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توهينتؤدي إلى
. المعلومات

الخصائصدراسةبعد.  التردد- الإشارات في الزمن
بعد إثبات .

. لتوزیع
  .

(Matlab)سميTFDOP
.‘Time-Frequency Distributions’ OPtimazation’تبعا

.
- -تربیعیة، توزیع شریط- - 

Résumé

Cette thèse s’occupe de la construction de nouvelles DTFs de haute résolution appartenant à la classe de Cohen qui
résultent en meilleure atténuations des artéfacts et maintiennent en même temps l'information la plus importante sur la loi
fréquentielle relative à chaque événement temporel. Ces distributions utilisent une nouvelle famille de noyaux appelés Noyaux à
Support Compact comme une extension au noyau CB introduit la première fois dans l'analyse temps-fréquence par Cheriet et
Belouchrani. Après l'étude des propriétés mathématiques, les distributions dérivées sont évaluées d'une manière objective et
comparées aux représentations quadratiques les plus connues en utilisant des mesures de performance diverses basées sur les
critères de concentration, de résolution et de suppression des termes croisés. Une fois l'efficacité des nouvelles distributions
proposées est prouvée, nous avons introduit un quatrième critère d'évaluation objective des DTFs qui est le coût de calcul de la
distribution. Ce dernier est particulièrement critique lorsqu'une implémentation en temps réel est planifiée. Pour permettre un
réglage souple et interactif des paramètres de chaque DFT et fournir une visualisation agréable des tracés temps-fréquences et des
résultats d'optimisation; nous avons organisé le travail sous la forme d'une boite à outils implémentée sous Matlab appelée
TFDOP pour "Time-Frequency Distributions' OPtimization". Selon les besoins de l'utilisateur, le logiciel réalisé peut être
personnalisé et amélioré afin d'inclure plus de distributions, de mesures de performance et de fonctions.

Mots-clés —Analyse temps-fréquence, classe de Cohen, coût de calcul, distributions temps-fréquence (DTF) de classe
quadratique, DTF de Cheriet-Belouchrani, évaluation de performance, mesure instantanée normalisée de performance de
résolution de Boashash-Sucic, noyau à support compact, noyau polynomial à support compact,  noyau séparable à support
compact, signal non-stationnaire.

Abstract

This thesis deals with the building of new high-resolution TFDs of Cohen's class that result on the best artifacts'
mitigation and maintain at the same time the most important information about the frequency law related to each time event.
These distributions employ a new family of kernels referred to as Kernels with Compact Support (KCS) as  an extension to the
CB kernel applied the first time to TFSA by Cheriet and Belouchrani. After analyzing their mathematical properties, the derived
distributions are objectively evaluated and compared to the best known quadratic representations using several performance
measures based on concentration, resolution and crossterm suppression criteria. Once the effectiveness of the new proposed
distributions is proved, we have introduced a fourth criterion of objective assessment of TFDs which is the computational cost of
the distribution. The later is particularly critical when real-time implementation is intended. In order to allow a flexible and
interactive setting of each TFD's parameters and provide a fine display of the time-frequency diagrams and  optimization results;
we have organized the present work in the form of a toolbox implemented under Matlab environment referred to as TFDOP for
"Time-Frequency Distributions' OPtimization". According to the user's needs, the realized software package can be customized
and upgraded in order to include more distributions, performance measures and features.

Keywords — Boashash-Sucic normalized instantaneous resolution performance measure, Cheriet-Belouchrani (CB) TFD,
Cohen’s class, computational cost, kernels with compact support, nonstationary signal, performance evaluation, polynomial
compact support kernel, quadratic time-frequency distributions (TFDs), separable compact support kernel, time-frequency
analysis, time-frequency localization, uncertainty principle, Wigner-Ville distribution.
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Summary

Signal processing is the discipline that develops and studies the techniques of pro-
cessing, analysis and interpretation of signals. It calls upon to the results of information
theory, statistics as well as various other domains of applied mathematics. This discipline
becomes so wide that it presents itself as an independent field of research.

The processed signals can come from very different sources, but almost of them are
electrical signals or became electrical using sensors and transducers such as microphones,
thermal and optical sensors, pressure, position and velocity sensors, and in general all
physical and chemical quantities that are convertible to currents and voltages.

In most cases, the acquired real-life signals are of nonstationary nature. In addition,
they are often multicomponent, i.e. signals composed of many time-dependent frequency
components. Among the nonstationary signals, we have speech signals, radar, sonar and
telecommunications’ signals, acoustics, seismics, biomedicals, just to name few.

In such situations, when the classical temporal and frequency representations are used
separately, the desired perception and interpretation of the multiple oscillating compo-
nents cannot be obtained since it is not possible to provide a simultaneous time and
frequency localization. Hence, it is natural to move towards joint time-frequency repre-
sentations if one wants to supply information about how the frequency of the signal varies
during time. This particular field of signal processing is known in the literature as Time-
Frequency Signal Analysis (TFSA).

If time-frequency distributions (TFDs) of quadratic class constitute a powerful tool
for nonstationary signals’ analysis, their readability, however, is severely affected by the
presence of interference terms that are automatically generated due to the bilinear form
of these representations. The introduction of a smoothing in time and/or frequency can
reduce these undesirable terms but may introduce errors of localization due to the involved
degradation in time-frequency resolution. Furthermore, the most efficient quadratic TFDs,
that belong to the Cohen’s class, require the specification of a kernel that defines the
overall performance of the induced representation. However, an optimal universal kernel
does not exist.
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Summary

From this standpoint, we have focused our attention in this thesis on the building of
new high-resolution TFDs of Cohen’s class that result on the best artifacts’ mitigation
and maintain at the same time the most important information about the frequency law
related to each time event. These distributions employ a new family of kernels referred
to as Kernels with Compact Support (KCS) as an extension to the CB kernel applied
the first time to TFSA by Cheriet and Belouchrani [44, 45]. After analyzing their mathe-
matical properties, the derived distributions are objectively evaluated and compared to
the best known quadratic representations using several performance measures based on
concentration, resolution and crossterm suppression criteria.

Once the effectiveness of the new proposed distributions is proved, we have introduced
a fourth criterion of objective assessment of TFDs which is the computational cost of the
distribution. The later is particularly critical when real-time implementation is intended.

In order to allow a flexible and interactive setting of each TFD’s parameters and
provide a fine display of the time-frequency diagrams and optimization results ; we have
organized the present work in the form of a toolbox implemented under Matlab environ-
ment referred to as TFDOP for ”Time-Frequency Distributions’ OPtimization”. According
to the user’s needs, the realized software package can be customized and upgraded in order
to include more distributions, performance measures and features. Extensive illustrative
examples and precise arguments and interpretations are provided for each studied case
according to the formulas and algorithms described through the theoretical part of the
dissertation.

Keywords : Autoterms, Boashash-Sucic normalized instantaneous resolution performance
measure, Cheriet-Belouchrani (CB) TFD, Cohen’s class, comparison criteria, concentra-
tion, computational cost, crossterm suppression, Doppler-lag domain kernel, frequency
modulated (FM) signal, instantaneous frequency, kernels with compact support, kernel
design, kernel-based distributions, linear FM signal, multicomponent signal, nonlinear FM
signal, nonstationary signal, optimal TFD, optimization, performance evaluation, polyno-
mial compact support kernel, quadratic time-frequency distributions (TFDs), resolution,
separable compact support kernel, spectrogram, time-frequency analysis, time-frequency
localization, time-lag kernel, uncertainty principle, Wigner-Ville distribution.

2



Chapter 1

Introduction

In this first chapter, we show that the analysis of nonstationary signals requires neces-
sarily a joint representation in time and in frequency. We then describe the problematic
of the thesis and the motivation behind the research of new kernels and solutions in the
field of time-frequency signal analysis and optimization. The original contributions are
cited and the thesis organization is presented.
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Chapter 1. Introduction

1.1 Problematic of the thesis - Motivation

In common practice, the analysis of a physical phenomenon passes through a signal
acquisition process as a function of time. Hence, the temporal representation of a signal
is the most natural, but it does not always contain the required information to perform a
complete analysis. On the other hand, the frequency representation obtained by Fourier
transform provides information about what frequencies are present in the signal and what
their relative strengths are [1]. However, none of the two representations is capable of
providing us with any sort of information about the nature of the signal components
nor their behavior with respect to time or frequency [1]. Consequently, since almost of
signals we encounter in our everyday life are nonstationary, and then characterized by
time-dependent spectral contents, a simultaneous representation in time and frequency is
necessary to allow a complete definition of such signals.

In order to clarify this concept, let us consider for example the signal x(n) given by

x(n) =

{
e2πj0.1n for 1 ≤ n ≤ 500
e2πj0.3n for 500 < n ≤ 1024

(1.1)

The signal x(n) is composed of two constant frequency (CF) components of frequencies
f1 = 0.1 Hz and f2 = 0.3 Hz, respectively. Fig. 1.1 shows how it is difficult to determine
the instants of appearance and disappearance of the two sinusoids and their relative
frequencies from temporal inspection while the frequency-domain representation includes
only the spectral contents without any notion of time inside.

Figure 1.1 – Time, frequency and ideal time-frequency representations of the nonstatio-
nary signal defined by (1.1).

Hence, we imagine that a mixed approach combining simultaneously the two variables
t and f will provide a full description of the signal’s characteristics (Fig. 1.1). This includes
the number of components present in the signal, the time durations and frequency bands
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over which these components are defined, the components’ relative amplitudes, phase
information, and the instantaneous frequency (IF) laws that components follow in the
time-frequency plane [2]. Although some of the methods used to show the time-dependent
frequency variations may not result on a proper distribution, these techniques are generally
known as time-frequency distributions (TFDs) [3, 4].

Among the distributions discussed in the literature, this dissertation deals with the
signal-independent class of quadratic TFDs since it is the most frequently used in practical
applications such as acoustics, speech processing, seismic signal interpretation, radar,
sonar, telecommunications and biomedical engineering.

Before detailing in depth the problematic of the thesis, it is important to introduce first
some useful historical notes. The original time-frequency signal analysis (TFSA) technique
is the Wigner-Ville distribution (WVD) [5]. Its name comes from E. Wigner who proposed
it in the field of quantum mechanics [6] and J. Ville [7], the first researcher who used it
to explain the notion of instantaneous frequency for communications theory purposes [5].
Such transforms are known as bilinear or quadratic time-frequency distributions because
the representation is formulated by the multiplicative comparison of the signal with itself,
expanded in various directions around each point in time space.

The WVD and its variants like the Pseudo WVD (PWVD) have been the subject of
many studies and were found to be optimal detectors for frequency modulated signals
under some conditions [8, 9]. Because of the crossterms that the WVD produces [10],
many researchers have investigated in the reduction of these undesirable effects in the
early 1980s, for example the work of P. Flandrin [11] in 1984 and the introduction of
Polynomial WVDs by B. Boashash [12, 13] in 1991.

The general theory of quadratic kernel-based transforms is due to L. Cohen [14]. He
introduced the Cohen class of distributions for applications in quantum mechanics, an area
that has driven many original contributions to time-frequency signal theory [5]. In this
context, Claasen and Mecklenbrauker [15]-[17] made use of the similarities and differences
of signal processing fundamentals with quantum mechanics and developed many ideas and
procedures in the field of time-frequency analysis. However, B. Boashash [18] is believed
to be the first researcher who used various TFDs for real world problems. He developed
a number of new methods and particularly realized that a distribution may not behave
properly in all aspects and interpretations, but it still be used if a particular property such
as the instantaneous frequency (IF) is well defined [19]. Janse and Kaizer [20] developed
innovative theoretical and practical techniques for the use of TFDs and introduced new
methodologies.

The Gabor transform is the most easily accessible time-frequency transform, and this
is due to the analytic tractability of the Gaussian window function [5]. Gabor’s 1946 pa-
per studied sets of signal atoms called the Gabor elementary functions with optimal joint
resolution in the time and frequency domains [5]. Gabor applied the theory to acoustics
[21] and communications theory [22]. Researchers in diverse areas such as speech recog-
nition, image processing, communications and seismic signal interpretation investigated
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Chapter 1. Introduction

with great interest in Gabor transform for many years.

The spectrogram [23]-[25], defined as the magnitude square of the short-time Fourier
transform (STFT), has been the most widely used tool for the analysis of time-varying
spectra. Even if it is irreversible, does not satisfy many desirable mathematical properties
and results on unwanted smoothing of the signal components’ energies around their IFs
[3, 26] ; the spectrogram has found a great number of practical applications in signal and
speech processing, phonetics, seismology, radar, sonar, RF and microwave systems (like
the vector network analyzers), music and analysis of animal calls.

The research for the design of high-resolution distributions that overcome the presence
of non-negligible crossterms induced by the WVD has opened the way for many deriva-
tions of quadratic representations ; the most popular among them belong to the class of
reduced interference distributions [3]. One of the first ones was the Choi-Williams distri-
bution (CWD)[27] in 1989, the Born-Jordan distribution (BJD) defined in [28] using an
operational rule of Born and Jordan [29] and referred to as the sinc distribution in [30], the
Zhao-Atlas-Marks distribution (ZAMD) [31] in 1990 and followed by numerous represen-
tations among the Cohen’s class [32]-[36] having as a principal objective the improvement
of the concentration and resolution performances. In [37], Moeness Amin introduced a
class of recursive kernels for time-frequency signal representations and derived in [38] the
minimum variance time-frequency distribution kernels for signals in additive noise. Then,
Moeness Amin and Williams introduced in [39] a new class of TFD kernels providing high-
frequency resolution. Barkat and Boashash proposed new powerful high-resolution bilinear
distributions namely the B-Distribution (BD) [40] and the Modified B-Distribution (MBD)
[41, 42] that was shown to be very effective in crossterms reduction and allows an efficient
IF estimation [43]. More recently, Cheriet and Belouchrani enriched the TFSA literature
by a new type of kernels of compact support [44]. The derived representation referred to
as the CB TFD provides a very effective solution for energy estimation of nonstationary
signals and permits significant crossterms suppression [45].

From applications point of view, time-frequency methods can be used in electroence-
phalogram (ECG) signal analysis, in particular for newborn babies ; while kernel-based
time-frequency distributions have been used in new promising signal processing tasks like
blind source separation [46]-[49], interference rejection in spread spectrum communications
systems [50] and estimation of direction of arrival [51, 52].

Based on the historical review and bibliographic research, we conclude the following : 1)
Kernels play the most important role in time-frequency analysis of signals and determine
the overall performance of the related distribution. Various types of kernels have been
introduced in this domain. Usually, different types of kernels (i.e., kernels in different
function form) correspond to different types of TFDs [53] and 2) although many quadratic
TFDs have been proposed in the literature, there is no specific ”ideal” distribution that
can be considered as the optimal choice for all possible cases and applications because
every representation suffers from one or more drawbacks. This makes the building of new
kernels for the analysis of time-varying spectra a promising and an open field of research.
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The principal problematic of the thesis is then the derivation and use of new kernels to
build new powerful quadratic time-frequency distributions that are as closest as possible
to the ideal compromise between crossterm free, high component resolution and autoterm
concentration as well as lowest required computational cost. How to objectively evaluate
and compare the goodness and effectiveness of the proposed representations according to
concentration, resolution and interference suppression criteria constitutes an important
part of the present work.

1.2 Thesis objectives

The main objective of this dissertation is to enrich the time-frequency signal analysis
field by new proposed high-resolution representations of Cohen’s class based on kernels
with compact support (KCS) in order to provide efficient tools for energy measurement
of nonstationary signals. The performance of the KCS-TFDs is compared to the most
used existing TFDs based on objective measures for quantifying the concentration and
resolution performances. The selection of the best representation includes a new criterion
related to the required computational cost of the kernel that must be considered especially
when real-time energy estimation is intended.

On the other hand, we aim to provide signal analysts with a powerful and upgradeable
software package by implementing a professional toolbox under Matlab environment refer-
red to as TFDOP for ”Time-frequency Distributions’ Optimization”. The toolbox serves
to compute, display and test the performance of the best-known TFDs of quadratic class
in addition to the new proposed KCS-based distributions and provides the numerical eva-
luation of the theoretical and practical objective performance measures discussed in the
thesis. The best solution was then to organize the work in the form of Graphical User
Interfaces (GUIs) in order to permit an extremely easy supervising of the input parame-
ters, a flexible management of the investigated applications, a fine display of the obtained
results and easy extensions for future development of this first version of the realized
toolbox.

1.3 Principal contributions of the thesis

The work presented in this dissertation contains the following original contributions
to the research field of time-frequency signal processing

1. Derived from the original Cheriet-Belouchrani distribution (CB TFD) based on the
kernel with compact support (KCS) developed in [44], the first scientific contribution
consists of designing a new high-resolution quadratic time-frequency distribution re-
ferred to as the SCB TFD for Separable Cheriet-Belouchrani TFD using a separable
version of the compact support kernel referred to as SKCS (Chapter 3),

2. Building of a second new high-resolution quadratic time-frequency distribution re-
ferred to as the PCB TFD for Polynomial Cheriet-Belouchrani TFD implemented
following the same procedure as for the CB TFD [45] and the SCB TFD using a
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new kernel of compact support nature of polynomial form called PKCS (Chapter
3),

3. Derivation of the necessary conditions that must be verified by a given distribution
in order to satisfy the classical mathematical properties in the t− f plane with the
attention focused on the KCS kernels and elaboration of a comparative study bet-
ween the three investigated KCS-TFDs and the best-known quadratic distributions
(Chapter 3),

4. Objective evaluation of the CB TFD, the SCB TFD and the PCB TFD performances
together with the most used time-frequency representations using concentration-
based theoretical measures (Chapter 4),

5. Optimization of the CB TFD, the SCB TFD and the PCB TFD based on the
concentration criterion defined in (4) and comparison of their performance to the
most known TFDs using several tests on real-life and multicomponent frequency
modulated (FM) signals (Chapter 4),

6. Objective assessment of the KCS-based TFDs and the well-known TFDs based
on the Boashash-Sucic normalized instantaneous resolution performance measure
(Chapter 4),

7. Optimization and automatic selection of the optimal representation using
the Boashash-Sucic methodology from a set of TFDs containing the CB TFD, the
SCB TFD and the PCB TFD in addition to the classical best-known distributions
and considering a large variety of test signals (Chapter 4),

8. Definition of a new quantitative criterion for objective assessment of kernel-based
time-frequency distributions that consists of evaluating the numerical complexity
of the kernel so that the selection of the best performing representation takes into
consideration on one hand high resolution, concentration and interference rejection
measured through the use of the Boashash-Sucic method and, on the other hand,
the lowest required computational cost of the distribution (Chapter 5),

9. Implementation of the work presented in Chapters three, four and five through a
Matlab toolbox referred to as TFDOP for ”Time-Frequency Distributions’ Optimi-
zation” that permits easy setting of the required parameters for TFD computing,
display and optimization and also a fine visualization of the obtained results related
to the different tests discussed in the thesis (Appendix A).

1.4 Scope of the thesis

The remainder of the thesis is organized as follows

Chapter 2 constitutes a theoretical review of the most important concepts related
to time-frequency signal analysis such as short-time Fourier transform (STFT), window

8



1.4. Scope of the thesis

functions, time-frequency localization, time-frequency resolution, analytic signal and ins-
tantaneous frequency (IF) with special attention to the Cohen’s class of TFDs. In this
chapter we analyze also the kernel effects on the whole performance of quadratic TFDs
particularly the crossterms problem generated in the case of multicomponent signals.

Chapter 3 details the design procedure of the new proposed bilinear distributions
based on compact support kernels that are derived from the Gaussian kernel. It also
explains the building steps of the KCS kernel and its modified version referred to as the
separable KCS (SKCS) as well as the polynomial KCS (PKCS). The chapter provides
some illustrative examples presenting the time-frequency plots produced by the KCS-
based distributions. Then, we discuss the suitable mathematical properties in the time-
frequency domain and the relative condition that the kernel must verify in order to satisfy
each property. This has led to perform a comparative study between the well known
TFDs and the KCS-based ones and also to show the relationship between the interference
suppression and the number of good classical properties. In addition, we present in this
chapter the desirable characteristics of quadratic TFDs when practical time-frequency
signal analysis is intended.

Chapter 4 describes the optimization criteria used to objectively assess the quadra-
tic time-frequency distributions namely the autoterms’ concentration, the components’
resolution and the interference reduction. This had led to introduce several theoretical
measures based on concentration criterion together with the recently developed Boashash-
Sucic’s normalized instantaneous resolution performance measure that allows to provide
the optimal TFD using a specific methodology. Extensive illustrative tests on real-life
and synthetic signals including the noise effects are presented and discussed in details.
The performance of the KCS TFDs is compared to the best classical bilinear distribu-
tions and the obtained optimization results are recorded in tables and commented with
determination of the main drawbacks of each objective measure.

Chapter 5 provides a new objective criterion for objective assessment of kernel-based
quadratic TFDs that consists of evaluating the computational cost of the kernel whose pa-
rameters are optimized using the Boashash-Sucic performance measure. The TFDs based
on compact support kernels are compared to the best known kernel-based distributions
in the literature through several tests on real-life and synthetic multicomponent signals
including noise and kernel length effects.

Finally, the thesis is concluded by Chapter 6 that provides the main conclusions of
this research and the recommendations and guidelines for future work.

Appendix A includes a detailed user help explaining the different operations and call-
back routines executed by each user interface control object contained in the TFDOP
software package.
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Chapter 2

Time-Frequency Analysis Basics

In this chapter, we review the most used analysis tools of nonstationary signals based
on joint representations in time and in frequency. After presenting the general concepts,
we identify the suitable properties for elaboration of a time-frequency analysis and its
inevitable limitations. In particular, we study in depth the well-known time-frequency
distributions of quadratic class. Illustrative examples are provided in order to check the
effects of smoothing parameters, if they exist, on the energy estimation of multicomponent
nonstationary signals as well as the drawbacks of each representation.
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2.1 Introduction

We have seen in Chapter 1 that the classical signal analysis tools based on time domain
and frequency domain representations cannot provide simultaneous time and frequency
localization and hence they are not useful for analyzing time-variant, nonstationary si-
gnals. Consequently, the definition of the frequency variation with respect to time passes
necessarily by a joint time-frequency representation. The latter has also many advantages
compared to the classical methods such as the determination of the components that the
signal contains, the identification of the time durations and the frequency bands and the
extraction of the instantaneous frequency laws. The common basic principle of these repre-
sentations is to combine traditional Fourier transform signal spectrum information with a
time location variable. Such a signal operation constitutes an example of a mixed-domain
signal transform [5].

2.2 Short-time Fourier transform (STFT)

A natural approach to the construction of a time-frequency representation is to mul-
tiply the signal, segmented into narrow time intervals so that it can be considered as
stationary, by a window function h(t) centered about the analysis time t and then ap-
plying the Fourier transform to each signal segment until the window reaches the end of
the signal. This method is known as the short-time Fourier transform (STFT).

2.2.1 Definition

The STFT with respect to h(t), also known as the windowed Fourier transform, is
defined as the Fourier transform of the product x(τ)h(t− τ) [3]-[5]

STFT hx (t, f) =

∫ +∞

−∞
x(τ)h∗(t− τ)e−j2πfτdτ (2.1)

where the asterisk denotes complex conjugation.
Thus, the STFT can be viewed as simply a local spectrum of the signal x(τ) sliding

over the entire signal duration thanks to the short time analysis window h∗(t − τ) that
suppresses the signal outside a neighborhood around the analysis time point τ = t.

If, in particular, the window h(t) is Gaussian of the following general form

h(t) =
1√
2π σ

e(−t2/(2σ2)) (2.2)

then, the STFT of x(t) with respect to h(t) is precisely the Gabor transform of x(t) using
the Gaussian h(t) [5]. The positive parameter A = 1/(

√
2π σ) is the peak of the Gaussian

and σ > 0 controls the width of the bell curve.
The dual representation of the windowed Fourier transform is obtained by considering

the signal and window spectra [4, 54]

STFT hx (t, f) =

∫ +∞

−∞
X(η)H∗(η − f)ej2π(η−f)tdη (2.3)
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where X and H are respectively the Fourier transforms of x and h. This makes the STFT
appears as a result of passing the signal through a continuous bank of band-pass filters
with constant bandwidth [54, 55].

2.2.2 Time-frequency localization

The goodness of the time-frequency localization is directly related to the temporal
resolution defined as the ability to distinguish between two successive events and the
frequency resolution that expresses the ability to differentiate between two sinusoids with
close frequencies [5].

Although the STFT provides some information about both when and at what frequen-
cies a signal event occurs, we can only obtain this information with limited precision that
is linked to the type and the size of the analysis window : The drawback is that once a
specific window duration 4th is chosen, it is fixed for all signal segments and hence for
all frequencies.

Mathematically speaking, the time resolution of the STFT can be obtained by consi-
dering for x a Dirac impulse [55]

x(t) = δ(t− t0) then STFT hx (t, f) = e−j2πt0fh(t− t0)

Thus, the time resolution of the STFT is proportional to the effective duration 4th of
the analysis window h. Similarly, by considering a Dirac impluse in the frequency domain
(i.e. x(t) = ej2πf0t), and referring to (2.3) ; the frequency resolution is obtained [55]

X(f) = δ(f − f0) then STFT hx (t, f) = e−j2πtf0H(f − f0)

The frequency resolution of the STFT is then proportional to the effective bandwidth
4fh of the window h. As a result, a tradoff always exists between time and frequency
resolutions since we cannot design simultaneously a short window h(t) and a narrow-band
filter H(f). This is known as the Heisenberg-Gabor uncertainty principle.

2.2.3 Uncertainty principle

The Heisenberg-Gabor uncertainty principle [22, 56], also known as the Heisenberg-
Gabor inequality, states that the product of the time duration 4t and the bandwidth 4f
is lower bounded [4]

4t4f ≥ 1

4π
(2.4)

This fundamental concept means that a waveform cannot simultaneously have an arbitrary
small duration and an arbitrary small bandwidth : As a signal becomes more concentrated
about its time-domain center, it becomes more dispersed about its frequency domain
center [5]. For the STFT, the use of too short analysis window yields to perfect time
localization/bad frequency localization and the converse is true (Table 2.1). This is in
fact one of the fundamental practical arguments against the use of the STFT and its
squared modulus, the spectrogram (see Sec. 2.3.2).
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Table 2.1 – The two extreme cases of time and frequency localization for the STFT.

h(t) = δ(t)→ STFT hx (t, f) = x(t)e−j2πft H(f) = δ(f)→ STFT hx (t, f) = X(f)

Perfect time localization Perfect frequency localization
No frequency localization No time localization

An illustrative example concerns a quadratic chirp signal (Fig. 2.1) whose name is a
reference to chirping in analogy to the sound made by birds. Fig. 2.2 displays the modulus
of the STFT of a wave containing four repetitions of this signal, each one starting from
f = 500 Hz and ending by f = 3500 Hz during a time interval 4t = 0.1 sec. Different
analysis windows are used with length L = 64 and 128, respectively.

Figure 2.1 – The time-domain properties of a quadratic chirp with frequency range
f = 500− 3500 Hz and time extend 4t = 0.1 sec.

We see that for L = 64, a good time resolution is achieved since the STFT can localize
the time separation between two different events (i.e. two different quadratic chirps) while
the frequency resolution is bad. The opposite situation is seen when L = 128 : The STFT
localizes, as expected, the frequency start at around 500 Hz and the frequency end at
3500Hz of each chirp while the time localization is degraded. Moreover, the interference
terms are best reduced using respectively the Blackman and Hanning windows compa-
red to the Hamming window function that generates more important sidelobes in the
frequency domain but still achieve in this case the best time-frequency resolution.

2.3 Quadratic time-frequency distributions

As seen in Sec. 2.2, the first intuitive solution to build a joint time and frequency repre-
sentation is to enter the signal x(t) to the transform integral as a linear input in dependence
on some adaptive window function. To overcome the drawbacks of such transforms, it is
natural to look for another type of solutions based on a joint time and frequency energy
density ρx(t, f) such that [55]

Ex =

∫ +∞

−∞

∫ +∞

−∞
ρx(t, f)dtdf (2.5)

where Ex is the energy of the signal x. This class of solutions is known as energy distri-
butions, bilinear distributions or more commonly quadratic time-frequency distributions
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2 – The modulus of the STFT of a signal composed of four repetitions of a
quadratic chirp varying from f = 500 Hz to f = 3500 Hz during 0.1 sec. (a) Hanning
(L = 64), (b) Hanning (L = 128), (c) Hamming (L = 64), (d) Hamming (L = 128), (e)
Blackman (L = 64)and (f) Blackman (L = 128).
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[4, 54] since the signal x(t) enters the representation integral as a quadratic rather than
as a linear term. More precisely, the quadratic distribution is expressed as a function of
the instantaneous autocorrelation Ux(t, d) = x(t + d)x∗(t − d) of x expanded in various
directions d around each point in the time domain. It results that, for any multicomponent
signal x(t) composed at least of two components x1(t) and x2(t), the induced distribu-
tion includes inevitably the cross product x1(t)x2(t) that is considered as an interference
term. This point constitutes the main disadvantage of time-frequency signal analysis using
quadratic representations.

2.3.1 Wigner-Ville distribution (WVD)

2.3.1.1 Definition

The Wigner-Ville distribution (WVD) that dates to the early 1930s [6] is the ol-
dest transform and the preeminent energy-based quadratic technique in the field of time-
frequency signal analysis. It is defined as [3, 4, 54]

Wx(t, f) =

∫ +∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−j2πfτdτ (2.6)

or equivalently as [4, 54]

Wx(t, f) =

∫ +∞

−∞
X(f + η/2)X∗(f − η/2)ej2πηtdη (2.7)

which corresponds to the Fourier transform of a product of the signal with its complex
conjugate. This is similar to the power spectral density computation.

This distribution uses first a quadratic operation applied to the signal and then a
linear transformation (Fourier transform) [54]. In its original form, the WVD does not
introduce any windowing function for estimation of the instantaneous spectrum.

Fig. 2.3 shows the WVD plot of a linear chirp. We see that the distribution allows for
this particular signal a perfect localization in both time and frequency which is one of a
large number of desirable mathematical properties that makes the WVD a reference for
the other quadratic distributions.

Here is a list of the main properties that the WVD satisfies
◦ Realness : Wx(t, f) ∈ <, ∀ t, f .
◦ Translation invariance : A time-shift (receptively a frequency shift) in the signal

causes the same time shift (respectively the same frequency shift) in the WVD, i.e.
y(t) = x(t − t0) ⇒ Wy(t, f) = Wx(t − t0, f) and y(t) = x(t)ej2πf0t ⇒ Wy(t, f) =
Wx(t, f − f0).
◦ Dilations covariance : The WVD preserves dilations ; i.e. for any k > 0, if y(t) =√

k x(kt) then Wy(t, f) = Wx(kt, f/k).
◦ Energy conservation : By integrating the WVD over the entire time-frequency plane,

the energy of x is obtained :
∫ +∞
−∞

∫ +∞
−∞ Wx(t, f)dtdf = Ex.

◦ Marginal properties : Integration of the WVD over time (respectively over fre-
quency) gives the energy spectral density (respectively the instantaneous power),
i.e.
∫ +∞
−∞ Wx(t, f)df = |x(t)|2 and

∫ +∞
−∞ Wx(t, f)dt = |X(f)|2.
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Figure 2.3 – Wigner-Ville distribution of a linear chirp.

◦ Wide-sense support conservation : The time support of Wx is limited by the duration
of x and the frequency support of Wx is limited by the bandwidth of x ; that is, if
x(t) = 0 for |t| > T then Wx(t, f) = 0 for |t| > T and if X(f) = 0 for |f | > B then
Wx(t, f) = 0 for |f | > B.
◦ Instantaneous frequency (IF) : The IF is given as the first moment of the WVD

with respect to frequency :
∫ +∞
−∞ f Wxa(t, f)df/

∫ +∞
−∞ Wxa(t, f)df = fx(t), where xa

is the analytic signal associated to x (see Sec. 2.3.1.2).
◦ Group delay (GD) : The first moment of the WVD with respect to time is the GD,

i.e.
∫ +∞
−∞ tWxa(t, f)dt/

∫ +∞
−∞ Wxa(t, f) dt = tx(f).

◦ Compatibility with filterings : If y is the convolution of x and a filter h, then the
WVD of y is the time-convolution between the WVD of h and the WVD of x :
y(t) = x(t)∗h(t) =

∫ +∞
−∞ h(t−s)x(s)ds then Wy(t, f) =

∫ +∞
−∞ Wh(t−s, f)Wx(s, f)ds.

◦ Compatibility with modulations : In a dual manner, if y is the result of the mo-
dulation of x by a function m, the WVD of y is the frequency-convolution bet-
ween the WVD of x and the WVD of m, i.e. y(t) = m(t)x(t) ⇒ Wy(t, f) =∫ +∞
−∞ Wm(t, f − η)Wx(t, η)dη.

◦ Unitarity : This property means that the WVD preserves inner products∫ ∫ +∞
−∞ Wx(t, f)W ∗

y (t, f)dtdf =
∣∣∣∫ +∞
−∞ x(t) y∗(t)dt

∣∣∣2.

◦ Perfect localization on linear chirp signals (see Fig. 2.3).

However, due to its quadratic nature, the use of the Wigner-Ville representation is
severely affected by the interference terms also called the crossterms or the artifacts.
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2.3. Quadratic time-frequency distributions

2.3.1.2 Crossterm problem

Let s(t) = s1(t) + s2(t) be a two-component nonstationary signal. Its WVD is thus
given by

Ws(t, f) = Ws1(t, f) +Ws2(t, f) +Ws1,s2(t, f) (2.8)

where

Ws1,s2(t, f) =

∫ +∞

−∞
s1(t+τ/2)s∗2(t−τ/2)e−j2πfτdτ +

∫ +∞

−∞
s2(t+τ/2)s∗1(t−τ/2)e−j2πfτdτ

(2.9)
is the term representing the interferences. The second integral in (2.9) can be rewritten
as follows∫ +∞

−∞
s2(t+ τ/2)s∗1(t− τ/2)e−j2πfτdτ = −

∫ −∞
+∞

s∗1(t+ τ ′/2)s2(t− τ ′/2)e+j2πfτ ′dτ ′

=

(∫ +∞

−∞
s1(t+ τ/2)s∗2(t− τ/2)e−j2πfτdτ

)∗
Since for any complex number C we have C + C∗ = 2Re(C), then

Ws(t, f) = Ws1(t, f) +Ws2(t, f) + 2Re

(∫ +∞

−∞
s1(t+ τ/2)s∗2(t− τ/2)e−j2πfτdτ

)
. (2.10)

The implied crossterms often scrambles the readability of a time-frequency diagram
[54], especially if the components are numerous or close to each other, and the more so in
the presence of noise [4]. Figs. 2.4-2.5 illustrate such situations that correspond to two mul-
ticomponent signals : The first one is composed of two non-parallel, non-intersecting linear
chirps while the second signal contains two Gaussian atoms. We see that the interference
terms lie between the two signal autoterms and take the form of oscillating contributions
located at their geometrical midpoint. The crossterms oscillation takes place orthogonal
to the line connecting the two signal terms with a frequency proportional to the distance
between the two components [54]. Furthermore, in both figures, it seems to exist three
components rather than two. This is because the extra crossterm components have large
oscillating amplitudes that alternate in sign as we move parallel to the autoterms in the
(t,f ) domain. This is a characteristic feature of the crossterms [4]. It is important to note
that, for a nonlinear frequency modulation, the WVD gives rise itself to an interference
structure, called inner interference [54] which further complicates the use of the basic
Wigner-Ville distribution in practical applications.

In the field of TFSA, it is befitting, in the most cases, to design representations that
suppress the best the crossterms in order to provide the most accurate energy estimation
of the time-varying spectra. For the WVD, the first solution was to consider an analytic
signal in its definition. In fact, this form of signals is practically desirable for any time-
frequency representation since the complex-valued analytic signal xa(t) has by definition
no negative-frequency components. Consequently, the bandwidth is reduced to the half
compared to the real signal x(t) which means that the number of components in the time-
frequency plane is also reduced to the half and then the spectral aliasing does not take
place in the useful spectral domain of xa(t) [55]. This also allows a significant decrease of
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Chapter 2. Time-Frequency Analysis Basics

Figure 2.4 – The crossterms’ structure of the Wigner-Ville distribution between two
non-parallel, non-intersecting linear chirps occupying the frequency ranges f = [0.1− 0.2]
Hz and f = [0.4− 0.3] Hz, respectively.

Figure 2.5 – The crossterms’ structure of the Wigner-Ville distribution related to a signal
composed of two Gaussian atoms.
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2.3. Quadratic time-frequency distributions

the interference terms by suppressing the interacting terms between negative- and positive-
frequency components.

The Fourier transform of the analytic signal xa(t) is defined as follows

Xa(f)
4
=


2X(f), for f > 0
X(f), for f = 0
0, for f < 0

= X(f) 2U(f) (2.11)

where X(f) is the Fourier transform of the real-valued signal x(t) and U(f) is a unit
step function. The operation is reversible due to the Hermitian property of the Fourier
transform (X(−f) = X∗(f)). The complex analytic signal is expressed as

xa(t) = TF−1{X(f)} ∗ TF−1{2U(f)}

= x(t) ∗
[
δ(t) + j

1

πt

]
= x(t) + j

[
x(t) ∗ 1

πt

]
= x(t) + jx̂(t) (2.12)

where x̂(t) is the Hilbert transform of x(t).
Recall that based on the analytic signal xa(t), it is possible to define in a unique

manner the concept of the instantaneous amplitude (or the signal’s envelope) as

ax(t)
4
= |xa(t)| (2.13)

and the instantaneous frequency as

fx(t)
4
=

1

2π

d

dt
arg(xa(t)) (2.14)

It is important to note that, from the definitions, the instantaneous frequency and
its dual concept in the time domain, the group delay, are especially useful to represent
mono-component nonstationary signals but are not sufficient to represent multicomponent
signals.

2.3.2 Spectrogram

2.3.2.1 Definition

In contrast to the WVD, the spectrogram defined as the magnitude squared of the
short-time Fourier transform [23]-[25]

Shx(t, f) =

∣∣∣∣∫ +∞

−∞
x(τ)h∗(t− τ)e−j2πfτdτ

∣∣∣∣2 (2.15)

combines a linear operation (Fourier transform of the weighted signal) with a quadra-
tic operation (modulus squared). In spite of these differences, we can still bring both
representations closer together according to the Moyal’s formula given by∣∣∣∣∫ +∞

−∞
x(t) y∗(t)dt

∣∣∣∣2 =

∫ +∞

−∞

∫ +∞

−∞
Wx(t, f)W ∗

y (t, f) dt df (2.16)
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The spectrogram can thus be expressed as follows [4, 54, 55]

Shx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
Wx(s, η)Wh(s− t, η − f) ds dη (2.17)

2.3.2.2 Properties

The different view of the spectrogram given by (2.17) as a coupled smoothing of
the WVD provides us with another interpretation of the tradeoff between the time and
frequency resolutions of the spectrogram : If we choose a short window h, the smoothing
function will be narrow in time and wide in frequency, leading to a good time resolution
but bad frequency resolution ; and vice-versa [55] (Fig. 2.6).

As every quadratic distribution, the spectrogram presents interference terms as seen
in the following equation

Shs (t, f) = Shs1(t, f) + Shs2(t, f) + 2Re
(
Shs1,s2(t, f)

)
, s(t) = s1(t) + s2(t) (2.18)

The third term describes the induced crossterms. It can be easily shown that

Shs1,s2(t, f) = STFT hs1(t, f) (STFT hs2(t, f))∗ (2.19)

However, one can show [58] that these interference terms are restricted to those regions
of the time-frequency plane where the auto-spectrograms overlap : As the components s1

and s2 are sufficiently distant from each other, as the crossterms are considerably atte-
nuated and approach zero. This principal advantage of the spectrogram is a consequence
of its poor resolution. Fig. 2.7 shows an illustrative example. Here, the selection of a wide
analysis window (L = 145) is justified by the fact that there is no time resolution while
the frequency resolution is very important.

Note that if we multiply the WVD by the spectrogram, we obtain the so-called masked
WVD [59]. This results on cleaner time-frequency diagrams that gather the advantages of
the high resolution of the WVD and the better crossterm suppression of the spectrogram.
However, the computational cost is considerably increased.

2.3.3 Smoothed-Pseudo Wigner-Ville distribution (SPWVD)

As we have seen in Sec. 2.3.2, since the spectrogram employs a unique analysis win-
dow ; its use as a coupled smoothing of the WVD faces a major drawback related to the
Heisenberg-Gabor restrictions. Consequently, it is more intuitive to apply a separable,
independent smoothing in time and frequency which yields an improvement over the
spectrogram. The corresponding representation is called smoothed pseudo-Wigner-Ville
distribution (SPWVD) [60] and has the form [54]

SPWx(t, f) =

∫ +∞

−∞
h(τ)

[∫ +∞

−∞
g(s− t)x(s+ τ/2)x∗(s− τ/2)ds

]
e−j2πfτdτ (2.20)

where the windows g and H (the Fourier transform of h) control the smoothing in time
and in frequency, respectively.
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2.3. Quadratic time-frequency distributions

(a) (b)

Figure 2.6 – Spectrogram of two gaussian atoms using : (a) a short Hamming window of
length L=15 (good time resolution/bad frequency resolution) and (b) a large Hamming
window of length L=105 (good frequency resolution/bad time resolution).

(a) (b)

Figure 2.7 – Relationship between the distance separating two pure frequencies and the
structure of the crossterms generated by the spectrogram (Hanning, L=145) : (a) close
components/high interference and (b) distant components/reduced interference.
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Note that if we only consider a smoothing in frequency, i.e. g(t) = δ(t), the pseudo-
WVD (PWVD) is obtained

PWx(t, f) =

∫ +∞

−∞
h(τ)x(t+ τ/2)x∗(t− τ/2)e−j2πfτdτ (2.21)

Let us check the effect of the separable smoothing on the signals considered in Figs.
2.4-2.5. For the two non-parallel, non-intersecting linear chirps ; it is obvious that the
time resolution is not the most important here. Hence, an introduction of a frequency
smoothing carried out by the analysis window h results on considerable suppression of the
crossterms (Fig. 2.8). The same notable improvement in the time-frequency readability
is provided by the SPWVD for the two Gaussian atoms (Fig. 2.9). We see that in both
cases the smoothing done by the SPWVD almost completely suppress the crossterms,
but the signal components localization becomes coarser. This is because the smoothing in
time (respectively in frequency) degrades the time resolution (the frequency resolution,
respectively). Another major drawback is the necessity to select carefully two analysis
windows rather than a single one for the spectrogram, which complicates the research of
the optimal setting.

(a) (b)

Figure 2.8 – Effects of the separable smoothing performed by the SPWVD on interfe-
rence suppression and time-frequency localization of the signal considered in Fig. 2.4 : (a)
g (Hamming, L=95) ; h (Hamming, L=15)and (b) g (Hamming, L=55) ; h (Hamming,
L=33).
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(a) (b)

Figure 2.9 – Effects of the separable smoothing performed by the SPWVD on interference
suppression and time-frequency localization of two Gaussian atoms : (a) g, h (Hanning,
L=15) and (b) g, h (Hanning, L=55).

2.3.4 Kernel-based distributions : The Cohen’s class

2.3.4.1 Definition

The Cohen’s class, also known in the literature as kernel-based transform, is defined as
each class of energy time-frequency distributions verifying two important desirable proper-
ties namely time and frequency covariance and possesses the following general expression
[4, 5, 10, 28, 54, 57]

TFDx(t, f) =

∫ ∫ ∫ +∞

−∞
ej2πη(s−t)φ(η, τ)x(s+ τ/2)x∗(s− τ/2)e−j2πfτdηdsdτ (2.22)

where φ(η, τ) is a two dimensional function called the parameterization function or the
TFD kernel that can be thought of as smoothing the interference ; t and τ denote the
time domain variables while f and η are the frequency domain variables. This class of
distributions could also be written as follows

TFDx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)x(s+ τ/2)x∗(s− τ/2)e−j2πfτdsdτ (2.23)

where

J(s′, τ) =

∫ +∞

−∞
φ(η, τ)ej2πηs

′
dη (2.24)

The advantage of expression (2.23) is to simplify the TFD computation and the proofs
of the mathematical properties by reducing the number of integrals in particular when
(2.24) has a known analytic form. Equivalently, one can use the time-lag kernel notation
G(t, τ) expressed as the Fourier transform of the Doppler-lag kernel φ(η, τ) with respect
to η, i.e.

G(t, τ) = J(−t, τ) =

∫ +∞

−∞
φ(η, τ)e−j2πηtdη; (2.25)
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so that the general class of quadratic TFDs can be defined in terms of the signal and the
time-lag domain kernel as follows

TFDx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
G(t− s, τ)x(s+ τ/2)x∗(s− τ/2)e−j2πfτdsdτ (2.26)

Moreover, if we denote by CGx(t, τ) the convolution of the instantaneous autocorrela-
tion function Ux(t, τ) = x(t+ τ/2)x∗(t− τ/2) of x with the kernel G(t, τ), i.e.

CGx(t, τ) =

∫ +∞

−∞
Ux(s, τ)G(t− s, τ)ds =

∫ +∞

−∞
x(s+ τ/2)x∗(s− τ/2)G(t− s, τ)ds (2.27)

then any TFD of Cohen’s class can be expressed as the Fourier transform of CGx(t, τ)
with respect to τ .

2.3.4.2 Kernel effects

One interesting reformulation of (2.22) is given as follows [4, 5, 54, 55]

TFDx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
Π(s− t, η − f)Wx(s, η)dsdη (2.28)

where

Π(t, f) =

∫ +∞

−∞

∫ +∞

−∞
φ(η, τ)e−j2π(fτ+ηt)dηdτ (2.29)

is the time-frequency kernel [4] expressed as the two-dimensional Fourier transform of the
Doppler-lag kernel φ(η, τ) or equivalently as the Fourier transform of the time-lag kernel
G(t, τ) with respect to τ . Thus, it appears that all TFDs of Cohen’s class can be thought
as simply smoothed versions of the WVD. Furthermore, since the kernel is a decreasing
function, its principal effect is to considerably attenuate the artifacts generated by the
WVD.

In fact, using Fourier transforms from lag to frequency and from time to Doppler
(frequency shift), the quadratic TFDs and their kernels related by (2.22) can be formu-
lated in four different but dependent two-dimensional domains namely the time-lag, the
time-frequency, the Doppler-lag and the Doppler-frequency domains [4]. In particular, the
Doppler-lag (η, τ) domain leads to the definition of the so-called narrow-band ambiguity
function, noted AF, and clarifies the principal kernel effect as an arbitrary smoothing
function performing a filtering. This gives [3, 4, 5, 10, 54, 55]

TFDx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
φ(η, τ)Ax(η, τ)e−j2π(fτ+ηt)dηdτ (2.30)

where

Ax(η, τ) =

∫ +∞

−∞
x(s+ τ/2)x∗(s− τ/2)e−j2πηsds (2.31)

is the symmetric ambiguity function that measures the correlation of a signal x with its
translations in the time-frequency plane. The variables η and τ are relative coordinates or
shifts called, respectively, Doppler and delay [3, 4]. Note that this function is of particular
interest in the field of radar signal processing [55].
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2.3. Quadratic time-frequency distributions

From (2.30)-(2.31), we conclude the following

1. The ambiguity function is also a quadratic time-frequency representation,

2. The AF is the dual of the WVD in the sense of the Fourier transform [4, 54]

Ax(η, τ) =

∫ +∞

−∞

∫ +∞

−∞
Wx(t, f)ej2π(fτ−ηt)dtdf (2.32)

Consequently, it satisfies nearly all the mathematical properties of the WVD [55],

3. Since the AF’s autoterms are located at the origin of the Doppler-delay plane while
the AF’s crossterms are located away from the origin (Fig. 2.10), the Doppler-lag
kernel φ(η, τ) is viewed as a weighting function or a 2D low-pass filter around the
origin that tries to maintain the signal terms unchanged and reject the interference
terms [55]. However, this smoothing operation results on a loss in the time-frequency
resolution,

4. The WVD and the spectrogram are both distributions of Cohen’s class corres-
ponding, respectively, to the kernels φWV (η, τ) = 1 (or GWV (t, τ) = δ(t)) and
φS(η, τ) = A∗

h
(η, τ) ; the ambiguity function of the window h.

Expressions (2.26), (2.28) and (2.30) show that the design of a Cohen’s class quadratic
TFD is reduced to the kernel design in different domains.

(a) (b)

Figure 2.10 – Signal autoterms and interference terms location : (a) the time-frequency
domain (the WVD) and (b) the Doppler-lag domain (the ambiguity function).

Based on (2.28)-(2.29), many types of joint smoothing can be introduced so as to
preserve some of the desirable mathematical properties satisfied by the WVD and reduce
the interference terms as well. A simple way to achieve this double objective is to impose
the following special form [4, 54]

φ(η, τ) = ϕ(ητ) (2.33)
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where ϕ is a decreasing function such that ϕ(0) = 1. Consequently, φ acts as a low-pass
filter, and according to (2.28), this form of kernels attenuates the artifacts generated by
the Wigner-Ville distribution. That is why the corresponding time-frequency distributions
are called Reduced Interference Distributions (RIDs) [61]. Note that the kernels in (2.33)
satisfy the marginal properties and display a cross-like shape : The cross sections for η = 0
and τ = 0 are constant, while the other contourlines (ητ = const) form a set of hyperbolas
[54]. The best-known distributions that belong to the RID category are presented below.

2.3.4.3 Born-Jordan distribution (BJD)

One of the first RIDs was the Born-Jordan distribution (BJD) [30]. Its kernel is given
in the Doppler-lag domain by the cardinal sine function so that

φBJ(η, τ) =
sin(πητ)

πητ
(2.34)

which defines the BJD

BJx(t, f) =

∫ +∞

−∞

1

|τ |

[∫ t+|τ |/2

t−|τ |/2
x(s+ τ/2)x∗(s− τ/2) ds

]
e−j2πfτ dτ (2.35)

As the WVD, the Born-Jordan distribution does not contain any smoothing parameter
and thus it cannot be optimized. Fig. 2.11 shows the performance of the BJD in estimating
the energy of a signal composed of two distant Gaussian atoms and a second one defined
as a sum of two non-parallel non-intersecting linear FMs. We see that, in Fig. 2.11.a, the
distribution provides a good concentration of the signal autoterms and suppresses almost
the entire interference terms generated by the WVD (Fig. 2.5) thanks to the successful
low-pass filtering performed by the BJ kernel. Fig. 2.11.b shows, however, the generation
of high oscillating positive and negative croosterms that occur in a region of the t − f
plane where we expect no energy at all and hence provide extra terms that scramble the
readability of the induced distribution.

2.3.4.4 Choi-Willams distribution (CWD)

Choi and Williams [27] defined ϕ as a two-dimensional Gaussian function yielding to
the following product kernel

φCW (η, τ) = e−
(πητ)2

2σ2 (2.36)

where σ is a free smoothing parameter that controls the spread of the Gaussian in the
Doppler-lag domain and also the quantity of interference suppression in the t− f plane.
Fig. 2.12 shows the two-dimensional profile of the CW kernel in the ambiguity domain
with parameter values : (a) σ = 0.05, (b) σ = 1 and (c) σ = 50. We see that as smaller
values of σ are used as the reduction of the interference size is expected to be better.
Inversely, when σ2 tends to infinity, the WVD is obtained (φCW (η, τ)→ 1).

The Choi-Willams distribution, noted CWD, has the following form

CWx(t, f) =

√
2

π

∫ +∞

−∞

∫ +∞

−∞

σ

|τ |
e−2σ2(s−t)2/τ2x(s+ τ/2)x∗(s− τ/2) e−j2πfτ ds dτ (2.37)
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where the quantity

GCW (t, τ) =

√
2

π

σ

|τ |
e−2σ2t2/τ2 (2.38)

presents the CW time-lag kernel.

(a) (b)

Figure 2.11 – Effects of the nature of the analyzed signal on the performance of the
Born-Jordan distribution : (a) Two distant atoms and (b) sum of two non-parallel non-
intersecting linear FMs with frequency ranges f = 0.2− 0.35 Hz and f = 0.45− 0.4 Hz,
respectively.

(a) (b) (c)

Figure 2.12 – The two-dimensional profile of the CW kernel in the Doppler-lag domain.
(a) σ = 0.05, (b) σ = 1 and (c) σ = 50.

Fig. 2.13 shows the interference structure of a signal composed of a constant frequency
component and a linear chirp using (a) σ = 4 and (b) σ = 0.9. We see that the crossterms
oscillate in the time-direction, with registration of high oscillating interference terms over
the entire frequency support around the time instant t = 0. Moreover, a better reduction
of the interference terms is obtained using a smaller smoothing parameter (σ = 0.9).

A second crossterms’ feature is shown in Fig. 2.14 that displays the CWD of a signal
composed of two Gaussian atoms that have the same time or frequency support. We see
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(a) (b)

Figure 2.13 – The CWD’s interference structure between a constant frequency com-
ponent (f = 0.25 Hz) and a linear chirp with frequency range f = 0.35− 0.45 Hz using :
(a) σ = 4 and (b) σ = 0.9.

that the CW TFD is enable to suppress the crossterms between two components that are
synchronized in time (Fig. 2.14.a) or located at the same frequency band (Fig. 2.14.b).
In this case, the interference terms can be even greater than the autoterms which results
on providing wrong information about the time-frequency characteristics of the signal
components.

(a) (b)

Figure 2.14 – The interference terms generated by the CWD in the case of : (a) two
Gaussian atoms synchronized in time (σ = 0.7) and (b) two Gaussian atoms that belong
to the same frequency band (σ = 2).
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2.3.4.5 Zhao-Atlas-Marks distribution (ZAMD)

Zhao, Atlas and Marks proposed in [31] a new cone-shaped time-frequency distribution
referred to as the ZAMD. The ZAM kernel is defined in the time-lag domain as follows

GZAM(t, τ) =

{
h(τ) if |τ | ≥ a|t|
0 Otherwise

(2.39)

where h(τ) is a window function and a ≥ 2. The corresponding distribution is given by

ZAMx(t, f) =

∫ +∞

−∞
h(τ)

[∫ t+|τ |/2

t−|τ |/2
x(s+ τ/2)x∗(s− τ/2) ds

]
e−j2πfτ dτ (2.40)

By comparing (2.35) to (2.40), we conclude that the ZAM TFD can be viewed as
simply a generalized smoothed version of the BJD along the frequency axis. In fact, the
Doppler-lag kernel filter of the ZAMD can be expressed as the inverse Fourier transform
of GZAM(t, τ) with respect to time

φZAM(η, τ) =

∫
t

GZAM(t, τ)ej2πηtdt; |t| ≤ |τ |/a

= h(τ)

∫ |τ |/a
−|τ |/a

ej2πηtdt = h(τ)
sin
(

2π
a
η|τ |

)
πη

(2.41)

The sinc function in (2.41) generates sidelobes in the ambiguity domain which reduces
the ability of the ZAM distribution in suppressing the interference terms. Furthermore,
for h(τ) = 1/|τ | and a = 2 we get

φZAM(η, τ) = sinc(πητ). (2.42)

the BJ kernel.
For example, if we take h(τ) = 1 and a = 2 ; the expression of the ZAM kernel in the

Doppler-lag domain is
φZAM(η, τ) = sinc(πητ) τ (2.43)

The corresponding time-lag domain kernel is plotted in Fig. 2.15.
Fig. 2.16 shows the ZAMD plot of the same signal considered in Fig. 2.13 while Fig.

2.17 displays the ZAM TFD of a signal composed of two distant Gaussian atoms. The
frequency smoothing is performed by a Gaussian analysis window h(τ) = e−τ

2/2σ2
, the

default window used for the ZAM kernel in the thesis, with a control parameter σ = 0.07
and σ = 0.3, respectively. Compared to the CW TFD, we see a better concentration of
the autoterms. The interference terms, however, generate the biggest negative amplitudes
in the close neighborhood of the autoterms ; i.e. just outside the frequency bandwidth of
each signal component.

As we move away from the interacting components, the crossterms’ energy decreases
considerably and can be further reduced through an appropriate tuning of the smoothing
parameter σ. As for the CWD, the ZAM distribution depends strongly on the nature of
the analyzed signal. On the other hand, the extra terms generated by this TFD can be
more important than the signal true autoterms which results on wrong extraction of the
time-frequency features of the analyzed signal (see Sec. 5.3.1).
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Figure 2.15 – The time-lag domain ZAM kernel with parameters h(τ) = 1 and a = 2.

(a) (b)

Figure 2.16 – The ZAMD’ interference structure of the signal considered in Fig. 2.13
using a Gaussian smoothing window : (a) σ = 0.07 and (b) σ = 0.3.

(a) (b)

Figure 2.17 – The interference terms generated by the ZAMD of a signal composed of
two distant Gaussian atoms using a Gaussian smoothing window : (a) σ = 0.07 and (b)
σ = 0.3.
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2.4 Conclusion

Among the various representations that provide simultaneous information in both time
and frequency domains, the quadratic time-frequency representations are recognized by
their efficiency in analysis and interpretation of nonstationary signals. In particular, those
distributions that belong to the Cohen’s class ; i.e. all quadratic TFDs that are covariant
by shifts in time and frequency, offer a wide set of powerful tools to extract the most
important characteristics of multicomponent signals thanks to the various structures that
the kernel can generate allowing interference mitigation by introducing a smoothing in
time and/or frequency. However, two consequences are inevitable : 1) a decrease in time
and frequency resolutions and 2) a loss of theoretical properties (see Sec. 3.7).

On the other hand, due to the various crossterm geometries that a quadratic distri-
bution can induce, it is always suitable to have several kernels in our hand since each
one is well adapted to a certain kind of signals. Moreover, the combination of different
distributions offers in general complementary descriptions of the time-varying frequency
components. Chapter 3 presents a new type of kernels with compact support (KCS) and
details the design procedure of their respective quadratic distributions in addition to their
mathematical properties.
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Chapter 3

High-Resolution Time-Frequency
Distributions based on Kernels with

Compact Support : Building and
Mathematical Properties

In this chapter, we explain how the new proposed KCS-based TFDs are built. This
includes a review on the design and characteristics of the kernels with compact support
as well as the general procedure used to generate their respective TFDs. Some examples
related to nonstationary signal representation in the time-frequency domain are provided.
Next, we review the classical mathematical properties suitable for quadratic TFDs. For
each property, the relative condition that must be satisfied by the kernel is derived. The
compact support kernels are analyzed and their mathematical properties are compared
to the best-known kernels. Then, we present a set of desirable properties of quadratic
time-frequency representations when practical applications are intended.
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3.1 Introduction

It is known in the art that the use of a quadratic class of distributions permits the
definition of kernels whose main property is to reduce the interference patterns induced by
the distribution itself. The Gaussian kernel for example presents many desirable properties
but it must be truncated to a finite window when implemented in a computer because of
its infinite support. Regardless of the size of the window, a discontinuity will be introduced
at its borders that could lead to serious errors in the derivatives [62]. As a result, the use
of the Gaussian kernel presents two practical limitations : information loss and derivative
border effects owing to diminished accuracy, and the prohibitive processing time due to
the mask size [63].

In order to avoid these drawbacks, two approaches exist : approximating the Gaussian
kernel by a finite support kernel, or defining new kernels with properties close to the
Gaussian. In [44], it was shown that kernels with compact support (KCS), derived from
the Gaussian kernel, allow a tradeoff between a good autoterm resolution and a high
crossterm rejection. They are found to recover information loss and improve processing
time and, at the same time, retain the most important properties of the Gaussian kernel
[64]. These features are achieved thanks to the compact support analytical property of
this type of kernels since they vanish themselves outside a given compact set.

Motivated by these interesting properties, we propose the use of two new time-lag do-
main kernels with compact support derived from the Gaussian for time-frequency analysis
namely the separable KCS (SKCS) [65] and the polynomial KCS (PKCS) [63]. Similarly
to the CB TFD [45], the induced TFDs referred to as SCB TFD and PCB TFD, respec-
tively, are generated following the general form of kernel-based TFDs defined by (2.26).
Then, the mathematical properties of these three TFDs are analyzed and compared to
the best known quadratic distributions.

3.2 Construction of the KCS

Practically speaking, the convolution product with a Gaussian requires an approxi-
mation of the latter over a bounded set of <2, commonly known as a mask [64]. The
accuracy of the computation depends on the mask size. Wider masks provide more pre-
cise calculations, but increase the cost of processing time ; smaller masks sizes decrease
the processing time, but the accuracy is sometimes severely diminished, which results on
information loss. Among the solutions proposed to overcome these drawbacks, we note the
approximation of the Gaussian by recursive filters [64, 66] or using truncated exponential
functions instead of the Gaussian [66, 67]. The approximation solution, however, does not
resolve the information loss problem.

The kernel with compact support was built from this standpoint so that there is no
need to cut off the kernel while the processing time is controlled because the mask is
the support of the kernel itself [64]. The new kernel is derived from the Gaussian kernel
by transforming the <2 space into a unit ball through a change of variables so that the
Gaussian is defined on the unit ball and vanishes on the unit sphere. Then, the kernel is
extended over all <2 by taking zero values outside the unit ball to make the convolution
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product possible [64].
Before detailing the KCS construction procedure, let us recall some necessary mathe-

matical fundamentals about mollifiers and smooth functions theory.

3.2.1 Definition and construction of mollifiers

Mollifiers were first introduced by Kurt Otto Friedrichs [68]. They are smooth func-
tions with special properties used for example in distribution theory to create smoothed
functions approximating nonsmooth generalized functions via convolution. This operation
is known as mollification [69].

Definition [69] : For each σ > 0, let ϕσ ∈ C∞(<N) 1 be given with the properties

1. ϕσ ≥ 0,

2. supp (ϕσ) ⊂
{
x ∈ <N : |x| 6 σ

}
,

3.
∫
<N

ϕσ(x) dx = 1.

These functions are called mollifiers. Hence, the mollifier ϕσ is a test function, i.e. smooth
function with compact support, nonnegative, infinitely differentiable, with a support de-
creasing as σ → 0 but the volume under the graph is preserved [70]. As σ → 0, these
functions are concentrated at the origin. This is why mollifiers are also known as approxi-
mations of the delta function [69].

An interesting, simple and intuitive form of ϕσ is obtained by considering the function
ϕ(x) that vanishes on the unit ball, defined for any x ∈ <N as follows [70]

ϕ(x) =

{
c e−1/(1−|x|2) for |x| < 1
0 Otherwise

(3.1)

where c is chosen to ensure that the integral of ϕ is 1. ϕ(x) is a test function on <N ,
infinitely differentiable, positive and vanishes together with all its derivatives on |x| ≥ 1
and can be used as the seeds from which an infinite variety of test functions ϕσ are
constructed. The plot of ϕ(x) for N = 1 is sketched in Fig. 3.1.

Figure 3.1 – The mollifier function.

1. The function f defined over <N is said to be of class Ck if the derivatives f
′
, f

′′
, ..., f (k) exist

and are continuous (the continuity is implied by differentiability for all the derivatives except for f (k)).
The function f is said to be of class C∞ over <N , or smooth, if it has derivatives of all orders ; i.e. it is
infinitely differentiable over <N .
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The family of smooth functions ϕσ based on ϕ is of the following form [70]

ϕσ(x) =
1

σN
ϕσ

(x
σ

)
, σ > 0 (3.2)

verifying the properties [70]

1. ϕσ ≥ 0, for all x ∈ <N ,

2. ϕσ = 0 for |x| > σ ⇒ supp(ϕσ) ⊂
{
x ∈ <N : |x| 6 σ

}
,

3.
∫
<N

ϕσ(x) dx = 1.

Hence, the functions ϕσ are mollifiers that become thinner and higher as σ tends to zero.
However, the area under the graph is constantly equal to 1.

Since our kernel is defined in a plane (N =2), we have to consider a test function
denoted by ρ satisfying the following requirements

– ρ(x, y) ≥ 0, ∀(x, y) ∈ <2,
– Its support is the unit ball in <2, i.e. supp (ρ) ⊂ {(x, y) ∈ <2 : x2 + y2 6 1} =
B(0, 1) 2 ,

–
∫
<2

ρ(x, y) dx dy = 1.

from which we introduce for each σ > 0, the functions

ρσ(x, y) =
1

σ2
ρ
(x
σ
,
y

σ

)
(3.3)

Then, from the development above, the family of functions ρσ is a mollifier verifying
– ρσ(x, y) ≥ 0, for all (x, y) ∈ <2,
– supp (ρσ) ⊂ {(x, y) ∈ <2 : x2 + y2 6 σ2} = B(0, σ),

–
∫
<2

ρσ(x, y) dx dy = 1.

3.2.2 Building the KCS using a mollifier-based approximation
of the Gaussian

The building of kernels with compact support includes two main steps [64]
1) Formulation of a 2D one-parameter family of normalized symmetrical Gaussian 3 de-

noted by gσ(x, y) in the following manner :
In two dimensions, the power to which the exponential is raised in the Gaussian func-

tion is any negative-definite quadratic form. So, if we define g(x, y) as

g(x, y) =
1

2π
e−(x2+y2)/2 (3.4)

2. Let (M,d) be a metric space, namely a set M with a metric (distance function) d. The closed
ball of radius r > 0 centered at a point p0 in M , usually denoted by B(p0, r), is defined by B(p0, r) ,
{p ∈M : d(p, p0) 6 r}. Considering the Euclidean distance over the Cartesian space <2, the closed ball
of radius r centered at p0(x0, y0) is the set B(p0, r) =

{
p(x, y) ∈ <2 : (x− x0)2 + (y − y0)2 6 r2

}
. The

unit ball centered at the origin is a ball of radius 1 denoted by B(0, 1).
3. Symmetrical in order to be fully defined over <+.
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then

gσ(x, y) =
1

σ2
g
(x
σ
,
y

σ

)
=

1

2πσ2
e−(x2+y2)/2σ2

(3.5)

2) Application of a change of variables to gσ so that it is approximated by a mollifier as
defined in (3.3). Since the compact support of the mollifier ρ is limited to the unit ball, a
polar change of coordinates is performed by the function

Γ(r, θ) = (r cos θ, r sin θ), 0 ≤ r < 1 (3.6)

then, any approximation of the 2D normalized symmetrical Gaussian given by (3.5) must
define a certain function w(r) so that Γ(w(r), θ) transforms the unit ball B(0, 1) into an
<2 plane. The simplest way to transform the interval [0, 1[ into <+ is to consider the
following function

f(z) =
1

1− z
− 1, 0 ≤ z < 1 (3.7)

so that when z = 0, f(z) = 0 and when z → 1−, f(z)→ +∞. The f function values are
only obtained after three operations. However, w should be in our case a function of r2 in
order to 1) obtain an expression comparable to that of the Gaussian and 2) facilitate the
change of variables from polar to Cartesian coordinates and vice-versa. This justifies the
following choice (even it is not unique) of the function w [64]

[0, 1[ −→ <+

r −→ w(r) =

√
1

1− r2
− 1, 0 ≤ r < 1 (3.8)

We see that for any r ∈ [0, 1[ and θ ∈ < then

(x, y) = Γ(w(r), θ) = (w(r) cos θ, w(r) sin θ) ∈ <2 (3.9)

so that

x2 + y2 = w2(r) =
1

1− r2
− 1 = −

(
1

r2 − 1
+ 1

)
, 0 ≤ r < 1 (3.10)

while the inverse of w transforms <+ into [0, 1[ in a continuous manner.
A final step is to exploit the parameter σ that controls the Gaussian’s bandwidth to

derive the KCS. Let γ = 1/σ2 and then apply the change of variables given by (3.10) in
the expression (1/2π) exp[−(γ/2)(x2 + y2)] and extend it by zero outside the unit ball.
After normalization 4, we obtained the desired KCS kernel [64]

ργ(r, θ) =


1

Cγ
e

1
2

(
γ

r2−1
+γ
)

if r2 < 1

0 Elsewhere
(3.11)

or, with the variables (x, y)

ργ(x, y) =


1

Cγ
e

1
2

(
γ

x2+y2−1
+γ
)

if x2 + y2 < 1

0 Elsewhere
(3.12)

4. In order to ensure that
∫
<2

ργ(x, y) dx dy = 1 ; the third property of a mollifier.
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where

Cγ =

∫ 1

−1

∫ 1

−1

e
1
2

(
γ

x2+y2−1
+γ
)
1B(0,1)(x, y) dx dy (3.13)

a normalization constant and

1B(0,1)(x, y) =

{
1 if x2 + y2 < 1
0 Elsewhere

(3.14)

The function ργ is infinitely differentiable, positive, vanishes outside the unit ball and

verifies
∫
<2

ργ(x, y) dx dy = 1.

Applied to time-frequency signal analysis, the compact support kernel has the following
expression in the time-lag plane [44, 45]

GKCS(t, τ) =

{
e

1
2

(
γ

t2+τ2−1
+γ
)

if t2 + τ 2 < 1
0 Otherwise

(3.15)

where γ is a parameter that controls the kernel’s bandwidth as σ controls the width of
the bell curve for the Gaussian kernel so that γ = 1/σ2. Note that the KCS was found
to keep the most important properties of the Gaussian function, in particular, when γ
increases ; it was shown that the Heisenberg uncertainty product (H.u.p.) decreases very
quickly and becomes close to 1/4π (Fig. 3.2), which is the optimal value reached by the
Gaussian kernel [64].

Figure 3.2 – Curve of the Heisenberg uncertainty product according to parameter γ [64].

Fig. 3.3 shows the plots of the KCS kernel in the time-lag domain for different values
of the smoothing parameter γ while Fig. 3.4 displays the corresponding KCS profiles in
the ambiguity domain. We see that the time-lag plot is a bell-shaped curve with respect
to both time and delay whose spread in inversely related to γ. This is due to the fact that
γ is set to 1/σ2 in the original approximation of the Gaussian function.
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(a) (b) (c)

Figure 3.3 – The two-dimensional profile of the compact support kernel in the time-lag
domain. (a) γ = 0.8, (b) γ = 2.5 and (c) γ = 10.

(a) (b) (c)

Figure 3.4 – The two-dimensional profile of the compact support kernel in the ambiguity
domain normalized with respect to its peak located at the origin (η = 0, τ = 0). (a)
γ = 0.8, (b) γ = 2.5 and (c) γ = 10.

From time-frequency signal analysis point of view, the most important is that, thanks
to the two-dimensional test function form of GKCS(t, τ), no sidelobes are generated by its
inverse Fourier transform with respect to t : The Doppler-lag kernel

φKCS(η, τ) =

∫ +∞

−∞
GKCS(t, τ)ej2πηtdt (3.16)

Consequently, due to its special compact support shape in both time-lag and ambiguity
domains ; that is completely different from any previously proposed kernel form in the
time-frequency analysis literature, the Doppler-lag KCS acts as a two-dimensional auto-
windowed low-pass filter centered around the origin and, as a result, it shows a great
ability of crossterms’ suppression much better than the Gaussian kernel while preserving
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the signal components yielding to a notable improvement of time-frequency resolution and
energy concentration of the autoterms.

On the other hand, the Fourier transform of the time-lag compact support kernel with
respect to τ is also sidelobe free and the corresponding time-frequency kernel defined by
(2.29) acts as a 2D low-pass filter that smoothes the WVD in both time and frequency
directions.

Another important point concerns the effect of increasing the kernel length L on the
shape of the KCS in the ambiguity domain (Fig. 3.5). We see that as L increases, the
Doppler-lag kernel becomes thinner and smoother and hence it is expected to improve the
interference terms’ elimination by suppressing the ripples about the IF laws and preserve
much better the autoterms.

(a) (b) (c)

Figure 3.5 – The two-dimensional KCS profile in the ambiguity domain normalized with
respect to its peak for a fixed bandwidth (γ = 2.5). (a) L = 32, (b) L = 64 and (c)
L = 128.

3.3 Design procedure of the CB TFD

From the mollifier ργ given by (3.12), we can define a family of KCS kernels ρσ,γ so
that [64]

ρσ,γ(x, y) =
1

σ2
ργ

(x
σ
,
y

σ

)
(3.17)

which gives

ρσ,γ(x, y) =

 1

Cγ σ2
e

1
2

(
γ σ2

x2+y2−σ2
+γ

)
if x2 + y2 < σ2

0 elsewhere

(3.18)

According to Sec. 3.2.2, ρσ,γ is a family of mollifiers with support B(0, σ). The Cheriet-
Belouchrani (CB) kernel, also referred to as KCS, is then obtained by considering the time
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and lag variables giving the following expression [45]

GCB(t, τ) =

 e
C

 1
t2+τ2

D2 −1
+1


if t2+τ2

D2 < 1
0 Otherwise

(3.19)

where D is a predetermined parameter and C is a tuning positive real number that is
inversely proportional to the kernel’s bandwidth 5. Note that, given the kernel length L, the
range of variation of t and τ is within the interval [0, D] with a step size 4t = 4τ = D

(L/2)
.

Hence, the compact support kernels are evaluated at (L/2)(L/2) = L2/4 points. The
complete kernel form is simply obtained by symmetry.

The CB TFD is expressed as follows

CBx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
GCB(t− s, τ)x(s+ τ/2)x∗(s− τ/2)e−j2πfτdsdτ (3.20)

By considering the compact support limits of the time-lag CB kernel we obtain

CBz(t, f) = eC
∫ +∞

−∞

∫ t+
√
|D2−τ2|

t−
√
|D2−τ2|

e

 C
(t−s)2+τ2

D2 −1


z(s+ τ/2)z∗(s− τ/2)ds

 e−j2πfτdτ
(3.21)

where z(t) denotes the analytic signal generated by applying the Hilbert transform to the
real signal x(t) for the reasons explained in Sec. 2.3.1.2. The convolutions of the com-
pact support kernel GCB(t, τ) and the instantaneous autocorrelation functions Uz(t, τ) =
z(t+ τ/2)z∗(t− τ/2) are computed and then a Fourier transform is applied to determine
information related to the energy of the original signal with respect to time and frequency.

Fig. 3.6 displays the CB TFD plots of a Doppler signal while Fig. 3.7 shows the
TF characteristics of a multicomponent signal composed of four closely spaced Gaussian
atoms using a KCS of length 64 and different values of C with D = 2.5. We see that
through a control of the kernel bandwidth, the obtained distribution allows a better lo-
calization of the signal components in the time-frequency plane, eliminates the energy of
the interference terms due to the bilinearity of the distribution and hence results on high
resolution in both time and frequency. Furthermore, compared to the plots of Fig. 2.14,
the time-frequency diagrams of Fig. 3.7 show that, unlike the CWD that is defined from an
exponential-based time-lag kernel ; the CB TFD is able to suppress the crossterms even if
the Gaussian atoms are synchronized in time and/or located at the same frequency band.

3.4 Modification of the CB kernel : The separable

CB (SCB) TFD

Recent results in the field of time-frequency signal analysis have shown that quadratic
TFDs with separable kernels outperform many other popular TFDs in resolving closely

5. The bandwidth controller of the CB kernel is denoted here by C rather than γ so that it is not to
be confused with the tuning parameter γ used to adjust the PCB kernel’s bandwidth. The parameter D
replaces σ that denotes the smoothing parameter of the Choi-Williams distribution.
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(a)

(b)

Figure 3.6 – CB TFD of a Doppler signal (D = 2.5). (a) C = 0.5 and (b) C = 5.
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(a)

(b)
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(c)

Figure 3.7 – CB TFD of a signal composed of four Gaussian atoms (D = 2.5). (a)
C = 2.5, (b) C = 18 and (c) C = 7 .

spaced components [71]-[73]. This type of kernels takes the following general form in the
ambiguity domain

φ(η, τ) = G1(η)g2(τ) (3.22)

or equivalently in the time-lag domain

G(t, τ) =

∫ +∞

−∞
G1(η)g2(τ)e−j2πηtdη = g1(t)g2(τ) (3.23)

where g1 is the Fourier transform of G1 with respect to η.

As seen in (2.28), any quadratic TFD can be expressed as a smoothed version of the
WVD using the time-frequency kernel notation Π(t, f) =

∫ +∞
−∞

∫ +∞
−∞ φ(η, τ)e−j2π(fτ+ηt)dηdτ .

In the case of a separable kernel we get

Π(t, f) =

∫ +∞

−∞
G1(η)e−j2πηtdη

∫ +∞

−∞
g2(τ)e−j2πfτdτ

= g1(t)G2(f) (3.24)

where G2 is the Fourier transform of g2 with respect to τ . Substituting (3.24) in (2.28)
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and using the convolution properties we get

TFDx(t, f) =

∫ +∞

−∞

∫ +∞

−∞
g1(s− t)G2(η − f)Wx(s, η)dsdη

=

∫ +∞

−∞

[∫ +∞

−∞
g1(s− t)Wx(s, η)ds

]
G2(η − f)dη

= g1(t) ∗
t
Wx(t, f) ∗

f
G2(f) (3.25)

Equivalently, in (3.25), the two convolutions can be evaluated in either order, indicating
that the Doppler-dependent and lag-dependent factors in the separable kernel lead to
separate convolutions in time and frequency, respectively [4, 10].

By putting
G1(η) = 1⇒ g1(t) = δ(t) (3.26)

the Doppler-independent (DI) kernel is obtained so that [4, 10]

TFDx(t, f) = Wx(t, f) ∗
f
G2(f) (3.27)

Hence, in this special case of the separable Doppler-lag kernel, the DI kernel causes smea-
ring of the WVD in the frequency direction only, reducing the inner artifacts [4].

A second special case of the separable kernel, the lag-independent (LI) kernel [4, 10],
is obtained by putting

g2(τ) = 1⇒ G2(f) = δ(f) (3.28)

In the time-lag domain, the resulting separable kernel is in this case a function of time
alone ; for this reason, such kernels have been called time-only kernels [41, 72] defining the
T-class of time-frequency distributions. Making this substitution in (3.25), we obtain

TFDx(t, f) = g1(t) ∗
t
Wx(t, f) (3.29)

The last expression shows that an LI kernel causes smearing of the WVD in the time
direction only, reducing the crossterms [4].

The separable-kernel allows to understand the improved behavior of the SPWVD
compared to the WVD as seen in Sec. 2.3.3. It also enables the construction of high-
resolution quadratic TFDs using the classical smoothing functions commonly encountered
in digital signal processing and spectral analysis [10]. Our contribution is developed in this
context.

In [65], a separable kernel family with compact support (SKCS) applied to image
processing was introduced. The later is a separable version of the compact support kernel.
Hence, in order to benefit from the separate control of the frequency-smoothing and time-
smoothing of the WVD, the CB kernel also referred to as KCS can be modified to the
separable form that we call Separable Cheriet-Belouchrani (SCB) kernel yielding to a
new time-frequency distribution of quadratic class referred to as SCB TFD. The derived
time-lag SCB kernel is given by

GSCB(t, τ) =

{
GCB(t, 0)GCB(0, τ) if t2 < D2 and τ 2 < D2

0 Otherwise
(3.30)
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Here g1(t) = GCB(t, 0) is the Fourier transform of the Doppler-dependent factor with
respect to η and g2(τ) = GCB(0, τ) is the lag-dependent factor of the SCB kernel. Thus

GSCB(t, τ) =

{
e2Ce

CD2

t2−D2 + CD2

τ2−D2 if t2 < D2 and τ 2 < D2

0 Otherwise
(3.31)

As for the CB, the SCB exhibits the same behavior of the Gaussian. The free positive
real parameter C controls the kernel’s bandwidth i.e. the distance between the zero-
crossing of the kernel to the origin of the axis ; it does not affect the compact support
nature of the kernel. In addition, when C increases, the Heisenberg uncertainty product
was found to decrease rapidly and becomes close to the optimal value (1/4π) reached by
the Gaussian kernel [65]. Fig. 3.8 displays the two-dimensional profile of the time-lag SCB
kernel for different values of C and D = 2.5 while Fig. 3.9 depicts the corresponding plots
of the SCB kernel in the Doppler-lag domain.

(a) (b) (c)

Figure 3.8 – The two-dimensional profile of the SCB kernel in the time-lag domain with
D = 2.5. (a) C = 0.8, (b) C = 2.5 and (c) C = 10.

(a) (b) (c)

Figure 3.9 – The two-dimensional profile of the SCB kernel in the Doppler-lag domain
normalized with respect to its peak located at the origin (η = 0, τ = 0) with D = 2.5. (a)
C = 0.8, (b) C = 2.5 and (c) C = 10.
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Note that even the 1D KCS and SKCS kernels have nearly the same behavior ; the
fact that the SCB is separable, its support over the time-lag plane takes a square form.
The separable CB (SCB) TFD is expressed in the continuous form as follows

SCBz(t, f) =

∫ +∞

−∞

∫ +∞

−∞
GSCB(t− s, τ)z(s+ τ/2)z∗(s− τ/2)e−j2πfτdsdτ (3.32)

where we recall that z(t) is the complex analytic signal associated to the real analyzed
signal x(t). By substituting (3.31) in (3.32) we get

SCBz(t, f) = e2C

∫ +∞

−∞
e

CD2

τ2−D2

[∫ t+D

t−D
e

CD2

(t−s)2−D2 z(s+ τ/2)z∗(s− τ/2)ds

]
e−j2πfτdτ

(3.33)
Two examples showing the performance of the SCB TFD in representing two Doppler

signals and a combination of a constant frequency component and two non-parallel chirps
are depicted in Figs. 3.10-3.11 using D = 7.5 and different values of the compact support
extent controller C. We observe that the tuning of the kernel bandwidth allows better
reduction of the crossterms and improves largely the resolution and the concentration of
the individual components. Note that the kernel length is set to 128 and as shown in Fig.
3.5, it may have an important effect on the overall performance of the induced distribution
as it will be discussed in Chapter 5.

(a)
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(b)

(c)

Figure 3.10 – SCB TFD of two Doppler signals (D = 7.5). (a) C = 0.1, (b) C = 0.8 and
(c) C = 2.8.
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(a)

(b)

48



3.5. The polynomial KCS-based TFD (PCB TFD)

(c)

Figure 3.11 – SCB TFD of a signal composed of a pure frequency (f = 0.25 Hz) and
two non-parallel chirps with frequency ranges f = [0.37 − 0.29] Hz and f = [0.12 − 0.2]
Hz, respectively (D = 7.5). (a) C = 0.05, (b) C = 0.5 and (c) C = 5.8.

3.5 The polynomial KCS-based TFD (PCB TFD)

As shown in Sec. 3.2.2, in order to build the KCS kernel, a change of variables is
applied to gσ using a function w as defined for example by (3.8). This results in the
deformation of the plane into a unit ball in order to permit the approximation of the
Gaussian kernel by a mollifier. Unfortunately, there is no analytical expression for the
corresponding normalization constant Cγ given by (3.13), and so it must be computed by
a numerical method.

To avoid this drawback, and since the choice of w is not unique, the following effective
and efficient transformation is proposed in [63]

[0, 1[ −→ <+

r −→ w(r) =
√
− ln (1− r2), 0 ≤ r < 1 (3.34)

Following the same steps as for the KCS, the resulting normalization constant Cγ is
now easily calculated as follows [63]

Cγ =

∫ 1

−1

∫ 1

−1

(1− (x2 + y2))γ dx dy = 2π

∫ 1

0

(1− r2)γr dr =
π

γ + 1
(3.35)
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The 2D family of the new compact support kernel, called PKCS, is defined as [63]

ργ,λ(x, y) =


γ+1

πλ2γ+2 (λ2 − (x2 + y2))
γ

if x2 + y2 < λ2

0 Otherwise
(3.36)

where λ is the radius of the kernel support.

The compact support nature of the PKCS together with the possibility of controlling
the kernel’s window width led us to propose a new kernel for time-frequency analysis
called Polynomial Cheriet-Belouchrani (PCB) kernel yielding to a new quadratic time-
frequency distribution referred to as PCB TFD. The latter is implemented following the
same procedure as for the CB TFD and the SCB TFD.

The PCB kernel is defined in the time-lag domain as

GPCB(t, τ) =


γ+1

πλ2γ+2 (λ2 − (t2 + τ 2))
γ

if t2 + τ 2 < λ2

0 Otherwise
(3.37)

where λ is a predetermined parameter and γ controls the bandwidth of the PCB and is
considered to be a positive integer so that the resulting kernel has a polynomial form.

It is important to note that, physically speaking, the sum (λ2 − (t2 + τ 2)) is only
possible if we suppose that the time parameter t, the lag parameter τ and λ are implicitly
normalized by t0 = 1, τ0 = 1 and λ0 = 1, respectively so that the sum is unitless.

Fig. 3.12 shows the plots of the time-lag PCB kernel for different values of the smoo-
thing parameter γ with λ = 2.5. Their corresponding ambiguity domain kernel plots are
depicted in Fig. 3.13. We see that the PKCS exhibits more similar behavior to the Gaus-
sian than KCS and as γ increases, the compact support is narrowed and consequently, the
bandwidth of the kernel decreases.

(a) (b) (c)

Figure 3.12 – The 2D profile of the PCB time-lag kernel normalized with respect to its
peak located at the origin (t = 0, τ = 0) with λ = 2.5. (a) γ = 1, (b) γ = 3 and (c)
γ = 10.
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(a) (b) (c)

Figure 3.13 – The 2D profile of the PCB Doppler-lag kernel normalized with respect to
its peak located at the origin (η = 0, τ = 0) with λ = 2.5. (a) γ = 1, (b) γ = 3 and (c)
γ = 10.

The polynomial CB (PCB) TFD is formulated as follows

PCBz(t, f) =
γ + 1

πλ2γ+2

∫ +∞

−∞

[∫ t+
√
|λ2−τ2|

t−
√
|λ2−τ2|

(
λ2 − ((t− s)2 + τ 2)

)γ
Uz(s, τ)ds

]
e−j2πfτdτ

(3.38)
where we recall that Uz(s, τ) = z(s+ τ/2)z∗(s− τ/2) is the instantaneous autocorrelation
function of the analytic signal z(t). Figs. 3.14-3.15 show the PCB TFD plots of the signals
considered in Sec. 3.4 using various values of γ with λ = 4. It turns out that through a
control of the bandwidth of the kernel, the corresponding TFD allows a better elimination
of crossterms while providing high resolution in both time and frequency.

(a)
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(b)

(c)

Figure 3.14 – PCB TFD of two Doppler signals (λ = 4). (a) γ = 3, (b) γ = 9 and (c)
γ = 23.
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(a)

(b)
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(c)

Figure 3.15 – PCB TFD of the signal considered in Fig. 3.11 (λ = 4). (a) γ = 25, (b)
γ = 17 and (c) γ = 5.

3.6 Classical mathematical properties of quadratic

TFDs

The choice of the two-dimensional kernel is critical in the definition of a quadratic
TFD and it determines the properties of the generated distribution e.g. real-valued, mar-
ginal conditions, instantaneous frequency (IF) as well as its overall performance in terms
of energy concentration and resolution. In general, the purpose of the kernel is to reduce
the interference terms in the time-frequency distribution. However, (2.22) shows that the
reduction of the interference patterns involves smoothing and thus results in a reduc-
tion of time-frequency resolution. Moreover, depending on the type of kernel, some of the
desired properties of the time-frequency distribution are preserved while others are lost
[74]. The crucial question that arises here is : For practical purposes, what mathematical
properties would a quadratic TFD satisfy in order to ensure useful and efficient signal ana-
lysis and interpretation ? The answer to this question justifies our choice of the objective
performance measure criteria adopted in Chapter 4.

The following is a list of the main desirable properties for TFDs of quadratic class
[4, 54, 55]. We relate to each property the corresponding kernel constraints and provide
the mathematical proofs as well.
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3.6.1 Real-valued

A time-frequency distribution is real-valued if

TFDx(t, f) = TFD∗x(t, f) = <{TFDx(t, f)} ∀ t, f (3.39)

By calculating the complex conjugate of (2.22) using the instantaneous autocorrelation
notation Ux(t, τ) = x(t+ τ/2)x∗(t− τ/2) and making the change of integration variables
τ ′ = −τ and η′ = −η we get

TFD∗x(t, f) =

∫ ∫ ∫ +∞

−∞
e−j2πη(s−t)φ∗(η, τ)U∗x(s, τ)e+j2πfτdηdsdτ

= −
∫ −∞

+∞

∫ (
−
∫ −∞

+∞
ej2πη

′(s−t)φ∗(−η′,−τ ′)Ux(s, τ ′)e−j2πfτ
′
dη′dsdτ ′

)
=

∫ ∫ ∫ +∞

−∞
ej2πη(s−t)φ∗(−η,−τ)Ux(s, τ)e−j2πfτdηdsdτ

Hence, a real quadratic distribution is obtained if the corresponding Doppler-lag kernel
satisfies

φ(η, τ) = φ∗(−η,−τ), ∀ η, τ ∈ <. (3.40)

When (3.40) holds, we get

G(t, τ) =

∫ +∞

−∞
φ(η, τ)e−j2πηtdη =

∫ +∞

−∞
φ∗(−η,−τ)e−j2πηtdη

=

∫ +∞

−∞
φ∗(η,−τ)e+j2πηtdη

=

(∫ +∞

−∞
φ∗(η,−τ)e−j2πηtdη

)∗
The realness requirement of a TFD in the time-lag domain is then

G(t, τ) = G∗(t,−τ), ∀ t, τ ∈ <. (3.41)

3.6.2 Time marginal (conservation of spectral energy density)

A time-frequency distribution TFDx(t, f) of x(t) obeys the time marginal property if∫ +∞

−∞
TFDx(t, f)dt = |X(f)|2 (3.42)

where |X(f)|2 is the energy spectral density.
By integrating (2.22) over t we obtain

I(f) =

∫ +∞

−∞

(∫ ∫ ∫ +∞

−∞
e−j2πη(s−t)φ(η, τ)Ux(s, τ)e−j2πfτdηdsdτ

)
dt (3.43)

=

∫ ∫ ∫ +∞

−∞

[∫ +∞

−∞
e+j2πηtdt

]
e−j2πηsφ(η, τ)Ux(s, τ)e−j2πfτdηdsdτ
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Since
∫ +∞
−∞ e+j2πηtdt = δ(η) and δ(η)e−j2πηsφ(η, τ) = φ(0, τ)δ(η) it yields

I(f) =

∫ ∫ +∞

−∞

[∫ +∞

−∞
δ(η)dη

]
︸ ︷︷ ︸

1

φ(0, τ)Ux(s, τ)e−j2πfτdsdτ

=

∫ ∫ +∞

−∞
φ(0, τ)Ux(s, τ)e−j2πfτdsdτ (3.44)

In the case of (the requirement for time marginal property in the Doppler-lag domain)

φ(0, τ) = 1, ∀τ. (3.45)

then

I(f) =

∫ ∫ +∞

−∞
x(s+ τ/2)x∗(s− τ/2)e−j2πfτdsdτ (3.46)

From the definition of the Wigner-Ville distribution, the integral (3.46) can be rewritten
as follows

I(f) =

∫ +∞

−∞
Wx(s, f)ds = |X(f)|2. (3.47)

since the WVD verifies the marginal properties.
From the development above, we conclude that in order to a TFD of the quadratic

class preserves the marginal property with respect to time, the kernel must satisfy (3.45).

3.6.3 Frequency marginal (conservation of instantaneous power)

A time-frequency distribution TFDx(t, f) obeys the frequency marginal property if it
reduces to the instantaneous power by integrating over f , i.e.∫ +∞

−∞
TFDx(t, f)df = |x(t)|2 (3.48)

By integrating (2.22) over f we obtain

I(t) =

∫ +∞

−∞

(∫ ∫ ∫ +∞

−∞
e−j2πη(s−t)φ(η, τ)Ux(s, τ)e−j2πfτdηdsdτ

)
df (3.49)

=

∫ ∫ ∫ +∞

−∞

[∫ +∞

−∞
e−j2πfτdf

]
e−j2πη(s−t)φ(η, τ)Ux(s, τ)dηdsdτ

Since
∫ +∞
−∞ e−j2πfτ df = δ(τ) and δ(τ) φ(η, τ) Ux(s, τ) = δ(τ) φ(η, 0) Ux(s, 0) =

φ(η, 0) x(s) x∗(s) δ(η) = φ(η, 0) |x(s)|2 δ(τ) it yields

I(t) =

∫ ∫ +∞

−∞

[∫ +∞

−∞
δ(τ)dτ

]
︸ ︷︷ ︸

1

e−j2πη(s−t)φ(η, 0)|x(s)|2dsdη

=

∫ ∫ +∞

−∞
e−j2πη(s−t)φ(η, 0)|x(s)|2dsdη (3.50)
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In the case of (the requirement for frequency marginal property in the ambiguity domain)

φ(η, 0) = 1, ∀η. (3.51)

it results

I(t) =

∫ +∞

−∞

[∫ +∞

−∞
e−j2πη(s−t)dη

]
|x(s)|2ds (3.52)

From the delta function properties we have
∫ +∞
−∞ e−j2πη(s−t)dη = δ(s− t). Thus, (3.52) can

be rewritten as follows

I(t) =

∫ +∞

−∞
δ(s− t)|x(s)|2ds

=

∫ +∞

−∞
δ(s− t)|x(t)|2ds

= |x(t)|2
[∫ +∞

−∞
δ(s′)ds′

]
︸ ︷︷ ︸

1

(s′ = s− t)

I(t) = |x(t)|2. (3.53)

We conclude that in order to a quadratic TFD preserves the marginal property with
respect to frequency, the kernel must satisfy condition (3.51). Then, G(t, τ) verifies (the
requirement for frequency marginal property in the time-lag domain)

G(t, 0) =

∫ +∞

−∞
φ(η, 0)e−j2πηtdη = δ(t), ∀t. (3.54)

3.6.4 Energy conservation

A given TFD of x conserves energy if, by integrating it over time and frequency, we
obtain the energy of x

Ex =

∫ +∞

−∞

∫ +∞

−∞
TFDx(t, f)dtdf =

∫ +∞

−∞
I(f)df. (3.55)

where I(f) =
∫ +∞
−∞ TFDx(t, f)dt. From (3.44), the right-hand side (RHS) integral in (3.55)

is expressed as follows∫ +∞

−∞
I(f)df =

∫ +∞

−∞

[∫ +∞

−∞

∫ +∞

−∞
φ(0, τ)Ux(s, τ)e−j2πfτdsdτ

]
df

=

∫ +∞

−∞

∫ +∞

−∞

[∫ +∞

−∞
e−j2πfτdf

]
︸ ︷︷ ︸

δ(τ)

φ(0, τ)Ux(s, τ)dsdτ
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Since δ(τ)φ(0, τ)Ux(s, τ) = φ(0, 0)Ux(s, 0)δ(τ) = φ(0, 0)x(s)x∗(s)δ(τ) = φ(0, 0)|x(s)|2δ(τ)
it yields ∫ +∞

−∞
I(f)df = φ(0, 0)

∫ +∞

−∞
δ(τ)dτ︸ ︷︷ ︸
1

∫ +∞

−∞
|x(s)|2ds

= φ(0, 0)

∫ +∞

−∞
|x(s)|2ds. (3.56)

Hence, if one wants to preserve the energy conservation characteristic, the kernel must
satisfy (the requirement for energy conservation property)

φ(0, 0) = 1. (3.57)

Note that since the peaks of the KCS kernels in the ambiguity domain are located at
the point (η = 0,τ = 0), they can always be normalized so that φKCS(0, 0) = 1. Hence,
their respective distributions satisfy the energy conservation property.

3.6.5 Translation covariance

A bilinear TFD is time and frequency covariant if

y(t) = x(t− t0) ⇒ TFDy(t, f) = TFDx(t− t0, f) (3.58)

y(t) = x(t)ej2πf0t ⇒ TFDy(t, f) = TFDx(t, f − f0) (3.59)

Conditions (3.58) and (3.59) hold for any quadratic TFD that belongs to the Cohen’s
class since the Doppler-lag kernel φ(η, τ) is independent of t and f . In fact, for any time-
shift t0 so that y(t) = x(t− t0) we have

TFDy(t, f) =

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)y(s+ τ/2)y∗(s− τ/2)e−j2πfτdsdτ

=

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)x(s− t0 + τ/2)x∗(s− t0 − τ/2)e−j2πfτdsdτ

=

∫ +∞

−∞

∫ +∞

−∞
J(s′ − (t− t0), τ)x(s′ + τ/2)x∗(s′ − τ/2)e−j2πfτds′dτ

= TFDx(t− t0, f). (3.60)

On the other hand, for any frequency-shifted signal y(t) = x(t)ej2πf0t we have

TFDy(t, f) =

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)y(s+ τ/2)y∗(s− τ/2)e−j2πfτdsdτ

=

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)x(s+ τ/2)ej2πf0(s+τ/2)x∗(s− τ/2)e−j2πf0(s−τ/2)

× e−j2πfτdsdτ
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=

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)x(s+ τ/2)x∗(s− τ/2)e−j2π(f−f0)τdsdτ

= TFDx(t, f − f0). (3.61)

Similarly, a simultaneous time shift and modulation lead to a shift in both time and
frequency of the TFDs of Cohen’s class

y(t) = x(t− t0)ej2πf0t ⇒ TFDy(t, f) = TFDx(t− t0, f − f0). (3.62)

3.6.6 Dilations covariance

A given TFD preserves dilations if

y(t) =
√
k x(kt), k > 0 ⇒ TFDy(t, f) = TFDx

(
kt,

f

k

)
(3.63)

From (2.23), the TFD of y is given by

TFDy(t, f) =

∫ +∞

−∞

∫ +∞

−∞
J(s− t, τ)y(s+ τ/2)y∗(s− τ/2)e−j2πfτdsdτ

= k

∫ ∫ +∞

−∞
J(s− t, τ)x(ks+ kτ/2)x∗(ks− kτ/2)e−j2πfτdsdτ (3.64)

Let : s′ = ks and τ ′ = kτ . Then

TFDy(t, f) =
1

k

∫ +∞

−∞

∫ +∞

−∞
J

(
s′

k
− t, τ

′

k

)
x(s′+τ ′/2)x∗(s′−τ ′/2)e−j2π

f
k
τ ′ds′dτ ′ (3.65)

On the other hand

TFDx

(
kt,

f

k

)
=

∫ +∞

−∞

∫ +∞

−∞
J(s− kt, τ)x(s+ τ/2)x∗(s− τ/2)e−j2π

f
k
τdsdτ (3.66)

Hence, the dilations are preserved if

J
( s
k
− t, τ

k

)
= k J(s− kt, τ). (3.67)

or equivalently (the requirement for dilation covariance property in the time-lag domain)

G
(
t− s

k
,
τ

k

)
= k G(kt− s, τ). (3.68)

According to (2.24), the left-hand side (LHS) of (3.67) is expressed as follows

J
( s
k
− t, τ

k

)
=

∫ +∞

−∞
φ
(
η,
τ

k

)
ej2πη(

s−kt
k ) dη (3.69)
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By making η′ = η/k we get

J
( s
k
− t, τ

k

)
= k

∫ +∞

−∞
φ
(
η′k,

τ

k

)
ej2πη

′(s−kt) dη′ (3.70)

The RHS of (3.67) is given by

k J(s− kt, τ) = k

∫ +∞

−∞
φ(η, τ)ej2πη(s−kt) dη (3.71)

From (3.70) and (3.71), for k 6= 1 ; condition (3.67) holds only for product kernels
verifying (the requirement for dilation covariance property in the ambiguity domain)

φ(η, τ) = ϕ(ητ). (3.72)

3.6.7 Wide-sense time support conservation

This property is satisfied if the quadratic TFD of a signal that has a compact support
in time possesses also the same compact support in time

x(t) = 0 for |t| > T ⇒ TFDx(t, f) = 0 for |t| > T (3.73)

From (2.23), condition (3.73) implies that the following equality holds∫ +∞

−∞
J(s− t, τ)x(s+ τ/2)x∗(s− τ/2)ds = 0 for |t| > T (3.74)

or equivalently∫ +∞

−∞
J(s, τ)x(s+ t+ τ/2)x∗(s+ t− τ/2)ds = 0 for |t| > T (3.75)

The integral above is different from zero if

−T ≤ s+ t+ τ/2 ≤ T and − T ≤ s+ t− τ/2 ≤ T (3.76)

which corresponds to the values of s verifying

−T − t− τ/2 ≤ s ≤ T − t− τ/2 and − T − t+ τ/2 ≤ s ≤ T − t+ τ/2 (3.77)

Hence, the integration boundaries in (3.75) are limited to the interval

−T − t+ |τ |/2 ≤ s ≤ T − t− |τ |/2. (3.78)

For t > |T |, we distinguish two ranges of variation for the variable s

t > T ⇒ T − t < 0 ⇒ s < −|τ |/2 (3.79)

t < −T ⇒ −T − t > 0 ⇒ s > |τ |/2 (3.80)

From (3.79) and (3.80), we conclude that the nullity of (3.75) is guaranteed if

∀τ, J(s, τ) = 0 for |s| > |τ |/2 . (3.81)

Using the time-lag domain notation we get (the kernel requirement for wide-sense time
support conservation property)

∀τ, G(t, τ) = 0 for |t| > |τ |/2 . (3.82)
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3.6.8 Wide-sense frequency support conservation

This property is verified if the TFD of a signal that possesses a compact support in
frequency has also the same compact support in frequency

X(f) = 0 for |f | > B ⇒ TFDx(t, f) = 0 for |f | > B (3.83)

Similarly to the development of Sec. 3.6.7, the requirement for frequency support
conservation in the wide sense includes the following condition [54]

∀η, ψ(η, f) = 0 for |f | > |η|/2 . (3.84)

where

ψ(η, f) =

∫ +∞

−∞
φ(η, τ)ej2πfτdτ (3.85)

denotes the Doppler-frequency kernel.

3.6.9 Instantaneous frequency conservation

This property is satisfied if the instantaneous frequency of a signal x can be recovered
from the TFD as its first order moment in frequency, that is

fx(t) =

∫ +∞
−∞ f TFDxa(t, f)df∫ +∞
−∞ TFDxa(t, f)df

4
=

1

2π

d

dt
arg(xa(t)) =

1

2π
θ
′
(t) (3.86)

where xa(t) = a(t)ejθ(t) is the analytic signal associated to x.
The importance of this property is more apparent in case of a monocomponent signal

with frequency modulation : A time-frequency representation that satisfies (3.86) should
live near the curve of the instantaneous frequency [57], which results on good estimation
of the IF laws.

To prove the instantaneous frequency conservation, we use the derivative with respect
to τ of the inverse Fourier transform of TFDxa(t, f)

∂

∂τ
TF−1(TFDxa(t, f)) =

∂

∂τ

∫ +∞

−∞
TFDxa(t, f)ej2πfτdf

= j2π

∫ +∞

−∞
f TFDxa(t, f)ej2πfτdf (3.87)

On the other hand, we have seen in Sec. 2.3.4 that TFDxa(t, f) can be viewed as the
Fourier transform of CJxa(t, τ) with respect to τ . Hence

∂

∂τ
TF−1(TFDxa(t, f)) =

∂

∂τ
CJxa(t, τ)

=
∂

∂τ

∫ +∞

−∞
xa(s+ τ/2)x∗a(s− τ/2)J(s− t, τ)ds

= I1(t, τ) + I2(t, τ) (3.88)

61



Chapter 3. High-Resolution TFDs based on KCS : Building and Mathematical Properties

where

I1(t, τ) =

∫ +∞

−∞

∂

∂τ
J(s− t, τ) (xa(s+ τ/2)x∗a(s− τ/2)) ds (3.89)

and

I2(t, τ) =
1

2

∫ +∞

−∞

(
x
′

a(s+ τ/2)x∗a(s− τ/2)− xa(s+ τ/2)x∗a
′
(s− τ/2)

)
J(s− t, τ)ds

(3.90)
At τ = 0 it results in

I1(t, 0) =

∫ +∞

−∞

∂

∂τ
J(s− t, τ)|τ=0|xa(s)|2ds (3.91)

and

I2(t, 0) =
1

2

∫ +∞

−∞

(
x
′

a(s)x
∗
a(s)− xa(s)x∗a

′
(s)
)
J(s− t, 0)ds (3.92)

with

x
′

a(s)x
∗
a(s) − xa(s)x

∗
a

′
(s) =

(
a
′
(s) ejθ(s) + j θ

′
(s) a(s) ejθ(s)

)
a(s) e−jθ(s) −(

a
′
(s) e−jθ(s) − j θ′(s) a(s) e−jθ(s)

)
a(s) ejθ(s)

= 2j θ
′
(s) |xa(s)|2 (3.93)

In the case of φ(η, 0) = 1, ∀η ; then

I2(t, 0) = j

∫ +∞

−∞
θ
′
(s)|xa(s)|2δ(s− t, 0)ds

= jθ
′
(t)|xa(t)|2

∫ +∞

−∞
δ(s− t, 0)ds = jθ

′
(t)|xa(t)|2 (3.94)

On the other hand, we have
∫ +∞
−∞ TFDxa(t, f) = |xa(t)|2 since the time marginal

constraint is satisfied. From (3.87) and (3.88) we get∫ +∞
−∞ f TFDxa(t, f)df∫ +∞
−∞ TFDxa(t, f)df

=
1

2π
θ
′
(t) +

1

j2π|xa(t)|2

∫ +∞

−∞

∂

∂τ
J(s− t, τ)|τ=0|xa(s)|2ds (3.95)

If the following additional condition holds

∂

∂τ
J(s− t, τ)|τ=0 = 0 =⇒

∫ +∞

−∞

∂

∂τ
φ(η, τ)|τ=0e

j2πη(s−t)dη = 0, ∀η (3.96)

then (3.86) follows.
In conclusion, the instantaneous frequency is conserved if the following two conditions

hold

∀η, φ(η, 0) = 1 and
∂

∂τ
φ(η, τ)|τ=0 = 0. (3.97)

Using the time-lag kernel notation, the required conditions are

∀t, G(t, 0) = δ(t) and
∂

∂τ
G(t, τ)|τ=0 = 0. (3.98)
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3.6.10 Group delay conservation

In a dual way, this property is verified if the group delay of x can be obtained as the
first order moment in time of its TFD

tx(f) =

∫ +∞
−∞ t TFDxa(t, f)dt∫ +∞
−∞ TFDxa(t, f) dt

4
= − 1

2π

d

df
arg(Xa(f)) = − 1

2π
Φ
′
(f) (3.99)

where Xa(f) = |Xa(f)|ejΦ(f) is the Fourier transform of the analytic signal xa(t).

Similarly to the instantaneous frequency case but using the frequency domain rela-
tions ; we find that the requirement for group delay property includes the following two
conditions

∀τ, φ(0, τ) = 1 and
∂

∂η
φ(η, τ)|η=0 = 0. (3.100)

3.6.11 Unitarity

The unitarity property expresses the conservation of the scalar product from the time-
domain to the time-frequency domain (apart from the squared modulus)∣∣∣∣∫ +∞

−∞
x(t) y∗(t)dt

∣∣∣∣2 =

∫ +∞

−∞

∫ +∞

−∞
TFDx(t, f)TFD∗y(t, f) dt df (3.101)

The identity above is usually called Moyal’s formula [54].

From the definition (3.101), it is clear that the unitarity cannot be satisfied by any
smoothed version of the WVD : It can be easily proved that the following requirement
must follow

|φ(η, τ)| = 1, ∀η, τ. (3.102)

3.6.12 Perfect localization on linear chirp signals

This property is achieved if the following condition holds

x(t) = ej2π(f0+2βt)t ⇒ TFDx(t, f) = δ(f − (f0 + βt)) (3.103)

It is obvious that condition (3.103) only holds for the Wigner-Ville distribution since
it is the only case where we get a sum of complex exponentials (the kernel φWV (η, τ) =
1,∀ η, τ)

Wx(t, f) =

∫ +∞

−∞
ej2π[f0+2β(t+τ/2)](t+τ/2)e−j2πfτe−j2π[f0+2β(t−τ/2)] (t−τ/2)dτ

=

∫ +∞

−∞
e−j2π[f−(f0+βt)]τdτ

= δ(f − (f0 + βt)). (3.104)
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3.7 Comparative study of mathematical properties

Table 3.1 gives comparison between the most known quadratic kernel-based transforms
and the KCS TFDs in terms of mathematical properties. It is important to note that there
is a tradeoff between the quantity of interferences and the number of good properties. In
fact, many popular and valuable TFDs (e.g., the spectrogram) do satisfy neither the time
and frequency marginals nor the IF moment condition. Another example is the pseudo-
WVD : Its improved readability and considerable interference attenuation compared to
the basic WVD induces the loss of the marginal properties, the unitarity, and also the
frequency-support conservation [55].

What is more important in most practical applications is to maximize the energy
concentration about the IF for monocomponent signals and improve the resolution for
multicomponent signals [2]. A detailed study of components concentration preservation
versus crossterm suppression tradeoff was performed by Hlawatsch et al. [75]. The authors
show that while the separable kernel TFD did not satisfy the mathematical desirable pro-
perties of the WVD, it resulted in the best artifacts suppression/components concentration
preservation compromise for all of the considered signals [26]. They also argued that the
classical mathematical properties are secondary or even not important when practical
time-frequency signal analysis is considered. Concerning KCS-based TFDs, the powerful
point is that they have by definition a limited bandwidth extent since they have a compact
support. The kernel bandwidth is controlled through the parameter C for both the CB
and the SCB kernels and γ for the PCB allowing a tradeoff between a good autoterm
resolution and sufficient crossterm suppression.

Table 3.1 – Mathematical properties verified by WVD, CWD, BJD, ZAMD, Spectro-
gram, CB TFD, SCB TFD and PCB TFD.

WVD CWD BJD ZAMD Spectrogram CB
TFD

SCB
TFD

PCB
TFD

Real-valued × × × × × × × ×
Time marginal × × ×
Frequency marginal × × ×
Energy conservation × × × × × × ×
Translation covariance × × × × × × × ×
Dilations covariance × × ×
Wide-sense time support conser-
vation

× × × ×

Wide-sense frequency support
conservation

× × ×

Instantaneous frequency × × ×
Group delay × × ×
Perfect localization on linear
chirp signals

×

Unitarity ×
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3.8 Suitable properties of TFDs for practical uses

The practical efficiency of a time-frequency representation is directly related to the
following properties [4, 26]

1. Energy distribution property

The TFD should be real, and the signal energy in a certain region R in the t−f plane,
ExR , should be given by the following integral over R∫

4t

∫
4f
TFDx(t, f)df dt = ExR (3.105)

where ExR is a portion of signal energy in the time interval4t and the frequency band4f .

2. IF peak property

The dominant peak of the constant-time cross-section of the TFD of a monocomponent
FM signal should provide the IF law which describes the signal FM law

max
f

TFDx(t, f) = fi(t) (3.106)

For multicomponent FM signals, the same property should apply to each of the signal’s
components.

3. Concentration and resolution property

The TFD of a multicomponent FM signal should provide a good time-frequency reso-
lution of the individual components. This requires a good energy concentration for each of
the components and a good elimination of the inner and outer interference terms relative
to the signal components. The practical experience shows also that the TFD’s robustness
against noise is directly related to the goodness of this property.

Note that a TFD has best energy concentration for a given multicomponent signal if for
each signal component, it yields a) the smallest instantaneous bandwidth relative to the
component IF, and b) the minimum sidelobe magnitude relative to mainlobe magnitude
[2]. More details are provided in Sec. 4.3. The frequency resolution in a power spectrum
density (PSD) of two single tones of frequencies f1 and f2, respectively is defined as the
minimum difference f1 − f2 for which the following inequality holds [2]

f1 +
V1

2
< f2 −

V2

2
, f1 < f2 (3.107)

where the Vi, i = 1, 2 are the respective bandwidths of the two sinusoids as shown in Fig.
3.16. We say in such situations that the signal components are resolved in contrast to the
case of Fig. 3.17 where the TFD’s two components and the crossterm or probably the
TFD’s two crossing autoterms have merged in a single lobe. The components are said to
be unresolved.
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Figure 3.16 – Resolution in a PSD of a signal consisting of two sinusoids f1 and f2 , with
the corresponding bandwidths V1 and V2 . The two lobes are clearly distinguishable from
each other ; the components are said to be resolved [2].

Figure 3.17 – Slice of a TFD ρz(t, f) of a two-component FM signal z(t) taken at the
time instant t = t0. In this case, the components are said to be unresolved [2].

3.9 Conclusion

The building of the KCS TFDs is based on two fundamental concepts : 1) Approxima-
tion of the Gaussian kernel based on the theory of mollifiers in order to benefit from its
most important features and 2) extension of the kernels over a time-lag compact support
in order to overcome the information loss and prohibitive processing time due to the trun-
cation of the Gaussian function and the mask size, respectively, and provide at the same
time impressive reduced-interference and higher resolution in both time and frequency by
simply tuning the kernel’s bandwidth.

After examination of the satisfied mathematical properties, we evaluate in the next
chapter the performance of the KCS TFDs by referring to a specific set of objective crite-
ria. Then, by taking into consideration different types of nonstationary multicomponent
signals ; we optimize a selection of TFDs including the most known quadratic distribu-
tions and the KCS-based representations using several theoretical measures related to
signal concentration and the recently developed Boashash-Sucic’s normalized instanta-
neous resolution performance measure [1, 26].
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Chapter 4

Objective Assessment and
Optimization Criteria of TFDs

Observation and analysis of signal energy distributions over the t − f plane permits
to provide information about the number of components present in the signal with their
respective time supports and frequency bandwidths, their related amplitudes and instan-
taneous frequency laws. However, the choice of the right TFD to analyze the given signal is
not straightforward, even for monocomponent signals and the task becomes more complex
when one deals with multicomponent signals [2].

According to the common practice, determination of the best representing TFD is
based on visual inspection of the TFD plots so that the most appealing one is chosen
[2]. In this chapter, the performance of the KCS-based TFDs is compared to the best
classical quadratic TFDs using several tests on multicomponent signals with linear and
nonlinear frequency modulation (FM) components including the noise effects. Instead
of relying solely on visual inspection of the time-frequency domain plots, comparisons
are based on practical parameters’ computation that requires a deep analysis of each time
slice plot and include the evaluation of the recently developed Boashash-Sucic’s normalized
instantaneous resolution performance measure that permits to provide the optimized TFD
using a specific methodology. The latter is described in detail after presenting a review on
some theoretical measures that deal essentially with signal concentration. In all presented
examples, the KCS TFDs show a significant interference rejection, with the component
energy concentration around their respective instantaneous frequency laws yielding to
high resolution measure values.
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4.1 Introduction

Just like some spectral estimates are better than others, some time-frequency distri-
butions outperform others when used to analyze certain classes of signals [3, 39, 76, 77].
For example, the Wigner-Ville distribution (WVD) is known to be optimal for linear fre-
quency modulated monocomponent signals since it achieves the best energy concentration
around the signal IF law. The spectrogram, on the other hand, results in an undesirable
smoothing of the signal energy around its IF [3]. Consequently, the choice of the right
TFD to analyze a given signal is not straightforward. An illustration example is the bat
echolocation signal [78] whose time and frequency variations are depicted in Fig. 4.1. This
signal is represented in the t−f plane using the WVD, the spectrogram, the Born-Jordan
distribution, the Choi-Williams distribution, the Zhao-Atlas-Marks distribution, the CB
TFD, the SCB TFD and the PCB TFD (Fig. 4.2). The KCS length is set to 64 while
D = λ = 3.

According to the common practice, one would visually inspect the eight images then
compare the different TFD plots and choose the most appealing one, i.e. the plot that cor-
responds to less interference and better components’ concentration [2]. For our example,
we can see that the KCS-based TFDs and the spectrogram have cleaner plots (better
componenents’ concentration and reduced interference) than the other distributions. Ho-
wever, the visual inspection is difficult and very subjective which justifies the need for an
objective informational performance measure for TFDs.

Note that the plots and the numerical results are obtained from our realized toolbox
(TFDOP) that uses some functions and graphical user interfaces of F. Auger et al. toolbox
[79] in order to generate some synthetic signals and distributions and display the TFDs.

Figure 4.1 – Time and frequency representations of the bat echolocation signal.
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(a) (b)

(c) (d)

(e) (f)

69



Chapter 4. Objective Assessment and Optimization Criteria of TFDs

(g) (h)

Figure 4.2 – A selection of TFDs of the bat echolocation signal. (a) WVD, (b) Spec-
trogram (Hanning, L = 55), (c) BJD, (d) CWD (σ = 0.6), (e) ZAMD (α = 0.8), (f) CB
TFD (C = 1.4), (g) SCB TFD (C = 1.4) and (h) PCB TFD (γ = 2).

4.2 Concentration-based performance measures of TFDs

The performance of a given time-frequency representation of a multicomponent signal
is usually measured through the inspection of three important criteria

– Concentration of the autoterms around the IF laws,
– Resolution of the individual nonstationary signal’s components,
– Suppression of the crossterms of the TFD.

Among the quantitative performance measures that exist in the time-frequency si-
gnal analysis literature, few of them are based on an objective numerical evaluation of
the goodness of a TFD. In this section, a selection of measurement methods based on
concentration criterion are viewed and applied to different quadratic TFDs.

4.2.1 Rényi entropy

In [80], the entropy measure, originally used in probability, information theory and
quantification of the diversity and uncertainty of a system ; was introduced in the field
of time-frequency signal analysis in order to quantify the information by measuring the
signal’s complexity. By the probabilistic analogy, minimizing the complexity or informa-
tion in a particular TFD is equivalent to maximizing its concentration, peakiness, and,
therefore, resolution [81].

The continuous form of the Rényi entropy, introduced as a TFD measure by Sang and
Williams [82], is given by

Rα =
1

1− α
log2

∫ +∞

−∞

∫ +∞

−∞
TFDα

x (t, f)dtdf (4.1)
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where α is the order of Rényi entropy and it is recommended to be greater than or equal
to 2 for time-frequency applications [83]. The discrete form of this entropy is formulated
as follows

Rα =
1

1− α
log2

(∑
n

∑
k

TFDα
x (n, k)

)
(4.2)

Such a measure of entropy is employed for estimating the concentration of a TFD accor-
ding to the following rule : Small values of entropy correspond to low complexity/high
concentration TFDs.

4.2.2 Rényi entropy normalized by signal energy

A normalized version of the Rényi entropy by the signal energy is defined as [82]

RNSEα =
1

1− α
log2

(∫ +∞
−∞

∫ +∞
−∞ TFDα

x (t, f)dtdf∫ +∞
−∞

∫ +∞
−∞ TFDx(t, f)dtdf

)
(4.3)

with α ≥ 2. Its discrete form is

RNSEα =
1

1− α
log2

(∑
n

∑
k TFD

α
x (n, k)∑

n

∑
k TFDx(n, k)

)
(4.4)

4.2.3 Rényi entropy normalized by distribution volume

A normalized version of the Rényi entropy by the distribution volume is expressed as
follows [82]

RNDVα =
1

1− α
log2

( ∫ +∞
−∞

∫ +∞
−∞ TFDα

x (t, f)dtdf∫ +∞
−∞

∫ +∞
−∞ |TFDx(t, f)|dtdf

)
; α ≥ 2 (4.5)

or equivalently, in the discrete form

RNDVα =
1

1− α
log2

( ∑
n

∑
k TFD

α
x (n, k)∑

n

∑
k |TFDx(n, k)|

)
(4.6)

4.2.4 Ratio of norms concentration measure

This measure was proposed by Jones and Parks [84]. It is defined as the ratio of the
fourth power norm of TFDx(t, f) and its second power norm

RN =

∫ +∞
−∞

∫ +∞
−∞ TFD4

x(t, f)dtdf(∫ +∞
−∞

∫ +∞
−∞ TFD2

x(t, f)dtdf
)2 (4.7)

RN is given in the discrete case as follows

RN =

∑
n

∑
k TFD

4
x(n, k)

(
∑

n

∑
k TFD

2
x(n, k))2 (4.8)

The optimal distribution from concentration point of view is the one that maximizes
the measure RN .

71



Chapter 4. Objective Assessment and Optimization Criteria of TFDs

4.2.5 Stankovic concentration measure

Stankovic has developed a new optimization criterion for objective assessment of TFD’s
concentration. The proposed measure is defined in the continuous form as [85]

Sβ =

(∫ +∞

−∞

∫ +∞

−∞
|TFDx(t, f)|(1/β)dtdf

)β
; β ≥ 2 (4.9)

Its discrete expression is given by

Sβ =

(∑
n

∑
k

|TFDx(n, k)|(1/β)

)β

(4.10)

This concentration measure was used for the optimal window selection in the spectro-
gram [4]. The optimized distribution results on high concentration of the autoterms. This
corresponds to the smallest value of Sβ.

4.2.6 Comparative study of concentration-based performance
measures

The first comparative example concerns the bat echolocation real-life signal whose
time-frequency characteristics are depicted in Fig. 4.2. Table 4.1 provides comparisons
between several popular concentration-based performance measures of TFDs in represen-
ting the investigated signal.

Table 4.1 – Concentration-based performance measures for a selection of TFDs of the
bat echolocation signal.

TFD Optimal kernel parameters RNSE3 RNDV3 RN(×104) S4(×10−8)

WVD N/A 4.1652 5.2922 3.84 5.4639
Spectrogram Hanning, L = 55 4.4409 4.4409 3.38 0.3511

BJD N/A 4.4429 4.7582 2.73 1.6843
CWD σ = 0.6 5.0425 5.1125 1.2 1.6500
ZAMD α = 0.8 4.0625 5.6043 1.08 11.644

CB TFD C = 1.4 4.7542 4.7788 11.46 0.3959
SCB TFD C = 1.4 4.7436 4.7921 12.12 0.4143
PCB TFD γ = 2 3.8948 3.9015 11.63 0.0539

We observe that the energy normalized Rényi entropy measure RNSE3 defines the
ZAMD and the WVD as the best-performing TFDs after the PCB TFD. On the other
hand, the SCB TFD and the CB TFD are identified as the worst-performing representa-
tions together with the CWD while the BJD performs as well as the spectrogram.

The volume normalized Rényi entropy measure RNDV3 classifies the PCB TFD as the
best TFD in representing the bat echolocation signal followed by the spectrogram and the
BJD whose concentration performance is better than the CB TFD and the SCB TFD.
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The ratio of norms measure RN is optimized using the KCS-based TFDs, as expected
from the plots of Fig. 4.2. However, the WVD is classified as the signal fourth best TFD,
better than the spectrogram, the BJD, the CWD and the ZAMD TFDs.

It is obvious that neither RNSE3 , RNDV3 nor RN can exactly match the expected
results of TFDs’ performances in accordance to the visual inspection of the t − f plots.
We deduce that minimizing the Rényi entropy or maximizing the ratio of norms does not
imply necessarily good resolution measure and better crossterms’ suppression.

The measure S4 identifies the KCS-based TFDs as the signal best representations fol-
lowed by the spectrogram. This approaches from the visual inspection results and then the
Stankovic measure is, in this case, the best informative one in terms of accurate concen-
tration/resolution performances and crossterms reduction indications.

The second example deals with a two-component synthetic signal of duration T = 128
that contains two crossing quadratic FMs such that (f(t = 1) = f(t = 128) = 0.1 Hz ;
f(t = 64) = 0.35 Hz) for the concave component and (f(t = 1) = f(t = 128) = 0.3
Hz ; f(t = 64) = 0.15 Hz) for the convex one. We inspect again the coherence between a
selection of quadratic time-frequency plots of Fig. 4.3 and the numerical values depicted
in Table 4.2 presenting a set of concentration-based performance measures.

Table 4.2 – Concentration-based performance measures for a selection of TFDs of a
signal consisting of two crossing quadratic FMs.

TFD Optimal kernel parameters RNSE3 RNDV3 RN(×104) S4(×10−17)

WVD N/A 5.7202 6.8062 6.14 3.5967
Spectrogram Bartlett, L = 27 5.7752 5.7752 13.45 0.0902

BJD N/A 5.7862 6.0471 6.89 0.6711
CWD σ = 0.85 5.8153 6.1853 20.75 1.5265
ZAMD α = 0.16 5.6468 6.9282 7.57 5.7092

CB TFD D = 3, C = 7 6.8675 6.8703 12.23 0.1413
SCB TFD D = 3, C = 10.2 6.7742 6.7775 13.39 0.1225
PCB TFD λ = 3, γ = 11 6.4623 6.4627 13.44 0.0719

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Figure 4.3 – A selection of TFDs of a signal composed of two crossing quadratic FMs.
(a) WVD, (b) Spectrogram (Bartlett, L = 27), (c) BJD,(d) CWD (σ = 0.85), (e) ZAMD
(α = 0.16), (f) CB TFD (D = 3, C = 7), (g) SCB TFD (D = 3, C = 10.2) and (h) PCB
TFD (λ = 3, γ = 11).
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4.3. Boashash-Sucic performance measure

From theoretical point of view, the energy normalized Rényi entropy measure of order
3 classifies the ZAMD and the WVD as the optimal representations whereas the KCS-
based TFDs are defined as the worst ones. Furthermore, the spectrogram, the BJD and
the CWD perform almost the same.

The volume normalized Rényi entropy measure RNDV3 identifies the spectrogram, the
BJD, the CWD and the PCB TFD as the fourth best performing TFDs while the WVD
is found to outperform the CB TFD and the ZAMD.

TheRN measure is maximized by the CWD that performs better than the spectrogram
and the KCS-based TFDs. On the other hand, the ZAMD, the BJD and the WVD are
classified as the signal three worst TFDs.

The Stankovic measure S4 is minimized using the PCB TFD followed by the spectro-
gram, the SCB TFD and the CB TFD. The BJD performs better than the CWD. The
signal two worst representations are the WVD and the ZAMD.

From Fig. 4.3, we see clearly that the TFDs derived from the KCS kernels and the
spectrogram provide the most appealing plots and hence are the best representations of
the nonlinear nonstationary signal in terms of energy concentration, components’ resolu-
tion and crossterms’ suppression. However, the investigated theoretical measures fail to
identify the optimal TFDs in the right order of increasing performance. We conclude that
the consideration of concentration as a unique optimization criterion is not sufficient for
objective assessment of time-frequency representations.

4.3 Boashash-Sucic performance measure

From Sec. 4.2, we have concluded that efficient TFD concentration and resolution
measurement can provide a quantitative criterion to evaluate performances of different
distributions and can be used for adaptive and automatic parameters selection in t − f
analysis [4]. Signal parameters important to be considered for this purpose are shown
in Fig. 4.4, which represents a time slice (t=t0) of a typical quadratic TFD of a two-
component signal. The two dominant peaks are the signal resolved components with the
corresponding magnitudes AM1 and AM2 and the instantaneous bandwidths Vi1 and Vi2 ,
centered about the components’ IFs fi1(t) and fi2(t). The middle peak is the crossterm
of magnitude AX , whereas other smaller peaks are the two components’ sidelobes with
magnitudes AS1 and AS2 [2, 26].

From Fig. 4.4, it is seen that the frequency resolution can be quantified by the mini-
mum difference fi2(t)− fi1(t) for which a separation measure D between the components’
mainlobes, centered about their respective IFs fi1(t) and fi2(t) is positive. The compo-
nents’ separation measure D is defined as [2, 4]

D(t) =

(
fi2(t)−

Vi2 (t)

2

)
−
(
fi1(t) +

Vi1 (t)

2

)
fi2(t)− fi1(t)

= 1− Vi(t)

4fi(t)
(4.11)

where Vi(t) = (Vi1(t) + Vi2(t))/2 is the components’ mainlobes average instantaneous
bandwidth, and 4fi(t) = fi2(t)−fi1(t) is the difference between the components’ IFs. By
combining these parameters, the Boashash-Sucic’s normalized instantaneous resolution
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Figure 4.4 – Slice of a TDF ρz(t, f) of a two-component FM signal z(t) taken at the
time instant t = t0 (adopted from Boashash [2].)

performance measure Pi is defined as [2, 4, 86]

Pi(t) = 1− 1

3

[
AS(t)

AM(t)
+

1

2

AX(t)

AM(t)
+ (1−D(t))

]
, 0 < Pi(t) < 1 (4.12)

AM , AS, AX are respectively the average amplitudes of the main-lobes, side-lobes and
crossterms of two consecutive signal components. Pi is close to 1 for well-performing
TFDs and 0 for poorly-performing ones. An overall measure P is taken to be the median
of the instantaneous measures Pi corresponding to different time slices in the relevant
sections of the signals.

The parameters in (4.12) can be computed automatically for a two-component signal’s
TFD using the methodology described in [1, 26]. This includes the following steps :

1. Calculate TFDs(t, f), the TFD of the signal s(t). The kernel parameters are initially
set to a value close to their lower bounds,

2. Take a time slice of TFDs(t, f) at the instant t = t0,

3. Normalize TFDs(t0, f) so that its global maximum is 1,

4. Determine the three largest peaks of TFDs(t0, f) (in our implementation we have
considered |TFDs(t0, f)| so that the largest peak correspond always to a positive
maximum),

5. The middle peak is initially considered to be the crossterm,

6. Verify that the ratio between the remaining two peaks is close to one, and that the
peak selected as the crossterm is located close to the mid-point between the centers
(fi1 and fi2) of the other two peaks. Otherwise, select the two largest peaks as the
autoterms located at frequencies fi1 and fi2 , respectively, and the maximum located
half-way between the autoterms IFs as the crossterm,
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7. The average of the autoterms amplitudes presents the parameter AM in (4.12),
whereas the magnitude of the crossterm presents the parameter AX ,

8. Measure the components bandwidths at -3 dB of the autoterms’ amplitudes and
check whether the components are resolved by referring to condition (3.107). For
the resolved components, calculate the parameter D in (4.11). Note that if most
of the components are not resolved for some region of interest of time instants,
the TFDOP toolbox displays a warning message indicating to the user to change
the parameters’ setting of the considered TFD and then repeat the optimization
procedure again,

9. Define the components’ sidelobes corresponding to the largest peaks located at the
left side of the first component and the right side from the second component as
shown in Fig. 4.4. Their average presents the parameter AS in (4.12),

10. Compute the Boashash-Sucic’s normalized instantaneous resolution performance
measure Pi defined by (4.12) and evaluated at t = t0,

11. Repeat the steps 1-10 for a defined time interval [tstart, tend] that can be set by the
user through the TFDOP toolbox (see Appendix A). The average of the Pi values
is defined as the overall performance measure Poverall of the considered TFD given
its specific kernel parameters. The entire procedure must be repeated for different
values of the kernel’s parameters so that the optimal ones (relatively to the given
TFD and given signal) correspond to those resulting into the largest Poverall,

12. After optimizing different TFDs in this way, the optimized TFD which possesses
the largest value of Poverall among the whole set of the considered TFDs is selected
as the best-performing one in representing the signal s(t) in the t− f plane.

Note that the algorithm above can be generalized to optimize nonstationary signals
with more than two components as illustrated for example in Sec. 4.4.4. In all tests presen-
ted in the remainder of this thesis, the incremental step size of the kernel parameter is 2
for the spectrogram window size and as small as 0.01 for the other smoothing parameters
of the kernels. The purpose is to define with high precision the desired global optimum of
Poverall. Unless indicated, a default length L = 64 is used for the three time-lag compact
support kernels while D and λ are set to 5.
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4.4 TFDs’ optimization using Boashash-Sucic perfor-

mance measure : Experimental results

The performance of the KCS-based TFDs is compared to the classical best known
time-frequency distributions. Four examples are considered and discussed in detail in
order to evaluate each TFD and determine the best one in terms of concentration and
resolution. The TFDs with smoothing parameters are first optimized and their relative
overall performance measure P values are recorded in tables where

P =
1

N

N∑
j=1

Pi(t0 = j); (4.13)

and N is the full range of time instants. Then, the maximum value among them is selected
and it corresponds to the best performing TFD in representing the multicomponent test
signal.

4.4.1 Example 1 : Sum of two crossing linear FM signals

Here, we deal with a multicomponent signal s1(t) of duration T = 128 composed of
two noiseless crossing chirps of frequency ranges f = [0.1 − 0.2] Hz and f = [0.2 − 0.1]
Hz, respectively. The time-frequency representations of the signal s1(t) are given in Fig.
4.5 using several popular TFDs together with the CB TFD, the SCB TFD and the PCB
TFD. It can be seen that the KCS-based TFDs and the spectrogram have the greatest
ability to remove the cross terms and present all clear curves in contrast to the other
representations. Let us examine in depth the performance of each distribution. For this
purpose, the considered TFDs are optimized with respect to the Boashash-Sucic’s criterion
over the time interval [1, T ] except for the WVD and the BJD that have no smoothing
parameters and then they cannot be optimized.

The resulting P ’s values are recorded in Table 4.3 and they clearly reveal that the
KCS-based TFDs produce the best performance compared with the other time-frequency
representations. Moreover, the CB TFD with control parameter C = 1.44 gives the largest
value of P and hence is selected as the best performing TFD of the signal s1(t) [87].

4.4.2 Example 2 : Sum of two parallel FM signals

As a second illustration test, we consider a multicomponent signal s2(t) of length
N = 128 that consists of two closely spaced parallel linear FMs with frequencies increasing
from 0.15 to 0.25 Hz and from 0.2 to 0.3 Hz, respectively. The signal s2(t) is analyzed in
the t− f domain using the same selection of TFDs as in example 1. The time-frequency
plots of the optimized TFDs according to Boashash-Sucic’s performance measure are
shown in Fig. 4.6, where we can see that the CB TFD, the SCB TFD and the PCB TFD
have all clear plots since the two time-varying components of the signal s2(t) are well
concentrated in their respective frequency ranges and the interferences between them are
largely attenuated by the effects of the compact support nature of the three investigated
kernels.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.5 – Optimized TFDs over the entire time interval [1, 128] of the signal of example
1 composed of two crossing chirps with frequency ranges f = 0.1−0.2 Hz and f = 0.2−0.1
Hz, respectively. (a) WVD, (b) Spectrogram (Hanning, L=85), (c) BJD, (d) CWD (σ
=0.45), (e) ZAMD (α=0.8), (f) CB TFD (C=1.44), (g) SCB TFD (C=2.1) and (h) PCB
TFD (γ=2).

Table 4.3 – Optimization results for a selection of TFDs of the signal of example 1 (two
crossing chirps test).

TFD Optimal kernel Parameters P

WVD N/A 0.6581
Spectrogram Hanning, L = 85 0.8588

BJD N/A 0.7072
CWD σ = 0.45 0.7269
ZAMD α = 0.8 0.6822

CB TFD C = 1.44 0.8708
SCB TFD C = 2.1 0.8678
PCB TFD γ = 2 0.8626

In this example, we first compare the TFDs’ resolution performance at time instant
t0 = 64 ; the middle of the signal duration, including the Modified B-distribution (MBD)
[41, 42] as well. Table 4.4 reports the related performed measurements by referring to the
Boashash-Sucic’s methodology that is used to compute the parameters of (4.12), whereas
Fig. 4.7 shows the slices of a selection of TFDs at t0 = 64. It indicates that the SCB TFD
with smoothing parameter C = 0.13 is the optimal TFD of the signal s2(t) at this time
instant giving the largest value of Pi. Let us then search for the TFD that best resolves
the two chirp components of the signal s2(t) over the entire time interval [1,128]. Table
4.5 contains the optimization process and indicates that the KCS-based TFDs outperform
the other quadratic time-frequency distributions. Furthermore, it shows that the signal
s2(t) is best presented in the t − f plane using the CB TFD with parameter C = 0.11
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since it has the largest value of P .

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.6 – Optimized TFDs over the entire time interval [1, 128] of the signal of example
2 composed of two parallel LFMs with frequency ranges spreading from 0.15 to 0.25 Hz
and 0.2 to 0.3 Hz, respectively. (a) WVD, (b) Spectrogram (Hanning, L = 73), (c) BJD,(d)
CWD (σ = 1.2), (e) ZAMD (α = 0.8), (f) CB TFD (C = 0.11), (g) SCB TFD (C = 0.487)
and (h) PCB TFD (γ = 1).

Table 4.4 – Parameters and the normalized instantaneous resolution performance mea-
sure Pi of different TFDs for the time instant t0 = 64 related to example 2. The first six
measurements are adopted from [2].

TFD (optimal parameter) AM (64) AS(64) AX(64) Vi(64) ∆fi(64) D(64) Pi(64)

WVD 0.9153 0.3365 1 0.0130 0.0574 0.7735 0.6199
Spectrogram (Hanning, L = 35) 0.9119 0.0087 0.5527 0.0266 0.0501 0.4691 0.7188

BJD 0.9320 0.1222 0.3798 0.0219 0.0488 0.5512 0.7388
CWD (σ = 2) 0.9355 0.0178 0.4415 0.0238 0.0493 0.5172 0.7541

ZAMD (α = 2) 0.9146 0.4847 0.4796 0.0214 0.0420 0.4905 0.5661
Modified B (β = 0.01) 0.9676 0.0099 0.0983 0.0185 0.0526 0.5957 0.8449
CB TFD (C = 0.48) 0.9941 0.0314 0.0179 0.0159 0.0556 0.7143 0.8912
SCB TFD (C = 0.13) 0.9868 0.0183 0.0323 0.0159 0.0556 0.7143 0.8931

Table 4.5 – Optimization results for a selection of TFDs of the signal s2(t) using
Boashash-Sucic methodology.

TFD Optimal kernel Parameters P

WVD N/A 0.6449
Spectrogram Hanning, L = 73 0.8232

BJD N/A 0.6860
CWD σ = 1.2 0.7228
ZAMD α = 0.8 0.6856

CB TFD C = 0.11 0.8449
SCB TFD C = 0.487 0.8442
PCB TFD γ = 1 0.8409
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.7 – Normalized slices of TFDs at t0=64 of the signal s2(t). (a) WVD, (b)
Spectrogram (Hanning, L = 35), (c) BJD,(d) CWD (σ = 2), (e) ZAMD (α = 2), (f) CB
TFD (C = 0.48) and (g) SCB TFD (C = 0.13). The first five plots are adopted from [2]
and compare the TFDs (dashed) against the Modified B-distribution (β = 0.01) (solid).
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Given the optimal kernel parameters of Table 4.5, we compare next the same TFDs
using a selection of concentration measures described in Sec. 4.2. The obtained results are
recorded in Table 4.6 together with the P values in order to permit quantitative analysis
and comparison.

Table 4.6 – Optimization results for a selection of TFDs of the signal s2(t) using several
performance measures.

TFD Optimal kernel Parameters RNSE4 RNDV4 RN(×103) S4(×10−16) P

WVD N/A 3.8318 4.3738 2.5380 19.6868 0.6449
Spectrogram Hanning, L = 73 3.9116 3.9116 1.1380 0.2260 0.8232

BJD N/A 3.9394 4.0901 0.5860 3.2865 0.6860
CWD σ = 1.2 3.8795 4.0975 4.6640 11.5398 0.7228
ZAMD α = 0.8 3.8289 4.7735 0.4710 50.9235 0.6856

CB TFD C = 0.11 5.0370 5.0672 1.5300 5.6429 0.8449
SCB TFD C = 0.487 4.9554 4.9831 1.3230 2.6746 0.8442
PCB TFD γ = 1 4.0003 4.0069 1.3160 0.2484 0.8409

We see that the RNSE4 measure identifies the ZAMD and the WVD as the best TFDs,
the BJD is performing as well as the spectrogram while the KCS-based TFDs are classified
as the signal worst representations. On the other hand, RNDV4 defines the spectrogram
and the PCB TFD as the best distributions followed by the BJD, the CWD, the WVD
and the ZAMD TFDs whose concentration measures are higher than the SCB TFD and
the CB TFD.

The ratio of norms concentration measure is maximized using the CWD followed by the
WVD and the CB TFD. The SCB TFD and the PCB TFD outperform the spectrogram
while the BJD and the ZAMD are classified as the worst representations.

The Stankovic measure of order β = 4 favors the spectrogram, the PCB TFD and the
SCB TFD and classifies the CWD, the WVD and the ZAMD as the worst performing
TFDs of the signal s2(t). Moreover, the BJD is judged to perform better than the CB
TFD which does not correspond to the plots of Fig. 4.6.

Comparing these results to the P values indicates clearly that the Boashash-Sucic
performance measure is the most objective and coherent one in optimizing the different
quadratic TFDs and guides the analyst to the best choice of the representation that reveals
the most important information about the time-frequency variations and characteristics
of the considered signal. The most notable drawback of the Boashash-Sucic methodology
is that it requires to be repeated (M + 1)/2 times for a signal containing an odd number
M of distinct components and M/2 times for M even. This is because each inspected time
slice corresponds to a unique pair of components unless we identify and optimize only the
two overall closest components present in the signal as illustrated in Sec. 5.3. The second
drawback is the high processing time needed to get the optimal TFD depending on the
signal length, the numerical complexity of the TFD, the optimization region of interest
of time instants and frequencies and the incremental step size of the kernel parameters.
This is due to the fact that the Boashash-Sucic performance measure parameters defined
by (4.11) and (4.12) are computationally expensive because they need many calculations
for each time instant.
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4.4.3 Example 3 : Effect of additive noise

In order to check the behavior of TFDs in the case of noisy multicomponent signals, let
us search for the optimal TFD of the two-component signal s2(t) considered in example
2, embedded in additive white Gaussian noise, with a signal-to-noise ratio of 10 dB. The
test signal, denoted by s3(t), is analyzed in the t−f domain using a selection of quadratic
TFDs.

The time-frequency plots of the optimized TFDs under the constraints of Boashash-
Sucic’s criterion are shown in Fig. 4.8. Here again, from visual inspection, we can see that
the KCS-based TFDs and the spectrogram perform much better than the other considered
TFDs since they generate the most appealing plots.

Fig. 4.9 presents the time slice plots of a selection of TFDs at t0 = 67. The parameters
recorded in Table 4.7 are computed using the Boashash-Sucic’s procedure and they reflect
the high concentration and resolution performances of the KCS-based representations [88].

Table 4.8 records the final numerical results of the optimization process over the entire
time interval [1,128] and reveals that the optimal TFD of the noisy signal s3(t) is the CB
TFD with smoothing parameter C = 0.11 since it possesses the largest value of P followed
by the SCB TFD then the PCB TFD [88].

(a) (b)

(c) (d)

85



Chapter 4. Objective Assessment and Optimization Criteria of TFDs

(e) (f)

(g) (h)

Figure 4.8 – Optimized TFDs over the full duration T = 128 of the signal of example
3 composed of two parallel LFMs with frequency ranges spreading from 0.15 to 0.25 Hz
and 0.2 to 0.3 Hz, respectively ; embedded in 10 dB AWGN. (a) WVD, (b) Spectrogram
(Bartlett, L = 71), (c) BJD,(d) CWD (σ = 0.9), (e) ZAMD (α = 0.56), (f) CB TFD
(C = 0.11), (g) SCB TFD (C = 0.28) and (h) PCB TFD (γ = 1).

A last important point concerns the instantaneous frequency estimation. As noted in
Sec. 3.8, obtaining the IF laws information from the peaks of the TFD is an important
property that should be satisfied for any practical time-frequency analysis. Table 4.7 and
Fig. 4.9 show that the KCS TFDs provide accurate IF estimates for both components
calculated from the peaks of the TFDs’ dominant ridges (AM1 and AM2).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.9 – Normalized slices of TFDs at t0=67 of the signal s3(t). (a) BJD, (b) CWD
(σ = 0.9), (c) ZAMD (α = 0.56), (d) Spectrogram (Bartlett, L = 71), (e) CB TFD
(C = 0.11), (f) SCB TFD (C = 0.28) and (g) PCB TFD (γ = 1).

87



Chapter 4. Objective Assessment and Optimization Criteria of TFDs

Table 4.7 – Parameters and Pi values of different TFDs of example 3 computed at the
time instant t0 = 67.

TFD
(optimal parameters)

AM AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

BJD 0.9632 0.4210 0.7670 0.2578 0.3008 0.0234 0.0234 0.0234 0.0430 0.4545 0.5398
CWD (σ = 0.9) 0.9565 0.1903 0.2498 0.2031 0.2539 0.0313 0.0156 0.0234 0.0508 0.5385 0.7363

ZAMD (α = 0.56) 0.8921 0.5292 0.7602 0.2070 0.2461 0.0234 0.0313 0.0273 0.0391 0.3000 0.4269
Spectrogram

(Bartlett, L = 71)
0.8153 0.0087 0.1605 0.2031 0.2578 0.0203 0.0101 0.0152 0.0547 0.7219 0.8709

CB TFD (C = 0.11) 0.8658 0.0483 0.1751 0.1984 0.2540 0.0159 0.0094 0.0127 0.0556 0.7723 0.8718
SCB TFD (C = 0.28) 0.9269 0.0268 0.0817 0.1984 0.2540 0.0159 0.0099 0.0129 0.0556 0.7677 0.8982

PCB TFD (γ = 1) 0.9364 0.0553 0.0447 0.1984 0.2460 0.0159 0.0243 0.0201 0.0476 0.5777 0.8316

Table 4.8 – Optimization results for a selection of TFDs of the signal of example 3
(robustness to noise test).

TFD Optimal kernel Parameters P

WVD N/A 0.6442
Spectrogram Bartlett, L = 71 0.8222

BJD N/A 0.6764
CWD σ = 0.9 0.7173
ZAMD α = 0.56 0.6422

CB TFD C = 0.11 0.8443
SCB TFD C = 0.28 0.8439
PCB TFD γ = 1 0.8363

4.4.4 Example 4 : Sum of two sinusoidal FM signals and two
chirp signals

In this example, we consider a synthetic signal s4(t) consisting of two intersecting
sinusoidal FMs and two non-parallel, non-intersecting chirps. The nonlinear components
consist of an increasing and decreasing sinusoidal frequency modulated signals at t =
1, f(t) = 0.35 Hz, having both a period T = 128 sec with smallest and highest frequencies
equal to 0.25 Hz and 0.45 Hz respectively. The two chirps occupy the frequency ranges
f = [0.16−0.19] Hz and f = [0.07−0.1] Hz, respectively. The smallest frequency separation
between the linear and nonlinear components is within the range 0.18− 0.25 Hz near 97
sec and it is low enough and is just avoiding intersection. The purpose here is to confirm
again the effectiveness of the KCS-based kernels in detecting closely spaced components
in the case of mixtures of linear and nonlinear nonstationary signals.

Fig. 4.10 shows the superiority of the KCS TFDs and the spectrogram over the other
quadratic time-frequency distributions in resolving the four closely spaced components as
well as in reducing the crossterms.

A more precise inspection of accurate instantaneous frequency estimation from the
A more precise inspection of accurate instantaneous frequency estimation from the from
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.10 – Optimized TFDs over the time duration [1, 128] of the signal s4(t) compo-
sed of two non-parallel, non-intersecting chirps and two intersecting sinusoidal FMs. (a)
WVD, (b) Spectrogram (Hanning, L = 45), (c) BJD,(d) CWD (σ = 0.45), (e) ZAMD
(α = 0.5), (f) CB TFD (C = 3), (g) SCB TFD (C = 4) and (h) PCB TFD (γ = 4).

the The inspection of the time-depending spectrum at t = 50 sec plotted in Fig. 4.11
shows that the KCS TFDs and the spectrogram result on the best IF laws estimation, the
artifacts suppression and the resolution of the individual components at this time instant.

In this example, the Boashash-Sucic’s procedure is applied twice in order to measure
the parameters for each of the pairs of consecutive components with equal amplitudes of
each TFD time slice. The optimizing TFD’s parameters are chosen so that they produce
the greatest value of the Boashash-Sucic’s overall performance measure for both the two
linear chirps (P (1)) and the two sinusoidal FMs (P (2)) ; the resulting P to maximize is equal
to (P (1) + P (2))/2 [87, 88]. Table 4.9 presents the numerical results of the optimization
procedure and indicates that the CB TFD with parameter C = 3 is the optimal TFD for
representing s4(t) since it produces the largest value of P whereas the SCB TFD with
parameter C = 4 is the second best performing TFD [87, 88].

Table 4.9 – Optimization results of example 4.

TFD Optimal kernel Parameters P (1) P (2) P

WVD N/A 0.6428 0.6089 0.6258
Spectrogram Hanning, L = 45 0.8741 0.8644 0.8692

BJD N/A 0.6869 0.7623 0.7246
CWD σ = 0.45 0.7602 0.7687 0.7644
ZAMD α = 0.5 0.7352 0.7381 0.7366

CB TFD C = 3 0.8780 0.8786 0.8783
SCB TFD C = 4 0.8701 0.8802 0.8751
PCB TFD γ = 4 0.8813 0.8701 0.8757

One interesting practical property of TFDs is to provide the instantaneous frequency
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.11 – Normalized slices of TFDs at the time instant t = 50 sec of the signal
s4(t). (a) BJD, (b) CWD (σ = 0.45), (c) ZAMD (α = 0.5), (d) Spectrogram (Hanning,
L = 45), (e) CB TFD (C = 3), (f) SCB TFD (C = 4) and (g) PCB TFD (γ = 4).
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One interesting practical property of TFDs is to provide the instantaneous frequency
laws that describe the signal’s component FM laws. Figs. 4.12 compares the measured IF
laws obtained by the use of the Boashash-Sucic method to the exact nonlinear IF laws over
the time interval t ∈ [80, 115] sec. We see that the optimized KCS-based TFDs followed
by the spectrogram provide the most accurate approximations of the components’ actual
IFs clearly much better than the other distributions. The IF estimation of very closely
spaced linear FM components embedded in noise is examined in Chapter 5.

(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 4.12 – Comparison of the measured and actual IF laws of the two nonlinear
components of the signal s4(t). (a) Spectrogram (Hanning, L = 45), (b) BJD, (c) CWD
(σ = 0.45), (d) ZAMD (α = 0.5), (e) CB TFD (C = 3), (f) SCB TFD (C = 4) and (g)
PCB TFD (γ = 4).

4.5 Conclusion

Several time-frequency experimental tests were made to analyze linear and nonlinear
FM laws with very closely spaced multicomponent signals and noise effects. These tests
showed that the KCS-based TFDs outperform other well-known classical TFDs in terms
of crossterms reduction while still achieving the best time-frequency resolution and then
preserving high energy concentration around the components’ instantaneous frequencies.

The comparisons made are not based only on visual measure of goodness of TFD
plots by looking for the most appealing one but are quantified using the Boashash-Sucic’s
objective methodology that implies a deep inspection of each time slice, together with
some comparisons using the most popular concentration-based theoretical measures. The
KCS TFDs give in all studied cases the largest performance measure value compared to
the most known and powerful time-frequency representations. In addition, they reveal the
most information about the time-varying test signals in the t−f plane in terms of detection
of the components’ number, extraction of the IF laws from the TFD’s peaks, estimation
of signal components’ bandwidths and evaluation of sidelobe and crossterm amplitudes.
The later are the best eliminated using the KCS kernels thanks to their compact support
nature and the flexibility in tuning the kernel’s bandwidth through a single parameter
until reaching their optimization.

Note that controlling the kernel shape is more flexible using the CB and SCB kernels
compared with the PCB kernel that uses, by definition, an integer tuning parameter. The
later, however, is quickly optimized compared to the other kernels thanks to this specific
feature. The combining of these results opens the way for further promising development in
high-performing DSP systems for practical measurement of nonstationary signals’ energy.

Since the embedded systems are limited in terms of built-in hardware and software
resources, the numerical complexity of the implemented methods is very important espe-
cially for real-time applications. The next chapter discusses the computational cost of the
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kernel-based TFDs and introduces it as a fourth evaluation criterion of the investigated
representations in addition to concentration, resolution and interference mitigation.
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Chapter 5

Numerical Complexity of
Kernel-Based Time-Frequency

Distributions

This chapter presents a new objective criterion that serves to evaluate the performance
of kernel-based time-frequency distributions together with the Boashash-Sucic’s measure.
Our contribution consists of evaluating the numerical complexity of each optimized TFD
so that the final decision takes into account not only high resolution, concentration and
significant crossterm suppression but the lowest required computational cost as well. The
performance of TFDs based on kernels with compact support namely the CB TFD, the
SCB TFD and the PCB TFD is compared to the well-known kernel-based TFDs using
several tests on real-life and multicomponent signals with linear and nonlinear frequency
modulation components including the noise effects and the influence of the kernel length.
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5.1 Introduction

For any analytic signal xa(t) associated to the real signal x(t), the time-lag-based for-
mulation given by (2.26) shows that implementing a kernel-based TFD involves common
operations of Hilbert transform, autocorrelation function and FFT. Hence, the computa-
tional cost required to implement a given time-frequency representation is directly related
to the kernel’s order of complexity. In this context, we propose in this contribution a new
criterion for objective assessment and selection of the most efficient TFD by evaluating the
numerical complexity of its time-lag kernel together with the Boashash-Sucic performance
measure P. The best performing representation is thus the one that has, in the average,
the greatest achieved P over some value that ensures sufficient time and frequency re-
solutions, and the lowest computational cost CC. It is shown through several tests that
the compact support kernels outperform the other ones even for the hard case of closely
spaced noisy multicomponent signals in the t− f domain.

5.2 Computational cost evaluation of the kernels

We denote by Mr and Ar the computational cost in terms of real multiplications and
real additions, respectively. Each time-lag kernel is computed using a window of length
L. By taking advantage of the symmetry of the investigated kernels, the calculations are
reduced to the half of the window size (i.e. the quarter of the kernel corresponding to
positive values of t and τ).

Let NG be the number of the evaluation points for each time-lag kernel given by
NG = (L/2)(L/2) = L2/4, except for the Modified B-distribution (MBD) kernel [41, 42]
where NG = L/2 since it is lag-independent. The number of directly affected values,
e.g. e0 = 1, cosh(0) = 1, is denoted by Nda. Hence, the number of points that require
computation for a given kernel is Nrc = NG −Nda.

5.2.1 BJ kernel computational cost

The time-lag BJ kernel (Fig. 5.1) is obtained by substituting h(τ) = 1/|τ | and a = 2
in (2.39) yielding to

GBJ(t, τ) =

{
1/|τ | if |τ | ≥ 2|t|
0 Otherwise

(5.1)

The ratio 1/|τ | can be evaluated using the Newton-Raphson division algorithm. The
problem consists of finding the root of a function f(X) by constructing the series Xn

defined as

Xi+1 = Xi −
f(Xi)

f ′(Xi)
(5.2)

To compute the quotient q = a/b, this method is used to find the reciprocal of b starting
from an initial estimate X0 obtained from a lookup table. By taking f(X) = 1/X− b, the
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Newton-Raphson recursive solution is given by

Xi+1 = Xi −
1/Xi − b
−1/X2

i

= Xi(2− bXi) (5.3)

Figure 5.1 – The two-dimensional profile of the BJ kernel in the time-lag domain.

The convergence is quadratic and needs only four steps if the initial approximation
is well chosen. The quotient is obtained by multiplying a by the reciprocal found in
(5.3). Since the quantity (2− bXi) is the two’s complement of bXi, the Newton-Raphson
division algorithm needs nine multiplications only for a 6= 1. The order of complexity of
the BJ kernel in terms of real multiplications mr and real additions ar at a given positive
coordinate (t, τ) verifying |τ | ≥ 2|t| is reported in Table 5.1.

Table 5.1 – Computational cost of the BJ time-lag kernel for a given t > 0 and τ > 0
verifying |τ | ≥ 2|t|.

Operation mr ar
O1 = 2 t 1 0
O2 = 1/τ 8 0

Computational cost 9 0

If we denote by NBJ
nz the number of nonzero elements of the time-lag BJ kernel, the

resulting computational load is then

Mr = 9NBJ
nz (5.4)

Ar = 0 (5.5)
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5.2.2 CW kernel computational cost

Referring to Sec. 2.3.4.4, the CW kernel is adjusted in the time-lag plane through a
control parameter σ such that

GCW (t, τ) =

√
2

π

σ

|τ |
e−2σ2t2/τ2 = 0.798σ

e−2σ2t2/τ2

|τ |
(5.6)

where GCW (t, τ)→ 0 when τ → 0. Fig. 5.2 displays the shape of the CW time-lag kernel
for a) σ = 0.5 and b) σ = 2.5.

(a) (b)

Figure 5.2 – The two-dimensional profile of the CW kernel in the time-lag domain. (a)
σ = 0.5 and (b) σ = 2.5.

The Taylor series representation of the exponential function ex, x > 0, is given by

ex =
+∞∑
n=0

xn

n!
(5.7)

For negative exponents, it is recommended to use the relationship e−x = 1/ex in order to
avoid divergence.

In practice, the sum in (5.7) is approximated using Ne terms and the inverse factorial
constants 1/n! are precomputed and stored to a lookup table u. Moreover, if we save the
previously computed powers of x in a table y, the implementation becomes so fast and
the problem of approximating the exponential function is reduced to the following

u = [1/(2!), 1/(3!), ..., 1/(Ne!)]

y = [y1, ..., yNe ]; y1 = x, y2 = y1x, y3 = y2x, ..., yNe = yNe−1x

ex ' 1 + y1 + u1y2 + u2y3 + ...+ uNe−1yNe (5.8)
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Table 5.2 gives the computational cost required to evaluate the CW kernel for each
point (t,τ) verifying t > 0 and τ > 0.

Table 5.2 – Computational cost of the CW kernel for a given t > 0 and τ > 0.

Operation mr ar
O1 = 2σ2t2 4 0
O2 = O1/τ

2 10 0
O3 = eO2 2(Ne − 1) Ne

O4 = 1/O3 8 0
O5 = 0.798σ O4/τ 11 0

Computational cost 2Ne + 31 Ne

Since there are L/2 − 1 points directly affected to 0 (GCW (t, τ) = 0 when τ = 0,

∀ t 6= 0), and GCW (0, τ) =
0.798σ

τ
requires 10 multiplications for any τ 6= 0 corresponding

to L/2 − 1 distinct points ; the computational cost of the CW kernel for the full range of
t and τ needs

Mr =

(
L

2
− 1

)(
L

2
− 1

)
(2Ne+31)+10

(
L

2
− 1

)
=

(
L

2
− 1

)2

(2Ne+31)+10

(
L

2
− 1

)
(5.9)

Ar =

(
L

2
− 1

)(
L

2
− 1

)
Ne =

(
L

2
− 1

)2

Ne (5.10)

5.2.3 ZAM kernel computational cost

By taking h(τ) = e−ατ
2
(α = 1/(2σ2)) and a = 2 ; the expression of the ZAM kernel in

the time-lag domain is obtained from (2.39) as follows

GZAM(t, τ) =

{
e−ατ

2
if |τ | ≥ 2|t|

0 Otherwise
(5.11)

Fig. 5.3 displays the graph of the ZAM kernel in the time-lag plane for a) α = 0.02 and
b) α = 0.5.

99



Chapter 5. Numerical Complexity of Kernel-Based Time-Frequency Distributions

(a) (b)

Figure 5.3 – The two-dimensional profile of the ZAM kernel in the time-lag domain. (a)
α = 0.02 and (b) α = 0.5.

Table 5.3 gives the computational cost required to evaluate the ZAM kernel at a given
positive coordinates (t, τ) verifying |τ | ≥ 2|t|.

Table 5.3 – Computational cost of the ZAM kernel at a point (t,τ)∈ <+2
satisfying

|τ | ≥ 2|t|.

Operation mr ar
O1 = ατ 2 2 0
O2 = eO1 2(Ne − 1) Ne

O3 = 1/O2 8 0

Computational cost 2Ne + 8 Ne

Let NZAM
nz be the number of nonzero elements of the ZAM time-lag kernel. Since

GZAM(0, 0) = 1, the computational cost of this kernel is of the following order

Mr =
(
NZAM
nz − 1

)
(2Ne + 8) (5.12)

Ar =
(
NZAM
nz − 1

)
Ne (5.13)

5.2.4 Modified B-distribution (MBD) kernel computational cost

The expression of the lag-independent (LI) Modified B-distribution kernel in the time-
lag domain is given by [4, 41, 42]

GMB(t, τ) = gβ(t) =
cosh−2β t∫ +∞

−∞ cosh−2β ε dε
(5.14)
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where β is a positive real parameter and the denominator is for normalization. The cor-
responding ambiguity domain kernel is expressed as follows [4, 41, 42]

φMB(η, τ) =
|Γ(β + jπτ)|2

Γ2(β)
(5.15)

For discrete time n and discrete lag m, the MBD kernel becomes [4, 42]

GMB(n,m) = gβ(n) =
cosh−2β n
M∑

i=−M
cosh−2β i

(5.16)

The graph of the MBD kernel in the time-lag plane is a bell-shaped curve vs. time
whose spread is inversely related to β (Fig. 5.4). The induced Modified B-distribution
is real, verifies the frequency marginal property and conserves energy, frequency support
and group delay.

(a) (b)

Figure 5.4 – The two-dimensional profile of the MBD kernel in the time-lag domain. (a)
β = 0.05 and (b) β = 0.3.

Since the hyperbolic cosine function is defined as

cosh(x) =
ex + e−x

2
(5.17)

then its power series expansion is expressed as follows

cosh(x) =
+∞∑
n=0

x2n

(2n)!
> 0, ∀x ∈ < (5.18)

with cosh(0) = 1. The notation ch(x) is sometimes also used.
Proceeding with the same manner as for the exponential function, the approximated

hyperbolic cosine value of x using Nhc terms is given by

u = [1/(2!), 1/(4!), .., 1/((2Nhc)!)]

y = [y1, .., yNhc ]; y1 = x2, y2 = y1y1, y3 = y2y1, .., yNhc = yNhc−1y1
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cosh(x) ' 1 +

Nhc∑
n=1

x2n

(2n)!

= 1 + u1y1 + u2y2 + u3y3 + ...+ uNhcyNhc (5.19)

Hence, the evaluation of the cosh function for any x ∈ <∗ needs 2Nhc multiplications and
Nhc additions.

On the other hand, the MBD kernel requires the computation of the following quantity

w−2β = eln(w−2β) = e−2β ln(w), w = cosh(t) (5.20)

From Table 5.2, the exponential in (5.20) needs 2Ne + 6 multiplications and Ne additions
at most.

In order to evaluate the logarithm for any x > 0, we can exploit the following definition
of the inverse hyperbolic tangent function

artanh(z) =
1

2
ln

(
1 + z

1− z

)
(5.21)

which can be also expressed as an infinite power series of the form

artanh(z) =
+∞∑
n=0

z2n+1

2n+ 1
, |z| < 1 (5.22)

For any real x > 0, the variable z = (1 − x)/(1 + x) satisfies the condition |z| < 1.
From (5.21) and (5.22) we get the following approximation of the logarithm function

ln(x) = 2 artanh

(
1− x
1 + x

)
'

Nl∑
n=0

1

2n+ 1

(
1− x
1 + x

)2n+1

(5.23)

or equivalently

u = [1/3, 1/5, ..., 1/(2Nl + 1)]

y0 = (1− x)/(1 + x), z0 = y2
0, z1 = y0z0, z2 = z1z0, ..., zNl = zNl−1z0

ln(x) ' y0 + u1z1 + u2z2 + u3z3 + ...+ uNlzNl (5.24)

It follows that, using Nl terms, the computation of the logarithm function for any x ∈ <+

requires 2Nl + 10 multiplications and Nl + 2 additions.
Due to the fact that the hyperbolic cosine function is even, the denominator in (5.16)

is evaluated for positive values of i only. Tables 5.4-5.5 detail the numerical complexity of
the numerator and denominator of the MBD kernel for any t ∈ <+.

Table 5.4 – Computational cost of the numerator of the MBD kernel for a given value
of t ∈ <+.

Operation mr1 ar1
O1 = cosh(t) 2Nhc Nhc

O2 = −2β 1 0
O3 = O2 lnO1 2Nl + 11 Nl + 2
O4 = eO3 2Ne + 6 Ne

Computational cost 2(Nhc +Nl +Ne) + 18 Nhc +Nl +Ne + 2
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Table 5.5 – Computational cost of the denominator of the MBD kernel.

Operation mr2 ar2
O1 = cosh(i), 1 ≤ i ≤M 2M Nhc M Nhc

O2 = −2β lnO1, 1 ≤ i ≤M M(2Nl + 11) M(Nl + 2)
O3 = eO2 , 1 ≤ i ≤M M(2Ne + 6) M Ne

O4 =
M∑
i=1

O3 0 M − 1

Computational cost 2M(Nhc+Nl+Ne)+17M M(Nhc+Nl+Ne)+3M−1

By adding the cost of the division in (5.16), the numerical complexity of the MBD
kernel for the full range of t is then of the following order

Mr =

(
L

2
− 1

)
mr1 +mr2 + 9

(
L

2
− 1

)
+ 8 =

(
L

2
− 1

)
(mr1 + 9) +mr2 + 8 (5.25)

Ar =

(
L

2
− 1

)
ar1 + ar2 (5.26)

5.2.5 CB kernel computational cost

The CB time-lag kernel defined by (3.19) can be rewritten as follows

GCB(t, τ) =

{
eeCB if t2+τ2

D2 < 1
0 Otherwise

(5.27)

where

eCB = C +
CD2

(t2 + τ 2)−D2
(5.28)

is the exponent of the kernel ; C is a parameter that controls the kernel’s bandwidth.
Table 5.6 gives the computational cost required to evaluate the CB kernel given t and τ
such that (t2 + τ 2) < D2.

Table 5.6 – Computational cost of the CB kernel at a point (t,τ) verifying (t2 + τ 2) < D2.

Operation mr ar
O1 = CD2 2 0
O2 = t2 + τ 2 −D2 3 2
O3 = O1/O2 9 0
O4 = C +O3 0 1
O5 = eO4 2(Ne − 1) Ne

Computational cost 2Ne + 12 Ne+3

Denoting byNCB
nz the number of nonzero elements of the CB kernel, and sinceGCB(0, 0)=1,

the evaluation of this compact support kernel results in the following computational load
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Mr =
(
NCB
nz − 1

)
(2Ne + 12) (5.29)

Ar =
(
NCB
nz − 1

)
(Ne + 3) (5.30)

5.2.6 SCB kernel computational cost

According to (3.30), the SCB time-lag kernel can be rewritten under the following
form

GSCB(t, τ) =

 eeSCB(t,0)eeSCB(0,τ) if


t2 < D2

and
τ 2 < D2

0 Otherwise

(5.31)

where

eSCB(t, 0) = C +
CD2

t2 −D2
(5.32)

eSCB(0, τ) = C +
CD2

τ 2 −D2
(5.33)

are the exponents of the separable kernel as function of t and τ , respectively. The values
in (5.32) are computed and stored in a table ; hence, the exponent in (5.33) does not need
calculation. Table 5.7 gives the computational cost required to evaluate the SCB kernel
for a given value of t and τ verifying the conditions t2 < D2 and τ 2 < D2.

Table 5.7 – Computational cost of the SCB kernel at a point (t,τ) verifying t2 < D2 and
τ 2 < D2.

Operation mr ar
O1 = CD2 2 0
O2 = t2 −D2 2 1
O3 = O1/O2 9 0
O4 = eSCB(t, 0) = C +O3 0 1
O5 = eO4 2(Ne − 1) Ne

O6 = eSCB(0, τ) 0 0
O7 = O5O6 1 0

Computational cost 2Ne + 12 Ne+2

The SCB kernel vanishes to zero outside a given set. If we denote by NSCB
nz the number

of nonzero elements of the kernel, and since GSCB(0, 0) = 1, the computations require(
NSCB
nz − 1

)
(2Ne + 12) muliplications (5.34)

and
(
NSCB
nz − 1

)
(Ne + 2) additions (5.35)
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5.2.7 PCB kernel computational cost

The PCB kernel has also a compact support nature in the time-lag domain following
a polynomial law. From optimization point of view, the integer tuning parameter γ that
adjusts the kernel’s bandwidth makes the procedure very fast and hence the processing
time needed to evaluate the Boashash-Sucic performance measure is considerably reduced.
Consequently, the PCB can be used first to select the optimal kernel window length before
optimizing the KCS-based TFDs.

Table 5.8 gives the computational cost required to evaluate the PCB kernel for a given
value of t and τ in the range (t2 + τ 2) < λ2.

Table 5.8 – Computational cost of the PCB kernel for any t and τ satisfying (t2 + τ 2) <
λ2.

Operation mr ar
O1 = γ + 1 0 1
O2 = λ2 − (t2 + τ 2) 3 2
O3 = Oγ

2 γ − 1 0
O4 = πλ2γ+2 2γ + 2 0
O5 = O1/O4 9 0
O6 = O3O5 1 0

Computational cost 3γ + 14 3

The PCB kernel is computed for NPCB
nz nonzero points yielding to the following order

of complexity

Mr = (3γ + 14) NPCB
nz (5.36)

Ar = 3NPCB
nz (5.37)

5.3 Experimental results

The performance of the KCS-based TFDs is compared to the best known kernel-based
time-frequency distributions. A real-life signal and three synthetic examples are considered
and discussed in detail in order to evaluate each TFD and determine the best one in terms
of concentration, resolution and numerical complexity. The kernel’s window size is fixed
to L. Following the same procedure explained in Sec. 4.3, and given the optimized kernel
parameters for each TFD, the computational cost is then evaluated. The multicomponent
signal is thus best represented by the TFD that shows the best compromise between
largest P value and smallest required computational cost. Note that the integral in the
MBD kernel denominator is approximated using M = 40 terms. The hyperbolic cosine,
the exponential and the logarithm functions need only 10 terms to be very close to the
exact values. The KCS parameters D and γ are both set to 7.5.
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5.3.1 Example 1 : The bat echolocation signal

The first illustrative example concerns the bat echolocation real-life signal s1(t), re-
presented in the t− f plane using a selection of kernel-based time-frequency distributions
namely the BJD, the CWD, the ZAMD, the Modified B-distribution (MBD), the CB
TFD, the SCB TFD and the PCB TFD (Fig. 5.5). The window size of the kernel in the
time-lag domain is set to 64. The number of KCS points that require computation was
found to be equal to NCB

nz = 359, NSCB
nz = 441 and NPCB

nz = 359, respectively while
NBJ
nz = NZAM

nz = 272. As we have mentioned in Sec. 4.3, the application of the Boashash-
Sucic methodology is computationally expensive so, in this example ; the optimization
region of interest, containing the two overall closest components, is limited to the rec-
tangle shown in Fig. 5.5-(a) defined by 0.2 ≤ f ≤ 0.4 Hz and 210 ≤ t ≤ 320 sec. The
drawback of the methodology in such situation is that the optimization region cannot be
selected only after visual inspection of the TFDs’ plots.

The smoothing parameters related to each TFD are the optimum values that corres-
pond to the maximum achieved performance measure P as reported in Table 5.9 together
with the computational cost CC of each kernel.

Table 5.9 – Optimization results for a selection of TFDs of the signal of example 1
over the region of interest delimited by the frequency and time intervals [0.2,0.4] Hz and
[210,320] sec, respectively.

TFD Optimal kernel parameters P CC

BJD N/A 0.8195 Mr = 2448; Ar = 0
CWD σ = 0.62 0.8243 Mr = 49321; Ar = 9610
ZAMD α = 0.01 0.8387 Mr = 7588; Ar = 2710
MBD β = 0.067 0.8958 Mr = 5785; Ar = 2311

CB TFD C = 0.683 0.8908 Mr = 11456; Ar = 4654
SCB TFD C = 0.575 0.8771 Mr = 14080; Ar = 5280
PCB TFD γ = 2 0.8881 Mr = 7180; Ar = 1077

The P values reflect the superiority of the MBD and the KCS kernels in presenting
the signal s1(t) even when the ratio of the two successive autoterms is not close to one.
This performance is achieved thanks to the high concentration of the signal components
using the MBD kernel and the compact support nature of the KCS kernels that reduces
considerably the energy of the crossterms. However, the most particular and notable
advantage of the KCS TFDs is that they do not require any external smoothing neither
in time nor frequency since the window is the kernel itself unlike the lag-independent
MBD kernel that smoothes the WVD in the time direction only, and hence needs in
general an additional smoothing over f in order to improve the frequency resolution
(unless indicated, a 127-point Hamming window h(τ) is used and it is not included in the
MBD kernel numerical complexity).

Table 5.10 shows the parameters and the instantaneous performance measure Pi of
the different TFDs, while Fig. 5.6 displays the time slices at t0 = 286 sec. Two important
observations must be noted : First, from visual inspection of the ZAMD TFD, we see that
the amplitude of some crossterms is more important than the amplitude of the autoterms.
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(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 5.5 – Optimized TFDs over the region of interest delimited by the frequency
range [0.2,0.4] Hz and the time duration [210,320] sec of the bat echolocation signal s1(t).
(a) BJD, (b) CWD (σ = 0.62), (c) ZAMD (α = 0.01), (d) MBD (β = 0.067), (e) CB TFD
(C = 0.683), (f) SCB TFD ( C = 0.575) and (g) PCB TFD (γ = 2).

Table 5.10 – Parameters of the Boashash-Sucic performance measure and Pi values of
different TFDs of example 1 computed at the time instant t0 = 286. The frequency region
of interest is [0.2,0.5] Hz.

TFD (optimal
parameters)

AM1
AM2

AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

BJD 1.0000 0.2220 0.1104 0.0785 0.2250 0.2475 0.0150 0.0075 0.0112 0.0225 0.5000 0.7517
CWD (σ = 0.62) 1.0000 0.2039 0.1203 0.0879 0.2288 0.3312 0.0200 0.0050 0.0125 0.1025 0.8780 0.8684

ZAMD (α = 0.01) 0.7809 1.0000 0.1284 0.0148 0.2238 0.2775 0.0150 0.0100 0.0125 0.0538 0.7674 0.8716
MBD (β = 0.067) 1.0000 0.3518 0.0572 0.0166 0.2266 0.3320 0.0130 0.0156 0.0143 0.1055 0.8641 0.9224

CB TFD (C = 0.683) 1.0000 0.3096 0.0320 0.0002 0.2143 0.3254 0.0159 0.0159 0.0159 0.1111 0.8571 0.9361
SCB TFD (C = 0.575) 1.0000 0.2885 0.0459 0.0066 0.2143 0.3254 0.0237 0.0158 0.0197 0.1111 0.8224 0.9153

PCB TFD (γ = 2) 1.0000 0.3251 0.0296 0.00002 0.2143 0.3254 0.0159 0.0159 0.0159 0.1111 0.8571 0.9375

Hence, the related P value reported in Table 5.9 does not reflect the right order of in-
creasing performance of TFDs since it considers that the ZAMD performs better than the
BJD and the CWD. This observation constitutes another drawback of the Boashash-Sucic
methodology and can be explained by the fact that the crossterm, as depicted for example
in Fig. 5.6-(c), is more dominant than the second autoterm whereas the true AM2 is consi-
dered as a sidelobe component. Thus, the parameters’ calculations using (4.11) and (4.12)
become completely wrong (see Table 5.10). The same drawback is observed for the BJD.
This results also on false estimation of the IF laws especially, in this case, for the second
component.

Secondly, the MBD and the KCS-based TFDs are found to best estimate the true
practical characteristics of the real-life bat echolocation signal in terms of the IF laws
as well as the number of components and their relative energies and bandwidths. In this
context, Table 5.10 indicates that the PCB TFD with a smoothing parameter γ = 2, is
the optimal TFD of the signal s1(t) at the time instant t0 = 286 and it performs almost
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.6 – Normalized slices of TFDs over a frequency range of about [0.2,0.5] Hz
plotted at the time instant t0 = 286 sec of the two overall closed components of the signal
s1(t). (a) BJD, (b) CWD (σ = 0.62), (c) ZAMD (α = 0.01), (d) MBD (β = 0.067), (e)
CB TFD (C = 0.683), (f) SCB TFD (C = 0.575) and (g) PCB TFD (γ = 2).
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the same as the CB TFD with C = 0.683 .

Concerning the numerical complexity, the BJ kernel is the least costly and uses 4.15%
only of the computing resources required by the CW kernel which is the most costly in
this case. The computational cost of the SCB TFD is about 1.2 times the CB TFD’CC
whereas the MBD and PCB TFD are of the same order of complexity and they are the
second least costly distributions followed by the ZAMD and the CB TFD.

Let Pm be the mean value of the achieved P by the seven investigated distributions.
If we select only the TFDs that ensure performance measures that exceed Pm = 0.8620 ;
the optimal TFD of the signal s1(t) is then the MBD with a parameter β = 0.067 since it
possesses the greatest value of P = 0.8958 and a required computational load that presents
41.82% and 50.25% of that required by the CB TFD and the SCB TFD, respectively. The
second best performing TFD is the PCB TFD with a difference of only 0.0077 in P .

5.3.2 Example 2 : Sum of two crossing nonlinear FM compo-
nents

Here, we deal with a two-component signal s2(t) of duration T = 256 sec composed of
two crossing nonlinear FMs such that f(t = 15) = 0.05 Hz and f(t = 128) = 0.3 Hz for
the hyperbolic frequency modulated component and f(t = 1) = f(t = 256) = 0.3 Hz for
the increasing sinusoidal FM component with smallest and highest frequencies equal to 0.2
Hz and 0.4 Hz, respectively. Out of seven TFDs represented in Fig. 5.7, we want to select
the TFD which is the best-performing for the given signal so that the computational cost
CC is minimized. The kernel’s length is firstly set to 32. The nonzero sets of the CB, SCB
and PCB kernels are equal to 86, 100 and 86, respectively whereas NBJ

rc = NZAM
rc = 72.

Table 5.11 records the resulting P ’s values by application of the optimization process
over the time interval [50, 250] sec and it reveals that the MBD with a control parame-
ter β = 0.1 provides the greatest value of the Boashash-Sucic performance measure as
expected from the visual inspection of its t − f domain plot that shows a high concen-
tration of the autoterms. The best resolution of the signal components is provided by
the BJD, the ZAMD and the CWD but the inner and outer artifacts reduce the ove-
rall performance of these distributions. The KCS-based TFDs result in this case on poor
concentration and resolution performances even if their computational costs are lower.
The ZAMD TFD contains again high negative crossterms which explains its classification
as the worst representing TFD of the signal s2(t).

Next, we consider the optimization of the fourth best representations of the signal
s2(t) using a kernel length L = 64. The new optimized time-frequency representations are
depicted in Fig. 5.8 and their relative performances are shown in Table 5.12 together with
the kernels’ computational costs.

We observe that the signal components are better concentrated around their respective
bandwidths using the MBD ; the crossterms amplitudes, however, increase in the regions
where the two components are close to each other. These interference terms are much
better eliminated by application of the KCS kernels resulting on very high resolution
performance. Moreover, the KCS TFDs present the largest values of P. Since the MBD
and the SCB TFD have performance measure values that are less than the mean value
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(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 5.7 – Optimized TFDs over the time interval t ∈ [50, 250] of the signal of example
2 composed of two crossing nonlinear FMs. (a) BJD, (b) CWD (σ = 0.42), (c) ZAMD
(α = 0.18), (d) MBD (β = 0.1), (e) CB TFD (C = 1.19), (f) SCB TFD (C = 1.49) and
(g) PCB TFD (γ = 2).

Table 5.11 – Optimization results for a selection of TFDs of the signal of example 2 (two
crossing nonlinear FMs) over the time interval t ∈ [50, 250] with L = 32.

TFD Optimal kernel parameters P CC

BJD N/A 0.7860 Mr = 648; Ar = 0
CWD σ = 0.42 0.7939 Mr = 11625; Ar = 2250
ZAMD α = 0.18 0.7450 Mr = 1988; Ar = 710
MBD β = 0.1 0.8328 Mr = 4393; Ar = 1799

CB TFD C = 1.19 0.8165 Mr = 2720; Ar = 1105
SCB TFD C = 1.49 0.8059 Mr = 3168; Ar = 1188
PCB TFD γ = 2 0.8156 Mr = 1720; Ar = 258

Pm = 0.8703, the PCB TFD with optimal control parameter γ = 4 gives the best result
for the two objective criteria and hence is selected as the best performing TFD of the
signal s2(t) and the CB TFD with a parameter C = 5 is classified as the second best
TFD.

Table 5.12 – Optimization results for a selection of kernel-based TFDs of the signal of
example 2 over the time interval t ∈ [50, 250] using L = 64.

TFD Optimal kernel parameters P CC

MBD β = 0.09 0.8497 Mr = 5785; Ar = 2311
CB TFD C = 5 0.8778 Mr = 11456; Ar = 4654
SCB TFD C = 3.65 0.8683 Mr = 14080; Ar = 5280
PCB TFD γ = 4 0.8854 Mr = 9334; Ar = 1077
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(a) (b)

(c) (d)

Figure 5.8 – Optimized MBD and KCS-based TFDs over the time interval t ∈ [50, 250]
of the signal of example 2 composed of two crossing nonlinear FMs (L = 64). (a) MBD
(β = 0.09), (b) CB TFD (C = 5), (c) SCB TFD (C = 3.65) and (d) PCB TFD (γ = 4).

5.3.3 Example 3 : Signal with two parallel FM components em-
bedded in noise

The optimization procedure is illustrated on a multicomponent signal s3(t) consisting
of two closely spaced parallel linear chirps over the time interval T ∈ [1, 256] with fre-
quencies decreasing from 0.28 Hz to 0.18 Hz and from 0.33 Hz to 0.23 Hz, respectively.
Next, we embed the signal s3(t) in additive white Gaussian noise with SNR= 10 dB in
order to check the noise effects on the overall performance of kernel-based TFDs under
the constraint of the lowest required computational load.

The signal s3(t) is analyzed in the t− f domain using the same selection of TFDs
as in examples 1 and 2. First, we set the kernel’s length to 64. The time-frequency plots
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of the optimized TFDs according to Boashash-Sucic’s performance measure are shown in
Fig. 5.9.

(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 5.9 – Optimized TFDs over the full duration T = 256 of the signal of example
3 composed of two parallel LFMs with frequency ranges decreasing from 0.28 Hz to 0.18
Hz and from 0.33 Hz to 0.23 Hz, respectively ; embedded in 10 dB AWGN. (a) BJD,(b)
CWD (σ = 1.21), (c) ZAMD (α = 0.19), (d) MBD (β = 0.037), (e) CB TFD (C = 0.046),
(f) SCB TFD (C = 0.091) and (g) PCB TFD (γ = 1).

Here again, from visual inspection, we can see that the KCS-based TFDs and the MBD
perform much better that the other considered TFDs since they generate the sharpest
plots. Moreover, the figure shows that the autoterms are better concentrated around their
respective IFs using the Modified BD kernel whereas the crossterms are better suppressed
by the KCS kernels resulting on high P values. This can be seen more clearly by inspecting
the time slices at the instant t0 = 200 sec plotted in Fig. 5.10 and their relative Pi values
reported in Table 5.13. Furthermore, the CB TFD with control parameter C = 0.046 is
selected as the best performing TFD of the signal s3(t) at t0 = 200 since it achieves the
greatest instantaneous Boashash-Sucic performance measure (Pi = 0.9127).

Table 5.13 – Parameters and the instantaneous Boashash-Sucic performance measure Pi
of different TFDs of example 3 computed at the time instant t0 = 200 (L = 64).

TFD (optimal
parameters)

AM1
AM2

AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

BJD 1.0000 0.9884 0.5293 0.9475 0.1914 0.2422 0.0078 0.0117 0.0098 0.0508 0.8077 0.5996
CWD (σ = 1.21) 0.9698 1.0000 0.3040 0.5741 0.1934 0.2422 0.0195 0.0117 0.0156 0.0488 0.6800 0.6933

ZAMD (α = 0.19) 1.0000 0.9923 0.5760 0.9413 0.1914 0.2422 0.0078 0.0098 0.0088 0.0508 0.8265 0.5919
MBD (β = 0.037) 0.8371 1.0000 0.0941 0.0749 0.2031 0.2539 0.0156 0.0078 0.0117 0.0508 0.7692 0.8753

CB TFD (C = 0.046) 1.0000 0.9600 0.0670 0.0185 0.1984 0.2540 0.0088 0.0116 0.0102 0.0556 0.8158 0.9127
SCB TFD (C = 0.091) 0.8347 0.9096 0.1156 0.0412 0.2063 0.2540 0.0146 0.0099 0.0122 0.0476 0.7428 0.8622

PCB TFD (γ = 1) 1.0000 0.9641 0.0613 0.0327 0.2063 0.2540 0.0258 0.0159 0.0208 0.0476 0.5624 0.8278

Table 5.14 contains the optimization process over the full range of time instants and
indicates that the KCS-based TFDs and the MBD outperform the other quadratic time-
frequency distributions with a significant difference in the achieved P of about 0.1077
to 0.1249 compared to Pmax = 0.8473. Furthermore, if we include the numerical com-
plexity of the Hamming window used by the MBD to improve the frequency resolution ;
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10 – Normalized slices of TFDs at the time instant t0 = 200 sec of the signal
s3(t) with L = 64. (a) BJD, (b) CWD (σ = 1.21), (c) ZAMD (α = 0.19), (d) MBD
(β = 0.037), (e) CB TFD (C = 0.046), (f) SCB TFD (C = 0.091) and (g) PCB TFD
(γ = 1).
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the signal s3(t) is then best represented in the t − f plane using the PCB TFD with
optimized parameter γ = 1 since it provides a P value that is very close to the optimal
one achieved by the CB TFD and has the lowest numerical complexity corresponding to
64.62% and 53.77% of the computational loads required by the CB TFD and the SCB
TFD, respectively.

Table 5.14 – Optimization results for a selection of TFDs of the signal of example 3 (two
noisy parallel linear FMs) over the full range of time instants T = 256 with L = 64.

TFD Optimal kernel parameters P CC

BJD N/A 0.7224 Mr = 2448; Ar = 0
CWD σ = 1.21 0.7396 Mr = 49321; Ar = 9610
ZAMD α = 0.19 0.7253 Mr = 7588; Ar = 2710
MBD β = 0.037 0.8472 Mr = 5785; Ar = 2311

CB TFD C = 0.046 0.8473 Mr = 11456; Ar = 4654
SCB TFD C = 0.091 0.8442 Mr = 14080; Ar = 5280
PCB TFD γ = 1 0.8412 Mr = 6103; Ar = 1077

Let us now check the effect of increasing the kernel length to 128 on the quality
of the TF representations and the accurate estimation of the IF laws in particular for
the KCS kernels. For this purpose, we optimize the sixth best performing TFDs. The
compact support kernels are characterized by NCB

nz = 1422, NSCB
nz = 1764 and NPCB

nz =
1422 while NZAM

nz = 1056. The resulting representations are shown in Fig. 5.11 and the
overall Boashash-Sucic performance measures are recorded in Table 5.15 together with
the kernels’ computational loads. From visual inspection and the achieved P values, it is
seen that the KCS-based TFDs give the best concentration/resolution performance and
attenuate the crossterms clearly much better than the other distributions which allows an
easy distinction of the two FM components.

Table 5.15 – Optimization results for a selection of TFDs of the signal of example 3 over
the time interval t ∈ [1, 256] with L = 128.

TFD Optimal kernel parameters P CC

CWD σ = 1.32 0.7308 Mr = 203049; Ar = 39690
ZAMD α = 0.15 0.7273 Mr = 29540; Ar = 10550
MBD β = 0.038 0.8348 Mr = 8569; Ar = 3335

CB TFD C = 1.03 0.9066 Mr = 45472; Ar = 18473
SCB TFD C = 1.96 0.8979 Mr = 56416; Ar = 21156
PCB TFD γ = 2 0.9026 Mr = 28440; Ar = 4266

Another objective inspection is obtained at t0 = 200 sec from the time slices plotted
in Fig. 5.12 and their relative parameters recorded in Table 5.16. Compared to the re-
sults obtained using a kernel length L = 64, we see a significant improvement of the IF
laws’ estimation, the crossterms’ reduction and the achieved concentration and resolution
measures. However, if real-time implementation is entended, the MBD with an optimized
parameter β = 0.038 is selected as the optimal representation of the signal s3(t) since
it results on a P value that is greater than the mean value of the achived performance
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11 – Optimized TFDs over the full duration T = 256 of the signal of example
3 using a kernel length L = 128. (a) CWD (σ = 1.32), (b) ZAMD (α = 0.15), (c) MBD
(β = 0.038), (d) CB TFD (C = 1.03), (e) SCB TFD (C = 1.96) and (f) PCB TFD
(γ = 2).
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measures Pm = 0.8333 with a considerably low numerical complexity compared to the
other kernel-based TFDs that is about 6.51 times smaller than the SCB TFD’s CC, 5.37
times smaller than the CB TFD’s CC and 2.74 times smaller than the PCB TFD’s CC.

(a) (b)

(c) (d)

(e) (f)

Figure 5.12 – Normalized slices of TFDs at the time instant t0 = 200 sec of the signal
s3(t) with L = 128. (a) CWD (σ = 1.32), (b) ZAMD (α = 0.15), (c) MBD (β = 0.038),
(d) CB TFD (C = 1.03), (e) SCB TFD (C = 1.96) and (f) PCB TFD (γ = 2).
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Table 5.16 – Parameters and the instantaneous Boashash-Sucic performance measure Pi
of different TFDs of example 3 computed at the time instant t0 = 200 (L = 128).

TFD (optimal
parameters)

AM1 AM2 AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

CWD (σ = 1.32) 0.9604 1.0000 0.3253 0.4971 0.2012 0.2520 0.0195 0.0156 0.0176 0.0508 0.6538 0.6895
ZAMD (α = 0.15) 0.9686 0.8275 0.4296 0.7659 0.2031 0.2539 0.0117 0.0039 0.0078 0.0508 0.8462 0.6471
MBD (β = 0.038) 0.9605 1.0000 0.1203 0.1374 0.2031 0.2539 0.0104 0.0078 0.0091 0.0508 0.8203 0.8760

CB TFD (C = 1.03) 0.9507 1.0000 0.0143 0.0065 0.2008 0.2520 0.0090 0.0105 0.0048 0.0512 0.8089 0.9303
SCB TFD (C = 1.96) 0.9700 1.0000 0.0149 0.0044 0.2008 0.2520 0.0157 0.0157 0.0157 0.0512 0.6923 0.8916

PCB TFD (γ = 2) 0.9758 1.0000 0.0110 0.0062 0.2008 0.2520 0.0101 0.0115 0.0108 0.0512 0.7891 0.9249

In the same context, we check for the same test signal and selection of TFDs the
effect of increasing the noise power to 0 dB on their performance in resolving the two
components and estimating the IF laws. For the MBD, we use a Kaiser window of width
127 to enhance the frequency resolution. Fig. 5.13 displays the obtained time-frequency
diagrams while Table 5.17 presents the overall P values. The time slices at t0 = 200 are
depicted in Fig. 5.14 and their relative parameters are recorded in Table 5.18.

It is clearly seen that the KCS-based TFDs give the best resolution and concentration
results and still distinguish between the two linear components thanks to the efficient low-
pass filtering performed by the Doppler-lag compact support kernels that attenuates the
noise level too. The numerical values of Table 5.18 show that, at t0 = 200 sec, the average
crossterm amplitude of the KCS TFDs is ten times smaller than the CWD crossterm
amplitude and approximately five times smaller than the artifacts generated by the ZAMD
and the MBD. The average sidelobe amplitude of the KCS-based TFDs presents 17.41%,
38.13% and 42.88% of the generated sidelobes using the ZAM, the CW and the MBD
kernels, respectively. On the other hand, Fig. 5.15 shows that the actual IF laws are still
been best estimated from the KCS-TFDs’ peaks even if signal and noise have the same
power much better than the other investigated distributions. In this case, the PCB TFD
with smoothing parameter γ = 4 is selected as the best performing distribution since it
provides the greatest value of P followed by the CB TFD even if its computational cost
is about 1.3 times the one required by the MBD because there is a difference of 0.1061
(10.61%) in the achieved P which is in fact a big value from overall performance point of
view.

Table 5.17 – Optimization results for a selection of TFDs of the signal of example 3 with
SNR= 0 dB and L = 128 over the time interval t ∈ [1, 256].

TFD Optimal kernel parameters P CC

CWD σ = 1.42 0.7189 Mr = 203049; Ar = 39690
ZAMD α = 0.11 0.7087 Mr = 29540; Ar = 10550
MBD β = 0.06 0.7617 Mr = 8569; Ar = 3335

CB TFD C = 3.2 0.8678 Mr = 45472; Ar = 18473
SCB TFD C = 4.2 0.8585 Mr = 56416; Ar = 21156
PCB TFD γ = 4 0.8637 Mr = 28440; Ar = 4266

120



5.3. Experimental results

(a) (b)

(c) (d)

(e) (f)

Figure 5.13 – Optimized TFDs over the full duration T = 256 of the signal of example
3 with SNR = 0 dB and a kernel length L = 128. (a) CWD (σ = 1.42), (b) ZAMD
(α = 0.11), (c) MBD (β = 0.06), (d) CB TFD (C = 3.2), (e) SCB TFD (C = 4.2) and
(f) PCB TFD (γ = 4).
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Table 5.18 – Parameters and the instantaneous Boashash-Sucic performance measure Pi
of different TFDs of example 3 with SNR= 0 dB and L = 128 computed at the time
instant t0 = 200.

TFD (optimal
parameters)

AM1 AM2 AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

CWD (σ = 1.42) 0.9987 0.7332 0.2266 0.3221 0.2031 0.2539 0.0195 0.0156 0.0176 0.0508 0.6538 0.7354
ZAMD (α = 0.11) 1 0.7560 0.4850 0.1627 0.2031 0.2285 0.0078 0.0078 0.0078 0.0254 0.6923 0.6824
MBD (β = 0.06) 1.0000 0.6774 0.2015 0.1612 0.2031 0.2539 0.0104 0.0156 0.0130 0.0508 0.7441 0.8026

CB TFD (C = 3.2) 0.9508 1.0000 0.0848 0.0323 0.2008 0.2520 0.0157 0.0126 0.0142 0.0512 0.7235 0.8733
SCB TFD (C = 4.2) 0.9436 1.0000 0.0887 0.0336 0.2008 0.2520 0.0157 0.0157 0.0157 0.0512 0.6923 0.8612
PCB TFD (γ = 4) 0.9357 1.0000 0.0858 0.0330 0.2008 0.2520 0.0157 0.0124 0.0141 0.0512 0.7247 0.8730

(a) (b)

(c) (d)

(e) (f)

Figure 5.14 – Normalized slices of TFDs at the time instant t0 = 200 sec of the signal
s3(t) with SNR= 0 dB and L = 128. (a) CWD (σ = 1.42), (b) ZAMD (α = 0.11), (c)
MBD (β = 0.06), (d) CB TFD (C = 3.2), (e) SCB TFD (C = 4.2) and (f) PCB TFD
(γ = 4).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 – Comparison of the measured and actual IF laws of the signal s3(t) composed
of two parallel LFMs with frequency ranges decreasing from 0.28 Hz to 0.18 Hz and
from 0.33 Hz to 0.23 Hz, respectively ; embedded in 0 dB AWGN (L = 128). (a) CWD
(σ = 1.42), (b) ZAMD (α = 0.11), (c) MBD (β = 0.06), (d) CB TFD (C = 3.2), (e) SCB
TFD (C = 4.2) and (f) PCB TFD (γ = 4).
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5.3.4 Example 4 : Sum of two quadratic FMs and two constant
frequency signals.

In this example, the signal s4(t), of duration T = 256, consists of two very close
constant frequency (CF) components of frequencies f = 0.3 Hz and f = 0.35 Hz, respec-
tively and two noiseless crossing quadratic FMs such that f(t = 1) = f(t = 256) = 0.25
Hz for the convex component and f(t = 1) = f(t = 256) = 0.1 Hz for the concave one.
The kernel length is set to 128.

Fig. 5.16 shows the superiority of the KCS-based TFDs and the MBD over the other
quadratic time-frequency distributions in resolving the four closely spaced components
as well as in reducing the crossterms. This visual result is confirmed by the time slices’
plots depicted in Figs. 5.17-5.18 and the Boashash-Sucic instantaneous performance mea-
sures and parameters recorded in Tables 5.19-5.20 corresponding to the two intersecting
quadratic FMs and the two CF components, respectively, observed at t0 = 138 sec.

Table 5.19 – Parameters and the instantaneous Boashash-Sucic performance measure Pi
of several TFDs of the two quadratic FM components of example 4 computed at the time
instant t0 = 138.

TFD (optimal
parameters)

AM1
AM2

AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

BJD 0.9249 1.0000 0.3666 0.2136 0.1523 0.2480 0.0117 0.0117 0.0117 0.0957 0.8776 0.7952
CWD (σ = 0.9) 0.9905 1.0000 0.2278 0.2612 0.1523 0.2480 0.0195 0.0156 0.0176 0.0176 0.8163 0.8187

ZAMD (α = 0.15) 1.0000 0.9055 0.5508 0.0007 0.1543 0.2461 0.0078 0.0078 0.0078 0.0918 0.9149 0.7788
MBD (β = 0.04) 1.0000 0.9368 0.1829 0.0891 0.1523 0.2461 0.0078 0.0078 0.0078 0.0938 0.9167 0.8939
CB TFD (C = 4) 0.9955 1.0000 0.0229 0.0015 0.1496 0.2441 0.0157 0.0110 0.0134 0.0945 0.8583 0.9449
SCB TFD (C = 4) 1.0000 0.9864 0.0430 0.0017 0.1496 0.2441 0.0157 0.0102 0.0130 0.0945 0.8624 0.9394
PCB TFD (γ = 4) 1.0000 0.9820 0.0099 0.0004 0.1496 0.2441 0.0157 0.0097 0.0127 0.0945 0.8653 0.9517

Table 5.20 – Parameters and the instantaneous Boashash-Sucic performance measure Pi
of several TFDs of the two constant frequency components of example 4 computed at the
time instant t0 = 138.

TFD (optimal
parameters)

AM1 AM2 AS AX fi1 fi2 Vi1 Vi2 Vi ∆fi D Pi

BJD 0.6811 1.0000 0.5693 0.1780 0.2539 0.3242 0.0011 0.0195 0.0103 0.0703 0.8530 0.6900
CWD (σ = 0.9) 1.0000 0.8667 0.4471 0.3211 0.3008 0.3477 0.0234 0.0156 0.0195 0.0469 0.5833 0.6441

ZAMD (α = 0.15) 0.9896 0.8816 0.3840 0.2936 0.3008 0.3516 0.0078 0.0022 0.0050 0.0508 0.9012 0.7780
MBD (β = 0.04) 1.0000 0.9261 0.1026 0.0207 0.3008 0.3516 0.0078 0.0030 0.0054 0.0508 0.8932 0.9253
CB TFD (C = 4) 0.9957 1.0000 0.0200 0.0033 0.2953 0.3465 0.0102 0.0109 0.0106 0.0512 0.7934 0.9239
SCB TFD (C = 4) 0.9950 1.0000 0.0280 0.0042 0.2953 0.3465 0.0079 0.0103 0.0091 0.0512 0.8228 0.9309
PCB TFD (γ = 4) 0.9945 1.0000 0.0101 0.0018 0.2953 0.3465 0.0079 0.0099 0.0089 0.0512 0.8265 0.9385

It is seen that the KCS TFDs provide the highest resolution/concentration perfor-
mances thanks to their compact support nature that best eliminates the crossterms. From
Table 5.20, we see that the BJD provides wrong computation of the time slice parameters
which results on wrong estimation of the IF laws that are best approximated using the
ZAMD, the MBD, the KCS TFDs and the CWD even if it possesses the lowest value of
Pi. We conclude that a better estimation of the true instantaneous frequency laws from
the TFDs’ peaks does not always implies suitable performances in terms of concentration,
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(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 5.16 – Optimized TFDs over the time interval t ∈ [70, 190] of the signal of example
4. (a) BJD, (b) CWD (σ = 0.9), (c) ZAMD (α = 0.15), (d) MBD (β = 0.04), (e) CB
TFD (C = 4), (f) SCB TFD (C = 4) and (g) PCB TFD (γ = 4).

resolution and crossterm reduction. Moreover, the obtained results indicate that the PCB
TFD with bandwidth control parameter γ = 4 is the signal best representation at t0 = 138
since it produces the largest average instantaneous performance measure (Piav = 0.9451)
whereas the SCB TFD with a kernel parameter C = 4 is the second best performing TFD
at this time instant (Piav = 0.9351).

Since the signal s4(t) is composed of M = 4 components, the Boashash-Sucic’s pro-
cedure is then applied twice in order to measure the parameters for each of the pairs of
consecutive components with dominant amplitudes of each TFD time slice. The time of
interest is within the interval [70, 190] sec. The optimizing TFDs’ parameters are cho-
sen so that they produce the largest value of the Boashash-Sucic’s overall performance
measure for both the two quadratic FMs (P (1)) and the two CF components (P (2)) ; the
resulting P to maximize is equal to the average (P (1) + P (2))/2. Table 5.21 presents the
numerical results of the optimization procedure including the P performance measure and
the computational cost criterion.

Table 5.21 – Optimization results for a selection of quadratic TFDs of the signal of
example 4 over the time interval t ∈ [70, 190].

TFD Optimal kernel parameters P (1) P (2) P CC

BJD N/A 0.7592 0.7345 0.7469 Mr = 9504; Ar = 0
CWD σ = 0.9 0.7754 0.7226 0.7490 Mr = 203049; Ar = 39690
ZAMD α = 0.15 0.8007 0.8552 0.8279 Mr = 29540; Ar = 10550
MBD β = 0.04 0.8462 0.9253 0.8858 Mr = 8569; Ar = 3335

CB TFD C = 4 0.8948 0.9229 0.9089 Mr = 45472; Ar = 18473
SCB TFD C = 4 0.9059 0.9316 0.9187 Mr = 56416; Ar = 21156
PCB TFD γ = 4 0.9041 0.9297 0.9169 Mr = 36972; Ar = 4266
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.17 – Normalized slices of TFDs at the time instant t0 = 138 sec of the two
quadratic FMs of the signal s4(t). (a) BJD, (b) CWD (σ = 0.9), (c) ZAMD (α = 0.15),
(d) MBD (β = 0.04), (e) CB TFD (C = 4), (f) SCB TFD (C = 4) and (g) PCB TFD
(γ = 4).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.18 – Normalized slices of TFDs at the time instant t0 = 138 sec of the two
CF components of the signal s4(t). (a) BJD, (b) CWD (σ = 0.9), (c) ZAMD (α = 0.15),
(d) MBD (β = 0.04), (e) CB TFD (C = 4), (f) SCB TFD (C = 4) and (g) PCB TFD
(γ = 4).
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5.4. Conclusion

We observe that the KCS TFDs’ family presents the highest values of P whereas
the BJD and the MBD provide the lowest numbers of required real multiplications and
additions. Moreover, the MB-distribution with optimized parameter β = 0.04 is selected
as the optimal TFD for representing s4(t) since it produces the best compromise between
a P value that is very close to the largest one achieved by the SCB TFD and a numerical
complexity that is significantly lesser than the ones required by the other high performing
kernels namely the compact support and the ZAM kernels.

5.4 Conclusion

The experimental results show that, even for real-life signals and closely spaced noisy
components, the KCS TFDs, followed by the MBD, provide the best performance compa-
red to the other well-known kernel-based distributions in terms of artifacts elimination,
high time-frequency resolution of the signal components, accurate extraction of the ins-
tantaneous frequency laws from the TFD’s peaks even with 0 dB noise power in addition
to conservation of the autoterms’ concentration while still requiring in general moderate
numerical complexity thanks to their compact support nature that reduces considerably
the number of points that need computation. Furthermore, the KCS-based TFDs provide
two additional important advantages concerning optimization and hardware implementa-
tion : 1) No external smoothing windows are needed to achieve high resolution in time
or frequency and 2) the induced distributions are computed and their performance are
optimized through the tuning of a single parameter that controls the kernel’s bandwidth.
In particular, the PCB kernel gives in all studied cases one of the largest performance
measures of the KCS family with the lowest required computational cost, and at the same
time, its optimization procedure is the faster since the smoothing parameter γ of the
kernel is an integer.

However, from various experimental tests, the compact support kernels are found to
suffer from a considerable degradation of their overall performances, especially concen-
tration, when the kernel’s length is less than L = 64 while the performance is greatly
improved when L is set to 128 yielding to a notable superiority of the KCS-based TFDs
over the other powerful distributions even in the extreme case of very closely spaced linear
chirps embedded in 0 dB white Gaussian noise.

The obtained results make the KCS TFDs the best candidates for real-time implemen-
tation of high-performing DSP and/or FPGA embedded systems for concrete estimation
of nonstationary signals’ energy due particularly to their high robustness to interference
and noise, easy tuning and fast optimization. Their practical use can be made more interes-
ting if some modifications are introduced on their basic formulation so that to allow lower
numerical complexity. This subject constitutes one of the axes of our future research.
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Chapter 6

Conclusions and Suggestions for
Future Work

Signal-independent class of quadratic time-frequency distributions, and the Cohen’s
class in particular, constitutes the most powerful and efficient family of TFDs in repre-
senting and analyzing nonstationary multicomponent signals. The offered freedom in the
kernels’ design, provided that they are invariant by time and frequency shifts, motivated
us to propose new high-resolution quadratic distributions based on a specific type of pa-
rametrization functions referred to as kernels with compact support [64] that are derived
from the Gaussian kernel but vanish themselves outside a specific set.

The main objective of the research for new time-frequency tools is to enhance the
readability of the TF diagrams so that the signal analyst is able to obtain the most pre-
cise description of the time-varying signals in terms of identification of the components’
number, accurate estimation of the IF laws and thus the best localization of the start and
the end of each time and frequency event. We have showed that the problem is reduced
to the kernel design whose main task is to smooth the interference terms generated by
the Wigner-Ville distribution in compromise with the preservation of a sufficient time-
frequency resolution.

Since separable kernels are recognized to outperform many other popular TFDs in
resolving closely spaced components and reducing the inner and outer artifacts ; the first
main result is to build a high performing quadratic distribution referred to as the SCB
TFD based on a separable version of the CB compact support kernel [42], allowing an ef-
ficient independent smoothing in time and in frequency. This distribution is implemented
following the general time-lag expression given by (2.26).
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The second main result consists of building a second kernel with compact support for
time-frequency signal analysis having a polynomial form referred to as the PCB KCS.
The latter is of great practical value, especially when hardware implementation and fast
optimization are intended. The derived quadratic time-frequency distribution referred to
as the PCB TFD is also implemented following the same general procedure as for the CB
TFD and the SCB TFD.

The third result consists of comparing between the most known quadratic kernel-based
distributions and the KCS TFDs from mathematical properties point of view. For each
property, the relative requirement that must be satisfied by the kernel in different domains
is derived. It is proved again that there is a tradeoff between the best interference suppres-
sion/components concentration compromise and the number of good properties. The KCS
TFDs and the spectrogram, for example, satisfy three properties only : realness, energy
conservation and translation covariance ; the MBD does not verify time marginal, instan-
tanuous frequency and time support conservations and dilation covariance, however, it
was shown that they are the best performing and valuable TFDs. Hence, the classical ma-
thematical properties are not important if the main objective is practical time-frequency
signal analysis.

The fourth principal result is objective assessment of the new proposed KCS TFDs
together with the CB TFD and a selection of the well-known classical distributions of Co-
hen’s class. Our biggest concern was to ensure that the use of a given quantitative measure
reflects certainly the performance quality of the TFD of interest and hence provides the
right order of the best performing quadratic distributions in representing the considered
test signal. After a deep survey on the existing evaluation methods, we have established
the following important guidelines

– We have showed through extensive illustrative examples that neither the subjective
visual inspection of the time-frequency plots, nor the concentration-based theoretical
performance measures [80]-[83] can provide in most cases an accurate objective quanti-
fication of the goodness of a given TFD,

– The objective evaluation of the TFD’s performance requires the consideration of
three important criteria namely autoterms’ concentration, time-frequency resolution of
the individual signal’s components and crossterms’ suppression,

– Compared to the concentration-based measures, the Boashash-Sucic’s normalized
instantaneous resolution performance measure [2, 4, 76] takes into account the three
objective criteria cited above and shows the greatest discrimination capabilities of the
best performing representation. Consequently, it was adopted to objectively evaluate
the investigated time-frequency distributions,

– In addition to its use as a quantitative performance measure of quadratic TFDs, the
Boashash-Sucic methodology [1, 26] provides a practical selection procedure of the best
performing distribution so that the optimized TFD that maximizes the average of the
instantaneous performance measures is selected as the best,
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– Since the Boashash-Sucic methodology requires a deep analysis of each time slice,
many important information can be deduced accordingly namely time durations and
frequency bands of the autoterms, sidelobes and crossterms magnitudes, energy concen-
tration of the signal components and mainlobes amplitudes that serve also to extract
the instantaneous frequencies,

– The Boashash-Sucic’s methodology, however, suffers from several practical draw-
backs : Firstly, for each time instant, the related parameters of each time slice are
computationally expensive and since they correspond to a unique pair of components ;
they need to be computed (M + 1)/2 times for a signal containing an odd number M
of distinct components and M/2 times for M even. This produces two technical pro-
blems : 1) High numerical complexity and processing time, and 2) wrong determination
of the signal autoterms, especially due to the superior extra energies generated by the
interference terms, causes an incorrect estimation of the number of components and
also completely wrongs the parameters’ calculation of the Boashash-Sucic performance
measure and so the optimization results. Secondly, for real-life signals in particular ;
the regions of interest, i.e. the intervals of time instants and frequencies over which the
distributions are optimized, cannot be determined only after visual inspection of the
TFDs’ diagrams.

The results from the optimization procedure proved in most studied cases the su-
periority of the KCS-based TFDs over the other best-known quadratic distributions in
representing the analyzed signals even in the hard case of very closely spaced multicom-
ponent signals embedded in noise. The proposed kernels provide the best reduction of
the artifacts and the highest autoterms’ concentration yielding to the best time-frequency
localization of the signal components and the most accurate estimation of the IF laws
from the peaks of the KCS TFDs.

The fifth and final main result is the introduction of a fourth optimization criterion
of quadratic distributions which is the computational cost of the representation so that
the TFD that maximizes the average of the Boashash-Sucic’s instantaneous performance
measures P and possesses the lowest required numerical complexity is selected as the
best. In this context, the compact support kernels with lengths greater than or equal
to 64 are found to require in general moderate computational costs and achieve at the
same time the highest resolution, concentration and interference rejection. In particu-
lar, the PCB TFD gives for most of the considered signals the largest values of P with a
numerical complexity that is smaller compared to the other best performing distributions.

The following research axes are highly recommended and may be followed based on
the work presented in the thesis

• The real-time implementation of the proposed KCS TFDs as embedded TF signal
analyzers using high-performing DSP and/or FPGA boards,

• The derivation of new compact support smooth kernels that provide higher time-
frequency resolution with lower numerical complexity,
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• The implementation of real-time embedded systems for automatic selection of the
optimized signal TFD based on evaluation of some performance measures in order
to make the quadratic distributions more appropriate and valuable in practical time-
frequency signal analysis,

• The objective assessment and automatic optimization of other energy-based time-
frequency distributions that are not elements of the Cohen’s class, i.e. are not covariant
by shifts in time or in frequency like for example the affine class, which is the class of
time-frequency energy distributions covariant by translation in time and dilation and
other groups of distributions that are not quadratic like the signal-dependent TFDs.
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Appendix A

Toolbox for Time-Frequency
Distributions’ OPtimization
(TFDOP) : A User Manual

A.1 General view of the realized toolbox

Fig. A.1 shows the graphical user interface (GUI) structure of the TFDOP toolbox.

Figure A.1 – GUI structure of the TFDOP toolbox.
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A.2 Actions of the different user interface control ob-

jects

Table A.1 summarizes the different callback routines executed by activating a specific
user interface control object numbered from (1) to (21) as they appear in Fig. A.1.

Table A.1 – Callback actions of the different user interface control objects reported in
Fig. A.1.

N̊ Object type Action

1 Push button Load real-life signals from prepared .mat files
2 Popup menu Select a synthetic test signal from a large variety of choices
3 Push button Activate the GUI of Fig. A.2 that serves to set the noise parameters
4 Push button Display time and frequency characteristics of the input test signal
5 Popup menu Select the TFD to compute from the following : WVD, BJD, CWD, ZAMD,

Spectrogram, MBD, CB TFD, SCB TFD and PCB TFD
6 Push button Activate the GUI that permits to fix the selected TFD’s smoothing parameters

(if they exist). An example is shown in Fig. A.3. For the spectrogram, the win-
dow type includes the following : Hamming, Hanning, Rectangular, Triangular,
Bartlett, Blackman, Gauss and Kaiser.

7 Push button Compute the selected TFD of the test signal loaded by activating the push
button (1) or selected from the popup menu (3)

8 Push button Display the question dialog box of Fig. A.4 that allows to the user to either
quit or keep working with TFDOP toolbox

9 Radio button Display the computed TFD and the view menu of Fig. A.5 that serves to
customize the TFD plot (display mode (contour, surf, mesh,...), display layout
(display signal, display spectrum, add a grid,...), colors, ...)

10 Popup menu Select the objective assessment measure of TFDs from the following : Boashash-
Sucic performance measure, Rényi entropy normalized by signal energy concen-
tration measure, Rényi entropy normalized by distribution volume concentra-
tion measure, Ratio of norms concentration measure and Stankovic concentra-
tion measure

11 Push button Compute the value of the selected concentration measure and for the Boashash-
Sucic method activate the GUI of Fig. A.6 in order to set the time interval of
interest over which the TFD is optimized

12 Push button and
editable text field

Display the time slice corresponding to the time instant specified by the user
through the editable text field. The default value is t0 = 64.

13 Radio button Display a table a containing the entire Boashash-Sucic’s normalized instan-
taneous resolution performance measures Pi over the optimization interval of
time instants, the parameters of each Pi given by (4.11) and (4.12) and also
the value of P ; the overall measure (see the example of Fig. A.7)

14 Radio button Display a comparative table containing the optimization results for a selection
of TFDs of the test signal as reported in the example of Fig. A.8

15 Radio button Show the properties of the optimized TFD (general description of the test
signal, optimization region of interest, optimized smoothing parameters of the
kernel and performance measure value)

16 Push button Save input and output parameters of the current simulation (test signal, smoo-
thing parameters of the kernel, noise level, computed TFD, computed perfor-
mance measure, computed computational cost of the kernel,...)

17 Push button Display a brief history about the last obtained optimization results
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18 Push button Display a general help about the toolbox
19 Push button When activated, this push button permits to clear all selected input variables

and generated output variables from Matlab workspace and close all figures.
The TFDOP setting parameters and graphical objects are reset to their default
values and states

20 Static text label Display indicative messages when needed and eventually error alarms when
the user chooses wrong parameters’ values. For example, when the TFD is
computed, the following message is displayed : ”Computation done”; the user
can then display and objectively evaluate the selected TFD. If most of the
main components of the analyzed signal are not resolved in frequency, the user
is asked to change the current TFD’s setting. The computed Boashash-Sucic
P value is not retained and the following warning message is displayed in this
field : ” W A R N I N G ! Most of the main components are not resolved in
frequency. Change your setting ! ”

21 Push button Evaluate the computational cost of the time-lag kernel according to the formu-
las of Chapter 5

Figure A.2 – AWGN parameters setting window.

Table A.2 – Callback actions of the user interface control objects reported in Fig. A.2.

N̊ Object type Action

1 Popup menu Choose either to add noise to the test signal or consider the noiseless case
2 Editable text field Edit the signal to noise ratio in dB (default value : SNR=20 dB)
3 Editable text field Edit the mean value of the Gaussian noise (default value : mean=0)
4 Push button Validate the current noise setting
5 Push button Restore default values
6 Push button Return to TFDOP
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Figure A.3 – CB TFD setting window.

Table A.3 – Callback actions of the user interface control objects reported in Fig. A.3.

N̊ Object type Action

1 Editable text field Edit the parameter D of the CB kernel (default value : D = 2.5)
2 Editable text field Edit the control parameter C of the CB kernel (default value : C = 2.5)
3 Editable text field Edit the kernel length L (default value : L = 64)
4 Push button Validate the current CB kernel setting
5 Push button Restore default values
6 Push button Return to TFDOP

Figure A.4 – Question dialog box permetting to quit or keep working with the toolbox.

(a)
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(b)

(c)
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(d)

Figure A.5 – Display of a TFD plot and the view menu when the radio button (9) is
enabled : (a) Default plot of a TFD, (b) view menu controling the display options, (c)
TFD plot after changing the display mode to mesh and (d) TFD plot after changing the
diaplay layout so that the signal and the spectrum are plotted together with the TFD
diagram.

Figure A.6 – Setting window of the time interval (region of interest) over which the TFD
is optimized using the Boashash-Sucic methodology.

Table A.4 – Callback actions of the user interface control objects reported in Fig. A.6.

N̊ Object type Action

1 Editable text field Edit the initial time instant (default value : t0 = 1)
2 Editable text field Edit the final time instant (default value : the full range of time instants,

i.e. the length of the test signal)
3 Push button Validate the current optimization interval setting
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Figure A.7 – An example showing the parameters, the normalized Pi and the overall
value of P related to the Boashash-Sucic performance measure after enabling the radio
button (13).

Figure A.8 – An example of a comparative table obtained by enabling the radio button
(14) and containing the optimization results for a selection of TFDs using Boashash-Sucic
methodology.
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