

Ecole Nationale Polytechnique (ENP)

10, Avenue des Frères Oudek, Hassen Badi, BP 182 16200 El Harrach, Alger, ALGERIE
www.enp.edu.dz

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Electronics Department

Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque

Graduation dissertation for the diploma of

Electronics Engineer

Theme

Implementation of Artificial Neural on an FPGA board

Application on Induction Motor speed control

Presented by

 SAADI Khalid

 OUADRIA Anes Abderrahim

Publicly presented on June 19th, 2017

Jury members:

SADOUN Rabah MCA ENP President

GUELLAL Ammar PHD ENP Mentor

LARBES Cherif Professor ENP Mentor

HADDADI Mourad Professor ENP Examiner

ENP 2017

Ecole Nationale Polytechnique (ENP)
10, Avenue des Frères Oudek, Hassen Badi, BP 182 16200 El Harrach, Alger, ALGERIE

www.enp.edu.dz

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

Electronics Department

Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque

Graduation dissertation for the diploma of

Electronics Engineer

Theme

Implementation of Artificial Neural on an FPGA board

Application on Induction Motor speed control

Presented by

 SAADI Khalid

 OUADRIA Anes Abderrahim

Publicly presented on June 19th, 2017

Jury members:

SADOUN Rabah MCA ENP President

GUELLAL Ammar PHD ENP Mentor

LARBES Cherif Professor ENP Mentor

HADDADI Mourad Professor ENP Examiner

ENP 2017

ACKNOWLEDGEMENTS

We would like to thank our mentor, Amar Guellal for guiding and supporting us

over the graduate period. He has set an example of excellence as a researcher,

advisor and instructor.

We would like also to thank our professor Cherif LARBES for all of his

guidance through this process; his discussion, ideas, and feedback have been

absolutely invaluable.

We would like to thank our fellow graduate students who contributed to this

research. I am very grateful to all of you.

Finally, we would especially like to thank our amazing families for the love,

support, and constant encouragement we have got over the years. We

undoubtedly could not have done this without them.

الشبكات العصبیة الاصطناعیة تمثل أنظمة . في العدید من التطبیقات الھندسیة، ھناك حاجة ماسة إلى أنظمة موازیة التوزیع: ملخص
تنفیذ ھذه الشبكات أظھر غیر أن . و بالتالي فھي مناسبة لھذه التطبیقات. و ھي مستوحاة مباشرة من الدماغ البشري, موزعة للغایة

ولكن تصمیم بنیة . أثبتت أنھا الأكثر ملائمة لذلك FPGA من بین جمیع أنواع الدارات،. وھو یتطلب التوازي والمرونة. تحدیا كبیرا
 لدیھا بعض المشاكل التي یتعین التعامل معھا، مثل كیفیة تحقیق FPGAلیتم تنفیذھا على شبكات الأجھزة العصبیة الاصطناعیة

یولد ++ Cاقترحنا تطبیق العمل المنجز في إطار ھذه الأطروحة من خلال. التوازن بین الدقة الرقمیة، التوازي و نقص الموارد
و , الشبكات العصبیة الاصطناعیةبدأنا أولا بعرض عمومیات على . الأجھزة العصبیة الاصطناعیة الوصف الأمثل لشبكات

في الفصل الثالث عرضنا بإیجاز . FPGA الثاني لتقدیم لمحة عامة عن بنیة و خصصنا الفصل. في الفصل الأولذلك
و البنیة الخاصة واحد لك، عرضنا كل من البنیة الخاصة بعصبونبعد ذ. المسائل الحسابیة في تصمیم الشبكات العصبیة الاصطناعیة

تمت المحاكاة . ة برمجة تطبیقنا ومبدأ عملھانتھینا من ھذا الفصل من خلال عرض طریق. بالشبكة العصبیة الاصطناعیة كاملة
في الفصل الأخیر استخدمنا . حیث أجریت وأظھرت حسن سیر عمل الشبكات العصبیة الناتجة عن التطبیق ModelSimبواسطة

ھذه التقنیة . سرعة المحرك اللامتزامنتم استخدامھا في تقنیة جدیدة خاصة بالتحكم في , تطبیقنا لتولید ستة شبكات عصبیة اصطناعیة
 .أجریت المحاكاة وكانت النتائج جیدة وكما ھو متوقع. ANN SHEتسمى

 .المحرك اللامتزامن, ++ Cتطبیق , FPGA, الشبكات العصبیة الاصطناعیة : كلمات مفاتیح

Résumé : Dans de nombreuses applications d'ingénierie, les systèmes parallèles qui satisfont la
contrainte de temps-réel sont fortement nécessaires. Les réseaux de neurones artificiels représentent
des systèmes à distribution parallèles, ils ont été directement inspirés du cerveau humain. Ils sont donc
utilisés dans de nombreuses applications de ce type. Cependant, l’implémentation de ces réseaux s'est
avérée très difficile. Cela nécessite un parallélisme et une flexibilité. Parmi tous les types de circuits,
les circuits FPGA se sont avéré les plus pratiques pour cela. Mais la conception de l'architecture RNA
à implémenter sur les FPGA a quelques défis, comme la façon d'équilibrer entre la précision
numérique (requise pour la précision), le parallélisme et les limites des ressources. Dans ce travail,
nous avons proposé une application basée sur C ++ qui génère des descriptions de RNA optimisées.
On a commencé par introduire des généralités sur les RNA au chapitre un. On a consacré le deuxième
chapitre à présenter un aperçu de l'architecture de l’FPGA. Dans le chapitre trois, nous avons
brièvement présenté les problèmes d'arithmétique dans les implémentations de RNA. Après cela, on a
présenté les architectures d'un seul neurone et celle du RNA entier. On a terminé ce chapitre en
représentant la façon dont nous avons codé notre application et le principe de son fonctionnement. Des
simulations en ModelSim ont été effectuées et elles ont montré le bon fonctionnement des RNA
générés par l'application. Dans le dernier chapitre, on a utilisé notre application pour générer 6 RNAs
qui ont été utilisées dans une nouvelle technique de contrôle de moteur asynchrone appelée ANN
SHE. Des simulations ont également été effectuées et les résultats étaient bons et comme prévu.

Mot clés : Réseaux de neurones artificiels (RNA), FPGA, application C++, moteur asynchrone.

Abstract: In many engineering applications, parallel distributed systems that satisfy the real-time
constraint are strongly needed. Artificial neural networks (ANNs) represent highly parallel distributed
systems that were directly inspired from the human brain. Thus they are appropriate for such
applications. However the implementation of these networks proved to be quite challenging. It
requires parallelism and flexibility. Among all types of circuits, FPGAs have proved to be the most
convenient for that. But designing ANNs architectures to be implemented on FPGAs have some issues
to be dealt with, like how to balance between numeric precision (required for accuracy), parallelism,
and resources limitations. In this work we have proposed a C++ based application that generates
optimized ANNs descriptions. We started first by introducing generalities on ANNs in chapter one.
We devoted the second chapter to present an overview on the FPGA’s architecture. In chapter three we
briefly presented the arithmetic issues in ANNs implementations. After that, we presented both
architectures of a single neuron, and the whole ANN. we ended this chapter by presenting the way we
coded our application and the principle of its functioning. ModelSim simulations where performed and
they showed the good functioning of neural networks generated by the application. In the last chapter
we have used our application to generate 6 ANNs that were used in a new induction motor control
technique called ANN SHE. Simulations were performed as well and results were good and as
expected.

Key words: Artificial Neural Network (ANN), FPGA, C++ based application, induction motor.

 Contnents

CONTENTS

Acknowledgements

Contents

Table List

Figure List

Introduction .. 9

CHAPTER 1.Artificial neural networks (ANNs) .. 12

1.1 Introduction ... 12

1.2 Historical Perspective on Neural Nets ... 12

1.3 Biological inspiration .. 14

1.3.1 Structure ... 14

1.3.2 Functioning of a neuron ... 15

1.4 Artificial neural networks .. 17

1.4.1 Mathematical model of artificial neuron .. 18

1.4.2 Architectures of neural networks ... 21

1.4.3 Training Neural Networks ... 22

1.5 The properties of neural networks ... 25

1.6 Areas of application of neural networks .. 26

1.7 Conclusion ... 26

CHAPTER 2.FPGA Architecture .. 28

2.1 Introduction ... 28

2.2 The classification of digital circuits ... 28

2.2.1 Circuits with programmable architecture .. 29

2.3 The FPGA circuit ... 30

2.3.1 History .. 30

2.3.2 Application .. 30

2.3.3 FPGA Architecture ... 31

2.4 The circuit board Nexys 2 ... 35

2.4.1 Spartan 3E architecture .. 36

2.5 VHDL .. 37

2.5.1 Brief on VHDL ... 37

 Contnents

2.5.2 Utility of VHDL ... 37

2.5.3 VHDL structure .. 38

2.5.4 The modes used in VHDL .. 39

2.6 Conclusion ... 39

CHAPTER 3.FPGA implementation of neural neworks ... 41

3.1 Introduction ... 41

3.2 Arithmetic in ANN digital implementation ... 41

3.3 The Activation Function implementation .. 44

3.3.1 Implementation of Tangent Sigmoid and Log sigmoid 45

3.4 The architecture overview of the ANN generated by the C++ application................. 53

3.4.1 Concept of layer multiplexing .. 54

3.4.2 Single neuron architecture .. 54

3.4.3 The Global ANN architecture .. 56

3.5 C++ application ... 57

3.6 Conclusion ... 60

CHAPTER 4.ANN SHE PWM technique ... 62

4.1 Introduction ... 62

4.2 SHE PWM ... 62

4.2.1 Introduction .. 62

4.2.2 Principle of operation ... 63

4.2.3 The switching angles .. 64

4.3 Implementation of ANN SHE PWM ... 65

4.3.1 Architecture of the ANN SHE ... 66

4.3.2 Implementation of ANN SHE .. 70

4.4 Simulation and Results .. 75

4.5 Conclusion ... 76

General Conclusion .. 77

Bibliography ... 79

 Table list

TABLE LIST

Table 1-1 : Analogy between real and artificial neuron

Table 3-1: LUT for the hyperbolic tangent activation Function

Table 3-2 : LUT for f (x) = sig2(x) - 0.5

Table 4-1: ANN SHE characteristic

Table 4-2 : An example of switching angles (m=7) generated by a Matlab program

Table 4-3 : weights and biases calculated in the training phase

Table 4-4 : The exact values for switching angles for m=0.595 and m=0.615

Table 4-5 : A comparison between the exact and ANN SHE switching angles

Table 4-6: The intervals for the variation of im

 Figure list

FIGURE LIST

Figure 1-1 A Neuron Cell Anatomy

Figure 1-2: The Synapse

Figure 1-3: Action potential in a Neuron

Figure 1-4 : Non linear model of a neuron

Figure 1-5: Types of Activation Functions

Figure 1-6: Feed-Forward neural networks

Figure 1-7: Recurrent Network

Figure 1-8: Types of training

Figure 1-9 : Supervised learning scheme

Figure 1-10: Unsupervised learning scheme

Figure 1-11: Reinforcement learning scheme

Figure 2-1: Classification of digital circuits

Figure 2-2: Overview of FPGA architecture

Figure 2-3 : Basic Logic Element (BLE)

Figure 2-4 : A configurable Logic Block (CLB) having four BLEs

Figure 2-5 : Static Memory cell

Figure 2-6 : Nexys 2 board FPGA

Figure 2-7 : Spartan E3 family architecture

Figure 2-8 : Basic structure of VHDL description

Figure 3-1: Sum of products 1

Figure 3-2: Sum of Products 2

Figure 3-3: Serial sum of products

Figure 3-4: Hyperbolic Tangent Sigmoid Activation Function

Figure 3-5: Saturation region of tangent hyperbolic

Figure 3-6 : Hyperbolic Tangent LUT block diagram

Figure 3-7: Range decoder simulation

Figure 3-8: Hyperbolic Tangent simulation

Figure 3-9: Sigmoid activation function

Figure 3-10 Log sigmoid2 simulation

Figure 3-11: Sigmoid2 Implementation diagram

Figure 3-12 : Layer multiplexed ANN

Figure 3-13: A Single neuron block diagram

Figure 3-14 : ANN Architecture

Figure 3-15: Flow state of 2 state machines

Figure 3-16 : ANN 1_1_15

Figure 3-17 : ANN 1_1_5

 Figure list

Figure 4-1 : The Inverters output normalized Voltage

Figure 4-2 : ANN SHE Architecture

Figure 4-3: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

Figure 4-4 : Interval selector structure

Figure 4-5 : PWM generator algorithm

Figure 4-6: The three-phase PWM signals (im=40%)

Figure 4-7: The three-phase PWM signals (im=59 .5%)

Figure 4-8 : Frequency spectrum of PWM signal for Im=40%

 Introduction

9

INTRODUCTION

The man in his attempts to understand how the human brain works, developed what is so

called artificial neural networks (ANNs). These artificial networks consist of many processing

units connected together in a parallel distribution, to form a network that can behave like the

brain in doing a particular task. But the brain is still a very complex system that scientists

have not fully understand yet, even with today’s highly developed technologies. Thus

modeling it stays a farfetched dream to reach for now. Instead researchers tried to model its

most important elementary unit called the neuron. Many works have been done this way, and

the results were impressive; the actual models of ANNs made them capable of learning from

experience, and have flexibility that allows them to adapt their structure for a particular

application. These features are what made them very successful. Now neural networks are

being used everywhere, in patter recognition, voice recognition, data mining, machine

learning, intelligence control ... etc.

However the implementation of these neural nets proved to be quite challenging from many

sides, and it still be an open research field. An implementation by software provides an

excellent architecture flexibility and testability, however running a parallel structure like

ANNs in sequential general purpose hardware does not really fit for real time applications.

Parallel reconfigurable circuits have appeared, the most successful ones are ASICs

(Application-specific integrated circuit) and FPGAs (Field Programmable Gate Arrays), and

these two specifically were very promising for the ANNs implementations.

The FPGAs were quickly optimized; they are now very quick circuits that have bigger

integration density and better technical support. This had a direct impact in making them the

most suited for neural networks, since they can be used for reconfigurable computing and

offer software design flexibility with performance speeds closer to ASICs.

Even though, using FPGAs as technology for ANNs implementation was the best solution,

there still many challenges that will face a designer of ANNs when using an FPGA, like the

necessity to balance between area (FPGA resources) and numeric precision needed for

accuracy and speed of convergence.

To program actual FPGAs, one could use Xilinx ISE (an Integrated Synthesis Environment);

it offers the possibility to code in high level languages like the VHDL (VHSIC Hardware

Description Language).

In our work we have proposed a C++ based application whose function is to generate

readymade feed forward ANNs descriptions, in form of VHDL files. Naturally these

generated ANNs descriptions are specific, and chosen by the user, who should specify the

 Introduction

10

anatomy of his wanted ANN (number of inputs, outputs , layers , neurons per layer) as well

as its weights and biases (parameters generated by the off line training).

In chapter one, we have introduced generalities on ANNs, like their types, training, and their

mathematical model, that is used later in their implementation. The second chapter presents

the FPGA circuit architecture and its features that made it the best choice for ANNs hardware

implementation. The third chapter starts by introducing the implementations issues. Then we

presented the optimized methods used in implementing the different blocks of the artificial

neuron, and the global ANN. After, we explained briefly the way we coded the C++

application and how it works in general. To test it we presented some simulations. Then in

chapter four we have used 6 ANNs generated by our application, in a motor control method

called ANN SHE PWM. Finally, we concluded by a general conclusion.

CHAPTER 1

CHAPTER 1 : Artificial neural networks (ANNs)

12

CHAPTER 1. ARTIFICIAL NEURAL
NETWORKS (ANNS)

1.1 Introduction

Today’s conventional digital computers are getting extremely fast; they can perform a lot of

instructions and highly complex operations in just few clock cycles, it is way quicker

than the human in this. However faster is not enough in solving problems, there are many

tasks in which the computer loses against the human brain, the latter is a highly complex, non

linear, and parallel computer (information processing-system). It works in a totally different

way, it has the capability to adapt its structural constituents called neurons, so as to perform

certain computations (e.g., patter recognition, perception, and motor control) many times

faster than the fastest digital computer in existence today. For instance, given two pictures, a

preschool child can easily tell the difference between a cat and a dog. Yet, this same simple

task is extremely difficult for today’s computers.

The artificial neural network is a machine designed to model the way our brain performs a

particular task in solving a given problem, it can be defined as following:

A neural network is a massively parallel distributed processor made up of simple

processing units whose functionality is loosely based on the animal neuron. The

processing ability of the network is stored in the inter-unit connection strengths,

or weights, obtained by a process of adaptation to, or learning from, a set of

training patterns.[1]

This chapter begins with a small historical overview on neural networks, and their

development through years, then comes a brief part in which we exposed the biological

neuron’s anatomy, the origin of the actual model of artificial neurons. After that the

mathematical model of a single neuron is presented as well as some topologies of ANNs. To

arrive to the most important part, that is the learning characteristic of ANNs, and its different

methods. Finally, we presented a non exhaustive list of actual areas of applications for neural

networks.

1.2 Historical Perspective on Neural Nets

Neural networks have been in use with computers since 1949 when D.Hebb, an American

physiologist, published his book entitled “the organization of behavior”, in which he exposed

some of his ideas on learning for the very first time , the Hebb rule that he proposed was one

CHAPTER 1 : Artificial neural networks (ANNs)

13

of the learning rules on which rests most of today’s connectionist algorithms[2]. Through the

years, many neural network architectures have been presented.

In 1957, F. Rosenblatt developed the model of the perceptron, one of the earliest neural

networks, which was an attempt to understand human memory, learning and cognitive

processes. In 1960, Rosenblatt demonstrated the Mark I perceptron. The Mark I was the first

machine that could “learn” to identify optical patterns. Based on the Hebb rule, the perceptron

was then considered to be the first machine that could “learn” from experience. Unfortunately

it was unable to learn to recognize inputs that were not “linearly separable” [3] . This would

prove to be a huge obstacle that would take some time to overcome.

A new neural model was developed by B. Widrow and T. Hoff in 1960, called the Adaline

network (Adaptative Linear Element). In its structure it resembles to the perceptron, but the

learning rule was different. They proposed the minimization of the quadratic output errors as a

learning algorithm. The Adaline network is considered as the basic model of multilayer

networks [2].

In 1969, the theoretical limitations of the perceptron were demonstrated by M. Minsky and

S. Papert. These limitations concerned the impossibility of dealing with nonlinear problems

using this model. The impact of their results has frustrated most researchers in this field,

especially compute scientists. This stagnation lasted almost 20 years. During this period,

researchers and investors turned to the approach of artificial intelligence, which seemed to be

more promising.[1]

This discipline was brought to life again, in 1982 thanks to J. J. Hopfield, an eminent

physicist, who was able to detect the similarity between networks proposed by McCulloh and

Pitts, with an elementary system with magnetic moment or spin, and then he studied the

storage and restoration of information "associative memories”. This led to one of Hopfield's

major contributions when he had the idea of using an energy function to maintain stability of

neural networks, with such a function, states tend to change to a local minimum. This work

interested physicists because of the isomorphism of the Hopfield model with the Ising model,

also called spin glasses. It is important to note that this model did not remove the limits of the

perceptron and its variants. In spite of this, the perceptron and the reasons for its failure

proved to be quickly forgotten [1],[2].

Then, Boltzmann’s machine was proposed in 1983 by Hinton and his team, it was the firstly

model that removed the perceptron limitations satisfactorily. This model used what is so

called hidden cells whose role is to compute intermediate variables to perform non linear

separable functions. Unfortunately, the convergence of the algorithm was extremely long, it

had a defect due to its probabilistic nature, and it was corrected by the gradient

backpropagation algorithm proposed in 1986 by three researchers Rumelhart, Hinton and

William.

Finally, in 1989 Moody and Darken exploited some results of the multi-variable interpolation

to propose what is known as the radial basis function network[2].

CHAPTER 1 : Artificial neural networks (ANNs)

14

Recently, the new discoveries in neurobiology and the explosive interest of parallel

processing, in addition to the development of semiconductor technology, have given great

impetus to the field of neural networks.

1.3 Biological inspiration

1.3.1 Structure

To create a machine capable of “human-like thought”, researchers have used the best

available model available “the human brain”. However, this one is far too complex to be

modeled. Rather, they studied the individual cells that make it up. At the most basic level the

brain is composed of neuron cells. They are the basic building blocks of the human brain;

there are about 100 milliards of them in it. Artificial neural networks are an attempt to

simulate theses cells’ behavior.

A stereotypical neuron cell is show in Figure 1-1. It consists of:

Figure 1-1 A Neuron Cell Anatomy [4]

Cell body or “soma” contains the usual sub-cellular components to be found in most cells

throughout the body (nucleus, mitochondria, Golgi body, etc.) but these are not shown in the

diagram. Instead this diagram was made to focus on what differentiates neurons from other

cells allowing the neuron to function as a signal processing device. This ability stems largely

from the properties of the neuron’s surface covering or membrane, which supports a wide

variety of electrochemical processes. Morphologically the main difference lies in the set of

fibers that emanate from the cell body. One of these fibers is called the axon.

The axon is responsible for transmitting signals to other neurons and may therefore be

considered the neuron output. All other fibers are called dendrites.

The dendrites carry signals from other neurons to the cell body, thereby acting as neural

inputs. Each neuron has only one axon but can have many dendrites. The latter often appear to

CHAPTER 1 : Artificial neural networks (ANNs)

15

have a highly branched structure and so we talk of dendritic arbors. The axon may, however,

branch into a set of collaterals allowing contact to be made with many other neurons. With

respect to a particular neuron, other neurons that supply input are said to be afferent, while the

given neuron’s axonal output, regarded as a projection to other cells, is referred to as an

efferent. Afferent axons are said to innervate a particular neuron and make contact with

dendrites at the junctions called synapses see Figure 1-2

Figure 1-2: The Synapse

Here, the extremity of the axon, or axon terminal, comes into close proximity with a small

part of the dendritic surface—the postsynaptic membrane. There is a gap, the synoptic cleft,

between the presynaptic axon terminal membrane and its postsynaptic counterpart, which is of

the order of 20 nanometers (2×10−8m) wide. Only a few synapses are shown in Figure 1-1, but

in reality they are located over all dendrites and also, possibly, the cell body.

Finally the two other cells “Astrocyte” and “Oligodendrocytes” are the Glial cells (Figure

 1-1). Their main role is to assure protection for the neuron cells.

1.3.2 Functioning of a neuron

At the simplest level, neurons produce pulses, called “Action Potentials,” and they do this

when stimulated by other neurons (or, if they are sensory neurons, by outside influences,

which they pick up through their modified dendrites).

CHAPTER 1 : Artificial neural networks (ANNs)

16

 When a neuron is at rest, before it becomes stimulated, it is said to be polarized. This means

that, although the neuron is not receiving any electrical signal from other neurons, it is

charged up and ready to produce a pulse. This is due to the fact that its membrane at

equilibrium, works to maintain an electrical imbalance of negatively and positively charged

ions, this causes a potential difference across the membrane with the inside polarized by

approximately 70mV, with respect to the outside.

Each neuron has associated with it a level of stimulus, above which a nerve pulse or action

potential will be generated. Only when it receives enough stimulation, from one or more

sources, will it initiate a pulse. The mechanism by which the pulses travel and the neuron

maintains its general electrical activity is rather complex, it was first worked out by Hodgkin

& Huxley (1952) [5] , and It works through an exchange of ions in the fluid that surrounds the

cell, rather than by the flow of electrons as anyone would get in a wire. This means that

signals travel very slowly - at a couple of hundred meters per second. The pulse, which the

neuron generates and travels down the axon, is shown in Figure 1-3

Figure 1-3: Action potential in a Neuron

 Because these pulses are only a couple of milliseconds wide, they often appear as spikes if

viewed on an oscilloscope screen. So, if one neuron is receiving lots of stimulation from

another (receiving lots of pulses through its dendrites) then it will itself produce a strong

output - that is more pulses per second.

Once a signal or an action potential reaches the axon terminal, these contain a chemical

substance “nanotransmitters” held within a large number of small vesicles (literally “little

spheres”) (Figure 1-2). On receipt of an action potential the vesicles migrate to the

presynaptic membrane and release their nanotransmitters across the synaptic cleft, the

transmitter then binds with receptor sites at the postsynaptic membrane. This initiates an

electrochemical process that changes the polarization state of the membrane local to the

CHAPTER 1 : Artificial neural networks (ANNs)

17

synapse. This postsynaptic potential (PSP) can serve either to depolarize the membrane from

its negative resting state towards 0 volts, or to hyperpolarize the membrane to an even greater

negative potential. The PSP spreads out from the synapse, travels along its associated dendrite

towards the cell body and eventually reaches the axon hillock—the initial segment of the axon

(Figure 1-1) where it joins the soma. Concurrent with this are thousands of other synaptic

events distributed over the neuron. These result in a plethora of PSPs, which are continually

arriving at the axon hillock where they are summed together to produce a resultant membrane

potential. The integrated PSP at the axon hillock will affect its membrane potential and, if this

exceeds a certain threshold (typically about −55mV) (Figure 1-3), an action potential is

generated, which then propagates down the axon, along any collaterals, eventually reaching

axon terminals resulting in a shower of synaptic events at neighbouring neurons

“downstream” of our original cell.

In 1949 Donald Hebb postulated one way for the network to learn. If a synapse is used more,

it gets strengthened – releases more Neurotransmitter. This causes that particular path through

the network to get stronger, while others, not used, get weaker. One might say that each

connection has a weight associated with it – larger weights produce more stimulation and

smaller weights produce less. These were the first steps to understanding the learning

mechanism of the network [6].

To summarize:

 Signals are transmitted between neurons by action potentials, which have a stereotypical

profile and display an “all or nothing” character; there is no such thing as half an action

potential.

 When an action potential impinges on a neuronal input (synapse) the effect is a PSP, which

is variable or graded and depends on the physicochemical properties of the synapse.

 The PSPs may be excitatory or inhibitory.

 A synapse can be strengthened when used more, when not used, it gets weaker. It adapts,

the connection is then said to be weighted

 The PSPs are summed together at the axon hillock with the result expressed as its

membrane potential.

 If this potential exceeds a threshold an action potential is initiated that proceeds along the

axon.

1.4 Artificial neural networks

An Artificial neural network is an interconnected assembly of simple processing elements,

units or nodes, whose functionality is loosely based on the animal neuron. The processing

ability of the network is stored in the inter unit connection strengths, or weights, obtained by a

process of adaptation to, or learning from, a set of training patterns [5]. They posses several

fundamental characteristics:

 They are composed of two or more layers. Typically, these include an input layer, whose

processing units encode the initial representation of the situation, one or more hidden layers,

CHAPTER 1 : Artificial neural networks (ANNs)

18

The units combine the information from the input units, and an output layer, Whose units

produce the system's response to the situation.

 Simple artificial neurons are connected to other neurons in different layers (and sometimes

within the same layer). The weight of connections changes when the system acquires more

experience (training), these weights are crucial for determining the treatment performed.

 As in the brain, a given processing unit activates when the stimulus level received from all

other units to which it is connected exceeds a certain threshold. The level of stimulus received

from each unit is determined, on the one hand, by the degree of activation of that unit and, on

the other hand, by the weight of the connection between the sending and the receiving unit.

 The activity of most processing units occurs in parallel (simultaneously).

 Knowledge is represented by the weight of connections within all units of the system.

 Learning occurs when the system that receives inputs, elaborates a response, observes the

difference between the response provided and the correct response and adjusts the weight of

the connections between the processing units to produce a better response. Adjustments

include strengthening some connections and weakening others.

 The generalization of knowledge of the system is based on the similarity of new situations

to those already encountered by the system.

1.4.1 Mathematical model of artificial neuron

A neuron is an information-processing unit that is fundamental to the operation of a neural

network. The Table 1-1 resumes the analogy between a real and an artificial neuron. The

diagram of Figure 1-4 shows the model of a neuron, which forms the basis for designing an

artificial neural network. Three basic elements of the neuronal modal can be identified:

 A set of synapses or connecting links, each of which is characterized by weight or strength

of its own. Specifically a signal �� at the input of synapse k connected to neuron j is

multiplied by the synaptic weight ��� . The first subscript refers to the neuron in question and

the second subscript refers to the input end synapse to which the weight refers. Unlike real

neurons, the synaptic weights can have negative values.

 An adder for summing the input signals, weighted by the respective synapses of the

neuron; till here the operations described constitute a linear combiner.

 An activation function for limiting the amplitude of the output of a neuron. The activation

function is also referred to as a squashing function in that it squashes (limits) the permissible

amplitude range of the output signal to some finite value. Typically, the normalized amplitude

range of the output of a neuron is written as the closed interval [0; 1] or alternatively [-1; 1].

The model also in the Figure 1-4 includes an externally applied bias, denoted �� It has the

effect of increasing or lowering the net input of the activation function, depending on whether

it is positive or negative, respectively.

CHAPTER 1 :

Figure

In mathematical terms, we may describe a neuron

where ��, ��,.... �� are the inputs, and

Table 1-1 : Analogy between real and artificial neuron

Real neuron

Cell body (Soma)

Axons

Synapses

Dendrites

1.4.1.1 Types of Activation Functions:
Here we identified three basic Activation functions:

 Threshold Function: also is referred to a

following (Figure 1-5):

This model of neurons based on this Activation Function is referred to in the literature as the

McCulloch-Pitts model, in recognition of the pionee

(1943).

Artificial neural networks (ANNs)

19

Figure 1-4 : Non linear model of a neuron

In mathematical terms, we may describe a neuron j by writing the following pair of equations:

�� = � � �� × � �

�� �

�� �

�� = � (�� + ��)

are the inputs, and � is the activation function .

: Analogy between real and artificial neuron

Artificial neuron

 Activation Functions

Output signals

Synaptic weights

Input signals

Types of Activation Functions:
Here we identified three basic Activation functions:

also is referred to as a Heaviside function, it is described the

� (�) = �
1 �� � ≥ 0
0 �� � < 0

�

This model of neurons based on this Activation Function is referred to in the literature as the

Pitts model, in recognition of the pioneering work done by McCulloch and Pitts

neural networks (ANNs)

by writing the following pair of equations:

(1-1)

(1-2)

s a Heaviside function, it is described the

(1-3)

This model of neurons based on this Activation Function is referred to in the literature as the

ring work done by McCulloch and Pitts

CHAPTER 1 : Artificial neural networks (ANNs)

20

 Piecewise-Linear Function: For the one described in Figure 1-5 we have

 � (�) =

⎩
⎪
⎨

⎪
⎧ 1, ,� ≥

1

2

� +
1

2
,

 1

2
> � > −

1

2

0, � ≤ −
1

2

� (1-4)

where the amplification factor inside the linear region of operation is assumed to be unity.

This form of an activation function may be viewed as an approximation to a non-linear

amplifier.

This function can have two special forms:

- A linear combiner, if the linear region of operation is maintained without running into

saturation (Figure 1-5).

- A threshold function, if the amplification factor of the linear region is made infinitely

large.

 Sigmoid Function: It is by far the most common form of activation function used in the

construction of artificial neural networks. It is defined as a strictly increasing function that

exhibits a graceful balance between linear and nonlinear behavior. An example of the sigmoid

function is the logistic function (Figure 1-5), defined by

 � (�) =
1

1 + exp(− ��)
 (1-5)

where a is the slope parameter of the sigmoid function. By varying the parameter a, sigmoid
functions of different slopes can be obtained. In fact, if the slope parameter approaches
infinity, the sigmoid function becomes simply a threshold function. In contrast with the
threshold function the sigmoid function assumes a continuous range of values from 0 to 1 and
is differentiable (Differentiability is an important feature of neural network theory).

The activation functions defined in equations (1-3), (1-4), and (1-5) range from 0 to 1. Other

activation functions are antisymmetric, and range from -1 to 1 (see Figure 1-5)

CHAPTER 1 :

Figure

Another important model of artificial neurons is the stochastic neuron, described as follows:

 � (�)

Where the probability is chosen to be:

This model has the same activation function of the McCulloch

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

1.4.2 Architectures of neural networks

From an architectural view, neural networks can sorted into two big categories:

 Feed-forward networks, where the data flow from input to output units is strictly feed

forward. The data processing can extend over multiple layers of units, but no feedback

connections are present, that is, connections extending from outputs of units to inputs of units

in the same layer or previous layers.

Artificial neural networks (ANNs)

21

Figure 1-5: Types of Activation Functions

Another important model of artificial neurons is the stochastic neuron, described as follows:

) = �
1 ��� ℎ ���������� �(�)
0 ��� ℎ ���������� 1 − �(�)

�

Where the probability is chosen to be:

�(�) =
1

1 + exp�−
�
��

This model has the same activation function of the McCulloch-Pitts model with a pro

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

Architectures of neural networks

, neural networks can sorted into two big categories:

networks, where the data flow from input to output units is strictly feed

forward. The data processing can extend over multiple layers of units, but no feedback

esent, that is, connections extending from outputs of units to inputs of units

in the same layer or previous layers. In this category, we can distinguish single

neural networks (ANNs)

Another important model of artificial neurons is the stochastic neuron, described as follows:

�

(1-6)

Pitts model with a probabilistic

interpretation. That is to say that the neuron is permitted to stay in only one of two states 0 or

1. The decision for the neuron to fire (i.e. to change the state from 0 to 1) is probabilistic.

, neural networks can sorted into two big categories:

networks, where the data flow from input to output units is strictly feed-

forward. The data processing can extend over multiple layers of units, but no feedback

esent, that is, connections extending from outputs of units to inputs of units

In this category, we can distinguish single-layer networks

CHAPTER 1 : Artificial neural networks (ANNs)

22

(e.g. perceptron) and multilayer networks with an input layer, an output layer and one or more

hidden layers (Figure 1-6).

 Recurrent networks that do contain feedback connections. In this category, we can

distinguish competitive networks, the Kohonen network, the Hopfield networks (Figure 1-7)

and the ART models "Theory of Artificial Resonance".

Figure 1-6: Feed-Forward neural networks [7]

Figure 1-7: Recurrent Network

1.4.3 Training Neural Networks [3], [8]

In a neural network, individual neurons are interconnected through their synapses. These

connections allow the neurons to signal each other as information is processed. Not all

connections are equal. Each connection is assigned a connection weight. If a weight is zero

then there is not a connection. These weights are what determine the output of the neural

network; therefore, it can be said that these weights form the memory of the neural network.

Thus training the networks means to configure it (its weights) such that the application of a

set of inputs produces the desired set of outputs.

CHAPTER 1 : Artificial neural networks (ANNs)

23

In general training algorithms begin by assigning random values to the weights. Then, the

validity of the neural network is examined. Next, the weights are adjusted based on how well

the neural network performed and the validity of the results. This process is repeated until the

validation error is within an acceptable limit. There are many ways of training. One way is

to set the weights explicitly, using a priori knowledge. Another way is to ‘train’ the neural

network by feeding it teaching patterns and letting it change its weights according to some

learning rule.

1.4.3.1 Types of trainings:
There are mainly two categories of training (see Figure 1-8):

Figure 1-8: Types of training

 Supervised training is when the network is trained by providing it a set of inputs along

with the anticipated outputs from each of these samples. Supervised training is the most

common form of neural network training. As supervised training proceeds, the neural network

is taken through a number of iterations, or epochs, until the output of the neural network

matches the anticipated output, with a reasonably small rate of error. Each epoch is one pass

through the training samples (see Figure 1-9).

CHAPTER 1 : Artificial neural networks (ANNs)

24

Figure 1-9 : Supervised learning scheme [9]

 Unsupervised training is similar to supervised training, except that no anticipated outputs

are provided. Unsupervised training usually occurs when the neural network is being used to

classify inputs into several groups. The training involves many epochs, just as in supervised

training. As the training progresses, the classification groups are “discovered” by the neural

network (see Figure 1-10).

Figure 1-10: Unsupervised learning scheme [9]

There are several hybrid methods that combine aspects of both supervised and unsupervised

training. One such method is called reinforcement training. In this method, a neural network

is provided with sample data that does not contain anticipated outputs, as is done with

unsupervised training. However, for each output, the neural network is told whether the

output was right or wrong given the input (see Figure 1-11).

Figure 1-11: Reinforcement learning scheme [9]

It is very important to understand how to properly train a neural network. Once the neural

network is trained, it must be validated to see if it is ready for use.

CHAPTER 1 : Artificial neural networks (ANNs)

25

1.4.3.2 Backpropagation algorithm in multilayer perceptron networks
(MLP):

An MLP network is designed to perform a desired task defined by a learning database. Each

element of this database is called a learning example and it is in the form of a pair (�,�∗)

where � is an input value of the network and �∗ is the corresponding output target value. The

network architecture, the structure of its connections, as well as the activation functions, can

be set according to the task to be performed by the network.

The aim of learning is therefore to determine the values �∗ of the matrix � of the weights of

the network connections so that the output � is close to the target value �∗.

The algorithm of gradient backpropagation is widely known and most used in applications of

MLP neural networks. This supervised learning technique uses a gradient descent procedure,

working on the quadratic error between the actual output of the network and the target output.

It calculates the partial derivatives of the output error with respect to all network weights and

then applies a gradient procedure to minimize the error. At each iteration, an example of

learning (�,�∗) is retrieved and the weights are updated. This iteration is carried out in two

phases:

1. Forward Propagation :

At each iteration, an element of the training set is introduced through the input layer.

The evaluation of the network outputs takes place layer by layer, from the input of the

network to its output.

2. Back propagation :

This step is similar to the previous one. However, the calculation is done in the

opposite direction.

At the output of the network, the performance criterion is formed as a function of the actual

output of the system and its target value. Then, the gradient of this performance is evaluated

with respect to the different weights, starting with the exit layer and going up to the input

layer.

1.5 The properties of neural networks

The main interest in neural networks is justified in the following properties:

 Learning capacity:

Learning ability refers to the ability of the neural network to learn to solve problems from

examples in a similar way to humans or animals

 The generalization capacity:

The ability to generalize translates into the ability of a system to learn and retrieve from a set

of examples rules that solve a given problem not learned.

CHAPTER 1 : Artificial neural networks (ANNs)

26

 The parallelism:

This notion is at the basis of the architecture of neural networks considered as a set of

elementary entities that work simultaneously. Parallelism allows higher computational speed

but requires thinking and posing problems differently.

1.6 Areas of application of neural networks

Being at the intersection of different domains (computer science, electronics, cognitive

science, neurobiology and even philosophy), the study of neural networks is a promising

avenue of Artificial Intelligence, which has applications in many areas:

 Defense: Weapons management, target tracking, radars: processing, compression, noise

suppression, signal / image identification, etc.

 Industry: quality control, process control, fault diagnosis, correlations between data

provided by different sensors, handwritten signature or writing analysis, speech synthesis,

automated vehicle guidance system, etc.

 Entertainment: Animation, special effects.

 Finance: Forecasting and modeling of the market (currencies ...), forecasting of economic

indicators, selection of investments, credit allocation, forecasting of prices, etc.

 Telecommunications and data processing: signal analysis, noise cancellation, recognition of

shapes (noises, images and lyrics), data compression, etc.

 Medical: analysis of EEG signals, ECG, prostheses, cancer analysis, etc.

 Environment: risk assessment, chemical analysis, forecasting and weather modeling,

resource management, etc.

1.7 Conclusion

To conclude with, the artificial neural networks characteristics inspired from the human brain

(parallelism, nonlinearity, and learning) allowed them to perform effectively in many tasks,

where a conventional digital computer may have had a hard time. They are being used more

and more in many fields because of their robustness and plasticity of architecture. However

despite the fact that research in neural networks is an open field, the question is whether it

will last long like that, knowing that neural networks have some big challenges like:

1- The actual model is too simple compared to the complexity of the human brain, which

means that it stills far from being able to behave like a real brain.

2- There must be a technology that allows the implementation of complex neural

networks models.

This leads us to other questions, like: what is the actual technology used in implementing

actual neural networks models? And what are the techniques used in these implementations?

CHAPTER 2

 CHAPTER 2 FPGA Architecture

28

CHAPTER 2. FPGA ARCHITECTURE

2.1 Introduction

Over the last years, in order to face the hardware implementation issues, the modern

electronics is increasingly turning to digital, which has many advantages over the analog.

Although the growing development of the electronics nowadays, there is still some

architecture designs which are challenging. Some of these architectures such as ANNs have

presented so many implementation difficulties.

Since the architecture of ANN requires the parallelism, there was many attempts to build that

architecture on ASIC boards which have some parallel processing units [10]. However, many

limitations, related to reconfiguarbility and to the size of the network, have appeared. Circuits

such as FPGAs have been showed up with their flexibility in design like software’s but with

performance speed closer to ASIC. These circuits have represented a natural fit, offering a

parallelism which helps for the implementation of the ANN.

In this chapter, we discuss all the types of the available digital circuits then we mainly

introduce the architecture of the FPGA circuits which are considered as the best choice among

all the circuits for ANNs. We began with a classification of the digital circuits then a brief

history about the FPGA circuits and then we detailed their architecture and presented the

board Nexys 2 development card that we used to develop our project. Finally, we presented

the VHDL language we used to design our application.

2.2 The classification of digital circuits

There are three main types of digital circuits. First, standard logic circuits that include

combinatorial circuits and flip-flops. Then, the programmable circuits include

microprocessors, microcontrollers and DSPs (Digital Signal Processor). In this category there

is an arithmetic and logic unit that executes a program located in a program memory using

synchronization clock. Finally, circuits with a programmable architecture such as ASICs

(Application Specific Integrated Circuit), PLDs (Programmable Logic Device) and FPGAs

(Field Programmable Gate Arrays) form the third category [11]. In this category, we design a

circuit that corresponds to our own needs, the use of a clock is not compulsory, and we can

easily implement applications that require parallelism (Figure 1-11).

 CHAPTER 2 FPGA Architecture

29

2.2.1 Circuits with programmable architecture [10]

2.2.1.1 ASIC (Application Specific Integrated Circuit)
By definition, ASIC circuits include all circuits whose function can be customized in one way

or another for a specific application, as opposed to standard circuits whose function is defined

and perfectly described in the catalog of components. The use of an ASIC leads to many

advantages, mainly due to the reduction of the size of the systems such as the reduction of the

number of components on the printed circuit, the consumption and the space requirement. The

ASIC concept ensures maximum optimization of the circuit to be realized. Finally, we have

an integrated circuit that really corresponds to our own needs which gives the designer a

confidentiality and industrial protection. The major disadvantage of ASICs lies in the fact that

the passage to the founder is obligatory, which entails high costs and a high development time

of the circuit. As a result, ASICs are generally more suitable for mass production of designs

already verified and not for prototypes.

2.2.1.2 PLD (Programmable Logic Device)
PLDs are chips that can be programmed to behave like an arbitrary design. A PLD can be

programmed for an implementation as simple as a combinatorial logic operation as it could be

for much larger designs. It typically includes AND gate array connected to an array of OR

gates [12].

2.2.1.3 FPGA (Field Programmable Gate Arrays)
FPGAs are completely reconfigurable components which allow them to be reprogrammed at

will, in order to accelerate some calculations. They consist of a matrix of programmable logic

blocks surrounded by programmable input/output blocks. They are all connected by a

programmable interconnection network. The FPGAs are not optimized for a specific

application, therefore they consume more power than ASICs. On the other hand, they are

much simpler to be programmed and reprogrammed, which shortens the design cycles and

allows following the evolution of the application for which they were designed. The

advantage of this type of circuit is its great flexibility, which makes it possible to reuse them

at will in different algorithms in a very short time. The FPGAs are more suitable for

prototypes and for limited mass productions that are not of the quality of ASICs. This

technology also permits the implementation of a large number of applications and offers a

low-cost hardware installation solution for small companies for whom the cost of developing

a specific integrated circuit involves too much investment. The major disadvantage of FPGA

circuits is that they are not very secure in terms of confidentiality, since it is enough to

analyze the contents of the associated ROM to go back to the imagined schematics [13].

In the proposed algorithm, the parallelism is required, for the implementation of neural

networks; we have chosen a Xilinx Nexys 2FPGA circuit to implement these networks.

 CHAPTER 2 FPGA Architecture

30

Figure 2-1: Classification of digital circuits

2.3 The FPGA circuit

2.3.1 History

The principle of the programmable logic dates back to the early 1960s, the concept has been

proposed by Estrin. But it was not until the 1980s that the first material implementation was

introduced into the market. The advent of this type of circuit was first made through simple

Programmable Array Logic (PAL) circuits which are programmed as non-volatile ROM-type

memories and are used to implement simple combinatorial functions such as address decoders

or bus controllers.

With microelectronics evolutions, various families of programmable circuits have emerged:

the Complex Logic Programmable Devices (CPLDs), then the Field Programmable Gate

Arrays (FPGAs) introduced by Xilinx in 1985. With the emergence of increasingly efficient

circuits that can be programmed at will, the industrialization and marketing of this type of

circuit has taken a place on a large scale. At present there are a dozen manufacturers, the

market is being clearly dominated by Xilinx, Altera (reprogrammable circuits) and Actel

(non-reprogrammable circuits [14].

2.3.2 Application [15]

Taking advantage of the ever increasing density of the chips, the FPGAs are used for several

applications such as telecommunications, image and signal processing. More recently, other

application fields are in growing demand, such as medical equipment, robotics, automotive,

and space and aircraft embedded control system. Finally, industrial electrical control systems

are also of great interest because the ever-increasing level of expected performance while at

the same time reducing the cost of the control systems.

 CHAPTER 2 FPGA Architecture

31

2.3.3 FPGA Architecture

The architecture of an FPGA is divided into:

 Processing resources including memories, logic and registers. They are grouped into

logical blocks of different types (CLB,IOB).

 The programmable routing recourses that connect the logic blocks together.

The programming of a reconfigurable circuit therefore consists in specifying the functionality

of each logic block and in organizing the interconnection network in order to perform the

requested function. Some FPGAs also incorporate RAMs, Multipliers, and even processor

cores [16].

A generalized example of an FPGA is shown in Figure 2-2 where CLBs (Configurable Logic

Block) are arranged in a two dimensional grid and are interconnected by a programmable

routing sources. The CLBs are surrounded by IOB blocks which are arranged at the periphery

of the grid and they are also connected to the routing interconnection [17],[18].

Figure 2-2: Overview of FPGA architecture

 CHAPTER 2 FPGA Architecture

32

2.3.3.1 Configurable Logic Block (CLB):
The Configurable Logic Block is a basic component of an FPGA; it provides the basic logic

and storage functionality for a target application design. In order to provide the appropriate

basic logic and storage capability, the basic logic can be either a transistor or an entire

processor. In between these two extremes exists a spectrum of basic logic blocks. Some of

them include logic blocks that are made of NAND gates, an interconnection of multiplexors,

lookup table (LUT) …etc.

The choice of the logic block depends on performance, power consumption and the amount of

the programmable interconnect …etc.

A CLB can compromise of a single BLE (Basic Logic Element), or a group of interconnected

BLEs. A simple BLE consist of a LUT, and a flip-flop. A LUT with k inputs contains 2K

configurations bits and it can implement any K-input Boolean function. The Figure 2-3 shows

an example for k=4 [16].

Figure 2-3 : Basic Logic Element (BLE)

The LUT in that example uses 16 SRAM (SRAM are explained in next sections) bits to

implement any 4 inputs Boolean function.

A CLB can contain a cluster of BLEs connected through a local routing network. Figure 2-4

shows a cluster of 4 BLEs of 4 inputs, each BLE contains a LUT and a Flip-Flop. The BLE

output is accessible to other BLEs from the same group through a local routing network. The

numbers of output pins of a cluster are equal to the number of BLEs in the cluster. However

the numbers of input pins in a cluster can be less than or equal to the sum of pins required by

all the BLE in the cluster [16].

 CHAPTER 2 FPGA Architecture

33

Figure 2-4 : A configurable Logic Block (CLB) having four BLEs

2.3.3.2 Input Output Block (IOB):
The IOBs allow the interface between the FPGA component pins and the internal logic

developed inside the component. They are present the entire periphery of the FPGA circuit.

Each IOB block command a component pin and can be defined as input, output, bidirectional

signal or unused (high impedance) [11].

2.3.3.3 Routing interconnections:
As we discussed earlier, the computing functionality is provided by its programmable logic

blocks which are connected to each other through a programming routing network. This

programmable routing network provides routing connection among logic blocks and IOB

blocks to implement any user-defined circuit. The routing interconnect of an FPGA consists

of wires and programmable switches that form the required connection. These programmable

switches are configured using the programmable technology.

To assure a variety of the reprogrammable circuits, the FPGA routing interconnect must be

very flexible. Although the routing requirements vary from a circuit to another, certain

common characteristics of these circuits can be used optimally design the routing interconnect

of FPGA architecture. For example most of designs exhibit locality, hence requiring plenty of

short wires. But at the same time there are some distant connections, which lead to the use of

long wires [16].

The arrangement of the routing resources plays an important role in the overall efficiency of

the FPGA Architecture. This arrangement here considered as global routing architecture

 CHAPTER 2 FPGA Architecture

34

whereas the microscopic details regarding the switches topology of different switch blocks is

considered as detailed routing architecture.

2.3.3.4 Programming technology:
There are numerous programming technologies that have been used for reconfigurable

architectures. Each of these technologies has different characteristics that, in turn, have a

significant impact on the programmable architecture. Some of the well-known technologies

include static, flash and anti-fuse memory.

In this section we discus only the SRAM based Programming technology since it is the most

used technology by the commercial vendors.

SRAM based programming technology

Static memory cells are the basic cells used for SRAM-based FPGAs. Most commercial

vendors use static memory (SRAM) based programming technology in their devices. These

devices use static memory cells that are distributed throughout the FPGA to ensure

configurability. An example of this memory cell is shown in the Figure 2-5. In an SRAM-

based FPGA, SRAM cells are mainly used for the following purposes:

 To program the routing interconnect of FPGAs which are generally steered by small

multiplexors.

 To program Configurable Logic Blocks (CLBs) used to implement logic functions.

Figure 2-5 : Static Memory cell

SRAM-based programming technology has become the dominant approach for FPGAs

because of its re-programmability and the use of standard CMOS process technology and

therefore leading to increased integration, higher speed and lower dynamic power

consumption of new process with smaller geometry. There is however a number of drawbacks

associated with SRAM-based programming technology. For example an SRAM cell requires

6 transistors which make the use of this technology costly in terms of area compared to other

 CHAPTER 2 FPGA Architecture

35

programming technologies. Further SRAM cells are volatile in nature and external devices are

required to permanently store the configuration data. These external devices add to the cost

and area overhead of SRAM-based FPGAs.

2.4 The circuit board Nexys 2[19]

The Nexys2 circuit board is a complete, ready-to-use circuit development platform based on a

Xilinx Spartan 3E FPGA. It has been used to implement the proposed algorithm by providing

a complete application development solution on Xilinx’s Spartan 3E family. It uses the circuit

“FPGA XC3S500E-FGG320” which belongs to the Spartan 3E family of Xilinx. The high

integration density of the logic gates and the large number of inputs / outputs available for the

user allow the implementation of complete systems on the FPGA board. This board offers a

design environment that is very suitable for varied application prototyping, including those of

general purpose digital systems and embedded systems. It provides a complete application

development solution and is also ideal for video control, video processing and signal

processing applications in general. Figure 2-6 shows the board components.

Figure 2-6 : Nexys 2 board FPGA

Its onboard high-speed USB2 port, 16Mbytes of RAM and ROM, and several I/O devices and

ports make it an ideal platform for digital systems of all kinds, including embedded processor

systems based on Xilinx’s MicroBlaze. The USB2 port provides board power and a

programming interface, so the Nexys2 board can be used with a notebook computer to create

a truly portable design station.

 CHAPTER 2 FPGA Architecture

36

2.4.1 Spartan 3E architecture

The Spartan-3E family architecture consists of five fundamental programmable functional

elements [20] :

Configurable Logic Blocks (CLBs): contain flexible Look-Up Tables (LUTs) that

implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide

variety of logical functions as well as store data.

Input/output Blocks (IOBs): control the flow of data between the I/O pins and the internal

logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports

a variety of signal standards, including four high-performance differential standards. Double

Data-Rate (DDR) registers are included.

Block RAM: provides data storage in the form of 18-Kbit dual-port blocks.

Multiplier Blocks: accept two 18-bit binary numbers as inputs and calculate the product.

Digital Clock Manager (DCM): Blocks provide self-calibrating, fully digital solutions for

distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 2-. A ring of IOBs surrounds a regular array

of CLBs. Each device has two columns of block RAM. Each RAM column consists of several

18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs

are positioned in the center with two at the top and two at the bottom of the device.

The Spartan-3E family features a rich network of traces that interconnect all five functional

elements, transmitting signals among them. Each functional element has an associated switch

matrix that permits multiple connections to the routing.

Figure 2-7 : Spartan E3 family architecture

 CHAPTER 2 FPGA Architecture

37

2.5 VHDL

2.5.1 Brief on VHDL

The VHDL is a hardware description language. It describes the behavior of an electronic

circuit, from which the physically circuit can then be implemented. The VHDL stands for

VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High Speed

Integrated Circuits.

An initiative funded by the US Department of Defense in the 1980s that led to the creation of

VHDL. Its objective was to describe the complex circuits, in order to establish a common

language with its suppliers.

Its first version was the VHDL 87, later an upgrade to the so-called VHDL 93. The VHDL

was the first hardware description language standardized by the Institute of Electrical and

Electronics Engineers IEEE, thanks to the IEEE 1076. An additional standard, the IEEE 1164,

was then added to introduce multi-valued logic systems.

2.5.2 Utility of VHDL

The VHDL is a language of specification, de simulation and also design. Unlike other

languages (CUP, ABEL) that were primarily design languages; the VHDL is primarily a

specification language. The standardization first took place for specification and simulation

(1987) and then for synthesis (1993).

Specification:

It is in this field that the standard is currently the most established. It’s quite possible to

describe a circuit by a standard VHDL code so that it is readable everywhere. This ability to

describe circuits in a universal language is also very practical to avoid language problems.

Simulation:

The VHDL is also a simulation language. To do so, the notion of time, in different forms, has

been introduced. Modules, intended only for simulation, can thus be created and used to

validate a logical or temporal operation of the VHDL code. The ability of simulating with

VHDL programs should considerably facilitate the writing of tests on a prototype which are

much more expensive and whose errors are more difficult to find.

Conception:

The VHDL also allows circuit design. The two main immediate applications of VHDL are in

the field of programmable logic circuits, including CPLD and FPGA, and in the field of ASIC

circuits. The VHDL is intended for circuit synthesis as well as circuit simulation. However,

since this language is designed primarily for specification and then for simulation, as a result

some language variants are not yet usable for design.

 CHAPTER 2

2.5.3 VHDL structure

As illustrated in Figure 2-8 the typical structure of a VHDL description is composed of at

least three fundamental parts:

Figure 2

Libraries declaration:

Any description used in the VHDL code must be defined in a library. The main libraries are

standardized by IEEE. They contain the definitions of the types of electronics signals,

functions and subprograms used to perform arithmetic and logic operations, and so on. The

“use” directive is used to select which libraries to use.

The entity:

It represents an external view of the description. The declaration of the entity makes it

possible to define the name of the VHDL description as well as the inputs and outputs used,

the instruction that defines them is “port”.

FPGA Architecture

38

the typical structure of a VHDL description is composed of at

2-8 : Basic structure of VHDL description

Any description used in the VHDL code must be defined in a library. The main libraries are

. They contain the definitions of the types of electronics signals,

functions and subprograms used to perform arithmetic and logic operations, and so on. The

“use” directive is used to select which libraries to use.

view of the description. The declaration of the entity makes it

possible to define the name of the VHDL description as well as the inputs and outputs used,

the instruction that defines them is “port”.

FPGA Architecture

the typical structure of a VHDL description is composed of at

Any description used in the VHDL code must be defined in a library. The main libraries are

. They contain the definitions of the types of electronics signals,

functions and subprograms used to perform arithmetic and logic operations, and so on. The

view of the description. The declaration of the entity makes it

possible to define the name of the VHDL description as well as the inputs and outputs used,

 CHAPTER 2

The architecture:

Contains the appropriate VHDL code,

perform the expected operation. It represents the internal structure of the description.

2.5.4 The modes used in VHDL

The VHDL uses two modes of operation: combinatorial mode (concurrent mode) and

sequential mode. Each of these modes is used in specific cases.

Combinatorial mode:

In combinatorial mode, all instructions in a VHDL description are evaluated and affect the

output signals at the same time (in parallel), so the order in which the instructions are writ

is irrelevant. Indeed the description generates electronic structures, it is the great difference

between a VHDL description and a classical computer language. So with VHDL you have to

try to think of the structure that will be generated by the synthes

description.

Sequential mode:

The sequential mode uses “process” in which time is an essential variable. A process is a part

of the description of a circuit in which the instructions are executed sequentially, that is to say

one after the other. It can perform signal operations using the standard instructions of

structured programming as in microprocessor systems.

2.6 Conclusion

To be able to implement a ANN

on them. thus in this chapter, FPGA circuits have been described and

choice for implementation of

architecture of FPGA circuits, specifically Xilinx Spartan E3. According to the architecture

study, FPGAs are reconfigurable components, they are generally constituted by a

programmable logic block matrix (CLB) surrounded by programmable Input/ Output blocks

(IOB). These two blocks can be connected by a network of programmable interconnections.

In addition, the Xilinx Spartan E3 contains two other blocks, which are the Multiplier block

and the Digital Clock Manager (DCM) block. Before that we had introduced briefly the

different type of digital circuits. Finally, the VHDL description language, which is a langu

of a specification, simulation and design, has also been presented at the end of this chapter.

FPGA Architecture

39

Contains the appropriate VHDL code, which describes how the circuit should behave to

perform the expected operation. It represents the internal structure of the description.

The modes used in VHDL

The VHDL uses two modes of operation: combinatorial mode (concurrent mode) and

de. Each of these modes is used in specific cases.

In combinatorial mode, all instructions in a VHDL description are evaluated and affect the

output signals at the same time (in parallel), so the order in which the instructions are writ

is irrelevant. Indeed the description generates electronic structures, it is the great difference

between a VHDL description and a classical computer language. So with VHDL you have to

try to think of the structure that will be generated by the synthesizer to write a good

The sequential mode uses “process” in which time is an essential variable. A process is a part

of the description of a circuit in which the instructions are executed sequentially, that is to say

the other. It can perform signal operations using the standard instructions of

structured programming as in microprocessor systems.

ANN in an FPGA circuit, one should have a minimum

er, FPGA circuits have been described and they proved

choice for implementation of architectures such as the ANN’s. We have presented the

architecture of FPGA circuits, specifically Xilinx Spartan E3. According to the architecture

are reconfigurable components, they are generally constituted by a

programmable logic block matrix (CLB) surrounded by programmable Input/ Output blocks

(IOB). These two blocks can be connected by a network of programmable interconnections.

he Xilinx Spartan E3 contains two other blocks, which are the Multiplier block

and the Digital Clock Manager (DCM) block. Before that we had introduced briefly the

different type of digital circuits. Finally, the VHDL description language, which is a langu

of a specification, simulation and design, has also been presented at the end of this chapter.

FPGA Architecture

which describes how the circuit should behave to

perform the expected operation. It represents the internal structure of the description.

The VHDL uses two modes of operation: combinatorial mode (concurrent mode) and

In combinatorial mode, all instructions in a VHDL description are evaluated and affect the

output signals at the same time (in parallel), so the order in which the instructions are written

is irrelevant. Indeed the description generates electronic structures, it is the great difference

between a VHDL description and a classical computer language. So with VHDL you have to

izer to write a good

The sequential mode uses “process” in which time is an essential variable. A process is a part

of the description of a circuit in which the instructions are executed sequentially, that is to say

the other. It can perform signal operations using the standard instructions of

one should have a minimum knowledge

proved to be a good

the ANN’s. We have presented the

architecture of FPGA circuits, specifically Xilinx Spartan E3. According to the architecture

are reconfigurable components, they are generally constituted by a

programmable logic block matrix (CLB) surrounded by programmable Input/ Output blocks

(IOB). These two blocks can be connected by a network of programmable interconnections.

he Xilinx Spartan E3 contains two other blocks, which are the Multiplier block

and the Digital Clock Manager (DCM) block. Before that we had introduced briefly the

different type of digital circuits. Finally, the VHDL description language, which is a language

of a specification, simulation and design, has also been presented at the end of this chapter.

CHAPTER 3

 CHAPTER 3 FPGA implementation of neural neworks

41

CHAPTER 3. FPGA IMPLEMENTATION OF
NEURAL NEWORKS

3.1 Introduction

ANNs are becoming more popular these years; this is due to the growing interest in their

applications. However implementing them in the traditional way by software running in a

general-purpose processor couldn’t really meet the real-time requirements in many cases,

especially in intelligence control. In contrast to it the hardware implementation allows neural

networks to take full advantage of their inherent parallelism and run orders of magnitude

faster than software.

The hardware implementation of neural networks can be realized using either analog or digital

hardware; still the latter is the most appropriate and popular as it has many qualities among

which we state higher accuracy, better repeatability and testability, lower noise sensitivity,

and higher flexibility and compatibility with other types of processors.

Furthermore as it is stated in the previous chapter, the FPGA showed up to be the most

suitable for ANN implementation as it preserves the parallelism, flexibility and

reconfigurability in the neuron’s architecture.

However there are some challenges and certain tradeoffs that must be dealt with in order to

implement Neural Networks on FPGAs. Generally it requires large resource because of

nonlinear activation functions and several synaptic weights (multipliers) present in the

network. It is a major problem where there should be a balance between precision and speed,

and the cost of more FPGA resources (logic areas) associated with increased precision.

This chapter proposes a C++ based application that generates descriptions of Feed Forward

Layered ANNs in form of VHDL files, to be implemented in an FPGA, the ANNs

descriptions are based on a simple architecture that allows implementing large neural

networks with minimum recourses which is layer multiplexing. The chapter starts by

introducing some arithmetic issues in implementing neural networks (data representation,

products computation, sum of products, activation function). After that a general architecture

of ANN generated by our application and its different main blocks are presented. Then it is

concluded by a brief overview on the essential of our work that is the C++, based application.

3.2 Arithmetic in ANN digital implementation

There are several aspects to take into account when designing ANNs circuits; these include

data representation, products and sum of products computations, and activation functions

 CHAPTER 3 FPGA implementation of neural neworks

42

implementations. The most important are inner-products and non-linear activation function,

because they are area-greedy. Indeed the latter is the most complex, and naturally the one that

consumes FPGA resources the most. It has an entire separate section devoted just to it. Given

the ease with which arithmetic operations can be implemented, the activation function stays

the biggest limiting factor in performance.

3.2.1.1 Data representation:
A neural network operates with real numbers; it can be represented in many ways. However

the problem is how to balance between numeric precision, which is important for the accuracy

and convergence and FPGA resources.

The simple precision floating point representation is ideal since it offers the greatest amount

of precision (i.e. minimal quantization error); however using it in ANN implementation on

FPGAs is not feasible since it consumes huge amounts of resources which are very limited in

this case.

Instead of Floating point, fixed point representation can be used. Even though this means less

precision, its benefits compromise its inconveniences. It is more area-efficient than floating

point, and much simpler in arithmetic operations. It comes naturally to use two’s complement

representation for negative numbers. It was mentioned in [10] that many studies established

16 bits for weight and 8 bits for activation-function as good enough. In the coming proposed

architecture, 15 bits are used for weights and 9 bits for the activation-function input.

3.2.1.2 Inner products:
Multiplayer has been identified as the most area-intensive arithmetic operator used in FPGA-

based ANNs, there many forms of multipliers:

 Bit-serial multipliers: In this one the calculation is done by a bit at a time, whereas fully

parallel multipliers calculate all bits simultaneously. Thus the first one can scale to a signal

representation of any range-precision, however, this means that the bit-serial multiplication

time grow quadratically, with the length of the signal representation. This means that it is not

effective in real time applications of ANN.

Other ways have been tried, like imposing the values of synaptic weights into powers of two

values, so that the products get simplified to numbers of shifts. Sadly this type of design

practice reduces drastically the ANN performance.

One last method to be used is direct full parallel-bit multiplier; FPGAs have limited numbers

of these multipliers in different dimensions. In Spartan 3E, there are only 20 multipliers of

dimension (18 × 18). In the architecture proposed in next sections, only 6 multipliers have

been used in parallel, this allows the ANN VHD description generated by the proposed C++

application, to have in the same time good parallelism and to be implemented in low resource

FPGAs too.

 CHAPTER 3 FPGA implementation of neural neworks

43

3.2.1.3 Sum of products
The number of adder is not what lacks in today’s FPGAs, and the sum of products can be

carried in many ways. In ANN the sum of products is used to cumulate the elementary

products of the neuron inputs with their associated synaptic weights, ∑ ���
�
�� � ��. Its

implementation depends on the number of elementary products to be accumulated. If � is

small enough then a direct implementation like the one in Figure 3-1 or Figure 3-2 can be

used.

Figure 3-1: Sum of products 1

Figure 3-2: Sum of Products 2

As it is stated previously in the proposed ANN implementation only 6 products can be

computed at the same time, one multiplier per neuron at a time, it receives the neuron’s

associated inputs and multiply them by their appropriate weight in a sequential way, this

method causes more latency in computation, but in the other hand it is more area-efficient and

preserves the parallelism characteristic between neurons. So the elementary products for each

neuron can be summed using just one adder with a feedback loop since they come out of the

multipliers sequentially, see the Figure 3-3.

Figure 3-3: Serial sum of products

 CHAPTER 3 FPGA implementation of neural neworks

44

3.3 The Activation Function implementation

The activation function implementation is one of the most important arithmetic-design issues

when implementing ANNs on FPGA boards. There exist many types of activation functions

by now, see chapter one. The most interesting ones for our application are Tangent sigmoid,

Log sigmoid and linear activation function. For the implementation of the first two functions

which are nonlinear, many works have being proposed [10],[21], [22],[23] and more. Mainly

there are the next five implementation approaches: piecewise linear approximation (PWL),

piecewise nonlinear approximation, lookup table (LUT), bit-level mapping, and hybrid

methods.

Generally piecewise linear approximation uses a series of linear segments to approximate the

activation function. The number and locations of these segments are chosen such that error,

processing time, and area utilization are minimized. The use of multipliers should be avoided

for efficient hardware implementations employing this approximation method, as multipliers

are expensive hardware components in terms of area and delay. This method is used in [23]

for the hyperbolic tangent and sigmoid function implementation.

The piecewise nonlinear approximation is similar to the PWL method except that a nonlinear

approximation is used in each segment. One example of it is polynomial approximations.

Although High order polynomial approximations can give low-error implementations, they

are generally not suitable for hardware implementation, because of the number of arithmetic

operations

In the LUT-based methods, input range is divided to equal sub-ranges and each sub-range is

approximated by a value stored in LUT. This method is used to implement the hyperbolic

tangent.

Hybrid methods usually combine two or more of the previously mentioned methods to

achieve better performance. The main challenges have always been one of how to choose the

best interpolation points and how to ensure that look-up tables remain small. This approach is

used in [22] to implement tangent sigmoid.

In this work three activation functions are implemented, Tangent sigmoid, log sigmoid, and

linear activation function. The approach adopted to implement the nonlinear ones is the last

one, the hybrid method that uses lookup table coupled with a piecewise linear approximation.

It is mainly based on the work presented by Promod Kumar Meher in his article entitled “An

Optimized Lookup-Table for the Evaluation of Sigmoid Function for Artificial Neural

Networks”[22].

 CHAPTER 3

3.3.1 Implementation of Tangent Sigmoid and Log sigmoid

This function is defined by the following equation:

This equation produces an S-shape curve presented in

Figure 3-4: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed

in [22] is used, and the challenge in this is how di

remain small, and result with minimum error.

3.3.1.1 Characteristics of Tanh and strategy of implementation
 Property 1

Considering this property (mirror symmetry about Y

Figure 3-4 should be stored, i.e., for

evaluated by negating the LUT

done by performing the 2’s complement operation on the LUT output if the input is negative.

 Property 2

This means that for small values of the input,

LUT for this region could be avoided, since the corresponding

obtained directly from input values. This could be implemented by a simple Multiplexer.

FPGA implementation

45

Implementation of Tangent Sigmoid and Log sigmoid

This function is defined by the following equation:

tanh(�) =
�� − ���

�� + ���

shape curve presented in Figure 3-4

: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed

is used, and the challenge in this is how divide intervals to ensure that look

remain small, and result with minimum error.

Characteristics of Tanh and strategy of implementation

tanh(− �) = − tanh (�)

Considering this property (mirror symmetry about Y-axis), only the right-

should be stored, i.e., for � ≥ 0, the negative values of the input could be

evaluated by negating the LUT-words stored for its corresponding positive values. This is

done by performing the 2’s complement operation on the LUT output if the input is negative.

lim
�→ �

tanh(�) = �

This means that for small values of the input, tanh(�) is linear, then storing values in the

LUT for this region could be avoided, since the corresponding tanh(�

ined directly from input values. This could be implemented by a simple Multiplexer.

FPGA implementation of neural neworks

Implementation of Tangent Sigmoid and Log sigmoid

(3-1)

: Hyperbolic Tangent Sigmoid Activation Function

As stated at before to implement this function, an optimized lookup table approach proposed

vide intervals to ensure that look-up tables

Characteristics of Tanh and strategy of implementation

(3-2)

-half of the curve in

the negative values of the input could be

words stored for its corresponding positive values. This is

done by performing the 2’s complement operation on the LUT output if the input is negative.

(3-3)

is linear, then storing values in the

(�) values could be

ined directly from input values. This could be implemented by a simple Multiplexer.

 CHAPTER 3

 Property 3

According to the two equations the variation of the

inputs, that is to say that for |

be stored in the LUT for all values above 3.

By using these properties all together, the values of

are for ���� < � < ����, where

be derived from accuracy requirements; su

|tanh(����)− (1)|≤ �, where

���� is the bound of the input values above which the

takes generally values smaller then

which is a very higher accuracy than what is required for many applications, with neural

networks included. The Figure

2.4, ���ℎ(�) > 0.98, and for

by +1 for � > ���� where ����

0.02, or 0.01 respectively.

Figure 3

Similarly, to choose ���� we analyze the behavior of the

the ���ℎ(�) near zero gives

 ���ℎ(�)

When � tends to zero high order terms can be ignored.

FPGA implementation

46

���
�→ �

� ���ℎ (�)

��
= 0

���
�→ �

���ℎ (�) = 1

According to the two equations the variation of the ���ℎ (�) is insignificant for big values of

|�|≥ 3 the variation is less than 0.00015 and a value of

alues above 3.

By using these properties all together, the values of ���ℎ (�) that should be stored in the LUT

, where ���� and ���� represent the limiting values which could

be derived from accuracy requirements; such as |���ℎ(����)−

, where � is the maximum allowable error.

is the bound of the input values above which the tanh (�) stored in the LUT is

takes generally values smaller then 3 for the reason that |���ℎ(�)− ���

which is a very higher accuracy than what is required for many applications, with neural

Figure 3-5 shows clearly that for � = 2, ���ℎ(�

for � = 2.7, ���ℎ(�) > 0.99. Thus, ���ℎ(�) can be approximated

���� is 2, 2.4, or 2.7 if the maximum allowable errors are 0.04,

3-5: Saturation region of tangent hyperbolic

we analyze the behavior of the ���ℎ(�). The Taylor expansion of

() = � −
��

3
+

��

15
−

17��

315
+ ⋯ , � → 0

tends to zero high order terms can be ignored.

FPGA implementation of neural neworks

(3-4)

(3-5)

is insignificant for big values of

and a value of +1 can

that should be stored in the LUT

represent the limiting values which could

) (�min)|≤ �, and

stored in the LUT is +1. It

���ℎ(3)| < 0.00015,

which is a very higher accuracy than what is required for many applications, with neural

(�) > 0.96, for � =

()can be approximated

is 2, 2.4, or 2.7 if the maximum allowable errors are 0.04,

. The Taylor expansion of

(3-6)

 CHAPTER 3 FPGA implementation of neural neworks

47

We can find ���� above which we can assume ���ℎ(�) = � by using the nest equation:

 ����� − ����� −
�����

3
+

�����

15
�� < � (3-7)

By simplifying we find

�����

3
−

�����

15
≤ � (3-8)

For an error � = 0.02, ���� is found to be 0.390625.

As seen in Figure 3-5, the rate of variation of ���ℎ(�) when ���� < � < ���� is not

uniform, therefore all the values of inputs may not correspond to a different LUT value for a

given accuracy. By knowing this, one single value can be stored for several input values

forming sub-domains of the function.

3.3.1.2 Optimized Lookup table design for hyperbolic tangent
Unlike conventional lookup tables where each input value (address) word corresponds to one

location in the LUT, Maher used in his work [22] used what is so called range-addressing,

where one address corresponds to a range of input values that have the same value of

���ℎ(�) stored in the LUT, reducing by that the number of words stored.

Apart from that, for a given sub-domain the value stored is the mean of the boundary values

of the function in that sub-domain. This is unlike other works where they stored the function

value corresponding to the lower-boundary address, and here the difference between the

maximum and the minimum values of the function could be the double of the allowable error.

Designing the LUT is then done by following steps he proposed which are:

1) Determination of the upper and lower limits of LUT input (���� and ����) :

For � = 0.02, ���� = 0.390625 ��� ���� = 2.4

2) Selection of the address width (precision):

By simulations in Matlab, it was found that a width of 9bits of input values

represented in 2’s complement allow to have |���ℎ(�1)− ���ℎ(�2)|≤ � = 0.02

where �1and �2 are two consecutive inputs.

3) Selection of Domain Boundaries:

The range of ���ℎ(�) for 0.3906250 < � < 2.4 is divided into � sub-domains

��(���,���) such that |���ℎ(���)− ���ℎ(���)|≤ 2�. � is determined such as the

upper bound of the last domain (���)=2.4 then all (���,���) should be determined.

4) LUT assignment:

The stored is the mean of the boundary values of the function which means

tanh(��) = [���ℎ(���)+ ���ℎ(���)]/2 .

Based on these steps we developed a simple C++program to generate the LUT words, results

are given in the Table 3-1, unlike Maher work, the stored value is the nearest to the mean of

the boundaries among its possible values that are imposed by the binary representation, which

 CHAPTER 3 FPGA implementation of neural neworks

48

mean that the error in a sub-domain can exceed the error imposed by the

criterion |���ℎ(���)− ���ℎ(���)|≤ 2�. As we can see in the table the maximum error

became 0.033

Table 3-1: LUT for the hyperbolic tangent activation Function

 LUT

word N°

The ranges limits The mean

tanh (��)

Stored

value

Stored

value in

binary

Maximum

error
��� ���

 ... 0.390625 � NA NA NA

1 0.390625 0.453125 0.398182 0.390625 00011001 0.0338394

2 0.453125 0.515625 0.44939 0.453125 00011101 0.0286606

3 0.515625 0.578125 0.497809 0.5 00100000 0.0256837

4 0.578125 0.640625 0.543313 0.546875 00100011 0.0255737

5 0.640625 0.703125 0.585836 0.578125 00100101 0.0282226

6 0.703125 0.78125 0.629886 0.625 00101000 0.0284236

7 0.78125 0.859375 0.67468 0.671875 00101011 0.0240605

8 0.859375 0.9375 0.715003 0.71875 00101110 0.0228145

9 0.9375 1.048675 0.757681 0.75 00110000 0.0312907

10 1.048675 1.171875 0.803082 0.796875 00110011 0.0279973

11 1.171875 1.328125 0.846831 0.84375 00110110 0.0250403

12 1.328125 1.53125 0.889714 0.890625 00111001 0.0218347

13 1.53125 1.859375 0.93163 0.9375 00111100 0.0268617

14 1.859375 2.90625 0.973329 0.96875 00111110 0.0252879

15 2.90625 NA 1 01000000 NA

 CHAPTER 3 FPGA implementation of neural neworks

49

Figure 3-6 : Hyperbolic Tangent LUT block diagram

The Figure 3-6 shows that the hyperbolic tangent implementation consists of several blocks,

that assure the functioning described previously.

A Sign converter: It has been implemented before and after the LUT bloc. The role of the first

one is to calculate the magnitude of the input to feed it to the LUT, since this one deals with

positive numbers only. So when the input is negative, the LUT word corresponding to the

input magnitude is negated by the second sign converter to have the correct value ���ℎ(�) of

that negative input � .

A range decoder: it has been implemented in order to perform the range-addressing. That is to

say that when it is fed with the input magnitude, it determines the corresponding range,

through its word-select outputs (w1, w2..., w15).

A Multiplexer: its role is to let through either the LUT words or the input directly. The

decision to let through the input happens in no word is selected by the range decoder, which

means by reading the Table 3-1 that |�|< 0.390625. This could be implemented by using a

NOR logic gate to all the word-select signals (range decoder outputs).

 CHAPTER 3 FPGA implementation of neural neworks

50

Simulations:

Figure 3-7: Range decoder simulation

The Figure 3-7 shows the word-select signals values with respect to the whole range of its

inputs. As it is clear in the figure, the inputs are divided into three regions:

 A linear region where the input is passed directly to the output without passing

through the LUT, this region is known when all word-select signal are at low level

(the value 0)

 A non linear region, we can clearly see the shape of tangent hyperbolic formed when

the word-select signals, (w1, w2..., and w15) get the value 1 each one at its appropriate

sub-range and 0 in the other sub-ranges.

 A saturation region, in this region the input verifies.

This concludes that the range decoder works properly and decodes the input values into sub-

ranges that can be known when their correspondent word-select signal is set to 1.

This figure (Figure 3-8) shows that the Tangent function block works perfectly, the first input

value is within the linear range thus the output is equal to the input and the 3rd value of the

input is within the nonlinear region

Figure 3-8: Hyperbolic Tangent simulation

 CHAPTER 3 FPGA implementation of neural neworks

51

3.3.1.3 Implementation of Log-Sigmoid activation function:
We used the same previous implementation process to generate an optimized LUT for a

sigmoid function:

 ����(�) =
1

1 + ����
 (3-9)

In our implementation we have chosen � = 2 and that is to have an easy function to

approximate its equation becomes:

 ����(�) =
1

1 + ����
 (3-10)

This function has an S-shaped curve too; however unlike the tangent sigmoid this one ranges

from 0 to 1 and not from -1 to 1 (See Figure 3-9a).

Figure 3-9: Sigmoid activation function

By doing the Taylor expansion to the first order we get:

 ���2(�) =
1

2
+ � + ⋯ , � → 0 (3-11)

To make the implementation easier, we considered implementing the function:

 �(�) =
1

1 + ����
−

1

2
 (3-12)

The new function has the shape shown in Figure 3-9b, clearly it has similar properties to

��ℎ(�) :

 ����→ � �� (�)/�� = 0

 ���
�→ �

�(�) = 0.5

 �(− �) = − �(�)

 �(�) ≈ � when � → 0

 CHAPTER 3 FPGA implementation of neural neworks

52

After implementing the LUT of �(�) =
�

���(���)
−

�

�
 we can get the sigmoid by adding a 0.5

to its output.

We made a C++ code to generate the LUT for the function �(�), the results are in the Table

 3-2

Table 3-2 : LUT for f (x) = sig2(x) - 0.5

LUT word

N°

The ranges limits The mean

sig2 (��)

Stored

value

Stored

value in

binary

Maximum

error
��� ���

 ... 0.03125 � NA NA NA

1 0.03125 0.09375 0.031179 0.03125 00000010 0.0156301

2 0.09375 0.15625 0.0621168 0.0625 00000100 0.0157618

3 0.15625 0.21875 0.0925793 0.09375 00000110 0.0162546

4 0.21875 0.28125 0.122347 0.125 00001000 0.0173368

5 0.28125 0.34375 0.151221 0.15625 00001010 0.0192192

6 0.34375 0.40625 0.179026 0.171875 00001011 0.020767

7 0.40625 0.46875 0.205618 0.203125 00001101 0.0154694

8 0.46875 0.546875 0.233841 0.234375 00001111 0.0157806

9 0.546875 0.625 0.263194 0.265625 00010001 0.0165378

10 0.625 0.71875 0.292684 0.296875 00010011 0.0195751

11 0.71875 0.8125 0.321775 0.328125 00010101 0.0200578

12 0.8125 0.921875 0.349438 0.34375 00010110 0.0196416

13 0.921875 1.0625 0.37835 0.375 00011000 0.0183094

14 1.0625 1.25 0.408726 0.40625 00011010 0.0178918

15 1.25 1.53125 0.43973 0.4375 00011100 0.0178191

16 1.53125 0.467493 0.46875 00011110 0.0134309

Simulations:

Figure 3-10 Log sigmoid2 simulation

The simulation shows the good functioning of the sigmoid2 function block. It gave the value

0.5 when the input was null and 1 when the input was in the saturation region.

The ���2 function ���2(�) = �(�)+ 1/2 is implemented as it is shown in the following

block diagram:

 CHAPTER 3 FPGA implementation of neural neworks

53

Figure 3-11: Sigmoid2 Implementation diagram

3.4 The architecture overview of the ANN generated by the C++

application

The choice of the anatomy of an ANN (the number of inputs, outputs, layers, and the number

of neurons per layer) is specific to each application. In literature it has been reported that

three-layer network with sigmoid activation function in the hidden layer and linear activation

function in the output layer can virtually approximate any nonlinear function to any degree of

accuracy provided sufficient number of neurons in a hidden unit is available. However To

realize all types of nonlinearity using three layers, large number of neurons is needed and it

may result in a huge NN.

For function approximation, multilayer networks have been found to be very useful as it is

similar to a biological NN. However Implementations of multilayer networks will demand

huge resource and will not be a feasible solution for real-time applications such as estimators

for motor control. Thus we proposed an architecture that is based on the concept of layer

 CHAPTER 3 FPGA implementation of neural neworks

54

multiplexing presented in [24], where large ANNs could be implemented with minimum

resources.

3.4.1 Concept of layer multiplexing

The data processed in a multilayer feed forward ANN propagates from one layer to another,

and the computing happens in one layer at a time, hence we don’t need to have all layers

implemented in the same time, only the largest layer (the one with the maximum number of

neurons) should be implemented, it calls itself repeatedly and behaves as different layers with

the help of a control unit. The control block ensures the complete computation of NN using

layer multiplexing by sequencing and placing the appropriate inputs, weights, biases, and

value of excitation function (from LUTs) of each layer .

Unlike the architecture presented in [24], in our architecture, we have implemented both the

largest layer and the output layer, which means that the largest layer behaves like the hidden

layers only and not the output layer. That is to be able to have a different activation functions

in the output layer. So implementing an ANN like the one in figure is reduced to

implementation of the layer-multiplexed ANN in figure

Figure 3-12 : Layer multiplexed ANN [24]

3.4.2 Single neuron architecture

As indicated in its mathematical model (Figure 1-4), the neuron does two major arithmetic

operations; the first is a sum of products of inputs with their correspondent synaptic weights

(1-1), then the result is fed to an activation function (1-2) to determine its output.

The sum-of-products implementation is done by the circuits in Figure 3-3, and the activation

function is implemented by circuits shown in Figure 3-6, the global architecture of a neuron is

shown in Figure 3-13.

 CHAPTER 3 FPGA implementation of neural neworks

55

Figure 3-13: A Single neuron block diagram

The width used for the weights in this work is 15 bits; 7bits for the integer part and 8bits for

the fractional part. Thus the product of the weight (15bits) with the input (9bits) gives a result

in 24bits; this result is then fed to the adder which gives a result in 24bits too. The problem is

how to adapt the width of the data coming from the adder, to the width of the input of

activation function’s block without affecting the results. We introduced a block called bit-

reducer (see Figure 3-13) to do this adaptation.

Because of the saturation region in the hyperbolic tangent function, the output of the LUT for

any value of its inputs � that verifies |�|> 2.4 is always 1. Thus if the adder’s output exceeds

2.4 the bit-reducer changes it to a value that can be represented in 9bits, and which gives a

result of 1 at the output of the LUT.

Since the LUT’s input has 3bits for the integer part, then if ��� > 2.4 the LUT’s input is set

to 3, and If the ��� < − 2.4 than the LUT’s input is set to -4. This is because 3 and -4 give

an output value equal to 1 and they can be represented in 9bits (in 3bits of the integer part).

 CHAPTER 3

3.4.3 The Global ANN architecture

The figure shows block a diagram of the global architecture of ANNs generated by the

The figure shows clearly the use of the layer

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink

neurons), as it was described before.

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer

behaves as all hidden layers

The Normalization block, called “Norm” in the diagram is to centralize and normalize the

inputs of the ANN. This step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole

ANN. The Control Units synchronizes their outputs so that they give the right values of the

biases and weights respectively at the appropriate time.

FPGA implementation

56

The Global ANN architecture

The figure shows block a diagram of the global architecture of ANNs generated by the

application.

Figure 3-14 : ANN Architecture

The figure shows clearly the use of the layer-multiplexing concept for in implementing the

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink

as described before.

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer

The Normalization block, called “Norm” in the diagram is to centralize and normalize the

step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole

ANN. The Control Units synchronizes their outputs so that they give the right values of the

and weights respectively at the appropriate time.

FPGA implementation of neural neworks

The figure shows block a diagram of the global architecture of ANNs generated by the

multiplexing concept for in implementing the

hidden layers (the grey neurons). It shows too that the output layer is separated (the pink

The Control Unit synchronizes all the blocks and data, and assures that the implemented layer

The Normalization block, called “Norm” in the diagram is to centralize and normalize the

step is important for the correct functioning of a neural network.

The Biases and Weights blocks contain the biases and weights of the neurons of the whole

ANN. The Control Units synchronizes their outputs so that they give the right values of the

 CHAPTER 3

3.5 C++ application

As it was mentioned before, our work consists of a C

description of an optimized architecture of feed

an interface that demands from the user to insert the ANN anatomy, like the number of inputs,

outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD

description for that ANN.

This application is a kind of an abstraction to

longer the need to write any VHD code for any feed forward layered neural network, all what

is needed for that with the application is a few clicks.

 This application generates the implementation of the generaliz

that the neuron’s training is performed offline with, so this application requires from the user

to provide the weights and biases written in real representation (float), in a txt files and then it

generates as output a set of files with a “vdh” extension which represent the different

components of the ANN architecture.

The coding idea used to generate the VHD files is very simple. We used the commands of

read and write from files, then the VHD description is written dependi

the ANN specified by the user

Example:

This image shows an instruction of the C

description. However the line showed is constant, it does not need to be changed with

different ANN anatomies that are specified by the user, the challenge in this application was

how to generate VDH codes of the blocks that are variable with different ANNs

Example:

In this example we can see the C++ instruction that generates a signal “cs”, however this time

this signal is used to command all the neurons in the output layer, each bit commands a

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19,

i.e., it becomes (19 downto 1). Another deal is how to initialize or assig

signals. That was done by a set of simple functions like:

FPGA implementation

57

As it was mentioned before, our work consists of a C++ application that generates the VHD

description of an optimized architecture of feed-forward layered neural networks. It is mainly

terface that demands from the user to insert the ANN anatomy, like the number of inputs,

outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD

This application is a kind of an abstraction to ANN VHD description, since the user has no

longer the need to write any VHD code for any feed forward layered neural network, all what

is needed for that with the application is a few clicks.

This application generates the implementation of the generalization phase only. That is to say

that the neuron’s training is performed offline with, so this application requires from the user

to provide the weights and biases written in real representation (float), in a txt files and then it

of files with a “vdh” extension which represent the different

components of the ANN architecture.

The coding idea used to generate the VHD files is very simple. We used the commands of

read and write from files, then the VHD description is written depending on the anatomy of

the ANN specified by the user

This image shows an instruction of the C++ code to generate the first line of the VHD

description. However the line showed is constant, it does not need to be changed with

es that are specified by the user, the challenge in this application was

how to generate VDH codes of the blocks that are variable with different ANNs

In this example we can see the C++ instruction that generates a signal “cs”, however this time

this signal is used to command all the neurons in the output layer, each bit commands a

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19,

i.e., it becomes (19 downto 1). Another deal is how to initialize or assign values to this kind of

signals. That was done by a set of simple functions like:

FPGA implementation of neural neworks

application that generates the VHD

forward layered neural networks. It is mainly

terface that demands from the user to insert the ANN anatomy, like the number of inputs,

outputs, hidden layers and neurons of each layer, and then it generates its corresponding VHD

ANN VHD description, since the user has no

longer the need to write any VHD code for any feed forward layered neural network, all what

ation phase only. That is to say

that the neuron’s training is performed offline with, so this application requires from the user

to provide the weights and biases written in real representation (float), in a txt files and then it

of files with a “vdh” extension which represent the different

The coding idea used to generate the VHD files is very simple. We used the commands of

ng on the anatomy of

code to generate the first line of the VHD

description. However the line showed is constant, it does not need to be changed with

es that are specified by the user, the challenge in this application was

how to generate VDH codes of the blocks that are variable with different ANNs

In this example we can see the C++ instruction that generates a signal “cs”, however this time

this signal is used to command all the neurons in the output layer, each bit commands a

neuron. Thus if a user wants an ANN with a 19 outputs this signal should have a width of 19,

n values to this kind of

 CHAPTER 3 FPGA implementation of neural neworks

58

The function in line 23 indicated in the previous image called “toBinary” takes a number n,

and its maximum value and gives as an output in a string the representation of that number in

2’s complement representation with an appropriate width.

The functions in lines 26 and 27 do transform the values of biases and weights provided in

files by the users, into their appropriate binary representation. The width of both biases and

weights a general for all ANNs generated by this application.

The previous example shows how to generate and initiate signals whose width depends on the

anatomy of the ANN specifies by the user; however there are much more complicated blocks

whose functioning depends completely on the anatomy, and the most important one is the

Control Unit. This block contains a finite state machine that produces signal to synchronize all

the system (ANN), and the C++ code that generates it needs additional C++ functions and many

conditions.

The figure shows the state diagram (a direct graph) of state machines for two different neural

networks generated by the application:

The first state machine (Figure 3-15 a) is for an ANN that has 3 layers plus an input layer that

contains 3 inputs, the layer 1 has 1 neuron and both layers 2 and 3 have 2 neurons.

The second state machine (Figure 3-15 b) is for an ANN that has 2 layers plus an input layer

which contains 3 inputs too, the layer 1 has 5 neurons and layer has 4 neurons.

It can be clearly seen that the state machines of the two neurons are totally different.

Figure 3-15: Flow state of 2 state machines

 CHAPTER 3 FPGA implementation of neural neworks

59

Simulations:

To test our application we have generated two different neural networks:

The first one has the anatomy 1_1_15 which means that it has 1 input, 1 neuron in the hidden

layer, and 15 neurons in its output. The second one has the anatomy 1_1_5; (see Figure 3-16

and Figure 3-17)

Figure 3-16 : ANN 1_1_15

Figure 3-17 : ANN 1_1_5

Interpretation:

The Figure 3-16 shows a ModelSim simulation of the 1_1_15 ANN generated by the C++, we

can see clearly that all the output were assigned in less than four clock cycles. Normally all

 CHAPTER 3 FPGA implementation of neural neworks

60

the outputs should have being assigned their values in the third clk cycle, however the number

of neurons of the output layer in this ANN is 15, it largely exceeds the number of products

used (since the latter is very limited, in our FPGA and we used on multiplier per neuron, thus

we assigned the outputs 6 by 6 and this created more latency (the two additional clk cycles).

Unlike it, the second ANN’s largest layer has 5 neurons in the output, that is why all its

outputs got assigned in the third clk cycle)

3.6 Conclusion

In this chapter we have presented the hardware implementation of ANNs in FPGAs. We first

introduced the most important issues and the challenges that should be dealt with by the

designer when implementing ANNs; these include the parallelism required for real-time

applications, the precision and the minimization of the cost (resources). After that we have

presented an optimized method for implementing the activation function of a neuron by the

use of an optimized LUT proposed by Maher. That same method was used in this work to

implement two non linear activation functions, the hyperbolic tangent and the sigmoid

function.

To implement large ANNs, huge resources are required. To avoid this, we have used the

concept of layer multiplexing, where we needed to implement only the largest layer, this one

calls itself repeatedly to behave sequentially like all hidden layers. This method proved to be

very effective in term of reducing resources without a big compromise on the computing

speed.

The architecture of a single neuron, and the whole artificial network were then presented

respectively in the form of block diagrams and their components when presented after, and to

conclude the chapter we talked about the C++ program we created and that generates any feed

forward ANN that the user wants, basing on all those previous optimized designing methods.

After that we simulated two different generated ANNs, and analyzed the results.

CHAPTER 4

 CHAPTER 4 ANN SHE PWM technique

62

CHAPTER 4. ANN SHE PWM TECHNIQUE

4.1 Introduction

At the end of the last century, one of the results of the development of power electronics is the

Pulse Width Modulation technique. It is the heart of the control of static converters. The

objective of the PWM technique in controlling a voltage inverter is to have a fast response

and high performance. The programmed PWM which is one of the two types of the PWM

(generated and programmed) is based on a technique of elimination of unwanted harmonics

that may produce vibrations and undulations of torque and many undesirable consequences.

This technique is called SHE PWM (Selective Harmonics Elimination Pulse-Width

Modulation). It was introduced by Turnbull in 1964 and developed later by Patel and Hoftel

in 1973.

4.2 SHE PWM

4.2.1 Introduction

This technique consists in forming the output wave of a succession of slots of variable and

controllable widths. The switching angles are determined so as to eliminate certain disturbing

harmonics in the output wave and improve the efficiency of the inverter-machine system by

reducing torque ripples, as well as current peaks and losses in the machine. The calculation of

these angles with this method is based on the nonlinear and transcendental equations. This has

forced researchers to use numerical methods such as Newton-Raphson. The problem with this

method is the choice of good initial values necessary for convergence. Moreover, the

computation of these angles cannot be done on-line (in real-time), thus the angles should be

stored in memory, which makes the system not optimal for applications whose changes in

frequency and voltage are fast, such as the speed controller. This problem has led to the need

to use a better algorithm. Recently, an algorithm based on the polynomial interpolation

approach of the trajectory of the SHE PWM angles by ANN was proposed by GUELLAL

Ammar [13]. This algorithm will be our application and be implemented using our ANNs to

calculate the switching angles and generating the SHE PWM signals for controlling the

voltage inverter on-line, .

 CHAPTER 4 ANN SHE PWM technique

63

4.2.2 Principle of operation

The PWM signals describing the three output voltages of the converter must have properties

which help to orient their characteristics towards those of a sine wave. In order to approach

them as much as possible, we may in some cases attribute to them the same properties of

symmetry as a sinusoidal wave. The aim of this technique is to eliminate a certain number of

low-order harmonics and to control the fundamental wave. The output voltage of the inverter

is defined as a function of the exact switching angles α1,…, αm (see Figure 4-1) corresponding

to the switching times of the voltage from a positive value +E to a negative value -E or vice

versa. The index m is the number of switching angles of the output voltage of the inverter per

quarter wave. The output voltage of the inverter is constructed to have half-wave symmetry

(odd function with respect to the angle π). This symmetry makes it possible to eliminate

certain types of harmonics, which simplifies the Fourier series development of this voltage

and reduces the harmonic ratio. Then, the amplitude of the fundamental is fixed to the value

im and the amplitudes of the (m-1) first harmonics are canceled.

Figure 4-1 : The Inverters output normalized Voltage

im is the modulation rate defined by:

�� =
�

�

V is the tension of the fundamental.

It is assumed that the output voltage is periodic and of unit amplitude. Let f be the function

representing the PWM signal as a function of α (α = ωt). We can write therefore:

 �(�) = − �(� + �) (4-1)

The function f can be decomposed into Fourier series:

 �(�) = �� + � (�� sin(��)+ �� cos (��))

�

�� �

 (4-2)

Where:

 CHAPTER 4 ANN SHE PWM technique

64

 �� =
1

2�
� �(�)��

��

�

 (4-3)

 �� =
1

�
� �(�)sin (��)��

��

�

 (4-4)

 �� =
1

�
� �(�)cos (��)��

��

�

 (4-5)

The calculation shows:

�� = 0

For n even:

�� = �� = 0

For n odd:

 �� =
4

��
�1 + 2 � (− 1)�cos (���)

�

�� �

� (4-6)

�� = 0

In our study we used a three-phase inverter, so the harmonics of rank three and multiples of

three are eliminated automatically. Thus, n takes odd values different from a multiple of 3.

4.2.3 The switching angles

Each equation (4-6) has m unknown variables α1, α2, α3,…, αm. The problem is to calculate the

values of these switching angles which make it possible to cancel the amplitudes an of the first

(m-1) harmonics fn and to assign an im value to the amplitude a1 of the fundamental f1.

On the other hand, two voltage harmonics must be eliminated in order to eliminate a current

harmonic. Since the amplitude of the fundamental is to be fixed at a given value, this sets the

first value from m to 3 (m being the number of quarter-wavelength switching or number of

cuttings per half wave).

The first value of m is set to 3 so that the amplitude of the fundamental is fixed to a given

value (m being the number of quarter-wave switching per half wave). Consequently, when m

is increased successively by 2, the number of current harmonics that will be eliminated is

increased by 1.

It should be noted that the value of the modulation index im assigned to the fundamental is a

dimensionless index varying from 0 to 1. To obtain the corresponding value in volt, multiply

by E for the three-phase inverter.

 CHAPTER 4 ANN SHE PWM technique

65

The equations (4-7) form a system of m nonlinear equations with m unknown

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ ��(��,��,��,… ��) =

4

�
�1 + 2 � (− 1)�cos (��)

�

�� �

� + �� = 0

��(��,��,��,… ��) =
4

5�
�1 + 2 � (− 1)�cos (5��)

�

�� �

� = 0

��(��,��,��,… ��) =
4

7�
�1 + 2 � (− 1)�cos (7��)

�

�� �

� = 0

.

.

.

��(��,��,��,… ��) =
4

��
�1 + 2 � (− 1)�cos (���)

�

�� �

� = 0

� (4-7)

For this method to converge, we assign a negative value (-im) to the fundamental. This

corresponds to a phase shift of π of the fundamental. This phase shift has no effect on the

motor [13].

A simple technique to solve these equations is to use Newton-Raphson method. We must have

a good initial estimate of the exact solution sought, so that this method accurate solution and

good convergence. Alternatively, more complicated gradient search methods can be used to

obtain the solutions. Indeed, the Taufik, Mellitt, and Goodman algorithm is used to quickly

estimate the initial values of the nonlinear system solution.

A MATLAB program has been made to calculate the switching angles as a function of the

modulation index im [13].

4.3 Implementation of ANN SHE PWM

As we have already stated, the PWM is a powerful tool in controlling the voltage inverter. It

based on the SHE PWM technique which requires a very high computing time to calculate the

switching angles using numerical methods which prevents speed control on-line so the

algorithm of Patel and Hoft is off-line. Over the last years, various researches have addressed

this topic. The results showed that it was not possible to implement this algorithm on a

microprocessor. However, in 2007, GUELLAL managed to implement this algorithm on an

FPGA circuit. With the emergence and development of new intelligent control techniques, a

new algorithm based on artificial neural network (ANN) has been proposed. The aim of this

algorithm is to calculate the switching times of the PWM signal with a precision very close to

those calculated by the Patel and Hoft algorithm. This algorithm is going to be our application

to test the performance of our ANN discussed in chapter III.

 CHAPTER 4 ANN SHE PWM technique

66

4.3.1 Architecture of the ANN SHE

The aim of the proposed algorithm is to build a Multi Layer Perceptron MLP which will be

implemented on an FPGA circuit using the VHDL codes generated by our application.

4.3.1.1 The topology of neural network [13]
In order to simplify the implementation and reduce the consumed space in the FPGA circuit, a

network composed of an input layer, a hidden layer and an output layer has been chosen, in

addition the hidden layer contains a single neuron. This architecture also makes it possible to

reduce the error and the time when calculating the switching angles since, if the number of

layers or the number of neurons in the hidden layers is increased, the error in the switching

angles and the calculation time will be multiplied.

Concerning the activation functions, the tangent sigmoid function was chosen between the

input layer and the hidden layer to present the nonlinearity of the system and a simple linear

function between the hidden layer and the output layer. The non-linear function between the

input layer and the hidden layer has been placed so that this function is computed once, since

if placed between the hidden layer and the output layer this function will be calculated for

each switching angle; thus this choice makes it possible to reduce the complexity and the time

of the computation.

The architecture of our ANNSHE PWM algorithm is presented in Figure 4-2 where:

im: The modulation index which is the input of the network.

W1: Weights matrix between the input layer and the hidden layer.

W2: Weights matrix between the hidden layer and the output layer.

b1: Biases matrix between the input layer and the hidden layer.

b2: Biases matrix between the hidden layer and the output layer.

α: Matrix of switching angles which presents the output of our network.

Figure 4-2 : ANN SHE Architecture

 CHAPTER 4 ANN SHE PWM technique

67

4.3.1.2 Database
In this section, the database that will be used in the off-line training is managed. This database

gives a relation between the input of the artificial neural network which is the index

modulation im and its output which is the switching angles matrix α. im takes values from 0

to 1. A database of 100 values in which im vary by a step of 0.01 has been constructed [13],

and for each value of im, for each value of im, the system of equation of Patel and Hoft

(equation (4-7) is solved in order to find the matrix α of the corresponding switching angles.

Moreover, in order for the algorithm to be effective, that is to say the angles calculated by this

algorithm are very close to the exact values computed by the iterative method of Newton-

Raphson, and to allow the convergence of the learning step, the interval of variation of im is

divided into six and for each interval a specific ANN (weights and biases) is constructed. The

choice of number of switching angles (i.e. the number of harmonics to be eliminated) in each

interval depends on the value of the index im and since the effect of the harmonics increases

when im decreases we take the appropriate choice which is illustrated in the Table 4-1 , this

choice also makes it possible to optimize our algorithm and thus minimize the space

consumed during the implementation.

Table 4-1: ANN SHE characteristic

The modulation
index im

ANN

N
um

be
r

of

th
e

sw
it

ch
in

g
 a

ng
le

s

N
um

be
r

of
 n

eu
ro

ns
 i

n
th

e
h

id
de

n
la

y
er

s

N
um

be
r

of
 n

eu
ro

ns
 i

n
th

e
o

ut
pu

t
la

y
er

T
ra

in
in

g
al

go
ri

th
m

A
ct

iv
at

io
n

fu
n

ct
io

n

N
um

be
r

of

el
em

en
ts

in

da

ta
b

as
e

of

th
e

tr
ai

ni
n

g

Training
parameters

P
er

fo
rm

an
ce

nu
m

be
r

of

ep
o

ch
s

0.01 ≤ im < 0.16 ANN-1 23 1 23

B
ac

k
p

ro
p

ag
at

io
n

 a
lg

or
it

hm

H
yp

er
b

o
li

c
T

an
g

en
t

S
ig

m
o

id

+
 l

in
ea

r

23x 15 105 62561

0.16 ≤ im < 0.32 ANN-2 19 1 19 19x 16 105 64982

0.32 ≤ im < 0.56 ANN-3 15 1 15 15x 24 105 73214

0.56 ≤ im < 0.76 ANN-4 7 1 7 7x 20 105 87327

0.76 ≤ im < 0.92 ANN-5 5 1 5 5x 16 105 164338

0.92 ≤ im < 1 ANN-6 3 1 3 3x 8 1.5 104 200000

To find the parameters of six ANNs, a program on MATLAB which solves the system of

equation of Patel and Hoft and generates the six databases has been developed [13]. These

databases will be used in the learning phase. Some of switching angles are shown in the Table

 4-2 using ANN-4.

 CHAPTER 4 ANN SHE PWM technique

68

Table 4-2 : An example of switching angles (m=7) generated by a Matlab program

im 0.58 0.59 0.60 0.61 0.62
α1 11,1149755 11,0448428 10,9745607 10,904126 10,83353518
α2 16,4743076 16,4952108 16,5158101 16,5360929 16,55604594
α3 25,8659416 25,7882198 25,7101518 25,6317263 25,55293186
α4 32,5003488 32,5384342 32,5761823 32,6135775 32,65060327
α5 40,836138 40,7576594 40,6787918 40,5995203 40,51982873
α6 48,3117705 48,3673372 48,4227855 48,4781084 48,53329855
α7 56,1144861 56,0440286 55,9733672 55,9024937 55,83139934

4.3.1.3 Off-line training
In this stage, the parameters of six ANNs (ANN-i) which are the weights and biases will be

calculated off-line. The database of each ANN calculated in the previous section, is used as

input in a training program based on the gradient method. The inputs and the outputs of that

program are automatically normalized. The training program has two shutdown conditions,

performance and number of epochs. When one of these conditions is verified, training is

stopped to generate the appropriate parameters (weights and biases).

The parameters of the training and the characteristics of each ANN-I are shown in the Table

 4-1.

At the end of the training, the appropriate parameters for the used neurons is generated and

used for the simulation in the next section. These results (Weights and biases) are shown in

the Table 4-3 for the ANN-4.

Table 4-3 : weights and biases calculated in the training phase

W1 W2 b1 b2
0.9966 -1.0588

1.0551
-1.0581
1.0615
-1.0576
1.0602
-1.0582

-0.5257 0.4770
0.5583
0.4813
0.5459
0.4826
0.5313
0.4790

4.3.1.4 Simulation
In this stage, the efficiency and the accuracy of the algorithm is checked. Using ModelSim,

the ANN-4 is simulated (Figure 4-3) for two different values of im (im=59.5 and im=61.5).

As we have mentioned earlier, the input is represented in 15 bits (10 for the integer part and 5

for the fractional part) and the output is represented in 9 bits (3 for the integer part and 6 for

the fractional part).

 CHAPTER 4

Figure 4-3: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

It is clear from the Figure 4-

should be done in order to get the real switching angles. The

the reverse normalization.

Table 4-4 : The exact values for switching angles for m=0.595 and m=0.615

im
α1
α2
α3
α4
α5
α6
α7

4.3.1.5 Results & interpretation
To check the performance and the accuracy of the ANN SHE, we make a comparative study

between the exact switching angles calculated by Newton

SHE switching angles given by the MATLAB program. Then the

been shown in the Table 4-5.

Table 4-5 : A comparison between the exact and ANN SHE switching angles

im = 0.595

Exact angles
ANN SHE
angles

11.0097 11,0218985
16.5055 16,5020112
25.7492 25,7570957
32.5574 32,547983
40.7183 40,724594
48.3951 48,3779872
56.0087 56,0188291

ANN SHE

69

: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

-3 that the output is normalized, thus a reverse normalization

should be done in order to get the real switching angles. The Table 4-4 shows the results after

The exact values for switching angles for m=0.595 and m=0.615

 0.595 0.615
 11,0218985 10,8736844
 16,5020112 16,5399051
 25,7570957 25,5895462
 32,547983 32,6207589
 40,724594 40,5544361
 48,3779872 48,4910562
 56,0188291 55,8686532

Results & interpretation
To check the performance and the accuracy of the ANN SHE, we make a comparative study

between the exact switching angles calculated by Newton-Raphson method, and the ANN

SHE switching angles given by the MATLAB program. Then the error between them has

: A comparison between the exact and ANN SHE switching angles

im = 0.615

ANN SHE
error Exact angles

ANN SHE
angles

0,01219848 10,8689 10,8736844
0,00348878 16,5461 16,5399051
0,00789571 25,5924 25,5895462
0,009417 32,6321 32,6207589
0,00629396 40,5597 40,5544361
0,01711281 48,5057 48,4910562
0,01012914 55,867 55,8686532

ANN SHE PWM technique

: A ModelSim simulation to generate the angles (im= 0.595 & 0.615)

ed, thus a reverse normalization

shows the results after

The exact values for switching angles for m=0.595 and m=0.615

To check the performance and the accuracy of the ANN SHE, we make a comparative study

Raphson method, and the ANN

error between them has

: A comparison between the exact and ANN SHE switching angles

ANN SHE
Error

10,8736844 0,00478443
16,5399051 0,00619486
25,5895462 0,00285378
32,6207589 0,01134113
40,5544361 0,00526387
48,4910562 0,01464378
55,8686532 0,00165325

 CHAPTER 4 ANN SHE PWM technique

70

We can clearly see that the ANN SHE angles are close to exact angles with a very small error.

4.3.2 Implementation of ANN SHE

To implement practically the proposed ANNSHE PWM algorithm and thus verify its

accuracy and efficiency, an implementation on an FPGA circuit is described using our

application described in the previous chapter.

4.3.2.1 Description
Our C++ application is used to implement ANN SHE. The ANN SHE is a specific application

with its own characteristic, thus some extra blocks should be added to the main structure

generated by our application:

Interval selector

As we have already stated earlier, the im interval has been divided into 6 sub-intervals. For

each sub-interval, an artificial neural network (ANN-i) has been constructed. Accordingly, the

purpose of this block is the selection of the network which is suitable for the input im (Figure

 4-4). In the training phase, im was expressed as a percentage, i.e. im is between 0 and 100%.

In the design we have dimensioned the im input on fifteen bits, ten bits for the integer part and

five bits for the fractional part, so the variation pitch of im is 0.03125%. This choice can be

changed according to the choice of the variation pitch of im. Moreover, in order to simplify

the choice of each interval as a function of im, the limits of each interval were defined as

indicated in the Table 4-6 [13].

Figure 4-4 : Interval selector structure

Table 4-6: The intervals for the variation of im

ANN
Interval of variation
of im in percentage
immin ≤ im < immax

The lower limit in
binary

Interval

ANN-1 01% ≤ im < 16% 000000000000 001
ANN-2 16% ≤ im < 32% 001000000000 010
ANN-3 32% ≤ im < 56% 010000000000 011
ANN-4 56% ≤ im < 76% 011100000000 100
ANN-5 76% ≤ im < 92% 100110000000 101
ANN-6 92% ≤ im < 100% 101110000000 110

 CHAPTER 4 ANN SHE PWM technique

71

According to the Table 4-6 we find:

���� = ���������� .����������.����������
���� = ���������� .����������.����
���� = ���������� .����������.(���������� + ��������)

���� = (����������.����.����.���)+ �����.����������.����������.(�������� + ��������)�

���� = ����.����������.�(����������.���.���)+ �����.(��������.��������)��

���� = ����.((����������.����.���.���)+ (����.����������.��������).(��������
+ (���.��������.��������)))

(4-8)

������ = ���� + ���� + ����
������ = ���� + ���� + ����
������ = ���� + ���� + ����

(4-9)

According to the equations (4-8) and equations (4-9) a design based on the combinational

logic of the "interval selector" module is created under VHDL to select the appropriate

network at the �� input. This block is added to the other blocks generated by our C++

application.

Normalization & Reverse normalization

In the training phase, one important parameter is the input interval values. Once this interval

is chosen, the training is done its calculation considering the input as it is set in that interval.

Thus a normalization block has been added to adjust any inputs of ANN to another

normalized input.

In the calculation of the switching angles of the SHE PWM, the reverse normalization block

at the output of the ANN is not needed since we have used the normalized output instead of

the real one.

PWM signal generator

We have at the end of our main design followed by the extra blocks, the switching angles.

This block is used to generate the PWM signals by converting these angles to times, thus we

obtain the switching times.

The switching angles are calculated using the following equations:

 �� =
�� ��� − �� ���

��� ��� − ��� ���

(��� − ��� ���)+ �� ��� (4-10)

Where:

�� ���and �� ��� are respectively the maximum angle and the minimum angle of the database

corresponds to the angle ��

��� ��� and ��� ��� are respectively the maximum normalized angle and the minimum

normalized angle of the database corresponds to the normalized angle ���.

 CHAPTER 4 ANN SHE PWM technique

72

In the training phase ��� ��� = 1 and ��� ��� = 0 has been used, Replacing in the equation

(4-10) we find:

 �� = (�� ��� − �� ���)��� + �� ��� (4-11)

Posing

��� = (�� ��� − �� ���) and ��� = �� ���

By replacing in (4-11):

 �� = ������ + ��� (4-12)

As it has been mentioned above, in order to generate the PWM control signals it is necessary

to transform the switching angles into switching times. In our application we have opted for

the command
�

�
= ���. By using this property one finds:

�

�
=

��

��
 (4-13)

which implies:

�

��
=

�

��
= ��

(4-14)

Where �� is the modulation index and �� = 50 �� the frequency for �� = 1.

The relationship between the switching angle and the switching instants is given by the

following relation:

 �� =
��

360
×

1

�

(4-15)

Using the equations (4-14) and (4-15) one finds:

 �� =
10��

18
×

��

��

(4-16)

Since �� was expressed in percentage.

 �� =
1

180
×

��

��

(4-17)

In addition, to generate the control signals from the switching times, a clock of 1 MHz was

used, so the switching times must be expressed in µs.

 ��(μ�) = �� ×
10�

180
×

1

��

(4-18)

By combining (4-12) and (4-18) one finds

 ��(μ�) =
1

��
(
��� × 10�

180
��� +

��� × 10�

180
)

(4-19)

 CHAPTER 4 ANN SHE PWM technique

73

 ��(μ�)=
1

��
× ��

(4-20)

with
�� = (

��� × 10�

180
��� +

��� × 10�

180
)

(4-21)

According to (4-20) we have a division on im which poses an implementation problem on an

FPGA circuit. To avoid this division, in this step the values of �� given by the equation (4-21)

are calculated. Then, in the step of generating control signals, an internal signal “counter” in

the form of a counter is created.

The equation (4-20) gives:

 �� × ��(μ�)= �� (4-22)

The “counter” represents the value of �� × ��(μ�). It is initialized by 0 and incremented by

�� at each rising edge of the clock (1 µs) then we compare it, each time, with ��.

According to (4-21) we need a multiplier to calculate each value ��, where i can vary from 1

to 23, so if we calculate all �� in parallel we need 23 multipliers. Only two multipliers were

used [13]. According to the signal generation block, in the first clock edge it is necessary to

calculate �� and �� (m is the number of switching angles), in the second front �� and ����,

and so on until calculation of all ��.

The objective of this block is to generate the PWM signals s1, s2, s3 from the switching

instants. At the beginning, the signal s1 is at 1 then as we have mentioned the “counter” starts

at 0 and incremented by �� then it is compared to ��. When “counter” become greater

than ��, s1 is toggled and “counter” is compared then to ��until it becomes greater then ��

then s1 is toggled and so on until “counter” become greater than ��. We start then comparing

“counter” to �� − �� where �� is the value of � correspond to the half-period (� = �). When

“counter” becomes greater than �� − �� , s1 is toggled and “counter” is compared then to

�� − ���� until it becomes greater then �� − ���� then s1 is toggled and so on until

“counter” becomes greater than �� − ��. Then we compare it to ��. When “counter” becomes

greater than ��, s1 is toggled, “counter” is reset to 0, then we repeat the process. According to

the database used during training for all ANN-i networks, it was noted that �� < 60°.

besides, s2 is phase-shifted by 120 ° with respect to s1, besides s1=0 after 120° and the next

switching instant is at �� − ��. Consequently, at the beginning signal s2 starts at 0, its

counter "counter2" starts at ���

�

 and compared to �� − �� then the same process for

generating s1 is repeated. The same with s3, we find that it starts at 1 and its counter

“counter3” starts at ��

�
 and compared to �� − �� then the same process for generating s1 is

repeated.

 CHAPTER 4

Figure

ANN SHE

74

Figure 4-5 : PWM generator algorithm

ANN SHE PWM technique

 CHAPTER 4 ANN SHE PWM technique

75

4.4 Simulation and Results

In this section, the software ModelSim has been used to simulate the PWM signal generated

by the algorithm ANN SHE designed by the VHDL codes. Some of these codes are generated

by our C++ based-application and the others are VHDL codes of the blocks stated in the

previous section.

The ANNSHE PWM algorithm has two inputs, which are the modulation index im and the

clock clk, and three outputs representing the three PWM commands out of phase by 120 °.

Figure 4-6 and Figure 4-7 show under Modelsim a simulation of the implementation of the

ANNSHE PWM algorithm on FPGA for different values of im.

Figure 4-6: The three-phase PWM signals (im=40%)

Figure 4-7: The three-phase PWM signals (im=59 .5%)

From the two previous figures, it can be seen that the three signals are generated in parallel

and are independent of each other, and further from that figure it is noted that the signals are

phase-shifted by 120°.

The signal s1 from Figure 4-6 has 15 switching angles and it has a period � = 50��, thus a

frequency � =
�

�
= 20 ��.

These results are confirmed by the fact that for �� = 40% the selected ANN is the ANN3

which has 15 switching angles. And from the equation (4-14) we find � = 20 ��.

The signal s1 from the Figure 4-7 has 7 switching angles and it has a period � = 33��, thus a

frequency � =
�

�
= 30.3 ��.

 CHAPTER 4

These results are confirmed as well by the fact that for

ANN4 which has 7 switching angles. An

which is close to 30.3 ��.

The first signal s1 in Figure

frequency spectrum:

Figure 4-8 : Frequency spectrum of PWM signal for Im=40%

The Figure 4-8 shows that the first non

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the

phase voltage.

This proves that the switching angles computed by the ANNs generated by our C

application are accurate. This confirms the good functioning of our application.

4.5 Conclusion

As a test for our C++ based application

speed control of an inductor motor. Although the functionality of our application has already

been checked, in this chapter, it is used in a real industrial application. The ANN is associated

with the well-known SHE PWM to form the ANN SHE PWM algorithm

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs g

by our application.

In this chapter we have presented at the beginning the SHE PWM and its principle of

operation, then we introduced the notion of the switching angles and their calculation

methods. We went after that to the technique of ANN SHE

topology, data representation and the training.

ANN SHE

76

These results are confirmed as well by the fact that for �� = 59.5% the selected ANN is the

ANN4 which has 7 switching angles. And from the equation (4-14) we find

Figure 4-6 has been exported to Matlab. The Figure

: Frequency spectrum of PWM signal for Im=40%

shows that the first non-eliminated harmonic for m=15 is the 47

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the

This proves that the switching angles computed by the ANNs generated by our C

s confirms the good functioning of our application.

based application proposed in the previous chapter, we have chosen a

speed control of an inductor motor. Although the functionality of our application has already

cked, in this chapter, it is used in a real industrial application. The ANN is associated

known SHE PWM to form the ANN SHE PWM algorithm. The results showed

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs g

In this chapter we have presented at the beginning the SHE PWM and its principle of

operation, then we introduced the notion of the switching angles and their calculation

methods. We went after that to the technique of ANN SHE PWM, discussing the ANN

topology, data representation and the training.

ANN SHE PWM technique

the selected ANN is the

we find � = 29.75 ��

Figure 4-8 shows its

: Frequency spectrum of PWM signal for Im=40%

nated harmonic for m=15 is the 47th.

The other harmonics in the figure are multiple of three harmonics. They are eliminated in the

This proves that the switching angles computed by the ANNs generated by our C++

s confirms the good functioning of our application.

chapter, we have chosen a

speed control of an inductor motor. Although the functionality of our application has already

cked, in this chapter, it is used in a real industrial application. The ANN is associated

. The results showed

that the nearest harmonics are eliminated, thus it proves the accuracy of the ANNs generated

In this chapter we have presented at the beginning the SHE PWM and its principle of

operation, then we introduced the notion of the switching angles and their calculation

, discussing the ANN

 General Conclusion

77

GENERAL CONCLUSION
In this work a C++ based-application has been created for the implementation of ANNs with a

flexible topology. It generates ANNs descriptions in VHDL codes. These description

topology parameters are introduced by the user who has no longer to type the whole script.

This application has been then tested for a specific use which is an inductor motor control.

The desire to create such an application has come because of the importance of the artificial

neural networks in today’s technology development. They become more and more an open

field for researches and it have increasingly been used in different industrial domains.

The hardware implementation of these networks has represented an issue, until the emergence

of a highly developed FPGA circuits, which fit much better compared to other circuits such as

ASICs.

To implement these ANNs in FPGA circuits, a description VHDL codes, and a development

tools (e.g. ISE Xilinx) are required. Thus, to facilitate the task of writing the scripts and save

times and efforts for the user, we have developed a C++ based application, with whom the user

can get any ANN topology depending on his needs. In the implementation of the ANN, many

challenges have been faced such as the problem of limited resource. It has been dealt with that

limits by designing an optimized architecture with its own characteristic, ensuring the

parallelism of the ANN. That architecture uses a specific data representation, to present the

inputs, outputs and the inner signals. This representation is fit for the inner multipliers which

are limited dimensions. Talking about multipliers the FPGA has a few amount of them, thus a

multiplexing is needed between them. In our app only six multipliers has been used, thus six

products can be calculated at the same time. Although that reduces the speed of calculation, it

economizes so many resources. Moreover, a serial sum of product has been used to calculate

the sum of products. To implement the activation function of the neurons, we used LUT-

based method, optimized by Maher which requires 15 values to be stored for the Tangent

Sigmoid, and 18 for Log Sigmoid, ensuring a minimum error.

To put our C++ based application in a real test. It has been used to generate a specific ANNs

dedicated to a speed control of an asynchronous motor.

Controlling the speed of an asynchronous motor requires the use of a voltage inverter with a

sinusoidal output that can vary in voltage and frequency. In real applications, control

strategies produce unwanted harmonics in the output of the inverter. To solve the problem of

undesirable harmonics, a well-known solution is the use of the SHE PWM command.

However, the use of this command requires the resolution of a system of nonlinear equations,

limiting this control strategy to off-line calculation. To get through this limitation, a new

technique, based on SHE PWM and ANN, has been introduced, it is called ANN SHE PWM.

The results show that the switching angles calculated by ANN SHE PWM algorithm, are

close to the exact values.

 General Conclusion

78

To implement the whole circuit that generates the PWM signals, we have generated the main

blocks by our C++ application which is responsible for the ANN VHDL description code, and

the rest are added manually. All the blocks together formed a specific application to be

implemented on FPGA. The implementation results show that the calculation of the switching

instants and the generation of the PWM signals are on-line and very accurate. The three

control signals are generated in parallel and are independent of each other.

In view of this work, we plan to continue working on our C++ based application, to make it

easier to the user by adding some extra options such as changing the number of the product

used from a fixed number to variable, which make the ANN fit for the large and the low

resources-FPGA. Besides, the data representation is fixed, and by making it variable it allows

the user to introduce a larger interval of values for the inputs and other signals. Finally,

implementing other types of layered neural network would offers more flexibility and

diversity of the topology of the ANN.

 Bibliography

79

BIBLIOGRAPHY

[1] Simon Haykin, Neural Networks - A Comprehensive Fondation, Second Edition, Prentice Hall

ed., 1998.

[2] IZEBOUDJEN Nouma, "Plateforme pour l ’ Implémentation des Réseaux de Neurones sur FPGA

: Application à l ’ Algorithme de la Rétro Propagation du Gradient (RPG)," Ecole nationale

Polytechnique, Algiers, Algeria, Thèse de Doctorat 2014.

[3] Jeff Heaton, Introduction to Neural Networks with C#, WordsRU.com, Ed.: Heaton Research,

Inc, 2008.

[4] Bertram G. Katzung, Basic and Clinical Pharmacology.: McGraw-Hill Education, 2015.

[5] Kevin Gurney, An introduction to NUERAL NETWORKS.: CRC Press, 1997.

[6] Christopher MacLeod, An Introduction to Practical Neural Networks and Genetic Algorithms For

Engineers and Scientists., 2010.

[7] Wiley Corning, "Topology of Neural Networks," New College of Florida, Sarasota, FL, Thesis

June 2016.

[8] Patrick van der Smagt Ben Krose, An introduction to Neural Networks.: The University of

Amsterdam, 1996.

[9] Paulo E. M. Almeida, Marcelo Godoy Simões Magali R. G. Meireles, "A Comprehensive Review

for Industrial Applicability," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 50,

no. 3, JUNE 2003.

[10] JAGATH C. RAJAPAKSE, AMOS R. OMONDI, FPGA Implementations of Neural Networks,

Springer, Ed.

[11] NEKKACHE Abdessalem BOUCHEKOUK Oussama, "Implémentation s'une commande ANN

SHE PWM sur une carte FPGA pour un véhicule électrique," Ecole Nationale Polytechnique,

Algiers, Projet de fin d'études 2015.

[12] S. Brown and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design & Test of

Computers, vol. 13, no. 2, pp. 42-57, 1996.

[13] GUELLAL Amar, "Contribution à l’étude et à l’implémentation des commandes en temps réel

pour MAS," Ecole Nationale Polytechnique, Algiers, Algeria, Thèse de doctorat 2015.

[14] BENDIB Douadi, "Etude et réalisation d’une commande MLI on-line sur circuit FPGA," Ecole

Nationale Polytechnique, Algiers, Algeria, Mémoire de Magister 2009.

 Bibliography

80

[15] Marcian N. Cirstea, Eric Monmasson, "FPGA Design Methodology for Industrial Control

Systems—A Review," IEEE Transactions On Industrial Electronics, vol. 45, no. 4, AUGUST

2007.

[16] Zied Marrakchi, Habib Mehrez (auth.) Umer Farooq, Tree-based Heterogeneous FPGA

Architectures: Application Specific Exploration and Optimization , Springer-Verlag ed. New

York, 2012.

[17] Juan J- Rodrequez-Andina, "Features, Design Tools, and Application Domains of FPGAs," IEEE

Trans. Ind. Electron., vol. 54, no. 4, AUGUST 2007.

[18] G JAntoine Bioul J P Deschamps, "Synthesis of Arithmetic Circuits FPGA, ASIC, And

Embedded Systems," JOHN WILEY & SONS, 2006.

[19] Digilent Nexys 2 FPGA board. Data Sheet. [Online].

http://www.ece.umd.edu/class/enee245.F2016/nexys2_reference_manual.pdf

[20] Spartan-3E FPGA family. Data sheet. [Online].

https://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

[21] Karl Leboeuf, Roberto Muscedere, Huapeng Wu, Majid Ahmadi, Ashkan Hosseinzadeh Namin,

"Efficient hardware implementation of the hyperbolic tangent sigmoid function," Proceedings -

IEEE International Symposium on Circuits and Systems, pp. 2117-2120, 2009.

[22] Pramod Kumar Meher, "An Optimized Lookup-Table for the Evaluatiion of Sigmoid Function for

Artificial Neural Networks," IEEE/IFIP VLSI Syst. Chip Conf, pp. 91-95, september 2010.

[23] Jeen Shing Wang, Che Wei Lin, "A digital circuit design of hyperbolic tangent sigmoid function

for neural networks," Proceedings - IEEE International Symposium on Circuits and Systems, pp.

856-859, may 2008.

[24] D. Anitha, A. Muthuramalingam, S. Himavathi, "Feedforward neural network implementation in

FPGA using layer multiplexing for effective resource utilization," IEEE Transactions on Neural

Networks, vol. 18, pp. 880-888, 2007.

http://www.ece.umd.edu/class/enee245.F2016/nexys2_reference_manual.pdf

	ACKNOWLEDGEMENTS
	CONTENTS
	TABLE LIST
	FIGURE LIST
	INTRODUCTION
	CHAPTER 1. ARTIFICIAL NEURAL NETWORKS (ANNS)
	1.1 Introduction
	1.2 Historical Perspective on Neural Nets
	1.3 Biological inspiration
	1.3.1 Structure
	1.3.2 Functioning of a neuron

	1.4 Artificial neural networks
	1.4.1 Mathematical model of artificial neuron
	1.4.1.1 Types of Activation Functions:

	1.4.2 Architectures of neural networks
	1.4.3 Training Neural Networks [3], [8]
	1.4.3.1 Types of trainings:
	1.4.3.2 Backpropagation algorithm in multilayer perceptron networks (MLP):

	1.5 The properties of neural networks
	1.6 Areas of application of neural networks
	1.7 Conclusion

	CHAPTER 2. FPGA ARCHITECTURE
	2.1 Introduction
	2.2 The classification of digital circuits
	2.2.1 Circuits with programmable architecture [10]
	2.2.1.1 ASIC (Application Specific Integrated Circuit)
	2.2.1.2 PLD (Programmable Logic Device)
	2.2.1.3 FPGA (Field Programmable Gate Arrays)

	2.3 The FPGA circuit
	2.3.1 History
	2.3.2 Application [15]
	2.3.3 FPGA Architecture
	2.3.3.1 Configurable Logic Block (CLB):
	2.3.3.2 Input Output Block (IOB):
	2.3.3.3 Routing interconnections:
	2.3.3.4 Programming technology:
	SRAM based programming technology

	2.4 The circuit board Nexys 2[19]
	2.4.1 Spartan 3E architecture

	2.5 VHDL
	2.5.1 Brief on VHDL
	2.5.2 Utility of VHDL
	Specification:
	Simulation:
	Conception:

	2.5.3 VHDL structure
	Libraries declaration:
	The entity:
	The architecture:

	2.5.4 The modes used in VHDL
	Combinatorial mode:
	Sequential mode:

	2.6 Conclusion

	CHAPTER 3. FPGA IMPLEMENTATION OF NEURAL NEWORKS
	3.1 Introduction
	3.2 Arithmetic in ANN digital implementation
	3.2.1.1 Data representation:
	3.2.1.2 Inner products:
	3.2.1.3 Sum of products

	3.3 The Activation Function implementation
	3.3.1 Implementation of Tangent Sigmoid and Log sigmoid
	3.3.1.1 Characteristics of Tanh and strategy of implementation
	3.3.1.2 Optimized Lookup table design for hyperbolic tangent
	3.3.1.3 Implementation of Log-Sigmoid activation function:

	3.4 The architecture overview of the ANN generated by the C++ application
	3.4.1 Concept of layer multiplexing
	3.4.2 Single neuron architecture
	3.4.3 The Global ANN architecture

	3.5 C++ application
	3.6 Conclusion

	CHAPTER 4. ANN SHE PWM TECHNIQUE
	4.1 Introduction
	4.2 SHE PWM
	4.2.1 Introduction
	4.2.2 Principle of operation
	4.2.3 The switching angles

	4.3 Implementation of ANN SHE PWM
	4.3.1 Architecture of the ANN SHE
	4.3.1.1 The topology of neural network [13]
	4.3.1.2 Database
	4.3.1.3 Off-line training
	4.3.1.4 Simulation
	4.3.1.5 Results & interpretation

	4.3.2 Implementation of ANN SHE
	4.3.2.1 Description
	Interval selector
	Normalization & Reverse normalization
	PWM signal generator

	4.4 Simulation and Results
	4.5 Conclusion

	GENERAL CONCLUSION
	BIBLIOGRAPHY

