation (4-2), on obtient:

Nu = 2,7878.

Enfin, on aura : $h_{f2} = 3{,}312 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 556,715 \text{ W}.$$

$$q_{pav2} = h_{f2} \left(T_p - T_v \right) + \frac{\sigma \left(T_p^4 - T_v^4 \right)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 et donc:

 $\varepsilon_{\rm p} = 0.954$.

4.3.1.3. 3^{ème} point : 12h35 :

Tableau 4-9 : Conditions météorologiques au 5^{ème} jour à 12h35

	Données				
T_a	28,5 °C	301,65 K			
V (m/s)	3,7				
G _i * (W/m ²)	901,50293				

 $T_a = 301,65 \text{ K}, \text{ donc } T_{cl} = 289,2 \text{ K}.$

 $V = 3.7 \text{ m/s donc } h_{f1} = 13.9 \text{ W/K.m}^2$

Capteur à revêtement sélectif à 4 couches :

Tableau 4-10 : Températures mesurées sur le capteur à revêtement sélectif à 4 couches au 5^{ème} jour à 12h35

	Données				
$T_{\rm v}$	46,3384 °C	319,4884 K			
T_{f2}	71,7333 °C	344,8833 K			
T _p	96,1599 °C	369,3099 K			

Pour $T_{f2} = 344,8833 \text{ K}$, on trouve :

$$\begin{cases} v = 2,028 \, 10^{-5} \, \text{m}^2 \text{s}^{-1} \\ k = 0,0296 \, W m^{-1} K^{-1} \\ Pr = 0,698 \end{cases}$$

Alors: Ra = 37579,69 et donc à partir de l'équation (4-2), on obtient:

Nu = 2,985.

Enfin, on aura : $h_{f2} = 3,534 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 420,8634 \text{ W}.$$

$$q_{pav2} = h_{f2} (T_p - T_v) + \frac{\sigma(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 et donc:

$$\varepsilon_{\rm p}=0.564$$
.

Capteur à revêtement classique vitré :

Tableau 4-11 : Températures mesurées sur le capteur à revêtement classique vitré au 5^{ème} jour à 12h35

	Données				
$T_{\rm v}$	54,2003 °C	327,3503 K			
T_{f2}	74,9032 °C	348,0532 K			
T_p	92,3373 °C	365,4873 K			

Pour $T_{f2} = 348,0532 \text{ K}$, on trouve :

$$\begin{cases} v = 2,06 \ 10^{-5} \ \text{m}^2 \text{s}^{-1} \\ k = 0,02985 \ W m^{-1} K^{-1} \\ Pr = 0,69743 \end{cases}$$

Alors: Ra = 27599,167 et donc à partir de l'équation (4-2), on obtient :

Nu = 3,7632.

Enfin, on aura : $h_{f2} = 4,4932 \text{ W/K.m}^2$

$$q_{pav1} = h_{f1}(T_v - T_a) + \varepsilon_v \sigma(T_v^4 - T_{cl}^4) = 583,8753 \text{ W}.$$

$$q_{pav2} = h_{f2}(T_p - T_v) + \frac{\sigma(T_p^4 - T_v^4)}{\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_p} - 1}$$
 et donc :

$$\varepsilon_{\rm p} = 0.981$$
.

4.3.2. Calcul d'erreurs :

Ce calcul n'est possible que si nous connaissons les valeurs théoriques de l'émissivité de l'absorbeur. Pour le revêtement à base de résine siliconée, les fabricants annoncent une émissivité thermique variant entre 0,40 et 0,50. Quant à la peinture noire mate, il est très largement admis qu'elle possède une émissivité allant de 0,85 jusqu'à 0,95. Le tableau (4-12) ci-dessous présente les erreurs relatives entre les valeurs calculées grâce à nos relevés et celles issues de la littérature.

Tableau 4-12: Analyse d'erreurs du calcul de validation

Valeur de l'émissivité calculée	Erreur relative (%)
0,56332	25,18
1,015	12,77
0,487	8,22
0,954	6
0,564	25,33
0,981	9

4.3.3. Discussion:

On remarque que les valeurs de l'émissivité, calculée à partir des données en notre possession, sont élevées et varient d'un point à un autre.

Cela est dû en partie au caractère même des mesures. En fait, ce sont des valeurs obtenues à partir de mesures expérimentales faite en extérieur d'où l'imprécision. En effet, les valeurs de l'émissivité qui sont reportées dans la littérature sont souvent obtenues en laboratoire dans des conditions expérimentales favorables. L'émissivité dépend de plusieurs paramètres expérimentaux donc il faut toujours vérifier à quelle température et pour quelle longueur d'onde elle a été calculée. Ce qui fait que l'utilisation directe des températures mesurées conduira à des résultats surévalués de l'émissivité.

Aussi, à travers nos calculs, nous avons bien vu que deux paramètres, en particulier, influent grandement sur le résultat final : en effet, plus h_{f1} diminue et plus h_{f2} augmente et plus on se rapproche des valeurs théoriques. Or le premier dépend de corrélations très variées, qui de l'avis des chercheurs, demeurent loin de traduire sa réelle valeur du fait du caractère très turbulent et imprévisible du vent. Quant, au second, sa valeur a été faussée à cause de la mauvaise étanchéité des capteurs eux-mêmes, dont l'effet a été multiplié par la présence de beaucoup de vent ce jour là.

Grâce au calcul d'erreurs relatives, on peut dire que les valeurs de l'émissivité calculées sont très acceptables et raisonnables si l'on tient compte des erreurs induites par l'emploi de corrélations imprécises pour le calcul des coefficients de convection ainsi que par des conditions d'expérimentation non idéales.

C'est donc en partie pour cela que les valeurs obtenues de l'émissivité sont d'une part différentes les unes des autres mais aussi différentes des valeurs théoriques.

CONCLUSION

CONCLUSION

Avec 2381741 km² de surface, l'Algérie est le pays le plus vaste de la zone méditerranéenne et le second d'Afrique. C'est l'un des pays les plus ensoleillés du monde : 85% du territoire présente un ensoleillement quasi permanent [48]. L'énorme richesse solaire qu'il recèle est disponible, inépuisable et propre ce qui fait que l'énergie solaire reste la forme d'énergie la plus prometteuse pour notre pays.

L'emploi de l'énergie solaire pour la production d'eau chaude sanitaire est non seulement d'actualité mais en plus très efficace et rentable.

Toutefois, les performances des chauffe-eau solaires sont conditionnées par plusieurs paramètres (vitesse du vent, variations de l'éclairement incident, température ambiante, matériaux utilisés,...). L'étude de certains de ces paramètres a constitué l'objet de ce mémoire.

Après une étude théorique sur le sujet et une analyse de la documentation, nous nous sommes attelés à la réalisation de capteurs solaires rudimentaires certes, mais suffisants pour nous permettre de mener à bien notre expérimentation. Pour ce faire, nous avons dû réaliser certains dispositifs annexes nécessaires à leur élaboration tels que le bain de peinture et le support des capteurs. Ensuite, nous avons réalisé le revêtement des absorbeurs, grâce à la technique Sol-Gel.

Ce n'est qu'après cela que nous avons entamé les mesures des températures pendant plusieurs jours et dans des conditions externes variant d'un jour à l'autre.

Nous avons pu ainsi suivre les variations des performances de tous les capteurs en même temps et donc les comparer et vérifier l'influence de certains paramètres.

Nous avons pu, de ce fait, vérifier dans un premier temps l'impact de la sélectivité et donc de la nature du revêtement de l'absorbeur sur les performances du capteur. Nous avons alors remarqué que les performances n'étaient pas liées qu'au type du revêtement réalisé mais aussi à l'épaisseur de la peinture déposée.

Ensuite, nous sommes passés à un autre paramètre : la présence ou non du vitrage. Nous avons pu observer l'important écart variant de 9 à 38% des performances du capteur avec et sans vitrage ; écart tout à fait justifié compte tenu du rôle très important que joue la couverture transparente en assurant l'effet de serre et en limitant les pertes convectives avec l'extérieur.

Aussi, tout au long de l'expérience, nous avons observé l'impact qu'ont les conditions météorologiques, en particulier la température ambiante, la vitesse du vent et surtout l'éclairement.

Enfin, nous avons terminé en essayons de valider les mesures effectuées en calculant l'émissivité de l'absorbeur des capteurs sélectif 4 couches et classique. Les valeurs obtenues ne sont pas conformes aux valeurs disponibles dans la littérature mais restent tout à fait acceptables eu égard aux erreurs relatives relativement faibles (ne dépassant pas 13%). Cependant, cela ne remet en cause ni la méthodologie adoptée pour le calcul ni les relevés en

Conclusion

eux-mêmes car si les mesures effectuées se prêtent facilement à un jeu de comparaison (du fait que seul l'ordre de grandeur importe), elles ne se prêtent pas forcément à un calcul plus rigoureux.

Dans la perspective d'une meilleure maitrise du sujet, ce travail devrait être complété par une comparaison avec des travaux antérieurs ayant attrait au même sujet ainsi que par l'élaboration d'un programme informatique qui nous aurait permis de mieux caractériser la variation de l'émissivité thermique. Aussi, une meilleure validation aurait été possible s'il y'avait possibilité de mesurer l'émissivité directement à l'aide d'un pyromètre ainsi que l'épaisseur de la peinture appliquée afin d'en déterminer l'épaisseur optimale.

BIBLIOGRAPHIE

- [1] Chaker A., Promesses et Perspectives du Photothermique, 2003, Revue Energie Renouvelable, ICPWE, pp 27-32
- [2] http://www.neufplanetes.org/systeme_solaire/sol.html
- [3] Duffie, J. A., Beckman, W. A., Solar engineering of thermal processes. 1980, 2nd Ed, Wiley-Interscience.
- [4] Sfeir, A.A., Guarracino, G., Ingénierie des systèmes solaires. mai 1981, ed. Technique et Documentation.
- [5] Bernard, R., Menguy, G., Schwartz, M., Le rayonnement solaire, conversion thermique et applications. 1980, Technique et Documentation, Paris.
- [6]. Meyzonnette, J.L, Radiométrie et détection optique. 1992, Institut d'Optique Théorique et Appliquée, E.S.O., Centre Universitaire d'Orsay.
- [7] Incropera, F.P., De Witt, D.P. Introduction to Heat Transfer. 1990, 2nd Ed, John Wiley & sons.
- [8] Petit, J-P., Taine, J. Transferts thermiques. 1998, 2nd Ed, Dunod.
- [9] Saint-Blanquet, C., Eléments de Rayonnement Thermique. février 2006, Cours, Université de Nantes.
- [10] Spitz, J., Mazière-Bezes, D., Matériaux sélectifs pour la conversion photothermique de l'énergie solaire. 1984, J. Optics, Vol.15, pp 325-332.
- [11] Gueymard, C., Labelle, D., Galanis, N., Detuncq, B., Chauffage de l'Habitat par l'Energie Solaire. 1984, Direction des technologies et des énergies nouvelles, Gouvernement du Québec.
- [12] www.afrology.com/soc/pdf/photovolt.pdf
- [13] Dieulesaint, E., Defranould, Ph., Diode à plasma permettant la conversion thermoionique. octobre 1963, Journal de Physique, volume 24, pp 173-182.
- [14] Moser, J-E., Photochimie I. 2006-2007, Master en chimie moléculaire, Ecole Polytechnique Fédérale de Lausanne.
- [15] Tabor, H., Selective Radiation I: Wavelength discrimination: a new approach to the harnessing of solar energy 1956, Bull. Res. Cone.

- [16] Gillette, R.B., Selectively emissive materials for solar heat absorbers. 1960, Solar Energy, vol. 4, issue 4, pp 24-32.
- [17] Ahmadzadeh, J., Gascoigne, M., Efficiency of solar collectors. 1976, Energy Conversion, Vol. 16, issue 1-2, pp 13-21.
- [18] Spitz, J., Aubert, A., Behaghel, J. M., Berthier, S., Lafait, J., Rivory, J., Matériaux sélectifs pour la conversion photothermique de l'énergie solaire. janvier 1979, Revue de physique appliquée, tome14, pp 67-80.
- [19] Aubert, A., Mesure du facteur d'émission des surfaces sélectives pour la conversion thermique de l'énergie solaire. 1981, Journal de physique, tome 42, pp 383-392.
- [20] Crnjak Orel, Z., Klanjsek Gunde, M., Lencek, A., Benz, N., The preparation and testing of spectrally selective paints on different substrates for solar absorbers. 2000, Solar Energy, Vol. 69, pp 131-135.
- [21] Crnjak Orel, Z., Klanjsek Gunde, M., Spectrally selective paint coatings: Preparation and characterization. 2001, Solar Energy Materials & Solar Cells, Vol. 68, pp 337-353.
- [22] Reza Nejati, M., Fathollahi, V., Khaladji Asadi, M., Computer simulation of the optical properties of high-temperature cermet solar selective coatings. 2005, Solar Energy, Vol. 78, issue 2, pp 235-241.
- [23] Kennedy, C.E., Review of Mid- to High-Temperature Solar Selective Absorber Materials. 2002, Rapport, National Renewable Energy Laboratory.
- [24] Kumar, S., Mullick, S.C., Wind heat transfer coefficient in solar collectors in outdoor conditions. 2010, Solar Energy, Vol. 84, pp 956-963.
- [25] http://www.outilssolaires.com/premier/index-sousvide.htm
- [26] Khedim, A., Energie solaire: utilisation thermique et photovoltaïque. 2005, ANEP.
- [27] http://www.universsoleil.fr/?page=comparatif
- [28] Guidoum, A., Verres. 2009.
- [29] Cabirol, T., Pelisson, A., Roux, D., Le chauffe-eau solaire. 1980, 6^{ème} Ed, Collection technologies douces, EDISUD.
- [30] Born, M., Wolf, E., Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light. 1999, Seventh Ed, Cambridge University Press.
- [31] Chevalier, J.L., Balme, A., Sallee, H., Durabilité des Matériaux Plastiques Transparents Utilisés en Couvertures de Capteurs Solaires Plans. janvier 1981, Journal de Physique, tome 42, pp 401-421.
- [32] http://audience.cerma.archi.fr/cerma/pageweb/theorie/solaire/rayont_solaire.html

[33] Bragard, S., Le Chauffe Eau Solaire. ENERGIE 2030 Agence s.a

•

- [34] Petitjean, J.P., Vander Poorten, H., Les revêtements sélectifs et leurs rôles dans l'amélioration des performances des collecteurs solaires. 1980, Surface technology, Vol.11, pp 229-258.
- [35] El Houari, M., Caractéristiques techniques des chauffe-eau solaires. 2001, Présentation, C.D.E.R.
- [36] L'avancée solaire de Viessmann : deux nouvelles chaînes de production à Faulquemont. juin 2007, Communiqué de presse.
- [37] http://www.sumobrain.com/patents/wipo/Method-producing-aluminum-panels-comprising/WO2007101927.html
- [38] Verdu, J., Le vieillissement des matières plastiques. 1973, Rapport C.E.M.P.
- [39] Lemaire, J., Arnaud, R., Gardette, J.L., Ginhac, J.M., Tang, Ly, Fanton, E, Vieillissement des polymères : empirisme ou science. 1979, RGCP n° 593.
- [40] Radigois, J.M., Installation solaire à capteur plan. 1980, N°B268, Technique de l'ingénieur.
- [41] http://www.econologie.com/inclinaison-ideale-des-panneaux-articles-3216.html.
- [42] Haddadi, M., Elaboration d'une Commande pour Héliostat. 2003, Revue des Energies Renouvelables, Numéro Spécial, pp. 153-157.
- [43] First Step to Nobel Prize in Physics. 1995, Acta Phys. Pol. A 88 Supplement, S-49.
- [44] Solaire thermique. Novembre 2007, INES Education
- [45] Malhotra, A., Garg, H.P., Palit, A., Heat Loss Calculation of Flat Plate Solar Collector. 1981, J. Thermal Eng., Vol. 2, N°2, pp. 59-62.
- [46] Munson, B.R., Young, D.F., Okiishi, T.H., Fundamentals of fluid mechanics. 2005, 5th Ed, Wiley.
- [47] http://www.veriteq.com/thermocouple-data-logger/type-k.htm.
- [48] Concentrating Solar Power for the Mediterranean Region. 2005, Germany Aerospace Center (DLR).
- *N.B.*: Toutes les constantes citées dans ce mémoire proviennent du site web : http://physics.nist.gov/constants.

ANNEXES

ANNEXES

Dans ces annexes, nous retrouvons les températures mesurées lors de notre expérimentation ainsi que trois données météorologiques importantes : la température ambiante, la vitesse du vent ainsi que l'éclairement. Toutefois, il existe des lacunes dans ces relevés (données non disponibles pour les 12 et 13 juillet par exemple ou éclairement nul à 10h) dues aux coupures de courant très fréquentes.

Ces annexes sont structurées comme suit :

- 1- Un glossaire technique.
- 2- Les relevés de température.
- 3- Les données météorologiques.
- 4- Les propriétés thermo-physiques de l'air.

Angle horaire	Différence entre l'heure	locale sidérale et	l'ascension droite de l'objet.

indique la quantité de temps sidéral qui s'est écoulé depuis que l'objet se trouvait sur le méridien local, une heure correspondant à 15°.

Corps gris L'émissivité est indépendante de la longueur d'onde : $\varepsilon_{n,\lambda\rightarrow}$ ε_n et $\varepsilon_{\lambda\rightarrow}$ ε

Corps à émission L'émissivité est indépendante de la direction émissivité indépendante diffuse(ou isotrope)

de la direction : $\varepsilon_{n,\lambda} \to \varepsilon_{\lambda}$ et $\varepsilon_{n} \to \varepsilon$

Corps gris et diffusant L'émissivité indépendante de la longueur d'onde et de la direction :

paramètre unique ε (L'approximation la plus simple, mais aussi la plus

grossière).

Eau chaude sanitaire L'eau chaude sanitaire (ECS) est un réseau d'eau chauffée à usage

> domestique. L'eau peut être réchauffée à l'aide d'un chauffe-eau ou par un circuit de chauffage dédié à cette utilisation dans une chaudière

mixte.

Ecliptique Plan de l'orbite terrestre autour du soleil. Il est incliné de 23,27° par

rapport à l'équateur.

Fibrille Projection sur le disque du Soleil de la partie supérieure de spicules.

Filament Un filament solaire est une éjection de matière qui a lieu sur la

chromosphère du Soleil et s'étend dans la couronne.

Midi vrai (midi solaire) Correspond à la hauteur maximum du soleil lors de son passage au

méridien du lieu.

Mur trombe Mur de maçonnerie épaisse ayant une surface noire absorbant le soleil,

> équipé d'évents à ses parties inférieures et supérieures et placé derrière un vitrage. Permet d'obtenir un effet de thermosiphon la journée, puis un chauffage par rayonnement après conduction de la chaleur dans le

mur. Cette invention porte le nom de l'ingénieur Félix Trombe.

Nadir Point de la sphère céleste représentatif de la direction verticale

descendante en un lieu donné (par opposition à zénith). Il signifie aussi

le point le plus bas. C'est la position du soleil à minuit.

			ractérisant		
point de rosée					

point de rosée de l'air est la température à laquelle la pression partielle

de vapeur d'eau est égale à sa pression de vapeur saturante.

Protubérance Les filaments solaires peuvent être vus en émission lorsqu'ils sont près

du bord solaire, ils se détachent alors sur le fond de ciel et sont appelés

protubérances.

Spicules Les spicules sont des jets de gaz éphémères s'élevant à grande vitesse

dans la chromosphère.

Surface hors tout Surface brute occupée réellement par le capteur solaire.

Temps sidéral La somme de l'ascension droite d'un astre et de son angle horaire est

égale au temps.

Temps solaire vrai Durée entre deux retours successifs du Soleil au méridien local.

Torr Ou millimètre de mercure est une unité de mesure de pression

initialement définie comme la pression exercée à 0 °C par une colonne de 1 millimètre de mercure. Il est équivalent à environ 133,322368 Pa.

Zénith Point d'intersection de la verticale d'un lieu donné et de la sphère

céleste se trouvant au-dessus de la Terre.

A1-1: Relevés de températures du 12/07/2010

	Température (°C)						
Heure	1	2	3	5	6	7	
10:00	54,1161	77,0399	79,0972	79,8877	80,3622	56,9968	
10:05	59,7787	84,8584	86,6029	85,0169	82,3237	56,9024	
10:10	61,8072	88,1414	90,0476	87,8239	83,8594	58,2952	
10:15	63,0317	90,1556	92,0638	89,0434	84,7594	57,9244	
10:20	61,2078	87,3914	90,4098	88,3441	85,8047	60,2501	
10:25	62,2317	88,887	91,5895	89,5226	86,9816	60,6361	
10:30	62,6059	90,0517	92,2781	90,6875	88,6217	62,7653	
10:35	66,6457	96,3155	97,7511	94,0845	89,6304	61,3885	
10:40	67,229	96,4218	97,2193	93,0762	88,9421	57,1831	
10:45	67,8078	97,3214	98,4385	93,9742	89,2026	59,0431	
10:50	68,3361	99,6047	100,883	96,732	91,795	64,518	
10:55	57,6811	98,3548	101,39	98,5144	95,165	64,2233	
11:00	52,552	101,222	102,822	98,5067	93,4053	64,3748	
11:05	63,6234	100,952	103,031	97,4381	92,8166	62,9858	
11:10	66,9906	102,091	104,492	99,3742	93,7927	64,6031	
11:15	66,612	103,471	106,995	103,311	98,6749	68,0433	
11:20	70,3855	103,753	106,637	101,033	95,6057	68,4792	
11:25	68,6857	101,084	105,887	100,605	97,8894	69,1625	
11:30	69,0254	103,98	108,95	104,94	101,26	71,0897	
11:35	69,5635	103,728	109,18	105,33	101,968	70,9927	
11:40	70,2083	104,852	110,146	106,294	102,931	71,002	
11:45	71,0653	103,321	107,809	102,361	99,643	70,2715	
11:50	71,3129	107,574	110,304	105,169	101,008	63,042	
11:55	73,1334	106,688	108,614	102,204	97,7302	62,9588	
12:00	70,6868	102,943	105,987	99,1053	95,9133	63,687	
12:05	69,4834	101,887	106,211	99,9687	97,733	67,894	
12:10	72,7572	107,588	109,514	103,581	99,4242	70,2186	
12:15	70,0617	103,747	108,877	103,587	101,667	71,8077	
12:20	70,6869	103,897	108,386	102,616	100,857	71,7978	
12:25	73,1573	106,392	108,799	101,748	98,0734	66,964	
12:30	72,5479	108,503	111,073	105,455	101,933	69,2145	
12:35	71,2143	103,952	107,639	101,072	98,9942	68,6729	
12:40	71,97	104,711	107,436	100,391	97,9956	68,3176	
12:45	70,219	103,265	107,11	101,345	100,067	69,266	
12:50	72,2892	108,241	110,007	104,233	100,713	68,7965	
12:55	70,945	103,36	107,046	100,321	99,2025	70,7863	
13:00	73,0456	105,958	107,883	100,357	97,8014	65,8971	
13:05	71,3012	103,559	106,283	99,0817	97,6448	67,0109	
13:10	69,7967	103,32	106,684	101,08	100,281	67,8897	
13:15	73,2181	106,931	107,733	100,688	97,813	65,7527	

13:20	69,9398	104,741	107,627	101,86	100,102	65,6471
13:25	69,993	101,441	104,161	96,9683	96,1708	63,6288
13:30	69,9518	104,914	106,516	100,753	98,1979	65,1815
13:35	70,6975	101,031	103,11	95,4432	93,6905	64,9729
13:40	69,8802	104,361	105,482	99,7227	97,6472	63,9949
13:45	68,7985	99,916	102,794	97,0423	97,0423	67,8447
13:50	70,4265	100,755	101,394	92,9388	91,5067	60,0772
13:55	67,6706	97,6684	100,064	93,5235	93,5235	64,3279
14:00	67,2908	98,8773	101,114	95,3679	95,5273	64,7446
14:05	70,5182	100,527	100,368	92,2349	91,1214	61,127
14:10	68,5782	100,493	100,813	95,0674	93,793	63,007
14:15	68,5682	99,8411	99,8411	93,7804	92,6661	62,5193
14:20	68,4987	99,2889	99,1293	92,9123	91,7986	61,9718
14:25	67,2323	97,8607	98,0203	92,602	91,8064	62,7739
14:30	65,9185	93,3595	94,6337	88,9067	90,019	61,2971
14:35	68,3944	97,269	95,9933	89,6278	88,6748	60,2718
14:40	68,4806	95,7638	94,1704	87,4928	86,2235	57,9619
14:45	65,6363	94,192	93,2365	87,6724	87,355	57,1806
14:50	66,6354	92,6413	90,4147	83,2748	82,4831	51,462
14:55	62,5721	85,7337	85,8923	79,0833	80,5066	55,863
15:00	64,4588	89,6694	87,6052	80,9506	80,9506	54,8796
15:05	63,2635	85,9434	84,0411	76,9197	77,236	50,791
15:31	57,2904	75,2732	74,1644	67,974	70,5163	48,3155
15:36	55,9589	76,0093	75,2179	70,4618	73,1586	50,5121
15:41	55,2427	72,1352	71,0244	63,7078	68,4828	44,9712
15:46	54,2105	70,3183	69,2064	62,0421	66,6622	45,0601
15:51	53,8567	68,8569	66,9485	58,8165	62,6476	41,8039
15:56	50,9083	65,4522	64,178	56,6749	62,1056	41,7417
16:01	51,7678	68,3715	65,6673	59,4488	62,3214	42,2842
16:06	52,2278	67,2346	64,2107	57,6692	59,7457	41,9427
16:11	49,5519	65,0587	62,8282	57,4007	60,1163	41,8316

A1-2: Relevés de températures du 13/07/2010

Heure	Température (°C)						
licuic	1	2	3	5	6	7	
08:35	51,6219	68,5447	70,9273	65,6816	62,9735	43,4264	
08:37	50,3144	67,4094	71,2227	67,7274	66,4548	48,3877	
08:42	51,8762	68,4806	71,3396	66,572	64,9801	45,9342	
08:47	54,7448	73,5411	75,2833	70,0511	67,1906	45,1163	
08:52	54,6107	74,6757	75,6256	70,2357	68,3294	44,1768	
08:57	53,3425	71,9979	74,6927	69,7754	69,6165	47,8873	

09:02	54,4275	74,0232	77,3474	71,8033	70,5335	48,4936
09:07	54,9841	75,2074	78,6894	73,1476	72,3547	48,8912
09:12	54,9462	76,7505	80,547	75,8011	75,6428	49,8171
09:17	57,1172	78,4259	81,589	75,1016	73,6758	50,2289
09:22	59,1459	81,8546	84,3887	76,7922	74,4179	48,575
09:27	59,6916	83,029	86,0404	78,4413	76,0672	50,8891
09:32	61,4248	88,5519	91,2532	85,3788	81,5777	59,1904
09:37	63,0988	90,5376	93,4008	86,7266	83,7148	56,2336
09:42	60,9004	88,3558	94,241	89,309	87,0857	61,8578
09:47	62,5207	88,5395	94,1067	87,7455	85,8412	62,6802
09:52	66,3841	94,9376	98,2866	91,4355	87,305	61,2857
09:57	63,8514	93,6842	99,4262	93,6842	91,4559	62,4166
10:02	67,7467	98,0548	101,249	93,9103	90,8874	60,1003
10:07	65,3499	94,3833	100,447	94,3833	92,4726	64,8722
10:12	66,1267	96,5926	102,822	96,9116	94,8392	67,8764
10:17	69,3546	98,7181	103,194	95,0493	91,3876	66,97
10:22	68,5447	97,5882	103,022	94,7178	92,3291	65,3628
10:27	69,0264	98,5539	103,671	95,0441	92,6547	65,5266
10:32	67,4268	97,7399	103,974	96,6231	95,9853	63,606
10:37	68,5705	98,5719	104,489	95,8595	95,0624	66,3438
10:42	68,3811	99,4964	105,897	98,3786	97,5806	67,5861
10:47	69,8872	104,048	109,018	101,328	98,7715	65,5943
10:52	72,5243	104,147	107,994	97,9125	95,9984	60,1137
10:57	72,7682	104,393	108,08	97,9984	96,0842	62,5925
11:02	71,7103	102,368	106,532	95,5015	94,864	61,5277
11:07	69,7241	100,211	106,133	96,2198	96,2198	64,6337
11:12	72,7613	105,507	109,357	99,588	97,5127	65,6124
11:17	73,2713	106,825	110,516	100,422	98,6646	61,6634
11:22	71,8072	103,269	108,559	98,3134	97,1961	67,1999
11:27	71,3628	102,661	108,431	97,8663	97,7067	63,4101
11:32	70,3593	102,286	108,696	98,9298	99,8881	65,2712
11:37	72,8254	105,736	110,229	99,1761	97,4201	67,4262
11:42	70,5934	105,721	111,5	102,199	102,199	67,4158
11:47	71,9394	107,883	112,22	103,236	102,276	69,0819
11:52	74,3278	107,734	111,106	99,7294	99,5697	60,9723
11:57	73,8867	108,086	111,137	100,081	100,24	61,8055
12:02	70,9882	105,326	110,461	100,364	101,963	61,5985
12:07	70,6774	103,57	109,022	99,0929	101,33	63,8375
12:12	72,3777	106,886	110,579	100,163	100,802	64,1117
12:17	72,7723	107,606	111,139	100,401	100,88	64,0301
12:22	70,672	103,558	108,848	99,0818	101,479	63,6742
12:27	70,922	101,417	105,9	94,2344	97,4232	62,4891
12:32	70,5314	101,823	106,467	95,5952	97,988	64,8063
12:37	69,8753	101,799	106,924	96,6879	99,8805	62,0765

			1			
12:42	73,0364	106,744	109,472	98,2659	98,7447	62,0662
12:47	73,4874	106,081	108,487	96,9672	97,7649	59,0079
12:52	73,5077	105,941	108,347	97,3067	97,1472	63,0174
12:57	70,9172	105,407	108,615	98,6898	99,8077	61,5291
13:02	73,2278	105,018	107,262	95,7493	96,2276	61,4601
13:07	71,6729	101,371	103,931	91,0062	93,7115	55,8983
13:12	68,9015	98,1061	101,941	90,4592	94,5975	57,9035
13:17	69,0825	101,957	104,357	93,6589	96,5271	59,0463
13:22	67,8799	98,5108	102,186	92,4544	95,9583	60,5524
13:27	68,3402	97,702	101,217	90,6927	93,5571	62,4488
13:32	68,9091	101,303	103,542	93,4851	95,7153	58,7122
13:37	67,8435	96,4059	99,7582	88,9248	92,9004	58,9174
13:42	67,23	95,7879	99,4582	89,1041	93,3981	57,5027
13:47	67,2404	97,8689	100,104	90,3835	93,7244	56,7148
13:52	67,0659	94,0328	96,7427	85,4505	89,2602	57,9763
13:57	68,4124	95,5387	96,3359	84,5717	86,9506	53,2516
14:02	68,0912	96,9647	97,4432	86,9435	89,1659	55,8125
14:07	68,3902	95,8325	96,1513	85,8161	87,2438	55,6322
14:12	66,0698	90,9674	92,7176	81,4487	84,9336	52,9733
14:17	64,0113	90,6612	92,8886	83,9943	87,96	54,7472
14:22	63,6382	90,7605	92,351	83,461	87,1073	55,4946
14:27	63,8684	87,1826	88,9294	78,4719	83,0602	52,3607
14:32	65,1456	88,7709	88,612	77,6809	80,2123	49,7984
14:37	64,6411	88,109	87,9502	77,6544	79,5532	52,1775
14:42	64,2847	87,2776	87,2776	77,1425	78,8834	52,2998
14:47	62,4402	83,5419	83,5419	73,7285	77,5278	48,5161
14:52	61,3815	81,6991	82,0157	72,2006	76,1616	49,2169
14:57	62,4923	83,1163	81,8497	71,8765	74,8881	46,1594
15:02	61,9512	83,5271	82,2604	73,0818	76,2491	48,1871
15:07	61,7191	80,9223	79,8152	70,7889	73,802	46,5069
15:12	58,0824	78,5857	78,5857	70,824	75,7373	46,5425
15:17	58,3907	74,7812	74,3059	64,6138	69,0691	44,4358
15:22	56,0926	74,7207	75,1958	68,2143	72,9775	49,04
15:27	55,5833	71,3622	71,6795	63,5688	69,1389	45,7963
15:32	57,9645	73,7217	72,1363	63,5504	66,735	44,3313
15:37	54,6492	67,7343	67,4163	58,9675	64,3918	41,6356
15:42	54,5081	70,7705	69,1824	62,4972	66,002	44,2336
15:47	53,5052	65,3246	64,6876	56,7067	61,3396	40,8061
15:52	53,9873	65,4843	63,7322	55,7482	59,4249	39,0339
15:57	50,3466	60,43	60,43	53,5533	58,5134	40,2093
16:02	51,869	61,6245	59,8689	52,5102	55,713	37,8677
16:07	50,9719	60,7309	58,3357	52,0943	54,9774	37,6115
16:12	49,6777	60,5596	58,3242	53,0448	55,4463	39,5397
16:17	47,4556	58,6705	57,2322	53,3916	55,7929	38,7577

	1			1		
16:22	48,6503	57,7808	55,7022	50,7365	52,9806	36,7292
16:27	47,0677	56,5255	54,7657	51,2413	52,5236	38,2073
16:32	45,2409	54,7087	53,2675	50,5423	51,9855	37,3403
16:37	46,7339	52,9926	51,0691	46,8947	47,3768	34,7983
16:42	43,4894	47,1901	46,8686	42,845	45,0993	33,3118
16:47	40,551	44,5793	44,9012	42,6469	46,0273	33,1135
16:52	42,622	47,9303	45,841	42,7831	43,4273	31,4715
16:57	41,1654	46,6388	44,7089	41,9714	42,2936	30,169
17:02	40,9893	44,2116	42,44	39,3759	39,2145	29,1802
17:07	40,0637	43,1266	41,354	38,4494	37,9648	28,8982
17:12	38,0924	42,9312	41,8034	40,0296	39,5455	29,8382
17:17	38,9401	41,199	39,7472	37,0015	36,5165	28,0932
17:22	34,978	38,6963	39,5035	39,1807	39,8263	30,2825
17:27	37,9869	40,731	39,1173	36,8556	35,8853	27,785
17:32	37,6385	40,5445	39,0922	36,8304	36,1836	28,0849
17:37	36,1515	40,0289	39,2219	38,0914	37,2834	29,1901
17:42	34,2201	37,4535	38,0998	37,7767	38,0998	30,0098
17:47	35,1234	39,3244	38,6786	37,871	37,063	29,2941
17:52	37,0801	39,5029	37,8881	35,6254	34,6558	27,688
17:57	36,8515	38,1444	37,0132	34,4272	33,2951	27,1341
18:02	32,9849	35,4105	36,5416	36,5416	37,3498	29,7446
18:07	36,3996	37,5313	36,2379	33,8137	33,0048	26,5175
18:12	35,9566	36,9268	36,1183	33,5321	32,7231	26,397
18:17	35,6809	38,2663	36,9736	34,8729	34,0645	27,2564
18:22	35,9898	38,0904	36,6358	34,3737	33,565	27,0796
18:27	35,483	35,8061	34,9982	32,5722	31,6007	26,0828
18:32	32,1818	35,0936	36,2245	36,063	36,386	29,1019
18:37	31,9829	32,6305	33,7631	32,9542	34,8948	28,5783
18:42	34,6754	37,907	36,6143	35,3219	34,352	27,8694
18:47	32,9852	37,1876	36,703	36,3801	35,734	28,6091
18:52	32,1303	35,3655	36,3347	36,1732	36,1732	29,6994
18:57	32,0074	32,9786	34,2727	33,9493	35,0809	29,4142
19:02	31,4892	32,7845	34,0787	33,9169	35,0486	29,2196
19:07	31,8336	35,2303	36,0379	35,7149	35,8764	29,0782
19:12	32,6546	32,169	32,9782	31,0353	31,6832	27,4664
19:17	34,6867	35,8179	34,6867	32,5838	31,2881	25,6058
19:22	32,1455	35,8653	35,5422	35,219	34,4108	27,9292
19:27	32,5398	32,0542	31,8922	29,4611	29,4611	25,237
19:32	30,1572	30,3194	31,2917	30,8056	32,4253	27,2358
19:37	29,735	31,6801	32,6516	32,8135	33,1372	27,4623
19:42	32,5399	34,8049	33,1874	31,4062	30,2715	25,3983
19:47	29,5026	33,0672	32,7435	32,5816	31,934	26,2543
19:52	27,8806	29,1791	30,8007	31,1248	31,4488	26,5807
19:57	31,0896	32,7091	31,4136	29,4682	27,8449	23,7782

20:02 30,7556 31,0797 29,945 27,9975 26,2099 22,6273 20:07 26,341 27,8036 29,2647 29,5892 29,9135 25,365 20:12 29,0956 31,0418 30,2312 29,2579 27,6342 23,8923 20:17 29,1243 28,1504 27,3384 25,2246 23,7592 21,6395 20:27 24,8282 23,6882 24,9909 25,1537 26,9425 24,3397 20:32 28,1633 29,4619 28,3257 27,1885 25,7251 22,6301 20:42 25,7489 28,3491 28,6482 26,2397 24,7753 22,494 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312							
20:12 29,0956 31,0418 30,2312 29,2579 27,6342 23,8923 20:17 29,1243 28,1504 27,3384 25,2246 23,7592 21,6395 20:22 26,4044 29,1657 29,0034 28,8411 28,1918 23,9632 20:32 28,1633 29,4619 28,3257 27,1885 25,7251 22,6301 20:37 28,5143 29,1635 27,8648 26,2397 24,7753 22,494 20:42 25,7489 28,3491 28,6738 28,0244 24,2839 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,953 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 <td>20:02</td> <td>30,7556</td> <td>31,0797</td> <td>29,945</td> <td>27,9975</td> <td>26,2099</td> <td>22,6273</td>	20:02	30,7556	31,0797	29,945	27,9975	26,2099	22,6273
20:17 29,1243 28,1504 27,3384 25,2246 23,7592 21,6395 20:22 26,4044 29,1657 29,0034 28,8411 28,1918 23,9632 20:27 24,8282 23,6882 24,9909 25,1537 26,9425 24,3397 20:32 28,1633 29,4619 28,3257 27,1885 25,7251 22,6301 20:37 28,5143 29,1635 27,8648 26,2397 24,7753 22,494 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9466 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:17 23,4255 22,2843 23,4255 23,9143 </td <td>20:07</td> <td>26,341</td> <td>27,8036</td> <td>29,2647</td> <td>29,5892</td> <td>29,9135</td> <td>25,365</td>	20:07	26,341	27,8036	29,2647	29,5892	29,9135	25,365
20:22 26,4044 29,1657 29,0034 28,8411 28,1918 23,9632 20:27 24,8282 23,6882 24,9909 25,1537 26,9425 24,3397 20:32 28,1633 29,4619 28,3257 27,1885 25,7251 22,6301 20:42 25,7489 28,3491 28,6738 28,0244 24,2839 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9466 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:12 28,1017 28,264 26,9443 25,6434 24,5041 <td>20:12</td> <td>29,0956</td> <td>31,0418</td> <td>30,2312</td> <td>29,2579</td> <td>27,6342</td> <td>23,8923</td>	20:12	29,0956	31,0418	30,2312	29,2579	27,6342	23,8923
20:27 24,8282 23,6882 24,9999 25,1537 26,9425 24,3397 20:32 28,1633 29,4619 28,3257 27,1885 25,7251 22,6301 20:37 28,5143 29,1635 27,8648 26,2397 24,7753 22,494 20:42 25,7489 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,2556 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9069 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4245 21,2842 22,4944 22,3313 23,4724 23,4724 21:27 27,1068 28,0815 26,9443 25,6434 <td>20:17</td> <td>29,1243</td> <td>28,1504</td> <td>27,3384</td> <td>25,2246</td> <td>23,7592</td> <td>21,6395</td>	20:17	29,1243	28,1504	27,3384	25,2246	23,7592	21,6395
20:32 28,1633 29,4619 28,3257 77,1885 25,7251 22,6301 20:37 28,5143 29,1635 27,8648 26,2397 24,7753 22,494 20:42 25,7489 28,3491 28,6393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:37 26,53255 25,2314 24,7431 22,9512 <td>20:22</td> <td>26,4044</td> <td>29,1657</td> <td>29,0034</td> <td>28,8411</td> <td>28,1918</td> <td>23,9632</td>	20:22	26,4044	29,1657	29,0034	28,8411	28,1918	23,9632
20:37 28,5143 29,1635 27,8648 26,2397 24,7753 22,494 20:42 25,7489 28,3491 28,3491 28,6738 28,0244 24,2839 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,64311 27,7132 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 <td>20:27</td> <td>24,8282</td> <td>23,6882</td> <td>24,9909</td> <td>25,1537</td> <td>26,9425</td> <td>24,3397</td>	20:27	24,8282	23,6882	24,9909	25,1537	26,9425	24,3397
20:42 25,7489 28,3491 28,3491 28,6738 28,0244 24,2839 20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:27 27,1068 28,0815 26,9644 25,5009 24,0357 21,753 21:17 27,1068 28,0815 26,9443 25,6434 24,5404 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 <td>20:32</td> <td>28,1633</td> <td>29,4619</td> <td>28,3257</td> <td>27,1885</td> <td>25,7251</td> <td>22,6301</td>	20:32	28,1633	29,4619	28,3257	27,1885	25,7251	22,6301
20:47 28,6259 28,1389 26,8393 25,5385 23,7477 21,6279 20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 21,842 22,4944 22,3313 23,4724 21,661 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 </td <td>20:37</td> <td>28,5143</td> <td>29,1635</td> <td>27,8648</td> <td>26,2397</td> <td>24,7753</td> <td>22,494</td>	20:37	28,5143	29,1635	27,8648	26,2397	24,7753	22,494
20:52 26,3761 28,6503 28,488 28,3256 27,1887 23,935 20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 21,261 21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,341 29,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414	20:42	25,7489	28,3491	28,3491	28,6738	28,0244	24,2839
20:57 23,9638 24,7779 26,567 27,7044 28,1915 24,9406 21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,444 25,6949 23,9043 21:57 23,1578 21,2007 21,5271 20,5476	20:47	28,6259	28,1389	26,8393	25,5385	23,7477	21,6279
21:02 23,9899 24,8041 26,4311 27,7312 28,2184 24,9669 21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 <td>20:52</td> <td>26,3761</td> <td>28,6503</td> <td>28,488</td> <td>28,3256</td> <td>27,1887</td> <td>23,935</td>	20:52	26,3761	28,6503	28,488	28,3256	27,1887	23,935
21:07 27,4946 28,9561 28,1444 27,1696 25,7061 22,9373 21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476	20:57	23,9638	24,7779	26,567	27,7044	28,1915	24,9406
21:12 28,1017 28,264 26,9644 25,5009 24,0357 21,753 21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,3139 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219	21:02	23,9899	24,8041	26,4311	27,7312	28,2184	24,9669
21:17 23,4255 22,2843 23,4255 23,9143 25,7049 24,4029 21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 <td>21:07</td> <td>27,4946</td> <td>28,9561</td> <td>28,1444</td> <td>27,1696</td> <td>25,7061</td> <td>22,9373</td>	21:07	27,4946	28,9561	28,1444	27,1696	25,7061	22,9373
21:22 23,4724 21,842 22,4944 22,3313 23,4724 23,4724 21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 <td>21:12</td> <td>28,1017</td> <td>28,264</td> <td>26,9644</td> <td>25,5009</td> <td>24,0357</td> <td>21,753</td>	21:12	28,1017	28,264	26,9644	25,5009	24,0357	21,753
21:27 27,1068 28,0815 26,9443 25,6434 24,5041 22,0591 21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 </td <td>21:17</td> <td>23,4255</td> <td>22,2843</td> <td>23,4255</td> <td>23,9143</td> <td>25,7049</td> <td>24,4029</td>	21:17	23,4255	22,2843	23,4255	23,9143	25,7049	24,4029
21:32 24,2445 22,1261 22,2892 21,4735 21,963 21,963 21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 <td>21:22</td> <td>23,4724</td> <td>21,842</td> <td>22,4944</td> <td>22,3313</td> <td>23,4724</td> <td>23,4724</td>	21:22	23,4724	21,842	22,4944	22,3313	23,4724	23,4724
21:37 26,5325 25,2314 24,7431 22,9512 21,4831 20,1766 21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,813 <td>21:27</td> <td>27,1068</td> <td>28,0815</td> <td>26,9443</td> <td>25,6434</td> <td>24,5041</td> <td>22,0591</td>	21:27	27,1068	28,0815	26,9443	25,6434	24,5041	22,0591
21:42 26,0899 24,951 24,137 22,3442 20,5487 20,3853 21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 <td>21:32</td> <td>24,2445</td> <td>22,1261</td> <td>22,2892</td> <td>21,4735</td> <td>21,963</td> <td>21,963</td>	21:32	24,2445	22,1261	22,2892	21,4735	21,963	21,963
21:47 21,6216 21,1319 22,2743 23,7414 25,6949 23,9043 21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,55218 27,172 25,8713 24,5694<	21:37	26,5325	25,2314	24,7431	22,9512	21,4831	20,1766
21:52 25,7009 24,0732 23,5845 21,4645 20,3214 19,9946 21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694	21:42	26,0899	24,951	24,137	22,3442	20,5487	20,3853
21:57 23,1578 21,2007 21,5271 20,5476 21,0375 21,6903 22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14	21:47	21,6216	21,1319	22,2743	23,7414	25,6949	23,9043
22:02 26,2976 25,4844 24,5078 22,7155 20,9206 19,6135 22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539	21:52	25,7009	24,0732	23,5845	21,4645	20,3214	19,9946
22:07 22,1622 24,6069 25,4208 26,7219 26,7219 23,9555 22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408	21:57	23,1578	21,2007	21,5271	20,5476	21,0375	21,6903
22:12 23,3129 21,3558 21,6822 20,8661 21,3558 22,1717 22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229	22:02	26,2976	25,4844	24,5078	22,7155	20,9206	19,6135
22:17 21,8662 20,3969 21,3767 21,5399 23,3337 23,1707 22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604	22:07	22,1622	24,6069	25,4208	26,7219	26,7219	23,9555
22:22 22,9234 21,129 21,2922 20,4758 20,9657 21,6186 22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786	22:12	23,3129	21,3558	21,6822	20,8661	21,3558	22,1717
22:27 23,671 21,8775 21,8775 20,0813 19,9179 20,2447 22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:27 24,9543 24,6287 23,1625 22,0209	22:17	21,8662	20,3969	21,3767	21,5399	23,3337	23,1707
22:32 23,4411 21,6472 21,484 19,8507 19,6873 20,0141 22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:27 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718	22:22	22,9234	21,129	21,2922	20,4758	20,9657	21,6186
22:37 26,0572 26,545 25,081 23,7782 22,311 20,0251 22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:32 21,1377 19,1771 20,1578 19,5041	22:27	23,671	21,8775	21,8775	20,0813	19,9179	20,2447
22:42 26,5218 27,172 25,8713 24,5694 23,2661 20,982 22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041	22:32	23,4411	21,6472	21,484	19,8507	19,6873	20,0141
22:47 21,416 22,884 24,3502 26,14 26,7902 24,513 22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	22:37	26,0572	26,545	25,081	23,7782	22,311	20,0251
22:52 26,4165 27,8792 26,9042 26,2539 24,7894 22,5079 22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	22:42	26,5218	27,172	25,8713	24,5694	23,2661	20,982
22:57 21,7101 21,0571 22,1995 23,3408 25,295 24,4811 23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	22:47	21,416	22,884	24,3502	26,14	26,7902	24,513
23:02 23,8846 21,9287 22,0918 20,6229 20,2963 20,7862 23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	22:52	26,4165	27,8792	26,9042	26,2539	24,7894	22,5079
23:07 24,0567 26,8229 26,4978 26,6604 25,6846 22,4267 23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	22:57	21,7101	21,0571	22,1995	23,3408	25,295	24,4811
23:12 21,2953 20,9688 22,1113 23,5786 25,5323 23,2527 23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	23:02	23,8846	21,9287	22,0918	20,6229	20,2963	20,7862
23:17 22,5577 20,4361 20,7628 20,1094 20,5994 19,7825 23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	23:07	24,0567	26,8229	26,4978	26,6604	25,6846	22,4267
23:22 24,9543 24,6287 23,1625 22,0209 20,3882 18,0985 23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	23:12	21,2953	20,9688	22,1113	23,5786	25,5323	23,2527
23:27 21,8752 24,6462 24,4834 24,9718 24,3205 20,0789 23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	23:17	22,5577	20,4361	20,7628	20,1094	20,5994	19,7825
23:32 21,1377 19,1771 20,1578 19,5041 20,1578 19,5041	23:22	24,9543	24,6287	23,1625	22,0209	20,3882	18,0985
	23:27	21,8752	24,6462	24,4834	24,9718	24,3205	20,0789
23:37 21,0113 23,6213 23,9471 24,2729 23,6213 19,2136	23:32	21,1377	19,1771	20,1578	19,5041	20,1578	19,5041
	23:37	21,0113	23,6213	23,9471	24,2729	23,6213	19,2136

23:42	20,39	18,7553	20,0632	19,5729	20,5533	18,7553
23:47	23,4614	23,7873	22,157	21,6674	19,8707	16,9246
23:52	19,3606	19,0335	20,9946	221371	22,1371	20,3413
23:57	20,9705	23,4176	23,5806	24,2322	23,0916	20,4805

A1-3: Relevés de températures du 14/07/2010

TT			Températ	tures (°C)		
Heure	1	2	3	5	6	7
00:07	24,104	25,732	24,7554	24,4297	22,9631	20,6782
00:12	23,8163	25,9323	25,2816	24,9561	23,4904	20,7171
00:17	21,8559	20,0598	20,2232	19,733	20,2232	21,5295
00:22	23,0966	25,7022	25,214	25,3768	24,4	21,3021
00:27	22,7152	21,0839	20,9206	19,2868	19,2868	19,1233
00:32	24,426	23,6116	22,7967	21,1652	19,8583	18,55
00:37	23,641	22,5	21,6843	20,0513	18,7432	18,4159
00:42	22,1075	25,0407	24,7152	25,0407	24,2266	21,1282
00:47	24,9897	25,9659	24,8269	23,5239	22,2195	20,0968
00:52	22,1616	25,2575	24,932	25,9083	25,4202	22,4879
00:57	25,3355	24,3588	23,5444	22,077	20,4445	19,3004
01:02	25,2253	24,2486	23,434	21,6402	20,1705	19,0261
01:07	24,1988	22,8952	22,2429	20,2839	19,1397	18,1579
01:12	19,6567	19,8201	20,9637	22,7586	24,0622	22,1062
01:17	21,6957	19,7361	19,7361	18,7551	19,2457	18,7551
01:22	22,6809	24,9621	24,1479	23,985	22,6809	19,5782
01:27	23,7554	22,7776	21,9621	20,4928	19,1852	17,3848
01:32	22,9715	24,7637	23,9494	23,6235	22,1559	19,379
01:37	23,4812	22,3401	21,5243	20,0544	18,7463	17,7643
01:42	23,6512	24,6285	23,1623	22,3469	21,2046	19,0801
01:47	19,962	20,7788	22,2476	23,7146	24,3661	22,0845
01:52	22,383	25,3156	24,6645	24,9901	24,0131	21,404
01:57	23,9947	25,9482	25,1346	24,809	23,5058	21,0587
02:02	23,2932	21,9887	21,3359	19,7024	19,0483	19,0483
02:07	21,7616	24,8584	24,5328	25,184	24,6956	21,4352
02:12	20,058	21,038	22,3434	24,4617	25,2755	22,6695
02:17	20,9189	19,1214	19,9388	19,7754	21,0822	21,0822
02:22	24,0555	23,0778	22,2625	20,6303	18,9957	17,8502
02:27	20,3231	18,361	19,3425	19,179	20,3231	20,4864
02:32	19,3662	20,347	21,8166	23,4474	24,4248	21,6534
02:37	19,2638	18,9368	20,081	21,3874	23,3442	21,0609
02:42	23,4887	22,8368	22,0213	20,7154	19,081	17,1166

02:47	21,0741	24,0098	23,521	24,1726	23,358	20,0939
02:52	19,5628	19,0723	20,5434	21,3598	22,9911	21,1966
02:57	21,2973	24,0696	23,5808	24,2325	23,4179	20,4807
03:02	21,6641	19,8676	19,8676	18,5593	18,3957	18,5593
03:07	23,327	23,001	21,6962	21,0433	19,4093	18,2642
03:12	21,7976	24,4059	23,5914	23,9172	22,1239	20,4913
03:17	21,8307	20,1979	20,0345	18,7263	18,3991	18,5627
03:22	21,89	20,584	19,9305	18,4586	17,8038	17,64
03:27	20,1052	18,1427	18,6337	18,3064	19,1244	18,9608
03:32	22,6197	21,6409	20,6613	19,3539	17,7175	16,8984
03:37	19,5202	17,5567	18,7025	18,5389	19,8471	19,5202
03:42	21,1646	19,6943	19,2038	17,731	17,4034	16,748
03:47	22,23	23,2084	21,9037	21,4141	19,944	17,4895
03:52	20,4813	18,6834	18,6834	17,7014	17,7014	17,7014
03:57	18,6805	17,207	18,5169	18,8442	20,4789	19,3348
04:02	21,1245	19,8176	19,1636	17,8545	17,3632	16,8716
04:07	21,9839	22,7995	21,4943	21,1678	20,1877	18,225
04:12	21,7887	23,5827	22,4414	22,7676	21,4623	19,6651
04:17	19,9963	18,0337	18,8519	18,5247	19,0154	19,6694
04:22	20,1282	18,4933	18,8205	18,1661	18,6569	19,3111
04:27	19,7749	17,9756	18,6302	18,3029	19,1209	19,6114
04:32	18,4398	18,9306	20,7284	22,5234	23,3384	20,8917
04:37	20,4924	23,4294	23,1035	24,0812	23,5924	20,8191
04:42	22,8618	22,0463	21,5568	20,2504	19,2696	18,9425
04:47	22,5786	24,6971	23,7198	24,0457	22,7417	20,9465
04:52	23,445	23,1191	21,9776	21,3248	20,0181	18,71
04:57	23,0152	22,1999	21,7104	20,4042	19,2601	18,7694
05:02	19,8361	18,855	19,9996	19,9996	21,4695	20,163
05:07	20,5169	19,046	19,373	18,5552	19,373	19,046
05:12	19,636	22,249	22,7383	23,8792	24,205	20,7799
05:17	22,7564	24,8746	23,7345	23,5715	22,4302	19,4903
05:22	23,5456	23,3826	22,0781	21,0988	19,6282	17,8284
05:27	21,095	19,4611	19,4611	18,1524	18,1524	17,3336
05:32	19,0801	18,0984	19,2437	19,5707	21,3677	20,0611
05:37	19,0624	18,2443	19,5529	20,0433	22,0027	20,5335
05:42	22,7453	24,2121	22,7453	22,2559	21,4399	19,6427
05:47	22,0921	24,5367	23,7224	23,8853	22,7445	20,7863
05:52	19,9928	21,6258	23,0935	24,3967	24,8851	22,6045
05:57	21,5728	20,2665	20,7565	19,7763	20,2665	19,9397
06:02	23,9619	25,2644	23,9619	23,3101	22,3318	19,8824
06:07	24,235	25,8627	24,5607	23,7463	22,7683	20,3199
06:12	21,0333	21,1966	22,665	22,9911	24,6202	22,665
06:17	24,9894	26,2909	25,1521	24,0124	22,8716	20,9134
06:22	22,26	22,4231	23,5641	22,5862	23,5641	23,4012
06:27	25,9736	27,274	26,624	24,5091	23,3688	22,2275

06:32	27,3561	29,629	28,6553	26,3809	24,7539	22,9618
06:37	26,3535	27,6533	28,1404	25,5405	24,4014	24,2386
06:42	29,5536	32,6349	31,9862	30,2022	25,9804	24,8415
06:47	30,9074	33,6641	33,8261	31,881	27,1752	26,6877
06:52	28,8399	34,3521	36,779	37,1023	34,3521	32,4078
06:57	30,2913	34,6676	37,2559	37,5791	36,124	34,8295
07:02	31,8964	37,4018	40,4701	41,1154	39,0174	37,0785
07:07	34,2813	42,3574	44,7728	44,9337	42,3574	39,1317
07:12	35,6125	41,7496	44,8099	44,488	43,5219	38,8454
07:17	37,5887	43,236	46,2941	44,0413	43,0749	38,2351
07:22	39,8474	46,6125	48,7014	45,6476	43,3942	37,9096
07:27	41,9849	52,5922	54,0341	52,432	49,0631	41,0175
07:32	44,5481	54,4998	55,4601	52,2571	49,0489	39,7134
07:37	43,062	55,9032	57,9819	56,703	54,1427	42,7399
07:42	47,371	58,7462	59,5447	55,8686	52,8266	41,7381
07:47	48,1758	61,4602	62,5764	58,4272	56,0294	44,1563
07:52	47,7827	62,827	64,5799	61,7107	58,6774	45,2102
07:57	48,4411	64,4346	66,6632	63,6381	61,0869	47,3166
08:02	47,964	61,2525	65,2373	62,0501	62,0501	47,482
08:07	51,9047	66,1215	68,0303	62,1385	59,5851	43,7105
08:12	52,4627	67,7887	69,3781	63,3313	60,7794	44,2709
08:17	50,3588	66,179	69,9945	65,8607	65,0646	49,7169
08:22	50,7844	68,9844	72,9521	69,1433	67,7129	47,895
08:27	53,1717	73,8859	76,1026	71,1903	68,6495	47,8777
08:32	56,4154	75,3531	76,7772	70,2799	67,1017	47,4382
08:37	53,8388	75,0207	78,9765	73,912	72,3269	49,8309
08:42	57,0259	76,1175	78,3335	70,2523	68,1869	48,5325
08:47	58,0331	78,539	80,4362	72,5216	70,1412	48,2595
08:52	57,6799	78,3478	80,403	72,0125	69,9491	47,5832
08:57	56,4243	77,1064	80,4288	72,0375	71,5615	48,0881
09:02	58,9561	82,9308	84,5149	76,128	74,3866	48,3854
09:07	57,0518	82,7857	85,955	78,9891	78,0388	51,6082
09:11	48,9613	65,4314	69,2489	64,9537	59,0518	54,0932
09:12	51,0979	66,7514	68,6593	62,4513	54,943	50,6167
09:12	50,6437	68,845	71,3856	66,7782	59,4465	54,1696
09:14	43,4927	61,7652	67,8177	65,2716	59,211	56,3335
09:19	41,1457	57,5198	63,7439	62,9471	57,8395	57,0402
09:24	45,0752	60,4598	64,1276	60,9386	53,7441	54,0644
09:26	40,4491	53,7914	59,2301	56,5127	51,3872	53,471
09:31	40,2562	54,0804	59,9974	57,281	52,1576	54,721
09:36	38,7066	53,0219	59,74	58,9415	55,4239	56,5438
09:41	41,582	55,7151	61,467	58,7529	53,4736	55,8751
09:46	42,2676	56,8754	61,3479	58,1543	53,0337	54,9555
00.51		7 0 4000	65.150	64.0000	70 7000	70 7000
09:51	40,8248	58,4803	65,179	64,3827	58,7998	58,7998

10:01	43,9196	60,4312	66,0099	62,9835	56,9163	58,6745
10:06	46,236	67,1824	71,1538	68,4542	60,8106	60,1723
10:11	45,5967	65,5994	72,2733	69,0984	64,644	65,9178
10:16	43,9183	64,7328	70,457	69,1865	63,9364	64,255
10:21	49,432	70,0303	74,6297	70,0303	62,7105	63,5075
10:26	47,8765	70,8717	76,576	73,7263	67,6946	68,0125
10:31	47,8418	67,5031	72,7435	68,7749	63,8418	66,0713
10:36	45,749	66,5458	74,3255	71,6303	67,5002	68,2952
10:41	46,6282	68,8485	75,1942	73,1344	67,2585	66,7813
10:46	47,1526	69,0469	75,8661	73,1734	69,0469	70,1588
10:51	47,911	69,3201	75,98	72,1775	68,6845	70,4319
10:56	49,842	71,7077	78,519	73,4523	67,7365	70,2791
11:01	50,4754	72,6467	78,1891	73,1223	67,2475	67,8836
11:06	48,8464	70,5648	78,1712	72,9448	68,1816	69,9296
11:11	50,9297	76,2655	81,4859	77,0564	70,242	70,242
11:16	53,0226	79,5964	84,8207	80,0708	73,4236	73,4236
11:21	52,4527	78,8735	83,7785	78,7155	71,9063	72,2235
11:26	53,7413	78,5643	82,8351	76,6652	69,2146	69,2146
11:31	51,716	73,7187	78,9428	72,9261	66,413	68,1628
11:36	50,9389	75,1642	81,8085	77,3791	72,312	72,1535
11:41	53,595	76,5207	80,7914	74,7797	66,5256	66,3665
11:46	54,4585	80,5345	84,6505	79,2697	71,9874	71,5116
11:51	55,2682	81,0209	85,2969	79,1234	72,3157	71,8399
11:56	54,2141	81,0865	86,1555	80,4538	74,9168	74,2833
12:01	52,8994	79,4722	84,8541	80,1047	73,9336	72,9827
12:06	56,0899	80,7285	84,5287	77,5644	71,0695	71,5456
12:11	56,8401	81,4681	85,4279	77,9876	72,4467	73,2394
12:16	53,3509	80,8667	85,6179	79,7596	75,4884	75,1718
12:21	54,7655	82,7395	87,3365	81,315	76,7278	76,4115
12:26	55,5194	82,2162	86,177	80,0014	74,4644	74,4644
12:31	53,7938	77,6705	83,368	75,6138	74,1885	75,6138
12:36	56,5752	81,8389	85,1653	78,0418	72,9768	73,4523
12:41	52,0634	74,8541	81,0251	74,5373	72,7939	73,7451
12:46	52,8924	78,675	83,738	78,9911	74,877	73,7682
12:51	55,4372	78,3443	81,507	74,3868	71,057	71,533
12:56	55,3522	80,9432	83,7924	77,1473	73,5067	72,5557
13:01	55,2581	78,3255	81,963	74,5263	69,7678	70,2443
13:06	52,6346	78,1026	83,1664	77,6284	73,9886	72,8792
13:11	55,7806	78,9973	81,3694	74,4081	67,9018	67,9018
13:16	51,7682	74,4018	78,9915	73,6096	70,9133	71,3894
13:21	55,5013	81,0906	82,6731	76,0294	71,2761	70,3238
13:26	52,5251	74,5183	79,1082	71,9819	68,4881	70,2358
13:31	51,9936	73,6783	77,1617	70,0287	66,8491	67,3264
13:36	51,8558	73,6984	77,6558	71,1607	68,1424	69,4138
13:41	53,0175	77,5295	79,9022	74,2066	69,4482	68,495

13:46	54,6134	77,3683	78,6349	71,6668	67,6962	67,3782
13:51	55,7149	78,6163	79,7227	72,5997	68,4723	67,9955
13:56	51,5037	74,2966	77,6196	72,3947	69,8556	67,7899
14:01	51,9833	70,65	72,7126	66,1995	61,8977	62,5356
14:06	49,8804	69,2052	72,2217	65,8652	64,5913	64,7506
14:11	48,7274	70,6016	73,4566	69,1724	67,1059	65,3555
14:16	52,183	74,1759	75,4427	70,0522	66,7145	64,9638
14:21	53,5135	72,4825	72,9581	65,4909	61,9852	61,5066
14:26	50,5538	71,138	73,5168	68,756	67,3253	65,7343
14:31	48,7776	67,1574	69,3829	64,4514	64,6107	63,4955
14:36	49,2774	67,1753	69,5596	64,31	63,0352	62,3974
14:41	51,6626	71,5984	71,757	65,7192	63,0117	61,2577
14:46	52,7331	70,2797	70,2797	63,9177	60,5691	59,2919
14:51	51,5443	67,8319	67,8319	61,461	58,1077	57,7881
14:56	49,252	64,2864	65,7197	59,5008	58,3824	58,702

A1-4: Relevés de températures du 15/07/2010

**	Températures (°C)									
Heure	1	2	3	5	6	7				
08:59	48,3997	64,8746	71,3932	66,944	62,1651	64,8746				
09:04	48,5999	64,9139	69,8446	63,4799	58,8521	60,7684				
09:09	46,5958	62,1309	66,9104	60,6947	56,6997	58,1389				
09:14	45,2927	61,3138	67,049	62,4303	59,2385	60,9947				
09:19	48,1507	66,2164	69,3961	64,1466	58,8825	58,4032				
09:24	45,6435	64,8476	68,9833	65,0068	60,224	57,988				
09:29	47,2198	63,7014	66,7264	61,6289	56,9976	57,3174				
09:34	45,6259	60,8465	64,3543	59,5693	55,8929	56,2128				
09:39	42,2005	59,6835	64,7862	62,396	59,6835	57,6067				
09:44	45,1239	61,9407	65,1274	61,4623	57,9499	56,3513				
09:49	43,5398	61,1701	66,1097	63,8805	61,3296	60,5318				
09:54	44,578	62,5176	68,0897	65,5445	62,8365	61,5608				
09:59	48,9723	67,0304	70,2087	65,2799	60,9765	60,4978				
10:04	45,6524	61,3531	65,6565	60,8743	57,9993	58,4788				
10:09	47,0305	63,3544	67,3344	62,7168	58,0881	57,9283				
10:14	47,937	65,0512	68,7102	63,1394	58,671	59,1503				
10:19	46,6541	68,7108	73,7886	70,1404	65,3707	64,7337				
10:24	45,354	66,153	70,4445	67,2666	64,0832	60,8944				
10:29	48,1551	69,5572	73,3647	68,9218	65,264	63,8308				
10:34	48,6401	70,674	75,2712	71,7848	67,4965	66,2239				
10:39	49,3288	69,7673	73,2578	67,8605	63,7223	61,4903				

10:44	50,2096	69,6861	73,6522	68,2561	63,8002	63,0034
10:49	50,2715	69,7474	73,8718	67,6816	63,7023	62,7461
10:54	46,7577	68,1775	73,2569	69,7664	66,9054	64,6772
10:59	48,3149	66,8601	71,4682	65,5868	63,0377	62,2404
11:04	51,4653	73,308	76,4749	71,0877	66,9568	66,3204
11:09	48,6529	68,4669	73,2294	67,5129	65,2849	64,9664
11:14	51,3771	75,2825	79,7126	74,6491	70,3674	68,9378
11:19	50,1555	70,4265	73,9156	67,5666	64,651	60,8763
11:24	49,3822	69,3477	74,1078	68,0761	65,212	65,212
11:29	49,4621	69,8992	74,6568	68,1515	65,7656	66,4021
11:34	48,8795	73,4482	78,3559	74,2404	71,704	69,7993
11:39	49,6909	73,1399	76,6234	72,1885	69,4903	68,3781
11:44	48,1267	70,484	75,7149	71,4363	69,2136	67,6242
11:49	48,4744	70,9864	75,741	71,6211	69,3986	66,8553
11:54	52,3624	76,0946	79,1006	72,7685	68,9593	65,9379
11:59	51,9489	72,9978	77,1152	70,1415	67,5987	66,0076
12:04	49,6428	74,2016	80,2141	75,4684	73,5679	69,7604
12:09	52,3123	74,781	78,2636	70,4996	67,0033	65,5711
12:14	48,8567	71,5274	76,5979	72,0034	70,0986	67,5557
12:19	49,8965	70,4898	73,5038	66,3571	63,0124	60,7794
12:24	45,4277	64,4766	68,6135	63,68	63,2019	61,9263
12:29	46,8283	68,883	73,8019	70,1537	68,7241	66,8162
12:34	45,4778	65,9572	69,9316	66,1163	64,5243	61,0172
12:39	46,8178	64,7385	66,8078	60,7527	59,4755	57,7179
12:40	48,3463	67,0465	69,113	64,1813	61,4713	59,3964
12:44	47,206	67,665	69,7306	65,2787	62,8894	59,3796
12:49	47,784	68,2369	70,3019	66,3287	64,2592	62,347
12:54	44,5639	62,6649	66,3285	63,3026	63,1432	61,708
12:59	45,183	65,0288	67,7336	64,551	63,1171	60,5652
13:04	46,023	65,701	68,087	65,0642	63,3119	60,9199
13:46	46,7036	63,8288	64,7846	58,723	56,9648	54,8849
13:48	46,8911	66,2439	67,6756	63,5366	61,9423	58,7497
13:53	44,9761	64,0276	65,4608	61,9554	60,6791	56,3655
13:58	44,8253	63,2408	64,5154	60,5295	59,412	55,4156
14:03	47,2222	62,9085	62,9085	57,4806	55,5613	54,2807
14:08	47,3694	64,3294	64,1701	58,4262	56,8277	56,3479
14:13	45,3151	60,38	61,4972	56,7047	56,7047	57,0246
14:18	43,8885	58,8063	59,7648	54,8075	54,9676	54,1669
14:33	43,3223	57,6037	59,2018	53,4426	54,0833	52,1605
14:38	45,9943	61,5311	60,8928	55,7794	54,3388	53,3778
14:41	45,9051	60,4851	59,6869	54,0899	52,9685	50,5635
14:46	42,0785	56,6862	58,4445	55,2465	56,0465	53,6455
14:51	45,0742	58,7021	58,063	52,4613	51,8201	50,8578
14:56	45,2568	59,0432	58,4042	52,6432	51,8418	51,3607
15:01	43,9088	60,4188	60,2592	56,4244	55,9446	53,3833

15:06	45,6334	58,7782	57,8194	52,5376	51,5757	50,132
15:11	41,2695	56,0435	56,6833	53,6425	53,9628	50,4366
15:16	44,0951	58,5262	56,928	52,4463	52,286	48,4359
15:21	44,2805	55,8351	54,0743	48,6217	48,1399	46,6935
15:26	43,5854	54,6641	52,9023	47,9283	47,607	46,818
15:31	40,3966	52,1344	52,6152	49,889	51,1724	48,123
15:36	40,8423	54,4994	53,5386	50,6533	50,4929	47,121
15:41	41,1035	49,7918	49,3102	44,9701	45,9354	46,0963
15:46	41,8695	51,1958	50,0727	45,5735	46,0561	45,4126
15:51	39,2878	49,7503	49,2687	46,6982	47,9839	45,5726
15:56	39,3637	50,627	48,8616	46,4516	46,4516	43,2334

A1-5: Relevés de températures du 18/07/2010

Hanna			Températi	ires (°C)		
Heure	1	2	3	5	6	7
10:25	39,5349	52,2426	79,6202	45,1758	79,4621	64,5477
10:30	39,9067	60,7692	80,6172	46,9938	80,7754	68,2563
10:35	40,9929	58,1675	82,6242	48,8773	81,1997	64,708
10:40	42,761	60,0792	88,4861	50,9586	85,947	67,2495
10:45	43,93	58,6848	85,5165	47,3081	80,765	64,4279
10:50	43,4203	64,0809	90,4074	51,9357	87,8658	71,5532
10:55	45,4059	64,7736	87,606	48,2995	82,8496	66,8429
11:00	45,833	63,9221	89,6159	49,6891	84,6961	64,7186
11:05	43,5678	61,9973	89,9219	49,8377	87,5394	69,4787
11:10	44,7921	60,8158	92,717	52,8206	89,0602	67,1882
11:17	45,9604	71,6828	94,3607	53,9856	90,859	71,6828
11:22	49,2524	73,8163	95,0662	52,9411	88,7031	72,7068
11:27	48,6072	61,2519	93,7889	53,2585	88,859	63,9622
11:32	45,972	66,2891	94,2081	53,5159	91,8203	74,5452
11:37	49,3311	72,4674	95,7818	53,8205	89,7341	71,9916
11:47	48,3328	68,7819	94,4724	52,6643	88,7465	69,7351
11:52	47,6445	70,1685	93,4761	51,0158	87,2764	70,486
11:57	45,0009	65,169	92,9284	52,5486	91,0192	73,1132
12:02	47,9072	63,1069	96,1171	54,4817	90,8636	67,882
12:07	49,0452	76,7807	95,8214	52,7346	88,9786	74,8815
12:12	46,1201	64,2083	95,4751	54,7851	93,2447	72,9506
12:17	46,2722	69,609	93,2361	52,0527	89,7364	73,7346
12:22	46,3208	67,5907	94,2398	52,4218	90,4203	73,7824
12:27	49,5942	76,2118	96,681	54,5634	90,1536	74,7872
12:32	49,1426	73,5519	95,7588	52,6716	88,1221	72,4421

12:37	46,3384	71,7333	96,1599	54,2003	92,3373	74,9032
12:42	47,9385	70,4591	93,7675	51,149	86,7733	69,8239
12:47	45,4806	57,6676	92,448	51,7441	89,9035	63,8918
12:52	48,9101	63,9456	94,2531	52,9202	87,4159	66,9705
12:57	47,9161	70,7567	93,4314	52,0891	87,7074	72,1849
13:02	44,8935	64,107	91,5492	52,121	89,3236	69,1983
13:07	47,2831	57,861	91,2087	50,3342	84,8577	58,9795
13:12	47,5505	58,9258	90,8372	49,7989	84,4874	60,0437
13:19	48,0256	64,502	90,6714	51,5566	84,7976	64,502
13:24	46,61	62,4607	91,9742	52,5492	86,8897	63,736
13:29	47,0626	62,5877	91,1407	52,6788	86,5353	64,4997
13:34	44,3488	62,2924	87,1983	50,6161	85,7704	66,5933
13:39	47,7135	64,8298	88,7736	50,2826	82,1138	61,8015
13:44	46,5265	61,5805	87,4422	49,2578	80,945	62,6969
13:49	46,4917	64,8914	87,7211	50,1857	81,8567	62,0229
13:54	43,7371	63,9164	87,2257	50,9683	84,5298	65,3497
13:59	47,1401	66,4865	88,1987	51,3136	82,65	65,8501
14:04	47,3245	59,0206	86,4843	49,252	79,8321	59,8191
14:09	44,0698	57,5436	86,4429	51,4601	83,5897	61,5357
14:14	46,687	59,0236	86,6404	50,8614	81,096	60,1412
14:19	45,8218	55,6078	83,1007	47,7509	77,7204	56,0878
14:24	45,8501	59,7906	84,0752	49,0638	78,0611	60,2695
14:29	42,6978	56,5027	81,1368	48,007	78,9228	59,5393
14:34	45,3248	63,7356	81,1832	47,8969	75,3302	60,5463
14:39	42,9514	61,385	80,4328	49,3833	77,4273	60,5872
14:44	41,8758	55,6881	75,4288	44,6143	72,2593	58,4067
14:49	41,214	58,7061	77,9362	47,8126	75,0888	60,4625
14:54	43,191	56,5099	76,3941	46,5698	72,1176	53,309
14:59	41,2079	57,4216	75,3995	47,3245	73,1819	59,3389
15:04	40,0506	52,433	72,3646	45,2067	71,7301	57,7151
15:09	42,0863	58,4539	74,6822	47,2365	71,1942	57,1752
15:14	41,719	51,6866	70,3563	43,1693	66,2233	53,1292
15:19	40,0063	52,8686	70,4139	45,4838	68,3488	53,6695
15:24	40,5795	52,157	69,8694	45,2515	67,3265	53,2788
15:29	40,3916	51,4892	65,3906	40,8755	61,8848	50,8477
15:34	40,1371	50,4322	66,885	43,8437	64,0198	49,7904
15:39	36,449	50,6217	63,7328	42,2606	63,7328	53,3471
15:44	39,0716	49,5332	64,5609	43,1025	62,0112	49,2122
15:49	36,3448	47,308	61,8789	42,4798	61,5598	48,2721
15:54	36,7651	45,1528	57,8226	38,5429	56,8633	46,2789
15:59	37,5508	41,9085	56,5191	37,7124	53,7981	40,9411
16:04	33,8191	43,3475	55,7069	39,1553	56,6666	46,5656

A1-6: Relevés de températures du 22/07/2010

	Températures (°C)			
Heure	2	3	6	7
09:07	38,935	66,66	58,8479	34,2454
09:12	38,6733	72,4423	67,0414	36,4106
09:17	40,2822	74,4975	68,6262	38,8293
09:22	42,4575	78,9959	72,347	41,4906
09:27	41,8117	80,2631	73,1415	39,715
09:32	44,1718	79,5826	71,0298	39,1736
09:37	32,7813	55,3243	48,912	32,9434
09:42	34,8389	48,5416	43,8786	32,2468
09:47	35,3084	49,0087	44,6684	31,9061
09:52	34,7047	59,4631	57,2258	36,9699
09:57	38,5432	66,9133	61,0174	34,338
10:02	40,1812	71,2239	65,1831	35,6571
10:07	40,2393	73,5013	66,0363	35,2299
10:12	44,0269	77,538	70,5668	38,2213
10:17	33,9849	67,6799	62,1055	37,383
10:22	43,2772	74,7442	66,9663	39,8915
10:27	37,9418	80,4284	72,0379	36,0018
10:32	40,3079	83,8521	76,2572	39,3397
10:37	35,5577	80,6314	72,3992	37,4984
10:42	43,7776	80,1408	70,6385	39,2632
10:47	41,4601	77,5452	72,3201	41,9437
10:52	35,3217	79,4518	73,7535	40,0085
10:57	44,8588	83,412	76,7675	43,7322
11:02	42,3152	81,7144	73,0088	41,5091
11:07	40,4258	82,3925	76,3799	42,522
11:12	41,476	81,0449	73,4486	39,8629
11:17	40,2355	82,9891	76,819	41,3645
11:22	41,159	80,2593	72,9785	40,5139
11:27	40,4776	74,9958	71,0332	43,3785
11:32	38,2355	73,591	71,2123	42,4299
11:37	38,4176	71,712	68,536	37,6098
11:42	38,5618	71,8535	68,9956	39,0462
11:47	38,3339	71,785	69,7216	40,1096
11:52	38,9883	73,6958	70,9999	39,3111
12:01	36,9062	71,0212	67,5259	39,1681
12:06	38,4214	74,0938	72,1915	41,0038
12:11	40,8377	78,6758	74,0858	41,6439
12:16	34,2773	77,6396	73,5236	38,8057
12:21	37,2116	67,9823	64,9593	40,2797

12:26	38,2915	61,0834	57,8897	38,776
12:31	37,7	61,4565	58,4232	38,1846
12:36	37,2042	64,153	61,2837	38,012
12:41	38,6448	71,7732	67,3258	37,9988
12:46	37,9137	72,1689	67,8811	39,5286

A2-1: Données météorologiques du 14/07/2010

10:30	Heure	Eclairement (W m ⁻²)	Vitesse du vent (m s ⁻¹)	Température ambiante (°C)
10:40	10:30	797,184021	2,0	-
10:45	10:35	807,353699	1,9	-
10:50	10:40	820,665527	2,0	-
10:55 849,460388 1,7 - 11:00 856,151855 1,7 - 11:05 865,021362 1,9 - 11:10 868,871643 1,6 - 11:15 883,273682 1,8 - 11:20 886,20697 0,5 - 11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 <	10:45	830,273193	2,2	-
11:00 856,151855 1,7 - 11:05 865,021362 1,9 - 11:10 868,871643 1,6 - 11:15 883,273682 1,8 - 11:20 886,20697 0,5 - 11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:35 950,530701 <	10:50	839,469849		-
11:05 865,021362 1,9 - 11:10 868,871643 1,6 - 11:15 883,273682 1,8 - 11:20 886,20697 0,5 - 11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:45 953,138123 <	10:55	849,460388	1,7	-
11:10 868,871643 1,6 - 11:15 883,273682 1,8 - 11:20 886,20697 0,5 - 11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,333496 <	11:00	856,151855	1,7	-
11:15 883,273682 1,8 - 11:20 886,20697 0,5 - 11:25 894,4833398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:45 953,833496	11:05	865,021362	1,9	-
11:20 886,20697 0,5 - 11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:55 954,510742 1,2 - 13:00 955,745911 <	11:10	868,871643	1,6	-
11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:44 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742	11:15	883,273682	1,8	-
11:25 894,483398 1,3 - 11:30 898,66394 1,8 - 11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742	11:20	886,20697	0,5	-
11:35 909,49585 2,1 - 11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574	11:25	894,483398	1,3	-
11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254	11:30	898,66394	1,8	-
11:40 916,194458 2,1 - 11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:40 951,155518 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574	11:35	909,49585		-
11:45 918,503235 1,9 - 11:50 922,758545 0,2 - 11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:55 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574 0,0 - 13:20 951,02124 0,0 - 13:25 947,97876 <	11:40	916,194458		-
11:55 928,51062 0,0 - 12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:30 944,833313 0,9 - 13:30 944,833313	11:45	918,503235		-
12:00 934,569031 0,3 - 12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:40 937,476624 0,0 -	11:50	922,758545	0,2	-
12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:40 937,476624 0,0 - 13:40 937,476624 0,0 - <td>11:55</td> <td>928,51062</td> <td>0,0</td> <td>-</td>	11:55	928,51062	0,0	-
12:05 937,682495 1,3 - 12:10 941,605286 0,0 - 12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:40 937,476624 0,0 -	12:00	934,569031	0,3	_
12:15 942,673096 0,1 - 12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:40 937,476624 0,0 - 13:40 937,476624 0,0 -	12:05	937,682495		-
12:20 946,485657 0,4 - 12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:10	941,605286	0,0	-
12:25 946,74707 0,0 - 12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:20 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:40 937,476624 0,0 -	12:15	942,673096	0,1	-
12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:20 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:20	946,485657	0,4	-
12:30 950,367676 0,0 - 12:35 950,530701 0,0 - 12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:25	946,74707	0,0	-
12:40 951,155518 0,0 - 12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:30	950,367676	0,0	-
12:45 953,138123 0,9 - 12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:35	950,530701	0,0	-
12:50 953,833496 0,6 - 12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:40	951,155518	0,0	-
12:55 954,510742 1,2 - 13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:45	953,138123	0,9	-
13:00 955,745911 0,0 - 13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:50	953,833496	0,6	-
13:05 955,119141 0,0 - 13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	12:55	954,510742	1,2	-
13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:00	955,745911	0,0	-
13:10 955,44574 0,0 - 13:15 951,510254 1,0 - 13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:05	955,119141	0,0	-
13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:10	955,44574		-
13:20 951,02124 0,0 - 13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:15	951,510254	1,0	-
13:25 947,97876 0,0 - 13:30 944,833313 0,9 - 13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:20	951,02124		-
13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:25	947,97876		-
13:35 941,633728 0,0 - 13:40 937,476624 0,0 -	13:30	944,833313	0,9	-
13:40 937,476624 0,0 -	13:35	941,633728		-
	13:40	937,476624		-
	13:45	930,609863	0,9	-
13:50 924,747437 0,0 -	13:50	924,747437	0,0	-
13:55 923,162964 0,0 -	13:55	923,162964	0,0	-

14:00	918,326294	0,4	-
14:05	914,693604	1,2	-
14:10	908,624939	0,2	-
14:15	903,046753	0,7	-
14:20	896,693665	0,4	-
14:25	891,51001	0,9	-
14:30	885,493286	1,2	-
14:35	878,2005	0,4	-
14:40	869,228088	0,2	-
14:45	861,182922	0,0	-
14:50	850,744019	0,0	-
14:55	841,832214	0,6	-
15:00	832,643188	1,0	-
15:05	822,756592	0,5	-
15:10	812,762756	0,2	-
15:15	801,277039	0,0	-
15:20	788,545288	0,0	-
15:25	776,332825	1,5	-
15:30	763,43158	1,0	-
15:35	751,708374	0,5	-
15:40	742,889038	1,4	-
15:45	728,683655	0,2	-
15:50	716,546631	0,3	-
15:55	701,276184	0,5	-
16:00	687,648743	0,4	-
16:05	675,587219	0,3	-
16:10	664,693115	1,5	-
16:15	652,182739	2,3	-
16:20	640,364075	2,5	-
16:25	624,485596	2,3	-
16:30	611,480896	2,4	-
16:35	594,475403	2,3	-
16:40	579,975891	2,1	-
16:45	564,814636	2,0	-
16:50	546,776306	1,1	-
16:55	531,856995	2,2	-
17:00	516,359924	2,0	-
17:05	501,46936	2,4	-
17:10	483,423553	2,5	-
17:15	466,965881	2,4	-
17:20	449,1427	1,9	-
17:25	433,067841	2,0	-
17:30	416,615173	2,2	-
17:35	401,06015	2,4	-
17:40	383,607178	2,2	-
17:45	367,613647	2,1	-
17:50	349,669861	2,1	-
17:55	333,335052	2,1	-

18:00	317,016113	2,2	-
18:05	302,912476	2,3	-
18:10	285,799622	1,9	-
18:15	269,654022	2,1	-
18:20	251,651413	2,0	-
18:25	234,563293	1,9	-
18:30	217,788452	1,9	-
18:35	201,427567	1,9	-
18:40	185,26796	2,0	-
18:45	171,085571	1,9	-
18:50	154,59201	2,0	-
18:55	141,777634	2,0	-
19:00	128,937256	1,8	-
19:05	118,340096	1,8	-
19:10	105,960175	0,5	-
19:15	92,5882187	0,0	-
19:20	81,7649002	0,0	-
19:25	68,4576187	0,0	-
19:30	57,2158852	0,0	-
19:35	46,900528	0,0	-
19:40	35,8399239	0,0	-
19:45	25,9602127	0,0	-
19:50	17,7846203	0,0	-
19:55	10,7737579	0,0	-
20:00	5,36646223	0,0	-
20:05	1,05608416	0,0	-
20:10	-1,89979994	0,0	-
20:15	-3,84459257	0,0	-
20:20	-4,92138767	0,0	-
20:25	-5,24675512	0,0	-
20:30	-5,29763603	0,0	-
20:35	-5,26054096	0,0	-
20:40	-4,94471073	0,0	-
20:45	-5,05810785	0,0	-
20:50	-4,76347971	0,0	-
20:55	-4,95212603	0,0	-
21:00	-5,10474586	0,0	-
21:05	-5,22663593	0,0	-
21:10	-5,09414291	0,0	-
21:15	-4,78255892	0,0	-
21:20	-4,67762899	0,0	-
21:25	-4,4349308	0,0	-
21:30	-4,49322939	0,0	-
21:35	-4,26323843	0,0	-
21:40	-4,26006746	0,4	-
21:45	-3,98131919	2,1	-
21:50	-4,2865653	2,2	-
21:55	-4,46037197	1,1	-

Λn			-
An	n	ΔV	ΔC
		ᄄᄉ	us

ANNEXES 3 : RELEVES DES DONNEES METEOROLOGIOUES

22:00 -4,28973961 2,5 - 22:05 -4,23570347 3,4 - 22:10 -4,45084286 2,3 - 22:15 -4,58861923 2,1 - 22:20 -4,34590721 2,7 - 22:25 -4,25053549 3,8 - 22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 - 22:55 -4,23782873 4,0 -
22:10 -4,45084286 2,3 - 22:15 -4,58861923 2,1 - 22:20 -4,34590721 2,7 - 22:25 -4,25053549 3,8 - 22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:15 -4,58861923 2,1 - 22:20 -4,34590721 2,7 - 22:25 -4,25053549 3,8 - 22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:20 -4,34590721 2,7 - 22:25 -4,25053549 3,8 - 22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:25 -4,25053549 3,8 - 22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:30 -4,24735737 3,6 - 22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:35 -4,36605835 3,3 - 22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:40 -4,27597523 3,3 - 22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:45 -4,22722387 3,7 - 22:50 -4,1466794 3,7 -
22:50 -4,1466794 3,7 -
22:55 -4.23782873 4.0 -
23:00 -4,50597477 3,4 -
23:05 -4,53034449 2,6 -
23:10 -4,40316582 3,3 -
23:15 -4,48265409 2,9 -
23:20 -5,50116062 0,5 -
23:25 -5,86681271 0,0 -
23:30 -5,66013861 0,0 -
23:35 -5,33476877 0,0 -
23:40 -5,30190611 0,0 -
23:45 -5,54672289 0,0 -
23:50 -5,45240355 0,0 -
23:55 -5,21395016 0,0 -

A2-2: Données météorologiques du 15/07/2010

Heure	Eclairement (W m ⁻²)	Vitesse du vent (m s ⁻¹)	Température ambiante (°C)
00:00	-5,14081812	0,0	-
00:05	-5,09100628	0,0	-
00:10	-4,85254192	0,0	-
00:15	-4,4084692	0,0	-
00:20	-4,01420593	1,5	-
00:25	-4,31414413	1,9	-
00:30	-4,24737883	0,2	-
00:35	-4,30990791	0,0	-
00:40	-4,16576576	0,0	-
00:45	-4,55791092	0,0	-
00:50	-4,68403578	0,0	-
00:55	-4,40423012	0,0	-
01:00	-4,53247833	0,0	-
01:05	-4,33746624	0,0	-
01:10	-4,19968557	0,0	-
01:15	-4,40000248	0,5	-

01:20	-4,05978775	2,0	-
01:25	-4,22300339	2,0	-
01:30	-4,29931831	1,9	-
01:35	-4,28236389	1,7	-
01:40	-3,84464502	2,2	-
01:45	-3,71428418	2,4	-
01:50	-3,84040451	2,5	-
01:55	-3,90082073	2,6	-
02:00	-3,88810706	2,4	-
02:05	-3,90399981	2,5	-
02:10	-4,12232637	2,4	-
02:15	-4,08311653	2,2	-
02:20	-4,26223087	1,7	-
02:25	-4,44134617	0,9	-
02:30	-4,31734228	0,2	-
02:35	-4,51024151	0,0	-
02:40	-4,49328232	0,0	-
02:45	-4,7879138	0,0	-
02:50	-4,95324993	0,0	-
02:55	-5,06877899	0,0	-
03:00	-4,82076454	0,0	-
03:05	-4,83454657	0,0	-
03:10	-4,5579257	0,0	-
03:15	-4,58124781	0,0	-
03:20	-4,64483213	0,0	-
03:25	-4,68934155	0,0	-
03:30	-4,84619713	0,0	-
03:35	-4,26328182	0,0	-
03:40	-4,27388	0,0	-
03:45	-4,08629322	0,0	-
03:50	-4,09264803	1,6	-
03:55	-3,97607493	1,7	-
04:00	-3,70581889	2,4	-
04:05	-3,87009192	2,2	-
04:10	-4,00680542	1,8	-
04:15	-4,03331184	0,3	-
04:20	-3,70474863	1,9	-
04:25	-3,74397159	1,4	-
04:30	-3,82663965	1,7	-
04:35	-3,79696345	1,6	-
04:40	-3,6634202	1,8	-
04:45	-3,63268018	2,1	-
04:50	-3,90930915	2,3	-
04:55	-3,5913496	2,6	-
05:00	-3,77788901	2,4	-
05:05	-3,91778517	2,0	-
05:10	-3,93792224	2,0	-
05:15	-3,81286073	2,0	-

05:20	-4,31418037	0,7	-
05:25	-3,92838025	0,0	-
05:30	-3,02326941	1,0	-
05:35	-2,52725196	0,5	-
05:40	-0,06203155	0,7	-
05:45	2,99354672	3,0	-
05:50	7,20331287	3,3	-
05:55	12,5662155	3,3	-
06:00	18,2502613	2,8	-
06:05	24,7059269	3,2	-
06:10	33,3500977	2,8	-
06:15	43,2364693	2,5	-
06:20	55,304203	3,0	-
06:25	68,1878891	3,5	-
06:30	82,8541565	3,0	-
06:35	98,8806	3,5	-
06:40	114,014389	4,0	-
06:45	126,361885	3,7	-
06:50	139,826584	4,2	-
06:55	153,807159	4,0	-
07:00	167,860947	3,7	-
07:05	182,122391	3,8	-
07:10	198,683533	3,9	-
07:15	215,583603	3,3	-
07:20	232,070709	3,0	-
07:25	250,367844	3,2	-
07:30	267,178253	3,7	-
07:35	283,143921	3,7	-
07:40	300,02356	3,7	-
07:45	317,478241	3,2	-
07:50	332,872925	3,3	-
07:55	349,856567	3,7	-
08:00	368,092377	3,4	-
08:05	382,22818	3,5	-
08:10	398,772278	2,9	-
08:15	414,825958	1,8	-
08:20	426,198578	0,4	-
08:25	437,702667	0,0	-
08:30	453,290222	0,0	-
08:35	469,576477	0,0	-
08:40	478,950806	0,0	-
08:45	493,442963	0,0	-
08:50	514,211426	0,0	-
08:55	531,462524	0,0	-
09:00	551,75708	0,0	-
09:05	564,520752	0,0	-
09:10	581,97644	1,0	-
09:15	600,061951	1,8	-

09:20	614,232666	1,9	-
09:25	629,68927	1,7	-
09:30	641,616211	2,0	-
09:35	657,354614	2,0	-
09:40	674,25293	2,2	-
09:45	686,516907	2,3	-
09:50	697,215454	2,4	-
09:55	713,106262	1,8	-
10:00	-	1,9	-
10:05	-	2,3	-
10:10	-	2,2	-
10:15	-	2,1	-
10:20	-	2,0	-
10:25	-	2,1	-
10:30	-	1,7	-
10:35	-	2,0	-
10:40	-	1,9	-
10:45	-	2,1	-
10:50	-	2,1	-
10:55	-	2,3	-
11:00	-	2,2	-
11:05	-	1,9	-
11:10	-	2,1	-
11:15	-	1,5	-
11:20	-	2,2	-
11:25	-	2,2	-
11:30	-	1,8	-
11:35	-	1,3	-
11:40	-	2,3	-
11:45	-	2,8	-
11:50	-	2,6	-
11:55	-	2,1	-
12:00	-	1,3	-
12:05	-	0,9	-
12:10	-	0,8	-
12:15	-	2,1	-
12:20	-	2,5	-
12:25	-	3,1	-
12:30	-	2,5	-
12:35	-	2,6	-
12:40	-	2,7	-
12:45	-	2,7	-
12:50	-	2,6	-
12:55	-	2,6	-
13:00	-	2,4	-
13:05	-	2,0	-
13:10	-	2,0	-
13:15	-	2,6	-

13:20	_	2,7	-
13:25	_	2,5	_
13:30	-	2,3	-
13:35	-	2,5	-
13:40	-	2,4	-
13:45	-	2,3	-
13:50	-	2,2	-
13:55	-	3,0	-
14:00	-	3,1	-
14:05	-	3,0	-
14:10	-	2,4	-
14:15	-	2,0	-
14:20	-	2,1	-
14:25	-	2,7	-
14:30	-	2,3	28,7
14:35	-	2,6	28,9
14:40	856,475525	2,2	29,3
14:45	848,841309	2,2	29,3
14:50	839,345703	1,8	30,1
14:55	833,833435	2,4	29,5
15:00	821,697632	1,4	30,2
15:05	813,002441	1,8	30,1
15:10	798,302063	1,9	29,8
15:15	786,213745	2,5	29,1
15:20	773,678284	2,1	29,1
15:25	762,221497	2,1	29,1
15:30	749,117981	2,0	29,1
15:35	738,041626	1,9	29,3
15:40	725,799927	1,9	29,2
15:45	714,612671	1,9	29,2
15:50	700,07196	2,9	28,2
15:55	687,201782	3,0	28,2
16:00	675,091675	2,6	28,3
16:05	662,646912	2,3	28,7
16:10	650,141479	1,6	29,8
16:15	632,681641	2,3	29,0
16:20	622,028564	2,6	28,5
16:25	611,300659	2,3	29,0
16:30	596,588745	3,0	28,2
16:35	579,515381	2,3	28,6
16:40	563,953735	2,1	28,7
16:45	549,268799	2,0	28,9
16:50	530,930908	1,2	29,6
16:55	516,506592	2,1	29,1
17:00	500,924469	2,0	29,1
17:05	486,37616	2,5	28,7
17:10	470,855865	2,0	28,6
17:15	452,876129	2,3	28,5

17:20	436,540955	2,1	28,8
17:25	422,96756	2,1	28,9
17:30	406,979004	2,0	28,9
17:35	390,60907	1,8	29,0
17:40	374,580383	2,1	28,6
17:45	357,420441	1,7	28,6
17:50	341,734131	2,3	28,3
17:55	324,985077	1,9	28,2
18:00	309,718872	1,7	28,2
18:05	292,727722	1,9	28,0
18:10	277,083588	2,1	27,9
18:15	260,841919	2,0	28,0
18:20	243,491302	1,9	27,8
18:25	227,122467	1,7	27,6
18:30	211,257309	1,6	27,5
18:35	195,341827	1,7	27,4
18:40	179,804245	1,8	27,2
18:45	163,893219	1,9	26,9
18:50	148,370499	1,6	26,8
18:55	134,904007	1,9	26,6
19:00	120,681244	1,3	26,3
19:05	106,766579	2,1	26,2
19:10	94,0248032	2,0	26,1
19:15	82,0209274	1,1	26,0
19:20	70,0859833	0,0	25,9
19:25	60,7065086	0,0	25,9
19:30	52,3527222	0,0	25,8
19:35	43,6153183	0,0	25,6
19:40	33,5011749	0,0	25,3
19:45	23,624464	0,0	25,1
19:50	15,5739088	0,0	24,7
19:55	9,20208454	0,0	24,7
20:00	4,62672806	0,0	24,6
20:05	0,5240556	0,0	24,5
20:10	-1,47163224	0,0	24,4
20:15	-2,97978592	0,0	24,3
20:20	-3,95696568	0,0	24,0
20:25	-4,63421154	0,0	23,8
20:30	-4,79849672	0,0	23,6
20:35	-5,23303604	0,0	23,5
20:40	-4,99350071	0,0	23,5
20:45	-4,86737967	0,0	23,4
20:50	-4,83664894	0,0	23,3
20:55	-4,74762726	0,0	23,2
21:00	-4,57699156	0,0	23,5
21:05	-4,18908119	0,0	23,4
21:10	-4,35971785	0,0	23,3
21:15	-4,26327467	0,0	23,7

Δ	2	2	Δ	v	\sim	٦
н	n	n	е.	х		•

ANNEXES 3 : RELEVES DES DONNEES METEOROLOGIOUES

21:20	-3,71109772	0,0	23,9
21:25	-3,63372755	0,0	24,0
21:30	-3,78528953	0,0	23,9
21:35	-3,48641467	0,0	24,2
21:40	-3,09851217	0,0	24,5
21:45	-3,47370434	0,0	24,4
21:50	-3,62420273	0,0	24,4
21:55	-4,1901722	1,2	24,3
22:00	-3,93793321	2,1	24,2
22:05	-4,10327196	1,9	24,2
22:10	-3,7238481	2,0	24,1
22:15	-4,05028534	2,1	24,1
22:20	-4,01108265	2,1	24,1
22:25	-3,71750093	1,9	24,0
22:30	-3,63906884	1,9	24,0
22:35	-3,56488156	2,0	24,2
22:40	-3,53626132	1,6	24,1
22:45	-3,14623547	1,7	24,4
22:50	-3,13351107	1,9	24,6
22:55	-3,25115299	1,6	24,5
23:00	-2,9384985	1,7	24,5
23:05	-3,31686831	0,2	24,1
23:10	-3,62740898	0,0	24,0
23:15	-3,94005895	0,0	23,8
23:20	-3,99199915	0,0	23,6
23:25	-4,18806648	0,0	23,8
23:30	-3,8361907	0,0	24,0
23:35	-4,02802324	0,0	23,6
23:40	-3,65495062	0,0	23,6
23:45	-3,8510232	0,0	24,1

A2-3: Données météorologiques du 18/07/2010

Heure	Eclairement (W m ⁻²)	Vitesse du vent (m s ⁻¹)	Température ambiante (°C)
00:00	-2,82932568	1,7	24,9
00:05	-2,62371421	0,6	24,9
00:10	-2,77315497	1,5	24,9
00:15	-2,76149774	1,6	24,8
00:20	-3,15470243	0,2	24,7
00:25	-2,88337803	0,0	24,7
00:30	-2,45201492	0,0	24,7
00:35	-2,6533854	0,0	24,6
00:40	-2,94272733	0,0	24,6
00:45	-3,3168571	0,0	24,4

00:50	-3,17059374	0,0	24,3
00:55	-3,16423512	0,0	24,4
01:00	-3,54895949	0,0	24,0
01:05	-3,35925078	0,0	23,9
01:10	-3,05719209	0,0	-
01:15	-3,09747553	0,0	24,5
01:20	-2,77528071	0,8	24,5
01:25	-3,05507994	1,0	24,5
01:30	-3,49174166	0,0	24,2
01:35	-3,43132734	0,0	24,0
01:40	-3,18755722	0,0	24,1
01:45	-3,22358918	0,0	23,9
01:50	-3,2013309	0,0	23,9
01:55	-3,01268244	0,0	24,0
02:00	-3,26174784	0,0	23,8
02:05	-3,06778598	0,0	23,7
02:10	-3,03599977	0,0	23,6
02:15	-2,75725675	0,0	23,8
02:20	-2,87489843	0,0	23,9
02:25	-3,19073701	0,0	23,8
02:30	-3,0603745	0,0	23,7
02:35	-2,95544958	0,0	23,7
02:40	-2,91623521	0,0	23,5
02:45	-2,97028637	0,0	23,5
02:50	-2,96392679	0,0	23,7
02:55	-3,2797668	0,0	23,5
03:00	-2,94802833	0,0	23,5
03:05	-3,09641027	0,0	23,5
03:10	-2,75513721	0,0	23,8
03:15	-2,38206697	0,6	24,0
03:20	-2,61311674	0,0	23,9
03:25	-2,55270147	0,3	23,7
03:30	-1,53629649	0,1	23,8
03:35	-0,93111599	0,0	23,7
03:40	-0,43509969	0,0	23,9
03:45	0,04501913	0,0	24,0
03:50	0,07363487	0,0	24,2
03:55	-0,07898543	0,0	24,4
04:00	-0,35031092	0,0	24,3
04:05	-0,6120972	0,0	24,3
04:10	-0,63435441	0,0	24,3
04:15	-0,63647407	0,0	24,3
04:20	-0,8389079	0,0	24,3
04:25	-2,19128633	0,0	24,3
04:30	-2,59933567	0,0	24,3
04:35	-2,86641788	0,0	24,1
04:40	-2,90669322	0,0	24,1
04:45	-2,89291573	0,0	24,0

04:50	-2,86006021	0,0	23,9
04:55	-2,76361346	0,0	24,0
05:00	-2,5622406	0,0	24,1
05:05	-1,74614692	0,0	24,2
05:10	-0,80923188	0,0	24,2
05:15	-0,60891783	0,2	24,4
05:20	-0,49339214	1,3	24,5
05:25	-0,51882905	0,8	24,5
05:30	-0,62587524	1,1	24,7
05:35	-0,18709093	1,1	24,8
05:40	0,23579486	1,4	24,8
05:45	0,5781318	0,4	24,8
05:50	0,83991742	1,1	24,8
05:55	2,48164201	1,7	24,9
06:00	3,84782243	1,7	24,8
06:05	4,32157421	0,7	24,8
06:10	6,19753075	1,4	24,9
06:15	7,67604733	1,5	24,9
06:20	9,17893982	1,6	24,9
06:25	10,4190111	1,5	24,9
06:30	12,6033869	1,6	24,9
06:35	13,3707266	2,1	24,9
06:40	15,9048872	1,7	24,9
06:45	20,6361332	1,6	25,0
06:50	25,9640751	1,9	24,9
06:55	36,0126877	2,0	24,9
07:00	41,2272949	1,7	25,0
07:05	42,990818	1,9	25,0
07:10	57,9223251	2,1	25,0
07:15	68,377037	2,8	25,1
07:20	69,0796432	2,7	25,3
07:25	94,4690552	2,0	25,5
07:30	103,991814	2,8	25,8
07:35	127,567635	2,2	26,1
07:40	126,8871	1,8	26,2
07:45	155,397491	1,9	26,0
07:50	214,876999	2,0	26,0
07:55	205,900177	1,7	27,2
08:00	159,372543	1,9	26,9
08:05	191,089111	1,6	26,4
08:10	246,132034	1,6	26,3
08:15	199,986618	1,3	27,0
08:20	383,311829	2,2	26,9
08:25	304,103455	2,3	28,0
08:30	383,294098	2,2	27,4
08:35	239,333405	2,2	27,2
08:40	287,320953	2,1	27,3
08:45	515,316467	2,2	27,3

08:50	226,129593	2,3	27,6
08:55	269,742767	1,2	27,6
09:00	261,213776	1,9	28,1
09:05	603,795471	2,2	29,5
09:10	555,469604	2,3	30,4
09:15	453,774445	2,2	30,4
09:20	565,618042	2,8	28,9
09:25	581,461365	2,7	29,2
09:30	624,302429	3,5	28,8
09:35	305,285309	3,3	28,1
09:40	334,63089	2,8	27,5
09:45	658,427673	3,2	28,2
09:50	634,917175	3,6	28,3
09:55	526,266785	4,6	27,6
10:00	545	4,0	27,6
10:05	600	4,5	27,9
10:10	644,690613	4,1	27,8
10:15	695,840149	4,2	28,0
10:20	721,253967	4,6	28,0
10:25	742,216736	4,5	27,8
10:30	596,324402	4,9	27,7
10:35	760,548828	4,8	27,5
10:40	750,434631	4,9	27,5
10:45	751,055298	5,3	27,6
10:50	766,504822	3,9	28,3
10:55	767,284058	3,5	28,8
11:00	801,688599	3,7	28,6
11:05	801,570496	3,6	28,8
11:10	806,647522	3,4	28,8
11:15	813,064026	3,6	28,7
11:20	824,841553	3,9	28,4
11:25	832,390381	3,6	28,8
11:30	837,260742	3,7	28,6
11:35	843,041138	3,7	28,8
11:40	852,49707	3,6	28,8
11:45	852,454712	3,4	28,7
11:50	856,790527	3,5	28,8
11:55	863,180481	3,6	28,5
12:00	867,034241	3,4	28,8
12:05	874,751404	3,6	28,6
12:10	880,726013	3,3	28,9
12:15	876,750366	3,4	28,9
12:20	882,812988	3,4	28,8
12:25	884,799744	3,7	28,6
12:30	886,090698	3,7	28,5
12:35	901,50293	3,7	28,5
12:40	892,865295	4,0	28,3
12:45	895,032532	3,6	28,4

12:50	891,19873	3,6	28,4
12:55	894,659973	3,5	28,4
13:00	901,31366	3,5	28,4
13:05	892,248596	4,3	27,9
13:10	894,834717	4,2	27,7
13:15	895,292969	3,7	27,9
13:20	889,018433	3,7	28,0
13:25	887,085693	3,9	27,9
13:30	897,556885	3,9	27,8
13:35	883,498962	4,1	27,8
13:40	882,514954	3,6	28,0
13:45	887,800964	4,0	28,0
13:50	876,48053	3,8	27,8
13:55	883,190063	4,1	27,8
14:00	874,914856	3,5	28,1
14:05	875,458191	4,1	28,0
14:10	867,786926	4,1	28,2
14:15	868,338257	3,7	28,4
14:20	860,45697	3,9	28,5
14:25	851,669128	4,6	28,2
14:30	846,281006	3,9	28,1
14:35	840,79425	4,1	28,2
14:40	830,974976	4,1	28,3
14:45	824,262085	4,0	28,1
14:50	818,082214	4,0	28,1
14:55	811,142395	4,3	27,9
15:00	798,687683	4,0	28,0
15:05	793,596436	4,0	28,1
15:10	784,280762	3,5	28,5
15:15	772,881958	3,9	28,3
15:20	762,613464	3,5	28,4
15:25	753,913513	3,7	28,5
15:30	741,634705	3,5	28,3
15:35	730,186096	3,6	27,9
15:40	718,822021	4,2	-
15:45	706,850281	3,8	-
15:50	694,183289	3,9	-
15:55	683,166809	3,9	-
16:00	670,417236	3,9	-
16:05	656,680542	4,4	-
16:10	643,450378	4,0	27,8
16:15	627,13147	3,5	27,9
16:20	612,680908	3,7	28,0
16:25	599,941589	3,7	27,8
16:30	583,456787	3,7	27,8
16:35	568,219482	3,4	27,9
16:40	553,344727	3,9	27,7
16:45	535,589783	3,4	27,8

16:50	522,39325	3,5	27,9
16:55	505,949799	3,6	27,7
17:00	490,326599	4,1	27,4
17:05	474,305542	3,7	27,4
17:10	457,016205	3,8	27,4
17:15	442,986511	3,7	27,5
17:20	417,824982	3,7	27,4
17:25	401,025726	3,5	27,3
17:30	389,638092	3,3	27,4
17:35	374,366028	3,8	27,4
17:40	330,935089	3,5	27,3
17:45	336,781738	3,4	27,1
17:50	331,783478	3,1	27,1
17:55	320,406708	3,7	27,1
18:00	304,213531	3,6	27,0
18:05	284,140472	3,5	27,1
18:10	268,030884	3,2	27,1
18:15	250,456711	3,0	27,1
18:20	234,403915	3,1	27,1
18:25	219,33313	3,0	27,1
18:30	202,998962	3,5	26,9
18:35	186,722092	3,1	26,9
18:40	172,177307	3,1	26,8
18:45	156,803635	2,9	26,7
18:50	141,505905	2,9	26,7
18:55	127,515495	2,9	26,7
19:00	115,368568	2,8	27,0
19:05	102,856728	3,0	27,2
19:10	92,5434265	3,6	27,3
19:15	82,0656586	3,6	27,1
19:20	72,8195419	3,9	27,1
19:25	63,8266792	3,4	27,2
19:30	55,9221306	4,1	27,1
19:35	48,3558426	3,7	27,0
19:40	40,3187866	3,3	26,9
19:45	31,4244595	3,5	26,7
19:50	23,3292294	3,2	26,6
19:55	15,8932142	3,8	26,5
20:00	9,49904919	3,4	26,4
20:05	4,70101404	3,5	26,2
20:10	1,78002238	3,6	26,1
20:15	-0,17119196	3,2	26,0
20:20	-1,39957583	4,0	26,0
20:25	-2,0482111	3,3	25,9
20:30	-2,60464001	3,3	25,8
20:35	-2,67247462	3,2	25,8
20:40	-2,65127683	3,1	25,7
20:45	-2,45414257	3,6	25,6

Λ	n	n	$\boldsymbol{\Delta}$	v	Δ	C
				ж		

ANNEXES 3 : RELEVES DES DONNEES METEOROLOGIOUES

20:50	-2,5929873	3,1	25,6
20:55	-2,85900998	2,8	25,5
21:00	-2,8706634	2,5	25,4
21:05	-2,78694034	2,6	25,3
21:10	-2,93743682	2,7	25,3
21:15	-2,60146236	3,1	25,3
21:20	-2,84416938	2,9	25,3
21:25	-2,78905702	2,5	25,2
21:30	-2,99043155	2,3	25,1
21:35	-3,03176475	1,9	25,0
21:40	-3,31050968	1,8	25,0
21:45	-3,21299386	1,7	24,9
21:50	-3,11019158	1,5	24,8
21:55	-3,41967344	1,3	24,8
22:00	-3,55320907	1,2	24,6
22:05	-3,61998296	1,7	24,3
22:10	-3,38045049	0,5	24,2
22:15	-3,45676136	0,2	24,1
22:20	-3,5839479	0,0	24,1
22:25	-3,66873002	0,0	24,1
22:30	-3,45357633	0,0	24,1
22:35	-3,47053504	0,0	23,9
22:40	-3,71960163	0,0	23,8
22:45	-3,48325038	0,0	23,8
22:50	-3,48007441	0,0	23,8
22:55	-3,41860151	0,0	23,8
23:00	-3,33381176	0,0	23,8
23:05	-3,53836489	0,0	23,7
23:10	-3,39210439	0,0	23,5
23:15	-3,45145535	0,0	23,5
23:20	-3,43131566	0,0	23,4
23:25	-3,38256025	0,0	23,4
23:30	-3,49278951	0,0	23,4
23:35	-3,30095029	0,0	23,4
23:40	-3,52670336	0,0	23,3
23:45	-3,57227421	0,0	23,4
23:50	-3,58287454	0,0	23,3
23:55	-3,87009978	0,0	23,2

A2-4: Données météorologiques du 22/07/2010

Heure	Eclairement (W m ⁻²)	Vitesse du vent (m s ⁻¹)	Température ambiante (°C)
00:00	-	2,5	-
00:05	-	3,7	-

00:10	-	3,7	-
00:15	-	3,3	-
00:20	-	2,1	-
00:25	_	1,5	-
00:30	_	1,8	-
00:35	-	0,0	-
00:40	-	0,0	-
00:45	-	0,0	25,7
00:50	-	0,0	25,5
00:55	_	0,0	25,5
01:00	-	0,0	25,1
01:05	-	0,0	25,1
01:10	-	0,0	-
01:15	-	0,0	24,9
01:20	-	1,9	24,8
01:25	-	0,1	24,7
01:30	-	0,5	24,6
01:35	-	0,0	-
01:40	-	0,1	-
01:45	-	1,7	-
01:50	-	2,2	-
01:55	-	1,2	-
02:00	-	1,4	24,7
02:05	-	1,9	-
02:10	-	3,8	-
02:15	-	5,1	-
02:20	-	4,9	25,4
02:25	-	2,4	-
02:30	-	1,8	1
02:35	-	1,1	1
02:40	-	0,1	1
02:45	-	0,5	-
02:50	-	0,0	-
02:55	-	1,5	-
03:00	-	2,1	-
03:05	-	2,3	-
03:10	-	3,2	-
03:15	-	3,3	-
03:20	-	0,6	-
03:25	-	0,1	-
03:30	-	2,4	-
03:35	-	2,5	-
03:40	-	2,8	-
03:45	-	3,0	-
03:50	-	2,8	-
03:55	-	1,4	-
04:00	-	0,0	-
04:05	-	0,0	-

04:10	-	0,9	-
04:15	-	1,1	-
04:20		0,6	-
04:25	-	0,0	-
04:30	-	0,0	-
04:35	-	1,9	-
04:40	-	0,5	-
04:45	-	0,0	-
04:50	-	1,0	-
04:55	_	1,6	-
05:00	-	2,1	-
05:05	_	1,9	-
05:10	-	0,0	
05:15	-	0,0	-
05:20	<u>-</u>	0,0	-
05:25	-	0,0	-
05:30	-	1,7	-
05:35	<u>-</u>	1,9	
05:40	-	0,3	
05:45	-	0,6	
05:50	<u>-</u>	1,3	
05:55	<u>-</u>	0,0	-
06:00	<u>-</u>	0,0	
06:05		1,6	
06:10	-	0,9	-
06:15	<u>-</u>	0,9	<u>-</u>
06:20	<u>-</u>	0,0	
06:25	<u>-</u>	0,0	
06:30	-	0,0	
06:35	<u>-</u>	1,4	<u>-</u>
06:40	<u>-</u>	2,1	24,3
06:45	<u>-</u>	0,0	25,5
06:50	-	0,0	25,7
06:55		2,4	25,5
07:00	-	2,3	25,9
07:05	<u>-</u>	2,6	26,8
07:10	<u>-</u>	3,4	
07:15	<u>-</u>	3,4	<u>-</u>
07:13	<u>-</u>	3,7	26,0
07:25	<u> </u>	3,0	25,9
07:30	<u>-</u>	3,7	-
07:35	<u>-</u>	3,0	27,2
07.33		3,0	27,2
07:45	<u>-</u>	3,3	27,1
07.43	<u>-</u>	3,6	28,2
07:55	<u>-</u>	3,6	28,2
08:00	<u>-</u>	3,4	26,6
08:05	<u>-</u>	2,2	26,9
00.03	-	∠,∠	۷٠,۶

08:10	-	1,1	27,3
08:15	-	0,0	30,4
08:20	-	0,1	30,7
08:25	-	1,3	30,3
08:30	-	0,9	29,9
08:35	-	2,6	28,4
08:40	-	1,9	28,2
08:45	-	0,0	28,9
08:50	-	0,0	30,0
08:55	-	0,0	31,3
09:00	-	1,2	30,6
09:05	-	1,4	28,9
09:10	-	1,3	30,6
09:15	-	0,3	32,0
09:20	-	0,0	33,0
09:25	-	0,0	33,8
09:30	-	0,0	33,8
09:35	-	0,0	33,8
09:40	-	2,2	28,4
09:45	-	2,6	27,1
09:50	-	2,1	27,0
09:55	-	2,6	28,0
10:00	-	3,3	27,9
10:05	-	2,7	28,4
10:10	-	2,3	29,7
10:15	-	1,3	31,5
10:20	-	0,0	31,6
10:25	-	0,3	32,2
10:30	-	0,3	33,9
10:35	-	0,0	35,1
10:40	-	0,0	34,2
10:45	-	1,0	32,2
10:50	-	0,5	31,8
10:55	-	0,0	32,2
11:00	-	1,3	32,5
11:05	-	1,3	32,0
11:10	-	0,3	32,7
11:15	-	1,3	31,6
11:20	-	1,5	31,6
11:25	-	0,7	31,6
11:30	-	2,0	29,6
11:35	-	2,1	29,6
11:40	-	2,8	29,2
11:45	-	3,0	28,5
11:50	-	2,3	29,1
11:55	-	2,3	29,3
12:00	-	2,0	27,9
12:05	-	1,7	28,9

12:15	12:10	-	0,7	29,8
12:20 634,59821 0,9 30,6 12:25 595,82105 0,2 31,4 12:30 598,735046 0,0 32,1 12:35 637,407227 0,4 31,4 12:40 711,257935 0,7 30,8 12:45 514,141968 1,3 30,7 12:50 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:340 873,591248 3,1 28,3 13:40 873,591248 3,1 28,3 13:45 890,64233 1,9 29,3 13:55 887,17218 3,0 28,2		742,63851	·	·
12:25 595,82105 0,2 31,4 12:30 598,735046 0,0 32,1 12:35 637,407227 0,4 31,4 12:40 711,257935 0,7 30,8 12:45 514,141968 1,3 30,7 12:50 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,31299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:20 885,144592 1,6 30,1 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 899,971997 2,0 29,3 13:50 899,171997 2,0 29,3				
12:30 598,735046 0.0 32.1 12:35 637,407227 0.4 31,4 12:40 711,257935 0,7 30,8 12:45 514,141968 1,3 30,7 12:50 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:12 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:40 873,591248 3,1 28,3 13:50 899,17197 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:40 858,907715 2,2 28,7 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:15 760,154236 3,0 28,2 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,3 15:35 694,752686 2,5 28,2 15:45 694,752686 2,5 28,2 15:55 674,575073 1,7 27,7 16:00 650,676025 0,9 28,7			·	
12:35		*		
12:40 711,257935 0,7 30,8 12:45 514,141968 1,3 30,7 12:55 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:40 873,591248 3,1 28,3 13:40 889,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 899,27417 2,3 27,4 14:00 898,27417 2,3 27,4 14:10 905,194153 2,2 29,0		•		
12:45 514,141968 1,3 30,7 12:50 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,31299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5		·		
12:50 519,845032 1,7 29,9 12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:25 477,274994 1,7 29,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5			· · · · · · · · · · · · · · · · · · ·	
12:55 1027,82361 1,1 29,6 13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 899,132825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:25 477,27494 1,7 29,5 14:20 893,73584 2,0 29,0 14:25 477,27494 1,7 29,5				
13:00 929,483948 1,6 29,4 13:05 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,14963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,7		*		
13:05 899,095459 0,3 29,9 13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:00 898,27417 2,3 27,4 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,7		*		
13:10 889,331299 1,5 30,0 13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:55 897,17197 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7		*	· · · · · · · · · · · · · · · · · · ·	
13:15 880,415039 1,1 30,0 13:20 885,144592 1,6 30,1 13:25 8891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:55 889,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7		·		
13:20 885,144592 1,6 30,1 13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:55 788,806763 2,0 29,4		'		
13:25 891,332825 1,4 30,5 13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:55 788,806763 2,0 29,4				
13:30 890,149963 2,1 29,6 13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 447,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0			1	
13:35 902,047546 2,1 28,9 13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2		· · · · · · · · · · · · · · · · · · ·		,
13:40 873,591248 3,1 28,3 13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4		·		· · · · · · · · · · · · · · · · · · ·
13:45 890,964233 1,9 29,3 13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4		•		
13:50 899,171997 2,0 29,3 13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:55 788,806763 2,0 29,4 15:50 783,201111 2,2 28,0 15:00 783,201111 2,2 28,0 15:10 762,211182 2,5 28,2 15:15 760,154236 3,0 28,2 15:25 725,50354 2,7 28,3		•		
13:55 887,17218 3,0 28,2 14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 15:50 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,21182 2,5 28,4 15:15 760,154236 3,0 28,2 15:25 725,50354 2,7 28,5		•		
14:00 898,27417 2,3 27,4 14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:35 762,502686 2,5 28,2 15:40 729		•		
14:05 800,437805 1,5 28,7 14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,1989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1		ŕ		
14:10 905,194153 2,2 29,0 14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3				
14:15 769,313049 2,6 28,5 14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,3 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:50 677,901428 1,7 28,3 15:55 654	14:10	·	·	
14:20 893,73584 2,0 29,0 14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650	14:15	•		
14:25 477,274994 1,7 29,5 14:30 232,492187 2,3 28,9 14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:20	•		
14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:25	477,274994		29,5
14:35 905,138672 2,2 28,7 14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:30	232,492187	2,3	28,9
14:40 858,907715 2,2 28,7 14:45 838,19989 1,9 29,3 14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:35	905,138672	2,2	
14:50 806,728149 1,9 29,4 14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:40	858,907715		
14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:45	838,19989	1,9	29,3
14:55 788,806763 2,0 29,4 15:00 783,201111 2,2 28,0 15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:50	806,728149	1,9	29,4
15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	14:55	788,806763	2,0	
15:05 776,698547 2,5 28,2 15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:00	783,201111		
15:10 762,211182 2,5 28,4 15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:05	776,698547		28,2
15:15 760,154236 3,0 28,2 15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:10			
15:20 761,604858 2,7 28,5 15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:15	760,154236	·	
15:25 725,50354 2,7 28,3 15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7		·		· · · · · · · · · · · · · · · · · · ·
15:30 533,844055 2,9 28,1 15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:25	725,50354		
15:35 762,502686 2,5 28,2 15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:30	533,844055		28,1
15:40 729,93811 2,4 28,3 15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:35	762,502686		
15:45 694,752686 2,2 28,5 15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:40	729,93811		
15:50 677,901428 1,7 28,3 15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7	15:45			
15:55 654,575073 1,7 27,7 16:00 650,676025 0,9 28,7		•		
16:00 650,676025 0,9 28,7	15:55	654,575073		· · · · · · · · · · · · · · · · · · ·
	16:00	650,676025		
, , , , , , , , , , , , , , , , , , , ,	16:05	651,06073	2,1	28,5

16:10	648,496094	2,8	27,6
16:15	644,203125	2,4	27,4
16:20	260,201935	2,2	27,5
16:25	344,760925	1,8	27,8
16:30	469,495972	1,0	28,3
16:35	425,908203	1,1	29,2
16:40	286,515961	1,0	29,0
16:45	304,320496	0,5	29,4
16:50	339,225006	0,8	29,7
16:55	300,229218	1,4	29,3
17:00	428,177185	0,7	29,5
17:05	315,188629	0,6	29,3
17:10	312,210419	2,2	28,1
17:15	364,76358	2,2	27,6
17:20	529,493652	1,6	27,7
17:25	487,633759	2,0	27,4
17:30	331,029572	2,3	26,9
17:35	350,620758	2,3	26,5
17:40	311,134003	2,1	26,5
17:45	251,405411	1,4	26,7
17:50	223,282028	0,4	26,8
17:55	168,758698	0,9	26,7
18:00	113,252174	0,5	26,5
18:05	108,915581	0,2	26,5
18:10	114,897064	0,0	26,4
18:15	116,183762	0,6	26,2
18:20	93,7722015	0,0	26,2
18:25	82,5719452	0,0	26,2
18:30	77,4105835	0,0	26,2
18:35	76,7310791	0,0	26,1
18:40	70,0063324	0,0	26,0
18:45	60,7157249	0,0	25,8
18:50	47,7633591	0,0	25,7
18:55	41,03442	0,0	25,6
19:00	38,7748184	0,0	25,6
19:05	35,6727219	0,0	25,6
19:03	28,15839	0,0	25,6
19:10	22,7214088	0,0	25,6
19:13	20,818922	0,0	25,6
19:25	17,2038174	0,0	25,5
19:23	11,9481239	0,0	25,3
19:35	7,63983345	0,0	
		'	25,4
19:40	4,63730097	0,0	25,3 25.4
19:45	3,39728284	0,0	25,4
19:50	2,11275625	0,3	25,4
19:55	0,66183323	2,1	25,4
20:00	-0,22737782	3,1	25,4
20:05	-1,54051828	2,6	25,4

20:10	-2,08527398	3,6	25,6
20:15	-2,44031739	3,2	25,6
20:20	-2,43608165	2,6	25,5
20:25	-2,29830599	3,0	25,5
20:30	-2,28346825	4,7	25,6
20:35	-2,09693241	3,3	25,6
20:40	-1,83621407	2,7	25,6
20:45	-1,76308715	0,0	25,5
20:50	-1,49388754	0,0	25,5
20:55	-1,39108407	0,0	25,4
21:00	-1,27768135	0,0	25,5
21:05	-1,5225023	0,0	25,4
21:10	-1,81183803	1,1	25,3
21:15	-2,18172479	2,0	25,3
21:20	-2,33858252	0,7	25,4
21:25	-2,28134513	0,0	25,3
21:30	-2,19444346	0,7	25,3
21:35	-2,28452635	1,9	25,4
21:40	-1,94749725	2,3	25,4
21:45	-1,89662504	1,1	25,5
21:50	-2,03122616	1,0	25,5
21:55	-2,03652501	1,7	25,5
22:00	-2,02381086	2,7	25,4
22:05	-1,72599268	2,0	25,3
22:10	-1,66240382	1,7	25,4
22:15	-1,76838744	0,0	25,3
22:20	-1,93690264	0,6	25,3
22:25	-2,02380753	0,0	25,2
22:30	-1,98353744	0,0	25,1
22:35	-1,98247659	0,0	25,0
22:40	-1,96233928	0,0	25,0
22:45	-1,88073194	0,0	25,0
22:50	-2,08315849	0,0	25,1
22:55	-2,26651287	0,0	24,9
23:00	-2,53359723	0,0	24,8
23:05	-2,63003755	0,0	24,8
23:10	-2,59824157	0,0	24,9
23:15	-2,49861717	0,0	25,0
23:20	-2,59612131	0,0	24,9

	Air à pression atmosphérique							
T (K)	ρ (kg.m ⁻³)	$\mu (kg.m^{-1}.s^{-1})$	v (m ² s ⁻¹)	$C_p(J.kg^{-1}.K^{-1})$	k (W.m ⁻¹ .K ⁻¹)	$\alpha (\mathrm{m}^2\mathrm{s}^{-1})$	Pr	
250	1,413	$1,60\times10^{-5}$	0.949×10^{-5}	1005	0,0223	1.32×10^{-5}	0,722	
300	1,177	$1,85\times10^{-5}$	$1,57\times10^{-5}$	1006	0,0262	$2,22\times10^{-5}$	0,708	
350	0,998	$2,08\times10^{-5}$	2,08×10 ⁻⁵	1009	0,0300	$2,98\times10^{-5}$	0,697	
400	0,883	2,29×10 ⁻⁵	2,59×10 ⁻⁵	1014	0,0337	$3,76\times10^{-5}$	0,689	
450	0,783	2,48×10 ⁻⁵	$2,89\times10^{-5}$	1021	0,0371	$4,22\times10^{-5}$	0,683	
500	0,705	2,67×10 ⁻⁵	$3,69\times10^{-5}$	1030	0,0404	$5,57\times10^{-5}$	0,680	
550	0,642	$2,85\times10^{-5}$	4,43×10 ⁻⁵	1039	0,0436	$6,53\times10^{-5}$	0,680	
600	0,588	3,02×10 ⁻⁵	5,13×10 ⁻⁵	1055	0,0466	$7,51\times10^{-5}$	0,680	
650	0,543	$3,18\times10^{-5}$	5,85×10 ⁻⁵	1063	0,0495	8,58×10 ⁻⁵	0,682	
700	0,503	3,33×10 ⁻⁵	6,63×10 ⁻⁵	1075	0,0523	9,67×10 ⁻⁵	0,684	
750	0,471	$3,48\times10^{-5}$	7,39×10 ⁻⁵	1086	0,0551	10.8×10^{-5}	0,686	
800	0,441	$3,63\times10^{-5}$	8,23×10 ⁻⁵	1098	0,0578	$12,0\times10^{-5}$	0,689	
850	0,415	3,77×10 ⁻⁵	9,07×10 ⁻⁵	1110	0,0603	$13,1\times10^{-5}$	0,692	
900	0,392	$3,90\times10^{-5}$	9,93×10 ⁻⁵	1121	0,0628	14,3×10 ⁻⁵	0,696	
950	0,372	$4,02\times10^{-5}$	10.8×10^{-5}	1132	0,0653	$15,5\times10^{-5}$	0,699	
1000	0,352	4,15×10 ⁻⁵	11,8×10 ⁻⁵	1142	0,0675	16,8×10 ⁻⁵	0,702	
1100	0,320	4,40×10 ⁻⁵	13,7×10 ⁻⁵	1161	0,0723	19,5×10 ⁻⁵	0,706	
1200	0,295	4,63×10 ⁻⁵	15,7×10 ⁻⁵	1179	0,0763	$22,0\times10^{-5}$	0,714	
1300	0,271	$4,85\times10^{-5}$	17,9×10 ⁻⁵	1197	0,0803	24,8×10 ⁻⁵	0,722	