REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

o’

o’
Sl i d il
Ecole Nationale Polytechnique

Electronics Department

Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique

Graduation dissertation for the diploma of

Electronics Engineer

Theme

Implementation of Artificial Neural on an FPGA board

Application on Induction Motor speed control

Presented by

e SAADI Khalid
e OUADRIA Anes Abderrahim

Publicly presented on June 19", 2017

Jury members:

SADOUN Rabah MCA ENP President

GUELLAL Ammar PHD ENP Mentor

LARBES Cherif Professor ENP Mentor

HADDADI Mourad Professor ENP Examiner
ENP 2017

Ecole Nationale Polytechnique (ENP)
10, Avenue des Fréres Oudek, Hassen Badi, BP 182 16200 El Harrach, Alger, ALGERIE
www.enp.edu.dz

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

o’

o’
Sl i d il
Ecole Nationale Polytechnique

Electronics Department

Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique

Graduation dissertation for the diploma of

Electronics Engineer

Theme

Implementation of Artificial Neural on an FPGA board

Application on Induction Motor speed control

Presented by

e SAADI Khalid
e OUADRIA Anes Abderrahim

Publicly presented on June 19", 2017

Jury members:

SADOUN Rabah MCA ENP President

GUELLAL Ammar PHD ENP Mentor

LARBES Cherif Professor ENP Mentor

HADDADI Mourad Professor ENP Examiner
ENP 2017

Ecole Nationale Polytechnique (ENP)
10, Avenue des Fréres Oudek, Hassen Badi, BP 182 16200 El Harrach, Alger, ALGERIE
www.enp.edu.dz

ACKNOWLEDGEMENTS

We would like to thank our mentor, Amar Guellal for guiding and supporting us
over the graduate period. He has set an example of excellence as a researcher,
advisor and instructor.

We would like also to thank our professor Cherif LARBES for all of his
guidance through this process; his discussion, ideas, and feedback have been
absolutely invaluable.

We would [iRe to thank our fellow graduate students who contributed to this
research. I am very grateful to all of you.

Finally, we would especially like to thank our amazing families for the love,
support, and constant encouragement we have got over the years. We
undoubtedly could not have done this without them.

Aalail (i Lo lilaa¥) dpsanl) Sl a5 sl 4) 5o dadail) Ao dals cllia (il clipdaill (e aall 8 1padle
el Sl 3 3 G e il s3] Aunlia (gd ML 5 (5 pdal §leall (e B0l Bla gie (& 5 Aall Ao s
Ay manat (K15 N AaDle JSY Ll il FPGA el)l g5 e (o o Ad g el s (50530 callay g5 | S Lass
Giind A€ e clgma Jalaill gy) JSLEQD) iamy Lol FPGA (e b i Foe lihaaV) dynasll 5 a1 clSus
g 4+ C Gk Uia il da gyl o2 jlh) & Saciad) Caadl OO (e 3l sall (il 5 o315l cdpad) 480y) 51 53l
5 Asclilaal) dpaal) il e Glagee (ayen Yl Uy Goelibia¥l uasl) 5 5ea Y] il JidY) Caall
Sy Lmje i Juaill & FPGA 4 oo dule dadd apaiil U Juadl) liaad 5 J5Y) Juadll 8 oy
Lalall Adl 5 aal s () spemny Aalall Ll (e S L je cld 3ay Lo lilaa¥) Lpsanl) SN apacai 3 dglal) Jilsal
BSlaall o alee fasas Uil dna e A8k Gaje DA (e deadl) 138 e Ligiil ALIS delihia) Luaal) 40l
Leadind ¥ Juadll (3 Gakill e dailll dpaall GlGEN dee au g Coell s Cu al Eus ModelSim dau 5
A 03 Cpel FieO jaall Ao jus b aSailly Aald apan A b Lealadid @i e lihal dsae K0S T) il Uil

sie sn LS5 s i) culS 5 slSlad) oy jal ANN SHE (oo

a3 @ ad) +4+ C Guki FPGA [iuelihoal) dpanll ciluill 3 zibia cilals

Résumé : Dans de nombreuses applications d'ingénierie, les systémes paralléles qui satisfont la
contrainte de temps-réel sont fortement nécessaires. Les réseaux de neurones artificiels représentent
des systémes a distribution paralléles, ils ont ét¢ directement inspirés du cerveau humain. Ils sont donc
utilisés dans de nombreuses applications de ce type. Cependant, I’implémentation de ces réseaux s'est
avéree tres difficile. Cela nécessite un parallélisme et une flexibilité. Parmi tous les types de circuits,
les circuits FPGA se sont avéré les plus pratiques pour cela. Mais la conception de I'architecture RNA
a implémenter sur les FPGA a quelques défis, comme la fagon d'équilibrer entre la précision
numérique (requise pour la précision), le parallélisme et les limites des ressources. Dans ce travail,
nous avons proposé une application basée sur C ++ qui génere des descriptions de RNA optimisées.
On a commencé par introduire des généralités sur les RNA au chapitre un. On a consacré le deuxiéme
chapitre a présenter un apergu de l'architecture de I’FPGA. Dans le chapitre trois, nous avons
brievement présenté les problémes d'arithmétique dans les implémentations de RNA. Aprés cela, on a
présenté les architectures d'un seul neurone et celle du RNA entier. On a terminé ce chapitre en
représentant la fagon dont nous avons codé notre application et le principe de son fonctionnement. Des
simulations en ModelSim ont été effectuces et elles ont montré le bon fonctionnement des RNA
générés par l'application. Dans le dernier chapitre, on a utilisé notre application pour générer 6 RNAs
qui ont été utilisées dans une nouvelle technique de controéle de moteur asynchrone appelée ANN
SHE. Des simulations ont également été effectuces et les résultats étaient bons et comme prévu.

Mot clés : Réseaux de neurones artificiels (RNA), FPGA, application C™*, moteur asynchrone.

Abstract: In many engineering applications, parallel distributed systems that satisfy the real-time
constraint are strongly needed. Artificial neural networks (ANNs) represent highly parallel distributed
systems that were directly inspired from the human brain. Thus they are appropriate for such
applications. However the implementation of these networks proved to be quite challenging. It
requires parallelism and flexibility. Among all types of circuits, FPGAs have proved to be the most
convenient for that. But designing ANNSs architectures to be implemented on FPGAs have some issues
to be dealt with, like how to balance between numeric precision (required for accuracy), parallelism,
and resources limitations. In this work we have proposed a C++ based application that generates
optimized ANNs descriptions. We started first by introducing generalities on ANNs in chapter one.
We devoted the second chapter to present an overview on the FPGA’s architecture. In chapter three we
briefly presented the arithmetic issues in ANNs implementations. After that, we presented both
architectures of a single neuron, and the whole ANN. we ended this chapter by presenting the way we
coded our application and the principle of its functioning. ModelSim simulations where performed and
they showed the good functioning of neural networks generated by the application. In the last chapter
we have used our application to generate 6 ANNs that were used in a new induction motor control
technique called ANN SHE. Simulations were performed as well and results were good and as
expected.

Key words: Artificial Neural Network (ANN), FPGA, C™ based application, induction motor.

Contnents

CONTENTS

Acknowledgements
Contents
Table List
Figure List
INEEOAUCTION ...ttt ettt et et e bt e st e et e e saaeenbeesaeeenbeans 9
CHAPTER 1.Artificial neural networks (ANNS)cccvieiiiieiiieeieeeeee e 12
L1 INErOAUCTION ...ttt ettt e st et esate e bt e s seeenbeen 12
1.2 Historical Perspective on Neural Nets.......cc.ccccvieriiieiiieeiiieeiee e 12
1.3 Biological INSPITAtiONccccveieiuiieeieiieeiieeeiie ettt e et e e e e reeeare e e e e e saeeesnseeeaseas 14
1.3.1 STIUCTULE ...ttt ettt s e e st e et e et e e e e e e 14
1.3.2 Functioning 0f @ NEUIOMNceecuiieeiiireeiieesiieerieeesteeeieeeereeeeaeeessseeeseseeensseeens 15
1.4 Artificial neural NetWOrKScoiiiiiiiiiiii e 17
1.4.1 Mathematical model of artificial NEUTONccccueiiiiiiiiiiiiiie, 18
1.4.2 Architectures of neural networkscccooiiiiiiiiiii 21
1.4.3 Training Neural NetWorkscccoiiiiiiiiiiiie e 22
1.5 The properties of neural NEtWOTKScccuieiiiriiieriiiiiieiieee e 25
1.6 Areas of application of neural NEtWOTKS...........cccueeriiiiiiiiieiiieiee e 26
L7 CONCIUSION ..ottt ettt ettt ettt ettt e nae e 26
CHAPTER 2.FPGA ATCRItECTUIEcuveiuiiriiiiiiiiiiieieeieeteste ettt 28
2.1 INEOAUCTION .utiiiiiieiieiiecte ettt et sb et sttt sae e 28
2.2 The classification of digital CITCUILS.........ceouiiruiieeiieriieeiieie ettt 28
2.2.1 Circuits with programmable architectureccccceevieevierciienieniieiecie e 29
2.3 The FPGA CITCUIL...eetiiiiitiitieiesiteteete sttt ettt sttt sttt 30
23,1 HISEOTY tutieeiiieiie ettt ettt ettt ettt e e et et e st e e bt e enbeebeeenbeenbeeenneensaens 30
2.3.2 APPLCALION .oouiiiiiieiieeiiieie ettt ettt ettt ettt e et e s e et e nbeenbeesnneennaen 30
2.3.3 FPGA ATCRItECIUTIE. ...cutiiiiiiiieiie ettt 31
2.4 The circuit BOArd NEXYS 2oviiiiiieiiieeeiieeciieeeriee et e et e et eesaeeesvee e sreeessseeeenseeennns 35
2.4.1 Spartan 3E archit@Ctureccveeiiiieiiieeciie e e e 36
2.5 VHDL ettt ettt et e et e te et eeneennean 37

2.5.1 Brief 0N VHDIL ... e e e 37

Contnents

252 ULty Of VHDL ..ottt st 37
2.5.3 VHDL STIUCEUIEccutiriiiiiieiieeiteeieeiteete ettt ettt et seee e 38
2.54 Themodes used in VHDL.......cccooiiiiiiii e 39

2.0 CONCIUSION ...ttt ettt et e et e bt e st e et e s abe e bt e saneebens 39
CHAPTER 3.FPGA implementation of neural NneWorkscccceevvvieeiiieeiieenie e 41
3.1 TNEOAUCTION ..ttt ettt et et e st e b e saeeeeeens 41
3.2 Arithmetic in ANN digital implementation...........c.cccccueeeviieeiieeeiieeeee e, 41
3.3 The Activation Function implementation.............ccueeeveeerieeeiieeeiieeeiieeeieeeevee e 44
3.3.1 Implementation of Tangent Sigmoid and Log sigmoidcccccccvvververennnennnne. 45

3.4 The architecture overview of the ANN generated by the C™" application................. 53
34.1 Concept of layer MultipleXing........ccceeeveeeeiieriiieeiee e 54
342 Single neuron architeCtUre.........ccuieeiieeriieeiieeeciee ettt sree e e e ereeeaaeeens 54
343 The Global ANN archit@Cturecceeeuieiuienieiniienieeieeeie et 56

3.5 CAF APPLICALION ..eveiiiiieiieeieee ettt ettt et e ettt et ebeesnbeeraens 57
3.6 CONCIUSION ..ttt ettt sttt et st e bt e sbeebe e 60
CHAPTER 4.ANN SHE PWM teChNIQUEceeevuiiiiiiiiieiieiieeieeee ettt 62
4.1 INEOAUCLION vttt ettt ettt et et et e et e 62
4.2 SHE PWM ..ottt ettt sttt sttt st 62
4.2.1 INEOAUCLION ..ottt sttt st ettt 62
4.2.2 Principle of OPEIationcceeiieiiieriiieiiieiie ettt ettt te e e sae s 63
4.2.3 The SWItChing aNgleS........cceviieiiiiriieiieie ettt 64

4.3 Implementation of ANN SHE PWM.......cocooiiiiiiiiiiiiiieeceeee et 65
4.3.1 Architecture of the ANN SHEccccooiiiiiiiiiiiiiieeee e 66
4.3.2 Implementation of ANN SHEccooiiiiiiiiieeeeeeeeeeeee e 70

4.4 Simulation and ReSUILScooiiiiiiiiii e 75
4.5 CONCIUSION ..ottt et et e b e et e bt e st et e s ateebeesneeebeens 76
General CONCIUSIONiiiiiiiieiie ettt et e b e sttt e st e e bt e saeeeeeens 77

L3 10) B U0 ea vz o) 1) PSRRI 79

Table list

TABLE LIST

Table 1-1 : Analogy between real and artificial neuron

Table 3-1: LUT for the hyperbolic tangent activation Function
Table 3-2 : LUT for f (x) =sig2(x) - 0.5

Table 4-1: ANN SHE characteristic

Table 4-2 : An example of switching angles (m=7) generated by a Matlab program
Table 4-3 : weights and biases calculated in the training phase

Table 4-4 : The exact values for switching angles for m=0.595 and m=0.615

Table 4-5 : A comparison between the exact and ANN SHE switching angles
Table 4-6: The intervals for the variation of im

Figure list

FIGURE LIST

Figure 1-1 A Neuron Cell Anatomy

Figure 1-2: The Synapse

Figure 1-3: Action potential in a Neuron
Figure 1-4 : Non linear model of a neuron
Figure 1-5: Types of Activation Functions
Figure 1-6: Feed-Forward neural networks
Figure 1-7: Recurrent Network

Figure 1-8: Types of training

Figure 1-9 : Supervised learning scheme
Figure 1-10: Unsupervised learning scheme
Figure 1-11: Reinforcement learning scheme

Figure 2-1: Classification of digital circuits
Figure 2-2: Overview of FPGA architecture
Figure 2-3 : Basic Logic Element (BLE)

Figure 2-4 : A configurable Logic Block (CLB) having four BLEs

Figure 2-5 : Static Memory cell

Figure 2-6 : Nexys 2 board FPGA

Figure 2-7 : Spartan E3 family architecture
Figure 2-8 : Basic structure of VHDL description

Figure 3-1: Sum of products 1
Figure 3-2: Sum of Products 2
Figure 3-3: Serial sum of products

Figure 3-4: Hyperbolic Tangent Sigmoid Activation Function

Figure 3-5: Saturation region of tangent hyperbolic

Figure 3-6 : Hyperbolic Tangent LUT block diagram

Figure 3-7: Range decoder simulation
Figure 3-8: Hyperbolic Tangent simulation
Figure 3-9: Sigmoid activation function
Figure 3-10 Log sigmoid2 simulation
Figure 3-11: Sigmoid2 Implementation diagram
Figure 3-12 : Layer multiplexed ANN
Figure 3-13: A Single neuron block diagram
Figure 3-14 : ANN Architecture

Figure 3-15: Flow state of 2 state machines
Figure 3-16 : ANN 1 1 15

Figure 3-17: ANN1 1 5

Figure list

Figure 4-1 : The Inverters output normalized Voltage

Figure 4-2 : ANN SHE Architecture

Figure 4-3: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)
Figure 4-4 : Interval selector structure

Figure 4-5 : PWM generator algorithm

Figure 4-6: The three-phase PWM signals (im=40%)

Figure 4-7: The three-phase PWM signals (im=59 .5%)

Figure 4-8 : Frequency spectrum of PWM signal for Im=40%

Introduction

INTRODUCTION

The man in his attempts to understand how the human brain works, developed what is so
called artificial neural networks (ANNs). These artificial networks consist of many processing
units connected together in a parallel distribution, to form a network that can behave like the
brain in doing a particular task. But the brain is still a very complex system that scientists
have not fully understand yet, even with today’s highly developed technologies. Thus
modeling it stays a farfetched dream to reach for now. Instead researchers tried to model its
most important elementary unit called the neuron. Many works have been done this way, and
the results were impressive; the actual models of ANNs made them capable of learning from
experience, and have flexibility that allows them to adapt their structure for a particular
application. These features are what made them very successful. Now neural networks are
being used everywhere, in patter recognition, voice recognition, data mining, machine
learning, intelligence control ... etc.

However the implementation of these neural nets proved to be quite challenging from many
sides, and it still be an open research field. An implementation by software provides an
excellent architecture flexibility and testability, however running a parallel structure like
ANNSs in sequential general purpose hardware does not really fit for real time applications.
Parallel reconfigurable circuits have appeared, the most successful ones are ASICs
(Application-specific integrated circuit) and FPGAs (Field Programmable Gate Arrays), and
these two specifically were very promising for the ANNs implementations.

The FPGAs were quickly optimized; they are now very quick circuits that have bigger
integration density and better technical support. This had a direct impact in making them the
most suited for neural networks, since they can be used for reconfigurable computing and
offer software design flexibility with performance speeds closer to ASICs.

Even though, using FPGAs as technology for ANNs implementation was the best solution,
there still many challenges that will face a designer of ANNs when using an FPGA, like the
necessity to balance between area (FPGA resources) and numeric precision needed for
accuracy and speed of convergence.

To program actual FPGAs, one could use Xilinx ISE (an Integrated Synthesis Environment);
it offers the possibility to code in high level languages like the VHDL (VHSIC Hardware
Description Language).

In our work we have proposed a C'" based application whose function is to generate
readymade feed forward ANNs descriptions, in form of VHDL files. Naturally these
generated ANNs descriptions are specific, and chosen by the user, who should specify the

9

Introduction

anatomy of his wanted ANN (number of inputs, outputs , layers , neurons per layer) as well
as its weights and biases (parameters generated by the off line training).

In chapter one, we have introduced generalities on ANNS, like their types, training, and their
mathematical model, that is used later in their implementation. The second chapter presents
the FPGA circuit architecture and its features that made it the best choice for ANNs hardware
implementation. The third chapter starts by introducing the implementations issues. Then we
presented the optimized methods used in implementing the different blocks of the artificial
neuron, and the global ANN. After, we explained briefly the way we coded the C++
application and how it works in general. To test it we presented some simulations. Then in
chapter four we have used 6 ANNs generated by our application, in a motor control method
called ANN SHE PWM. Finally, we concluded by a general conclusion.

10

CHAPTER 1

CHAPTER 1: Artificial neural networks (ANNs)

CHAPTER 1. ARTIFICIAL NEURAL
NETWORKS (ANNS)

1.1 Introduction

Today’s conventional digital computers are getting extremely fast; they can perform a lot of
instructions and highly complex operations in just few clock cycles, it is way quicker
than the human in this. However faster is not enough in solving problems, there are many
tasks in which the computer loses against the human brain, the latter is a highly complex, non
linear, and parallel computer (information processing-system). It works in a totally different
way, it has the capability to adapt its structural constituents called neurons, so as to perform
certain computations (e.g., patter recognition, perception, and motor control) many times
faster than the fastest digital computer in existence today. For instance, given two pictures, a
preschool child can easily tell the difference between a cat and a dog. Yet, this same simple
task is extremely difficult for today’s computers.

The artificial neural network is a machine designed to model the way our brain performs a
particular task in solving a given problem, it can be defined as following:

A neural network is a massively parallel distributed processor made up of simple
processing units whose functionality is loosely based on the animal neuron. The
processing ability of the network is stored in the inter-unit connection strengths,
or weights, obtained by a process of adaptation to, or learning from, a set of
training patterns.[1]

This chapter begins with a small historical overview on neural networks, and their
development through years, then comes a brief part in which we exposed the biological
neuron’s anatomy, the origin of the actual model of artificial neurons. After that the
mathematical model of a single neuron is presented as well as some topologies of ANNs. To
arrive to the most important part, that is the learning characteristic of ANNSs, and its different
methods. Finally, we presented a non exhaustive list of actual areas of applications for neural
networks.

1.2 Historical Perspective on Neural Nets

Neural networks have been in use with computers since 1949 when D.Hebb, an American
physiologist, published his book entitled “the organization of behavior”, in which he exposed
some of his ideas on learning for the very first time , the Hebb rule that he proposed was one

12

CHAPTER 1: Artificial neural networks (ANNs)

of the learning rules on which rests most of today’s connectionist algorithms[2]. Through the
years, many neural network architectures have been presented.

In 1957, F. Rosenblatt developed the model of the perceptron, one of the earliest neural
networks, which was an attempt to understand human memory, learning and cognitive
processes. In 1960, Rosenblatt demonstrated the Mark I perceptron. The Mark I was the first
machine that could “learn” to identify optical patterns. Based on the Hebb rule, the perceptron
was then considered to be the first machine that could “learn” from experience. Unfortunately
it was unable to learn to recognize inputs that were not “linearly separable” [3] . This would
prove to be a huge obstacle that would take some time to overcome.

A new neural model was developed by B. Widrow and T. Hoff in 1960, called the Adaline
network (Adaptative Linear Element). In its structure it resembles to the perceptron, but the
learning rule was different. They proposed the minimization of the quadratic output errors as a
learning algorithm. The Adaline network is considered as the basic model of multilayer
networks [2].

In 1969, the theoretical limitations of the perceptron were demonstrated by M. Minsky and
S. Papert. These limitations concerned the impossibility of dealing with nonlinear problems
using this model. The impact of their results has frustrated most researchers in this field,
especially compute scientists. This stagnation lasted almost 20 years. During this period,
researchers and investors turned to the approach of artificial intelligence, which seemed to be
more promising.[1]

This discipline was brought to life again, in 1982 thanks to J. J. Hopfield, an eminent
physicist, who was able to detect the similarity between networks proposed by McCulloh and
Pitts, with an elementary system with magnetic moment or spin, and then he studied the
storage and restoration of information "associative memories”. This led to one of Hopfield's
major contributions when he had the idea of using an energy function to maintain stability of
neural networks, with such a function, states tend to change to a local minimum. This work
interested physicists because of the isomorphism of the Hopfield model with the Ising model,
also called spin glasses. It is important to note that this model did not remove the limits of the
perceptron and its variants. In spite of this, the perceptron and the reasons for its failure
proved to be quickly forgotten [1],[2].

Then, Boltzmann’s machine was proposed in 1983 by Hinton and his team, it was the firstly
model that removed the perceptron limitations satisfactorily. This model used what is so
called hidden cells whose role is to compute intermediate variables to perform non linear
separable functions. Unfortunately, the convergence of the algorithm was extremely long, it
had a defect due to its probabilistic nature, and it was corrected by the gradient
backpropagation algorithm proposed in 1986 by three researchers Rumelhart, Hinton and
William.

Finally, in 1989 Moody and Darken exploited some results of the multi-variable interpolation
to propose what is known as the radial basis function network[2].

13

CHAPTER 1: Artificial neural networks (ANNs)

Recently, the new discoveries in neurobiology and the explosive interest of parallel
processing, in addition to the development of semiconductor technology, have given great
impetus to the field of neural networks.

1.3 Biological inspiration

1.3.1 Structure

To create a machine capable of “human-like thought”, researchers have used the best
available model available “the human brain”. However, this one is far too complex to be
modeled. Rather, they studied the individual cells that make it up. At the most basic level the
brain is composed of neuron cells. They are the basic building blocks of the human brain;
there are about 100 milliards of them in it. Artificial neural networks are an attempt to
simulate theses cells’ behavior.

A stereotypical neuron cell is show in Figure 1-1. It consists of:

{
7 /|
Neuron | g/}mon initial / l\
\ I segment) [\
‘\J\\;}\\%h _ I:godendmcyhe / / Synapses : 2
)5:; _/\ ' e B .'./ \ Myelin [ﬁ,ﬁ,l __&\ r%fi»

\ \sheath

www.accesspharmacy.com
Copyright © McGraw-Hill Education. All rights reserved.

Figure 1-1 A Neuron Cell Anatomy [4]

Cell body or “soma” contains the usual sub-cellular components to be found in most cells
throughout the body (nucleus, mitochondria, Golgi body, etc.) but these are not shown in the
diagram. Instead this diagram was made to focus on what differentiates neurons from other
cells allowing the neuron to function as a signal processing device. This ability stems largely
from the properties of the neuron’s surface covering or membrane, which supports a wide
variety of electrochemical processes. Morphologically the main difference lies in the set of
fibers that emanate from the cell body. One of these fibers is called the axon.

The axon is responsible for transmitting signals to other neurons and may therefore be
considered the neuron output. All other fibers are called dendrites.

The dendrites carry signals from other neurons to the cell body, thereby acting as neural
inputs. Each neuron has only one axon but can have many dendrites. The latter often appear to

14

CHAPTER 1: Artificial neural networks (ANNs)

have a highly branched structure and so we talk of dendritic arbors. The axon may, however,
branch into a set of collaterals allowing contact to be made with many other neurons. With
respect to a particular neuron, other neurons that supply input are said to be afferent, while the
given neuron’s axonal output, regarded as a projection to other cells, is referred to as an
efferent. Afferent axons are said to innervate a particular neuron and make contact with
dendrites at the junctions called synapses see Figure 1-2

\
\

Presynaptic —

neuron
;" ’
| | Axon
| terminal
Synaptic
vesicles
Neurotransmitter 7
Receptor/ \)
\ o - =

I ——

Postsynaptic neuron

Figure 1-2: The Synapse

Here, the extremity of the axon, or axon terminal, comes into close proximity with a small
part of the dendritic surface—the postsynaptic membrane. There is a gap, the synoptic cleft,
between the presynaptic axon terminal membrane and its postsynaptic counterpart, which is of
the order of 20 nanometers (2x10 °m) wide. Only a few synapses are shown in Figure 1-1, but
in reality they are located over all dendrites and also, possibly, the cell body.

Finally the two other cells “Astrocyte” and “Oligodendrocytes” are the Glial cells (Figure
1-1). Their main role is to assure protection for the neuron cells.

1.3.2 Functioning of a neuron

At the simplest level, neurons produce pulses, called “Action Potentials,” and they do this
when stimulated by other neurons (or, if they are sensory neurons, by outside influences,
which they pick up through their modified dendrites).

15

CHAPTER 1: Artificial neural networks (ANNs)

When a neuron is at rest, before it becomes stimulated, it is said to be polarized. This means
that, although the neuron is not receiving any electrical signal from other neurons, it is
charged up and ready to produce a pulse. This is due to the fact that its membrane at
equilibrium, works to maintain an electrical imbalance of negatively and positively charged
ions, this causes a potential difference across the membrane with the inside polarized by
approximately 70mV, with respect to the outside.

Each neuron has associated with it a level of stimulus, above which a nerve pulse or action
potential will be generated. Only when it receives enough stimulation, from one or more
sources, will it initiate a pulse. The mechanism by which the pulses travel and the neuron
maintains its general electrical activity is rather complex, it was first worked out by Hodgkin
& Huxley (1952) [5] , and It works through an exchange of ions in the fluid that surrounds the
cell, rather than by the flow of electrons as anyone would get in a wire. This means that
signals travel very slowly - at a couple of hundred meters per second. The pulse, which the
neuron generates and travels down the axon, is shown in Figure 1-3

action refractory

50 — potential period
= f | :
E depolarisation — <+—— repolarisation
s 0+
-—
=
D
=
o X
o 2 Ll s '
@ r threshold potential
= — | r .
© s resting potential
2 -
D L I :
ti tential ' ! o
= TR p—— - ! L hyperpolarisation
-100 A L) A i I () B

0 1 2 3 4 5 6 7
Time (milliseconds)

Action Potential in a Neuron

Figure 1-3: Action potential in a Neuron

Because these pulses are only a couple of milliseconds wide, they often appear as spikes if
viewed on an oscilloscope screen. So, if one neuron is receiving lots of stimulation from
another (receiving lots of pulses through its dendrites) then it will itself produce a strong
output - that is more pulses per second.

Once a signal or an action potential reaches the axon terminal, these contain a chemical
substance ‘“nanotransmitters” held within a large number of small vesicles (literally “little
spheres”) (Figure 1-2). On receipt of an action potential the vesicles migrate to the
presynaptic membrane and release their nanotransmitters across the synaptic cleft, the
transmitter then binds with receptor sites at the postsynaptic membrane. This initiates an
electrochemical process that changes the polarization state of the membrane local to the

16

CHAPTER 1: Artificial neural networks (ANNs)

synapse. This postsynaptic potential (PSP) can serve either to depolarize the membrane from
its negative resting state towards 0 volts, or to hyperpolarize the membrane to an even greater
negative potential. The PSP spreads out from the synapse, travels along its associated dendrite
towards the cell body and eventually reaches the axon hillock—the initial segment of the axon
(Figure 1-1) where it joins the soma. Concurrent with this are thousands of other synaptic
events distributed over the neuron. These result in a plethora of PSPs, which are continually
arriving at the axon hillock where they are summed together to produce a resultant membrane
potential. The integrated PSP at the axon hillock will affect its membrane potential and, if this
exceeds a certain threshold (typically about —55mV) (Figure 1-3), an action potential is
generated, which then propagates down the axon, along any collaterals, eventually reaching
axon terminals resulting in a shower of synaptic events at neighbouring neurons
“downstream” of our original cell.

In 1949 Donald Hebb postulated one way for the network to learn. If a synapse is used more,
it gets strengthened — releases more Neurotransmitter. This causes that particular path through
the network to get stronger, while others, not used, get weaker. One might say that each
connection has a weight associated with it — larger weights produce more stimulation and
smaller weights produce less. These were the first steps to understanding the learning
mechanism of the network [6].

To summarize:

e Signals are transmitted between neurons by action potentials, which have a stereotypical
profile and display an “all or nothing” character; there is no such thing as half an action
potential.

e When an action potential impinges on a neuronal input (synapse) the effect is a PSP, which
is variable or graded and depends on the physicochemical properties of the synapse.

e The PSPs may be excitatory or inhibitory.

¢ A synapse can be strengthened when used more, when not used, it gets weaker. It adapts,
the connection is then said to be weighted

e The PSPs are summed together at the axon hillock with the result expressed as its
membrane potential.

e [f this potential exceeds a threshold an action potential is initiated that proceeds along the
axon.

1.4 Artificial neural networks

An Artificial neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron. The processing
ability of the network is stored in the inter unit connection strengths, or weights, obtained by a
process of adaptation to, or learning from, a set of training patterns [5]. They posses several
fundamental characteristics:

e They are composed of two or more layers. Typically, these include an input layer, whose
processing units encode the initial representation of the situation, one or more hidden layers,

17

CHAPTER 1: Artificial neural networks (ANNs)

The units combine the information from the input units, and an output layer, Whose units
produce the system's response to the situation.

e Simple artificial neurons are connected to other neurons in different layers (and sometimes
within the same layer). The weight of connections changes when the system acquires more
experience (training), these weights are crucial for determining the treatment performed.

¢ As in the brain, a given processing unit activates when the stimulus level received from all
other units to which it is connected exceeds a certain threshold. The level of stimulus received
from each unit is determined, on the one hand, by the degree of activation of that unit and, on
the other hand, by the weight of the connection between the sending and the receiving unit.

¢ The activity of most processing units occurs in parallel (simultaneously).

e Knowledge is represented by the weight of connections within all units of the system.

e Learning occurs when the system that receives inputs, elaborates a response, observes the
difference between the response provided and the correct response and adjusts the weight of
the connections between the processing units to produce a better response. Adjustments
include strengthening some connections and weakening others.

¢ The generalization of knowledge of the system is based on the similarity of new situations
to those already encountered by the system.

1.4.1 Mathematical model of artificial neuron

A neuron is an information-processing unit that is fundamental to the operation of a neural
network. The Table 1-1 resumes the analogy between a real and an artificial neuron. The
diagram of Figure 1-4 shows the model of a neuron, which forms the basis for designing an
artificial neural network. Three basic elements of the neuronal modal can be identified:

e A set of synapses or connecting links, each of which is characterized by weight or strength
of its own. Specifically a signal X, at the input of synapse k connected to neuron j is
multiplied by the synaptic weight W . The first subscript refers to the neuron in question and
the second subscript refers to the input end synapse to which the weight refers. Unlike real
neurons, the synaptic weights can have negative values.

® An adder for summing the input signals, weighted by the respective synapses of the
neuron; till here the operations described constitute a linear combiner.

® An activation function for limiting the amplitude of the output of a neuron. The activation
function is also referred to as a squashing function in that it squashes (limits) the permissible
amplitude range of the output signal to some finite value. Typically, the normalized amplitude
range of the output of a neuron is written as the closed interval [0; 1] or alternatively [-1; 1].

The model also in the Figure 1-4 includes an externally applied bias, denoted 6; It has the

effect of increasing or lowering the net input of the activation function, depending on whether
it is positive or negative, respectively.

18

CHAPTER 1 :

Artificial neural networks (ANNs)

weights

transfer
function

activation
functon
P o
activation
0,
threshold

Figure 1-4 : Non linear model of a neuron

In mathematical terms, we may describe a neuron j by writing the following pair of equations:

k=n
S] = z ijx Xk
k=1

(1-1)

(1-2)

where X1, X,.... X;, are the inputs, and ¢ is the activation function .

Table 1-1 : Analogy between real and artificial neuron

Real neuron Artificial neuron
Cell body (Soma) Activation Functions
Axons Output signals
Synapses Synaptic weights
Dendrites Input signals

1.4.1.1 Types of Activation Functions:

Here we identified three basic Activation functions:

e Threshold Function: also is referred to as a Heaviside function, it is described the

following (Figure 1-5):

(1 ifs=0
‘p(s)_{o ifs<0

(1-3)

This model of neurons based on this Activation Function is referred to in the literature as the
McCulloch-Pitts model, in recognition of the pioneering work done by McCulloch and Pitts

(1943).

19

CHAPTER 1: Artificial neural networks (ANNs)

¢ Piecewise-Linear Function: For the one described in Figure 1-5 we have

l_\
%)
v

o(s) =15 +%, (1-4)

le_x
Vv
(75
N[~ V NIR
[
N| —

where the amplification factor inside the linear region of operation is assumed to be unity.
This form of an activation function may be viewed as an approximation to a non-linear
amplifier.

This function can have two special forms:

- A linear combiner, if the linear region of operation is maintained without running into
saturation (Figure 1-5).

- A threshold function, if the amplification factor of the linear region is made infinitely
large.

¢ Sigmoid Function: It is by far the most common form of activation function used in the

construction of artificial neural networks. It is defined as a strictly increasing function that

exhibits a graceful balance between linear and nonlinear behavior. An example of the sigmoid

function is the logistic function (Figure 1-5), defined by

1
TF expas) (1-5)

where a is the slope parameter of the sigmoid function. By varying the parameter a, sigmoid
functions of different slopes can be obtained. In fact, if the slope parameter approaches
infinity, the sigmoid function becomes simply a threshold function. In contrast with the
threshold function the sigmoid function assumes a continuous range of values from 0 to 1 and
is differentiable (Differentiability is an important feature of neural network theory).

p(s) =

The activation functions defined in equations (1-3), (1-4), and (1-5) range from O to 1. Other
activation functions are antisymmetric, and range from -1 to 1 (see Figure 1-5)

20

CHAPTER 1: Artificial neural networks (ANNs)

Activation function Equation Example 1D Graph
Unit step 0, z<0 Perceptron i
(Heaviside) #Wz) =405 z2=0, variant —
1, z>0
Sign (Signum) -1, z<0, Perceptron —
iz ={ﬂ. =1 variant N SE—
1, z>0 —
Linear Adaline, linear
#z) =z regression
Piece-wise linear 1, zz 1 Support vector
Mz =4z+ L —-1<z< i machine
0, 1< -1,
Logistic (sigmoid) Logistic
) =] +| - regression,
‘ Multi-layer NN
Hyperbolic tangent #) = g - Multi-layer NN l .__.
il gl 4 gl

Figure 1-5: Types of Activation Functions

Another important model of artificial neurons is the stochastic neuron, described as follows:
(s) = {1 wit h probabil tyP(s)

PEI= 0 with probabil tyl — P(s)

Where the probability is chosen to be:

1
S
1+ exp(— T)
This model has the same activation function of the McCulloch-Pitts model with a probabilistic

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or
1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

P(s) = (1-6)

1.4.2 Architectures of neural networks

From an architectural view, neural networks can sorted into two big categories:

¢ Feed-forward networks, where the data flow from input to output units is strictly feed-
forward. The data processing can extend over multiple layers of units, but no feedback
connections are present, that is, connections extending from outputs of units to inputs of units
in the same layer or previous layers. In this category, we can distinguish single-layer networks

21

CHAPTER 1: Artificial neural networks (ANNs)

(e.g. perceptron) and multilayer networks with an input layer, an output layer and one or more
hidden layers (Figure 1-6).

¢ Recurrent networks that do contain feedback connections. In this category, we can
distinguish competitive networks, the Kohonen network, the Hopfield networks (Figure 1-7)
and the ART models "Theory of Artificial Resonance".

@ -
@— (%
@/

Perceptron Multilayer perceptron

Figure 1-6: Feed-Forward neural networks [7]

AR

S

Hopfield Network (HN)

Figure 1-7: Recurrent Network

1.4.3 Training Neural Networks [3], [8]

In a neural network, individual neurons are interconnected through their synapses. These
connections allow the neurons to signal each other as information is processed. Not all
connections are equal. Each connection is assigned a connection weight. If a weight is zero
then there is not a connection. These weights are what determine the output of the neural
network; therefore, it can be said that these weights form the memory of the neural network.
Thus training the networks means to configure it (its weights) such that the application of a
set of inputs produces the desired set of outputs.

22

CHAPTER 1: Artificial neural networks (ANNs)

In general training algorithms begin by assigning random values to the weights. Then, the
validity of the neural network is examined. Next, the weights are adjusted based on how well
the neural network performed and the validity of the results. This process is repeated until the
validation error is within an acceptable limit. There are many ways of training. One way is
to set the weights explicitly, using a priori knowledge. Another way is to ‘train’ the neural
network by feeding it teaching patterns and letting it change its weights according to some
learning rule.

1.4.3.1 Types of trainings:
There are mainly two categories of training (see Figure 1-8):

Classification

Supervised
Learning

Develop predictive Regression
model based on both
input and output data

Type of Learning

Unsupervised
Learning

Clustering

Discover an internal
representation from
input data only

Figure 1-8: Types of training

¢ Supervised training is when the network is trained by providing it a set of inputs along
with the anticipated outputs from each of these samples. Supervised training is the most
common form of neural network training. As supervised training proceeds, the neural network
is taken through a number of iterations, or epochs, until the output of the neural network
matches the anticipated output, with a reasonably small rate of error. Each epoch is one pass
through the training samples (see Figure 1-9).

23

CHAPTER 1: Artificial neural networks (ANNs)

DESIRED OUTPUT

X

INPUT NETWORK
VECTOR NE\YORK QUTPUT

Figure 1-9 : Supervised learning scheme [9]

e Unsupervised training is similar to supervised training, except that no anticipated outputs

are provided. Unsupervised training usually occurs when the neural network is being used to
classify inputs into several groups. The training involves many epochs, just as in supervised
training. As the training progresses, the classification groups are “discovered” by the neural
network (see Figure 1-10).

/

INPUT OUTPUT
TVECTOR > “ETW% VECTOR— >

Figure 1-10: Unsupervised learning scheme [9]

There are several hybrid methods that combine aspects of both supervised and unsupervised
training. One such method is called reinforcement training. In this method, a neural network
is provided with sample data that does not contain anticipated outputs, as is done with
unsupervised training. However, for each output, the neural network is told whether the
output was right or wrong given the input (see Figure 1-11).

INPUT
S - > NMENT
VECTOR ORK ENVIRO

System
failed?

NO

YES

Figure 1-11: Reinforcement learning scheme [9]

It is very important to understand how to properly train a neural network. Once the neural
network is trained, it must be validated to see if it is ready for use.

24

CHAPTER 1: Artificial neural networks (ANNs)

1.4.3.2 Backpropagation algorithm in multilayer perceptron networks
(MLP):

An MLP network is designed to perform a desired task defined by a learning database. Each

element of this database is called a learning example and it is in the form of a pair (X,Y™)

where X is an input value of the network and Y™ is the corresponding output target value. The

network architecture, the structure of its connections, as well as the activation functions, can

be set according to the task to be performed by the network.

The aim of learning is therefore to determine the values W* of the matrix W of the weights of
the network connections so that the output Y is close to the target value Y™*.

The algorithm of gradient backpropagation is widely known and most used in applications of
MLP neural networks. This supervised learning technique uses a gradient descent procedure,
working on the quadratic error between the actual output of the network and the target output.
It calculates the partial derivatives of the output error with respect to all network weights and
then applies a gradient procedure to minimize the error. At each iteration, an example of
learning (X,Y™) is retrieved and the weights are updated. This iteration is carried out in two
phases:

1. Forward Propagation :
At each iteration, an element of the training set is introduced through the input layer.
The evaluation of the network outputs takes place layer by layer, from the input of the
network to its output.

2. Back propagation :
This step is similar to the previous one. However, the calculation is done in the
opposite direction.

At the output of the network, the performance criterion is formed as a function of the actual
output of the system and its target value. Then, the gradient of this performance is evaluated
with respect to the different weights, starting with the exit layer and going up to the input
layer.

1.5 The properties of neural networks

The main interest in neural networks is justified in the following properties:

e Learning capacity:

Learning ability refers to the ability of the neural network to learn to solve problems from
examples in a similar way to humans or animals

e The generalization capacity:

The ability to generalize translates into the ability of a system to learn and retrieve from a set
of examples rules that solve a given problem not learned.

25

CHAPTER 1: Artificial neural networks (ANNs)

e The parallelism:

This notion is at the basis of the architecture of neural networks considered as a set of
elementary entities that work simultaneously. Parallelism allows higher computational speed
but requires thinking and posing problems differently.

1.6 Areas of application of neural networks

Being at the intersection of different domains (computer science, electronics, cognitive
science, neurobiology and even philosophy), the study of neural networks is a promising
avenue of Artificial Intelligence, which has applications in many areas:

¢ Defense: Weapons management, target tracking, radars: processing, compression, noise
suppression, signal / image identification, etc.

e Industry: quality control, process control, fault diagnosis, correlations between data
provided by different sensors, handwritten signature or writing analysis, speech synthesis,
automated vehicle guidance system, etc.

¢ Entertainment: Animation, special effects.

¢ Finance: Forecasting and modeling of the market (currencies ...), forecasting of economic
indicators, selection of investments, credit allocation, forecasting of prices, etc.

¢ Telecommunications and data processing: signal analysis, noise cancellation, recognition of
shapes (noises, images and lyrics), data compression, etc.

e Medical: analysis of EEG signals, ECG, prostheses, cancer analysis, etc.

e Environment: risk assessment, chemical analysis, forecasting and weather modeling,
resource management, etc.

1.7 Conclusion

To conclude with, the artificial neural networks characteristics inspired from the human brain
(parallelism, nonlinearity, and learning) allowed them to perform effectively in many tasks,
where a conventional digital computer may have had a hard time. They are being used more
and more in many fields because of their robustness and plasticity of architecture. However
despite the fact that research in neural networks is an open field, the question is whether it
will last long like that, knowing that neural networks have some big challenges like:

1- The actual model is too simple compared to the complexity of the human brain, which
means that it stills far from being able to behave like a real brain.

2- There must be a technology that allows the implementation of complex neural
networks models.

This leads us to other questions, like: what is the actual technology used in implementing
actual neural networks models? And what are the techniques used in these implementations?

26

CHAPTER 2

CHAPTER 2 FPGA Architecture

CHAPTER 2. FPGA ARCHITECTURE

2.1 Introduction

Over the last years, in order to face the hardware implementation issues, the modern
electronics is increasingly turning to digital, which has many advantages over the analog.
Although the growing development of the electronics nowadays, there is still some
architecture designs which are challenging. Some of these architectures such as ANNs have
presented so many implementation difficulties.

Since the architecture of ANN requires the parallelism, there was many attempts to build that
architecture on ASIC boards which have some parallel processing units [10]. However, many
limitations, related to reconfiguarbility and to the size of the network, have appeared. Circuits
such as FPGAs have been showed up with their flexibility in design like software’s but with
performance speed closer to ASIC. These circuits have represented a natural fit, offering a
parallelism which helps for the implementation of the ANN.

In this chapter, we discuss all the types of the available digital circuits then we mainly
introduce the architecture of the FPGA circuits which are considered as the best choice among
all the circuits for ANNs. We began with a classification of the digital circuits then a brief
history about the FPGA circuits and then we detailed their architecture and presented the
board Nexys 2 development card that we used to develop our project. Finally, we presented
the VHDL language we used to design our application.

2.2 The classification of digital circuits

There are three main types of digital circuits. First, standard logic circuits that include
combinatorial circuits and flip-flops. Then, the programmable circuits include
microprocessors, microcontrollers and DSPs (Digital Signal Processor). In this category there
is an arithmetic and logic unit that executes a program located in a program memory using
synchronization clock. Finally, circuits with a programmable architecture such as ASICs
(Application Specific Integrated Circuit), PLDs (Programmable Logic Device) and FPGAs
(Field Programmable Gate Arrays) form the third category [11]. In this category, we design a
circuit that corresponds to our own needs, the use of a clock is not compulsory, and we can
easily implement applications that require parallelism (Figure 1-11).

28

CHAPTER 2 FPGA Architecture

2.2.1 Circuits with programmable architecture [10]

2.2.1.1 ASIC (Application Specific Integrated Circuit)

By definition, ASIC circuits include all circuits whose function can be customized in one way
or another for a specific application, as opposed to standard circuits whose function is defined
and perfectly described in the catalog of components. The use of an ASIC leads to many
advantages, mainly due to the reduction of the size of the systems such as the reduction of the
number of components on the printed circuit, the consumption and the space requirement. The
ASIC concept ensures maximum optimization of the circuit to be realized. Finally, we have
an integrated circuit that really corresponds to our own needs which gives the designer a
confidentiality and industrial protection. The major disadvantage of ASICs lies in the fact that
the passage to the founder is obligatory, which entails high costs and a high development time
of the circuit. As a result, ASICs are generally more suitable for mass production of designs
already verified and not for prototypes.

2.2.1.2 PLD (Programmable Logic Device)

PLDs are chips that can be programmed to behave like an arbitrary design. A PLD can be
programmed for an implementation as simple as a combinatorial logic operation as it could be
for much larger designs. It typically includes AND gate array connected to an array of OR
gates [12].

2.2.1.3 FPGA (Field Programmable Gate Arrays)

FPGAs are completely reconfigurable components which allow them to be reprogrammed at
will, in order to accelerate some calculations. They consist of a matrix of programmable logic
blocks surrounded by programmable input/output blocks. They are all connected by a
programmable interconnection network. The FPGAs are not optimized for a specific
application, therefore they consume more power than ASICs. On the other hand, they are
much simpler to be programmed and reprogrammed, which shortens the design cycles and
allows following the evolution of the application for which they were designed. The
advantage of this type of circuit is its great flexibility, which makes it possible to reuse them
at will in different algorithms in a very short time. The FPGAs are more suitable for
prototypes and for limited mass productions that are not of the quality of ASICs. This
technology also permits the implementation of a large number of applications and offers a
low-cost hardware installation solution for small companies for whom the cost of developing
a specific integrated circuit involves too much investment. The major disadvantage of FPGA
circuits is that they are not very secure in terms of confidentiality, since it is enough to
analyze the contents of the associated ROM to go back to the imagined schematics [13].

In the proposed algorithm, the parallelism is required, for the implementation of neural
networks; we have chosen a Xilinx Nexys 2FPGA circuit to implement these networks.

29

CHAPTER 2 FPGA Architecture

Digital circuits
Y Y l
S.tam:.lard logle Prgrammable circuits Circuits with programmable
CECRits architecture
C.irc.uits with Circuits with low
significant development time
development time
Y Y
TTL Microprocessor ASIC FLD
MOS8 Microcontroller CPLD
DSP FPGA

Figure 2-1: Classification of digital circuits

2.3 The FPGA circuit

2.3.1 History

The principle of the programmable logic dates back to the early 1960s, the concept has been
proposed by Estrin. But it was not until the 1980s that the first material implementation was
introduced into the market. The advent of this type of circuit was first made through simple
Programmable Array Logic (PAL) circuits which are programmed as non-volatile ROM-type
memories and are used to implement simple combinatorial functions such as address decoders
or bus controllers.

With microelectronics evolutions, various families of programmable circuits have emerged:
the Complex Logic Programmable Devices (CPLDs), then the Field Programmable Gate
Arrays (FPGAs) introduced by Xilinx in 1985. With the emergence of increasingly efficient
circuits that can be programmed at will, the industrialization and marketing of this type of
circuit has taken a place on a large scale. At present there are a dozen manufacturers, the
market is being clearly dominated by Xilinx, Altera (reprogrammable circuits) and Actel
(non-reprogrammable circuits [14].

2.3.2 Application [15]

Taking advantage of the ever increasing density of the chips, the FPGAs are used for several
applications such as telecommunications, image and signal processing. More recently, other
application fields are in growing demand, such as medical equipment, robotics, automotive,
and space and aircraft embedded control system. Finally, industrial electrical control systems
are also of great interest because the ever-increasing level of expected performance while at
the same time reducing the cost of the control systems.

30

CHAPTER 2 FPGA Architecture

2.3.3 FPGA Architecture

The architecture of an FPGA is divided into:

e Processing resources including memories, logic and registers. They are grouped into
logical blocks of different types (CLB,IOB).
e The programmable routing recourses that connect the logic blocks together.

The programming of a reconfigurable circuit therefore consists in specifying the functionality
of each logic block and in organizing the interconnection network in order to perform the
requested function. Some FPGAs also incorporate RAMs, Multipliers, and even processor
cores [16].

A generalized example of an FPGA is shown in Figure 2-2 where CLBs (Configurable Logic
Block) are arranged in a two dimensional grid and are interconnected by a programmable
routing sources. The CLBs are surrounded by IOB blocks which are arranged at the periphery
of the grid and they are also connected to the routing interconnection [17],[18].

Figure 2-2: Overview of FPGA architecture

31

CHAPTER 2 FPGA Architecture

2.3.3.1 Configurable Logic Block (CLB):

The Configurable Logic Block is a basic component of an FPGA; it provides the basic logic
and storage functionality for a target application design. In order to provide the appropriate
basic logic and storage capability, the basic logic can be either a transistor or an entire
processor. In between these two extremes exists a spectrum of basic logic blocks. Some of

them include logic blocks that are made of NAND gates, an interconnection of multiplexors,
lookup table (LUT) ...etc.

The choice of the logic block depends on performance, power consumption and the amount of
the programmable interconnect ...etc.

A CLB can compromise of a single BLE (Basic Logic Element), or a group of interconnected
BLEs. A simple BLE consist of a LUT, and a flip-flop. A LUT with k inputs contains 2
configurations bits and it can implement any K-input Boolean function. The Figure 2-3 shows
an example for k=4 [16].

-l}— 4 Input Look-Up
Table (LUT-4)

Multiplexer /1

/ ’Lclk

D-type
Flip-Flop

/

SRAM

Figure 2-3 : Basic Logic Element (BLE)

The LUT in that example uses 16 SRAM (SRAM are explained in next sections) bits to
implement any 4 inputs Boolean function.

A CLB can contain a cluster of BLEs connected through a local routing network. Figure 2-4
shows a cluster of 4 BLEs of 4 inputs, each BLE contains a LUT and a Flip-Flop. The BLE
output is accessible to other BLEs from the same group through a local routing network. The
numbers of output pins of a cluster are equal to the number of BLEs in the cluster. However
the numbers of input pins in a cluster can be less than or equal to the sum of pins required by
all the BLE in the cluster [16].

32

CHAPTER 2 FPGA Architecture

---+
:]_.
: ---+—
— —
= -
— g: BLE >
: ---+
---+
DD: BLE -
D_

Figure 2-4 : A configurable Logic Block (CLB) having four BLEs

2.3.3.2 Input Output Block (10B):

The I0Bs allow the interface between the FPGA component pins and the internal logic
developed inside the component. They are present the entire periphery of the FPGA circuit.
Each IOB block command a component pin and can be defined as input, output, bidirectional
signal or unused (high impedance) [11].

2.3.3.3 Routing interconnections:

As we discussed earlier, the computing functionality is provided by its programmable logic
blocks which are connected to each other through a programming routing network. This
programmable routing network provides routing connection among logic blocks and IOB
blocks to implement any user-defined circuit. The routing interconnect of an FPGA consists
of wires and programmable switches that form the required connection. These programmable
switches are configured using the programmable technology.

To assure a variety of the reprogrammable circuits, the FPGA routing interconnect must be
very flexible. Although the routing requirements vary from a circuit to another, certain
common characteristics of these circuits can be used optimally design the routing interconnect
of FPGA architecture. For example most of designs exhibit locality, hence requiring plenty of
short wires. But at the same time there are some distant connections, which lead to the use of
long wires [16].

The arrangement of the routing resources plays an important role in the overall efficiency of
the FPGA Architecture. This arrangement here considered as global routing architecture

33

CHAPTER 2 FPGA Architecture

whereas the microscopic details regarding the switches topology of different switch blocks is
considered as detailed routing architecture.

2.3.3.4 Programming technology:

There are numerous programming technologies that have been used for reconfigurable
architectures. Each of these technologies has different characteristics that, in turn, have a
significant impact on the programmable architecture. Some of the well-known technologies
include static, flash and anti-fuse memory.

In this section we discus only the SRAM based Programming technology since it is the most
used technology by the commercial vendors.

SRAM based programming technology

Static memory cells are the basic cells used for SRAM-based FPGAs. Most commercial
vendors use static memory (SRAM) based programming technology in their devices. These
devices use static memory cells that are distributed throughout the FPGA to ensure
configurability. An example of this memory cell is shown in the Figure 2-5. In an SRAM-
based FPGA, SRAM cells are mainly used for the following purposes:

e To program the routing interconnect of FPGAs which are generally steered by small
multiplexors.
e To program Configurable Logic Blocks (CLBs) used to implement logic functions.

Bit

.

Data = Data

Figure 2-5 : Static Memory cell

SRAM-based programming technology has become the dominant approach for FPGAs
because of its re-programmability and the use of standard CMOS process technology and
therefore leading to increased integration, higher speed and lower dynamic power
consumption of new process with smaller geometry. There is however a number of drawbacks
associated with SRAM-based programming technology. For example an SRAM cell requires
6 transistors which make the use of this technology costly in terms of area compared to other

34

CHAPTER 2 FPGA Architecture

programming technologies. Further SRAM cells are volatile in nature and external devices are
required to permanently store the configuration data. These external devices add to the cost
and area overhead of SRAM-based FPGAs.

2.4 The circuit board Nexys 2[19]

The Nexys2 circuit board is a complete, ready-to-use circuit development platform based on a
Xilinx Spartan 3E FPGA. It has been used to implement the proposed algorithm by providing
a complete application development solution on Xilinx’s Spartan 3E family. It uses the circuit
“FPGA XC3S500E-FGG320” which belongs to the Spartan 3E family of Xilinx. The high
integration density of the logic gates and the large number of inputs / outputs available for the
user allow the implementation of complete systems on the FPGA board. This board offers a
design environment that is very suitable for varied application prototyping, including those of
general purpose digital systems and embedded systems. It provides a complete application
development solution and is also ideal for video control, video processing and signal
processing applications in general. Figure 2-6 shows the board components.

Pmod power
source jumper

JTAG
header
Battery
connector

Reset
button

Mode select
jumper

Platform
flash

DIGILEN

BEYONR THEORY |

Done
LED

Expansion
disconnect jumper

7-segment display

Figure 2-6 : Nexys 2 board FPGA

Its onboard high-speed USB2 port, 16Mbytes of RAM and ROM, and several I/O devices and
ports make it an ideal platform for digital systems of all kinds, including embedded processor
systems based on Xilinx’s MicroBlaze. The USB2 port provides board power and a
programming interface, so the Nexys2 board can be used with a notebook computer to create
a truly portable design station.

35

CHAPTER 2 FPGA Architecture

2.4.1 Spartan 3E architecture

The Spartan-3E family architecture consists of five fundamental programmable functional
elements [20] :

Configurable Logic Blocks (CLBs): contain flexible Look-Up Tables (LUTs) that
implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide
variety of logical functions as well as store data.

Input/output Blocks (IOBs): control the flow of data between the I/O pins and the internal
logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports
a variety of signal standards, including four high-performance differential standards. Double
Data-Rate (DDR) registers are included.

Block RAM: provides data storage in the form of 18-Kbit dual-port blocks.
Multiplier Blocks: accept two 18-bit binary numbers as inputs and calculate the product.

Digital Clock Manager (DCM): Blocks provide self-calibrating, fully digital solutions for
distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 2-. A ring of IOBs surrounds a regular array
of CLBs. Each device has two columns of block RAM. Each RAM column consists of several
18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs
are positioned in the center with two at the top and two at the bottom of the device.

The Spartan-3E family features a rich network of traces that interconnect all five functional
elements, transmitting signals among them. Each functional element has an associated switch
matrix that permits multiple connections to the routing.

IR,

DcM — E

CLBs E

1088 E

) [—l_l :

r_ctn:._ |

Bl I HiE] |2 —

. M ! : -h :

- 1085

Block RAM Multiplias

Figure 2-7 : Spartan E3 family architecture

36

CHAPTER 2 FPGA Architecture

2.5 VHDL

2.5.1 Brief on VHDL

The VHDL is a hardware description language. It describes the behavior of an electronic
circuit, from which the physically circuit can then be implemented. The VHDL stands for
VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High Speed
Integrated Circuits.

An initiative funded by the US Department of Defense in the 1980s that led to the creation of
VHDL. Its objective was to describe the complex circuits, in order to establish a common
language with its suppliers.

Its first version was the VHDL 87, later an upgrade to the so-called VHDL 93. The VHDL
was the first hardware description language standardized by the Institute of Electrical and
Electronics Engineers IEEE, thanks to the IEEE 1076. An additional standard, the IEEE 1164,
was then added to introduce multi-valued logic systems.

2.5.2 Utility of VHDL

The VHDL is a language of specification, de simulation and also design. Unlike other
languages (CUP, ABEL) that were primarily design languages; the VHDL is primarily a
specification language. The standardization first took place for specification and simulation
(1987) and then for synthesis (1993).

Specification:

It is in this field that the standard is currently the most established. It’s quite possible to
describe a circuit by a standard VHDL code so that it is readable everywhere. This ability to
describe circuits in a universal language is also very practical to avoid language problems.

Simulation:

The VHDL is also a simulation language. To do so, the notion of time, in different forms, has
been introduced. Modules, intended only for simulation, can thus be created and used to
validate a logical or temporal operation of the VHDL code. The ability of simulating with
VHDL programs should considerably facilitate the writing of tests on a prototype which are
much more expensive and whose errors are more difficult to find.

Conception:

The VHDL also allows circuit design. The two main immediate applications of VHDL are in
the field of programmable logic circuits, including CPLD and FPGA, and in the field of ASIC
circuits. The VHDL is intended for circuit synthesis as well as circuit simulation. However,
since this language is designed primarily for specification and then for simulation, as a result
some language variants are not yet usable for design.

37

CHAPTER 2 FPGA Architecture

2.5.3 VHDL structure

As illustrated in Figure 2-8 the typical structure of a VHDL description is composed of at
least three fundamental parts:

Library Declaration

Entity
Forts — (Entity declaration) —

Generic Declaration
Port declaration

{Architecture body)

{Dataflow, Behavioral,
Structural or mixed)

Figure 2-8 : Basic structure of VHDL description

Libraries declaration:

Any description used in the VHDL code must be defined in a library. The main libraries are
standardized by IEEE. They contain the definitions of the types of electronics signals,
functions and subprograms used to perform arithmetic and logic operations, and so on. The
“use” directive is used to select which libraries to use.

library ieee ;
use ieee std_logic_1164 all;
use ieee numeric_std. all;

The entity:

It represents an external view of the description. The declaration of the entity makes it
possible to define the name of the VHDL description as well as the inputs and outputs used,
the instruction that defines them is “port”.

entity entity_name is

port(

-- Al] the ports are declared here
J.

end entity;

38

CHAPTER 2 FPGA Architecture

The architecture:
Contains the appropriate VHDL code, which describes how the circuit should behave to
perform the expected operation. It represents the internal structure of the description.

Architecture bhv of entity_name is

-- Declaration of internal signals
begin , \

-- Concurrent instructions
process(--sensitivity list)
begin

-- Sequential instructions
end process;
end architecture;

2.5.4 The modes used in VHDL

The VHDL uses two modes of operation: combinatorial mode (concurrent mode) and
sequential mode. Each of these modes is used in specific cases.

Combinatorial mode:

In combinatorial mode, all instructions in a VHDL description are evaluated and affect the
output signals at the same time (in parallel), so the order in which the instructions are written
is irrelevant. Indeed the description generates electronic structures, it is the great difference
between a VHDL description and a classical computer language. So with VHDL you have to
try to think of the structure that will be generated by the synthesizer to write a good
description.

Sequential mode:

The sequential mode uses “process” in which time is an essential variable. A process is a part
of the description of a circuit in which the instructions are executed sequentially, that is to say
one after the other. It can perform signal operations using the standard instructions of
structured programming as in microprocessor systems.

2.6 Conclusion

To be able to implement a ANN in an FPGA circuit, one should have a minimum knowledge
on them. thus in this chapter, FPGA circuits have been described and they proved to be a good
choice for implementation of architectures such as the ANN’s. We have presented the
architecture of FPGA circuits, specifically Xilinx Spartan E3. According to the architecture
study, FPGAs are reconfigurable components, they are generally constituted by a
programmable logic block matrix (CLB) surrounded by programmable Input/ Output blocks
(IOB). These two blocks can be connected by a network of programmable interconnections.
In addition, the Xilinx Spartan E3 contains two other blocks, which are the Multiplier block
and the Digital Clock Manager (DCM) block. Before that we had introduced briefly the
different type of digital circuits. Finally, the VHDL description language, which is a language
of a specification, simulation and design, has also been presented at the end of this chapter.

39

CHAPTER 3

CHAPTER 3 FPGA implementation of neural neworks

CHAPTER 3. FPGA IMPLEMENTATION OF
NEURAL NEWORKS

3.1 Introduction

ANNSs are becoming more popular these years; this is due to the growing interest in their
applications. However implementing them in the traditional way by software running in a
general-purpose processor couldn’t really meet the real-time requirements in many cases,
especially in intelligence control. In contrast to it the hardware implementation allows neural
networks to take full advantage of their inherent parallelism and run orders of magnitude
faster than software.

The hardware implementation of neural networks can be realized using either analog or digital
hardware; still the latter is the most appropriate and popular as it has many qualities among
which we state higher accuracy, better repeatability and testability, lower noise sensitivity,
and higher flexibility and compatibility with other types of processors.

Furthermore as it is stated in the previous chapter, the FPGA showed up to be the most
suitable for ANN implementation as it preserves the parallelism, flexibility and
reconfigurability in the neuron’s architecture.

However there are some challenges and certain tradeoffs that must be dealt with in order to
implement Neural Networks on FPGAs. Generally it requires large resource because of
nonlinear activation functions and several synaptic weights (multipliers) present in the
network. It is a major problem where there should be a balance between precision and speed,
and the cost of more FPGA resources (logic areas) associated with increased precision.

This chapter proposes a C' based application that generates descriptions of Feed Forward
Layered ANNs in form of VHDL files, to be implemented in an FPGA, the ANNs
descriptions are based on a simple architecture that allows implementing large neural
networks with minimum recourses which is layer multiplexing. The chapter starts by
introducing some arithmetic issues in implementing neural networks (data representation,
products computation, sum of products, activation function). After that a general architecture
of ANN generated by our application and its different main blocks are presented. Then it is
concluded by a brief overview on the essential of our work that is the C" " based application.

3.2 Arithmetic in ANN digital implementation

There are several aspects to take into account when designing ANNSs circuits; these include
data representation, products and sum of products computations, and activation functions

41

CHAPTER 3 FPGA implementation of neural neworks

implementations. The most important are inner-products and non-linear activation function,
because they are area-greedy. Indeed the latter is the most complex, and naturally the one that
consumes FPGA resources the most. It has an entire separate section devoted just to it. Given
the ease with which arithmetic operations can be implemented, the activation function stays
the biggest limiting factor in performance.

3.2.1.1 Data representation:

A neural network operates with real numbers; it can be represented in many ways. However
the problem is how to balance between numeric precision, which is important for the accuracy
and convergence and FPGA resources.

The simple precision floating point representation is ideal since it offers the greatest amount
of precision (i.e. minimal quantization error); however using it in ANN implementation on
FPGAs is not feasible since it consumes huge amounts of resources which are very limited in
this case.

Instead of Floating point, fixed point representation can be used. Even though this means less
precision, its benefits compromise its inconveniences. It is more area-efficient than floating
point, and much simpler in arithmetic operations. It comes naturally to use two’s complement
representation for negative numbers. It was mentioned in [10] that many studies established
16 bits for weight and 8 bits for activation-function as good enough. In the coming proposed
architecture, 15 bits are used for weights and 9 bits for the activation-function input.

3.2.1.2 Inner products:
Multiplayer has been identified as the most area-intensive arithmetic operator used in FPGA-
based ANNSs, there many forms of multipliers:

Bit-serial multipliers: In this one the calculation is done by a bit at a time, whereas fully
parallel multipliers calculate all bits simultaneously. Thus the first one can scale to a signal
representation of any range-precision, however, this means that the bit-serial multiplication
time grow quadratically, with the length of the signal representation. This means that it is not
effective in real time applications of ANN.

Other ways have been tried, like imposing the values of synaptic weights into powers of two
values, so that the products get simplified to numbers of shifts. Sadly this type of design
practice reduces drastically the ANN performance.

One last method to be used is direct full parallel-bit multiplier; FPGAs have limited numbers
of these multipliers in different dimensions. In Spartan 3E, there are only 20 multipliers of
dimension (18 X 18). In the architecture proposed in next sections, only 6 multipliers have
been used in parallel, this allows the ANN VHD description generated by the proposed C™
application, to have in the same time good parallelism and to be implemented in low resource
FPGAs too.

42

CHAPTER 3 FPGA implementation of neural neworks

3.2.1.3 Sum of products

The number of adder is not what lacks in today’s FPGAs, and the sum of products can be
carried in many ways. In ANN the sum of products is used to cumulate the elementary
products of the neuron inputs with their associated synaptic weights, Y.7_; Wi Xi. Its
implementation depends on the number of elementary products to be accumulated. If n is
small enough then a direct implementation like the one in Figure 3-1 or Figure 3-2 can be
used.

“+
me
T

Figure 3-1: Sum of products 1

-
+
w1

nor

|

Result

|

Zero

Figure 3-2: Sum of Products 2

As it is stated previously in the proposed ANN implementation only 6 products can be
computed at the same time, one multiplier per neuron at a time, it receives the neuron’s
associated inputs and multiply them by their appropriate weight in a sequential way, this
method causes more latency in computation, but in the other hand it is more area-efficient and
preserves the parallelism characteristic between neurons. So the elementary products for each
neuron can be summed using just one adder with a feedback loop since they come out of the
multipliers sequentially, see the Figure 3-3.

Figure 3-3: Serial sum of products

43

CHAPTER 3 FPGA implementation of neural neworks

3.3 The Activation Function implementation

The activation function implementation is one of the most important arithmetic-design issues
when implementing ANNs on FPGA boards. There exist many types of activation functions
by now, see chapter one. The most interesting ones for our application are Tangent sigmoid,
Log sigmoid and linear activation function. For the implementation of the first two functions
which are nonlinear, many works have being proposed [10],[21], [22],[23] and more. Mainly
there are the next five implementation approaches: piecewise linear approximation (PWL),
piecewise nonlinear approximation, lookup table (LUT), bit-level mapping, and hybrid
methods.

Generally piecewise linear approximation uses a series of linear segments to approximate the
activation function. The number and locations of these segments are chosen such that error,
processing time, and area utilization are minimized. The use of multipliers should be avoided
for efficient hardware implementations employing this approximation method, as multipliers
are expensive hardware components in terms of area and delay. This method is used in [23]
for the hyperbolic tangent and sigmoid function implementation.

The piecewise nonlinear approximation is similar to the PWL method except that a nonlinear
approximation is used in each segment. One example of it is polynomial approximations.
Although High order polynomial approximations can give low-error implementations, they
are generally not suitable for hardware implementation, because of the number of arithmetic
operations

In the LUT-based methods, input range is divided to equal sub-ranges and each sub-range is
approximated by a value stored in LUT. This method is used to implement the hyperbolic
tangent.

Hybrid methods usually combine two or more of the previously mentioned methods to
achieve better performance. The main challenges have always been one of how to choose the
best interpolation points and how to ensure that look-up tables remain small. This approach is
used in [22] to implement tangent sigmoid.

In this work three activation functions are implemented, Tangent sigmoid, log sigmoid, and
linear activation function. The approach adopted to implement the nonlinear ones is the last
one, the hybrid method that uses lookup table coupled with a piecewise linear approximation.
It is mainly based on the work presented by Promod Kumar Meher in his article entitled “An
Optimized Lookup-Table for the Evaluation of Sigmoid Function for Artificial Neural
Networks”[22].

44

CHAPTER 3 FPGA implementation of neural neworks

3.3.1 Implementation of Tangent Sigmoid and Log sigmoid

This function is defined by the following equation:
eX — =X
e*+e*

tankx) = (3-1)

This equation produces an S-shape curve presented in Figure 3-4

1.00

0.75

0.50 /
2

Ln

0.00

£0.25 /

-0.50

tanh(x)

0.75

-1.00

Figure 3-4: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed
in [22] is used, and the challenge in this is how divide intervals to ensure that look-up tables
remain small, and result with minimum error.

3.3.1.1 Characteristics of Tanh and strategy of implementation
e Property I

tanli{—x) = —t anh(x) (3-2)

Considering this property (mirror symmetry about Y-axis), only the right-half of the curve in
Figure 3-4 should be stored, i.e., for x > 0, the negative values of the input could be
evaluated by negating the LUT-words stored for its corresponding positive values. This is
done by performing the 2’s complement operation on the LUT output if the input is negative.

e Property 2

Li nankx) = x (3-3)

This means that for small values of the input, t anl{x) is linear, then storing values in the
LUT for this region could be avoided, since the corresponding tanl{x) values could be
obtained directly from input values. This could be implemented by a simple Multiplexer.

45

CHAPTER 3 FPGA implementation of neural neworks

e Property 3
d tanh (x
x—>00 dx
limtanh (x) =1 (3-5)
X—>00

According to the two equations the variation of the tanh (x) is insignificant for big values of
inputs, that is to say that for |x| > 3 the variation is less than 0.00015 and a value of +/ can
be stored in the LUT for all values above 3.

By using these properties all together, the values of tanh (x) that should be stored in the LUT
are for dmin < x < dmax, where dmin and §max represent the limiting values which could
be derived from accuracy requirements; such as [tanh(dmin) — (émin)| <e€, and
|t anl{dmax) — (1)| < €, where € is the maximum allowable error.

dmax is the bound of the input values above which the t anh(x) stored in the LUT is +/. It
takes generally values smaller then 3 for the reason that |tanh(x) — tanh(3)| < 0.00015,
which is a very higher accuracy than what is required for many applications, with neural
networks included. The Figure 3-5 shows clearly that for x = 2, tanh(x) > 0.96, for x =
2.4, tanh(x) > 0.98, and for x = 2.7, tanh(x) > 0.99. Thus, tanh(x) can be approximated
by +1 for x > dmax where dmax is 2, 2.4, or 2.7 if the maximum allowable errors are 0.04,
0.02, or 0.01 respectively.

0.99
098
097
0.96

095

094 A4)4
18 18 2 21 22 23 24 25 26 27 28 29 3 131

X

Figure 3-5: Saturation region of tangent hyperbolic

Similarly, to choose dmin we analyze the behavior of the tanh(x). The Taylor expansion of
the tanh(x) near zero gives

ranh(x) = x3+x5 17x7+
anix) = X =3 T 157 315 ’

When x tends to zero high order terms can be ignored.

x—-0 (3-6)

46

CHAPTER 3 FPGA implementation of neural neworks

We can find 6min above which we can assume tanh(x) = x by using the nest equation:

Smin® Smin®
omin — | dmin — + <e€ (3-7)
3 15
By simplifying we find
. 3 .5
odmin _5mm <. (3-8)

3 15 —
For an error € = 0.02, émin is found to be 0.390625.

As seen in Figure 3-5, the rate of variation of tanh(x) when dmin < x < dmax is not
uniform, therefore all the values of inputs may not correspond to a different LUT value for a
given accuracy. By knowing this, one single value can be stored for several input values
forming sub-domains of the function.

3.3.1.2 Optimized Lookup table design for hyperbolic tangent

Unlike conventional lookup tables where each input value (address) word corresponds to one
location in the LUT, Maher used in his work [22] used what is so called range-addressing,
where one address corresponds to a range of input values that have the same value of
tanh(x) stored in the LUT, reducing by that the number of words stored.

Apart from that, for a given sub-domain the value stored is the mean of the boundary values
of the function in that sub-domain. This is unlike other works where they stored the function
value corresponding to the lower-boundary address, and here the difference between the
maximum and the minimum values of the function could be the double of the allowable error.

Designing the LUT is then done by following steps he proposed which are:

1) Determination of the upper and lower limits of LUT input (§min and dmax) :
Fore = 0.02, émin = 0.390625and dmax = 2.4

2) Selection of the address width (precision):
By simulations in Matlab, it was found that a width of 9bits of input values
represented in 2’s complement allow to have [tanh(x1) —tanh(x2)| < e = 0.02
where x1and x2 are two consecutive inputs.

3) Selection of Domain Boundaries:
The range of tanh(x) for 0.3906250< x < 2.4 is divided into n sub-domains
R;(x;1,x;2) such that|tanh(x;;) — tanh(x;;)| < 2€. n is determined such as the
upper bound of the last domain (x,,)=2.4 then all (x;, X;3) should be determined.

4) LUT assignment:
The stored is the mean of the boundary values of the function which means
tanlx;) = [tanh(x;;) + tanh(x;3)]/2 .

Based on these steps we developed a simple C++program to generate the LUT words, results
are given in the Table 3-1, unlike Maher work, the stored value is the nearest to the mean of
the boundaries among its possible values that are imposed by the binary representation, which

47

CHAPTER 3 FPGA implementation of neural neworks

mean that the error in a sub-domain can exceed the error imposed by the

criterion [tanh(x;;) — tanh(x;;)| < 2. As we can see in the table the maximum error
became 0.033

Table 3-1: LUT for the hyperbolic tangent activation Function

Stored
LUT The ranges limits The mean | Stored Maximum
value in
word N° tanh(x;) value error
Xi1 Xi2 binary
0.390625 | x NA NA NA

1 0.390625 0.453125 | 0.398182 0.390625 | 00011001 § 0.0338394
2 0.453125 0.515625 | 0.44939 0.453125 { 00011101 § 0.0286606
3 0.515625 0.578125 | 0.497809 0.5 00100000 | 0.0256837
4 0.578125 0.640625 | 0.543313 0.546875 { 00100011 § 0.0255737
5 0.640625 0.703125 | 0.585836 0.578125 { 00100101 § 0.0282226
6 0.703125 0.78125 | 0.629886 0.625 00101000 | 0.0284236
7 0.78125 0.859375 | 0.67468 0.671875 { 00101011 { 0.0240605
8 0.859375 0.9375 0.715003 0.71875 (00101110 § 0.0228145
9 0.9375 1.048675 | 0.757681 0.75 00110000 | 0.0312907
10 1.048675 1.171875 | 0.803082 0.796875 { 00110011 § 0.0279973
11 1.171875 1.328125 | 0.846831 0.84375 (00110110 § 0.0250403
12 1.328125 1.53125 | 0.889714 0.890625 { 00111001 § 0.0218347
13 1.53125 1.859375 1 0.93163 0.9375 00111100 | 0.0268617
14 1.859375 2.90625 |0.973329 0.96875 (00111110 § 0.0252879
15 2.90625 NA 1 01000000 | NA

48

CHAPTER 3 FPGA implementation of neural neworks

W15
. o
[« 1] ©
| 8 lond 9§ [
9 bit 9 bit @ -
lUTinputeplor——>p| 2 =l ©O © w3 LUT
S = o FESE—
= o P w2
@ g8 B (15 words)
» w1
- — 1 —

/1/81)1*(

—+— Sign converter

msh

-l ol
msh

U A 9bit
L J v

L

OUTPUT

Figure 3-6 : Hyperbolic Tangent LUT block diagram

The Figure 3-6 shows that the hyperbolic tangent implementation consists of several blocks,
that assure the functioning described previously.

A Sign converter: It has been implemented before and after the LUT bloc. The role of the first
one is to calculate the magnitude of the input to feed it to the LUT, since this one deals with
positive numbers only. So when the input is negative, the LUT word corresponding to the
input magnitude is negated by the second sign converter to have the correct value tanh(x) of
that negative input x .

A range decoder: it has been implemented in order to perform the range-addressing. That is to
say that when it is fed with the input magnitude, it determines the corresponding range,
through its word-select outputs (w1, w2..., wl5).

A Multiplexer: its role is to let through either the LUT words or the input directly. The
decision to let through the input happens in no word is selected by the range decoder, which
means by reading the Table 3-1 that |x| < 0.390625. This could be implemented by using a
NOR logic gate to all the word-select signals (range decoder outputs).

49

CHAPTER 3

FPGA implementation of neural neworks

Simulations:
. radec/w [T5HO000 O == ==] [Ghon | 5hom | FEST O B
(15) | - | - I |
(14 i l
(13) | [* -
(12) | ==
(11) | |_l_‘ -
(1), i
(9) | [l
(8) | I
7| [_|
(8) | |7
51 [5l
(4) | ﬂ'l
(3 | l
(2) | ikl
(1) | |—] | |
| — ~

Linear region

-

Non linear region saturation region

Figure 3-7: Range decoder simulation

The Figure 3-7 shows the word-select signals values with respect to the whole range of its

inputs. As it is clear in the figure, the inputs are divided into three regions:

A linear region where the input is passed directly to the output without passing
through the LUT, this region is known when all word-select signal are at low level
(the value 0)

A non linear region, we can clearly see the shape of tangent hyperbolic formed when
the word-select signals, (w1, w2..., and w15) get the value 1 each one at its appropriate
sub-range and 0 in the other sub-ranges.

A saturation region, in this region the input verifies.

This concludes that the range decoder works properly and decodes the input values into sub-
ranges that can be known when their correspondent word-select signal is set to 1.

This figure (Figure 3-8) shows that the Tangent function block works perfectly, the first input
value is within the linear range thus the output is equal to the input and the 3™ value of the

input is

within the nonlinear region

/tanh/e { 9'b000001100

T I
| 9'b000011001

| 9'b000111100

tanh/s { 9'b000001100

| 9'b000011001

| 9'b000101110

Figure 3-8: Hyperbolic Tangent simulation

50

CHAPTER 3 FPGA implementation of neural neworks

3.3.1.3 Implementation of Log-Sigmoid activation function:
We used the same previous implementation process to generate an optimized LUT for a
sigmoid function:

1

Siga(x) = m (3'9)

In our implementation we have chosena = 2 and that is to have an easy function to
approximate its equation becomes:
1

Slga(x) = m (3-10)

This function has an S-shaped curve too; however unlike the tangent sigmoid this one ranges
from 0 to 1 and not from -1 to 1 (See Figure 3-9a).

sig2(x) .

Figure 3-9: Sigmoid activation function

By doing the Taylor expansion to the first order we get:

1
SigZ(x)=§+x+---, x—-0 (3-11)

To make the implementation easier, we considered implementing the function:

1 1
— —__ 3-12
f6) =15 (3-12)
The new function has the shape shown in Figure 3-9b, clearly it has similar properties to

anh(x) :
o lim_,df (x)/dx =0
°)g_l)glf(x) = 0.5
e f(=x)=—-f()

e f(x)~xwhenx -0

51

CHAPTER 3 FPGA implementation of neural neworks

L1 wecan get the sigmoid by adding a 0.5

After implementing the LUT of f(x) = ez 2

to its output.

We made a C'™" code to generate the LUT for the function f(x), the results are in the Table
3-2

Table 3-2 : LUT for f (x) = sig2(x) - 0.5

Stored
LUT word | The ranges limits The mean || Stored Maximum
value in
N° si g2 (x;) value error
Xi1 Xi2 binary
0.03125 | x NA NA NA
1 0.03125 0.09375 }0.031179 0.03125 | 00000010 | 0.0156301
2 0.09375 0.15625 0.0621168 | 0.0625 00000100 | 0.0157618
3 0.15625 0.21875 |} 0.0925793 | 0.09375 00000110 | 0.0162546
4 0.21875 0.28125 | 0.122347 0.125 00001000 | 0.0173368
5 0.28125 0.34375] 0.151221 0.15625 00001010 § 0.0192192
6 0.34375 0.40625 | 0.179026 0.171875 { 00001011 | 0.020767
7 0.40625 0.46875 | 0.205618 0.203125 { 00001101 | 0.0154694
8 0.46875 0.546875 | 0.233841 0.234375 { 00001111 | 0.0157806
9 0.546875 0.625 0.263194 0.265625 | 00010001 { 0.0165378
10 0.625 0.71875 | 0.292684 0.296875 | 00010011 | 0.0195751
11 0.71875 0.8125 0.321775 0.328125 1 00010101 § 0.0200578
12 0.8125 0.921875 | 0.349438 0.34375 [00010110 | 0.0196416
13 0.921875 1.0625 0.37835 0.375 00011000 | 0.0183094
14 1.0625 1.25 0.408726 0.40625 (00011010 § 0.0178918
15 1.25 1.53125 | 0.43973 0.4375 00011100 | 0.0178191
16 1.53125 0.467493 0.46875 {00011110 § 0.0134309
Simulations:
{a'mmunmnu] 9'boooo10010 | | 9b011111111
sigmoid/s | 9'b000100000 | 9'b000101010 | | 9'b6001000000

Figure 3-10 Log sigmoid2 simulation

The simulation shows the good functioning of the sigmoid2 function block. It gave the value
0.5 when the input was null and 1 when the input was in the saturation region.

The sig2 function sig2(x) = f(x) + 1/2 is implemented as it is shown in the following
block diagram:

52

CHAPTER 3 FPGA implementation of neural neworks

Wi7v
= L .
) % .
E o .
s 5 og :
o hit o bit 1) .
e | £ [ob o LUT
LLm ||'||:|L|.7‘i E E . = W3
L= I
c
o S = fx)
s

(17 words)

/%Bbit

» Sign converter

ol

>
D

msh

2 bit

L X — 7
0.5 _,i
]l

QOUTPUT

Figure 3-11: Sigmoid2 Implementation diagram

3.4 The architecture overview of the ANN generated by the C**

application

The choice of the anatomy of an ANN (the number of inputs, outputs, layers, and the number
of neurons per layer) is specific to each application. In literature it has been reported that
three-layer network with sigmoid activation function in the hidden layer and linear activation
function in the output layer can virtually approximate any nonlinear function to any degree of
accuracy provided sufficient number of neurons in a hidden unit is available. However To
realize all types of nonlinearity using three layers, large number of neurons is needed and it
may result in a huge NN.

For function approximation, multilayer networks have been found to be very useful as it is
similar to a biological NN. However Implementations of multilayer networks will demand
huge resource and will not be a feasible solution for real-time applications such as estimators
for motor control. Thus we proposed an architecture that is based on the concept of layer

53

CHAPTER 3 FPGA implementation of neural neworks

multiplexing presented in [24], where large ANNs could be implemented with minimum
resources.

3.4.1 Concept of layer multiplexing

The data processed in a multilayer feed forward ANN propagates from one layer to another,
and the computing happens in one layer at a time, hence we don’t need to have all layers
implemented in the same time, only the largest layer (the one with the maximum number of
neurons) should be implemented, it calls itself repeatedly and behaves as different layers with
the help of a control unit. The control block ensures the complete computation of NN using
layer multiplexing by sequencing and placing the appropriate inputs, weights, biases, and
value of excitation function (from LUTs) of each layer .

Unlike the architecture presented in [24], in our architecture, we have implemented both the
largest layer and the output layer, which means that the largest layer behaves like the hidden
layers only and not the output layer. That is to be able to have a different activation functions
in the output layer. So implementing an ANN like the one in figure is reduced to
implementation of the layer-multiplexed ANN in figure

INPUTS
OUTPUTS

OUTPUTS

vy

INPUTS
b ; _ :
sTART . |LAYER CONTROL BLOCK]|: &

Lif Ln —P> i[)’

a) b)

Figure 3-12 : Layer multiplexed ANN [24]

3.4.2 Single neuron architecture

As indicated in its mathematical model (Figure 1-4), the neuron does two major arithmetic
operations; the first is a sum of products of inputs with their correspondent synaptic weights
(1-1), then the result is fed to an activation function (1-2) to determine its output.

The sum-of-products implementation is done by the circuits in Figure 3-3, and the activation
function is implemented by circuits shown in Figure 3-6, the global architecture of a neuron is
shown in Figure 3-13.

54

CHAPTER 3 FPGA implementation of neural neworks

| = | | __wis_
clk —: D | ! :

E el
! + e A
Wi.Ki.—f—p

524 bit : :
, its 9 bit W LUT

- ———Tp
W2

Bit reducer
Sign converter
9to 15
Range decoder

- —
B . (Tws (15 words)
ctrl sig-

SUM OF PRODUCTS

/l/sbir

— Sign converter

msb

U f/ 9 bit
X

ACTIVATION FUNCTION

msb

OUTPUT

Figure 3-13: A Single neuron block diagram

The width used for the weights in this work is 15 bits; 7bits for the integer part and 8bits for
the fractional part. Thus the product of the weight (15bits) with the input (9bits) gives a result
in 24bits; this result is then fed to the adder which gives a result in 24bits too. The problem is
how to adapt the width of the data coming from the adder, to the width of the input of
activation function’s block without affecting the results. We introduced a block called bit-
reducer (see Figure 3-13) to do this adaptation.

Because of the saturation region in the hyperbolic tangent function, the output of the LUT for
any value of its inputs x that verifies |x| > 2.4 is always 1. Thus if the adder’s output exceeds
2.4 the bit-reducer changes it to a value that can be represented in 9bits, and which gives a
result of 1 at the output of the LUT.

Since the LUT’s input has 3bits for the integer part, then if sum > 2.4 the LUT’s input is set
to 3, and If the sum < —2.4 than the LUT’s input is set to -4. This is because 3 and -4 give
an output value equal to 1 and they can be represented in 9bits (in 3bits of the integer part).

55

CHAPTER 3 FPGA implementation of neural neworks

3.4.3 The Global ANN architecture

The figure shows block a diagram of the global architecture of ANNs generated by the
application.

LARGEST LAYER
(hidden layers)

i

Activation
"1' + Function
.
L] L]
L] .
. .
L] .
L]
L]
—»-E —+]- eaion
INPUT
—_— see
» v v
. Norm
.
ES— v
OUPUT
LAYER
BIASES
WEIGHTS X ves X
- e R
m
‘ .
CONTROL
UNIT > E +1 P4
Clk

Figure 3-14 : ANN Architecture

The figure shows clearly the use of the layer-multiplexing concept for in implementing the

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink
neurons), as it was described before.

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer
behaves as all hidden layers

The Normalization block, called “Norm” in the diagram is to centralize and normalize the
inputs of the ANN. This step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole
ANN. The Control Units synchronizes their outputs so that they give the right values of the
biases and weights respectively at the appropriate time.

56

CHAPTER 3 FPGA implementation of neural neworks

3.5 C++ application

As it was mentioned before, our work consists of a C'" application that generates the VHD
description of an optimized architecture of feed-forward layered neural networks. It is mainly
an interface that demands from the user to insert the ANN anatomy, like the number of inputs,
outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD
description for that ANN.

This application is a kind of an abstraction to ANN VHD description, since the user has no
longer the need to write any VHD code for any feed forward layered neural network, all what
is needed for that with the application is a few clicks.

This application generates the implementation of the generalization phase only. That is to say

that the neuron’s training is performed offline with, so this application requires from the user
to provide the weights and biases written in real representation (float), in a txt files and then it
generates as output a set of files with a “vdh” extension which represent the different
components of the ANN architecture.

The coding idea used to generate the VHD files is very simple. We used the commands of
read and write from files, then the VHD description is written depending on the anatomy of
the ANN specified by the user

Example:

fichier<<endl<<"library ieee ;":

This image shows an instruction of the C™ code to generate the first line of the VHD
description. However the line showed is constant, it does not need to be changed with
different ANN anatomies that are specified by the user, the challenge in this application was
how to generate VDH codes of the blocks that are variable with different ANNs

Example:

fichier<<endl<<" c3 : out std logic wvector ("<<maxholayer<<" downtoc 1):;";

In this example we can see the C++ instruction that generates a signal “cs”, however this time
this signal is used to command all the neurons in the output layer, each bit commands a
neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19,
1.e., it becomes (19 downto 1). Another deal is how to initialize or assign values to this kind of
signals. That was done by a set of simple functions like:

23 3td::string toBinary(int n, int nmax) ;

24 3td::string generatornchar(char c, int nbkit):

25 std::string vectaffeect(int ¢, int up,int down,int nbit):
26 3td::string weightinitiate(flcat n):

2 std::atring biasiniziate(float a);

28 std::string xtinitiate(flcat a):

57

CHAPTER 3 FPGA implementation of neural neworks

The function in line 23 indicated in the previous image called “toBinary” takes a number n,
and its maximum value and gives as an output in a string the representation of that number in
2’s complement representation with an appropriate width.

The functions in lines 26 and 27 do transform the values of biases and weights provided in
files by the users, into their appropriate binary representation. The width of both biases and
weights a general for all ANNs generated by this application.

The previous example shows how to generate and initiate signals whose width depends on the
anatomy of the ANN specifies by the user; however there are much more complicated blocks
whose functioning depends completely on the anatomy, and the most important one is the
Control Unit. This block contains a finite state machine that produces signal to synchronize all
the system (ANN), and the C"" code that generates it needs additional C"™ functions and many
conditions.

The figure shows the state diagram (a direct graph) of state machines for two different neural
networks generated by the application:

State
"000"

State2
"001"

if layer=0

if layer=2

if layer=0
or layer=3

if layer=2

if layer=1
arlayer =2

if layer=1

State3
I!O 1 0 n

a) b)

Figure 3-15: Flow state of 2 state machines

The first state machine (Figure 3-15 a) is for an ANN that has 3 layers plus an input layer that
contains 3 inputs, the layer 1 has 1 neuron and both layers 2 and 3 have 2 neurons.

The second state machine (Figure 3-15 b) is for an ANN that has 2 layers plus an input layer
which contains 3 inputs too, the layer 1 has 5 neurons and layer has 4 neurons.

It can be clearly seen that the state machines of the two neurons are totally different.

58

CHAPTER 3

FPGA implementation of neural neworks

Simulations:

To test our application we have generated two different neural networks:

The first one has the anatomy 1 1 15 which means that it has 1 input, 1 neuron in the hidden
layer, and 15 neurons in its output. The second one has the anatomy 1 1 5; (see Figure 3-16
and Figure 3-17)

Jatop_gen/e | 15ho700

Jatop_gen/dk |

fatop_gen/s1

Yhixx |

9hiFF

fatop_gen/s2

Fhxxx |

9h04l |

{atop_gen/fs3

Shix

9hiFF

fatop_genfs4

Shixx |

9'hi41

fatop_geny’s5

Shiod

YhiFF

fatop_gen/sh

Yhxxx

Phial |

fatop_gen/s7

Fhic |

ShiFF

fatop_gen/s8

SR

hi41

fatop_gen/s%

Fhax

YhlFF

fatop_gen/s10

Shild

Shi41

fatop_gen/s11

i

YhlFF

fatop_genys12

Shiid

fatop_gen/s13

S'hiFF

Yhixx |

fatop_gen/s14

Fhiodl |

S'hi40

fatop_gen/s15

hi

S'hiFF

LAARRRARY!

0 ns

fann_gen5/e

fann_gensyctk [] L[] [T

pornire b
100 ns

LRI
200 ns

vttt
00 ns

[N
400 ns

Figure 3-16 : ANN 1 1 _15

T T TR LY
00 ns

{ 9'hoos

9'h020

LPL L TE Tl

ERdhEES

fann_gen5/countt { 1'h0
Jann_genS/s1 _9'hXxX |) 9'h03A | 9'ho22
| I
Jann_gen5/s2 _9hXXX g'hm? lg‘hnz?
Jann_gen5/s3 90 |] 9°h03B | 9'ho22
I I
Jann_genS/s4 _9'hXXX Ig'hm:; 19'h01||=
Jann_gen5/s5 9'hXX |) 9'h03B | 9'h022
| I
Figure 3-17: ANN1 1 5
Interpretation:

The Figure 3-16 shows a ModelSim simulation of the 1 1 15 ANN generated by the C™', we
can see clearly that all the output were assigned in less than four clock cycles. Normally all

59

CHAPTER 3 FPGA implementation of neural neworks

the outputs should have being assigned their values in the third clk cycle, however the number
of neurons of the output layer in this ANN is 15, it largely exceeds the number of products
used (since the latter is very limited, in our FPGA and we used on multiplier per neuron, thus
we assigned the outputs 6 by 6 and this created more latency (the two additional clk cycles).
Unlike it, the second ANN’s largest layer has 5 neurons in the output, that is why all its
outputs got assigned in the third clk cycle)

3.6 Conclusion

In this chapter we have presented the hardware implementation of ANNs in FPGAs. We first
introduced the most important issues and the challenges that should be dealt with by the
designer when implementing ANNSs; these include the parallelism required for real-time
applications, the precision and the minimization of the cost (resources). After that we have
presented an optimized method for implementing the activation function of a neuron by the
use of an optimized LUT proposed by Maher. That same method was used in this work to
implement two non linear activation functions, the hyperbolic tangent and the sigmoid
function.

To implement large ANNs, huge resources are required. To avoid this, we have used the
concept of layer multiplexing, where we needed to implement only the largest layer, this one
calls itself repeatedly to behave sequentially like all hidden layers. This method proved to be
very effective in term of reducing resources without a big compromise on the computing
speed.

The architecture of a single neuron, and the whole artificial network were then presented
respectively in the form of block diagrams and their components when presented after, and to
conclude the chapter we talked about the C™ program we created and that generates any feed
forward ANN that the user wants, basing on all those previous optimized designing methods.
After that we simulated two different generated ANNs, and analyzed the results.

60

CHAPTER 4

CHAPTER 4 ANN SHE PWM technique

CHAPTER 4. ANN SHE PWM TECHNIQUE

4.1 Introduction

At the end of the last century, one of the results of the development of power electronics is the
Pulse Width Modulation technique. It is the heart of the control of static converters. The
objective of the PWM technique in controlling a voltage inverter is to have a fast response
and high performance. The programmed PWM which is one of the two types of the PWM
(generated and programmed) is based on a technique of elimination of unwanted harmonics
that may produce vibrations and undulations of torque and many undesirable consequences.
This technique is called SHE PWM (Selective Harmonics Elimination Pulse-Width
Modulation). It was introduced by Turnbull in 1964 and developed later by Patel and Hoftel
in 1973.

4.2 SHE PWM

4.2.1 Introduction

This technique consists in forming the output wave of a succession of slots of variable and
controllable widths. The switching angles are determined so as to eliminate certain disturbing
harmonics in the output wave and improve the efficiency of the inverter-machine system by
reducing torque ripples, as well as current peaks and losses in the machine. The calculation of
these angles with this method is based on the nonlinear and transcendental equations. This has
forced researchers to use numerical methods such as Newton-Raphson. The problem with this
method is the choice of good initial values necessary for convergence. Moreover, the
computation of these angles cannot be done on-line (in real-time), thus the angles should be
stored in memory, which makes the system not optimal for applications whose changes in
frequency and voltage are fast, such as the speed controller. This problem has led to the need
to use a better algorithm. Recently, an algorithm based on the polynomial interpolation
approach of the trajectory of the SHE PWM angles by ANN was proposed by GUELLAL
Ammar [13]. This algorithm will be our application and be implemented using our ANNs to
calculate the switching angles and generating the SHE PWM signals for controlling the
voltage inverter on-line, .

62

CHAPTER 4 ANN SHE PWM technique

4.2.2 Principle of operation

The PWM signals describing the three output voltages of the converter must have properties
which help to orient their characteristics towards those of a sine wave. In order to approach
them as much as possible, we may in some cases attribute to them the same properties of
symmetry as a sinusoidal wave. The aim of this technique is to eliminate a certain number of
low-order harmonics and to control the fundamental wave. The output voltage of the inverter
is defined as a function of the exact switching angles «, _ o (see Figure 4-1) corresponding
to the switching times of the voltage from a positive value +E to a negative value -E or vice
versa. The index m is the number of switching angles of the output voltage of the inverter per
quarter wave. The output voltage of the inverter is constructed to have half-wave symmetry
(odd function with respect to the angle m). This symmetry makes it possible to eliminate
certain types of harmonics, which simplifies the Fourier series development of this voltage
and reduces the harmonic ratio. Then, the amplitude of the fundamental is fixed to the value
im and the amplitudes of the (m-1) first harmonics are canceled.

Chopl hop2 Chop M-1

Chop M

C0OrOnn g none
T U OUO

[3 - 'Y - -

g Gz pp-3 Axppl =7 27
s oy LN V| or
- : 2M

g2

Figure 4-1 : The Inverters output normalized Voltage
im is the modulation rate defined by:

v
im =+

V is the tension of the fundamental.

It is assumed that the output voltage is periodic and of unit amplitude. Let f be the function
representing the PWM signal as a function of a (o = wt). We can write therefore:

fla) = —f(a+m) (4-1)

The function f can be decomposed into Fourier series:

f(a) =ay+ Z(an si {na) + b, cos (na)) (4-2)
n=0

Where:

63

CHAPTER 4 ANN SHE PWM technique

1 21
= — 4-3
ao 271,[f(a)da (4-3)
0
1 2T
a, = ;j f(a)si n(na)da (4-4)
0
1 2T
b, = Ef f(a)cos (na)da (4-5)
0
The calculation shows:
a, =0
For n even:
a,=b,=0
For n odd:
4 M
— _1\k -
ap, = — 1+2 Z(1)*cos (nak)] (4-6)
k=1
b,=0

In our study we used a three-phase inverter, so the harmonics of rank three and multiples of
three are eliminated automatically. Thus, n takes odd values different from a multiple of 3.

4.2.3 The switching angles

Each equation (4-6) has m unknown variables o, ay, 0s,..., aym. The problem is to calculate the
values of these switching angles which make it possible to cancel the amplitudes a, of the first
(m-1) harmonics f;, and to assign an im value to the amplitude a; of the fundamental f;.

On the other hand, two voltage harmonics must be eliminated in order to eliminate a current
harmonic. Since the amplitude of the fundamental is to be fixed at a given value, this sets the
first value from m to 3 (m being the number of quarter-wavelength switching or number of
cuttings per half wave).

The first value of m is set to 3 so that the amplitude of the fundamental is fixed to a given
value (m being the number of quarter-wave switching per half wave). Consequently, when m
is increased successively by 2, the number of current harmonics that will be eliminated is
increased by 1.

It should be noted that the value of the modulation index im assigned to the fundamental is a
dimensionless index varying from 0 to 1. To obtain the corresponding value in volt, multiply
by E for the three-phase inverter.

64

CHAPTER 4 ANN SHE PWM technique

The equations (4-7) form a system of m nonlinear equations with m unknown

§
+im=0

1+2) (—1*cos (ay)
kZ .

1

4
f1(051; Ay, A3, ... 0y) = E

i - .

4

folay, ay, az, ...ay) = = 1+2 Z(—l)kcos (5a)| =0
| k=1 |

(4-7)
7

¥ i 3
4
1 fulay, @y as e ay) =—|1+2 Z(—l)kcos (7a)| =0
| k=1 |

4
fm(aq, @z, a3, ...ay) = E

1+2) (—1kcos (na)] =0
kZl .

\

For this method to converge, we assign a negative value (-im) to the fundamental. This
corresponds to a phase shift of @ of the fundamental. This phase shift has no effect on the
motor [13].

A simple technique to solve these equations is to use Newton-Raphson method. We must have
a good initial estimate of the exact solution sought, so that this method accurate solution and
good convergence. Alternatively, more complicated gradient search methods can be used to
obtain the solutions. Indeed, the Taufik, Mellitt, and Goodman algorithm is used to quickly
estimate the initial values of the nonlinear system solution.

A MATLAB program has been made to calculate the switching angles as a function of the
modulation index im [13].

4.3 Implementation of ANN SHE PWM

As we have already stated, the PWM is a powerful tool in controlling the voltage inverter. It
based on the SHE PWM technique which requires a very high computing time to calculate the
switching angles using numerical methods which prevents speed control on-line so the
algorithm of Patel and Hoft is off-line. Over the last years, various researches have addressed
this topic. The results showed that it was not possible to implement this algorithm on a
microprocessor. However, in 2007, GUELLAL managed to implement this algorithm on an
FPGA circuit. With the emergence and development of new intelligent control techniques, a
new algorithm based on artificial neural network (ANN) has been proposed. The aim of this
algorithm is to calculate the switching times of the PWM signal with a precision very close to
those calculated by the Patel and Hoft algorithm. This algorithm is going to be our application
to test the performance of our ANN discussed in chapter III.

65

CHAPTER 4 ANN SHE PWM technique

4.3.1 Architecture of the ANN SHE

The aim of the proposed algorithm is to build a Multi Layer Perceptron MLP which will be
implemented on an FPGA circuit using the VHDL codes generated by our application.

4.3.1.1 The topology of neural network [13]

In order to simplify the implementation and reduce the consumed space in the FPGA circuit, a
network composed of an input layer, a hidden layer and an output layer has been chosen, in
addition the hidden layer contains a single neuron. This architecture also makes it possible to
reduce the error and the time when calculating the switching angles since, if the number of
layers or the number of neurons in the hidden layers is increased, the error in the switching
angles and the calculation time will be multiplied.

Concerning the activation functions, the tangent sigmoid function was chosen between the
input layer and the hidden layer to present the nonlinearity of the system and a simple linear
function between the hidden layer and the output layer. The non-linear function between the
input layer and the hidden layer has been placed so that this function is computed once, since
if placed between the hidden layer and the output layer this function will be calculated for
each switching angle; thus this choice makes it possible to reduce the complexity and the time
of the computation.

The architecture of our ANNSHE PWM algorithm is presented in Figure 4-2 where:
im: The modulation index which is the input of the network.

W1: Weights matrix between the input layer and the hidden layer.

W2: Weights matrix between the hidden layer and the output layer.

b1: Biases matrix between the input layer and the hidden layer.

b2: Biases matrix between the hidden layer and the output layer.

a: Matrix of switching angles which presents the output of our network.

Hidden Layer Ourtput Laver

input - VW1 W2 output
=i Jolr ey

b1 b2

Figure 4-2 : ANN SHE Architecture

66

CHAPTER 4 ANN SHE PWM technique

4.3.1.2 Database

In this section, the database that will be used in the off-line training is managed. This database
gives a relation between the input of the artificial neural network which is the index
modulation im and its output which is the switching angles matrix a. im takes values from 0
to 1. A database of 100 values in which im vary by a step of 0.01 has been constructed [13],
and for each value of im, for each value of im, the system of equation of Patel and Hoft
(equation (4-7) is solved in order to find the matrix a of the corresponding switching angles.
Moreover, in order for the algorithm to be effective, that is to say the angles calculated by this
algorithm are very close to the exact values computed by the iterative method of Newton-
Raphson, and to allow the convergence of the learning step, the interval of variation of im is
divided into six and for each interval a specific ANN (weights and biases) is constructed. The
choice of number of switching angles (i.e. the number of harmonics to be eliminated) in each
interval depends on the value of the index im and since the effect of the harmonics increases
when im decreases we take the appropriate choice which is illustrated in the Table 4-1 , this
choice also makes it possible to optimize our algorithm and thus minimize the space
consumed during the implementation.

Table 4-1: ANN SHE characteristic

o k= £ 229 Trainin
£ | = = - g
g S g 8 = parameters
~8| 55| 55| Z g |83 =
The modulation cow g2l g) = o o e
ANN S| 4 G — 20 b s @ Q
index im m| ©F | ©x8 < g 1°2 g
= g - = = =] = =S g g o
8=l 82 | 25 g s | 8= g = g 2
ES|E=| E°| £ 2 |E°E|l € 278
53| B o 5 o I3t 3 =
Z:lzs|zs| & 2 |zgE| & g &
0.01 <im<0.16 | ANN-1 |23 |1 23 e | B | 2x15 |00 62561
= g
= an
0.16 <im<0.32 | ANN-2 19 1 19 §D 97 19x 16 | 10° 64982
= =
0.32<im <0.56 | ANN-3 15 1 15 g go 15x24 | 10° 73214
= <
. <
0.56<im<0.76 | ANN-4 |7 |1 7 S| T |20 | 10° 87327
g | =
<} [<}
0.76 <im<0.92 | ANN-5 5 1 5 e £ g | 5x16 10° 164338
-~
5] s =!
0.92<im<1 ANN-6 | 3 1 3 g | 2T 3xs 1.510* | 200000

To find the parameters of six ANNs, a program on MATLAB which solves the system of
equation of Patel and Hoft and generates the six databases has been developed [13]. These
databases will be used in the learning phase. Some of switching angles are shown in the Table
4-2 using ANN-4.

67

CHAPTER 4

ANN SHE PWM technique

Table 4-2 : An example of switching angles (m=7) generated by a Matlab program

im 0.58 0.59 0.60 0.61 0.62

al 11,1149755 | 11,0448428 | 10,9745607 | 10,904126 10,83353518
a2 16,4743076 | 16,4952108 | 16,5158101 16,5360929 | 16,55604594
a3 25,8659416 | 25,7882198 | 25,7101518 | 25,6317263 | 25,55293186
a4 32,5003488 | 32,5384342 | 32,5761823 | 32,6135775 | 32,65060327
as 40,836138 40,7576594 | 40,6787918 | 40,5995203 | 40,51982873
a6 48,3117705 | 48,3673372 | 48,4227855 | 48,4781084 | 48,53329855
o’ 56,1144861 | 56,0440286 | 55,9733672 | 55,9024937 | 55,83139934

4.3.1.3 Off-line training

In this stage, the parameters of six ANNs (ANN-i) which are the weights and biases will be
calculated off-line. The database of each ANN calculated in the previous section, is used as
input in a training program based on the gradient method. The inputs and the outputs of that
program are automatically normalized. The training program has two shutdown conditions,
performance and number of epochs. When one of these conditions is verified, training is
stopped to generate the appropriate parameters (weights and biases).

The parameters of the training and the characteristics of each ANN-I are shown in the Table
4-1.

At the end of the training, the appropriate parameters for the used neurons is generated and
used for the simulation in the next section. These results (Weights and biases) are shown in
the Table 4-3 for the ANN-4.

Table 4-3 : weights and biases calculated in the training phase

Wi W2 bl b2

0.9966 -1.0588 -0.5257 0.4770
1.0551 0.5583
-1.0581 0.4813
1.0615 0.5459
-1.0576 0.4826
1.0602 0.5313
-1.0582 0.4790

4.3.1.4 Simulation
In this stage, the efficiency and the accuracy of the algorithm is checked. Using ModelSim,
the ANN-4 is simulated (Figure 4-3) for two different values of im (im=59.5 and im=61.5).

As we have mentioned earlier, the input is represented in 15 bits (10 for the integer part and 5
for the fractional part) and the output is represented in 9 bits (3 for the integer part and 6 for
the fractional part).

68

CHAPTER 4 ANN SHE PWM technique
] 1560000111101 10000
el B B B B B BBy B
[9b000110101 | 9b000101110
[9000001101 | 9b000010100
| 9booo110101 | 9b000101110
| 9000001100 1 95000010011
[9b000110101 1 9b000101110
| 9boo0o101L | 9000010010
| oboco110101 | 9000101110

Figure 4-3: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

It is clear from the Figure 4-3 that the output is normalized, thus a reverse normalization
should be done in order to get the real switching angles. The Table 4-4 shows the results after
the reverse normalization.

Table 4-4 : The exact values for switching angles for m=0.595 and m=0.615

im 0.595 0.615

al 11,0218985 | 10,8736844
a2 16,5020112 | 16,5399051
a3 25,7570957 | 25,5895462
a4 32,547983 | 32,6207589
ad 40,724594 | 40,5544361
ab 48,3779872 | 48,4910562
a7 56,0188291 | 55,8686532

4.3.1.5 Results & interpretation

To check the performance and the accuracy of the ANN SHE, we make a comparative study
between the exact switching angles calculated by Newton-Raphson method, and the ANN
SHE switching angles given by the MATLAB program. Then the error between them has
been shown in the Table 4-5.

Table 4-5 : A comparison between the exact and ANN SHE switching angles

im = 0.595 im=0.615
Exact angles ANN - SHE error Exact angles ANN — SHE Error
angles angles

11.0097 11,0218985 0,01219848 10,8689 10,8736844 0,00478443
16.5055 16,5020112 0,00348878 16,5461 16,5399051 0,00619486
25.7492 25,7570957 0,00789571 25,5924 25,5895462 0,00285378
32.5574 32,547983 0,009417 32,6321 32,6207589 0,01134113
40.7183 40,724594 0,00629396 40,5597 40,5544361 0,00526387
48.3951 48,3779872 0,01711281 48,5057 48,4910562 0,01464378
56.0087 56,0188291 0,01012914 55,867 55,8686532 0,00165325

69

CHAPTER 4 ANN SHE PWM technique

We can clearly see that the ANN SHE angles are close to exact angles with a very small error.

4.3.2 Implementation of ANN SHE

To implement practically the proposed ANNSHE PWM algorithm and thus verify its
accuracy and efficiency, an implementation on an FPGA circuit is described using our
application described in the previous chapter.

4.3.2.1 Description

Our C™" application is used to implement ANN SHE. The ANN SHE is a specific application
with its own characteristic, thus some extra blocks should be added to the main structure
generated by our application:

Interval selector

As we have already stated earlier, the im interval has been divided into 6 sub-intervals. For
each sub-interval, an artificial neural network (ANN-1) has been constructed. Accordingly, the
purpose of this block is the selection of the network which is suitable for the input im (Figure
4-4). In the training phase, im was expressed as a percentage, i.e. im is between 0 and 100%.
In the design we have dimensioned the im input on fifteen bits, ten bits for the integer part and
five bits for the fractional part, so the variation pitch of im is 0.03125%. This choice can be
changed according to the choice of the variation pitch of im. Moreover, in order to simplify
the choice of each interval as a function of im, the limits of each interval were defined as
indicated in the Table 4-6 [13].

e
The Interval -
im selector mr_er
(15 bits) of the ANN-i (3 bits)
1=1,...6
e

Figure 4-4 : Interval selector structure

Table 4-6: The intervals for the variation of im

Interval of wvariation The lower limit in
ANN of im in percentage) Interval

) . . binary

1Mpin <1m < 1Mmax
ANN-1 01% <im < 16% 000000000000 001
ANN-2 16% <im < 32% 001000000000 010
ANN-3 32% <im < 56% 010000000000 011
ANN-4 56% < im < 76% 011100000000 100
ANN-5 76% <1im < 92% 100110000000 101
ANN-6 92% <im < 100% 101110000000 110

70

CHAPTER 4 ANN SHE PWM technique

According to the Table 4-6 we find:

ANN; = 1my,; .1mq41. M4

ANN, = Tiiy; . Ty, imy

ANN; = tmy, .1imq;. (lmy, + 1my)

ANN, = (Ungg. imyy. imy,.img) + (imy,. Ty Ty, (Mg + Tg))

S , _ (4-8)
ANNg = imq,.1mq;. ((lmlo. img.img) + (lmlo. (tmg,. lmg)))

ANNg = imq,. ((Tmy7. imyg. img. img) + (imq,.1M4,. IMy). (TMg
+ (img.Tm;.1Myg)))

Inter; = ANN; + ANN; + ANN;
Inter, = ANN, + ANN; + ANN, (4-9)
Inter; = ANN, + ANNs + ANN;

According to the equations (4-8) and equations (4-9) a design based on the combinational
logic of the "interval selector" module is created under VHDL to select the appropriate
network at the im input. This block is added to the other blocks generated by our C++
application.

Normalization & Reverse normalization

In the training phase, one important parameter is the input interval values. Once this interval
is chosen, the training is done its calculation considering the input as it is set in that interval.
Thus a normalization block has been added to adjust any inputs of ANN to another
normalized input.

In the calculation of the switching angles of the SHE PWM, the reverse normalization block
at the output of the ANN is not needed since we have used the normalized output instead of
the real one.

PWM signal generator

We have at the end of our main design followed by the extra blocks, the switching angles.
This block is used to generate the PWM signals by converting these angles to times, thus we
obtain the switching times.

The switching angles are calculated using the following equations:

%imax — X min
a; = — (an; — an;min) + Qi min
aNn; max an; min

(4-10)

Where:

Qi maxand @; min are respectively the maximum angle and the minimum angle of the database
corresponds to the angle «;

an; max and an; i, are respectively the maximum normalized angle and the minimum
normalized angle of the database corresponds to the normalized angle an,.

71

CHAPTER 4 ANN SHE PWM technique

In the training phase an; 4 = 1 and an; i = 0 has been used, Replacing in the equation
(4-10) we find:

a; = (@i max — X min) AN + @i min (4-11)
Posing
kii = (@imax — @imin) @and K3j = Qjmin
By replacing in (4-11):
a; = kqjan; + ky; (4-12)

As it has been mentioned above, in order to generate the PWM control signals it is necessary
to transform the switching angles into switching times. In our application we have opted for

the command % = cte. By using this property one finds:

Vo (4-13)

v
f fo

which implies:

v _f_. (4-14)
—=—==1im
vo fo

Where im is the modulation index and f;, = 50 Hz the frequency for im = 1.

The relationship between the switching angle and the switching instants is given by the
following relation:

a; 1 -
. w1 (4-15)

360 f
Using the equations (4-14) and (4-15) one finds:

1073 (4-16)
ti = X —
18 im
Since a; was expressed in percentage.
1 a; 4-1
ti =—X —l (7)
180 im

In addition, to generate the control signals from the switching times, a clock of 1 MHz was
used, so the switching times must be expressed in ps.

. 106 1 (4-18)
By combining (4-12) and (4-18) one finds
1 kg x 108 k,; x 106 (4-19)
tlhs) =7 g 9 T T gg

72

CHAPTER 4 ANN SHE PWM technique

1 4-20
t;(us) = 7% 0 (+-20)

with kqy; % 108 k,; x 10° (4-21)
0 =(——an; + ————
180 180
According to (4-20) we have a division on im which poses an implementation problem on an
FPGA circuit. To avoid this division, in this step the values of 6; given by the equation (4-21)
are calculated. Then, in the step of generating control signals, an internal signal “counter” in
the form of a counter is created.

The equation (4-20) gives:

im X t;(us) = 6; (4-22)

The “counter” represents the value of im X t;(us). It is initialized by 0 and incremented by
im at each rising edge of the clock (1 ps) then we compare it, each time, with 6;.

According to (4-21) we need a multiplier to calculate each value 6;, where i can vary from 1
to 23, so if we calculate all 8; in parallel we need 23 multipliers. Only two multipliers were
used [13]. According to the signal generation block, in the first clock edge it is necessary to
calculate 8; and 6,, (m is the number of switching angles), in the second front 8, and 6,,_,
and so on until calculation of all 8;.

The objective of this block is to generate the PWM signals s;, s, s3 from the switching
instants. At the beginning, the signal s; is at 1 then as we have mentioned the “counter” starts
at 0 and incremented by im then it is compared to 8;. When “counter” become greater
than 6,, sl is toggled and “counter” is compared then to 8,until it becomes greater then 6,
then sl is toggled and so on until “counter” become greater than 6,,. We start then comparing
“counter” to 8, — 6,, where 0, is the value of 8 correspond to the half-period (a¢ =). When
“counter” becomes greater than 6, — 6,, , sl is toggled and “counter” is compared then to
0, — 0,1 until it becomes greater then 6, — 0,,_; then sl is toggled and so on until
“counter” becomes greater than 6,; — 6,. Then we compare it to 8,;,. When “counter” becomes
greater than 6, s; is toggled, “counter” is reset to 0, then we repeat the process. According to
the database used during training for all ANN-i networks, it was noted that 6,, < 60°.
besides, s, is phase-shifted by 120 © with respect to s1, besides s1=0 after 120° and the next
switching instant is at 8, — 68,,. Consequently, at the beginning signal s2 starts at 0, its

counter "counter2" starts at 62z and compared to 8, —6,, then the same process for
3

generating s; is repeated. The same with s;, we find that it starts at 1 and its counter
“counter3” starts at = and compared to 8, — 8, then the same process for generating s, is
3

repeated.

73

CHAPTER 4 ANN SHE PWM technique

Initialisation: ks1:=1; is1:=d; 51:="1"; cms1:="00000000000000000000000% ks2:=m+1; is2:=m; s2:='0",
cms2:="10100010110000101010101% ks3:=m+1; is3:=m; s3:='1; cms3:="01010001011000010101011%;

A

s1="1"
cms1:="00000000000000000000000";
ksZ:=m+1;

is2=m;

52:="0"
cms2:="10100010110000101010101%;
" ks3:=m+1;

is3=m;

s3="1";
cms3:="01010001011000010101011";

ves
im loading

Y

no

cms1:=cms1+im;
cms2:=cms2+im;
cms3:=cms3+im;

ks1:=ks1+1;

p no O(ks1)<=cms1 s1:= not 81;
: ~— ves
ne is1/=0
/\ ves
no e(T/2)-0lis1}e=cms1 >_ s1:=nots1;

is1:=is1-1;

s1:=not 51;

nio ves cms1:="00000000000000000000000%;
B(T/Z)<=cms1 ks1:=1:

is1=m;

ves | ks2:=ks2+1;
52:= not s2;

0(ks2)<=cms2

ves
e is20=0
L AT)-Bis2)e=cms2 > 7 intas.

is2:=is2-1;

s2:= not s2;
no ves ems2:="00000000000000000000000";
0(T/2y<=cms2 ks2-=1-

is2=m,
,.—_—" . ves
o ks3<=m :
/\ ves ks3:=ks3+1;
[no O(ks3)<=cms3 s3:= not 53;
no : .

ves
~ /\
ves
no 9 _ s3:= nots3;
AT Ofisd)cmomss > =00
53:= not 53;
no ves cms3:="00000000000000000000000%;
O(T/2)<=cms3 ksZ=1;
183:=m;

Figure 4-5 : PWM generator algorithm

74

CHAPTER 4 ANN SHE PWM technique

4.4 Simulation and Results

In this section, the software ModelSim has been used to simulate the PWM signal generated
by the algorithm ANN SHE designed by the VHDL codes. Some of these codes are generated
by our C™" based-application and the others are VHDL codes of the blocks stated in the
previous section.

The ANNSHE PWM algorithm has two inputs, which are the modulation index im and the
clock clk, and three outputs representing the three PWM commands out of phase by 120 °.

Figure 4-6 and Figure 4-7 show under Modelsim a simulation of the implementation of the
ANNSHE PWM algorithm on FPGA for different values of im.

ngfim | wmmlmmd_a ! 1 1
T T T T O 8 O 8 e s 1 O O O O
o T N e ¥ LY W W gy i A A

123

perertntbrororevreberererrnrborererencbierereree bovereoror bvevrrrercbovrvroron borerorencbrovoven i b
Ons 10000000 ns 20000000 ns 30000000 ns 40000000 ns 50000000 ns

Figure 4-6: The three-phase PWM signals (im=40%)
T 1
N 11 T T T

el bininnnnd prirterntbereroreenbivinieen vttt bvorrnroneborrvrororbererenin
0 ns 20000000 ns 40000000 ns 60000000 ns BOODODOD ns

Figure 4-7: The three-phase PWM signals (im=59 .5%)

From the two previous figures, it can be seen that the three signals are generated in parallel
and are independent of each other, and further from that figure it is noted that the signals are
phase-shifted by 120°.

The signal s; from Figure 4-6 has 15 switching angles and it has a period T = 50ms, thus a
frequency f = % = 20Hz.

These results are confirmed by the fact that for im = 40% the selected ANN is the ANN3
which has 15 switching angles. And from the equation (4-14) we find f = 20 Hz.

The signal s; from the Figure 4-7 has 7 switching angles and it has a period T = 33ms, thus a
frequency f = % =30.3 Hz.

75

CHAPTER 4 ANN SHE PWM technique

These results are confirmed as well by the fact that for im = 59.5% the selected ANN is the
ANN4 which has 7 switching angles. And from the equation (4-14) we find f = 29.75 Hz
which is close to 30.3 Hz.

The first signal s; in Figure 4-6 has been exported to Matlab. The Figure 4-8 shows its
frequency spectrum:

FFT Spectrum Estimate il
16 T T T T T -

3rd
14 |- —

The first non-eliminated |
harmonic
47th

The fundamental
oo/ 20 Hz 45t a

06— =

T

U?—I

Figure 4-8 : Frequency spectrum of PWM signal for Im=40%

The Figure 4-8 shows that the first non-eliminated harmonic for m=15 is the 47",

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the
phase voltage.

This proves that the switching angles computed by the ANNs generated by our C'
application are accurate. This confirms the good functioning of our application.

4.5 Conclusion

As a test for our C'' based application proposed in the previous chapter, we have chosen a
speed control of an inductor motor. Although the functionality of our application has already
been checked, in this chapter, it is used in a real industrial application. The ANN is associated
with the well-known SHE PWM to form the ANN SHE PWM algorithm. The results showed
that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs generated
by our application.

In this chapter we have presented at the beginning the SHE PWM and its principle of
operation, then we introduced the notion of the switching angles and their calculation
methods. We went after that to the technique of ANN SHE PWM, discussing the ANN
topology, data representation and the training.

76

General Conclusion

GENERAL CONCLUSION

In this work a C++ based-application has been created for the implementation of ANNs with a
flexible topology. It generates ANNs descriptions in VHDL codes. These description
topology parameters are introduced by the user who has no longer to type the whole script.
This application has been then tested for a specific use which is an inductor motor control.

The desire to create such an application has come because of the importance of the artificial
neural networks in today’s technology development. They become more and more an open
field for researches and it have increasingly been used in different industrial domains.

The hardware implementation of these networks has represented an issue, until the emergence
of a highly developed FPGA circuits, which fit much better compared to other circuits such as
ASICs.

To implement these ANNs in FPGA circuits, a description VHDL codes, and a development
tools (e.g. ISE Xilinx) are required. Thus, to facilitate the task of writing the scripts and save
times and efforts for the user, we have developed a C"™ based application, with whom the user
can get any ANN topology depending on his needs. In the implementation of the ANN, many
challenges have been faced such as the problem of limited resource. It has been dealt with that
limits by designing an optimized architecture with its own characteristic, ensuring the
parallelism of the ANN. That architecture uses a specific data representation, to present the
inputs, outputs and the inner signals. This representation is fit for the inner multipliers which
are limited dimensions. Talking about multipliers the FPGA has a few amount of them, thus a
multiplexing is needed between them. In our app only six multipliers has been used, thus six
products can be calculated at the same time. Although that reduces the speed of calculation, it
economizes so many resources. Moreover, a serial sum of product has been used to calculate
the sum of products. To implement the activation function of the neurons, we used LUT-
based method, optimized by Maher which requires 15 values to be stored for the Tangent
Sigmoid, and 18 for Log Sigmoid, ensuring a minimum error.

To put our C'" based application in a real test. It has been used to generate a specific ANNs
dedicated to a speed control of an asynchronous motor.

Controlling the speed of an asynchronous motor requires the use of a voltage inverter with a
sinusoidal output that can vary in voltage and frequency. In real applications, control
strategies produce unwanted harmonics in the output of the inverter. To solve the problem of
undesirable harmonics, a well-known solution is the use of the SHE PWM command.
However, the use of this command requires the resolution of a system of nonlinear equations,
limiting this control strategy to off-line calculation. To get through this limitation, a new
technique, based on SHE PWM and ANN, has been introduced, it is called ANN SHE PWM.

The results show that the switching angles calculated by ANN SHE PWM algorithm, are
close to the exact values.

77

General Conclusion

To implement the whole circuit that generates the PWM signals, we have generated the main
blocks by our C"™ application which is responsible for the ANN VHDL description code, and
the rest are added manually. All the blocks together formed a specific application to be
implemented on FPGA. The implementation results show that the calculation of the switching
instants and the generation of the PWM signals are on-line and very accurate. The three
control signals are generated in parallel and are independent of each other.

In view of this work, we plan to continue working on our C" based application, to make it
easier to the user by adding some extra options such as changing the number of the product
used from a fixed number to variable, which make the ANN fit for the large and the low
resources-FPGA. Besides, the data representation is fixed, and by making it variable it allows
the user to introduce a larger interval of values for the inputs and other signals. Finally,
implementing other types of layered neural network would offers more flexibility and
diversity of the topology of the ANN.

78

Bibliography

BIBLIOGRAPHY

[1] Simon Haykin, Neural Networks - A Comprehensive Fondation, Second Edition, Prentice Hall
ed., 1998.

[2] IZEBOUDIJEN Nouma, "Plateforme pour 1 > Implémentation des Réseaux de Neurones sur FPGA
: Application a 1’ Algorithme de la Rétro Propagation du Gradient (RPG)," Ecole nationale
Polytechnique, Algiers, Algeria, Thése de Doctorat 2014.

[3] Jeff Heaton, Introduction to Neural Networks with C#, WordsRU.com, Ed.: Heaton Research,
Inc, 2008.

[4] Bertram G. Katzung, Basic and Clinical Pharmacology.: McGraw-Hill Education, 2015.
[5] Kevin Gurney, 4n introduction to NUERAL NETWORKS.: CRC Press, 1997.

[6] Christopher MacLeod, An Introduction to Practical Neural Networks and Genetic Algorithms For
Engineers and Scientists., 2010.

[7] Wiley Corning, "Topology of Neural Networks," New College of Florida, Sarasota, FL, Thesis
June 2016.

[8] Patrick van der Smagt Ben Krose, An introduction to Neural Networks.: The University of
Amsterdam, 1996.

[9] Paulo E. M. Almeida, Marcelo Godoy Simdes Magali R. G. Meireles, "A Comprehensive Review
for Industrial Applicability," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 50,
no. 3, JUNE 2003.

[10] JAGATH C. RAJAPAKSE, AMOS R. OMONDI, FPGA Implementations of Neural Networks,
Springer, Ed.

[11] NEKKACHE Abdessalem BOUCHEKOUK Oussama, "Implémentation s'une commande ANN
SHE PWM sur une carte FPGA pour un véhicule électrique,”" Ecole Nationale Polytechnique,
Algiers, Projet de fin d'études 2015.

[12] S. Brown and J. Rose, "FPGA and CPLD Architectures: A Tutorial," /EEE Design & Test of
Computers, vol. 13, no. 2, pp. 42-57, 1996.

[13] GUELLAL Amar, "Contribution a 1’étude et a ’implémentation des commandes en temps réel
pour MAS," Ecole Nationale Polytechnique, Algiers, Algeria, Theése de doctorat 2015.

[14] BENDIB Douadi, "Etude et réalisation d’une commande MLI on-line sur circuit FPGA," Ecole
Nationale Polytechnique, Algiers, Algeria, Mémoire de Magister 2009.

79

Bibliography

[15] Marcian N. Cirstea, Eric Monmasson, "FPGA Design Methodology for Industrial Control
Systems—A Review," IEEE Transactions On Industrial Electronics, vol. 45, no. 4, AUGUST
2007.

[16] Zied Marrakchi, Habib Mehrez (auth.) Umer Farooq, Tree-based Heterogeneous FPGA
Architectures: Application Specific Exploration and Optimization , Springer-Verlag ed. New
York, 2012.

[17] Juan J- Rodrequez-Andina, "Features, Design Tools, and Application Domains of FPGAs," /[EEE
Trans. Ind. Electron., vol. 54, no. 4, AUGUST 2007.

[18] G JAntoine Bioul J P Deschamps, "Synthesis of Arithmetic Circuits FPGA, ASIC, And
Embedded Systems," JOHN WILEY & SONS, 2006.

[19] Digilent Nexys 2 FPGA board. Data Sheet. [Online].
http://www.ece.umd.edu/class/enee245.F2016/nexys2_reference _manual.pdf

[20] Spartan-3E FPGA family. Data sheet. [Online].
https://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

[21] Karl Leboeuf, Roberto Muscedere, Huapeng Wu, Majid Ahmadi, Ashkan Hosseinzadeh Namin,
"Efficient hardware implementation of the hyperbolic tangent sigmoid function," Proceedings -
IEEE International Symposium on Circuits and Systems, pp. 2117-2120, 2009.

[22] Pramod Kumar Meher, "An Optimized Lookup-Table for the Evaluatiion of Sigmoid Function for
Artificial Neural Networks," IEEE/IFIP VLSI Syst. Chip Conf, pp. 91-95, september 2010.

[23] Jeen Shing Wang, Che Wei Lin, "A digital circuit design of hyperbolic tangent sigmoid function
for neural networks," Proceedings - IEEE International Symposium on Circuits and Systems, pp.
856-859, may 2008.

[24] D. Anitha, A. Muthuramalingam, S. Himavathi, "Feedforward neural network implementation in

FPGA using layer multiplexing for effective resource utilization," IEEE Transactions on Neural
Networks, vol. 18, pp. 880-888, 2007.

80

http://www.ece.umd.edu/class/enee245.F2016/nexys2_reference_manual.pdf

	ACKNOWLEDGEMENTS

	CONTENTS

	TABLE LIST

	FIGURE LIST

	INTRODUCTION

	CHAPTER 1. ARTIFICIAL NEURAL NETWORKS (ANNS)

	1.1 Introduction

	1.2 Historical Perspective on Neural Nets

	1.3 Biological inspiration

	1.3.1 Structure

	1.3.2 Functioning of a neuron

	1.4 Artificial neural networks

	1.4.1 Mathematical model of artificial neuron

	1.4.1.1 Types of Activation Functions:

	1.4.2 Architectures of neural networks

	1.4.3 Training Neural Networks [3], [8]

	1.4.3.1 Types of trainings:

	1.4.3.2 Backpropagation algorithm in multilayer perceptron networks (MLP):

	1.5 The properties of neural networks

	1.6 Areas of application of neural networks

	1.7 Conclusion

	CHAPTER 2. FPGA ARCHITECTURE

	2.1 Introduction

	2.2 The classification of digital circuits

	2.2.1 Circuits with programmable architecture [10]

	2.2.1.1 ASIC (Application Specific Integrated Circuit)

	2.2.1.2 PLD (Programmable Logic Device)

	2.2.1.3 FPGA (Field Programmable Gate Arrays)

	2.3 The FPGA circuit

	2.3.1 History

	2.3.2 Application [15]

	2.3.3 FPGA Architecture

	2.3.3.1 Configurable Logic Block (CLB):

	2.3.3.2 Input Output Block (IOB):

	2.3.3.3 Routing interconnections:

	2.3.3.4 Programming technology:

	SRAM based programming technology

	2.4 The circuit board Nexys 2[19]

	2.4.1 Spartan 3E architecture

	2.5 VHDL

	2.5.1 Brief on VHDL

	2.5.2 Utility of VHDL

	Specification:

	Simulation:

	Conception:

	2.5.3 VHDL structure

	Libraries declaration:

	The entity:

	The architecture:

	2.5.4 The modes used in VHDL

	Combinatorial mode:

	Sequential mode:

	2.6 Conclusion

	CHAPTER 3. FPGA IMPLEMENTATION OF NEURAL NEWORKS

	3.1 Introduction

	3.2 Arithmetic in ANN digital implementation

	3.2.1.1 Data representation:

	3.2.1.2 Inner products:

	3.2.1.3 Sum of products

	3.3 The Activation Function implementation

	3.3.1 Implementation of Tangent Sigmoid and Log sigmoid

	3.3.1.1 Characteristics of Tanh and strategy of implementation

	3.3.1.2 Optimized Lookup table design for hyperbolic tangent

	3.3.1.3 Implementation of Log-Sigmoid activation function:

	3.4 The architecture overview of the ANN generated by the C++ application

	3.4.1 Concept of layer multiplexing

	3.4.2 Single neuron architecture

	3.4.3 The Global ANN architecture

	3.5 C++ application

	3.6 Conclusion

	CHAPTER 4. ANN SHE PWM TECHNIQUE

	4.1 Introduction

	4.2 SHE PWM

	4.2.1 Introduction

	4.2.2 Principle of operation

	4.2.3 The switching angles

	4.3 Implementation of ANN SHE PWM

	4.3.1 Architecture of the ANN SHE

	4.3.1.1 The topology of neural network [13]

	4.3.1.2 Database

	4.3.1.3 Off-line training

	4.3.1.4 Simulation

	4.3.1.5 Results & interpretation

	4.3.2 Implementation of ANN SHE

	4.3.2.1 Description

	Interval selector

	Normalization & Reverse normalization

	PWM signal generator

	4.4 Simulation and Results

	4.5 Conclusion

	GENERAL CONCLUSION

	BIBLIOGRAPHY

