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الشبكات العصبیة الاصطناعیة تمثل أنظمة . في العدید من التطبیقات الھندسیة، ھناك حاجة ماسة إلى أنظمة موازیة التوزیع: ملخص
تنفیذ ھذه الشبكات أظھر غیر أن . و بالتالي فھي مناسبة لھذه التطبیقات. و ھي مستوحاة مباشرة من الدماغ البشري, موزعة للغایة

ولكن تصمیم بنیة . أثبتت أنھا الأكثر ملائمة لذلك FPGA من بین جمیع أنواع الدارات،. وھو یتطلب التوازي والمرونة. تحدیا كبیرا
 لدیھا بعض المشاكل التي یتعین التعامل معھا، مثل كیفیة تحقیق FPGAلیتم تنفیذھا على  شبكات الأجھزة العصبیة الاصطناعیة

یولد ++  Cاقترحنا تطبیق  العمل المنجز في إطار ھذه الأطروحة من خلال. التوازن بین الدقة الرقمیة، التوازي و نقص الموارد
و , الشبكات العصبیة الاصطناعیةبدأنا أولا بعرض عمومیات على . الأجھزة العصبیة الاصطناعیة الوصف الأمثل لشبكات

في الفصل الثالث عرضنا بإیجاز . FPGA الثاني لتقدیم لمحة عامة عن بنیة و خصصنا الفصل. في الفصل الأولذلك 
و البنیة الخاصة  واحد لك، عرضنا كل من البنیة الخاصة بعصبونبعد ذ. المسائل الحسابیة في تصمیم الشبكات العصبیة الاصطناعیة

تمت المحاكاة . ة برمجة تطبیقنا ومبدأ عملھانتھینا من ھذا الفصل من خلال عرض طریق. بالشبكة العصبیة الاصطناعیة كاملة
في الفصل الأخیر استخدمنا . حیث أجریت وأظھرت حسن سیر عمل الشبكات العصبیة الناتجة عن التطبیق ModelSimبواسطة 

ھذه التقنیة . سرعة المحرك اللامتزامنتم استخدامھا في تقنیة جدیدة خاصة بالتحكم في , تطبیقنا لتولید ستة شبكات عصبیة اصطناعیة
  .أجریت المحاكاة وكانت النتائج جیدة وكما ھو متوقع. ANN SHEتسمى 

 .المحرك اللامتزامن, ++ Cتطبیق , FPGA, الشبكات العصبیة الاصطناعیة  : كلمات مفاتیح

Résumé : Dans de nombreuses applications d'ingénierie, les systèmes parallèles qui satisfont la 
contrainte de temps-réel sont fortement nécessaires. Les réseaux de neurones artificiels représentent 
des systèmes à distribution parallèles, ils ont été directement inspirés du cerveau humain. Ils sont donc 
utilisés dans de nombreuses applications de ce type. Cependant, l’implémentation de ces réseaux s'est 
avérée très difficile. Cela nécessite un parallélisme et une flexibilité. Parmi tous les types de circuits, 
les circuits FPGA se sont avéré les plus pratiques pour cela. Mais la conception de l'architecture RNA 
à implémenter sur les FPGA a quelques défis, comme la façon d'équilibrer entre  la précision 
numérique (requise pour la précision), le parallélisme et les limites des ressources. Dans ce travail, 
nous avons proposé une application basée sur C ++ qui génère des descriptions de RNA optimisées. 
On a commencé par introduire des généralités sur les RNA au chapitre un. On a consacré le deuxième 
chapitre à présenter un aperçu de l'architecture de l’FPGA. Dans le chapitre trois, nous avons 
brièvement présenté les problèmes d'arithmétique dans les implémentations de RNA. Après cela, on a 
présenté les architectures d'un seul neurone et celle du RNA entier. On a terminé ce chapitre en 
représentant la façon dont nous avons codé notre application et le principe de son fonctionnement. Des 
simulations en ModelSim ont été effectuées et elles ont montré le bon fonctionnement des RNA 
générés par l'application. Dans le dernier chapitre, on a utilisé notre application pour générer 6 RNAs 
qui ont été utilisées dans une nouvelle technique de contrôle de moteur asynchrone appelée ANN 
SHE. Des simulations ont également été effectuées et les résultats étaient bons et comme prévu. 

Mot clés : Réseaux de neurones artificiels (RNA), FPGA, application C++, moteur asynchrone. 

Abstract: In many engineering applications, parallel distributed systems that satisfy the real-time 
constraint are strongly needed. Artificial neural networks (ANNs) represent highly parallel distributed 
systems that were directly inspired from the human brain. Thus they are appropriate for such 
applications. However the implementation of these networks proved to be quite challenging. It 
requires parallelism and flexibility. Among all types of circuits, FPGAs have proved to be the most 
convenient for that. But designing ANNs architectures to be implemented on FPGAs have some issues 
to be dealt with, like how to balance between numeric precision (required for accuracy), parallelism, 
and resources limitations. In this work we have proposed a C++ based application that generates 
optimized ANNs descriptions. We started first by introducing generalities on ANNs in chapter one. 
We devoted the second chapter to present an overview on the FPGA’s architecture. In chapter three we 
briefly presented the arithmetic issues in ANNs implementations. After that, we presented both 
architectures of a single neuron, and the whole ANN. we ended this chapter by presenting the way we 
coded our application and the principle of its functioning. ModelSim simulations where performed and 
they showed the good functioning of neural networks generated by the application. In the last chapter 
we have used our application to generate 6 ANNs that were used in a new induction motor control 
technique called ANN SHE. Simulations were performed as well and results were good and as 
expected. 

Key words: Artificial Neural Network (ANN), FPGA, C++ based application, induction motor.
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INTRODUCTION 
 

 

 

The man in his attempts to understand how the human brain works, developed what is so 

called artificial neural networks (ANNs). These artificial networks consist of many processing 

units connected together in a parallel distribution, to form a network that can behave like the 

brain in doing a particular task. But the brain is still a very complex system that scientists 

have not fully understand yet, even with today’s highly developed technologies. Thus 

modeling it stays a farfetched dream to reach for now. Instead researchers tried to model its 

most important elementary unit called the neuron. Many works have been done this way, and 

the results were impressive; the actual models of ANNs made them capable of learning from 

experience, and have flexibility that allows them to adapt their structure for a particular 

application. These features are what made them very successful. Now neural networks are 

being used everywhere, in patter recognition, voice recognition, data mining, machine 

learning, intelligence control ... etc. 

However the implementation of these neural nets proved to be quite challenging from many 

sides, and it still be an open research field. An implementation by software provides an 

excellent architecture flexibility and testability, however running a parallel structure like 

ANNs in sequential general purpose hardware does not really fit for real time applications. 

Parallel reconfigurable circuits have appeared, the most successful ones are ASICs 

(Application-specific integrated circuit) and FPGAs (Field Programmable Gate Arrays), and 

these two specifically were very promising for the ANNs implementations. 

The FPGAs were quickly optimized; they are now very quick circuits that have bigger 

integration density and better technical support. This had a direct impact in making them the 

most suited for neural networks, since they can be used for reconfigurable computing and 

offer software design flexibility with performance speeds closer to ASICs. 

Even though, using FPGAs as technology for ANNs implementation was the best solution, 

there still many challenges that will face a designer of ANNs when using an FPGA, like the 

necessity to balance between area (FPGA resources) and numeric precision needed for 

accuracy and speed of convergence. 

To program actual FPGAs, one could use Xilinx ISE (an Integrated Synthesis Environment); 

it offers the possibility to code in high level languages like the VHDL (VHSIC Hardware 

Description Language).  

In our work we have proposed a C++ based application whose function is to generate 

readymade feed forward ANNs descriptions, in form of VHDL files. Naturally these 

generated ANNs descriptions are specific, and chosen by the user, who should specify the 
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anatomy of his wanted ANN  (number of inputs, outputs , layers , neurons per layer)  as well 

as its weights and biases (parameters generated by the off line training). 

In chapter one, we have introduced generalities on ANNs, like their types, training, and their 

mathematical model, that is used later in their implementation. The second chapter presents 

the FPGA circuit architecture and its features that made it the best choice for ANNs hardware 

implementation. The third chapter starts by introducing the implementations issues. Then we 

presented the optimized methods used in implementing the different blocks of the artificial 

neuron, and the global ANN. After, we explained briefly the way we coded the C++ 

application and how it works in general. To test it we presented some simulations. Then in 

chapter four we have used 6 ANNs generated by our application, in a motor control method 

called ANN SHE PWM. Finally, we concluded by a general conclusion. 
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CHAPTER 1. ARTIFICIAL NEURAL 
NETWORKS (ANNS)  
 

 

 

1.1 Introduction 

Today’s conventional digital computers are getting extremely fast; they can perform a lot of 

instructions and highly complex operations in just few clock cycles, it is way quicker           

than the human in this. However faster is not enough in solving problems, there are many 

tasks in which the computer loses against the human brain, the latter is a highly complex, non 

linear, and parallel computer (information processing-system). It works in a totally different 

way, it has the capability to adapt its structural constituents called neurons, so as to perform 

certain computations (e.g., patter recognition, perception, and motor control) many times 

faster than the fastest digital computer in existence today. For instance, given two pictures, a 

preschool child can easily tell the difference between a cat and a dog. Yet, this same simple 

task is extremely difficult for today’s computers.  

The artificial neural network is a machine designed to model the way our brain performs a 

particular task in solving a given problem, it can be defined as following:  

A neural network is a massively parallel distributed processor made up of simple 

processing units whose functionality is loosely based on the animal neuron. The 

processing ability of the network is stored in the inter-unit connection strengths, 

or weights, obtained by a process of adaptation to, or learning from, a set of 

training patterns.[1] 

This chapter begins with a small historical overview on neural networks, and their 

development through years, then comes a brief part in which we exposed the biological 

neuron’s anatomy, the origin of the actual model of artificial neurons. After that the 

mathematical model of a single neuron is presented as well as some topologies of ANNs. To 

arrive to the most important part, that is the learning characteristic of ANNs, and its different 

methods. Finally, we presented a non exhaustive list of actual areas of applications for neural 

networks. 

1.2 Historical Perspective on Neural Nets 

Neural networks have been in use with computers since 1949 when D.Hebb, an American 

physiologist, published his book entitled “the organization of behavior”, in which he exposed 

some of his ideas on learning for the very first time , the Hebb rule that he proposed was one 
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of the learning rules on which rests most of today’s connectionist algorithms[2]. Through the 

years, many neural network architectures have been presented.  

In 1957, F. Rosenblatt developed the model of the perceptron, one of the earliest neural 

networks, which was an attempt to understand human memory, learning and cognitive 

processes. In 1960, Rosenblatt demonstrated the Mark I perceptron. The Mark I was the first 

machine that could “learn” to identify optical patterns. Based on the Hebb rule, the perceptron 

was then considered to be the first machine that could “learn” from experience. Unfortunately 

it was unable to learn to recognize inputs that were not “linearly separable” [3] . This would 

prove to be a huge obstacle that would take some time to overcome. 

A new neural model was developed by B. Widrow and T. Hoff in 1960, called the Adaline 

network (Adaptative Linear Element). In its structure it resembles to the perceptron, but the 

learning rule was different. They proposed the minimization of the quadratic output errors as a 

learning algorithm. The Adaline network is considered as the basic model of multilayer 

networks [2].  

In 1969, the theoretical limitations of the perceptron were demonstrated by M. Minsky     and 

S. Papert. These limitations concerned the impossibility of dealing with nonlinear problems 

using this model. The impact of their results has frustrated most researchers in this field, 

especially compute scientists. This stagnation lasted almost 20 years. During this period, 

researchers and investors turned to the approach of artificial intelligence, which seemed to be 

more promising.[1] 

This discipline was brought to life again, in 1982 thanks to J. J. Hopfield, an eminent 

physicist, who was able to detect the similarity between networks proposed by McCulloh and 

Pitts, with an elementary system with magnetic moment or spin, and then he studied the 

storage and restoration of information "associative memories”. This led to one of Hopfield's 

major contributions when he had the idea of using an energy function to maintain stability of 

neural networks, with such a function, states tend to change to a local minimum. This work 

interested physicists because of the isomorphism of the Hopfield model with the Ising model, 

also called spin glasses. It is important to note that this model did not remove the limits of the 

perceptron and its variants. In spite of this, the perceptron and the reasons for its failure 

proved to be quickly forgotten [1],[2]. 

Then, Boltzmann’s machine was proposed in 1983 by Hinton and his team, it was the firstly 

model that removed the perceptron limitations satisfactorily. This model used what is so 

called hidden cells whose role is to compute intermediate variables to perform non linear 

separable functions. Unfortunately, the convergence of the algorithm was extremely long, it 

had a defect due to its probabilistic nature, and it was corrected by the gradient 

backpropagation algorithm proposed in 1986 by three researchers Rumelhart, Hinton and 

William. 

Finally, in 1989 Moody and Darken exploited some results of the multi-variable interpolation 

to propose what is known as the radial basis function network[2]. 
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Recently, the new discoveries in neurobiology and the explosive interest of parallel 

processing, in addition to the development of semiconductor technology, have given great 

impetus to the field of neural networks. 

1.3 Biological inspiration 

1.3.1 Structure  

To create a machine capable of “human-like thought”, researchers have used the best 

available model available “the human brain”. However, this one is far too complex to be 

modeled. Rather, they studied the individual cells that make it up. At the most basic level the 

brain is composed of neuron cells. They are the basic building blocks of the human brain; 

there are about 100 milliards of them in it. Artificial neural networks are an attempt to 

simulate theses cells’ behavior. 

A stereotypical neuron cell is show in Figure  1-1. It consists of: 

 

Figure  1-1 A Neuron Cell Anatomy [4] 

Cell body or “soma” contains the usual sub-cellular components to be found in most cells 

throughout the body (nucleus, mitochondria, Golgi body, etc.) but these are not shown in the 

diagram. Instead this diagram was made to focus on what differentiates neurons from other 

cells allowing the neuron to function as a signal processing device. This ability stems largely 

from the properties of the neuron’s surface covering or membrane, which supports a wide 

variety of electrochemical processes. Morphologically the main difference lies in the set of 

fibers that emanate from the cell body. One of these fibers is called the axon. 

The axon is responsible for transmitting signals to other neurons and may therefore be 

considered the neuron output. All other fibers are called dendrites. 

The dendrites carry signals from other neurons to the cell body, thereby acting as neural 

inputs. Each neuron has only one axon but can have many dendrites. The latter often appear to 
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have a highly branched structure and so we talk of dendritic arbors. The axon may, however, 

branch into a set of collaterals allowing contact to be made with many other neurons. With 

respect to a particular neuron, other neurons that supply input are said to be afferent, while the 

given neuron’s axonal output, regarded as a projection to other cells, is referred to as an 

efferent. Afferent axons are said to innervate a particular neuron and make contact with 

dendrites at the junctions called synapses see Figure  1-2 

 

Figure  1-2: The Synapse 

 

Here, the extremity of the axon, or axon terminal, comes into close proximity with a small 

part of the dendritic surface—the postsynaptic membrane. There is a gap, the synoptic cleft, 

between the presynaptic axon terminal membrane and its postsynaptic counterpart, which is of 

the order of 20 nanometers (2×10−8m) wide. Only a few synapses are shown in Figure  1-1, but 

in reality they are located over all dendrites and also, possibly, the cell body. 

Finally the two other cells “Astrocyte” and “Oligodendrocytes” are the Glial cells (Figure 

 1-1). Their main role is to assure protection for the neuron cells. 

1.3.2 Functioning of a neuron 

At the simplest level, neurons produce pulses, called “Action Potentials,” and they do this 

when stimulated by other neurons (or, if they are sensory neurons, by outside influences, 

which they pick up through their modified dendrites). 



CHAPTER 1 : Artificial neural networks (ANNs) 

 

16 
 

 When a neuron is at rest, before it becomes stimulated, it is said to be polarized. This means 

that, although the neuron is not receiving any electrical signal from other neurons, it is 

charged up and ready to produce a pulse. This is due to the fact that its membrane at 

equilibrium, works to maintain an electrical imbalance of negatively and positively charged 

ions, this causes a potential difference across the membrane with the inside polarized by 

approximately 70mV, with respect to the outside. 

Each neuron has associated with it a level of stimulus, above which a nerve pulse or action 

potential will be generated. Only when it receives enough stimulation, from one or more 

sources, will it initiate a pulse. The mechanism by which the pulses travel and the neuron 

maintains its general electrical activity is rather complex, it was first worked out by Hodgkin 

& Huxley (1952) [5] , and It works through an exchange of ions in the fluid that surrounds the 

cell, rather than by the flow of electrons as anyone would get in a wire. This means that 

signals travel very slowly - at a couple of hundred meters per second. The pulse, which the 

neuron generates and travels down the axon, is shown in Figure  1-3 

 

Figure  1-3: Action potential in a Neuron 

 

 Because these pulses are only a couple of milliseconds wide, they often appear as spikes if 

viewed on an oscilloscope screen. So, if one neuron is receiving lots of stimulation from 

another (receiving lots of pulses through its dendrites) then it will itself produce a strong 

output - that is more pulses per second. 

Once a signal or an action potential reaches the axon terminal, these contain a chemical 

substance “nanotransmitters” held within a large number of small vesicles (literally “little 

spheres”) (Figure  1-2). On receipt of an action potential the vesicles migrate to the 

presynaptic membrane and release their nanotransmitters across the synaptic cleft, the 

transmitter then binds with receptor sites at the postsynaptic membrane. This initiates an 

electrochemical process that changes the polarization state of the membrane local to the 
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synapse. This postsynaptic potential (PSP) can serve either to depolarize the membrane from 

its negative resting state towards 0 volts, or to hyperpolarize the membrane to an even greater 

negative potential. The PSP spreads out from the synapse, travels along its associated dendrite 

towards the cell body and eventually reaches the axon hillock—the initial segment of the axon 

(Figure  1-1) where it joins the soma. Concurrent with this are thousands of other synaptic 

events distributed over the neuron. These result in a plethora of PSPs, which are continually 

arriving at the axon hillock where they are summed together to produce a resultant membrane 

potential. The integrated PSP at the axon hillock will affect its membrane potential and, if this 

exceeds a certain threshold (typically about −55mV) (Figure  1-3), an action potential is 

generated, which then propagates down the axon, along any collaterals, eventually reaching 

axon terminals resulting in a shower of synaptic events at neighbouring neurons 

“downstream” of our original cell. 

In 1949 Donald Hebb postulated one way for the network to learn. If a synapse is used more, 

it gets strengthened – releases more Neurotransmitter. This causes that particular path through 

the network to get stronger, while others, not used, get weaker. One might say that each 

connection has a weight associated with it – larger weights produce more stimulation and 

smaller weights produce less. These were the first steps to understanding the learning 

mechanism of the network [6].  

To summarize: 

  Signals are transmitted between neurons by action potentials, which have a stereotypical 

profile and display an “all or nothing” character; there is no such thing as half an action 

potential. 

  When an action potential impinges on a neuronal input (synapse) the effect is a PSP, which 

is variable or graded and depends on the physicochemical properties of the synapse. 

 The PSPs may be excitatory or inhibitory. 

 A synapse can be strengthened when used more, when not used, it gets weaker. It adapts, 

the connection is then said to be weighted  

 The PSPs are summed together at the axon hillock with the result expressed as its 

membrane potential. 

  If this potential exceeds a threshold an action potential is initiated that proceeds along the 

axon.  

1.4 Artificial neural networks  

An Artificial neural network is an interconnected assembly of simple processing elements, 

units or nodes, whose functionality is loosely based on the animal neuron. The processing 

ability of the network is stored in the inter unit connection strengths, or weights, obtained by a 

process of adaptation to, or learning from, a set of training patterns [5]. They posses several 

fundamental characteristics: 

 They are composed of two or more layers. Typically, these include an input layer, whose 

processing units encode the initial representation of the situation, one or more hidden layers, 
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The units combine the information from the input units, and an output layer, Whose units 

produce the system's response to the situation. 

 Simple artificial neurons are connected to other neurons in different layers (and sometimes 

within the same layer). The weight of connections changes when the system acquires more 

experience (training), these weights are crucial for determining the treatment performed. 

 As in the brain, a given processing unit activates when the stimulus level received from all 

other units to which it is connected exceeds a certain threshold. The level of stimulus received 

from each unit is determined, on the one hand, by the degree of activation of that unit and, on 

the other hand, by the weight of the connection between the sending and the receiving unit. 

 The activity of most processing units occurs in parallel (simultaneously). 

 Knowledge is represented by the weight of connections within all units of the system. 

 Learning occurs when the system that receives inputs, elaborates a response, observes the 

difference between the response provided and the correct response and adjusts the weight of 

the connections between the processing units to produce a better response. Adjustments 

include strengthening some connections and weakening others. 

 The generalization of knowledge of the system is based on the similarity of new situations 

to those already encountered by the system. 

1.4.1 Mathematical model of artificial neuron 

A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. The Table  1-1 resumes the analogy between a real and an artificial neuron. The 

diagram of Figure  1-4 shows the model of a neuron, which forms the basis for designing an 

artificial neural network. Three basic elements of the neuronal modal can be identified: 

 A set of synapses or connecting links, each of which is characterized by weight or strength 

of its own. Specifically a signal �� at the input of synapse k connected to neuron j is 

multiplied by the synaptic weight ��� . The first subscript refers to the neuron in question and 

the second subscript refers to the input end synapse to which the weight refers. Unlike real 

neurons, the synaptic weights can have negative values. 

 An adder for summing the input signals, weighted by the respective synapses of the 

neuron; till here the operations described constitute a linear combiner. 

 An activation function for limiting the amplitude of the output of a neuron. The activation 

function is also referred to as a squashing function in that it squashes (limits) the permissible 

amplitude range of the output signal to some finite value. Typically, the normalized amplitude 

range of the output of a neuron is written as the closed interval [0; 1] or alternatively [-1; 1]. 

The model also in the Figure  1-4 includes an externally applied bias, denoted ��  It has the 

effect of increasing or lowering the net input of the activation function, depending on whether 

it is positive or negative, respectively. 
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In mathematical terms, we may describe a neuron 

 

 
 
where ��, ��,.... �� are the inputs, and 

Table  1-1 : Analogy between real and artificial neuron

Real neuron 

Cell body (Soma) 

Axons 

Synapses 

Dendrites 

1.4.1.1 Types of Activation Functions:
Here we identified three basic Activation functions:

 Threshold Function: also is referred to a

following (Figure  1-5):  

 

This model of neurons based on this Activation Function is referred to in the literature as the 

McCulloch-Pitts model, in recognition of the pionee

(1943). 
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Figure  1-4 : Non linear model of a neuron 

In mathematical terms, we may describe a neuron j by writing the following pair of equations:

�� = � � �� × � �

�� �

�� �

 

�� = � (�� + ��) 

are the inputs, and �  is the activation function . 

: Analogy between real and artificial neuron 

Artificial neuron 

 Activation Functions 

Output signals 

Synaptic weights 

Input signals 

Types of Activation Functions: 
Here we identified three basic Activation functions: 

also is referred to as a Heaviside function, it is described the 

� (�) = �
1   �� � ≥ 0 
0   �� � < 0 

� 

This model of neurons based on this Activation Function is referred to in the literature as the 

Pitts model, in recognition of the pioneering work done by McCulloch and Pitts 

neural networks (ANNs) 

 

by writing the following pair of equations: 

( 1-1) 

( 1-2) 

s a Heaviside function, it is described the 

( 1-3) 

This model of neurons based on this Activation Function is referred to in the literature as the 

ring work done by McCulloch and Pitts 
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 Piecewise-Linear Function: For the one described in Figure  1-5 we have  

 � (�) =

⎩
⎪
⎨

⎪
⎧ 1,            ,� ≥

1

2

� +
1

2
,

 1

2
> � > −

1

2

0,           � ≤ −
1

2

� ( 1-4) 

where the amplification factor inside the linear region of operation is assumed to be unity. 

This form of an activation function may be viewed as an approximation to a non-linear 

amplifier.  

This function can have two special forms: 
 
-  A linear combiner, if the linear region of operation is maintained without running into 

saturation (Figure  1-5). 

- A threshold function, if the amplification factor of the linear region is made infinitely 

large. 

 Sigmoid Function: It is by far the most common form of activation function used in the 

construction of artificial neural networks. It is defined as a strictly increasing function that 

exhibits a graceful balance between linear and nonlinear behavior. An example of the sigmoid 

function is the logistic function (Figure  1-5), defined by 

 � (�) =
1

1 + exp(− ��)
 ( 1-5) 

where a is the slope parameter of the sigmoid function. By varying the parameter a, sigmoid 
functions of different slopes can be obtained. In fact, if the slope parameter approaches 
infinity, the sigmoid function becomes simply a threshold function. In contrast with the 
threshold function the sigmoid function assumes a continuous range of values from 0 to 1 and 
is differentiable (Differentiability is an important feature of neural network theory).  

The activation functions defined in equations ( 1-3), ( 1-4), and ( 1-5) range from 0 to 1. Other 

activation functions are antisymmetric, and range from -1 to 1 (see Figure  1-5) 
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Another important model of artificial neurons is the stochastic neuron, described as follows:

 � (�)

Where the probability is chosen to be: 

 

This model has the same activation function of the McCulloch

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or 

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

1.4.2 Architectures of neural networks 

From an architectural view, neural networks can sorted into two big categories:

 Feed-forward networks, where the data flow from input to output units is strictly feed

forward. The data processing can extend over multiple layers of units, but no feedback 

connections are present, that is, connections extending from outputs of units to inputs of units 

in the same layer or previous layers. 
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Figure  1-5: Types of Activation Functions 

Another important model of artificial neurons is the stochastic neuron, described as follows:

) =  �
1         ��� ℎ ���������� �(�)     
0     ��� ℎ ���������� 1 − �(�) 

� 

Where the probability is chosen to be:  

�(�) =
1

1 + exp�−
�
��

 

This model has the same activation function of the McCulloch-Pitts model with a pro

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or 

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

Architectures of neural networks  

, neural networks can sorted into two big categories:

networks, where the data flow from input to output units is strictly feed

forward. The data processing can extend over multiple layers of units, but no feedback 

esent, that is, connections extending from outputs of units to inputs of units 

in the same layer or previous layers. In this category, we can distinguish single

neural networks (ANNs) 

Another important model of artificial neurons is the stochastic neuron, described as follows: 

�
 

( 1-6) 

Pitts model with a probabilistic 

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or 

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic. 

, neural networks can sorted into two big categories: 

networks, where the data flow from input to output units is strictly feed-

forward. The data processing can extend over multiple layers of units, but no feedback 

esent, that is, connections extending from outputs of units to inputs of units 

In this category, we can distinguish single-layer networks 
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(e.g. perceptron) and multilayer networks with an input layer, an output layer and one or more 

hidden layers (Figure  1-6). 

 

 Recurrent networks that do contain feedback connections. In this category, we can 

distinguish competitive networks, the Kohonen network, the Hopfield networks (Figure  1-7) 

and the ART models "Theory of Artificial Resonance". 

 

Figure  1-6: Feed-Forward neural networks [7] 

 

Figure  1-7: Recurrent Network 

1.4.3 Training Neural Networks [3], [8] 

In a neural network, individual neurons are interconnected through their synapses. These 

connections allow the neurons to signal each other as information is processed. Not all 

connections are equal. Each connection is assigned a connection weight. If a weight is zero 

then there is not a connection. These weights are what determine the output of the neural 

network; therefore, it can be said that these weights form the memory of the neural network. 

Thus training the networks means to configure it (its weights) such that the application of a 

set of inputs produces the desired set of outputs. 
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In general training algorithms begin by assigning random values to the weights. Then, the 

validity of the neural network is examined. Next, the weights are adjusted based on how well 

the neural network performed and the validity of the results. This process is repeated until the 

validation error is within an acceptable limit. There are many ways of training.    One way is 

to set the weights explicitly, using a priori knowledge. Another way is to ‘train’ the neural 

network by feeding it teaching patterns and letting it change its weights according to some 

learning rule. 

1.4.3.1 Types of trainings: 
There are mainly two categories of training (see Figure  1-8):  

 

Figure  1-8: Types of training 

 Supervised training is when the network is trained by providing it a set of inputs along 

with the anticipated outputs from each of these samples. Supervised training is the most 

common form of neural network training. As supervised training proceeds, the neural network 

is taken through a number of iterations, or epochs, until the output of the neural network 

matches the anticipated output, with a reasonably small rate of error. Each epoch is one pass 

through the training samples (see Figure  1-9).  
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Figure  1-9 : Supervised learning scheme [9] 

 Unsupervised training is similar to supervised training, except that no anticipated outputs 

are provided. Unsupervised training usually occurs when the neural network is being used to 

classify inputs into several groups. The training involves many epochs, just as in supervised 

training. As the training progresses, the classification groups are “discovered” by the neural 

network (see Figure  1-10). 

 

Figure  1-10: Unsupervised learning scheme [9] 

There are several hybrid methods that combine aspects of both supervised and unsupervised 

training. One such method is called reinforcement training. In this method, a neural network 

is provided with sample data that does not contain anticipated outputs, as is done with 

unsupervised training. However, for each output, the neural network is told whether the 

output was right or wrong given the input (see Figure  1-11).  

 

Figure  1-11: Reinforcement learning scheme [9] 

It is very important to understand how to properly train a neural network. Once the neural 

network is trained, it must be validated to see if it is ready for use. 
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1.4.3.2 Backpropagation algorithm in multilayer perceptron networks 
(MLP):  

An MLP network is designed to perform a desired task defined by a learning database. Each 

element of this database is called a learning example and it is in the form of a pair (�,�∗) 

where � is an input value of the network and �∗ is the corresponding output target value. The 

network architecture, the structure of its connections, as well as the activation functions, can 

be set according to the task to be performed by the network. 

The aim of learning is therefore to determine the values �∗ of the matrix � of the weights of 

the network connections so that the output � is close to the target value �∗. 

The algorithm of gradient backpropagation is widely known and most used in applications of 

MLP neural networks. This supervised learning technique uses a gradient descent procedure, 

working on the quadratic error between the actual output of the network and the target output. 

It calculates the partial derivatives of the output error with respect to all network weights and 

then applies a gradient procedure to minimize the error. At each iteration, an example of 

learning (�,�∗) is retrieved and the weights are updated. This iteration is carried out in two 

phases: 

1. Forward Propagation : 

At each iteration, an element of the training set is introduced through the input layer. 

The evaluation of the network outputs takes place layer by layer, from the input of the 

network to its output. 

2.  Back propagation :  

This step is similar to the previous one. However, the calculation is done in the 

opposite direction. 

At the output of the network, the performance criterion is formed as a function of the actual 

output of the system and its target value. Then, the gradient of this performance is evaluated 

with respect to the different weights, starting with the exit layer and going up to the input 

layer. 

1.5 The properties of neural networks 

The main interest in neural networks is justified in the following properties:   

 Learning capacity: 

Learning ability refers to the ability of the neural network to learn to solve problems from 

examples in a similar way to humans or animals 

 The generalization capacity: 

The ability to generalize translates into the ability of a system to learn and retrieve from a set 

of examples rules that solve a given problem not learned. 
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 The parallelism: 

This notion is at the basis of the architecture of neural networks considered as a set of 

elementary entities that work simultaneously. Parallelism allows higher computational speed 

but requires thinking and posing problems differently. 

1.6 Areas of application of neural networks 

Being at the intersection of different domains (computer science, electronics, cognitive 

science, neurobiology and even philosophy), the study of neural networks is a promising 

avenue of Artificial Intelligence, which has applications in many areas: 

 Defense: Weapons management, target tracking, radars: processing, compression, noise 

suppression, signal / image identification, etc. 

 Industry: quality control, process control, fault diagnosis, correlations between data 

provided by different sensors, handwritten signature or writing analysis, speech synthesis, 

automated vehicle guidance system, etc. 

 Entertainment: Animation, special effects. 

 Finance: Forecasting and modeling of the market (currencies ...), forecasting of economic 

indicators, selection of investments, credit allocation, forecasting of prices, etc. 

 Telecommunications and data processing: signal analysis, noise cancellation, recognition of 

shapes (noises, images and lyrics), data compression, etc. 

 Medical: analysis of EEG signals, ECG, prostheses, cancer analysis, etc. 

 Environment: risk assessment, chemical analysis, forecasting and weather modeling, 

resource management, etc. 

1.7 Conclusion  

To conclude with, the artificial neural networks characteristics inspired from the human brain 

(parallelism, nonlinearity, and learning) allowed them to perform effectively in many tasks, 

where a conventional digital computer may have had a hard time. They are being used more 

and more in many fields because of their robustness and plasticity of architecture. However 

despite the fact that research in neural networks is an open field, the question is whether it 

will last long like that, knowing that neural networks have some big challenges like:  

1- The actual model is too simple compared to the complexity of the human brain, which 

means that it stills far from being able to behave like a real brain. 

2- There must be a technology that allows the implementation of complex neural 

networks models. 

This leads us to other questions, like: what is the actual technology used in implementing 

actual neural networks models? And what are the techniques used in these implementations? 
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CHAPTER 2. FPGA ARCHITECTURE 
 

 

 

2.1 Introduction 

Over the last years, in order to face the hardware implementation issues, the modern 

electronics is increasingly turning to digital, which has many advantages over the analog. 

Although the growing development of the electronics nowadays, there is still some 

architecture designs which are challenging. Some of these architectures such as ANNs have 

presented so many implementation difficulties.  

Since the architecture of ANN requires the parallelism, there was many attempts to build that 

architecture on ASIC boards which have some parallel processing units [10]. However, many 

limitations, related to reconfiguarbility and to the size of the network, have appeared. Circuits 

such as FPGAs have been showed up with their flexibility in design like software’s but with 

performance speed closer to ASIC. These circuits have represented a natural fit, offering a 

parallelism which helps for the implementation of the ANN. 

In this chapter, we discuss all the types of the available digital circuits then we mainly 

introduce the architecture of the FPGA circuits which are considered as the best choice among 

all the circuits for ANNs. We began with a classification of the digital circuits then a brief 

history about the FPGA circuits and then we detailed their architecture and presented the 

board Nexys 2 development card that we used to develop our project. Finally, we presented 

the VHDL language we used to design our application.  

2.2 The classification of digital circuits 

There are three main types of digital circuits. First, standard logic circuits that include 

combinatorial circuits and flip-flops. Then, the programmable circuits include 

microprocessors, microcontrollers and DSPs (Digital Signal Processor). In this category there 

is an arithmetic and logic unit that executes a program located in a program memory using 

synchronization clock. Finally, circuits with a programmable architecture such as ASICs 

(Application Specific Integrated Circuit), PLDs (Programmable Logic Device) and FPGAs 

(Field Programmable Gate Arrays) form the third category [11]. In this category, we design a 

circuit that corresponds to our own needs, the use of a clock is not compulsory, and we can 

easily implement applications that require parallelism (Figure  1-11).  
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2.2.1 Circuits with programmable architecture [10] 

2.2.1.1 ASIC (Application Specific Integrated Circuit) 
By definition, ASIC circuits include all circuits whose function can be customized in one way 

or another for a specific application, as opposed to standard circuits whose function is defined 

and perfectly described in the catalog of components. The use of an ASIC leads to many 

advantages, mainly due to the reduction of the size of the systems such as the reduction of the 

number of components on the printed circuit, the consumption and the space requirement. The 

ASIC concept ensures maximum optimization of the circuit to be realized. Finally, we have 

an integrated circuit that really corresponds to our own needs which gives the designer a 

confidentiality and industrial protection. The major disadvantage of ASICs lies in the fact that 

the passage to the founder is obligatory, which entails high costs and a high development time 

of the circuit. As a result, ASICs are generally more suitable for mass production of designs 

already verified and not for prototypes. 

2.2.1.2 PLD (Programmable Logic Device)  
PLDs are chips that can be programmed to behave like an arbitrary design. A PLD can be 

programmed for an implementation as simple as a combinatorial logic operation as it could be 

for much larger designs. It typically includes AND gate array connected to an array of OR 

gates [12]. 

2.2.1.3 FPGA (Field Programmable Gate Arrays) 
FPGAs are completely reconfigurable components which allow them to be reprogrammed at 

will, in order to accelerate some calculations. They consist of a matrix of programmable logic 

blocks surrounded by programmable input/output blocks. They are all connected by a 

programmable interconnection network. The FPGAs are not optimized for a specific 

application, therefore they consume more power than ASICs. On the other hand, they are 

much simpler to be programmed and reprogrammed, which shortens the design cycles and 

allows following the evolution of the application for which they were designed. The 

advantage of this type of circuit is its great flexibility, which makes it possible to reuse them 

at will in different algorithms in a very short time. The FPGAs are more suitable for 

prototypes and for limited mass productions that are not of the quality of ASICs. This 

technology also permits the implementation of a large number of applications and offers a 

low-cost hardware installation solution for small companies for whom the cost of developing 

a specific integrated circuit involves too much investment. The major disadvantage of FPGA 

circuits is that they are not very secure in terms of confidentiality, since it is enough to 

analyze the contents of the associated ROM to go back to the imagined schematics [13]. 

In the proposed algorithm, the parallelism is required, for the implementation of neural 

networks; we have chosen a Xilinx Nexys 2FPGA circuit to implement these networks. 
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Figure  2-1: Classification of digital circuits 

2.3 The FPGA circuit 

2.3.1 History 

The principle of the programmable logic dates back to the early 1960s, the concept has been 

proposed by Estrin. But it was not until the 1980s that the first material implementation was 

introduced into the market. The advent of this type of circuit was first made through simple 

Programmable Array Logic (PAL) circuits which are programmed as non-volatile ROM-type 

memories and are used to implement simple combinatorial functions such as address decoders 

or bus controllers. 

With microelectronics evolutions, various families of programmable circuits have emerged: 

the Complex Logic Programmable Devices (CPLDs), then the Field Programmable Gate 

Arrays (FPGAs) introduced by Xilinx in 1985. With the emergence of increasingly efficient 

circuits that can be programmed at will, the industrialization and marketing of this type of 

circuit has taken a place on a large scale. At present there are a dozen manufacturers, the 

market is being clearly dominated by Xilinx, Altera (reprogrammable circuits) and Actel 

(non-reprogrammable circuits [14]. 

2.3.2 Application [15] 

Taking advantage of the ever increasing density of the chips, the FPGAs are used for several 

applications such as telecommunications, image and signal processing. More recently, other 

application fields are in growing demand, such as medical equipment, robotics, automotive, 

and space and aircraft embedded control system. Finally, industrial electrical control systems 

are also of great interest because the ever-increasing level of expected performance while at 

the same time reducing the cost of the control systems. 
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2.3.3 FPGA Architecture 

The architecture of an FPGA is divided into: 

 Processing resources including memories, logic and registers. They are grouped into 

logical blocks of different types (CLB,IOB). 

 The programmable routing recourses that connect the logic blocks together. 

The programming of a reconfigurable circuit therefore consists in specifying the functionality 

of each logic block and in organizing the interconnection network in order to perform the 

requested function. Some FPGAs also incorporate RAMs, Multipliers, and even processor 

cores [16]. 

A generalized example of an FPGA is shown in Figure  2-2 where CLBs (Configurable Logic 

Block) are arranged in a two dimensional grid and are interconnected by a programmable 

routing sources. The CLBs are surrounded by IOB blocks which are arranged at the periphery 

of the grid and they are also connected to the routing interconnection [17],[18]. 

 

 

Figure  2-2: Overview of FPGA architecture 
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2.3.3.1 Configurable Logic Block (CLB): 
The Configurable Logic Block is a basic component of an FPGA; it provides the basic logic 

and storage functionality for a target application design. In order to provide the appropriate 

basic logic and storage capability, the basic logic can be either a transistor or an entire 

processor. In between these two extremes exists a spectrum of basic logic blocks. Some of 

them include logic blocks that are made of NAND gates, an interconnection of multiplexors, 

lookup table (LUT) …etc. 

The choice of the logic block depends on performance, power consumption and the amount of 

the programmable interconnect …etc. 

A CLB can compromise of a single BLE (Basic Logic Element), or a group of interconnected 

BLEs. A simple BLE consist of a LUT, and a flip-flop. A LUT with k inputs contains 2K 

configurations bits and it can implement any K-input Boolean function. The Figure  2-3 shows 

an example for k=4 [16]. 

 

Figure  2-3 : Basic Logic Element (BLE) 

The LUT in that example uses 16 SRAM (SRAM are explained in next sections) bits to 

implement any 4 inputs Boolean function. 

A CLB can contain a cluster of BLEs connected through a local routing network. Figure  2-4 

shows a cluster of 4 BLEs of 4 inputs, each BLE contains a LUT and a Flip-Flop. The BLE 

output is accessible to other BLEs from the same group through a local routing network. The 

numbers of output pins of a cluster are equal to the number of BLEs in the cluster. However 

the numbers of input pins in a cluster can be less than or equal to the sum of pins required by 

all the BLE in the cluster [16]. 
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Figure  2-4 : A configurable Logic Block (CLB) having four BLEs 

2.3.3.2 Input Output Block (IOB): 
The IOBs allow the interface between the FPGA component pins and the internal logic 

developed inside the component. They are present the entire periphery of the FPGA circuit. 

Each IOB block command a component pin and can be defined as input, output, bidirectional 

signal or unused (high impedance) [11].  

2.3.3.3 Routing interconnections:  
As we discussed earlier, the computing functionality is provided by its programmable logic 

blocks which are connected to each other through a programming routing network. This 

programmable routing network provides routing connection among logic blocks and IOB 

blocks to implement any user-defined circuit. The routing interconnect of an FPGA consists 

of wires and programmable switches that form the required connection. These programmable 

switches are configured using the programmable technology. 

To assure a variety of the reprogrammable circuits, the FPGA routing interconnect must be 

very flexible. Although the routing requirements vary from a circuit to another, certain 

common characteristics of these circuits can be used optimally design the routing interconnect 

of FPGA architecture. For example most of designs exhibit locality, hence requiring plenty of 

short wires. But at the same time there are some distant connections, which lead to the use of 

long wires [16]. 

The arrangement of the routing resources plays an important role in the overall efficiency of 

the FPGA Architecture. This arrangement here considered as global routing architecture 
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whereas the microscopic details regarding the switches topology of different switch blocks is 

considered as detailed routing architecture. 

2.3.3.4 Programming technology: 
There are numerous programming technologies that have been used for reconfigurable 

architectures. Each of these technologies has different characteristics that, in turn, have a 

significant impact on the programmable architecture. Some of the well-known technologies 

include static, flash and anti-fuse memory. 

In this section we discus only the SRAM based Programming technology since it is the most 

used technology by the commercial vendors. 

SRAM based programming technology 

Static memory cells are the basic cells used for SRAM-based FPGAs. Most commercial 

vendors use static memory (SRAM) based programming technology in their devices. These 

devices use static memory cells that are distributed throughout the FPGA to ensure 

configurability. An example of this memory cell is shown in the Figure  2-5. In an SRAM-

based FPGA, SRAM cells are mainly used for the following purposes: 

 To program the routing interconnect of FPGAs which are generally steered by small 

multiplexors. 

 To program Configurable Logic Blocks (CLBs) used to implement logic functions. 

 

Figure  2-5 : Static Memory cell 

SRAM-based programming technology has become the dominant approach for FPGAs 

because of its re-programmability and the use of standard CMOS process technology and 

therefore leading to increased integration, higher speed and lower dynamic power 

consumption of new process with smaller geometry. There is however a number of drawbacks 

associated with SRAM-based programming technology. For example an SRAM cell requires 

6 transistors which make the use of this technology costly in terms of area compared to other 
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programming technologies. Further SRAM cells are volatile in nature and external devices are 

required to permanently store the configuration data. These external devices add to the cost 

and area overhead of SRAM-based FPGAs. 

2.4 The circuit board Nexys 2[19] 

The Nexys2 circuit board is a complete, ready-to-use circuit development platform based on a 

Xilinx Spartan 3E FPGA. It has been used to implement the proposed algorithm by providing 

a complete application development solution on Xilinx’s Spartan 3E family. It uses the circuit 

“FPGA XC3S500E-FGG320” which belongs to the Spartan 3E family of Xilinx. The high 

integration density of the logic gates and the large number of inputs / outputs available for the 

user allow the implementation of complete systems on the FPGA board. This board offers a 

design environment that is very suitable for varied application prototyping, including those of 

general purpose digital systems and embedded systems. It provides a complete application 

development solution and is also ideal for video control, video processing and signal 

processing applications in general. Figure  2-6 shows the board components. 

 

Figure  2-6 : Nexys 2 board FPGA 

Its onboard high-speed USB2 port, 16Mbytes of RAM and ROM, and several I/O devices and 

ports make it an ideal platform for digital systems of all kinds, including embedded processor 

systems based on Xilinx’s MicroBlaze. The USB2 port provides board power and a 

programming interface, so the Nexys2 board can be used with a notebook computer to create 

a truly portable design station.  
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2.4.1 Spartan 3E architecture 

The Spartan-3E family architecture consists of five fundamental programmable functional 

elements [20] : 

Configurable Logic Blocks (CLBs): contain flexible Look-Up Tables (LUTs) that 

implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide 

variety of logical functions as well as store data. 

Input/output Blocks (IOBs): control the flow of data between the I/O pins and the internal 

logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports 

a variety of signal standards, including four high-performance differential standards. Double 

Data-Rate (DDR) registers are included.  

Block RAM: provides data storage in the form of 18-Kbit dual-port blocks.  

Multiplier Blocks: accept two 18-bit binary numbers as inputs and calculate the product. 

Digital Clock Manager (DCM): Blocks provide self-calibrating, fully digital solutions for 

distributing, delaying, multiplying, dividing, and phase-shifting clock signals. 

These elements are organized as shown in Figure  2-. A ring of IOBs surrounds a regular array 

of CLBs. Each device has two columns of block RAM. Each RAM column consists of several 

18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs 

are positioned in the center with two at the top and two at the bottom of the device. 

The Spartan-3E family features a rich network of traces that interconnect all five functional 

elements, transmitting signals among them. Each functional element has an associated switch 

matrix that permits multiple connections to the routing. 

 

Figure  2-7 : Spartan E3 family architecture 

 



 CHAPTER 2 FPGA Architecture 
 

37 
 

2.5 VHDL 

2.5.1 Brief on VHDL 

The VHDL is a hardware description language. It describes the behavior of an electronic 

circuit, from which the physically circuit can then be implemented. The VHDL stands for 

VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High Speed 

Integrated Circuits. 

An initiative funded by the US Department of Defense in the 1980s that led to the creation of 

VHDL. Its objective was to describe the complex circuits, in order to establish a common 

language with its suppliers. 

Its first version was the VHDL 87, later an upgrade to the so-called VHDL 93. The VHDL 

was the first hardware description language standardized by the Institute of Electrical and 

Electronics Engineers IEEE, thanks to the IEEE 1076. An additional standard, the IEEE 1164, 

was then added to introduce multi-valued logic systems. 

2.5.2 Utility of VHDL 

The VHDL is a language of specification, de simulation and also design. Unlike other 

languages (CUP, ABEL) that were primarily design languages; the VHDL is primarily a 

specification language. The standardization first took place for specification and simulation 

(1987) and then for synthesis (1993). 

Specification: 

It is in this field that the standard is currently the most established. It’s quite possible to 

describe a circuit by a standard VHDL code so that it is readable everywhere. This ability to 

describe circuits in a universal language is also very practical to avoid language problems. 

Simulation: 

The VHDL is also a simulation language. To do so, the notion of time, in different forms, has 

been introduced. Modules, intended only for simulation, can thus be created and used to 

validate a logical or temporal operation of the VHDL code. The ability of simulating with 

VHDL programs should considerably facilitate the writing of tests on a prototype which are 

much more expensive and whose errors are more difficult to find. 

Conception: 

The VHDL also allows circuit design. The two main immediate applications of VHDL are in 

the field of programmable logic circuits, including CPLD and FPGA, and in the field of ASIC 

circuits. The VHDL is intended for circuit synthesis as well as circuit simulation. However, 

since this language is designed primarily for specification and then for simulation, as a result 

some language variants are not yet usable for design.  
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2.5.3 VHDL structure 

As illustrated in Figure  2-8 the typical structure of a VHDL description is composed of at 

least three fundamental parts: 

Figure  2

 

Libraries declaration:  

Any description used in the VHDL code must be defined in a library. The main libraries are 

standardized by IEEE. They contain the definitions of the types of electronics signals, 

functions and subprograms used to perform arithmetic and logic operations, and so on. The 

“use” directive is used to select which libraries to use.

The entity: 

It represents an external view of the description. The declaration of the entity makes it 

possible to define the name of the VHDL description as well as the inputs and outputs used, 

the instruction that defines them is “port”.
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2-8 : Basic structure of VHDL description 

Any description used in the VHDL code must be defined in a library. The main libraries are 

. They contain the definitions of the types of electronics signals, 

functions and subprograms used to perform arithmetic and logic operations, and so on. The 

“use” directive is used to select which libraries to use. 
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The architecture: 

Contains the appropriate VHDL code,

perform the expected operation. It represents the internal structure of the description.

2.5.4 The modes used in VHDL

The VHDL uses two modes of operation: combinatorial mode (concurrent mode) and 

sequential mode. Each of these modes is used in specific cases.

Combinatorial mode: 

In combinatorial mode, all instructions in a VHDL description are evaluated and affect the 

output signals at the same time (in parallel), so the order in which the instructions are writ

is irrelevant. Indeed the description generates electronic structures, it is the great difference 

between a VHDL description and a classical computer language. So with VHDL you have to 

try to think of the structure that will be generated by the synthes

description. 

Sequential mode: 

The sequential mode uses “process” in which time is an essential variable. A process is a part 

of the description of a circuit in which the instructions are executed sequentially, that is to say 

one after the other. It can perform signal operations using the standard instructions of 

structured programming as in microprocessor systems.

2.6 Conclusion 

To be able to implement a ANN

on them. thus in this chapter, FPGA circuits have been described and

choice for implementation of 

architecture of FPGA circuits, specifically Xilinx Spartan E3. According to the architecture 

study, FPGAs are reconfigurable components, they are generally constituted by a 

programmable logic block matrix (CLB) surrounded by programmable Input/ Output blocks 

(IOB). These two blocks can be connected by a network of programmable interconnections. 

In addition, the Xilinx Spartan E3 contains two other blocks, which are the Multiplier block 

and the Digital Clock Manager (DCM) block. Before that we had introduced briefly the 

different type of digital circuits. Finally, the VHDL description language, which is a langu

of a specification, simulation and design, has also been presented at the end of this chapter. 
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CHAPTER 3. FPGA IMPLEMENTATION OF 
NEURAL NEWORKS 
 

 

 

3.1 Introduction  

ANNs are becoming more popular these years; this is due to the growing interest in their 

applications. However implementing them in the traditional way by software running in a 

general-purpose processor couldn’t really meet the real-time requirements in many cases, 

especially in intelligence control. In contrast to it the hardware implementation allows neural 

networks to take full advantage of their inherent parallelism and run orders of magnitude 

faster than software. 

The hardware implementation of neural networks can be realized using either analog or digital 

hardware; still the latter is the most appropriate and popular as it has many qualities among 

which we state higher accuracy, better repeatability and testability, lower noise sensitivity, 

and higher flexibility and compatibility with other types of processors.  

Furthermore as it is stated in the previous chapter, the FPGA showed up to be the most 

suitable for ANN implementation as it preserves the parallelism, flexibility and 

reconfigurability in the neuron’s architecture. 

However there are some challenges and certain tradeoffs that must be dealt with in order to 

implement Neural Networks on FPGAs. Generally it requires large resource because of 

nonlinear activation functions and several synaptic weights (multipliers) present in the 

network. It is a major problem where there should be a balance between precision and speed, 

and the cost of more FPGA resources (logic areas) associated with increased precision. 

This chapter proposes a C++ based application that generates descriptions of Feed Forward 

Layered ANNs in form of VHDL files, to be implemented in an FPGA, the ANNs 

descriptions are based on a simple architecture that allows implementing large neural 

networks with minimum recourses which is layer multiplexing. The chapter starts by 

introducing some arithmetic issues in implementing neural networks (data representation, 

products computation, sum of products, activation function). After that a general architecture 

of ANN generated by our application and its different main blocks are presented. Then it is 

concluded by a brief overview on the essential of our work that is the C++, based application. 

3.2 Arithmetic in ANN digital implementation 

There are several aspects to take into account when designing ANNs circuits; these include 

data representation, products and sum of products computations, and activation functions 
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implementations. The most important are inner-products and non-linear activation function, 

because they are area-greedy. Indeed the latter is the most complex, and naturally the one that 

consumes FPGA resources the most. It has an entire separate section devoted just to it. Given 

the ease with which arithmetic operations can be implemented, the activation function stays 

the biggest limiting factor in performance. 

3.2.1.1 Data representation: 
A neural network operates with real numbers; it can be represented in many ways. However 

the problem is how to balance between numeric precision, which is important for the accuracy 

and convergence and FPGA resources.  

The simple precision floating point representation is ideal since it offers the greatest amount 

of precision (i.e. minimal quantization error); however using it in ANN implementation on 

FPGAs is not feasible since it consumes huge amounts of resources which are very limited in 

this case. 

Instead of Floating point, fixed point representation can be used. Even though this means less 

precision, its benefits compromise its inconveniences. It is more area-efficient than floating 

point, and much simpler in arithmetic operations. It comes naturally to use two’s complement 

representation for negative numbers. It was mentioned in [10] that many studies established 

16 bits for weight and 8 bits for activation-function as good enough. In the coming proposed 

architecture, 15 bits are used for weights and 9 bits for the activation-function input. 

3.2.1.2 Inner products: 
Multiplayer has been identified as the most area-intensive arithmetic operator used in FPGA-

based ANNs, there many forms of multipliers: 

 Bit-serial multipliers: In this one the calculation is done by a bit at a time, whereas fully 

parallel multipliers calculate all bits simultaneously. Thus the first one can scale to a signal 

representation of any range-precision, however, this means that the bit-serial multiplication 

time grow quadratically, with the length of the signal representation. This means that it is not 

effective in real time applications of ANN. 

Other ways have been tried, like imposing the values of synaptic weights into powers of two 

values, so that the products get simplified to numbers of shifts. Sadly this type of design 

practice reduces drastically the ANN performance. 

One last method to be used is direct full parallel-bit multiplier; FPGAs have limited numbers 

of these multipliers in different dimensions. In Spartan 3E, there are only 20 multipliers of 

dimension (18 × 18). In the architecture proposed in next sections, only 6 multipliers have 

been used in parallel, this allows the ANN VHD description generated by the proposed C++ 

application, to have in the same time good parallelism and to be implemented in low resource 

FPGAs too. 
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3.2.1.3 Sum of products  
The number of adder is not what lacks in today’s FPGAs, and the sum of products can be 

carried in many ways. In ANN the sum of products is used to cumulate the elementary 

products of the neuron inputs with their associated synaptic weights, ∑ ���
�
�� � ��. Its 

implementation depends on the number of elementary products to be accumulated. If � is 

small enough then a direct implementation like the one in Figure  3-1 or Figure  3-2 can be 

used. 

 

Figure  3-1: Sum of products 1 

 

Figure  3-2: Sum of Products 2 

As it is stated previously in the proposed ANN implementation only 6 products can be 

computed at the same time, one multiplier per neuron at a time, it receives the neuron’s 

associated inputs and multiply them by their appropriate weight in a sequential way, this 

method causes more latency in computation, but in the other hand it is more area-efficient and 

preserves the parallelism characteristic between neurons. So the elementary products for each 

neuron can be summed using just one adder with a feedback loop since they come out of the 

multipliers sequentially, see the Figure  3-3. 

 

Figure  3-3:  Serial sum of products 
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3.3 The Activation Function implementation 

The activation function implementation is one of the most important arithmetic-design issues 

when implementing ANNs on FPGA boards. There exist many types of activation functions 

by now, see chapter one. The most interesting ones for our application are Tangent sigmoid, 

Log sigmoid and linear activation function. For the implementation of the first two functions 

which are nonlinear, many works have being proposed [10],[21], [22],[23] and more. Mainly 

there are the next five implementation approaches: piecewise linear approximation (PWL), 

piecewise nonlinear approximation, lookup table (LUT), bit-level mapping, and hybrid 

methods.  

Generally piecewise linear approximation uses a series of linear segments to approximate the 

activation function. The number and locations of these segments are chosen such that error, 

processing time, and area utilization are minimized. The use of multipliers should be avoided 

for efficient hardware implementations employing this approximation method, as multipliers 

are expensive hardware components in terms of area and delay. This method is used in [23] 

for the hyperbolic tangent and sigmoid function implementation.  

The piecewise nonlinear approximation is similar to the PWL method except that a nonlinear 

approximation is used in each segment. One example of it is polynomial approximations. 

Although High order polynomial approximations can give low-error implementations, they 

are generally not suitable for hardware implementation, because of the number of arithmetic 

operations 

In the LUT-based methods, input range is divided to equal sub-ranges and each sub-range is 

approximated by a value stored in LUT. This method is used to implement the hyperbolic 

tangent. 

Hybrid methods usually combine two or more of the previously mentioned methods to 

achieve better performance. The main challenges have always been one of how to choose the 

best interpolation points and how to ensure that look-up tables remain small. This approach is 

used in [22] to implement tangent sigmoid. 

In this work three activation functions are implemented, Tangent sigmoid, log sigmoid, and 

linear activation function. The approach adopted to implement the nonlinear ones is the last 

one, the hybrid method that uses lookup table coupled with a piecewise linear approximation. 

It is mainly based on the work presented by Promod Kumar Meher in his article entitled “An 

Optimized Lookup-Table for the Evaluation of Sigmoid Function for Artificial Neural 

Networks”[22]. 
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3.3.1 Implementation of Tangent Sigmoid and Log sigmoid

This function is defined by the following equation:

 

This equation produces an S-shape curve presented in 

Figure  3-4: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed 

in [22] is used, and the challenge in this is how di

remain small, and result with minimum error.

3.3.1.1 Characteristics of Tanh and strategy of implementation 
 Property 1 

 

Considering this property (mirror symmetry about Y

Figure  3-4 should be stored, i.e., for 

evaluated by negating the LUT

done by performing the 2’s complement operation on the LUT output if the input is negative.

 Property 2 

 

This means that for small values of the input, 

LUT for this region could be avoided, since the corresponding 

obtained directly from input values. This could be implemented by a simple Multiplexer.
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Implementation of Tangent Sigmoid and Log sigmoid

This function is defined by the following equation: 

tanh(�) =
�� − ���

�� + ���
 

shape curve presented in Figure  3-4 

 

: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed 

is used, and the challenge in this is how divide intervals to ensure that look

remain small, and result with minimum error. 

Characteristics of Tanh and strategy of implementation 

tanh(− �) = − tanh (�) 

Considering this property (mirror symmetry about Y-axis), only the right-

should be stored, i.e., for � ≥ 0,  the negative values of the input could be 

evaluated by negating the LUT-words stored for its corresponding positive values. This is 

done by performing the 2’s complement operation on the LUT output if the input is negative.

lim
�→ �

tanh(�) = � 

This means that for small values of the input, tanh(�) is linear, then storing values in the 

LUT for this region could be avoided, since the corresponding tanh(�

ined directly from input values. This could be implemented by a simple Multiplexer.
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As stated at before to implement this function, an optimized lookup table approach proposed 

vide intervals to ensure that look-up tables 

Characteristics of Tanh and strategy of implementation  

( 3-2) 

-half of the curve in 

the negative values of the input could be 

words stored for its corresponding positive values. This is 

done by performing the 2’s complement operation on the LUT output if the input is negative. 

( 3-3) 

is linear, then storing values in the 

(�) values could be 

ined directly from input values. This could be implemented by a simple Multiplexer. 
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 Property 3 

 

 

According to the two equations the variation of the 

inputs, that is to say that for |

be stored in the LUT for all values above 3.

By using these properties all together, the values of 

are for ���� < � < ����, where 

be derived from accuracy requirements; su

|tanh(����)− (1)|≤ �, where 

���� is the bound of the input values above which the 

takes generally values smaller then 

which is a very higher accuracy than what is required for many applications, with neural 

networks included. The Figure 

2.4,  ���ℎ(�) > 0.98, and for

by +1 for � > ���� where ����

0.02, or 0.01 respectively. 

Figure  3

Similarly, to choose ���� we analyze the behavior of the

the ���ℎ(�) near zero gives 

 ���ℎ(�)

When � tends to zero high order terms can be ignored. 
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���
�→ �

� ���ℎ (�)

��
= 0 

���
�→ �

���ℎ (�) = 1 

According to the two equations the variation of the ���ℎ (�) is insignificant for big values of 

|�|≥ 3 the variation is less than 0.00015 and a value of 

alues above 3. 

By using these properties all together, the values of ���ℎ (�) that should be stored in the LUT 

, where ���� and ���� represent the limiting values which could 

be derived from accuracy requirements; such as |���ℎ(����)−

, where � is the maximum allowable error. 

is the bound of the input values above which the tanh (�) stored in the LUT is 

takes generally values smaller then 3 for the reason that |���ℎ(�)− ���

which is a very higher accuracy than what is required for many applications, with neural 

Figure  3-5 shows clearly that for � = 2, ���ℎ(�

for � = 2.7, ���ℎ(�) > 0.99. Thus, ���ℎ(�) can be approximated 

���� is 2, 2.4, or 2.7 if the maximum allowable errors are 0.04, 

3-5: Saturation region of tangent hyperbolic 

we analyze the behavior of the ���ℎ(�). The Taylor expansion of 

( ) = � −
��

3
+

��

15
−

17��

315
+ ⋯ , � → 0 

tends to zero high order terms can be ignored.  
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and a value of +1 can 

that should be stored in the LUT 

represent the limiting values which could 

) (�min)|≤ �, and 

stored in the LUT is +1. It 

���ℎ(3)| < 0.00015, 

which is a very higher accuracy than what is required for many applications, with neural 

(�) > 0.96, for � =

( )can be approximated 

is 2, 2.4, or 2.7 if the maximum allowable errors are 0.04, 

 

. The Taylor expansion of 

( 3-6) 
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We can find ���� above which we can assume ���ℎ(�) = � by using the nest equation: 

 ����� − ����� −
�����

3
+

�����

15
�� < � ( 3-7) 

By simplifying we find  

 
�����

3
−

�����

15
≤ � ( 3-8) 

For an error � = 0.02,  ���� is found to be 0.390625. 

As seen in Figure  3-5, the rate of variation of ���ℎ(�) when ���� < � < ���� is not 

uniform, therefore all the values of inputs may not correspond to a different LUT value for a 

given accuracy. By knowing this, one single value can be stored for several input values 

forming sub-domains of the function. 

3.3.1.2 Optimized Lookup table design for hyperbolic tangent  
Unlike conventional lookup tables where each input value (address) word corresponds to one 

location in the LUT, Maher used in his work [22] used what is so called range-addressing, 

where one address corresponds to a range of input values that have the same value of 

���ℎ(�) stored in the LUT, reducing by that the number of words stored.  

Apart from that, for a given sub-domain the value stored is the mean of the boundary values 

of the function in that sub-domain. This is unlike other works where they stored the function 

value corresponding to the lower-boundary address, and here the difference between the 

maximum and the minimum values of the function could be the double of the allowable error.  

Designing the LUT is then done by following steps he proposed which are:  

1)  Determination of the upper and lower limits of LUT input (���� and ����) : 

For � = 0.02, ���� = 0.390625 ��� ���� = 2.4 

2) Selection of the address width (precision): 

By simulations in Matlab, it was found that a width of 9bits of input values 

represented in 2’s complement allow to have |���ℎ(�1)− ���ℎ(�2)|≤ � = 0.02 

where �1and �2 are two consecutive inputs. 

3) Selection of Domain Boundaries: 

The range of ���ℎ(�) for 0.3906250 < � < 2.4 is divided into � sub-domains 

��(���,���)  such that |���ℎ(���)− ���ℎ(���)|≤ 2�. � is determined such as the 

upper bound of the last domain (���)=2.4 then all (���,���) should be determined. 

4) LUT assignment:  

The stored is the mean of the boundary values of the function which means                      

tanh(��) = [���ℎ(���)+ ���ℎ(���)]/2 . 

Based on these steps we developed a simple C++program to generate the LUT words, results 

are given in the Table  3-1, unlike Maher work, the stored value is the nearest to the mean of 

the boundaries among its possible values that are imposed by the binary representation, which 
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mean that the error in a sub-domain can exceed the error imposed by the 

criterion |���ℎ(���)− ���ℎ(���)|≤ 2�. As we can see in the table the maximum error 

became 0.033  

 

Table  3-1: LUT for the hyperbolic tangent activation Function 

 LUT 

word N° 

The ranges limits The mean 

tanh (��) 

Stored 

value 

Stored 

value in 

binary 

Maximum 

error 
��� ��� 

 ... 0.390625 � NA NA NA 

1 0.390625 0.453125 0.398182 0.390625 00011001 0.0338394 

2 0.453125 0.515625 0.44939 0.453125 00011101 0.0286606 

3 0.515625 0.578125 0.497809 0.5 00100000 0.0256837 

4 0.578125 0.640625 0.543313 0.546875 00100011 0.0255737 

5 0.640625 0.703125 0.585836 0.578125 00100101 0.0282226 

6 0.703125 0.78125 0.629886 0.625 00101000 0.0284236 

7 0.78125 0.859375 0.67468 0.671875 00101011 0.0240605 

8 0.859375 0.9375 0.715003 0.71875 00101110 0.0228145 

9 0.9375 1.048675 0.757681 0.75 00110000 0.0312907 

10 1.048675 1.171875 0.803082 0.796875 00110011 0.0279973 

11 1.171875 1.328125 0.846831 0.84375 00110110 0.0250403 

12 1.328125 1.53125 0.889714 0.890625 00111001 0.0218347 

13 1.53125 1.859375 0.93163 0.9375 00111100 0.0268617 

14 1.859375 2.90625 0.973329 0.96875 00111110 0.0252879 

15 2.90625 .... NA 1 01000000 NA 
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Figure  3-6 : Hyperbolic Tangent LUT block diagram 

The Figure  3-6 shows that the hyperbolic tangent implementation consists of several blocks, 

that assure the functioning described previously.  

A Sign converter: It has been implemented before and after the LUT bloc. The role of the first 

one is to calculate the magnitude of the input to feed it to the LUT, since this one deals with 

positive numbers only. So when the input is negative, the LUT word corresponding to the 

input magnitude is negated by the second sign converter to have the correct value ���ℎ(�)  of 

that negative input � . 

A range decoder: it has been implemented in order to perform the range-addressing. That is to 

say that when it is fed with the input magnitude, it determines the corresponding range, 

through its word-select outputs (w1, w2..., w15). 

A Multiplexer: its role is to let through either the LUT words or the input directly. The 

decision to let through the input happens in no word is selected by the range decoder, which 

means by reading the Table  3-1 that |�|< 0.390625. This could be implemented by using a 

NOR logic gate to all the word-select signals (range decoder outputs). 
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Simulations: 

 

Figure  3-7: Range decoder simulation 

The Figure  3-7 shows the word-select signals values with respect to the whole range of its 

inputs. As it is clear in the figure, the inputs are divided into three regions:  

 A linear region where the input is passed directly to the output without passing 

through the LUT, this region is known when all word-select signal are at low level 

(the value 0) 

  A non linear region, we can clearly see the shape of tangent hyperbolic formed when 

the word-select signals, (w1, w2..., and w15) get the value 1 each one at its appropriate 

sub-range and 0 in the other sub-ranges. 

  A saturation region, in this region the input verifies. 

This concludes that the range decoder works properly and decodes the input values into sub-

ranges that can be known when their correspondent word-select signal is set to 1. 

This figure (Figure  3-8) shows that the Tangent function block works perfectly, the first input 

value is within the linear range thus the output is equal to the input and the 3rd value of the 

input is within the nonlinear region 

 

Figure  3-8: Hyperbolic Tangent simulation 
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3.3.1.3 Implementation of Log-Sigmoid activation function: 
We used the same previous implementation process to generate an optimized LUT for a 

sigmoid function:  

 ����(�) =
1

1 + ����
 ( 3-9) 

In our implementation we have chosen � = 2 and that is to have an easy function to 

approximate its equation becomes: 

 ����(�) =
1

1 + ����
 ( 3-10) 

This function has an S-shaped curve too; however unlike the tangent sigmoid this one ranges 

from 0 to 1 and not from -1 to 1 (See Figure  3-9a).  

 

Figure  3-9: Sigmoid activation function 

By doing the Taylor expansion to the first order we get: 

 ���2(�) =
1

2
+ � + ⋯ , � → 0 ( 3-11) 

To make the implementation easier, we considered implementing the function: 

 �(�) =
1

1 + ����
−

1

2
 ( 3-12) 

The new function has the shape shown in Figure  3-9b, clearly it has similar properties         to 

��ℎ(�) : 

 ����→ � �� (�)/�� = 0 

 ���
�→ �

�(�) = 0.5 

 �(− �) = − �(�) 

 �(�) ≈ � when � → 0 
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After implementing the LUT of  �(�) =
�

���(���)
−

�

�
  we can get the sigmoid by adding a 0.5 

to its output. 

We made a C++ code to generate the LUT for the function �(�), the results are in the Table 

 3-2  

Table  3-2 : LUT for f (x) = sig2(x) - 0.5 

LUT word 

N° 

The ranges limits The mean 

sig2 (��) 

Stored 

value 

Stored 

value in 

binary 

Maximum 

error 
��� ��� 

 ... 0.03125 � NA NA NA 

1 0.03125 0.09375 0.031179 0.03125 00000010 0.0156301 

2 0.09375 0.15625 0.0621168 0.0625 00000100 0.0157618 

3 0.15625 0.21875 0.0925793 0.09375 00000110 0.0162546 

4 0.21875 0.28125 0.122347 0.125 00001000 0.0173368 

5 0.28125 0.34375 0.151221 0.15625 00001010 0.0192192 

6 0.34375 0.40625 0.179026 0.171875 00001011 0.020767 

7 0.40625 0.46875 0.205618 0.203125 00001101 0.0154694 

8 0.46875 0.546875 0.233841 0.234375 00001111 0.0157806 

9 0.546875 0.625 0.263194 0.265625 00010001 0.0165378 

10 0.625 0.71875 0.292684 0.296875 00010011 0.0195751 

11 0.71875 0.8125 0.321775 0.328125 00010101 0.0200578 

12 0.8125 0.921875 0.349438 0.34375 00010110 0.0196416 

13 0.921875 1.0625 0.37835 0.375 00011000 0.0183094 

14 1.0625 1.25 0.408726 0.40625 00011010 0.0178918 

15 1.25 1.53125 0.43973 0.4375 00011100 0.0178191 

16 1.53125 .... 0.467493 0.46875 00011110 0.0134309 

 

Simulations: 

 

Figure  3-10 Log sigmoid2 simulation 

The simulation shows the good functioning of the sigmoid2 function block. It gave the value 

0.5 when the input was null and 1 when the input was in the saturation region. 

The ���2 function ���2(�) = �(�)+ 1/2 is implemented as it is shown in the following 

block diagram: 
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Figure  3-11: Sigmoid2 Implementation diagram 

3.4 The architecture overview of the ANN generated by the C++ 

application 

The choice of the anatomy of an ANN (the number of inputs, outputs, layers, and the number 

of neurons per layer) is specific to each application. In literature it has been reported  that 

three-layer network with sigmoid activation function in the hidden layer and linear activation 

function in the output layer can virtually approximate any nonlinear function to any degree of 

accuracy provided sufficient number of neurons in a hidden unit is available. However To 

realize all types of nonlinearity using three layers, large number of neurons is needed and it 

may result in a huge NN.  

For function approximation, multilayer networks have been found to be very useful as it is 

similar to a biological NN. However Implementations of multilayer networks will demand 

huge resource and will not be a feasible solution for real-time applications such as estimators 

for motor control. Thus we proposed an architecture that is based on the concept of layer 
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multiplexing presented in [24], where large ANNs could be implemented with minimum 

resources.  

3.4.1 Concept of layer multiplexing 

The data processed in a multilayer feed forward ANN propagates from one layer to another, 

and the computing happens in one layer at a time, hence we don’t need to have all layers 

implemented in the same time, only the largest layer (the one with the maximum number of 

neurons) should be implemented, it calls itself repeatedly and behaves as different layers with 

the help of a control unit. The control block ensures the complete computation of NN using 

layer multiplexing by sequencing and placing the appropriate inputs, weights, biases, and 

value of excitation function (from LUTs) of each layer . 

Unlike the architecture presented in [24], in our architecture, we have implemented both the 

largest layer and the output layer, which means that the largest layer behaves like the hidden 

layers only and not the output layer. That is to be able to have a different activation functions 

in the output layer. So implementing an ANN like the one in figure is reduced to 

implementation of the layer-multiplexed ANN in figure  

 

Figure  3-12 : Layer multiplexed ANN [24] 

3.4.2 Single neuron architecture 

As indicated in its mathematical model (Figure  1-4), the neuron does two major arithmetic 

operations; the first is a sum of products of inputs with their correspondent synaptic weights 

( 1-1), then the result is fed to an activation function ( 1-2) to determine its output.  

The sum-of-products implementation is done by the circuits in Figure  3-3, and the activation 

function is implemented by circuits shown in Figure  3-6, the global architecture of a neuron is 

shown in Figure  3-13. 
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Figure  3-13: A Single neuron block diagram 

The width used for the weights in this work is 15 bits; 7bits for the integer part and 8bits for 

the fractional part. Thus the product of the weight (15bits) with the input (9bits) gives a result 

in 24bits; this result is then fed to the adder which gives a result in 24bits too. The problem is 

how to adapt the width of the data coming from the adder, to the width of the input of 

activation function’s block without affecting the results. We introduced a block called bit-

reducer (see Figure  3-13) to do this adaptation. 

Because of the saturation region in the hyperbolic tangent function, the output of the LUT for 

any value of its inputs � that verifies |�|> 2.4 is always 1. Thus if the adder’s output exceeds 

2.4 the bit-reducer changes it to a value that can be represented in 9bits, and which gives a 

result of 1 at the output of the LUT.  

Since the LUT’s input has 3bits for the integer part, then if  ��� > 2.4  the LUT’s input is set 

to 3, and If the  ��� < − 2.4  than the LUT’s input is set to -4. This is because 3 and -4 give 

an output value equal to 1 and they can be represented in 9bits (in 3bits of the integer part). 
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3.4.3 The Global ANN architecture

The figure shows block a diagram of the global architecture of ANNs generated by the 

The figure shows clearly the use of the layer

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink 

neurons), as it was described before.

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer 

behaves as all hidden layers 

The Normalization block, called “Norm” in the diagram is to centralize and normalize the 

inputs of the ANN. This step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole 

ANN. The Control Units synchronizes their outputs so that they give the right values of the 

biases and weights respectively at the appropriate time.
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The Global ANN architecture 

The figure shows block a diagram of the global architecture of ANNs generated by the 

application.

Figure  3-14 : ANN Architecture 

The figure shows clearly the use of the layer-multiplexing concept for in implementing the 

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink 

as described before. 

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer 

The Normalization block, called “Norm” in the diagram is to centralize and normalize the 

step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole 

ANN. The Control Units synchronizes their outputs so that they give the right values of the 

and weights respectively at the appropriate time. 
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multiplexing concept for in implementing the 

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink 

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer 

The Normalization block, called “Norm” in the diagram is to centralize and normalize the 

step is important for the correct functioning of a neural network. 

The Biases and Weights blocks contain the biases and weights of the neurons of the whole 

ANN. The Control Units synchronizes their outputs so that they give the right values of the 
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3.5 C++ application 

As it was mentioned before, our work consists of a C

description of an optimized architecture of feed

an interface that demands from the user to insert the ANN anatomy, like the number of inputs, 

outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD 

description for that ANN. 

This application is a kind of an abstraction to

longer the need to write any VHD code for any feed forward layered neural network, all what 

is needed for that with the application is a few clicks.

 This application generates the implementation of the generaliz

that the neuron’s training is performed offline with, so this application requires from the user 

to provide the weights and biases written in real representation (float), in a txt files and then it 

generates as output a set of files with a “vdh” extension which represent the different 

components of the ANN architecture.

The coding idea used to generate the VHD files is very simple. We used the commands of 

read and write from files, then the VHD description is written dependi

the ANN specified by the user

Example:  

This image shows an instruction of the C

description. However the line showed is constant, it does not need to be changed with 

different ANN anatomies that are specified by the user, the challenge in this application was 

how to generate VDH codes of the blocks that are variable with different ANNs

Example: 

In this example we can see the C++ instruction that generates a signal “cs”, however this time

this signal is used to command all the neurons in the output layer, each bit commands a 

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19, 

i.e., it becomes (19 downto 1). Another deal is how to initialize or assig

signals. That was done by a set of simple functions like:
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As it was mentioned before, our work consists of a C++ application that generates the VHD 

description of an optimized architecture of feed-forward layered neural networks. It is mainly 

terface that demands from the user to insert the ANN anatomy, like the number of inputs, 

outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD 

This application is a kind of an abstraction to ANN VHD description, since the user has no 

longer the need to write any VHD code for any feed forward layered neural network, all what 

is needed for that with the application is a few clicks. 

This application generates the implementation of the generalization phase only. That is to say 

that the neuron’s training is performed offline with, so this application requires from the user 

to provide the weights and biases written in real representation (float), in a txt files and then it 

of files with a “vdh” extension which represent the different 

components of the ANN architecture. 

The coding idea used to generate the VHD files is very simple. We used the commands of 

read and write from files, then the VHD description is written depending on the anatomy of 

the ANN specified by the user 

 

This image shows an instruction of the C++ code to generate the first line of the VHD 

description. However the line showed is constant, it does not need to be changed with 

es that are specified by the user, the challenge in this application was 

how to generate VDH codes of the blocks that are variable with different ANNs

In this example we can see the C++ instruction that generates a signal “cs”, however this time

this signal is used to command all the neurons in the output layer, each bit commands a 

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19, 

i.e., it becomes (19 downto 1). Another deal is how to initialize or assign values to this kind of 

signals. That was done by a set of simple functions like:  
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ANN VHD description, since the user has no 

longer the need to write any VHD code for any feed forward layered neural network, all what 

ation phase only. That is to say 

that the neuron’s training is performed offline with, so this application requires from the user 

to provide the weights and biases written in real representation (float), in a txt files and then it 

of files with a “vdh” extension which represent the different 

The coding idea used to generate the VHD files is very simple. We used the commands of 

ng on the anatomy of 

code to generate the first line of the VHD 

description. However the line showed is constant, it does not need to be changed with 

es that are specified by the user, the challenge in this application was 

how to generate VDH codes of the blocks that are variable with different ANNs 

 

In this example we can see the C++ instruction that generates a signal “cs”, however this time 

this signal is used to command all the neurons in the output layer, each bit commands a 

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19, 

n values to this kind of 
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The function in line 23 indicated in the previous image called “toBinary” takes a number n, 

and its maximum value and gives as an output in a string the representation of that number in 

2’s complement representation with an appropriate width. 

The functions in lines 26 and 27 do transform the values of biases and weights provided in 

files by the users, into their appropriate binary representation. The width of both biases and 

weights a general for all ANNs generated by this application. 

The previous example shows how to generate and initiate signals whose width depends on the 

anatomy of the ANN specifies by the user; however there are much more complicated blocks 

whose functioning depends completely on the anatomy, and the most important one is the 

Control Unit. This block contains a finite state machine that produces signal to synchronize all 

the system (ANN), and the C++ code that generates it needs additional C++ functions and many 

conditions. 

The figure shows the state diagram (a direct graph) of state machines for two different neural 

networks generated by the application: 

 

The first state machine (Figure  3-15 a) is for an ANN that has 3 layers plus an input layer that 

contains 3 inputs, the layer 1 has 1 neuron and both layers 2 and 3 have 2 neurons. 

The second state machine (Figure  3-15 b) is for an ANN that has 2 layers plus an input layer 

which contains 3 inputs too, the layer 1 has 5 neurons and layer has 4 neurons. 

It can be clearly seen that the state machines of the two neurons are totally different. 

 

Figure  3-15: Flow state of 2 state machines 
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Simulations: 

To test our application we have generated two different neural networks:  

The first one has the anatomy 1_1_15 which means that it has 1 input, 1 neuron in the hidden 

layer, and 15 neurons in its output. The second one has the anatomy 1_1_5; (see Figure  3-16 

and Figure  3-17) 

 

Figure  3-16 : ANN 1_1_15 

 

Figure  3-17 : ANN 1_1_5 

Interpretation:  

The Figure  3-16 shows a ModelSim simulation of the 1_1_15 ANN generated by the C++, we 

can see clearly that all the output were assigned in less than four clock cycles. Normally all 
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the outputs should have being assigned their values in the third clk cycle, however the number 

of neurons of the output layer in this ANN is 15, it largely exceeds the number of products 

used (since the latter is very limited, in our FPGA and we used on multiplier per neuron, thus 

we assigned the outputs 6 by 6 and this created more latency (the two additional clk cycles). 

Unlike it, the second ANN’s largest layer has 5 neurons in the output, that is why all its 

outputs got assigned in the third clk cycle) 

3.6 Conclusion 

In this chapter we have presented the hardware implementation of ANNs in FPGAs. We first 

introduced the most important issues and the challenges that should be dealt with by the 

designer when implementing ANNs; these include the parallelism required for real-time 

applications, the precision and the minimization of the cost (resources). After that we have 

presented an optimized method for implementing the activation function of a neuron by the 

use of an optimized LUT proposed by Maher. That same method was used in this work to 

implement two non linear activation functions, the hyperbolic tangent and the sigmoid 

function.  

To implement large ANNs, huge resources are required. To avoid this, we have used the 

concept of layer multiplexing, where we needed to implement only the largest layer, this one 

calls itself repeatedly to behave sequentially like all hidden layers. This method proved to be 

very effective in term of reducing resources without a big compromise on the computing 

speed.  

The architecture of a single neuron, and the whole artificial network were then presented 

respectively in the form of block diagrams and their components when presented after, and to 

conclude the chapter we talked about the C++ program we created and that generates any feed 

forward ANN that the user wants, basing on all those previous optimized designing methods. 

After that we simulated two different generated ANNs, and analyzed the results.  
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CHAPTER 4. ANN SHE PWM TECHNIQUE 
 

 

 

4.1  Introduction 

At the end of the last century, one of the results of the development of power electronics is the 

Pulse Width Modulation technique. It is the heart of the control of static converters. The 

objective of the PWM technique in controlling a voltage inverter is to have a fast response 

and high performance. The programmed PWM which is one of the two types of the PWM 

(generated and programmed) is based on a technique of elimination of unwanted harmonics 

that may produce vibrations and undulations of torque and many undesirable consequences. 

This technique is called SHE PWM (Selective Harmonics Elimination Pulse-Width 

Modulation). It was introduced by Turnbull in 1964 and developed later by Patel and Hoftel 

in 1973. 

 

4.2 SHE PWM 

4.2.1 Introduction 

This technique consists in forming the output wave of a succession of slots of variable and 

controllable widths. The switching angles are determined so as to eliminate certain disturbing 

harmonics in the output wave and improve the efficiency of the inverter-machine system by 

reducing torque ripples, as well as current peaks and losses in the machine. The calculation of 

these angles with this method is based on the nonlinear and transcendental equations. This has 

forced researchers to use numerical methods such as Newton-Raphson. The problem with this 

method is the choice of good initial values necessary for convergence. Moreover, the 

computation of these angles cannot be done on-line (in real-time), thus the angles should be 

stored in memory, which makes the system not optimal for applications whose changes in 

frequency and voltage are fast, such as the speed controller. This problem has led to the need 

to use a better algorithm. Recently, an algorithm based on the polynomial interpolation 

approach of the trajectory of the SHE PWM angles by ANN was proposed by GUELLAL 

Ammar [13]. This algorithm will be our application and be implemented using our ANNs to 

calculate the switching angles and generating the SHE PWM signals for controlling the 

voltage inverter on-line, . 
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4.2.2 Principle of operation 

The PWM signals describing the three output voltages of the converter must have properties 

which help to orient their characteristics towards those of a sine wave. In order to approach 

them as much as possible, we may in some cases attribute to them the same properties of 

symmetry as a sinusoidal wave. The aim of this technique is to eliminate a certain number of 

low-order harmonics and to control the fundamental wave. The output voltage of the inverter 

is defined as a function of the exact switching angles α1,…, αm (see Figure  4-1) corresponding 

to the switching times of the voltage from a positive value +E to a negative value -E or vice 

versa. The index m is the number of switching angles of the output voltage of the inverter per 

quarter wave. The output voltage of the inverter is constructed to have half-wave symmetry 

(odd function with respect to the angle π). This symmetry makes it possible to eliminate 

certain types of harmonics, which simplifies the Fourier series development of this voltage 

and reduces the harmonic ratio. Then, the amplitude of the fundamental is fixed to the value 

im and the amplitudes of the (m-1) first harmonics are canceled. 

 

Figure  4-1 : The Inverters output normalized Voltage 

im is the modulation rate defined by: 

�� =
�

�
 

V is the tension of the fundamental. 

It is assumed that the output voltage is periodic and of unit amplitude. Let f be the function 

representing the PWM signal as a function of α (α = ωt). We can write therefore: 

 �(�) = − �(� + �) ( 4-1) 

The function f can be decomposed into Fourier series: 

 �(�) = �� + � (�� sin(��)+ �� cos (��))

�

�� �

 ( 4-2) 

Where:  
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 �� =
1

2�
� �(�)��

��

�

 ( 4-3) 

 �� =
1

�
� �(�)sin (��)��

��

�

 ( 4-4) 

 �� =
1

�
� �(�)cos (��)��

��

�

 ( 4-5) 

The calculation shows: 

�� = 0 

For n even: 

�� = �� = 0 

For n odd: 

 �� =
4

��
�1 + 2 � (− 1)�cos (���)

�

�� �

� ( 4-6) 

�� = 0 

In our study we used a three-phase inverter, so the harmonics of rank three and multiples of 

three are eliminated automatically. Thus, n takes odd values different from a multiple of 3. 

4.2.3 The switching angles 

Each equation ( 4-6) has m unknown variables α1, α2, α3,…, αm. The problem is to calculate the 

values of these switching angles which make it possible to cancel the amplitudes an of the first 

(m-1) harmonics fn and to assign an im value to the amplitude a1 of the fundamental f1. 

On the other hand, two voltage harmonics must be eliminated in order to eliminate a current 

harmonic. Since the amplitude of the fundamental is to be fixed at a given value, this sets the 

first value from m to 3 (m being the number of quarter-wavelength switching or number of 

cuttings per half wave). 

The first value of m is set to 3 so that the amplitude of the fundamental is fixed to a given 

value (m being the number of quarter-wave switching per half wave). Consequently, when m 

is increased successively by 2, the number of current harmonics that will be eliminated is 

increased by 1. 

It should be noted that the value of the modulation index im assigned to the fundamental is a 

dimensionless index varying from 0 to 1. To obtain the corresponding value in volt, multiply 

by E for the three-phase inverter.  



 CHAPTER 4 ANN SHE PWM technique 
  

65 
 

The equations ( 4-7)  form a system of m nonlinear equations with m unknown 
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� ( 4-7) 

 

For this method to converge, we assign a negative value (-im) to the fundamental. This 

corresponds to a phase shift of π of the fundamental. This phase shift has no effect on the 

motor [13]. 

A simple technique to solve these equations is to use Newton-Raphson method. We must have 

a good initial estimate of the exact solution sought, so that this method accurate solution and 

good convergence. Alternatively, more complicated gradient search methods can be used to 

obtain the solutions. Indeed, the Taufik, Mellitt, and Goodman algorithm is used to quickly 

estimate the initial values of the nonlinear system solution. 

A MATLAB program has been made to calculate the switching angles as a function of the 

modulation index im [13]. 

4.3  Implementation of ANN SHE PWM 

As we have already stated, the PWM is a powerful tool in controlling the voltage inverter. It 

based on the SHE PWM technique which requires a very high computing time to calculate the 

switching angles using numerical methods which prevents speed control on-line so the 

algorithm of Patel and Hoft is off-line. Over the last years, various researches have addressed 

this topic. The results showed that it was not possible to implement this algorithm on a 

microprocessor. However, in 2007, GUELLAL managed to implement this algorithm on an 

FPGA circuit. With the emergence and development of new intelligent control techniques, a 

new algorithm based on artificial neural network (ANN) has been proposed. The aim of this 

algorithm is to calculate the switching times of the PWM signal with a precision very close to 

those calculated by the Patel and Hoft algorithm. This algorithm is going to be our application 

to test the performance of our ANN discussed in chapter III. 
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4.3.1 Architecture of the ANN SHE 

The aim of the proposed algorithm is to build a Multi Layer Perceptron MLP which will be 

implemented on an FPGA circuit using the VHDL codes generated by our application. 

4.3.1.1 The topology of neural network [13] 
In order to simplify the implementation and reduce the consumed space in the FPGA circuit, a 

network composed of an input layer, a hidden layer and an output layer has been chosen, in 

addition the hidden layer contains a single neuron. This architecture also makes it possible to 

reduce the error and the time when calculating the switching angles since, if the number of 

layers or the number of neurons in the hidden layers is increased, the error in the switching 

angles and the calculation time will be multiplied. 

Concerning the activation functions, the tangent sigmoid function was chosen between the 

input layer and the hidden layer to present the nonlinearity of the system and a simple linear 

function between the hidden layer and the output layer. The non-linear function between the 

input layer and the hidden layer has been placed so that this function is computed once, since 

if placed between the hidden layer and the output layer this function will be calculated for 

each switching angle; thus this choice makes it possible to reduce the complexity and the time 

of the computation. 

The architecture of our ANNSHE PWM algorithm is presented in Figure  4-2 where: 

im: The modulation index which is the input of the network. 

W1: Weights matrix between the input layer and the hidden layer. 

W2: Weights matrix between the hidden layer and the output layer. 

b1: Biases matrix between the input layer and the hidden layer. 

b2: Biases matrix between the hidden layer and the output layer. 

α: Matrix of switching angles which presents the output of our network. 

 

Figure  4-2 : ANN SHE Architecture 
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4.3.1.2 Database 
In this section, the database that will be used in the off-line training is managed. This database 

gives a relation between the input of the artificial neural network which is the index 

modulation im and its output which is the switching angles matrix α. im takes values from 0 

to 1. A database of 100 values in which im vary by a step of 0.01 has been constructed [13], 

and for each value of im, for each value of im, the system of equation of Patel and Hoft 

(equation ( 4-7) is solved in order to find the matrix α of the corresponding switching angles. 

Moreover, in order for the algorithm to be effective, that is to say the angles calculated by this 

algorithm are very close to the exact values computed by the iterative method of Newton-

Raphson, and to allow the convergence of the learning step, the interval of variation of im is 

divided into six and for each interval a specific ANN (weights and biases) is constructed. The 

choice of number of switching angles (i.e. the number of harmonics to be eliminated) in each 

interval depends on the value of the index im and since the effect of the harmonics increases 

when im decreases we take the appropriate choice which is illustrated in the Table  4-1 , this 

choice also makes it possible to optimize our algorithm and thus minimize the space 

consumed during the implementation.  

 

Table  4-1: ANN SHE characteristic 
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23x 15 105 62561 

0.16 ≤ im < 0.32 ANN-2 19 1 19 19x 16 105 64982 

0.32 ≤ im < 0.56 ANN-3 15 1 15 15x 24 105 73214 

0.56 ≤ im < 0.76 ANN-4 7 1 7 7x 20 105 87327 

0.76 ≤ im < 0.92 ANN-5 5 1 5 5x 16 105 164338 

0.92 ≤ im < 1 ANN-6 3 1 3 3x 8 1.5 104 200000 

 

To find the parameters of six ANNs, a program on MATLAB which solves the system of 

equation of Patel and Hoft and generates the six databases has been developed [13]. These 

databases will be used in the learning phase. Some of switching angles are shown in the Table 

 4-2 using ANN-4.  
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Table  4-2 : An example of switching angles (m=7) generated by a Matlab program 

im 0.58 0.59 0.60 0.61 0.62 
α1 11,1149755 11,0448428 10,9745607 10,904126 10,83353518 
α2 16,4743076 16,4952108 16,5158101 16,5360929 16,55604594 
α3 25,8659416 25,7882198 25,7101518 25,6317263 25,55293186 
α4 32,5003488 32,5384342 32,5761823 32,6135775 32,65060327 
α5 40,836138 40,7576594 40,6787918 40,5995203 40,51982873 
α6 48,3117705 48,3673372 48,4227855 48,4781084 48,53329855 
α7 56,1144861 56,0440286 55,9733672 55,9024937 55,83139934 

4.3.1.3 Off-line training  
In this stage, the parameters of six ANNs (ANN-i) which are the weights and biases will be 

calculated off-line. The database of each ANN calculated in the previous section, is used as 

input in a training program based on the gradient method. The inputs and the outputs of that 

program are automatically normalized. The training program has two shutdown conditions, 

performance and number of epochs. When one of these conditions is verified, training is 

stopped to generate the appropriate parameters (weights and biases).  

The parameters of the training and the characteristics of each ANN-I are shown in the Table 

 4-1. 

At the end of the training, the appropriate parameters for the used neurons is generated and 

used for the simulation in the next section. These results (Weights and biases) are shown in 

the Table  4-3 for the ANN-4. 

 

Table  4-3 : weights and biases calculated in the training phase 

W1 W2 b1 b2 
0.9966 -1.0588 

1.0551 
-1.0581 
1.0615 
-1.0576 
1.0602 
-1.0582 

-0.5257 0.4770 
0.5583 
0.4813 
0.5459 
0.4826 
0.5313 
0.4790 

 

4.3.1.4 Simulation 
In this stage, the efficiency and the accuracy of the algorithm is checked. Using ModelSim, 

the ANN-4 is simulated (Figure  4-3) for two different values of im (im=59.5 and im=61.5).  

As we have mentioned earlier, the input is represented in 15 bits (10 for the integer part and 5 

for the fractional part) and the output is represented in 9 bits (3 for the integer part and 6 for 

the fractional part). 
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Figure  4-3: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

It is clear from the Figure  4-

should be done in order to get the real switching angles. The 

the reverse normalization. 

Table  4-4 : The exact values for switching angles for m=0.595 and m=0.615

im 
α1 
α2 
α3 
α4 
α5 
α6 
α7 

 

4.3.1.5 Results & interpretation
To check the performance and the accuracy of the ANN SHE, we make a comparative study 

between the exact switching angles calculated by Newton

SHE switching angles given by the MATLAB program. Then the

been shown in the Table  4-5. 

Table  4-5 : A comparison between the exact and ANN SHE switching angles

im = 0.595 

Exact angles 
ANN SHE 
angles 

11.0097 11,0218985 
16.5055 16,5020112 
25.7492 25,7570957 
32.5574 32,547983 
40.7183 40,724594 
48.3951 48,3779872 
56.0087 56,0188291 
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: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

-3  that the output is normalized, thus a reverse normalization 

should be done in order to get the real switching angles. The Table  4-4  shows the results after 

The exact values for switching angles for m=0.595 and m=0.615

 0.595 0.615 
 11,0218985 10,8736844 
 16,5020112 16,5399051 
 25,7570957 25,5895462 
 32,547983 32,6207589 
 40,724594 40,5544361 
 48,3779872 48,4910562 
 56,0188291 55,8686532 

Results & interpretation 
To check the performance and the accuracy of the ANN SHE, we make a comparative study 

between the exact switching angles calculated by Newton-Raphson method, and the ANN 

SHE switching angles given by the MATLAB program. Then the error between them has 

 

: A comparison between the exact and ANN SHE switching angles

im = 0.615 

ANN SHE 
error Exact angles 

ANN SHE 
angles 

0,01219848 10,8689 10,8736844
0,00348878 16,5461 16,5399051
0,00789571 25,5924 25,5895462
0,009417 32,6321 32,6207589
0,00629396 40,5597 40,5544361
0,01711281 48,5057 48,4910562
0,01012914 55,867 55,8686532

ANN SHE PWM technique 

 

: A ModelSim simulation to generate the angles (im= 0.595 & 0.615) 

ed, thus a reverse normalization 

shows the results after 

The exact values for switching angles for m=0.595 and m=0.615 

To check the performance and the accuracy of the ANN SHE, we make a comparative study 

Raphson method, and the ANN 

error between them has 

: A comparison between the exact and ANN SHE switching angles 

ANN SHE 
Error 

10,8736844 0,00478443 
16,5399051 0,00619486 
25,5895462 0,00285378 
32,6207589 0,01134113 
40,5544361 0,00526387 
48,4910562 0,01464378 
55,8686532 0,00165325 
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We can clearly see that the ANN SHE angles are close to exact angles with a very small error. 

4.3.2 Implementation of ANN SHE 

To implement practically the proposed ANNSHE PWM algorithm and thus verify its 

accuracy and efficiency, an implementation on an FPGA circuit is described using our 

application described in the previous chapter. 

4.3.2.1 Description 
Our C++ application is used to implement ANN SHE. The ANN SHE is a specific application 

with its own characteristic, thus some extra blocks should be added to the main structure 

generated by our application: 

Interval selector  

As we have already stated earlier, the im interval has been divided into 6 sub-intervals. For 

each sub-interval, an artificial neural network (ANN-i) has been constructed. Accordingly, the 

purpose of this block is the selection of the network which is suitable for the input im (Figure 

 4-4). In the training phase, im was expressed as a percentage, i.e. im is between 0 and 100%. 

In the design we have dimensioned the im input on fifteen bits, ten bits for the integer part and 

five bits for the fractional part, so the variation pitch of im is 0.03125%. This choice can be 

changed according to the choice of the variation pitch of im. Moreover, in order to simplify 

the choice of each interval as a function of im, the limits of each interval were defined as 

indicated in the Table  4-6 [13]. 

 

Figure  4-4 : Interval selector structure 

Table  4-6: The intervals for the variation of im 

ANN 
Interval of variation 
of im in percentage 
immin  ≤ im < immax 

The lower limit in 
binary 

Interval 

ANN-1 01% ≤ im < 16% 000000000000 001 
ANN-2 16% ≤ im < 32% 001000000000 010 
ANN-3 32% ≤ im < 56% 010000000000 011 
ANN-4 56% ≤ im < 76% 011100000000 100 
ANN-5 76% ≤ im < 92% 100110000000 101 
ANN-6 92% ≤ im < 100% 101110000000 110 
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According to the Table  4-6  we find: 

���� = ���������� .����������.���������� 
���� = ���������� .����������.���� 
���� =  ���������� .����������.(���������� + ��������)  

���� = (����������.����.����.���)+ �����.����������.����������.(�������� + ��������)� 

���� =  ����.����������.�(����������.���.���)+ �����.(��������.��������)�� 

���� =  ����.((����������.����.���.���)+ (����.����������.��������).(��������
+ (���.��������.��������))) 

 

( 4-8) 

������ = ���� + ���� + ���� 
������ = ���� + ���� + ���� 
������ = ���� + ���� + ���� 

( 4-9) 

 

According to the equations ( 4-8) and equations ( 4-9) a design based on the combinational 

logic of the "interval selector" module is created under VHDL to select the appropriate 

network at the �� input. This block is added to the other blocks generated by our C++ 

application.  

Normalization & Reverse normalization 

In the training phase, one important parameter is the input interval values. Once this interval 

is chosen, the training is done its calculation considering the input as it is set in that interval. 

Thus a normalization block has been added to adjust any inputs of ANN to another 

normalized input.  

In the calculation of the switching angles of the SHE PWM, the reverse normalization block 

at the output of the ANN is not needed since we have used the normalized output instead of 

the real one. 

PWM signal generator 

We have at the end of our main design followed by the extra blocks, the switching angles. 

This block is used to generate the PWM signals by converting these angles to times, thus we 

obtain the switching times.  

The switching angles are calculated using the following equations: 

 �� =
�� ��� − �� ���

��� ��� − ��� ���

(��� − ��� ���)+ �� ��� ( 4-10) 

Where: 

�� ���and  �� ��� are respectively the maximum angle and the minimum angle of the database 

corresponds to the angle �� 

��� ��� and ��� ��� are respectively the maximum normalized angle and the minimum 

normalized angle of the database corresponds to the normalized angle ���. 
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In the training phase ��� ��� = 1 and ��� ��� = 0 has been used, Replacing in the equation 

( 4-10) we find: 

 �� = (�� ��� − �� ���)��� + �� ��� ( 4-11) 

Posing  

��� = (�� ��� − �� ���) and  ��� = �� ��� 

By replacing in ( 4-11): 

 �� = ������ +  ��� ( 4-12) 

As it has been mentioned above, in order to generate the PWM control signals it is necessary 

to transform the switching angles into switching times. In our application we have opted for 

the command  
�

�
= ���. By using this property one finds: 

 
�

�
=

��

��
  ( 4-13) 

which implies: 

 
�

��
=

�

��
= �� 

( 4-14) 

Where �� is the modulation index and �� = 50 �� the frequency for �� = 1. 

The relationship between the switching angle and the switching instants is given by the 

following relation: 

 �� =
��

360
×

1

�
 

( 4-15) 

Using the equations ( 4-14)  and ( 4-15)  one finds: 

 �� =
10��

18
×

��

��
 

( 4-16) 

Since �� was expressed in percentage. 

 �� =
1

180
×

��

��
 

( 4-17) 

In addition, to generate the control signals from the switching times, a clock of 1 MHz was 

used, so the switching times must be expressed in µs. 

 ��(μ�) = �� ×
10�

180
×

1

��
 

( 4-18) 

By combining ( 4-12)  and ( 4-18)  one finds 

 ��(μ�) =
1

��
(
��� × 10�

180
��� +

��� × 10�

180
) 

( 4-19) 
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 ��(μ�)=
1

��
× �� 

( 4-20) 

with 
�� = (

��� × 10�

180
��� +

��� × 10�

180
) 

( 4-21) 

According to ( 4-20)  we have a division on im which poses an implementation problem on an 

FPGA circuit. To avoid this division, in this step the values of �� given by the equation ( 4-21)  

are calculated. Then, in the step of generating control signals, an internal signal “counter” in 

the form of a counter is created. 

The equation ( 4-20)  gives: 

 �� × ��(μ�)= �� ( 4-22) 

The “counter” represents the value of �� × ��(μ�). It is initialized by 0 and incremented by  

�� at each rising edge of the clock (1 µs) then we compare it, each time, with ��. 

According to ( 4-21)  we need a multiplier to calculate each value ��, where i can vary from 1 

to 23, so if we calculate all �� in parallel we need 23 multipliers. Only two multipliers were 

used [13]. According to the signal generation block, in the first clock edge it is necessary to 

calculate �� and �� (m is the number of switching angles), in the second front �� and ����, 

and so on until calculation of all ��. 

The objective of this block is to generate the PWM signals s1, s2, s3 from the switching 

instants. At the beginning, the signal s1 is at 1 then as we have mentioned the “counter” starts 

at 0 and incremented by �� then it is compared to ��. When “counter” become greater 

than ��, s1 is toggled and “counter” is compared then to ��until it becomes greater then �� 

then s1 is toggled and so on until “counter” become greater than ��.  We start then comparing 

“counter” to �� − �� where �� is the value of � correspond to the half-period (� = �). When 

“counter” becomes greater than �� − �� , s1 is toggled and “counter” is compared then to 

�� − ����  until it becomes greater then �� − ����  then s1 is toggled and so on until 

“counter” becomes greater than �� − ��. Then we compare it to ��. When “counter” becomes 

greater than ��, s1 is toggled, “counter” is reset to 0, then we repeat the process. According to 

the database used during training for all ANN-i networks, it was noted that �� < 60°. 

besides, s2 is phase-shifted by 120 ° with respect to s1, besides s1=0 after 120° and the next 

switching instant is at �� − ��. Consequently, at the beginning signal s2 starts at 0, its 

counter "counter2" starts at ���

�

 and compared to �� − �� then the same process for 

generating s1 is repeated. The same with s3, we find that it starts at 1 and its counter 

“counter3” starts at ��

�
 and compared to  �� − �� then the same process for generating s1 is 

repeated. 
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Figure  4-5 : PWM generator algorithm 
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4.4  Simulation and Results 

In this section, the software ModelSim has been used to simulate the PWM signal generated 

by the algorithm ANN SHE designed by the VHDL codes. Some of these codes are generated 

by our C++ based-application and the others are VHDL codes of the blocks stated in the 

previous section.  

The ANNSHE PWM algorithm has two inputs, which are the modulation index im and the 

clock clk, and three outputs representing the three PWM commands out of phase by 120 °.  

Figure  4-6 and Figure  4-7 show under Modelsim a simulation of the implementation of the 

ANNSHE PWM algorithm on FPGA for different values of im.  

 

Figure  4-6: The three-phase PWM signals (im=40%) 

 

Figure  4-7: The three-phase PWM signals (im=59 .5%) 

From the two previous figures, it can be seen that the three signals are generated in parallel 

and are independent of each other, and further from that figure it is noted that the signals are 

phase-shifted by 120°. 

The signal s1 from Figure  4-6 has 15 switching angles and it has a period  � = 50��, thus a 

frequency  � =
�

�
= 20 ��. 

These results are confirmed by the fact that for �� = 40% the selected ANN is the ANN3 

which has 15 switching angles. And from the equation ( 4-14) we find  � = 20 ��. 

The signal s1 from the Figure  4-7 has 7 switching angles and it has a period  � = 33��, thus a 

frequency  � =
�

�
= 30.3 ��. 
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These results are confirmed as well by the fact that for 

ANN4 which has 7 switching angles. An

which is close to 30.3 ��. 

The first signal s1 in Figure 

frequency spectrum: 

Figure  4-8 : Frequency spectrum of PWM signal for Im=40%

The Figure  4-8 shows that the first non

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the 

phase voltage. 

This proves that the switching angles computed by the ANNs generated by our C

application are accurate. This confirms the good functioning of our application.

4.5 Conclusion 

As a test for our C++ based application 

speed control of an inductor motor. Although the functionality of our application has already 

been checked, in this chapter, it is used in a real industrial application. The ANN is associated 

with the well-known SHE PWM to form the ANN SHE PWM algorithm

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs g

by our application. 

In this chapter we have presented at the beginning the SHE PWM and its principle of 

operation, then we introduced the notion of the switching angles and their calculation 

methods. We went after that to the technique of ANN SHE

topology, data representation and the training.
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These results are confirmed as well by the fact that for �� = 59.5%  the selected ANN is the 

ANN4 which has 7 switching angles. And from the equation ( 4-14) we find

Figure  4-6 has been exported to Matlab. The Figure 

: Frequency spectrum of PWM signal for Im=40%

shows that the first non-eliminated harmonic for m=15 is the 47

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the 

This proves that the switching angles computed by the ANNs generated by our C

s confirms the good functioning of our application.

based application proposed in the previous chapter, we have chosen a 

speed control of an inductor motor. Although the functionality of our application has already 

cked, in this chapter, it is used in a real industrial application. The ANN is associated 

known SHE PWM to form the ANN SHE PWM algorithm. The results showed 

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs g

In this chapter we have presented at the beginning the SHE PWM and its principle of 

operation, then we introduced the notion of the switching angles and their calculation 

methods. We went after that to the technique of ANN SHE PWM, discussing the ANN 

topology, data representation and the training. 

ANN SHE PWM technique 

the selected ANN is the 

we find  � = 29.75 �� 

Figure  4-8 shows its 

 

: Frequency spectrum of PWM signal for Im=40% 

nated harmonic for m=15 is the 47th.  

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the 

This proves that the switching angles computed by the ANNs generated by our C++ 

s confirms the good functioning of our application. 

chapter, we have chosen a 

speed control of an inductor motor. Although the functionality of our application has already 

cked, in this chapter, it is used in a real industrial application. The ANN is associated 

. The results showed 

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs generated 

In this chapter we have presented at the beginning the SHE PWM and its principle of 

operation, then we introduced the notion of the switching angles and their calculation 

, discussing the ANN 
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GENERAL CONCLUSION 
In this work a C++ based-application has been created for the implementation of ANNs with a 

flexible topology. It generates ANNs descriptions in VHDL codes. These description 

topology parameters are introduced by the user who has no longer to type the whole script. 

This application has been then tested for a specific use which is an inductor motor control.  

The desire to create such an application has come because of the importance of the artificial 

neural networks in today’s technology development. They become more and more an open 

field for researches and it have increasingly been used in different industrial domains.  

The hardware implementation of these networks has represented an issue, until the emergence 

of a highly developed FPGA circuits, which fit much better compared to other circuits such as 

ASICs. 

To implement these ANNs in FPGA circuits, a description VHDL codes, and a development 

tools (e.g. ISE Xilinx) are required. Thus, to facilitate the task of writing the scripts and save 

times and efforts for the user, we have developed a C++ based application, with whom the user 

can get any ANN topology depending on his needs. In the implementation of the ANN, many 

challenges have been faced such as the problem of limited resource. It has been dealt with that 

limits by designing an optimized architecture with its own characteristic, ensuring the 

parallelism of the ANN. That architecture uses a specific data representation, to present the 

inputs, outputs and the inner signals. This representation is fit for the inner multipliers which 

are limited dimensions. Talking about multipliers the FPGA has a few amount of them, thus a 

multiplexing is needed between them. In our app only six multipliers has been used, thus six 

products can be calculated at the same time. Although that reduces the speed of calculation, it 

economizes so many resources. Moreover, a serial sum of product has been used to calculate 

the sum of products. To implement the activation function of the neurons, we used LUT-

based method, optimized by Maher which requires 15 values to be stored for the Tangent 

Sigmoid, and 18 for Log Sigmoid, ensuring a minimum error. 

To put our C++ based application in a real test. It has been used to generate a specific ANNs 

dedicated to a speed control of an asynchronous motor. 

Controlling the speed of an asynchronous motor requires the use of a voltage inverter with a 

sinusoidal output that can vary in voltage and frequency. In real applications, control 

strategies produce unwanted harmonics in the output of the inverter. To solve the problem of 

undesirable harmonics, a well-known solution is the use of the SHE PWM command. 

However, the use of this command requires the resolution of a system of nonlinear equations, 

limiting this control strategy to off-line calculation. To get through this limitation, a new 

technique, based on SHE PWM and ANN, has been introduced, it is called ANN SHE PWM. 

The results show that the switching angles calculated by ANN SHE PWM algorithm, are 

close to the exact values.  
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To implement the whole circuit that generates the PWM signals, we have generated the main 

blocks by our C++ application which is responsible for the ANN VHDL description code, and 

the rest are added manually. All the blocks together formed a specific application to be 

implemented on FPGA. The implementation results show that the calculation of the switching 

instants and the generation of the PWM signals are on-line and very accurate. The three 

control signals are generated in parallel and are independent of each other. 

In view of this work, we plan to continue working on our C++ based application, to make it 

easier to the user by adding some extra options such as changing the number of the product 

used from a fixed number to variable, which make the ANN fit for the large and the low 

resources-FPGA. Besides, the data representation is fixed, and by making it variable it allows 

the user to introduce a larger interval of values for the inputs and other signals. Finally, 

implementing other types of layered neural network would offers more flexibility and 

diversity of the topology of the ANN. 
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