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ة الى ارتيابات ضالأنظمة اللاخطية المعرفي  نتطرق من خلال هذه الدراسة الى طرق التحكم   :ملخص
في هذا الاطار اقترحنا طريقة تحكم جديدة . واخطاء  النمذجة التي نصادفها عند التطبيقات الحقيقية 

قائمة على ناعية الصط الاونبة العصباتالشبك  مدعمة ب backstepping معتمدين على طريقة التحكم   
 ظل الارتيابات و اخطاء النمذجة  كل نظام التحكم المقترح  مستقر محليا  فيان وقد بينا . التكيف 
 هنأ هو طريفةومن السمات الرئيسية لهذه ال. المرفوعة Lyapunov باستعمال دالة  وذلك .المحدودة

  . نظامنموذج دقيق للحاجة الى لا
. ميكانيكية على اثنين من النظم الكهرالمطروح ارتاينا ان نطبقهسلوب هذا الالاضفاء مصداقية اكثرل

مخبري  antilock لنظام الكبح  المدعومةيةونعصبال اتشبكال  طرق التحكم استخدامخص ي الاول تطبيقال
  .محاكاهال  عبارة عن تطبيق على محرك لاتزامني عبرالثاني هوو. تجريبا

 
 ، Backstepping ،صطناعية الاونبة العصباتالشبك ،ة الريبي الانظمة،التحكم اللاخطي :آلمات مفتاحية 

  .ميكانيكية النظم الكهرالاستقرار،
  
 
Résumé: Dans cette thèse, on présente les approches de commande basées sur le feedback des réseaux 
de neurones adaptatives qui augmentent un contrôleur  backstepping  applicable à une classe de systèmes 
non linéaires incertains. La stabilité de l'architecture de contrôle proposée est assurée localement par une 
fonction de Lyapunov augmentée. Il est robuste aux incertitudes paramétriques et les dynamiques non 
modélisées. Un élément clé de ces approches est que l'ordre du système n'est pas besoin d'être connus. 
Cette méthode est validée sur  deux systèmes électromécaniques. La première application consiste à 
utiliser la commande augmentée par les réseaux de neurones à fin de contrôler un système de freinage 
antiblocage ABS du laboratoire. La seconde est une application de simulation sur une machine 
asynchrone. 
 
Mot clés : Commande Non Linéaire, Systèmes Incertains, Réseaux de Neurones Artificiels, 
Backstepping, Stabilité, Systèmes Electromécaniques.  
 
 
Abstract: Neural network-based adaptive feedback approaches that augment a backstepping control 
design are described in this thesis for a class of nonlinear uncertain systems. The stability of the proposed 
control architecture is ensured locally by an augmented Lyapunov function.  It is robust to parametric 
uncertainties and unmodelled dynamics. A key feature of these approaches is that the order of the system 
need not be known. This method is validated on two electromechanical systems. The first application 
consists of using Neural Network augmented controller for an antilock braking system ABS laboratory 
test bed. The second is a simulation application on an Induction Machine. 
 
Key words: Nonlinear Control, Uncertain Systems, Artificial Neural Networks, Backstepping, Stability, 
Electromechanical Systems. 
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Chapter 1

Introduction

During the two last decades there have been significant developments in the control of highly uncer-

tain, nonlinear dynamical systems where advances in real time applications obliged control commu-

nity to enhance its classical design tools and adapt to the dynamic industry environment that usually

opens new problems where many scientific research fields must interact to solve such real world prob-

lems gaining from the booming hardware industry along with all types of proposed solutions that

help control engineers to implement the developed control strategies. Adaptive nonlinear control

has evolved as a promising alternative for systems with parametric uncertainty, leading to global

stability and tracking results for this class of nonlinear systems. Advances in geometric nonlinear

control theory [37, 82], in conjunction with the development and refinement of new techniques, such

as the backstepping procedure and tuning functions [55], have brought about the design of control

systems with proven stability properties in a constructive manner for triangular systems or those

systems that can be transformed into this form.

In addition, there has been a lot of research activity on robust nonlinear control design methods,

such as sliding mode control, Lyapunov redesign method, nonlinear damping, and adaptive bounding

control [55, 57]. These techniques are based on the assumption that the uncertainty in the nonlinear

functions is within some known, or partially known, bounding functions. In the same pace with such

developments based on Lyapunov stability methods in adaptive nonlinear control, there has been a

lot of researchers from all over the world that has tried to adopt artificial intelligence methods such

as Artificial Neural Networks (ANN) and fuzzy logic approaches [32, 50].

In these studies, neural networks or fuzzy approximators are proven to be the favorite candidates
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for approximating unknown nonlinearities that are encountered in real applications where no physical

models are known. The basic idea behind such approximators is that their input/output response

is modified by adjusting the values of certain inherited parameters, usually referred to as weights.

From a mathematical control perspective, neural networks and fuzzy approximators represent just

two classes of function approximators. Polynomials, splines, radial basis functions, and wavelets are

examples of other function approximators that can be used-and have been used-in a similar setting.

Such approximation models with adaptivity features are referred to as adaptive approximators, and

control methodologies that are based on them as adaptive approximation based control [40].

Adaptive approximation based control encompasses a variety of methods that appear in the liter-

ature: intelligent control, neural control, adaptive fuzzy control, memory-based control, knowledge-

based control, adaptive nonlinear control, and adaptive linear control.

Researchers in these fields have diverse backgrounds: mathematicians, engineers, and computer

scientists. Therefore, the perspective of the various papers in this area is also varied. However, the

objective of the various practitioners is typically similar: to design a controller that can be guaran-

teed to be stable and achieve a high level of control performance for systems that contain poorly

modeled nonlinear effects, or the dynamics of the system change during operation (for example, due

to system faults). This objective is achieved by adaptively developing an approximating function to

compensate the nonlinear effects during the operation of the system. Many of the original papers on

neural or adaptive fizzy control were motivated by such concepts as ease of use, universal approxi-

mation, and fault tolerance. Often, ease of use meant that researchers without a control or systems

background could experiment with and often succeed at controlling certain dynamics systems, at

least in simulation [40].

The rise of interest in the neural and adaptive fuzzy control approaches occurred at a time when

desktop computers and dynamic simulation tools were becoming sufficiently cheap at reasonable

levels of performance to support such research on a wide basis [32]. However, prior to application

on systems of high economic value, the control system designer must carefully consider any new

approach within a sound analytical framework that allows rigorous analysis of conditions for stability

and robustness [31]. This approach opens a variety of questions that have been of interest to

various researchers: What properties should the function approximator have? Are certain families
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of approximators superior to others? How should the parameters of the approximator be estimated?

What can be guaranteed about the properties of the signals within the control system? Can the

stability of the approximator parameters be guaranteed? Can the convergence of the approximator

parameters be guaranteed? Can such control systems be designed to be robust to noise, disturbances,

and unmodeled effects. Can this approach handle significant changes in the dynamics due to system

failure. What types of nonlinear dynamic systems are amenable to the approach? What are the

limitations?

Adaptive approximation based control can be viewed as one of the available tools that a control

designer should have in her/his control toolbox to be able to apply these modern techniques to a

certain class of systems, and more importantly to gain enough intuition and understanding about

adaptive approximation as a useful tool to be used and how to make necessary modifications or how

to combine it with other control tools, so that it can be applied to a wider class of systems where

we have not accurate models.

1.1 Motivation

Uncertainty being present in all systems to be controlled, the objective of control design is to achieve a

satisfactory performance in the presence of such uncertainty, and no longer its elimination. Designing

an effective controller for a nonlinear uncertain system is not always evident and it is a challenging

task. The difficulties associated with control design in such systems include structural parameter

uncertainties and their variations over time, unmodelled dynamics, inherited nonlinearities, and

operation under a wide range of conditions and disturbances. In most instances there is a large

degree of uncertainty associated with it and only approximation models can be derived for some

operating conditions. The presence of a high degree of uncertainty combined with the desire for

high performance provides sufficient motivation for developing approaches to Adaptive function

approximation augmented Nonlinear control of nonlinear uncertain systems. Adaptive control is a

natural strategy to enhance performance of uncertain systems with minimal sacrifice in performance.

Early state feedback approaches in adaptive control were developed for linear systems [7], and for

nonlinear systems with linearly parameterized uncertainty [79]. Recent progress in state feedback

adaptive control include approaches that do not require any parametrization of state-dependent
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uncertainties [36, 69].

The use of a neural network (NN) in adaptive control greatly broadened the class of systems that

can be treated by adaptive control. Whereas in most classical adaptive control approaches [8], un-

certainties are restricted to linearly parameterized uncertainties, NN-based adaptive control allows

for functional uncertainty as well. It is well established that a NN can approximate any continuous

function to any desired accuracy on a compact set [19, 71, 77]. This universal approximator property

of NNs has lead to their evolution as a powerful tool for designing adaptive controllers for uncertain

nonlinear systems [63]. In the early to mid 1990’ s, the feasibility of using NNs in identification

and control for uncertain nonlinear systems was illustrated through various simulation studies [20].

Since the mid 1990’ s, several researchers have proposed control methods that employ NNs together

with stability proofs based on Lyapunov’ s direct method in a state feedback setting [60]. Exten-

sions to NN-based adaptive output feedback have been developed either by employing a high-gain

observer [71], or by incorporating a second NN in the estimation process [63]. Applying an adaptive

technique for control of uncertain systems, in most cases, implies the replacement of an existing con-

trol system. Because of the high cost in this process, it is highly desirable to consider an adaptive

approach that can be implemented in a form that augments an existing controller. In particular,

within various fields of applications, there exists a legacy of experience with an existing control sys-

tem architecture, and control designers would prefer to augment their controllers with an adaptive

process rather than replace them with a totally new control system. This rationale has been a main

driving force for applying adaptive control to augment existing control systems in space robotics [6],

power systems [89], temperature regulation [18], and flight control systems [13, 41], to name a few.

Incorporating a NN as a tool for augmenting adaptive control was also tried in [74, 91] in a state

feedback setting. Since the late 1990’ s, NN-based adaptive control in conjunction with a baseline

inverting controller has been applied to flight control systems and led to successful implementation

results [43, 47]. This success initiated an attempt to employ NN-based adaptive methods for aug-

menting a baseline linear controller in [2]. These methods were, however, based on state feedback,

and assumed that the dimension of the system is known.

The approaches are robust to parametric uncertainties and unmodelled dynamics. Laboratory

experiments have illustrated their effectiveness in a real-time environment [4, 62].
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The objective of this work is to develop some control strategies that can solve the control problem

of uncertain nonlinear systems and it will be applicable to a wide range of systems using controllers

based on adaptive function approximations. The second objective is to apply the developed control

algorithms to electromechanical systems that are widely used in industry.

1.2 Contributions of Thesis

The research in this thesis is focused on NN-based adaptive control designs for systems operating

at highly nonlinear dynamic regimes which have severe parametric uncertainties and disturbances.

The contributions of the research can be summarized as:

• An overview of the existing methods based on robust and adaptive nonlinear control theory

that can cope with uncertainties are summarized.

• A new adaptive control design methodology that combines the backstepping approach in ad-

dition to NN-based adaptive elements is developed for nonlinear uncertain systems, and its

stability is proved through Lyapunov theorems. The performance is validated through simu-

lations [54, 10].

• The proposed control methodology is validated experimentally through an application to a

nonlinear and uncertain antilock braking laboratory test bed in which the friction forces are

poorly modeled.

• As a second application, we have chosen an induction machine that is widely used as an

electromechanical device in industry; It is a MIMO, nonlinear system operated at extremely

nonlinear dynamic regimes inducing resistance parameter variations due to high temperature

and unknown torque loads [11, 12].

• Issues related to stability and NN weights adaptation are discussed and different solutions are

presented.

• A thorough comparison study is performed on the performance of a classical control design and

two different classes of neural networks: linearly parameterized Radial Basis Functional (RBF)

NN and nonlinearly parameterized Single Hidden Layer (SHL) NN for the speed tracking

problem for the induction machine.
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1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 presents some mathematical definitions and tools that are used for analysis and sta-

bility proofs in uncertain nonlinear systems.

Chapter 3 introduces the idea of adaptive approximation for addressing unknown nonlinear

effects. This chapter includes a simple example comparing various control approaches and concludes

with a discussion of components of an adaptive approximation based control system with pointers

to the locations in the text where each topic is discussed.

Chapter 4 summaries different structures that are used in the literature of adaptive control as

Universal Approximators.

Chapter 5 describes some tools that are used for solving nonlinear control problems in the

presence of uncertainties and unmodeled nonlinear dynamics in the framework of robust and adaptive

control.

Chapter 6 is devoted to the main result of this thesis where a new adaptive nonlinear control

method is proposed to overcome uncertainties in a class of nonlinear systems. This method combines

backstepping for the known part of the system and neural networks to cope with the unknown

uncertain terms. Stability proof is presented thanks to the augmented Lyapunov Function. The

validation of such method on experimental ABS laboratory test bed is highlighted.

Chapter 7 presents an application of NN-based control design on an Electromechanical system,

the Induction Machine which is widely used as an electromechanical cheap converter for many

industrial applications operating under several kinds of nonlinearities and uncertainties. A command

augmentation based adaptive control design is developed for the induction machine, and simulation

results show the effectiveness of the design.

Chapter 8 summarizes the results of all research efforts, and concludes the thesis along with some

future research direction.



Chapter 2

Analysis of Nonlinear Systems and
Uncertainties

2.1 Introduction

In this chapter we briefly describe the main mathematical tools used in nonlinear systems and

present different definitions and theorems that are useful to proof system stability. All the definition

are derived from the energy-like function, the Lyapunov function whose existence for a linear or

nonlinear system ensures its stability. Moreover these definitions address the issue of robustness and

its relationship to stability. Most of these definitions are extracted from [82, 87], which are excellent

books that contain some advanced detailed stability issues.

2.2 Stability and Robustness

Often, when given the challenge of designing a control system for a particular application, one is

provided with a model of the plant that contains the dominant dynamic characteristics. The engineer

responsible for the design of a control system may then proceed to formulate a control algorithm

assuming that when the model is controlled to within specifications, the true plant will also be

controlled within specifications. This approach has been successfully applied to numerous systems.

More often, however, the controller may need to be adjusted slightly when moving from the design

model to the actual implementation due to a mismatch between the model and the true system.

There are also cases where a control system performs well for a particular operating region, but

when tested outside that region, performance degrades to unacceptable levels [40].

7
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Figure 2.1: Robust control of a plant with unmodeled dynamics.

These issues, among others, are addressed by robust control design. When developing a robust

control design, the focus is often on maintaining stability even in the presence of unmodeled dynamics

or external disturbances applied to the plant. Figure 2.1 shows the situation in which the controller

must be designed to operate satisfactory given any possible plant variation. Unmodeled dynamics

are typically associated with every control problem in which a controller is designed based upon a

model. This may be due to any one of a number of reasons:

• It may be the case that only a nominal set of parameters are available for the control design.

If a controller is to be incorporated into a mass produced product, for example, it may not

be practical to measure the exact parameter values for each plant so that a controller can be

customized to each particular system.

• It may not be cost effective to produce a model that exactly (or even closely) represents

the dynamics. It may be possible to spend fewer resources on a robust control design using

an incomplete model than developing a high fidelity model so that traditional non-robust

techniques may be used.

Hence, the approach in robust control is to accept a priori that there will be model uncertainty,

and try to cope with it.

The issue of robustness has been studied extensively in the control literature. When working

with linear systems, one may define phase and gain margins which quantify the range of uncertainty

a closed-loop system may withstand before becoming unstable [7]. In the world of nonlinear control

design, we often investigate the stability of a closed-loop system by studying the behavior of a



9

Lyapunov function candidate. The Lyapunov function candidate is a mathematical function designed

to provide a simplified measure of the control objectives allowing complex nonlinear systems to

be analyzed using a scalar differential equation . When a controller is designed that drives the

Lyapunov function to zero, the control objectives are met. If some system uncertainty tends to drive

the Lyapunov candidate away from zero, we will often simply add an additional stabilizing term to

the control algorithm that dominates the effect of the uncertainty, thereby making the closed-loop

system more robust [55].

We will find that by adding a static term in the control law that simply dominates the plant

uncertainty, it is often easy to simply stabilize an uncertain plant, however, driving the system error

to zero may be difficult if not impossible. Consider the case when the plant is defined by

ẋ = θx+ u, (2.2.1)

where x ∈ R is the plant state that we wish to drive to the point x = 1, u ∈ R is the plant input,

and θ is an unknown constant. Since θ is unknown, one may not define a static controller that

causes x = 1 to be a stable equilibrium point. In order for x = 1 to be a stable equilibrium point,

it is necessary that ẋ = 0 when x = 1, so u(x) = −θ when x = 1. Since θ is unknown, however, we

may not define such a controller.

In this case, the best that a static nonlinear controller may do is to keep x bounded in some

region around x = 1. If dynamics are included in the nonlinear controller, then it turns out that

one may define a control system that does drive x → 1 even if θ is unknown. The objective of this

work is to use the approach of function approximation based adaptive control to help us define such

a nonlinear dynamic controller that will stabilize a certain class of nonlinear uncertain systems.

2.3 Characterizations of Stability and Boundedness

Consider a non autonomous (time-varying) dynamical system described by the following state rep-

resentation:

ẋ = f(t, x), (2.3.1)

where x ∈ Rn is an n dimensional vector and f : R+×D → Rn or D = Bh for some h > 0, where
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Bh = {x ∈ Rn : |x| < h}

is a ball centered at the origin with a radius of h. If D = Rn then we say that the dynamics of the

system are defined globally, whereas if D = Bh they are only defined locally. We will not consider

systems whose dynamics are defined over disjoint subspaces of Rn. It is assumed that f(t, x) is

piecewise continuous in t and Lipschitz in x, for existence and uniqueness of state solutions.

A point xe is called an equilibrium point of (2.3.1) if f(t, xe) = 0 for all t ≥ 0. An equilibrium

point xe, is an isolated equilibrium point if there exists an ρ > 0 such that the ball around xe,

Bρ(xe) = {x ∈ Rn : |x− xe| < ρ} (2.3.2)

contains no other equilibrium points besides xe.

2.3.1 Stability Definitions

Stability is a property of systems that we often witness around us. For example, it can refer to the

ability of an airplane or ship to maintain its planned flight trajectory or course after displacement

by wind or waves. In studies of stability we begin with a model of the dynamics of the system (e.g.,

airplane or ship) and investigate if the system possesses a stability property. Of course, with this

approach we can only ensure that the model possesses (or does not possess) a stability property. In

a sense, the conclusions we reach about stability will only be valid about the actual physical system

to the extent that the model we use to represent the physical system is valid (i.e., accurate). Having

a general intuitive notion of how a stable system behaves, we will show a wide range of precise (and

standard) mathematical characterizations of stability and boundedness.

Definition 2.3.1. The equilibrium xe = 0 of (2.3.1) is said to be stable at t0 (in the sense of
Lyapunov) if for every ε > 0 and any t0 ≥ 0 there exists a δ(ε, t0) > 0 such that |x(t, t0, x0)| < ε for
all t ≥ t0 whenever |x0| < δ(ε, t0) and x(t, t0, x0) ∈ Bh(xe) for some h > 0.

That is, the equilibrium is stable if when the system (2.3.1) starts close to xe, then it will stay

close to it. Note that stability is a property of an equilibrium, not a system. Often, however, we will

refer to a system as being stable if all its equilibrium points are stable. Also, notice that according

to this definition, stability in the sense of Lyapunov is a ”local property.” It is a local property since

if xe is stable for some small h, then x(t, t0, x0) ∈ Bh′(xe), for some h′ > h.
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Figure 2.2: Stable and asymptotically stable equilibrium points..

Next, notice that the definition of stability is for a single equilibrium xe ∈ Rn but actually such

an equilibrium is a trajectory of points that satisfy the differential equation in (2.3.1). That is, the

equilibrium is a solution to the differential x(t, t0, x0) = xe for t ≥ 0. We call any set such that when

the initial condition of (2.3.1) starts in the set and stays in the set for all t ≥ 0, an invariant set.

Definition 2.3.2. An equilibrium that is not stable is called unstable.

Hence, if an equilibrium is unstable, there does not exist an h > 0 such that it is stable.

Definition 2.3.3. If in definition 2.3.1, δ is independent of t0, that is, if δ = δ(ε), then the
equilibrium xe is said to be uniformly stable.

Definition 2.3.4. The equilibrium xe = 0 of (2.3.1) is said to be asymptotically stable if it is stable
and for every t0 ≥ 0 there exists η(t0) > 0 such that

lim
t→∞

|x(t, t0, x0)| = 0

whenever x0 < η(t0).

That is, it is asymptotically stable if when it starts close to the equilibrium it will converge

to it. Asymptotic stability is also a local property. It is a ”stronger” stability property since it

requires that the solutions to the ordinary differential equation converge to zero in addition to what

is required for stability in the sense of Lyapunov. See Figure 2.2.

Definition 2.3.5. The equilibrium xe = 0 of (2.3.1) is said to be uniformly asymptotically
stable if it is uniformly stable and for every ε > 0 and t0 ≥ 0, there exist a δ0 > 0 independent
of t0 and ε, and a T (ε) > 0 independent of t0, such that |x(t, t0, x0) − xe| ≤ ε for all t ≥ t0 + T (ε)
whenever |x0 − xe| ≤ δ(ε).

Definition 2.3.6. The set Xd ⊂ Rn of all x0 ∈ Rn such that |x(t, t0, x0)| → 0 as t → ∞ is called
the domain of attraction of the equilibrium xe = 0 of (2.3.1).
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Sometimes, if such an Xd ⊂ Rn is known for a system, then it is said to possess a ”regional”

stability property to contrast with the local cases just discussed (and exponential stability below),

or the global one to be discussed next.

Definition 2.3.7. The equilibrium xe = 0 is said to be asymptotically stable in the large if Xd = Rn

That is, an equilibrium is asymptotically stable in the large if no matter where the system starts,

its state converges to the equilibrium asymptotically. Notice that this is a global property as opposed

to the earlier stability definitions that characterized local properties. This means that for asymptotic

stability in the large, the local property of asymptotic stability holds for Bh(xe) with h = ∞ (i.e.,

on the whole state space).

Definition 2.3.8. The equilibrium xe = 0 is said to be exponentially stable if there exists an α > 0
and for every ε > 0 there exists a δ(ε) > 0 such that

|x(t, t0, x0)| ≤ εe−α(t−t0), (2.3.3)

whenever |x0| < δ(ε) and t ≥ t0 ≥ 0. The constant α is sometimes called - the rate of convergence.

Exponential stability is sometimes said to be a ”stronger” form of stability since in its presence

we know system trajectories decrease exponentially to zero. It is a local property, but we next define

its global version.

Definition 2.3.9. The equilibrium xe = 0 is exponentially stable in the large if there exists an
α > 0 and for every β > 0 and ε(β) > 0 such that

|x(t, t0, x0)| ≤ ε(β)e−α(t−t0), (2.3.4)

whenever |x0| < β and t ≥ t0 ≥ 0.

2.3.2 Boundedness Definitions

Next, we introduce some standard definitions of boundedness. Notice that each of these is a global

property of a system in the sense that they apply to trajectories (solutions) of the system that can

be defined over all of the state space.

Definition 2.3.10. A solution x(t, t0, x0) is bounded if there exists a β > 0, that may depend on
each solution, such that

|x(t, t0, x0)| ≤ β, (2.3.5)

for all t ≥ t0 ≥ 0. A system is said to possess Lagrange stability if for each t0 ≥ 0 and x0 ∈ Rn,
the solution x(t, t0, x0) is bounded.
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Definition 2.3.11. The solutions x(t, t0, x0) are uniformly bounded if for any α > 0 and t0 ≥ 0,
there exists a β(α) > 0 (independent of t0) such that if |x0| < α , then |x(t, t0, x0)| ≤ β(α), for all
t ≥ t0 ≥ 0.

Definition 2.3.12. The solutions x(t, t0, x0) are said to be uniformly ultimately bounded if
there exists some β > 0, and if corresponding to any α > 0 and t0 > 0 there exists a T (α) > 0
(independent of t0) such that |x0| < α implies that |x(t, t0, x0)| ≤ β for all t ≥ t0 + T (α).

Hence, a system is said to be uniformly ultimately bounded if eventually all trajectories end up

in a β-neighborhood of the origin.

2.4 Lyapunov s Direct Method

A. M. Lyapunov invented two methods to analyze stability. In his first method (called the indirect

method) he showed that if you linearize a system about an equilibrium point, certain conclusions

about local stability properties can be made (e.g., if the eigenvalues of the linearized system are

strictly in the left half plane then the equilibrium is stable but if at least one is strictly in the right

half plane it is unstable).

In his second method (called the direct method) the stability results for an equilibrium xe = 0 of

(2.3.1) depend on the existence of an appropriate ”Lyapunov function” V : D → R where D = Rn

for global results (e.g., asymptotic stability in the large) and D = Bh for some h > 0, for local results

(e.g., stability in the sense of Lyapunov or asymptotic stability). If V is continuously differentiable

with respect to its arguments then the derivative of V with respect to t along the solutions of (2.3.1)

is

V̇ (t, x) |(2.3.1)=
∂V

∂t
+
∂V

∂x
f(t, x). (2.4.1)

The subscript on V̇ is sometimes cumbersome, so it will be omitted some times with the un-

derstanding that the derivative of V is taken along the solutions of the differential equation at

hand.

Finding or construction of a Lyapunov function for a given system is not always evident, which

limits the applicability of the method somewhat. However the method does allow us to avoid

finding the explicit solution to the nonlinear differential equation in Equation (2.3.1) (which, for

some nonlinear ordinary differential equations, can be very difficult or impossible).
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2.4.1 Preliminaries: Function Properties

Before we introduce Lyapunov direct method we need the following definitions:

Definition 2.4.1. A function γ : D → R is said to be monotone increasing on D ⊆ R if for every
x, y ∈ D with x ≤ y, then γ(x) ≤ γ(y). If for every x, y ∈ D with x < y, γ(x) < γ(y), then γ is said
to be strictly increasing.

Definition 2.4.2. A continuous function γ : D → R+ is said to belong to class K (denoted by
γ ∈ K) if it is strictly increasing on D = [0, r) for some r ∈ R or on D = [0,∞), and γ(0) = 0. A
continuous function γ : R→ R+ is said to belong to class K∞ if γ ∈ K with γ defined on D = [0,∞)
and γ(x)→∞ if x→∞.

Definition 2.4.3. A continuous function β : D × R+ → R+ is said to belong to class- KL if
β(r, s) ∈ K for each fixed s and β(r, s) is decreasing with respect to s for each fixed r with β(r, s)→∞
as s→∞.

Definition 2.4.4. A continuous function V (x) : R+ × Bh → R(V (t, x) : R+ × Rn → R) is said to
be positive definite if V (t, 0) = 0 for t ≥ 0 and there exists a function γ ∈ K defined on [0, h)
such that V (t, x) ≥ γ(|x|) for all t ≥ 0 and x ∈ Bh for some h > 0 (x ∈ Rn). V (t, x) is said to
be negative definite if −V (t, x) is positive definite. A continuous function V (x) : R+ × Bh →
R(V (t, x) : R+×Rn → R) is said to be positive semidefinite if V (t, 0) = 0 for t ≥ 0 and V (t, x) ≥ 0
for all t ≥ 0 and x ∈ Bh for some h > 0 (x ∈ Rn). For negative semidefinite replace ”V (t, x) ≥ 0”
with ”V (t, x) ≤ 0” in the definition of positive semidefinite.

Definition 2.4.5. A continuous function V (x) : R+ × Bh → R(V (t, x) : R+ × Rn → R) is said to
be decrescent if there exists a function γ ∈ K defined on [0, r) for some r > 0 (defined on [0,∞))
such that V (t, x) ≤ γ(|x|) for all t ≥ 0 and x ∈ Bh for some h > 0 (x ∈ Rn).

Definition 2.4.6. A continuous function V (x) : R+ ×Rn → R is said to be radially unbounded
if V (t, 0) = 0 for t ≥ 0 and there exists a function γ ∈ K, such that V (t, x) ≥ γ(|x|) for all t ≥ 0 and
x ∈ Rn.

2.4.2 Conditions for Stability

Let xe = 0 be an isolated equilibrium point of (2.3.1). Assume that a unique solution exists to the

differential equation in (2.3.1) on x ∈ Bh for some h > 0 for local results, or on x ∈ Rn for global

results. Below, we let V : R+ × Bh → R+ for some h > 0 (for local results) or V : R+ × Rn → R+

for global results be a continuously differentiable function (i.e., it has continuous first order partial

derivatives with respect to x and t).

Lyapunov’s direct method provides for the following ways to test for stability. The first two are

strictly for local properties while the last two local and global versions.

• Stable: If V (t, x) is continuously differentiable, positive definite, and V̇ (t, x) ≤ 0, then xe = 0

is stable.
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• Uniformly Stable: If V (t, x) is continuously differentiable, positive definite, decrescent, and

V̇ (t, x) ≤ 0, then xe = 0 is uniformly stable.

• Uniformly Asymptotically Stable: If V (t, x) is continuously differentiable, positive defi-

nite, and decrescent, with negative definite V̇ (t, x), then xe = 0 is uniformly asymptotically

stable. or if there exists a continuously differentiable V (t, x) and γ1, γ2, γ3 ∈ K defined on

[0, r) for some r > 0, such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (2.4.2)

V̇ (t, x) ≤ −γ3(|x|) (2.4.3)

for all t ≥ 0 and x ∈ Bh for some h > 0. then xe = 0 is uniformly asymptotically stable.

Theorem 2.4.1. LaSalle-Yoshizawa Theorem if there exists a, continuously differentiable
V (t, x) and γ1 ∈ K, such that (2.4.2) holds for all x ∈ Rn and t > 0, and

V̇ (t, x) ≤ −W (x) ≤ 0

for all t ≥ 0 and x ∈ Rn, where W is a continuous function (i.e., positive semidefinite), then
the solutions of (2.3.1) are uniformly bounded

and
lim
t→∞

W (x(t)) = 0.

If, in addition, W (x) is positive definite, then xe = 0 is uniformly asymptotically stable in the
large.

• Exponentially stable: If there exists a continuously differentiable V (t, x) and c, c1, c2, c3 > 0

such that

c1|x|c ≤ V (t, x) ≤ c2|x|c (2.4.4)

V̇ (t, x) ≤ −c3|x|c (2.4.5)

for all x ∈ Bh and t ≥ 0, then xe = 0 is exponentially stable. If there exists a continuously

differentiable V (t, x) and Equations (2.4.4) and (2.4.5) hold for some c, cl, c2, c3 > 0 for all

x ∈ Rn and t > 0, then xe = 0 is exponentially stable in the large.

Finally, note that in stability analysis it is sometimes convenient to use a, Lyapunov-like function

that satisfies all but some properties of a Lyapunov function, then combine the analysis with other

properties of the system to conclude convergence.
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2.4.3 Conditions for Boundedness

Suppose that there exists a specified function V (t, x) defined on |x| > R (where R may be large)

and t > 0 that is continuously differentiable. Assume that unique solutions exist to the underlying

differential equation over all of Rn.

• Uniform Boundedness: if there exists a continuously differentiable V (t, x) and γ1, γ2,∈ K∞,

such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (2.4.6)

V̇ (t, x) ≤ 0 (2.4.7)

for all |x| ≥ R and t ≥ 0 then the solutions to the differential equation are uniformly bounded.

Notice that this is less restrictive than the LaSalle-Yoshizawa theorem for uniform boundedness

since we only need V̇ (t, x) ≤ 0 for all |x| ≥ R for some R, not on all Rn.

• Uniform Ultimate Boundedness: if there exists a continuously differentiable V (t, x), γ1, γ2 ∈

K∞, and γ3,∈ K defined on [0,∞) such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (2.4.8)

V̇ (t, x) ≤ −γ3(|x|), (2.4.9)

for all |x| ≥ R and t ≥ 0 then the solutions to the differential equation are uniformly ultimately

bounded.

2.5 Input-to-State Stability

In this section we overview a few concepts from the study of input-to-state stability. We start with

definitions, then provide results that will be useful in our laster analysis.

2.5.1 Input-to-State Stability Definitions

In the following we will introduce the basic notions of input-to-state stability and input-to-state

practical stability (also referred to as compact input-to-state stability) which are very useful in the

study of the stability properties of interconnected systems.
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Consider the dynamical system

ẋ = f(x, u), (2.5.1)

where x ∈ Rn, u ∈ Rm, f is locally Lipschitz in x and u, representing the input of the system, is a

piece-wise continuous and bounded function of t.

Definition 2.5.1. System (2.5.1) is said to be input-to-state stable if, for any initial condition
x(t0) and any bounded input u(t) it satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(
sup

t0≤τ≤t
(|u(τ)|)

)
, (2.5.2)

for all t ≥ 0, where β is class-KL, and γ is class K.

When dealing with uncertainties, it is often useful to define a more general notion of input-to-

state stability.

Definition 2.5.2. System (2.5.1) is said to be input-to-state practically stable if, for any initial
condition x(t0) and any bounded input u(t), the solution x(t) satisfies

|x(t)| ≤ β(|x(t0), t− t0) + γ

(
sup

t0≤τ≤t
(|u(τ)|)

)
+ d, (2.5.3)

for all t ≥ 0, where β is class-KL, and γ is class K and d is a nonnegative constant.

2.5.2 Conditions for Input-to-State Stability

The following provides useful characterizations of input-to-state stability properties, and a uniform

ultimate boundedness property for interconnected systems, in terms of Lyapunov functions.

• Input-to-State Stability: System (2.5.2) is input-to-state stable if, and only if, there exists

a continuously differentiable function V such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (2.5.4)

∂V

∂x
f(x, u) ≤ −γ3(|x|), ∀|x| ≥ ψ(|u|) > 0 , (2.5.5)

where γ1, γ2 are class K∞ and γ3, ψ are class K

• Input-to-State Practical Stability: System (2.5.2) is input-to-state practical stable if, and

only if, there exists a continuously differentiable function V and constants c > 0, d ≥ 0 such

that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (2.5.6)
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∂V

∂x
f(x, u) ≤ −cV + ψ(|u|) + d, (2.5.7)

where γ1, γ2, ψ are class K∞.

• Uniform Ultimate Boundedness: Consider ẋ = f(x, y) and ẏ = g(x, y), where f, g are

locally Lipschitz, x ∈ Rn and y ∈ Rm. If there exist continuously differentiable functions

Vx, : Rn → R and Vy : Rm → R with γx1(|x|) ≤ Vx ≤ γx2(|x|) and γy1(|y|) ≤ Vy ≤ γy2(|y|)

such that

V̇x ≤ 0 whenVx ≥ Vr (2.5.8)

V̇y ≤ γy3(|y|), ∀|y| ≥ ψ(|x|), (2.5.9)

where γx1, γx2, γy1, γy2 are class-K∞, γy3 and ψ are class-K, and Vr > 0, then x and y are

uniformly ultimately bounded.

To see why this is the case note the following: From (2.5.8) we find Vx ≤ max(Vx(0), Vr) so

γx1(|x|) ≤ max(V (0), Vr). (2.5.10)

Thus |x| ≤ d for all t, where d = −γ−1
x1 omax(Vx(0), Vr). If |y| ≥ ψ(d), then Vy ≤ −γy3 ≤ 0.

Thus if Vy ≥ γy2oψ(d) (which implies |y| ≥ ψ(d)), then V̇y ≤ 0 so Vy is bounded. Thus

Vy ≤ max(V (0), γy2oψ(d)) so

|y| ≤ γ−1
y1 omax(Vy(0), γy2oψ(d)).

for all t.

2.6 Model Uncertainty

Most control designs are based on the use of a design model. The relationship between models and

the reality they represent is subtle and complex. A mathematical model provides a mapping from

inputs to responses. The quality of a model depends on how closely its responses match those of

the true plant. Since no single fixed model can respond exactly like the true plant, we need, at
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the very least, a set of mappings. However, the modeling problem is much deeper; the universe

of mathematical models from which a model set is chosen is distinct from the universe of physical

systems. Therefore, a model set which includes the true physical plant can never be constructed.

It is necessary for the engineer to make a leap of faith regarding the applicability of a particular

design based on a mathematical model. To be practical, a design technique must help make this

leap small by accounting for the inevitable inadequacy of models. A good model should be simple

enough to facilitate design, yet complex enough to give the engineer confidence that designs based

on the model will work on the true plant.

The term uncertainty in control refers to the differences or errors between models and reality, and

whatever mechanism is used to express these errors will be called a representation of uncertainty.

Representations of uncertainty vary primarily in terms of the amount of structure they contain. This

reflects both our knowledge of the physical mechanisms which cause differences between the model

and the plant and our ability to represent these mechanisms in a way that facilitates convenient

manipulation. For example, consider the problem of bounding the magnitude of the effect of some

uncertainty on the output of a nominally fixed linear system. A useful measure of uncertainty in this

context is to provide a bound on the spectrum of the output’ s deviation from its nominal response.

In the simplest case, this spectrum is assumed to be independent of the input. This is equivalent

to assuming that the uncertainty is generated by an additive noise signal with a bounded spectrum;

the uncertainty is represented as additive noise. Of course, no physical system is linear with additive

noise, but some aspects of physical behavior are approximated quite well using this model. This

type of uncertainty received a great deal of attention in the literature during the 1960’s and 1970’s,

and the attention is probably due more to the elegant theoretical solutions that are yielded (e.g.,

white noise propagation in linear systems, Wiener and Kalman filtering, LQG) than to the great

practical significance offered [76].

In general, we are forced to use not just a single parameterized model but model sets that allow

for plant dynamics which are not explicitly represented in the model structure. Often, when given

the challenge of designing a control system for a particular application, one is provided a model of the

plant that contains the dominant dynamic characteristics. The engineer responsible for the design of

a control system may then proceed to formulate a control algorithm assuming that when the model
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is controlled to within specifications, the true plant will also be controlled within specifications. This

approach has been successfully applied to numerous systems. More often, however, the controller

may need to be adjusted slightly when moving from the design model to the actual implementation

due to a mismatch between the model and true system. There are also cases when a control system

performs well for a particular operating region, but when tested outside that region, performance

degrades to unacceptable levels.

2.7 Conclusion

Within this chapter we have presented various mathematical tools that have been found to be useful

in the stability analysis of nonlinear systems. In particular, we have covered the following topics:

• Stability definitions: stability in the sense of Lyapunov, uniformly stability, asymptotically

stability (in the large), exponentially stability (in the large).

• Boundedness definitions: Lagrange stability, uniform boundedness, uniform ultimate bound-

edness.

• Direct method for stability and boundedness analysis (including results for all the stability

and boundedness definitions)

• The LaSalle-Yoshizawa theorem and a special case of the invariance theorem.

• Input-to-state stability definitions and analysis.

• Uncertainty issues.



Chapter 3

Nonlinear Function Approximators
For Control

3.1 Introduction

This chapter treats the background of function approximation, and additionally, it will serve as a

connection between the actual problem and the theory in subsequent chapters. In order to make the

problem clear, we start with the setting in which the function approximator has to operate. This

setting indicates how the training data is generated. Based on this setting, a minimization problem is

formulated for the function approximator. Different function approximators use different techniques

to approximate the data. Neural networks and fuzzy systems are presented as universal approxima-

tors for phenomena where no mathematical model exists to describe it. They have been found to

be truly interdisciplinary tools appearing in the fields of economics, business, science, psychology,

biology, and engineering to name a few [75]. Based upon the structure of a biological nervous system,

artificial neural networks use a number of interconnected simple processing elements (”neurons”)

to accomplish complicated classification and function approximation tasks [35]. The ability to ad-

just the network parameters (weights and biases) makes it possible to ”learn” information about a

process from data, whether it is describing stock trends or the relation between an actuator input

and some sensor data. Neural networks typically have the desirable feature that little knowledge

about a process is required to successfully apply a network to the problem at hand (although if some

domain-specific knowledge is known then it can be beneficial to use it). In other words, they are

typically regarded as a ”black box” technique. This approach often leads to engineering solutions

21
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in a relatively short amount of time since expensive system models required by many conventional

approaches are not needed. Of course, however, sufficient data is typically needed for effective solu-

tions. Fuzzy systems are intended to model higher level cognitive functions in a human. They are

normally broken into (1) a rule-base that holds a humans knowledge about a specific application

domain, (2) an inference mechanism that specifies how to reason over the rule-base, (3) fuzzification

which transforms incoming information into a form that can be used by the fuzzy system, and (4)

defuzzification which puts the conclusions from the inference mechanism into an appropriate form

for the application at hand. Often, fuzzy systems are constructed to model how a human performs

a task [48]. They are either constructed manually (i.e., using heuristic domain-specific knowledge in

a manner similar to how an expert system is constructed) or in a similar manner to how a neural

network is constructed via training with data. While in the past fuzzy systems were exclusively

constructed with heuristic approaches we take the view here that they are simply an alternative

approximator structure with tunable parameters (e.g., input and output membership function pa-

rameters) and hence they can be viewed as a ”black box approach” in the same way as neural

networks can. Fuzzy systems do, however, sometimes offer the additional beneficial feature of a way

to incorporate heuristic information by simply specifying some rules via heuristics and tuning the

others using data. In other words, it is sometimes easier to specify a good initial guess for the fuzzy

system. In this chapter we define some basic fuzzy systems and neural networks, in fact, ones that

are most commonly used in practice. We do not spend time discussing the heuristic construction of

fuzzy systems since this is treated in detail elsewhere. In the next chapter we will provide a variety

of optimization methods that may be used to help specify the parameters used to define neural

networks and fuzzy systems.

3.2 Components of Approximation Based Control

Implementation or analysis of an adaptive approximation-based control system requires the designer

to properly specify the problem and solution. This section discusses major aspects of the problem

specification.
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3.2.1 Control Architecture

Specification of the control architecture is one of the critical steps in the design process. Various

nonlinear control methodologies and rigorous tools to analyze their performance have been developed

in recent decades [37, 46, 55, 57, 78, 82, 87]. The choices made at this step will affect the complexity

of the implementation, the type and level of performance that can be guaranteed, and the properties

that the approximated function must satisfy. Major issues influencing the choice of control approach

are the form of the system model and the manner in which the nonlinear model error appears in the

dynamics.

Consider a dynamic system that can be described as


ẋi = xi+1 for i = 1, .., n− 1

ẋn = (fo(x) + f∗(x)) + (go(x) + g∗(x))u

y = x1,

(3.2.1)

where x(t) is the state of the system, u(t) is the control input, fo and go represent the known portions

of the dynamics (i.e, the design model), and f∗ and g∗ are unknown nonlinear functions. Let f̂ and ĝ

represent approximations to the unknown functions f∗ and g∗. Then, a feedback linearizing control

law can be defined as

u(t) =
1

go + ĝ
(ν(t)− fo(x)− f∗(x)) (3.2.2)

where ĝ(t) > −go(t) and ν(t) can be specified as a function of the tracking error to meet the

performance specification. If the approximations were exact (i.e., f∗ = f̂ and g∗ = ĝ), then this

control law would cancel the plant dynamics resulting in

ẋn = ν(t).

When the approximators are not exact, the tracking error dynamic equations are

ẋn = ν + (f∗(x)− f̂(x)) + (g∗(x)− ĝ(x))u(t) (3.2.3)

If adaptive approximation is not used (i,e., f̂(x) = ĝ(x) = 0), the tracking error will be determined

by the n-th integral of the interaction between the control law specified by ν and the model error,

as expressed by (3.2.1).
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There exist different methods such as Lyapunov redesign, nonlinear damping, and sliding mode

to be used by the user to overcome the unknown nonlinear effects. These methods work by adding

terms to the control law designed to dominate the worst case modeling error, therefore they may

involve either large magnitude or high bandwidth control signals [40].

Alternatively, adaptive approximation methods accumulate model information and attempt to

remove the effects of a specific set of nonlinearities that fit the model information. It is not possible to

approximate an arbitrary function over the entire Rn. Instead, we must restrict the class of functions,

constrain the region over which the approximation is desired, or both. Since the operating envelope

is already restricted for physical reasons, we will desire the ability to approximate the functions f∗

and g∗ only over the compact set denoted by D. Note that D is a fixed compact set, but its size

can be selected as large as need be at the design stage. Therefore, we are seeking to show that

initial conditions outside D converge to D and that for trajectories in D the trajectory tracking

error converges in a desired sense. Various techniques to achieve this are thoroughly discussed and

detailed in the following chapters.

3.2.2 Function Approximator

Having analyzed the control problem and specified a control architecture capable of using an ap-

proximated function to improve the system control performance, the designer must specify the form

of the approximating function. This specification includes the definition of the inputs and outputs of

the function, the domain D over which the inputs can range, and the structure of the approximating

function. This is a key performance limiting step. If the approximation capabilities are not sufficient

over D, then the approximator parameters will be adapted as the operating point changes with no

long term retention of model accuracy.

For the discussion that follows, the approximating function will be denoted f̂(x; θ, σ) where

f̂(x; θ, σ) = θTφ(x, σ) (3.2.4)

In this notation x is a dummy variable representing the input vector to the approximation

function. The actual function inputs may include elements of the plant state, control input, or

outputs. The notation f̂(x; θ, σ) implies that f̂ is evaluated as a function of x when θ and σ

are considered fixed for the purposes of function evaluation. In applications, the approximator
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parameters θ and σ will be adapted online to improve the accuracy of the approximating function -

this is referred to as training in the neural network literature. The parameters θ are referred to in

the (neural network) literature as the output layer parameters. The parameters σ are referred to as

the input layer parameters. Note that the approximation of eqn. (3.2.4) is linear-in-the-parameters

with respect to θ. The vector of basis functions φ will be referred to as the regressor vector. The

regressor vector is typically a nonlinear function of x and the parameter vector σ. Specification of the

structure of the approximating function includes selection of the basis elements of the regressor φ,

the dimension of θ, and the dimension of σ. The values of θ and σ are determined through parameter

estimation methods based on the online data. Regardless of the choice of the function approximator

and its structure, it will normally be the case that perfect approximation is not possible. The

approximation error is denoted by e(x; θ, σ) where

e(x; θ, σ) = f(x)− f̂(x; θ, σ) (3.2.5)

If θ∗ and σ∗ denote parameters that minimize the ∞-norm of the approximating error over a

compact region D, then the Minimum Functional Approximation Error (MFAE) is defined as

eφ(x) = e(x; θ∗, σ∗) = f(x)− f̂(x; θ∗, σ∗) (3.2.6)

In practice, the quantities eφ, θ∗ and σ∗ are not known, but are useful for the purposes of analysis.

Note that eφ(x) acts as a disturbance affecting the tracking error and therefore the parameter

estimates. Therefore, the specification of the adaptive approximator f̂(x; θ, σ) has a critical affect on

the tracking performance that the approximation based control system will be capable of achieving.

The approximator structure defined in eqn. (3.2.4) is sufficient to describe the various approximators

used in the neural and fuzzy control literature, as well as many other approximators.

3.2.3 Stable Training Algorithm

Given that the control architecture and approximator structure have been selected, the designer

must specify the algorithm for adapting the adjustable parameters θ and σ of the approximating

function based on the online data and control performance. Parameter estimation can be designed

for either a fixed batch of training data or for data that arrives incrementally at each control system
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sampling instant. The latter situation is typical for control applications; however, the batch situation

is the focus for much of the traditional function approximation literature. In addition, much of the

literature on function approximation is devoted to applications where the distribution of the training

data in D can be specified by the designer. Since a control system is completing a task during the

function approximation process, the distribution of training data usually cannot be specified by

the control system designer. The portion of the function approximation literature concerned with

batches of data where the data distribution is defined by the experiment and not the analyst is

referred to as scattered data approximation methods [73]. Adaptive approximation-based control

applications are distinct from traditional batch scattered data approximation problems in that:

• the data involved in the parameter estimation will become available incrementally (ad infini-

tum) while the approximated function is being used in the feedback loop;

• the training data might not be the direct output of the function to be approximated; and,

• the stability of the closed-loop system, which depends on the approximated function, must be

ensured.

The main issue to be considered in the development of the parameter estimation algorithm is the

overall stability of the closed-loop control system. The stability of the closed-loop system requires

guarantees of the convergence of the system state and of (at least) the boundedness of the error in

the approximator parameter vector.

This analysis must be completed with caution, as it is possible to design a system for which the

system state is asymptotically stable while

1. even when perfect approximation is possible (i.e., eφ = 0), the error in the estimated approxi-

mator parameters is bounded, but not convergent;

2. when perfect approximation is not possible, the error in the estimated approximator parameters

may become unbounded.

In the first case, the lack of approximator convergence is due to lack of persistent excitation.

This lack of approximator convergence may be acceptable, if the approximator is not needed for

any other purpose, since the control performance is still achieved; however, control performance will
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improve as approximator accuracy increases. Also, the designer of a control system involving adap-

tive approximation sometimes has interest in the approximated function and is therefore interested

in its accuracy. In such cases, the designer must ensure the convergence of the control state and

approximator parameters. In the second case (the typical situation), the fact that eφ cannot be

forced to zero over D must be addressed in the design of the parameter estimation algorithm.

3.3 Function Approximation Based Control Motivation

The objective of adaptive approximation-based control methods is to achieve a higher level of control

system performance than could be achieved based on the a priori model information. Such methods

can be significantly more complicated (computationally and theoretically) than non-adaptive or even

linear adaptive control methods. This extra complication can result in unexpected behavior (e.g.,

instability) if the design is not rigorously analyzed under realistic assumptions. Adaptive function

approximation has an important role to play in the development of advanced control systems. Adap-

tive approximation-based control, including neural and fuzzy approaches, have become feasible in

recent decades due to the rapid advances that have occurred in computing technologies. Inexpensive

desktop computing has inspired many ad hoc approximation-based control approaches. In addition,

similar approaches in different fields (e.g., neural, fuzzy) have been derived and presented using dif-

ferent nomenclature yet nearly identical theoretical results. Our objective herein is to present such

approaches rigorously within a unifying framework so that the resulting presentation encompasses

both the adaptive fuzzy and neural control approaches, thereby allowing the discussion to focus on

the underlying technical issues. The three terms, adaptation, learning, and self-organization, are

used with different meanings by different authors. In this thesis, we will use adaptation to refer to

temporal changes. For example, adaptive control is applicable when the estimated parameters are

slowly varying functions of time. We will use learning to refer to methods that retain information

as a function of measured variables. Herein, learning is implemented via function approximation.

Therefore, learning has a spatial connotation whereas adaptation refers to temporal effects. The

process of learning requires adaptation, but the retention of information as a function of other vari-

ables in learning implies that learning is a higher level process than is adaptation. Implementation
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of learning via function approximation requires specification of the function approximation struc-

ture. This specification is not straightforward, since the function to be approximated is assumed

to be unknown and input-output samples of the function may not be available a priori. For the

majority of this text, we assume that the designer is able to specify the approximation structure

prior to online operation. However, an unsolved problem in the field is the online adaptation of

the function approximation structure. Methods that adapt the function approximation structure

during online operation are referred to as self-organizing. Since most physical dynamic systems

are described in continuous-time, while most advanced control systems are implemented via digital

computer in discrete-time, the designer may consider at least two possible approaches. In one ap-

proach, the design and analysis would be performed in continuous-time with the resulting controller

implemented in discrete-time by numeric integration. The alternative approach would be to trans-

form the continuous-time ordinary differential equation to a discrete-time model that has equivalent

state behavior at the sampling instants and then perform the control system design and analysis in

discrete-time.

3.4 Approximation Theory

This section formulates the numeric data processing issues of interpolation and function approxima-

tion, and then discusses function approximator properties that are relevant to the use of adaptive

approximation for estimation and feedback control. Our interest in function approximation is de-

rived from the hypothesis that online control performance could be improved if unknown nonlinear

portions of the model are more accurately modeled.

Although the data to improve the model may not be available a priori, additional data can be

accumulated while the system is operating. Appropriate use of such data to guarantee performance

improvement requires that the designer understand the areas of function approximation, control,

stability, and parameter estimation. This chapter focuses on several aspects of approximation theory.

The discussion of function approximation is subdivided into off-line and online approximation. Off-

line function approximation is concerned with the questions of selecting a family of approximators

and parameters of a particular approximator to optimally fit a given set of data. The issue of the

design of the set of data is also of interest when the acquisition of the data is under the control
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of the designer. An understanding of off-line function approximation is necessary before delving

into online approximation. The discussion of online approximation builds on the understanding of

off-line approximation, and also raises new issues motivated by the need to guarantee stability of

the dynamic system and estimation process, the possible need to forget old stored information at a

certain rate, and the inability to control the data distribution.

3.4.1 Motivating Example

Consider the following simple example that illustrates some of the issues that arise in approximation

based control applications.

x(k + 1) = f(x(k)) + u(k)

y(k) = x(k),
(3.4.1)

where u(k) is the control variable at discrete-time k , x(k) is the state, y(k) is the measured

output, the function f(x) is not known to the designer, and the control law is given by

u(k) = yd(k + 1)− β[yd(k)− y(k)]− f̂(y(k)). (3.4.2)

The above control law assumes that the reference trajectory yd is known one step in advance.

For the purposes of simulation in the example, we will use f(x) = sin(x).

If f̂(y) = sin(y), then the closed-loop tracking error dynamics would be

e(k + 1) = βe(k).

where e(k) = yd(k) − x(k) , which is stable for β < 1 (in the following simulation example we

use β = 0.5). If f̂(y) 6= f(x), then the closed-loop tracking error dynamics would be

e(k + 1) = βe(k)− [f(x(k))− f̂(y(k))]. (3.4.3)

Therefore, the tracking performance is directly affected by the accuracy of the design model

f(x). The left hand column of Figure 3.1 shows the performance of this closed-loop system when

yd(k) = πsin(0.1k) and f(y) = 0. When f(x) is not known a priori, the designer may attempt to

improve the closed loop performance by developing an online (i.e., adaptive) approximation to f(x).

In this section a straightforward database function approximation approach is used. At each time
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step k , the data

z(k + 1) = [f(y(k − 1)), y(k − 1)]

will be stored. Note that the approach of this example requires that the function value f(y(k − 1))

must be computable at each step from the measured variables. This assumed approach is referred to

as supervised learning. This is a strict assumption that is not always applicable. For this example,

at time k , the information in z(k) can be computed from available data according to

z(k + 1) = [y(k)− u(k − 1), y(k − 1)]
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Figure 3.1: Closed-loop control performance for eqn. ( 3.4.1). Left column corresponds to f̂ = 0.
Right column corresponds to f̂ constructed via nearest neighbor matching. For the top row of graphs,
the dotted line is the reference trajectory. The solid line is the system response. The tracking error
is plotted in the bottom row of graphs.

At time step k with y(k) available, u(k) is calculated using eqn. (3.4.1) as follows: (1) search the

second column of z for the row i that most closely matches y(k) (i.e., i = argmino<j<k(‖z(j, 2) −
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y(k)‖), ( 2 ) use f(y(k)) = z(i, 1). The remaining terms in eqn.(3.4.1) can be directly calculated.

The right-hand column of Figure 3.2 shows the performance of the closed-loop system using this

adaptive approximation based method. Note that as the row dimension of z grows with k (i.e.,

more data values for f(x) are stored) the tracking performance rapidly improves. However, both

the memory required to store z and the computation required to search z increase at each iteration.

The top graph of Figure 3.2 plots as discrete points the first column of z as a function of the

second column of z. The approximate function used in the control law is piecewise constant with

each piecewise section (of variable width) centered on one of the examples y(i), as shown in the

bottom graph of Figure 3.2. With noise-free data, the approximation becomes very good for large k.

The approach defined above is referred to as nearest neighbor matching. Various other alternatives

are possible such as k-nearest neighbor averaging, which perform better when noise is present in the

measurement data.
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Figure 3.2: Top - Data for approximating f̂ using nearest neighbor matching. Bottom - Approxi-
mated f̂ resulting from nearest neighbor matching. Both graphs correspond to Example 2.1.

Note the following issues related to this example and the broader adaptive function approximation
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problem:

1. The input-output training data (f(y(i)), y(i)) cannot be expected to be distributed according

to an analytic distribution. Instead, the training data will be defined by the control task that

the system is performing. The distribution of training data over a fixed-duration window will

typically be time varying. If control is operating well, then the training samples will cluster

in the vicinity of a state trajectory (several may be possible) defined by the reference input.

In particular, over short periods of time, the training data will not be uniformly distributed,

but will cluster in some small subregion of the domain of approximation. For example, if the

control objective is regulation to a certain fixed point (i.e., yd(k) = constant) then the training

data may cluster around a single point.

2. When the raw training data are stored, as in this example, the approach will have growing

memory and computational penalties. These can be overcome by the function approximation

and recursive parameter estimation techniques to be described.

3. Consider the case of measurement data corrupted by noise. Direct storage of the data does

not work as well as shown in Figures 3.1 and 3.2. Figure 3.3 shows performance in the time

domain when the measured y(k) is corrupted with Gaussian random noise n(k with standard

deviation σ = 0.1. In this case, y(k) = x(k) + n(k) is stored in the database calculations and

used in the control law. The actual tracking error (x−yd) is plotted. For k > 100, the tracking

error has standard deviation of 0.16. So the approach has amplified the effects of noise. In this

approach, noisy data are stored in the data vector without noise attenuation. It is important

to note that, as we will see, methods to attenuate noise through averaging lead directly to

function approximation methods.

4. Function approximation problems are not well defined. Consider Figure 3.4, which corresponds

to the the data matrix z stored relative to Figure 3.3. If the domain of approximation that is

of interest is D = [−π, π] , how should the approximation given the available data be extended

to all of D (or should it?). A quick inspection of the data might lead to the conclusion that

the function is linear. A more careful inspection, noting the apparent curvature near ±π2 ;

might result in the use of a saturating function. From our knowledge of f(x) neither of these
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is of course correct. Extreme care must be exercised in generalizing from available data in

given regions to the form of the function in other regions. The manner in which data in one

region affects the approximated function in another region is determined primarily by the

specification of the function approximator structure. The assumed form of the approximation

inserts the designers bias into the approximation problem. The effect of this bias should be

well understood.

5. From eqn. (3.4.4) the designer might expect that, as the database accumulates data, then the

(f − f̂) term and hence e should decrease; however, the control and function approximation

approach of this example did not allow a rigorous stability analysis. The parametric function

approximation methods that follow will enable a rigorous analysis of the stability properties

of the closed-loop system.
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Figure 3.3: Closed-loop control performance for eqn. (3.4.1) with noisy measurement data. Left
column corresponds to f = 0. Right column corresponds to f constructed via nearest neighbor
matching. In the top row of graphs, the dotted line is the reference trajectory and the solid line is
the system response.
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Figure 3.4: Data for approximating f̂ corresponding to eqn. (3.4.1) with noisy measurement data.

Items 2 through 4 above naturally direct the attention of the designer to more general function

interpolation and approximation issues. The above nearest neighbors approach can be represented

as

f̂(x : z(k)) =
k∑
i=1

z(i, 1)φi(x : z(k))) (3.4.4)

where the notation f̂(x : z(k)) means the value of f̂ evaluated at x given the data in database

matrix z at time k, and

φi(x : z(k))) =

{
1, if |x− z(i, 2)| = min1≤j≤k |x− z(i, 2)| ;

0, otherwise.
(3.4.5)

where we have assumed that no two entries (i.e., rows) have the same value for z(j, 2) . Note that

by its definition, this function passes exactly through each piece of measured data (i.e., f(z(i, 2) :

z(k)) = z(i, 1)). This is referred to as interpolation. Item 2 above points out the fact that this

approximation structure has k basis elements that are redefined at each sampling instant. The
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computational complexity and memory requirements can be decreased and fixed by using a more

fixed number N of basis elements of the form

f̂(x : θ, σ,N) =
N∑
i=1

θiφi(x : σ(i))) (3.4.6)

where the data matrix z would be used to estimate θ = [θ1, · · · , θN ] and σ = [σ1, · · · , σN ]

. With such a structure, it will eventually happen that there is more data than parameters, in

which case interpolation may no longer be possible. After this instant in time, a well designed

parameter estimation algorithm will combine new and previous measurements to attenuate the

affects of measurement noise on the approximated function. The choice of basis functions can affect

the noise attenuation properties of the approximator. In addition, the choice of approximator will

affect the accuracy of the approximation, the degree of approximator continuity and the extent of

training generalization, as will be explained in Section §§§.

3.4.2 Interpolation

Given a set of input-output data {(xj , yj)|j = 1, · · · ,m;xj ∈ <n, yj ∈ <1}, function interpolation

is the problem of defining a function f̂(x) : <n → <1 such that f̂(xj) = yj for all j = 1, · · · ,m.

When f̂(x) is constrained to be an element of a finite dimensional linear space, this is called Lagrange

interpolation. The interpolating function f̂(x) can then be used to estimate the value of f(x) between

the known values of f(xj) .

In Lagrange interpolation with the basis functions φi(x)N=1,

f̂(x) =
N∑
i=1

θiφi(x) = θTφ(x) = φ(x)Tθ, (3.4.7)

where θ = [θ1, · · · , θN ]T ∈ <N and φ = [φ1, · · · , φN ]T : <n → <N . The Lagrange interpolation

condition can be expressed as the problem of finding θ such that


y1

...

ym

 =


φ(x1)T

...

φ(xm)T




θ1

...

θN

 (3.4.8)

Y = ΦTθ (3.4.9)
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Note that Φ = [φ(x1), . . . , φ(xm)] ∈ RN×m. The matrix ΦT is referred to as the interpolation

or collocation matrix. Much of the function approximation and interpolation literature focuses on

the case where n = 1. When n > 1 and the data points are not defined on a grid, the problem is

referred to as scattered data interpolation.

A necessary condition for interpolation to be possible is that N ≥ m. In online applications,

where m is unbounded (i.e., xk = x(kT )), interpolation would eventually lead to both memory and

computational problems.

If N = m and Φ is nonsingular, the unique interpolated solution is

θ = (ΦT)−1Y (3.4.10)

When the basis set {φj(x)}Nj=1, has the property that the matrix Φ, is nonsingular for any

distinct {xj}Nj=1, the linear space spanned by {φj(x)}Nj=1, is referred to as a Chebyshat space or a

Haar space [40]. The issue of how to select φ to form a Haar space has been widely studied. Even

if the theoretical conditions required for Φ to be invertible are satisfied, if xi is near xj for i 6= j,

then Φ, may be nearly singular. In this case, any measurement error in Y may be magnified in the

determination of θ. In addition, the solution via eqn. 3.4.10 may be numerically unstable.

For a unique solution to exist, the number of free parameters (i.e., the dimension of θ) must be

exactly equal to the number m of sample points xi. Therefore, the dimension of the approximator

parameter vector must increase linearly with the number of training points. Under these conditions,

the number of computations involved in solving eqn. 3.4.10) is on the order of m3 floating point

operations (FLOPS) [40]). In addition to this large computational burden, the condition number of Φ

often becomes small as m gets large. As the number of data points m increases, there will eventually

be more data (and for m = N more degrees of freedom in the approximator) than degrees of freedom

in the underlying function. In typical situations, the data yi will not be measured perfectly, but will

include errors from such effects as sensor measurement noise. The described interpolation solution

attempts to fit this noisy data perfectly, which is not usually desirable. Approximators with N < m

parameters will be over-constrained (i.e., more constraints than degrees of freedom). In this case,

the approximated function can be designed (in an appropriate sense) to attenuate the effects of noisy

measurement data. An additional benefit of fixing N (independent of m) is that the computational

complexity of the approximation and parameter estimation problems is fixed as a function of N and
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does not change as more data is accumulated.

3.4.3 Function approximation

The linear in the parameters (LIP) function approximation problem can be stated as: Given a basis

set φi(x) : <n → < for i = 1, . . . , N and a function f(x) : <n → <1 find a linear combination of the

basis elements f̂(x) = θTφ(x) : <n → < that is close to f . Key problems that arise are:

• How to select the basis set?

• How to measure closeness?

• How to determine the optimal parameter vector for the linear combination?

In the function approximation literature there are various broad classes of function approximation

problems. The class of problems that will be of interest herein is the development of approximations

to functions based on information related to input-output samples of the function.

Off-line or Batch Function Approximation

Given a set of input-output data (xi, yi), i = 1, . . . ,m function approximation is the problem of

defining a function ˆf(x) : <n → <1 to minimize ‖Ŷ − Y ‖ where Y = [y1, . . . , ym]T and Ŷ =

[f̂(x1), . . . , f̂(xm)]T. The discussion of the following two sections will focus on the over and under

constrained cases.

Over-constrained Solution

Consider the approximator structure of eqn. (3.4.8), which can be represented in matrix form as in

eqn. (3.4.9). When N < m the problem is over-specified (more constraints than degrees of freedom).

In this case, the matrix Φ defined relative to eqn. (3.4.9) is not square and its inverse does not exist.

In this case, there may be no solution to the corresponding interpolation problem. Since with the

specified approximation structure the data cannot be fit perfectly, the designer may instead select

the approximator parameters to minimize some measure of the function approximation error. If a

weighted second-order cost function is specified then

J(θ) =
1
2

(Ŷ − Y )TW (Ŷ − Y ) (3.4.11)
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which corresponds to the norm ‖Y ‖2W = 1
2Y

TWY where W is symmetric and positive definite. In

this case the optimal vector θ∗ that minimizes the cost function in eqn. (3.4.11) can be obtained by

differentiation :

J(θ) =
1
2

(ΦTθ − Y )TW (ΦTθ − Y ) (3.4.12)

∂J(θ)
∂θ
|θ=θ∗ = (ΦTθ∗ − Y )TWΦT = 0 (3.4.13)

θ∗ = (ΦWΦT)−1ΦWY (3.4.14)

and
∂J2(θ)
∂θ2

= ΦWΦT (3.4.15)

where it has been assumed that rank(Φ) = N so that ΦWΦT is nonsingular. When the rank of

rank(Φ) < N , then either additional data are required or the under-constrained approach defined

below must be used. Since the second derivative of J(θ) with respect to θ evaluated at θ∗ is, at least

positive semi-definite, the solution of eqn. (3.4.14) is a minimum of the cost function [40].

Equation (3.4.14) is the weighted least squares solution. If W is a scalar multiple of the identity

matrix, then the standard least squares solution results. Note from eqn. (3.4.13) that the weighted

least squares approximation error (ΦTθ∗−Y ) has the property that it is orthogonal to all N columns

of the weighted regressor WΦT.

Under-constrained Solution

When N > m the problem is under-specified (i.e., fewer constraints than degrees of freedom). This

situation is typical at the initiation of an approximation based control implementation. In this case,

the matrix Φ defined in eqn. (3.4.9) is not square and its inverse does not exist. Therefore, there

will either be no solution ( Y is not in the column space of ΦT) or an infinite number of solutions.

In the latter case, Y is in the column space of ΦT; however, since the number of columns of ΦT is

larger than the number of rows, the solution is not unique. The minimum norm solution can be

found by application of Lagrange multipliers. Define the cost function

J(θ, λ) =
1
2
θTθ + λT(Y − ΦTθ) (3.4.16)
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which enforces the constraint of eqn. (3.4.9) and is minimized by the minimum norm solution.

Taking derivatives with respect to θ and λ yields

∂J

∂θ
= θT − λTΦT = 0 and

∂J

∂λ
= Y − ΦTθ = 0 (3.4.17)

Combining these two equations and solving yields

λ = (ΦTΦ)−1Y θ = Φ(ΦTΦ)−1Y (3.4.18)

where (ΦTΦ) an m × m matrix that is assumed to be nonsingular. The matrix Φ(ΦTΦ)−1 is the

Moore-Penrose pseudo-inverse of ΦT [16, 90].

This section has discussed the off-line problem of fitting a function to a fixed batch of data. We

have introduced the topic of weighted least squares parameter estimation which is applicable when

the number of data points exceeds the number of free parameters defined for the approximator.

We have also discussed the under-constrained case when there is not sufficient data available to

completely specify the parameters of the approximator. Normally in online control applications, the

number of data samples m will eventually be much larger that the number of parameters N. This is

true since additional training examples are accumulated at each sampling instant. The results for

the under-constrained case are therefore mainly applicable during start-up conditions.

Adaptive Function Approximation

Given the first k samples, with k ≥ N , the weighted least squares (WLS) parameter estimate

obtained in the preceding section can be expressed as

θk = (ΦkWkΦT
k )−1ΦkWkYk

where Φk = [φ(x1), . . . , φ(xk)] ∈ <N×k, Yk = [y1, . . . , yk]T, and Wk is an appropriately dimensioned

positive definite matrix. Solution of this equation requires inversion of an N ×N matrix. When the

(k + 1)st sample becomes available, this expression requires the availability of all previous training

samples and again requires inversion of a new N × N matrix. For a diagonal weighting matrix

Wk, direct implementation of the WLS algorithm has storage and computational requirements that

increase with k . This is not satisfactory, since k is increasing without bound. To overcome such
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a problem we may use the recursive weighted least squares (RWLS) method presented in the next

subsection.

Recursive WLS: Derivation

While the batch least squares approach has proven to be very successful for a variety of applications,

the fact that by its very nature it is a batch method (i.e., all the data are gathered, then processing

is done) may present computational problems.

The WLS parameter estimate can be expressed as

θk = P−1
k Rk, where Pk =

1
k

ΦkWkΦT
k and Rk =

1
k

ΦkWkYk. (3.4.19)

In the case where Wk = I, Pk is the sample regressor autocorrelation matrix and Rk is the sample

cross-correlation matrix between the regressor and the function output.

From the definitions of Φ, Y, and W , assuming that W is a diagonal matrix, we have that

Yk+1 =

[
Yk

yk+1

]
, Φk+1 =

[
Φk φk+1

]
, and Wk+1 =

[
Wk 0

0 wk+1

]
, (3.4.20)

therefore

Φk+1Wk+1ΦT
k+1 = ΦkWkΦT

k + φk+1wk+1φ
T
k+1 (3.4.21)

Φk+1Wk+1Y
T
k+1 = ΦkWkY

T
k + φk+1wk+1y

T
k+1 (3.4.22)

Calculation of the WLS parameter estimate after the (k + 1)st sample is available will require

inversion of the Φk+1Wk+1ΦT
k+1. The Matrix Inversion Lemma [52] will enable derivation of the

desired recursive algorithm based on eqn. 3.4.21.

Lemma 3.4.1. The Matrix Inversion Lemma states that if matrices A, C, and (A + BCD) are
invertible (and of appropriate dimension [52]), then (A + BCD)−1 = A−1 − A−1B(DA−1B +
C−1)−1DA−1.

Applying the above Lemma, with Ak = ΦkWkY
T
k , B = φk+1, C = wk+1, and D = φT

k+1, yields

A−1
k+1 =

(
ΦkWkY

T
k + φk+1wk+1φ

T
k+1

)−1

A−1
k+1 = A−1

k +A−1
k φk+1

(
φT
k+1A

−1
k φk+1 + w−1

k+1

)−1
φT
k+1A

−1
k (3.4.23)
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Note that the WLS estimate after samples k and (k + 1) can respectively be expressed as

θk = A−1
k ΦkWkYk and θk+1 = A−1

k+1Φk+1Wk+1Yk+1

Using eqns. (3.4.21) and (3.4.23), we can easily derive the recursive WLS parameter estimation

equation as follows:

θk+1 = θk +A−1
k

(
φT
k+1Akφk+1 + w−1

k+1

)−1
φk+1

(
yk+1 − φT

k+1θk
)

(3.4.24)

Eqn. (3.4.24) has a standard predictor-corrector format

θk+1 = θk + Ωkφk+1 (yk+1 − yk+1:k) (3.4.25)

where Ωk = A−1
k

(
φT
k+1Akφk+1 + w−1

k+1

)−1
and yk+1:k = φT

k+1θk is the estimate of yk+1 based on θk.

The standard WLS calculation requires inversion of an N×N matrix, however using the RWLS

algorithm reduces the task to an inversion of an n × n matrix where N is the number of basis

functions and n is the output dimension of f , which we have assumed to be one. Therefore, the

matrix inversion simplifies to a scalar division. Note that Ak is never required. Therefore, A−1
k is

propagated, but never inverted.

Due to the equivalence of the WLS and RWLS solutions, the RWLS estimate will not be

the unique solution to the WLS cost function until the matrix ΦkWΦT
k is not singular. Various

alternative parameter estimation algorithms can be derived which require substantially less memory

and fewer computations, the tradeoff is that the alternative algorithms converge asymptotically

instead of yielding the optimal parameter estimate as soon as k achieves sufficient excitation. In

fact, if convergence of the parameter vector is desired for non-WLS algorithms, then the more

stringent condition of persistence of excitation will be required.

Approximator Properties

This section discusses properties that families of function approximators may have. In each sub-

section, the technical meaning of each property is presented and the relevance and tradeoffs of

the property in the applications of interest are discussed. Due to the technical nature of and the
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broad background that would be required for the proofs, in most cases the proofs are not presented.

Literature sources for the proofs are cited.

Parameter (Non)Linearity

An initial decision that the designer must make is the form of the function approximator. A large

class of function approximators (several are presented in Chapter §§) can be represented as

f̂(x : θ, σ) = θTφ(x, σ) (3.4.26)

where x ∈ <n, θ ∈ <N , and the dimension of σ depends on the approximator of interest. The

approximator has a linear dependence on θ, but a nonlinear dependence on σ

For instance, the radial basis function approximator with Gaussian nodes takes the following

form:

f̂(x : θ, σ) =
N∑
i=1

θi exp
(
−‖x− ci‖

2

γ2
i

)
,

with x, ci ∈ <n and θi, γi ∈ <1, has the form of eqn. (3.4.26) where

φ(x, σ) =
[
exp

(
−‖x− c1‖

2

γ2
1

)
, . . . , exp

(
−‖x− cN‖

2

γ2
N

)]T

,

σ = [c1, . . . , cN , γ1, . . . , γN , ]
T
,

and

θ = [θ1, . . . , θN ]T ,

This radial basis function approximator is only linear in its parameters when all elements of σ are

fixed.

In most papers and applications, the parameter N which is the dimension of φ is fixed prior to

online usage of the approximator. When N is fixed prior to online operation, selection of its value

should be carefully considered as N is one of the key parameters that determines the minimum

approximation accuracy that can be achieved [40]. Self-organizing approximators that adjust N

online while ensuring stability of the closed-loop control system constitute an area of continuing
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research. A second key design decision is whether a will be fixed apriori (i.e., σ(t) = σ(0)andσ̇ = 0) or

adapted online (i.e., σ(t) is a function of the online data and control performance). If σ is fixed during

online operation, then the function approximator is linear in the remaining adjustable parameters θ

so that the designer has a linear-in-the-parameter (LIP) adaptive function approximation problem.

Proving theoretical issues, such as closed-loop system stability, is easier in the LIP case. Fixing σ is

beneficial in terms of simplifying the analysis and online computations, but may limit the functions

that can be accurately approximated and may require that N = dim(φ) be larger than would be

required if σ were estimated online.

Classical Approximation Results

The set of functions F(D) defined on a compact set D is a linear space. The ∞-norm of F(D) is

defined as

‖f‖∞ = sup
x∈D
|f(x)|.

The set C(D) of continuous functions defined on D is also a linear space of functions. Since D is

compact, for f ∈ C(D),

‖f‖∞ = max
x∈D
|f(x)|.

Since supx∈D |f(x)| satisfies the properties of a norm, both F(D) and C(D) are normed linear

spaces. Given a norm on F(D), the distance between f, g ∈ F(D) can be defined as d(f, g) = ‖f−g‖.

When f, g are elements of a space S, d(f, g) is a metric for S and the pair S, d is referred to as a

metric space. When S(D) is a subset of F(D) , the distance from f ∈ F(D) to S(D) is defined to

be d(f,S) = infa∈S d(f, a).

A sequence fi ∈ X is a Cauchy sequence if ‖fi − fj‖ → 0 as i, j →∞. A space X is complete if

every Cauchy sequence in X converges to an element of X (i.e., ‖fi − fj‖ → 0 as i → ∞ for some

f ∈ X ) . A Banach space is the name given to a complete normed linear space. Examples of Banach

spaces include the Lp spaces for p ≥ 1 where

Lp =

{
f : R1 → R1 : ‖f‖p =

[∫
f(x)|pdx

] 1
p

<∞

}

or the set C(D) with norm ‖f‖∞.
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Weierstrass Results

Given a Banach space X with elements f , norm |f |, and a sequence ΦN = {φi}Ni=1 ⊂ X of basis

elements, f is said to be approximable by linear combinations of ΦN with respect to the norm ‖.‖

if for each ε > 0 there exists N such that ‖f − PN‖ < ε where

PN (x) =
N∑
i=1

θiφi(x), for some θi ∈ R. (3.4.27)

The N -th degree of approximation of f by ΦN is

EΦ
N (f) = d(f, PN ) = inf

θ
‖f − PN‖. (3.4.28)

When the infinum is attained for some P ∈ X , this P is referred to as the linear combination of

best approximation.

Consider the theoretical problem of approximating a given function f ∈ C(D) relative to the two

norm using PN . The solution to eqn. (3.4.7) is(∫
D

ΦN (x)ΦT
N (x)dx

)−1 ∫
D

ΦN (x)f(x)dx (3.4.29)

where the basis elements φi(x) are assumed to be linearly independent so that

∫
D

ΦN (x)ΦT
N (x)dx

is nonsingular. This solution shows that there is a unique set of coefficients for each N such that

the two-norm of the approximation error is minimized by a linear combination of the basis vectors.

This solution does not show that f ∈ C(D) is approximable by linear combinations of φN , since

eqn. (3.4.29) does not show whether EΦ
N (f) approaches zero as N increases.

Universal Approximator

Consider the following theorem

Theorem 3.4.2. Given f ∈ L2(D) and an approximator of the form eqn. (3.4.7), for any N if
(
∫
D ΦN (x)ΦT

N (x)dx) is nonsingular; then there exists a unique θ∗ ∈ RN such that f(x) = (θ∗)Tφ(x)+
e∗f where

θ∗ = arg min
θ

∫
D
‖f(x)− f̂(x : θ)‖22dx. (3.4.30)

In addition, there are no local minima of the cost function (other than θ∗).
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This theorem states the condition necessary that for a given N , there exists a unique parameter

vector θ∗ that minimizes the L2 error over D). In spite of this, for f ∈ L2(D) , the error e∗f may be

unbounded pointwise. Since D is compact, if f and ΦN ∈ C(D), then e∗f is uniformly bounded on D),

but the theorem does not indicate how e∗f changes as N increases. This is in contrast to results like

the Weierstass theorem which showed polynomials could achieve arbitrary ε-accuracy approximation

to continuous functions uniformly over a compact region, if the order of the polynomial was large

enough. Development of results analogous to the Weierstrass theorem for more general classes of

functions is the goal of this section.

For approximation based control applications, a fundamental question is whether a particular

family of approximators is capable of providing a close approximation to the function f(x). There

are at least three interesting aspects of this question:

1. Is there some subset of a family of approximators that is capable of providing an ε-accurate

approximation to f(x) uniformly over D.

2. If there exists some subset of the family of approximators that is capable of providing an

ε-accurate approximation, can the designer specify an approximation structure in this subset

apriori?

3. Given that an approximation structure can be specified, can appropriate parameter vectors θ

and σ be estimated using data obtained during online system operation, while ensuring stable

operation?

The N -th degree approximation error of f by Sr,N is,

EΦ
N (f) = inf

θi,Ai,i=1..N

∥∥∥∥∥f −
(

N∑
i=1

θig(Ai(x))

)∥∥∥∥∥ . (3.4.31)

Uniform Approximation is concerned with the question of whether for a particular family of ap-

proximators and f having certain properties (e.g., continuity), is it guaranteed to be true that for

any ε > 0, EΦ
N (f) < ε if N is large enough? Many such universal approximation results have been

published (e.g., [34, 35]).

Theorem 3.4.3. (Stone-Weierstrass Theorem) Let S be any algebra of real continuous func-
tions on a compact set D. if S separates points on D and vanishes at no point of D, then for any
f ∈ C(D) and ε > 0 there exists f̂ ∈ S such that supD |f(x)− f̂(x)| < ε.
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Approximators that satisfy theorems such as 3.4.3 are referred to as universal approximators.

Universal Approximation Theorems such as these state that under reasonable assumptions on the

approximator structure and the function to be approximated, if the (single hidden layer) network

approximator has enough nodes, then an accurate network approximation can be constructed by

selection of θ and σ. Such theorems do not provide constructive methods for determining appropriate

values of N, θ, or σ.

Universal aproximators in control

Universal approximation results are one of the most typically cited reasons for applying neural

or fuzzy techniques in control applications involving significant unmodeled nonlinear effects. The

dynamics involve a function f(x) = fo(x) + f∗(x) where f∗(x) has a significant effect on the system

performance and is known to have properties satisfying a universal approximation theorem, but

f∗(x) cannot be accurately modeled a priori. Based on universal approximation results, the designer

knows that there exists some subset of S that approximates f∗(x) to an accuracy ε for which the

control specification can be achieved Therefore, the approximation based control problem reduces

to finding f ∈ S that satisfies the ε accuracy specification. Most articles in the literature address

the third question stated at the beginning of this section: selection of θ or (σ, θ) given that the

remaining parameters of S have been specified. However, selection of N for a given choice of(N, σ)

for a specified g) is the step in the design process that limits the approximation accuracy that can

ultimately be achieved. To cite universal approximation results as a motivation and then select N

as some arbitrary, small number are essentially contradictory.

Starting with the motivation stated in the previous paragraph, it is reasonable to derive stable

algorithms for adaptive estimation of θ or (σ, θ) if N is specified large enough. Specification of

too small of a value for N defeats the purpose of using a universal approximation based technique.

When N is selected too small but a provably stable parameter estimation algorithm is used, stable

(even satisfactory) control performance is still achievable; however, accurate approximation will not

be achievable. Unfortunately, the parameter m is typically unknown, since f∗(x) is not known.

Therefore, the selection of N must be made overly large to ensure accurate approximation. The

tradeoff for over estimating the value of N is the larger memory and computation time requirements

of the implementation. In addition, if N is selected too large, then the approximator will be capable
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of fitting the measurement noise as well as the function. Fourier analysis based methods for selecting

N are discussed in [77]. Online adjustment of N is an interesting area of research which tries to

minimize the computational requirements while minimizing ε and ensuring stability [25, 33, 39, 86].



Chapter 4

Approximator structures

4.1 Introduction

The objective of this chapter is to present and discuss several neural, fuzzy, and traditional approx-

imation structures in a unifying framework to be used as a solution to model and compensate for

the uncertain terms that are neglected. The presentation will make direct references to the approxi-

mator properties presented in Chapter 3. Each section of this chapter discusses one type of function

approximator, presents the motivation for the development of the approximator, and shows how

the approximator can be represented in one of the standard nonlinearly and linearly parameterized

forms:

NLIP : f̂(x : θ, σ) = θTφ(x, σ) (4.1.1)

LIP : f̂(x : θ) = θTφ(x) (4.1.2)

where x ∈ D ⊂ Rn, σ ∈ Rp, f̂ : D → R1, and D is assumed to be compact. Note that f̂ is

assumed to map a subset of Rn onto R1. This assumption that we are only concerned with scalar

functions (i.e., single output) is made only for simplicity of notation. All the results extend to vector

functions.

The ultimate objective is to adjust the approximator parameters θ and σ to encode information

that will enable better control performance. Proper design requires selection of a family of function

approximators, specification of the structure of the approximator, and estimation of appropriate

approximator parameters. The latter process is referred to as parameter adaptation or learning.

48
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4.2 Model Types

This section discusses three approaches to adaptive approximation. The first subsection discusses

the use of a model structure derived from physical principles. The second subsection discusses the

storage and use of the raw data without the intermediate step of function approximation. The third

section, which we will focus on, discusses the use of generic function approximators.

4.2.1 Physically Based Models

In some applications, the physics of the problem will provide a well-defined model structure where

only parameters with well-defined physical interpretations are unknown. In such cases, the physically

defined model may provide a structure appropriate for adaptive parameter identification.

When the physics of the problem provides a well-defined model structure, parameter estimation

based on that model is often the most appropriate approach to pursue. However, even these appli-

cations must be designed with care to ensure stable operation and meaningful parameter estimates.

Alternatively, the physics of an application will often provide a model structure, but leave cer-

tain functions within the structure ill-defined. In these applications, adaptive approximation based

approaches may be of interest.

4.2.2 Structure (Model) Free Approximation

In applications where adaptive function approximation is of interest, the data necessary to perform

the functions approximation will be supplied by the application itself and could arrive in a variety of

formats. The easiest form of data to work with is samples of the input and output of the function to

be approximated. Although this is often an unrealistic assumption, for this section we will assume

availability of a set of data {zi}mi=1, where each vector zi, can be decomposed as zi = [xi f(xi)]

with xi, being the function inputs and f(xi) being the function outputs. This set of data can be

directly stored without further processing. This is essentially a database approach. If the function

value is required at xj for some 1 ≤ j ≤ m, then its value can be retrieved from the database. Note

that there is no noise attenuation. However, in control applications, the chance of getting exactly

the same evaluation point in the future as one of the sample points from the past is very small.

Therefore, the exact input matching requirement would render the database useless.



50

Many extensions of the database type of approach are available to generate estimates of the

functions values at evaluation points x 6∈ {xi}mi=1 [83]. In such approaches, the sample points

{xi}mi=1 affect the estimate of f(x) at points x 6∈ {xi}mi=1. Therefore, all such approaches cause

generalization (appropriately or not) from the training data. If the function samples at several

of the xi are combined to produce the estimate of f(x), then noise on individual samples might

be attenuated. When the designer does not have prior knowledge of a parametric description of

function, then the basic function approximation problem is nonparametric. A complete description

of an arbitrary function could require an infinite number of parameters, which is clearly not physically

possible.

4.2.3 Function Approximation Structures

The design philosophy should be to use as much known information as is possible when constructing

the dynamic model; however, when portions of a physically based model are either not accurately

known or deemed inappropriate for online applications, then it is reasonable to use function approx-

imation structures capable of approximating wide classes of functions. To make this point explicit,

we will use the notation f(z) = fo(z) + f∗(x) to describe a partially known function f . In this

notation, fo is the known information about f and f∗ represents its unknown portion. When there

is no prior known information, the function fo is set to zero.

Basic descriptions and properties of specific function approximation structures are discussed in

the remaining sections of this chapter. Note that the choice of a family of approximators and the

structure of a particular approximator is based on the implicit assumption by the designer that

the selected approximator structure is sufficient for the application. Subsequent adaptive function

approximation is constrained to the functions that can be implemented only by adjusting the pa-

rameters of the (now) fixed approximation structure.

Once the approximation structure and the compact region of approximation D are fixed, we can

define an optimal parameter vector, a parameter error vector, and the residual approximation error

for structures defined in (4.1.1,4.1.2) as

NLIP : (θ∗, σ∗) = arg min
θ

(
sup
x∈D

∣∣∣f∗(x)− f̂(x : θ, σ)
∣∣∣) (4.2.1)
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LIP : θ∗ = arg min
θ

(
sup
x∈D

∣∣∣f∗(x)− f̂(x : θ)
∣∣∣) (4.2.2)

Given these definitions of the optimal parameters, the parameter error vector for LIP approxi-

mators is defined by

θ̃ = θ − θ∗ (4.2.3)

For NLIP approximators, in addition of ˜theta, we also define

σ̃ = σ − σ∗ (4.2.4)

The residual or inherent approximation error (for the specified approximation structure) is defined

as

NLIP : e∗(x) = f̂(x : θ∗, σ∗)− f∗(x) (4.2.5)

LIP : e∗(x) = f̂(x : θ∗)− f∗(x) (4.2.6)

and will also sometimes be referred to as the Minimum Functional Approximation Error (MFAE).

Note that none of θ∗, σ∗, θ̃, σ̃, or e∗(x) are known. These are theoretical quantities that are

necessary for analysis, but they cannot be used in implementation equations. When f ∈ C(D) with

D compact, then the quantities θ∗ and supx∈D |e∗(x)| are easily shown to be bounded.

4.3 Splines

Polynomials with low order are a good class of approximators when the region of approximation

is sufficiently small relative to the rate of change of the function f . This motivates the idea of

subdividing a large region and using a low order approximating polynomial on each of the resulting

subregions.

Numeric splines implement this idea by connecting in a continuous fashion a set of local, low

order, piecewise polynomial functions to fit a function over a region D. For example, given a set of

data {(xi, yi)}K+1
i=1 with xi < xi+1 , if the data are drawn on a standard x− y graph and connected

with straight lines, this would be a spline of order two interpolation of the data set. If the data were

connected using 2nd order polynomials between the data points in such a way that the graph had a
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continuous first derivative at these interconnection points, this would be a spline of order three. The

name ”spline” comes from drafting where flexible strips were used to aid the drafter to interpolate

smoothly between points on paper [14].

4.3.1 Description

Various types of splines now exist in the literature. The types of splines differ in the properties that

they are designed to optimize and in their implementation methods. In the following we will present

two types of splines that are used by control designers in the framework of Function Approximation

Based Control.

4.3.2 Natural Splines

In one dimension, a spline is constructed by subdividing the interval of approximation I = (x, x̄)

into K subintervals Ij = (xj , xj+l) where the xj , referred to as knots or break points, are assumed

to be ordered such that x = x0 < x1 < · · · < xK = x̄. For a spline of order k , a (k − 1)st order

polynomial is defined on each subinterval Ij . Without additional constraints, each (k − 1)st order

polynomial has k free parameters for a total of Kk free spline parameters. The spline functions

are, however, usually defined so that the approximation is in C(k−2) over the interior of I. For

example, a 2nd order spline is composed of first order polynomials (i.e., lines) defined so that the

approximation is continuous over I including at the knots. With such continuity constraints, the

spline has Kk− (k− 1)(K − 1) = K + k− 1 free parameters. With the constraint that the spline be

continuous in (k−2) derivatives, splines have the property of being continuous in as many derivatives

as is possible without the spline degenerating into a single polynomial. In contrast to polynomial

series approximation, the accuracy of a spline approximation can be improved by increasing either k

or K . Therefore, splines approximations are more flexible than polynomials series approximators.

4.3.3 Cardinal B-splines

When the B-splines are defined with the knots at

{· · · ,−2,−1, 0, 1, 2, · · · }, (4.3.1)

they are called Cardinal B-splines. One of the common forms in which B-splines are used in

adaptive approximation applications is by translation and dilation of the Cardinal B-splines.
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Definition 4.3.1. [28] The functions gk : R1 → R1 defined recursively, for k > 1, by

gk(x) =
∫ 1

0

gk−1(x− λ)dλ =
∫ ∞
−∞

gk−1(x− λ)g1(λ)dλ (4.3.2)

is the Cardinal B-spline of order k (for the knot at 0) where

g1(x) =
{

1, if 0 ≤ x < 1
0, otherwise. (4.3.3)

The Cardinal B-splines of orders 2 and 3 are, respectively, for the knot at 0 given by

g2(x) =


x for 0 ≤ x < 1

2− x for 1 ≤ x < 2

0 otherwise,

(4.3.4)

g3(x) =



x2

2 for 0 ≤ x < 1

−x2 + 3x− 3
2 for 1 ≤ x < 2

(3−x)2

2 for 2 ≤ x < 3

0 otherwise.

(4.3.5)

Note that the Cardinal B-spline of order k is a piecewise polynomial of degree k−1. The piecewise

polynomial is in C(k−2) with points of discontinuity in the (k − 1) derivative at x = 0, 1, 2, · · · , k.

The B-spline basis element of order k for the knot at x = j is gkj(x) = gk(x− j) and has support

for j ∈ (j, k + j). Conversely, for x ∈ [0, 1], the functions gk(x − j) are nonzero for j ∈ [1 − k, 0).

The B-splines basis elements of order k = 1, 2, 3, and 4 are shown in Figure 4.1. This figure shows

all the B-splines gkj for j = 1 − k, · · · , 0 that would be necessary to form a partition of unity for

x ∈ (0, 1).

The function sk(x) =
∑N−1
j=1−k θjgk(x − j) is a spline of order k with (N + k − 1) knots at

x = 1− k, 1, 2, · · · , N − 1. It is also a piecewise polynomial of degree k− 1 with the same continuity

properties as gk. The function sk(x) is nonzero on [l − k, k + N − 1]. For N > k , the set of basis

elements {gk(x − j)}N−1
j=1−k form a partition of unity on [0, N ]. If instead, the basis elements are

selected as

φj(x) = gk

(
N
x− a
x− b

− j
)
, (4.3.6)

for j = 1 − k, · · · , N − 1, then this basis set {φj}N−1
j=1−k, formed by translating and dilating the

k-th Cardinal B-spline, is a partition of unity on [l, b]. The span of this set of basis functions is a

piecewise polynomial of degree k − 1 that is in C(k−2) . By using an approximator defined as
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Figure 4.1: B-splines of order 1 thru 4 that are non-zero on (0, l)

f̂(x, θ) = θTφ(x) =
N−1∑
j=1−k

θjφj(x),

with φj(x) as defined in (4.3.6), we are able to adjust the parameters of the approximator without

the explicit inclusion of continuity constraints in the parameter adjustment process, such as those

that were required for the natural splines. We attain a piecewise polynomial of degree k−1 in C(k−2)

because the basis elements have been selected to have these properties.

Splines have the uniform approximation property in the sense that any continuous function on a

compact set can be approximated with arbitrary accuracy by decreasing the spacing between knots,

which increases the number of basis elements. For nonuniformly spaced knots, if it is desired to add

additional knots, there are available methods that can be found by searching for ”knot insertion”.

B-splines are locally supported, positive, normalized, and form a partition of unity [13]. Each basis

element is nonzero over the k intervals defined by the knots. Therefore, a change in the parameter
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θ affects only the approximation over the k intervals of its support. In addition, at any evaluation

point, at most k of the basis elements are nonzero

4.4 Artificial Neural Networks

ANNs model biological neurons in order to do numerical interpolation. Figure 4.2 provides a sketch

of a biological neuron and a human-made neuron.

f

1x

2x

nx

1w
2w

nw
)( 0wwxfy ii += ∑

y

0w

Figure 4.2: Biological Neuron and Artificial Neuron

The biological neuron acts as a processing element that receives many signals. These signals may

be modified by a weight at the receiving synapse. Then the processing element sums the weighted

inputs. When the input becomes sufficiently large, the neuron transmits a single output that goes

off to other neurons.The human-made neuron works by analogy. It takes an input, multiplies it

by a weight, adds a bias, and then passes the result through a transfer function. Several neurons

in parallel are known as a layer. Adding these layers together produces the neural network. The

weights and bias values are optimized to produce the desired output.

4.4.1 Radial basis functions

Radial basis functions (RBFs) were originally introduced as a solution method for batch multi-

variable scattered data interpolation problems [40, 45, 63, 67, 68]. Scattered data interpolation

problems are the subset of interpolation problems, where the data samples are dictated not by some

optimal criteria, but by the application or experimental conditions. Online control applications
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involve (non-batch) scattered data function approximation.

Description

A radial basis neural network (RBNN) is typically comprised of a layer of radial basis activation

functions with an associated Euclidean input mapping (but there are many ways to define this class

of neural networks). The output is then taken as a linear activation function with an inner product

or weighted average input mapping.

A radial basis function approximator is defined as

f̂(x) =
N∑
i=1

θig(‖x− ci‖) +
k̄∑
i=1

bipi(x) (4.4.1)

where x ∈ Rn, {ci}Ni=1 are a set of center locations, ‖x− ci‖ is the distance from the evaluation

point to the i-th center, g(.) : R+ 7→ R1 is a radial function, and {pi(x)}i=1:k̄ is a basis for the k̄

dimensional linear space of polynomials of degree k in n variables

Pk = span{xα1
1 , . . . , xαnn |0 ≤ α1 + · · ·+ αn ≤ k}.

The polynomial term in (4.4.1) is included so that the RBF approximator will have polynomial

precision k 1. Often in RBF applications, k is specified by the designer to be −1. In that case,

the polynomial term does not appear in the approximator structure and the RBF does not have a

guaranteed polynomial precision.

Some forms of the radial function that appear in the literature are

Gaussian : g1(ρ) = exp{−1
2
ρ2

γ2
}

Multi-Quadraric : g2(ρ) =
(
ρ2 + γ2

)β
, β ∈ (0, 1)

Inverse Multi-Quadraric : g3(ρ) =
(
ρ2 + γ2

)−α
, α > 0

Thin Plate Spline : g4(ρ) = ρ2 log(ρ+ γ)

1An approximator having polynomial precision k means that the approximator is capable of exactly representing
a polynomial of that order.
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Figure 4.3: RBF Nonlinear functions

whereρ ∈ [0,∞) and γ is a constant either defined by the designer prior to online application or

a parameter to be estimated online, The multi-quadratic and inverse multi-quadratic are stated for

specific ranges of β and α , but the names of the nodal functions relate explicitly to the case where

α = β = 0.5. Multi-quadratics were introduced by Hardy in 1971 [40]. Figure 4.3 displays plots

of four radial functions with α = β = 0.5 and γ = 1. Radial basis functions (with k̂ = 0) can be

represented in the standard form

f̂(x) = θTφ(x, c, γ) =
N∑
i=1

θiφi(x, c, γ) (4.4.2)

where the i-th basis element is defined by

φi(x, c, γ) = g(‖x− ci‖, γ) forx ∈ Rn andi = 1, · · · ,m. (4.4.3)

In the standard RBF, all the elements of φ are based on the same radial function g(.). The first

argument of g is the radial distance from the input x to the i-th center ci, ρi(x) = ‖ci−x‖. When g

is selected to be either the Gaussian function or the Inverse multi-quadratic, then the resulting basis



58

function approximator will have localization properties determined by the parameter γ. In a more

general approach, different values of γ can be used in different basis elements of the RBF approach.

Properties

Given a constant value for γ, the user can choose among the following three procedures for the

selection of the centers ci:

1. For a fixed batch of sample data {(xj , yj)}Nj=1, when the objective is interpolation of the data

set, the centers are equated to the locations of the sample data: ci = xi for i = 1, · · · , N . Data

interpolation for j = 1, · · · , N provides a set of N constraints

yj =
N∑
i=1

θig(‖xj − ci‖) +
k̄∑
i=1

bipi(xj) (4.4.4)

leaving k̄ degrees of freedom. These interpolation constraints can be written as

Y =
[

ΦT PT
] [ θ

b

]
(4.4.5)

where Φ and Y are defined in (3.4.9). P = [p(x1), · · · , p(xN )], p(xj) = [p1(xj), · · · , pk̄(xj)],

and b = [bl, · · · , bk̄]. Since g is a radial function, g(‖xj − xi‖) = φj(xj); therefore, the matrix

Φ is symmetric. The RBF approximator still allows an additional k̄ degrees of freedom. The

additional constraint that
∑N
i=1 θipj(xi) = 0 for j = 1, · · · , k̄ is typically imposed. The

resulting linear set of equations that must be solved for θ and b is

[
Y

0

]
=

[
ΦT PT

P 0

][
θ

b

]
(4.4.6)

This is a fully determined set of N + k̄ equations with the same number of unknowns. It can

be shown that when g is appropriately selected, this set of equations is well-posed [52].

2. The ci are specified on a lattice covering D. Such specification results in a LIP approximation

problem with memory requirements that grow exponentially with the dimension of x, but very

efficient computation. Function Approximation Theorem presented in the preceding chapter

shows that this type of RBF is a universal approximator.
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3. The ci are estimated online as training data are accumulated. This results in a NLIP ap-

proximation problem. Function Approximation Theorem shows that this type of RBF is also

a universal approximator. The resulting approximator may have fewer parameters than case

2, but the approach must address the difficulties inherent in nonlinear parameter estimation.

Although our main interest will be in approximation problems, the use of RBFs for data inter-

polation has an interesting history. The analysis of the interpolation has implications for the choice

of g in approximation problems.

4.4.2 Multi-Layer Perceptron

Perceptrons and multilayer perceptron networks [35] have a long history and an extensive literature

[68]. Examples of the use of multilayer perceptrons in control application can be found in [5, 11, 19,

20, 21, 22, 23, 29, 43, 54, 58, 61, 63, 92].

Description

The left image in Figure 4.4 illustrates a perceptron. The output of the perceptron denoted by υi is

υi = g

bi +
n∑
j=1

ωijxj

 . (4.4.7)
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Figure 4.4: Left-Single node perceptron. Right-Single layer perceptron network. The bold lines in
the right figure represents the dot product operation (weighting and summing) performed by the
connection and nodal processor.

Often for convenience of notation, this will be written as

υi = g(Wix) (4.4.8)
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where Wi = [bi, wi1, · · · , wn1] and x = [1, xl, · · · , xn]. The function g : R1 7→ R1 is a squashing

function such as g(x) = arctan(x) or g(x) = 1
1+e−x . Note that the perceptron has multiple inputs

and a single output. If g(a) is the signum function, then a perceptron divides its input space into

two halves using the hyperplane ui = Wix. If ui < 0, then vi = −1. If ui > 0, then vi = 1. If

ui = 0, then vi = 0. This hyperplane is referred to as a linear discriminant function. The image on

the right side of Figure 4.4 shows a network that forms a linear combination of perceptron outputs.

The network output is

y = θV (4.4.9)

where V T = [υl, · · · , υN ] is the vector of outputs from each perceptron defined in eqn. (4.4.7)

and θ ∈ Rq×N is a parameter matrix. This approximator is referred to as a single hidden layer

perceptron network. The parameters in Wi, are the hidden layer parameters. The parameters in

θ are the output layer parameters. By Theorem 3.4.2, single hidden layer perceptron networks are

universal approximators. In the case that y is a scalar (i.e., q = l), the function g(y) with g being

a signum function defines a general discriminator function that can be used for classification tasks

[51].

If desired, networks with multiple hidden layers can be constructed. This is accomplished by

defining θ to be a matrix so that y is a vector. If we define z = Λg(y), then the network has two hidden

layers defined by the weights in W and θ. The perceptron networks defined above belong to the

so-called feedforward networks in witch the information flow through the network is unidirectional

(from left to right). There is not feedback of information either from internal variables or from the

network output to the network input. In the case where some of the internal network variables or

outputs are fed back to serve as a portion of the input, we would have a recurrent network. In this

case, the network is a dynamics system with its own state vector. When such recurrent networks

are used, the designer must be concerned with the stability of this network state.

Perceptron networks are sometimes referred to as supervised learning or backpropagation net-

works, but neither of these names are accurate. Supervised learning refer; to the approach of

training (i.e., adjusting the parameters) a function approximator y = f̂(x, θ, σ) so that the approxi-

mator matches, as closely as possible, a given set of training data, composed of input samples along
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with their targets, described as {(xi, yi)}pi=1, In this scenario a batch of training samples is available

for which the desired output yi is known for each input xi. Many early applications of perceptron

networks were formulated within the supervised learning approach; however, any function approxi-

mator can be trained using such a supervised learning scenario. Therefore, referring to a perceptron

network as a supervised learning network is not a clear description.

The backpropagation algorithm was derived for perceptron networks, see e.g. [35], that algorithm

is based on the idea of gradient descent. Gradient descent parameter adaptation can be derived for

any feed forward network that uses a continuous nodal processor, see e.g. [75]. Therefore, referring

to a perceptron network as a backpropagation network is again not a clear description of the network.

In addition, the fact that a multilayer perceptron network can be trained using backpropagation is

not a motivation for using these networks, since gradient descent training is a general procedure

that can be used for many families of approximators.

Properties

The literature on neural networks contains several standard phrases that are often used to motivate

the use of perceptron networks. For any particular applications, the applicability of these standard

phrases should be carefully evaluated. A typically stated motivation is that perceptron networks

are universal approximators. As discussed earlier, numerous families of approximators have this or

related properties. Therefore, the fact that perceptron networks are universal approximators is not,

by itself, a motivation for using them instead of any other approximator with this property. A per-

ceptron network with adjustable hidden layer parameters is nonlinearly parameterized. Therefore,

another stated motivation is that perceptron networks have certain beneficial ”order of approxima-

tion” properties. On the other hand, there are no engineering procedures available for defining a

suitable network structure (i.e., number of hidden layers, number of nodes per layer, etc.) even in

situations where the function f to be approximated is known. Also, since the network is nonlinearly

parameterized, the initial choice of parameters may not be in the basin of attraction of the optimal

parameters. Early in the history of neural networks, it was noticed that perceptron networks ”offer

the inherent potential for parallel computation”. However, any approximation structure that can be

written in vector product form is suitable for parallel implementation on suitable hardware. Interest-

ing questions are whether any particular application is worth special hardware, or more generally, is
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any particular approximation structure worth additional research funding to develop special purpose

implementation hardware, when hardware optimized for performing matrix vector products already

exists.

Another frequently stated motivation is the idea that perceptron networks are models of the

nervous systems of biological entities. Since these biological entities can learn to perform complex

control actions (balancing, walking, dancing, etc.), perceptron networks should be similarly trainable.

There are several directions from which such statements should be considered. First, is a perceptron

network a sufficiently accurate model of a nervous system that such an analogy is justified? Second,

is the implemented perceptron network comparable in size to a realistic nervous system? Even if

those questions could be answered affirmatively, do we understand and can we accurately replicate

the feedback and training process that occur in the biological exemplars? Also, the biological

nervous system may be optimized for the biochemical environment in which it operates. The optimal

implementation approach on an electronic processing unit could be significantly different.

Another frequent motivation for perceptron networks is by analogy to biological control systems.

It is stated that biological control systems are semi-fault tolerant because they rely on large numbers

of redundant and highly interconnected nonlinear nodal processors and communication pathways.

This is referred to as distributed information processing. To motivate perceptron networks, it is

argued that highly interconnected perceptron networks have similar properties to biological con-

trol systems, since for perceptron networks the approximator information is stored across a large

number of ”connection” parameters. The idea being that if a few ”connections” were damaged,

then some information would be retained via the undamaged parameters and these undamaged

parameters could be adapted to reattain the prior level of performance. However, the perceptron

networks that are typically implemented are much smaller and simpler than such biological systems,

resulting in a weak analogy. In addition, this line of reasoning neglects the fact that perceptron

networks are typically implemented with a standard CPU and RAM, where there is no ”distributed

network implementation” since these standard items fail as a unit. Therefore, the CPU and RAM

implementation is not currently analogous to a biochemical network implementation.



63

4.5 Fuzzy Approximation

This section presents the basic concepts necessary for the designer to be able to construct a fuzzy

logic controller. For a detailed presentation of the motivation and theory of fuzzy logic, you may

consult, for example, [48, 94, 95]. Detailed discussion of the use of fuzzy logic in fixed and adaptive

controllers is presented, for example, in [9, 17, 27, 81].

4.5.1 Description

The four basic components of a fuzzy controller are shown in Figure 4.5. In this figure, over-lined

quantities represent fuzzy variables and sets while crisp (real valued) variables and sets have no

over-lining.

Fuzzification Fuzzy
Interference

Xx∈ Xx ∈

Fuzzy Rule
Base

Uu ∈ Defuzzification Uu ∈

Figure 4.5: Components of a Fuzzy Logic Controller.

4.5.2 Fuzzy Sets and Fuzzy Logic

Given a real valued vector variable x = [xl, · · · , xn]T that is an element of a domain X = X1 ×

X2 × · · · ×Xn, the region Xi is referred to as the universe of discourse of xi and X as the universe

of discourse of x. The linguistic variable x̄i can assume the linguistic values defined by X̄i ={
X̄1
i , · · · , X̄

Ni
i

}
. The degree to which the linguistic variable x̄i is described by the linguistic value

X̄j
i is defined by a membership function µX̄ji

(x) : Xi 7→ [0, 1]. Common membership functions

include triangular and Gaussian functions. The fuzzy set X̃j
i ; associated with linguistic variable x̄i,

universe of discourse Xi , linguistic value X̄j
i , and membership function µX̄ji

(x)

X̃j
i =

{(
xi, µX̄ji

(xi)
)
|xi ∈ Xi

}
(4.5.1)
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Figure 4.6: Membership functions for speed error and acceleration for the cruise control example

Note that fuzzy sets have members and degrees of membership. The degree of membership is

the main feature that distinguishes fuzzy logic from Boolean logic. The support of a fuzzy set F̃

on universe of discourse X is defined as Supp(F̂ ) = {x ∈ X|µF̂ (x) 6= 0}. If the Supp(F̂ ) is a single

point xs, and µF̂ (xs)
= 1, then xs is called a fuzzy singleton.

To illustrate the concepts of the previous paragraph, consider a vehicle cruise control application.

Let the physical variables be x = [ve, a]T, where ve = v − vc, v denotes the actual speed, vc

denotes the commanded speed, and a denotes acceleration. The linguistic variables are defined as

x̄ = [speederror, acceleation]T.

The linguistic values for each linguistic variable could be defined as

X̄1 = {Slow,Correct, Fast}

X̄2 = {Negative, Zero, Positive}

so that N1 = N2 = 3. Then, the space X̄ is defined as
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X̄ = X̄1 × X̄2 =


SN CN FN

SZ CZ FZ

SP CP FP


where each linguistic value has been represented by its first letter. If the universe of discourse is

X = [−15, 15]× [−2, 2], then one possible definition of the membership functions for X̄1 and X̄2 are

shown in Figure 4.6.

In fuzzy logic, the (ĀorB̄) operation is represented as (Ā ∪ B̄) and its membership function

is calculated by a s-norm operation [95] denoted by ⊕, µĀ∪B̄ = µĀ ⊕ µB̄ . Whereas the (ĀandB̄)

operation is denoted as (Ā∩B̄) and its corresponding membership function is calculated by a t-norm

operation denoted by ?, µĀ∩B̄ = µĀ ? µB̄ .

Table 4.1 contains several of the possible implementations of the ? and ⊕ operations. The

membership function for the complement of fuzzy set Ā is µĀc(x) = 1−µĀ(x). The fuzzy complement

is used to implement the ”not” operation.

OR µĀ∪B̄(x) = µĀ(x)⊕ µB̄(x) AND µĀ∩B̄(x) = µĀ(x) ? µB̄(x)
Maximum max(µĀ(x), µB̄(x)) Minimum max(µĀ(x), µB̄(x))

Algebraic Sum µĀ(x) + µB̄(x)− µĀ(x)µB̄(x) Algebraic Product µĀ(x)µB̄(x)
Bounded Sum min(1, µĀ(x) + µB̄(x)) Bounded Product max(0, µĀ(x) + µB̄(x)− 1)

Drastic Sum

 µĀ(x) if µB̄(x) = 0
µB̄(x) if µĀ(x) = 0

1 otherwise
Drastic Product

 µĀ(x) if µB̄(x) = 1
µB̄(x) if µĀ(x) = 1

0 otherwise

Table 4.1: Example implementations of fuzzy logic (left) s-norm operations for Ā ∪ B̄ and (right)
t-norm operations for Ā ∩ B̄

4.5.3 Fuzzification

Since control systems do not directly involve fuzzy sets, a fuzzification interface is used as a means

to convert the crisp plant state or output measurements into fuzzy sets, so that fuzzy reasoning can

be applied. Given a measurement x∗ of variable x in universe of discourse X, the corresponding

fuzzy set is X̄ = {(x, µ(x : x∗)}. A few common choices are singleton, triangular, and Gaussian

fuzzification. For singleton fuzzification,

µ(x : x∗) =

{
1 if x = x∗

0 otherwise
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For triangular fuzzification,

µ(x : x∗) =

{
1− |x−x

∗|
λ if |x− x∗| < λ

0 otherwise

For Gaussian fuzzification,

µ(x : x∗) = exp
(

1− −(x− x∗)2

λ2

)
In each of the above cases, the parameter λ can either be selected by the designer or adapted

online.

The fuzzification process converts each input variable x∗ into a fuzzy set X̄. Singleton fuzzifica-

tion is often used as it greatly simplifies subsequent computations. Other forms of fuzzification may

be more appropriate for representing uncertainty (or fuzziness) of the control system inputs due, for

example, to measurement noise.

4.5.4 Fuzzy implication

The fuzzy rule base will contain a set of rules {Rl, l ∈ [l, · · · , N ]} of the form

Rl : IF
(
x̄1 is X̄ l1

1

)
and . . . and

(
x̄n is X̄ ln

n

)
THEN

(
ū is Ū ln

)
(4.5.2)

where li ∈ [1, . . . , Ni] and Ū is the set of linguistic values defined for the fuzzy control signal ū.

Each term in parenthesis is an atomic fuzzy proposition. The antecedent is the compound fuzzy

proposition:

Āl =
(
x̄1 is X̄ l1

1

)
and · · · and

(
x̄n is X̄ ln

n

)
. (4.5.3)

Each antecedent defines a fuzzy set in X̄ = X̄1×· · ·× X̄n. The antecedent may contain multiple

atomic fuzzy propositions using the same variable and need not include all fuzzy variables. The

membership function for Āl is completely specified once the t-norm and s-norm representation of

the ”and” ”or” operations are selected. Therefore, the applicability or confidence of rule Rl is

calculated by the antecedent as

µĀl(x) = µX̄ll∩...∩X̄ln (x̄1, · · · , x̄n) = µX̄l1 (x̄1) ? . . . ? µX̄ln (x̄n). (4.5.4)

Note that when ? is implemented as the algebraic product, then this membership function can

have the form of a tensor product. If x̄i is not a fuzzy singleton, then evaluation of each atomic

fuzzy proposition can become computationally difficult. A rule (implication) of the form
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R : IF
(
x̄1 is Ā

)
THEN

(
ū is B̄

)
(4.5.5)

for x ∈ X̄ and u ∈ Ū can be interpreted as a relation in X×U . The membership function for this

implication may have various forms depending on the interpretation of the implication operation.

Four possibilities are displayed in Table 4.2. The first two interpretations are motivated by the fact

that A ⇒ B has the same truth table as ((A) or B). The third row is motivated by the fact

that A ⇒ B also has the same truth table as ((A and B) or (A)) . Such direct truth table

equivalence approaches are not always the most appropriate interpretations of the implication [27].

In some situations, a more causal situation is desired where the implication is interpreted as

IF A

THEN B

ELSE Nothing.

Such an interpretation of the implication is equivalent (in the truth table sense) to (A and B).

The fourth row indicates the membership function corresponding to this interpretation. Such Mam-

dani implications are widely used in fuzzy control approaches [9].

Name Interpretation A =⇒ B Membership Function

Dienes-Reschler
(

(A) or B
)

µR(x, u) = max(1− µA(x), µB(u))

Lukasiewicz
(

(A) or B
)

µR(x, u) = min(1, (1− µA(x)) + µB(u))

Zadeh (A and B) or (A) µR(x, u) = max(min(µA(x), µB(u)), 1− µA(x))
Mamdani A and B µR(x, u) = t(µA(x), µB(u))

Table 4.2: Interpretations of Fuzzy Implication. The notation denotes logical negation.

4.5.5 Fuzzy Inference

Given the results of the two previous subsections, from a control system point of view, the inputs to

the control system have been converted to fuzzy sets and each rule has been translated into a fuzzy

relation. Pertaining to the issue of inference there are two related questions. How can the fuzzy set

in U that results from a single rule be determined? How can the fuzzy set in U from a set of rules

be determined?

According to the compositional rule of inference [95], given a rule of the form of eqn. (4.5.5) and

a fuzzy set R̄ with membership function µbarX , then the membership function of the resultant fuzzy
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set in U can be found by the composition

µR(u) = sup
x∈X

t(µX̄(x), µR̄(x, u)) (4.5.6)

The above text has discussed the method for inferring the fuzzy set output corresponding to

a single rule. The remainder of this section will be concerned with the problem of inferring the

output fuzzy set that results from a set of rules called the rule base. A fuzzy rule base is called

complete if for any x ∈ X there exists at least one rule with a nonzero membership function

(i.e.,∀x ∈ X,∃l 3 µĀl(x) 6= 0). Two methods of inferring the output of a rule base are possible:

compositional inference and individual rule inference. In compositional inference [95], the relations

corresponding to each rule are combined (through appropriately selected logical operations) into

one relation representing the entire rule base. Then, composition with the input fuzzy sets is used

to define the output fuzzy set. The composition of all the rules into a single relation can become

cumbersome.

In individual rule inference, the output fuzzy set Ui = {(u, µR̄i(u))} corresponding to each

individual rule is determined according to eqn. (4.5.6). The output of the inference engine, based

on the entire (l rule) rule base, then has membership function described by either

µRB(u) = µR̄1(u)⊕ · · · ⊕ µR̄l(u) (4.5.7)

or µRB(u) = µR̄1(u) ? · · · ? µR̄l(u). (4.5.8)

Eqn. (4.5.7) is used when the individual rules are interpreted as independent conditional state-

ments intended to cover all possible operational situations. Eqn. (4.5.8) is used when the rule base

is interpreted as a strongly coupled set of conditional statements that all should apply to the given

situation. For example, given Mamdani product implication, eqn. (4.5.7), with the or operation

implemented as max, the output membership function is

µRB(u) =
L

max
i=1

[
sup
x∈X

(µX̄(x : x∗), µĀi(x), µĀi(x))
]
. (4.5.9)

Note that the resulting rule base membership function may be multimodal or have disconnected

support.
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4.5.6 Defuzzification

The purpose of the defuzzifier is to map a fuzzy set, such as Ū = (u, µRB(u)) for u ∈ U , to a crisp

point u∗ ∈ U . The point u∗ should be in some sense most representative of U . Since there are many

interpretations of most representative, there are also many means to implement the defuzzification

process.

Table 4.3 summarizes three methods for performing defuzzification. The first method computes

an indexed center of gravity. This method is often computationally difficult since the rule base

membership function is typically not simple to describe. The middle row of the table describes the

center average defuzzification process. The function ”center” could, for example, select the midpoint

of the set {u ∈ U |µR̄i(u) > 0}. The center average is computationally easier than the indexed center

of gravity approach. The final row of the table describes the maximum defuzzification process. The

set µRB(U) contains all values of u that achieve the maximum value of µRB(u) over U . The function

g processes µRB(U) to produce a unique value for u∗. The function g could for example select the

minimum, center, or maximum of µRB(U).

Defuzzification Method Calculation

Indexed Center of Gravity u∗ =
∫
Uα

µRB(u)udu∫
Uα

µRB(u)du

Uα = {u ∈ U |µRB(u) ≥ α}

Center Average

ci = center({u ∈ U |µR̄i(u) > 0})
hi = supu∈U (µR̄i(u))

u∗ =
∑l
i=1 cihi∑l
i=1 hi

Maximum
µRB(U) = {u ∈ U |µRB(u) = supu∈U (µRB(u))}
u∗ = g(µRB(U))

Table 4.3: Example methods of defuzzification.

4.5.7 Takagi-Sugeno Fuzzy Systems

Takagi-Sugeno Fuzzy System is commonly used due to its simplicity. Thanks to its parametric

form which enables the designer to analyze and study stability of the systems where such system is

integrated. We can highlight the parallels between fuzzy approximators and the other approximators

discussed in this chapter. The Takagi-Sugeno fuzzy system uses rules of the form

Rl : IF
(
x̄1 is X̄ l1

1

)
and . . . and

(
x̄n is X̄ ln

n

)
THEN (ū = fi(x)) (4.5.10)
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In this thesis we are interested in fuzzy logic structures that represent fl(x) as a parameterized

function (e.g., fl(x : θl)), and the parameters are identified based on experimental data. Typically,

fl(x : θl) = θl0 +
N∑
i=1

θlixi, (4.5.11)

but nonlinear functions in either x or θ can be used. The membership function for the antecedent

is formed as in eqn. (4.5.4). The Takagi-Sugeno approach then calculates the output control action

as

u =
∑
i µĀi(x)fi(x : θl)∑

j µĀj (x)
=
∑

i
Γi(x)i(x : θl) whereΓi(x) =

µĀi(x)∑
j µĀj (x)

(4.5.12)

Note that this approximator has the form of a basis-influence function with basis set {fi(x : θi)}

and influence functions {Γi(x)}. If the fuzzy rule set is complete and each µĀi(x) is finite, then this

set of influence functions {Γi(x)} will be finite, vanish nowhere, and form a partition of unity.

Equation (4.5.12) has a variety of interesting interpretations. The fi(x) can be previously exist-

ing operating point controllers or local controllers defined by human ”experts.” Alternatively, this

expression can be interpreted as a ”gain scheduled” controller. In all these cases, it is of interest to

analyze the stability of the nonlinear closed-loop control loop that results.

One of the early motivations for fuzzy systems was there transparency, in the sense that users

can (linguistically) read, describe, and understand the rule base. Similarly, a fuzzy system such

as the Takagi-Sugeno type is similar to a smoothly interpolated gain scheduled controller, where

each control law fi is applicable over the support of γi. Fuzzy systems are capable of universal

approximation [88]. Adaptation of fuzzy systems, as with any approximator, must be approached

with caution. If for example the antecedents of the rule base are adapted, this is a nonlinear

estimation process. Adaptation of the antecedents could lead to loss of completeness of the fuzzy

rule base.

4.6 Conclusion

This chapter has briefly introduced various approximation structures. Several of these structures

have entire books or journals devoted to their study. Therefore, we have only touched the surface
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in this chapter. This will provide an overview on the tools that will be used in the Function

Approximation based adaptive control that are discussed in chapter 6.



Chapter 5

Robust and Adaptive Control of
Uncertain Nonlinear Systems

5.1 Introduction

In the area of ”robust control” the focus is on the development of controllers that can maintain good

performance even if we only have a poor model of the plant or if there are some plant parameter

variations. In the area, of adaptive control, to reduce the effects of plant parameter variations,

robustness is achieved by adjusting (i.e., adapting) the controller on-line [55, 71].

We will use adaptive mechanisms within the control laws when certain parameters within the

plant dynamics are unknown. An adaptive controller will thus be used to improve the closed-loop

system robustness while meeting a set of performance objectives. If the plant uncertainty cannot

be expressed in terms of unknown parameters, one may be able to reformulate the problem by

expressing the uncertainty in terms of a fuzzy system, neural network, or some other parameterized

nonlinearity. The uncertainty then becomes recast in terms of a new set of unknown parameters that

may be adjusted using adaptive techniques. The purpose of this chapter is to summarize a collection

of standard control design techniques for certain classes of nonlinear systems. Later we will use these

control techniques to develop adaptive control approaches that are suitable for use when there is

additional uncertainty in the plant dynamics in the framework of function approximation based

control. We will use Lyapunov-based design techniques where a controller is chosen to help decrease

a measure of the system error.

72
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5.2 Robust Nonlinear Control

Nonlinear control methodologies generally, namely small-signal linearization, feedback linearization,

and backstepping. are based on the key assumption that the control designer exactly knows the

system nonlinearities [78, 79]. In practice, this is not a realistic assumption. Consequently, it is

important to consider ways to make these approaches more robust with respect to modeling er-

rors. In this section we introduce a set of nonlinear control design tools that are based on the

principle of assuming that the unknown component of the nonlinearities are bounded in some way

by a known function. If this assumption is satisfied then it is possible to derive nonlinear control

schemes that utilize these known bounding functions instead of the unknown nonlinearities. Al-

though these techniques have been extensively studied in the nonlinear control literature, they tend

to yield conservative control laws, especially in cases where the uncertainty is significant [40]. The

term conservative is used among control engineers to indicate the fact that due to the uncertainty

the control effort applied is more than needed. As a result, the control signal u(t) may be large

(high-gain feedback), which may cause several problems, such as saturation of the actuators, large

error in the presence of measurement noise, excitation of unmodeled dynamics, and large transient

errors. Furthermore, as we will see, these techniques typically involve a switching control function,

which may cause chattering. The robust nonlinear control design methods developed in this section

provide an important perspective for the adaptive approximation based control described in the next

Chapters.

Specifically, adaptive approximation based control can be viewed as a way of reducing uncertainty

during operation such that the need for conservative robust control can be eliminated or reduced.

Another reason for studying these techniques in the context of adaptive approximation is their

utilization, as we will see, to guarantee closed-loop stability outside of the approximation region D

[19, 63].

This section presents five nonlinear control design tools: (i) bounding control, (ii) sliding mode

control, (iii) Lyapunov redesign method, (iv) nonlinear damping, and (v) adaptive bounding. As we

will see, these techniques are, in fact, quite similar.
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5.2.1 Bounding Control

Bounding control is one of the simplest approaches for dealing with unknown nonlinearities. Here,

we consider a simple scalar system with one unknown nonlinearity, which lies within certain known

bounds [40]. This approach can be extended to more complex systems. Consider the scalar nonlinear

system

ẋ = f(x) + u (5.2.1)

where the objective is to design a control law such that y(t) = x(t) tracks a desired signal yd(t) .

Let e(t) = y(t)−yd(t) be the tracking error. We assume that the function f is unknown but belongs

to a certain known range as follows:

fL(x) ≤ f(x) ≤ fU (x), ∀x ∈ R1

where fL and fU are known lower and upper bounds, respectively, on the unknown function f .

Consider the following control law:

u =

{
−am(x− yd) + ẏd − fU (x) if e ≥ 0

−am(x− yd) + ẏd − fL(x) if e < 0
(5.2.2)

where am > 0. Using the above control, it is easy to see that the tracking error dynamics satisfy

{
ė = −ame+ f(x)− fU (x) if e ≥ 0

ė = −ame+ f(x)− fL(x) if e < 0
(5.2.3)

Now, let V = 1
2e

2 ≥ 0 be a Lyapunov function candidate. The time derivative of V along the

error dynamics satisfies

V̇ =

{
−ame2 + (f(x)− fU (x))e if e ≥ 0

−ame2 + (f(x)−−fL(x))e if e < 0

V̇ ≤ −ame2

Therefore, the tracking error converges exponentially to zero. It is noted that, in general, the

control law (5.2.2) is discontinuous at e = 0. This may result in the trajectory x(t) going back and

forth between y+
d , (denoting a value of the trajectory y(t) which is slightly larger than yd(t)); and
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y−d , (denoting a value of the trajectory y(t) which is slightly smaller than yd(t)) causing the control

law to be switching, thus creating chattering problems. The chattering can be remedied by using a

smooth approximation to the control law of the form

u =


−am(x− yd) + ẏd − fU (x) if e ≥ δ

−am(x− yd) + ẏd − 1
2δ [(δ − e)fL(yd − δ) = (δ + e)fU (yd + δ)] if |e| ≥ δ

−am(x− yd) + ẏd − fL(x) if e < −δ

(5.2.4)

where δ > 0 is a small design constant. I t can be proven that the control law of equation (5.2.4)

achieves convergence of the set |x| < δ

5.2.2 Sliding Mode Control

Sliding Mode Control is a methodology based on the principle that it is easier to control a first-order

system than a n-th order system. Therefore, this approach can be viewed as a way to reduce a higher-

order control problem into a simpler one for which there are known feedback control methods. This

simplification comes at the expense of using a large control effort, which, as discussed earlier in the

chapter, could be the source of other potential problems, especially in the presence of measurement

noise or high frequency unmodeled dynamics. The sliding mode control methodology can be applied

to several classes of nonlinear systems [15]. Here, we consider its application to a class of feedback

linearizable systems.

Consider an n-th order nonlinear system, affine in control of the form

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = f(x) + g(x)u

(5.2.5)

where it is assumed that f and g are unknown and g(x) ≥ go > 0 for all x ∈ Rn. The control

objective is for y(t) = x1(t) to track a desired signal yd(t) .

Let e = y − yd be the tracking error. The sliding mode surface s is defined as

s = e(n−1) + λn−1e
(n−2) + · · ·+ λ2ė+ λ1e = 0, (5.2.6)

where the coefficients {λ1, λ2, · · · , λn−1} are selected such that the characteristic polynomial (in
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s)

s(n−1) + λn−1s
(n−2) + · · ·+ λ2s+ λ1 = 0 (5.2.7)

is Hurwitz. The manifold described by s = 0 is referred to as the sliding manifold or sliding surface

and has dimension (n− 1). The objective of sliding mode control is to steer the trajectory onto this

sliding manifold. This is achieved by forcing the variable s to zero in finite time. By design of the

sliding surface, if x is on the sliding surface defined by s = 0, then

e(n−1) − λn−1e
(n−2) − · · · − λ2ė− λ1e.

Since the polynomial given by (5.2.7) is Hurwitz, once on the sliding manifold the tracking

error will go to zero with a transient behavior characterized by the selected coefficients λi (i.e.,

exponentially fast). The sliding mode control objective can be achieved if the control law u is chosen

such that
d

dt

1
2
s2 ≤ −κ|s|,

where κ > 0. In this case, the upper right-hand derivative of |s(t)| satisfies the differential inequality

d+

dt
|s(t)| ≤ −κ,

which implies that the trajectory reaches the manifold s = 0 in finite time. Following (5.2.6), the

derivative of s(t) satisfies

ṡ = f(x) + g(x)u− y(n)
d + λn−1e

(n−1) + · · ·+ λ2ë+ λ1ė.

If f and g were known function, then we could choose the control law

u =
1

g(x)

[
−f(x) + y

(n)
d − λn−1e

(n−1) − · · · − λ2ë− λ1ė− κ sgn(s)
]
.

where κ is a positive design gain and sgn(.) denotes the sign function:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0.

Based on this control law, the derivative of s(t) satisfies

ṡ = −κ sgn(s),
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which implies
d
dt

1
2s

2 = sṡ

= −sκ sgn(s)

= −κ|s|
Now consider the case where f and g are unknown but the designer has a known upper bound

η(x, t) such that

∣∣∣∣∣f(x)− y(n)
d + λn−1e

(n−1) + · · ·+ λ2ë+ λ1ė

g(x)

∣∣∣∣∣ ≤ η(x, t).

Suppose that the control law is selected as

u = −(η(x, t) + η0) sgn(s), (5.2.8)

where η0 > 0 is a design constant. Using the Lyapunov candidate V = s2

2 , Its derivative along

the tracking error dynamics can be expressed by:

V̇ = sṡ

= s
(
f(x)− y(n)

d + λn−1e
(n−1) + · · ·+ λ2ë+ λ1ė

)
+ sg(x)u

≤ |s|η(x, t)g(x) + sg(x)u

= −η0g0|s|,

where g0 is defined in (5.2.5). Therefore, we have achieved the desired objective of forcing the

trajectory onto the sliding manifold in finite time. It is interesting to note that this is achieved

without specific knowledge of f and g, just the upper bound η(x, t). Despite the resulting stability

and convergence properties of the sliding mode control approach, it has two key drawbacks in its

standard form. The sliding mode control law has two components, the gain η(x, t) + η0 and the

switching function sgn(s), both of which can create problems:

1. (High-Gain) Note that the gain term is the result of taking an upper bound on the uncertainty.

In general, this creates a high-gain feedback control, which can create problem in the presence

of measurement noise and high-frequency unmodeled dynamics. Moreover, high-gain feedback

may require significant control effort, which can be expensive and/or may cause saturation of

the actuators. In practice, high-gain feedback control is to be avoided [82].

2. (Chattering) The switching function sgn(s) causes the control gain to switch from η(x, t)+η0

to −(η(x, t) + η0) every time the trajectory crosses the sliding manifold. Although in theory
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Chattering
dy

Sliding
surface

s=0

1x

2x

Figure 5.1: Graphical illustration of sliding mode control and chattering as a result of imperfection
in the switching.

the trajectory is suppose to slide on the sliding manifold, in practice there are imperfections

and delays in the switching devices, which lead to chattering. This is illustrated in Figure 5.1.

Chattering causes significant problems in the feedback control system, especially if it is associ-

ated with high gains. For example, chattering may excite high-frequency dynamics which were

neglected in the design model, it can cause wear and tear of moving mechanical parts and it

can cause high heat losses in electrical power systems [15]

Research in sliding mode control has developed some techniques for addressing the above two

issues. The high gain problem can be reduced by using as much a priori information as possible, thus

canceling the known nonlinearities and employing an upper bound only for the unknown portions

of the nonlinearities. The chattering problem can also be addressed, partially, by employing a

continuous approximation of the sign function. The tradeoff in the use of this approximation is that

only uniform boundedness of solutions can be proved. Despite these remedies, the sliding mode

methodology is based on the principle of bounding the uncertainty by a larger function, and as a

result it is a conservative control approach. In this text, we present a methodology for learning

or approximating the uncertainty online, instead of using an upper bound for it. However, the
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approximation will be valid only within a certain compact region D. In order to achieve stability

outside this region, we will rely on bounding control techniques such as sliding mode.

5.2.3 Lyapunov Redesign Method

Consider a nonlinear system described by

ẋ = f(x) +G(x)u, (5.2.9)

where x ∈ Rn is the state and u ∈ Rm is the controlled input. Assume that the vector field f(x)

and the matrix G(z) each consist of two components: a known nominal part and an unknown part.

Therefore,

f(x) = f0(x) + f∗(x) (5.2.10)

G(x) = G0(x) +G∗(x) (5.2.11)

where f0 and G0 characterize the known nominal plant, and f∗, G∗ represent the uncertainty.

Moreover, we assume that the uncertainty satisfies a so-called matching condition:

f∗(x) = G0(x)∆∗f (x) (5.2.12)

G∗(x) = G0(x)∆∗G(x). (5.2.13)

The matching condition implies that the uncertainty terms appear in the same equations as the

control inputs u, and as a result they can be handled by the controller [40].

Using equations (5.2.10,5.2.11,5.2.12,5.2.13), the system dynamics in 5.2.9 can be rewritten as:

ẋ = f0(x) +G0(x) (u+ η(x, u)) , (5.2.14)

where η = ∆∗f + ∆∗Gu comprises all the uncertainty terms.

The Lyapunov redesign method addresses the following problem: Suppose that the equilibrium

of the nominal model ẋ = f0(x) +G0(x)u can be made uniformly asymptotically stable by using a

feedback control law u = p0(x). The objective is to design a corrective control function p∗(x) such

that the augmented control law u = p0(x) + p∗(x) is able to stabilize the system (5.2.14) subject to

the uncertainty η(x, u) being bounded by a known function [42].
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We assume that there exists a control law u = p0(x) such that x = 0 is a uniformly asymptotically

stable equilibrium point of the closed-loop nominal system

ẋ = f0(x) +G0(x)p0(x).

Based on the assumption of the existence of a Lyapunov V0, and strictly increasing class K∞

functions α1, α2, α3 : R+ 7→ R1, such that:

α1‖x‖ ≤ V0(x) ≤ α2‖x‖. (5.2.15)

∂V0

∂x
[f0(x) +G0(x)p0(x)] ≤ α3‖x‖. (5.2.16)

The uncertainty term is assumed to satisfy the bound

‖η(x, u)‖∞ ≤ η̄(t, x) (5.2.17)

where the bounding function η̄ is assumed to be known apriori or available for measurement.

Now, we will proceed to the design of the corrective control component p∗(x) such that u = p0 + p∗

stabilizes the class of systems described by (5.2.5) and satisfying (5.2.17). The corrective control

term is designed based on a technique following the nominal Lyapunov function V0, which justifies

the name Lyapunov redesign method. Consider the same Lyapunov function V0 that guarantees the

asymptotic stability of the nominal closed-loop system, but now consider the time derivative of V0

along the solutions of the full system (5.2.5). We have

V̇0 = ∂V0
∂x [f0(x) +G0(x)(u+ η(x, u))]

= ∂V0
∂x [f0(x) +G0(x)p0(x)] + ∂V0

∂x G0(x) (p∗(x) + η(x, u))

≤ −α3(‖x‖) + ω(x)Tη(x, u),

(5.2.18)

where

ω(x) =
[
∂V0

∂x
G0(x)

]T

∈ Rm (5.2.19)

which is a known function. By taking bounds we obtain

V̇0 ≤ −α3(‖x‖) +
∑m
i=1 ωi(x)p∗i (x) + ‖w(x)‖1‖η(x, u)‖∞

= −α3(‖x‖) +
∑m
i=1 (ωi(x)p∗i (x) + η̄(x, t)|wi(x)|)

(5.2.20)

The second term of the right-hand side of (5.2.20) can be made zero if p∗i (x) is selected as

p∗i (x) = −η̄(x, t)sgn(wi(x)) (5.2.21)
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Each component of the corrective control vector p∗i (x) is selected to be of the form pi ∗ (x) =

±η̄(x, t), where the sign of p∗i (x) depends on the sign of ωi(x) and, in fact, changes as wi(x) changes

sign.

By substituting (5.2.21) in (5.2.20) we obtain the desired stability property

V̇0 = −α3(‖x‖) (5.2.22)

which implies that the closed-loop system is asymptotically stable.

The augmented control law u = p0(x) + p∗(x) is discontinuous. Moreover, the discontinuity

jump η̄(x, t) 7→ −η̄(x, t) can be of large magnitude if the uncertainty bound η̄ is large. As discussed

earlier, discontinuities in the control law can cause chattering, therefore it is desirable to smooth

the discontinuity and at the same time retain to some degree the nice stability properties of the

original discontinuous control law. This can be achieved by replacing the sgn function with a

smooth tanh
(
wi(x)
ε

)
, where ε > 0 is a small design constant [82].

5.2.4 Nonlinear Damping

One of the key assumptions made in the Lyapunov redesign approach is that the uncertainty term

η(x, u) is bounded by a known bounding term η̄(t, x). The nonlinear damping method developed

in this section relaxes somewhat this assumption by not requiring that the bounding term η̄ is

known [40].

Consider the system described by

ẋ = f0(x) +G0(x) (u+ η(x, u)) , (5.2.23)

The uncertainty function η(x, u) is assumed to be of the form

η(x, u) = Φ(t, x)η0(x, u), (5.2.24)

where them×mmatrix Φ is known, and η0 is unknown but uniformly bounded (i.e., ‖η0(x, u)‖∞ <

M for all (x, u)). In this case the bound M does not need to be known. Again, the objective

is to design a corrective control law p*(z) that stabilizes the closed loop system. Following the
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same procedure as in subsection 5.2.3, we consider a nominal Lyapunov function Vo(x) that satis-

fies (5.2.15), (5.2.16) for some class K∞ functions α1, α2, α3. The time derivative of V0 along the

solutions of (5.2.23), (5.2.24) is given by

V̇0 = ∂V0
∂x [f0(x) +G0(x)(u+ Φ(t, x)η0(x, t))]

≤ −α3(‖x‖) + ω(x)Tp∗(x) + ω(x)TΦ(t, x)η0(x, u),
(5.2.25)

where ω(x) is the same as defined in (5.2.19). Now, let us select p∗(x) as

p∗(x) = −kω(x)‖Φ(t, x)‖22, where k > 0. (5.2.26)

Substituting for p∗ in equation (5.2.25) yields

V̇0 ≤ −α3(‖x‖)− k‖ω(x)‖22‖Φ(t, x)‖22 + ω(x)TΦ(t, x)η0(x, u). (5.2.27)

Using the fact that η0(x, u) is uniformly bounded in (x, u), we can obtain

ω(x)TΦ(t, x)η0(x, u) ≤ ‖ω(x)‖2‖Φ(t, x)‖2M.

The term

Q = −k‖ω(x)‖22‖Φ(t, x)‖22 + ‖ω(x)‖2‖Φ(t, x)‖2M

is of the form Q(a) = −ka2 +aM , where a = ‖ω(x)‖2 · ‖Φ(t, x)‖2; therefore, Q attains the maximum

value of M/4k at a = M/2k. Therefore,

V̇0 ≤ −α3(‖x‖) +
M

4k
. (5.2.28)

Since α3(‖x‖) is strictly increasing and approaches ∞ as ‖x‖ → ∞, there exists a ball Bρ, of

radius ρ such that V̇0 ≤ 0 for x outside Bρ. Therefore, the closed-loop system is uniformly bounded

and the trajectory x(t) converges to the invariant set

Ω =
{
x

∣∣∣∣V0(x) ≤ max
x=ρ

(V0(x))
}
, (5.2.29)

where ρ can be made smaller by increasing the feedback gain k or by decreasing the infinity norm

of the model error.
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5.2.5 Adaptive Bounding Control

Of the four techniques presented in this section, namely bounding control, sliding mode control,

Lyapunov redesign, and nonlinear damping, the first three are based on the key assumption of a

known bound on the uncertainty. The nonlinear damping technique does not make this bounding

assumption; however, the resulting stability property does not guarantee the convergence of the

tracking error to zero, but to an invariant set whose radius is proportional to the m-norm of the

uncertainty. Even though the residual error in the nonlinear damping design can be reduced by

increasing the feedback gain parameter k , this is not without drawbacks, since increasing the

feedback gain may result in high-gain feedback , with all the undesirable consequences. In this

subsection, we introduce another technique which also relaxes the assumption of a known bound.

Specifically, it is assumed that η(x, u) is bounded by

‖η(x, u)‖∞ ≤ θTφ(x, t), (5.2.30)

where θ ∈ Rq is an unknown parameter vector and φ is a known vector function. Since θTφ

represents a bound on the uncertainty, each element of θ and φ(x, t) is assumed to be non-negative.

Typically, the dimension q is simply equal to one. However, the general case where both θ and

φ(x, t) are vectors, allows the control designer to take advantage of any knowledge where the bound

changes for different regions of the state-space x. If a known function φ(x) is not available, it can be

simply assumed that ‖η(x, u)‖∞ ≤ θ, where θ is a scalar unknown bounding constant. The adaptive

bounding control method was introduced in [70] and was later used in neural control [69].

It is worth noting that the bounding assumption of the adaptive bounding control method is

significantly less restrictive than that of the Lyapunov redesign method where the bound is assumed

to be known. Even though one may consider simply increasing the bound of the Lyapunov redesign

method until the assumed bound holds, this is not always possible, and quite often it is not an astute

way to handle the problem since it will increase the feedback gain of the system. The adaptive

bounding control technique is based on the idea of estimating online the unknown parameter vector

θ. The feedback controller utilizes the parameter estimate θ̂(t) instead of the true bounding vector

θ. One of the key questions has to do with the design of the adaptive law for generating θ̂(t). As

we will see, this is achieved again by Lyapunov analysis.
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Let θ̃(t) = θ̂(t) − θ denote the parameter estimation error. Consider the augmented Lyapunov

function

V (x, θ̃) = V0(x) +
1
2
θ̃TΓ−1θ̃T, (5.2.31)

where Γ is a positive definite matrix of dimension q × q , which represents the adaptive gain.

Differentiating V along the dynamics of (5.2.14), we obtain

V̇ = ∂V0
∂x [f0(x) +G0(x)(u+ η(xu))] + θ̃TΓ−1 ˙̃

θ

≤ −α3(‖x‖) + ω(x)Tp∗(x) + ω(x)Tη(x, u) + θ̃TΓ−1 ˙̂
θ

≤ −α3(‖x‖) +
∑m
i=1

(
ωi(x)p∗i (x) + θ̂Tφ(x, t)|wi(x)|

)
−θ̃Tφ(x, t)‖w(x)‖1 + θ̃TΓ−1 ˙̂

θ

(5.2.32)

We choose the corrective control term p∗i (x) and the update law for θ̂ as follows:

 p∗i (x) = −hatθTφ(x, t)sgn(ωi(x))
˙̂
θ = Γφ(x, t)‖ω(x)‖1,

(5.2.33)

which implies that V ≤ −α3(‖x‖). Therefore, both x(t) and θ̃ remain bounded and x(t) converges

to zero (using Barbalat’s Lemma).

As in subsection (5.2.4), one can use tanh (ωi/ε) instead the discontinuous function sgn(.) to

make the control law smooth and reduce chattering. Another issue that arises with adaptive bound-

ing control is the possible parameter drift of the bounding estimate ˆθ(t). This may occur as a

consequence of using the smooth approximation tanh (wi(z)/ε), which may result in a small residual

error. Moreover, in the presence of measurement noise or disturbances, again the bounding parame-

ter estimate θ̂ may not converge. Since the right-hand side of (5.106) is nondecreasing, the presence

of such residual errors (even if small) may cause the parameter drift of the estimate, which in turn

will cause the feedback control signal to become large. This can be prevented by using a robust

adaptive law. One of the available techniques is the dead-zone, which requires knowledge of the size

of the residual error. Another method is the projection modification, which prevents the parameter

estimate from becoming larger than a preselected level. Yet another approach is the σ modification.
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5.3 Adaptive Nonlinear Control

Adaptive control deals with systems where some of the parameters are unknown or slowly time-

varying. The basic idea behind adaptive control is to estimate the unknown parameters online

using parametric function approximators, and then to use the estimated parameters, in place of

the unknown ones, in the feedback control law. Most of the research in adaptive control has been

developed for linear models, even though in the last decade or so there has been a lot of activity on

adaptive nonlinear control as well. Even in the case of adaptive control applied to linear systems,

the resulting control law is nonlinear. This is due to the parameter update laws, which render the

feedback controller nonlinear.

There are two strategies for combining the control law and the parameter estimation algorithm.

In the first strategy, referred to as indirect adaptive control, the parameter estimation algorithm is

used to estimate the unknown parameters of the plant. Based on these parameter estimates, the

control law is computed by treating the estimates as if they were the true parameters, based on the

certainty equivalence principle [7]. In the second strategy, referred to as direct adaptive control, the

parameter estimator is used to estimate directly the unknown controller parameters. It is interesting

to note the similarities and the differences between the so called the robust control laws and the

adaptive control laws. The robust approaches, which were discussed in the previous section, treat

the uncertainty as an unknown box where the only information available are some bounds. The

robust control law is obtained based on these bounds, and in fact is designed to stabilizes the system

for any uncertainty within the assumed bounds. As a result, the robust control law tends to be

conservative and it may lead to large control input signals or control saturation. On the other hand,

adaptive control assumes a special structure for the uncertainty where the nonlinearities are known

but the parameters are unknown. In contrast to robust control, in adaptive control the objective is

to try to estimate the uncertain (or time-varying) parameters to reduce the level of uncertainty. In

the next chapter, we will start investigating the adaptive approximation control approach where the

uncertainty also includes nonlinearities that are estimated online. Hence, adaptive approximation

based control can be viewed as an expansion of the adaptive control methodology where instead

of having simply unknown parameters we have unknown nonlinearities. Adaptive control is a well-

established methodology in the design of feedback control systems. The first practical attempts to
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design adaptive feedback control systems go back as far as the 1950s, in connection with the design of

autopilots [63]. Stability analysis of adaptive control for linear systems started in the mid-1960s [66]

and culminated in 1980 with the complete stability proof for linear systems [44]. The first stability

results assumed that the only uncertainty in the system was due to unknown parameters; i.e., no

disturbances, measurement noise, nor any other form of uncertainty. In the 1980s, adaptive control

research focused on robust adaptive control for linear systems, which dealt with modifications to

the adaptive algorithms and the control law in order to address some types of uncertainties [36]. In

the 1990s, most of the effort in adaptive control focused on adaptive control of nonlinear systems

with some elegant results [55]. To illustrate the use of the adaptive control methodology we consider

below two examples of adaptive nonlinear control.

5.3.1 Adaptive Feedback Linearization Example

Feedback Linearization is one of the most powerful and commonly found techniques in nonlinear

control. It is based on the idea of linearizing the nonlinear dynamics by coordinate transformation.

The nonlinearities are canceled by the combined use of feedback and change of coordinates. In such

approach, the designer must have an exact model of the system in question. Much research has been

conducted to robustify such a nonlinear constructive method and generalize it to wider classes of

systems [37, 79].

Consider the n-th order model



ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn =
∑q−1
i=1 θifi(x) + θqu

(5.3.1)

where (θi; i = 1, · · · , q) are unknown, constant parameters and (fi; i = 1, · · · , q − 1) are

known functions. The objective is to design an adaptive controller such that y(t) = x1(t) tracks a

given desired signal yd(t). Let e = y − yd be the tracking error.

If (θi; i = 1, · · · , q) were known and θq 6= 0 then the control law

u =
1
θq

[
−
q−1∑
i=1

θifi(x) + y
(n)
d − λn−1e

(n−1) − · · · − λ2ë− λ1ė− λ0e

]
(5.3.2)
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would result in the following linear tracking error dynamics:

e(n) + λn−1e
(n−1) + · · ·+ λ2ë+ λ1ė+ λ0e = 0 (5.3.3)

The coefficients {λ0, λ1, λ2, · · · , λn−1} would be selected such that the characteristic polynomial

sn + λn−1n
n−1 + · · ·+ λ2s

2 + λ1s+ λ0 = 0 (5.3.4)

has all its roots in the left-half complex plane. Since (θi; i = 1, · · · , q) are unknown, we replace

them in the control law by their corresponding estimates (θ̂i(t); i = 1, · · · , q), where it is assumed

for the time being that θ̂q(t) 6= 0 for all t ≥ 0. The adaptive control law is given by

u =
1

θ̂q

[
−
q−1∑
i=1

θ̂ifi(x) + y
(n)
d − λn−1e

(n−1) − · · · − λ2ë− λ1ė− λ0e

]
(5.3.5)

which yields the following tracking error dynamics

e(n) + λn−1e
(n−1) + · · ·+ λ2ë+ λ1ė+ λ0e = −

q−1∑
i=1

θ̃ifi(x)− θ̃qu (5.3.6)

where θ̃i = θ̂i − θi for i = 1, · · · , q. If we let E = [ e ė ë · · · e(n−1) ] then the tracking

error dynamics can be expressed as

Ė = A0E −B0

(
q−1∑
i=1

θ̃ifi(x) + θ̃qu

)
(5.3.7)

where A0, B0 is the controller canonical form pair given by:

A0 =



0 1 0 · · · 0

0 0 1 0
...

. . .
...

0 1

−λ0 −λ1 · · · −λn−1


, B0 =



0

0
...

0

1


.

Since A0 is a stability matrix, there exists a positive definite matrix P such that

AT
0 P + PA0 = −I.

Choosing the Lyapunov function

V = ETPE +
q∑
i=1

θ̃2
i

γi
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whose time derivative along the solution of the tracking error dynamics is given by

V̇ = −ETE + 2
q−1∑
i=1

1
γi
θ̃i

( ˙̂
θi − γiETPB0fi(x)

)
+

2
γq
θ̃q

( ˙̂
θq − γqETPB0u

)
Therefore, we select the adaptive laws as follows:

˙̂
θi = γiE

TPB0fi(x), for i = 1, · · · , q − 1;
˙̂
θq = γqE

TPB0u
(5.3.8)

Clearly, this results in V̇ = −ETE which implies that the tracking error, its derivatives and the

parameter estimates are uniformly bounded and the tracking error converges to zero (by Barbalats

Lemma). Although it has not been included in the above analysis, projection would be required to

maintain θq > 0.

5.3.2 Adaptive Backstepping Example

Backstepping is a recursive constructive nonlinear control technique that allows the designer to

derive a stabilizing control law along with its corresponding Lyapunov function ensuring closed loop

stability for a class of nonlinear systems in the so-called Strict Feedback or Triangular systems by a

step wise manner.

In each step an element of the state vector acts as a virtual control signal for the error dynamics

defined at the current steps. Then we integrate the next states until we reach the real control signal.

For a detailed description about backstepping one may consult the book written by Kristic et al.[55]

The drawback of backstepping is that the control derivation becomes more complex when the order

of the system is increased. Farrell et al. proposed a filtered version of Backstepping to solve this

problem [38].

In this example we consider the backstepping control procedure for the case where there is an

unknown parameter.

Consider the second-order system

{
ẋ1 = x2 + θ1ϕ1(x1)

ẋ2 = u
(5.3.9)

where θ1 is an unknown parameter and ϕ1 is a known function. Defining the parameter estimate

as θ̂1(t) , while θ̃1 = θ̂1(t)− θ1 is the parameter estimation error.
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The objective is to design an adaptive nonlinear tracking controller such that y = x1 tracks a

desired signal yd(t).

First Step

Defining the error between the actual and the desired output z1 = x1 − yd, its dynamics are given

by:

ż1 = x2 + θ1ϕ1(x1)− ẏd (5.3.10)

Using the first Lyapunov function candidate V1 = 1
2z

2
1 whose derivative along the solutions of

equation (5.3.10) is given by

V̇1 = z1ż1 = z1(x2 + θ1ϕ1(x1)− ẏd) (5.3.11)

and choosing the first fictitious control signal

α1 = −k1z1 − θ̂1ϕ1(x1) + ẏd, with k1 > 0 (5.3.12)

that the virtual control x2 must take at this step.

Second Step

Defining the difference between the actual state x2 and its desired value α1 as the second error signal

z2 = x2 − α1.

The augmented error dynamics are then expressed as:

{
ż1 = x2 + θ1ϕ1(x1)− ẏd
ż2 = u− ∂α1

∂t

(5.3.13)

{
ż1 = (z2 + α1) + θ1ϕ1(x1)− ẏd
ż2 = u− α̇1

(5.3.14)

{
ż1 = (z2 − k1z1 − θ̂1ϕ1(x1) + ẏd) + θ1ϕ1(x1)− ẏd
ż2 = u− α̇1

(5.3.15)

{
ż1 = z2 − k1z1 − θ̃1ϕ1(x1)

ż2 = u− α̇1

(5.3.16)
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where

α̇1 = −k1(ẋ1 − ẏd)− ˙̂
θ1ϕ1(x1)− θ̂1

∂ϕ1(x1)
∂x1

(x2 + θ1ϕ1) + ÿd (5.3.17)

α̇1 = −k1(x2 + θ1ϕ1 − ẏd)− ˙̂
θ1ϕ1(x1)− θ̂1

∂ϕ1(x1)
∂x1

(x2 + θ1ϕ1) + ÿd (5.3.18)

Replacing θ1 by θ̂1 − θ̃1

α̇1 = −k1(x2 + [θ̂1 − θ̃1]ϕ1 − ẏd)− ˙̂
θ1ϕ1(x1)− θ̂1

∂ϕ1(x1)
∂x1

(x2 + [θ̂1 − θ̃1]ϕ1) + ÿd (5.3.19)

Let us define the known term of α̇1 as

α2 = k1(x2 + θ̂1ϕ1 − ẏd) + ˙̂
θ1ϕ1(x1) + θ̂1

∂ϕ1(x1)
∂x1

(x2 + θ̂1ϕ1)− ÿd (5.3.20)

So

α̇1 = −α2 + k1θ̃1ϕ1 + θ̂1
∂ϕ1(x1)
∂x1

θ̃1ϕ1 (5.3.21)

or

α̇1 = −α2 +
(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)
θ̃1ϕ1 (5.3.22)

 ż1 = z2 − k1z1 − θ̃1ϕ1(x1)

ż2 = u+ α2 −
(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)
θ̃1ϕ1

(5.3.23)

Using the second Lyapunov function candidate V2 = V1 + 1
2γ1

θ̃2
1 + 1

2z
2
2 whose derivative along the

solutions of equation (5.3.10) is given by

V̇2 = z1ż1 +
1
γ1
θ̃1

˙̃
θ1 + z2ż2 (5.3.24)

V̇2 = z1[z2 − k1z1 − θ̃1ϕ1(x1)]

+ 1
γ1
θ̃1

˙̃
θ1 + z2ż2

(5.3.25)

Using the fact that θ̃1 = θ̂1 − θ1 and ˙̃
θ1 = ˙̂

θ1

V̇2 = z1

[
z2 − k1z1 − θ̃1ϕ1(x1)

]
+ 1
γ1
θ̃1

˙̂
θ1 + z2

[
u+ α2 −

(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)
θ̃1ϕ1

] (5.3.26)
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This suggests the selection of the following control law :

u = −α2−k2z2−z1 = −k1(x2+θ̂1ϕ1−ẏd)− ˙̂
θ1ϕ1(x1)−θ̂1

∂ϕ1(x1)
∂x1

(x2+θ̂1ϕ1)+ÿd−k2z2−z1 (5.3.27)

Substituting (5.3.27) in (5.3.30) yields :

V̇2 = z1

[
−z2 − k1z1 − θ̃1ϕ1(x1)

]
+ 1
γ1
θ̃1

˙̂
θ1 + z2

[
−k2z2 + z1 −

(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)
θ̃1ϕ1

] (5.3.28)

V̇2 = −k1z
2
1 − k2z

2
2 + 1

γ1
θ̃1

˙̂
θ1 −

[
z1 + z2

(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)]
θ̃1ϕ1(x1) (5.3.29)

V̇2 = −k1z
2
1 − k2z

2
2 + 1

γ1
θ̃1

[ ˙̂
θ1 − γϕ1(x1)

[
z1 + z2

(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)]]
(5.3.30)

Based on the above derivative of the Lyapunov function, we select the update law for

˙̂
θ1 = γϕ1(x1)

[
z1 + z2

(
k1 + θ̂1

∂ϕ1(x1)
∂x1

)]
(5.3.31)

5.4 Conclusion

In addition to introducing a few of the dominant nonlinear control system design methodologies, this

chapter has reviewed methods used to achieve robustness to nonlinear model error and discussed

situations in which online approximation might be useful for improving such robustness and tracking

performance. As discussed earlier, online approximation can be achieved only over a compact set

denoted by D. Within D, due to the use of the adaptive approximator, the nonlinear model errors

should be small. Outside of D, the nonlinear model errors may still be large. Therefore, D should be

defined to contain the set of desired system trajectories. For this reason, the set D is often referred

to as the operating envelope. An important issue in the design of an adaptive approximation based

control system is the design of mechanisms to ensure that, for any initial conditions, the system state

converges to and stays within the operating envelope D. In order to prevent the state trajectories

from leaving the region D, some bound (possibly state-dependent) on the unknown function will be

required. In this chapter, we saw that such bounds were also required for the use of sliding mode

control, Lyapunov redesign method and adaptive bounding control.



Chapter 6

Function Approximation
Augmented Control of Uncertain
Nonlinear Systems

6.1 Introduction

This chapter is devoted to present the main contribution of my research. Starting from the statement

that the best performance a control law can achieve is based mainly on the starting model of the

system to be regulated. How can we get a better performance with a poor model? This is mainly

the subject of my thesis. My objective is to combine nonlinear adaptive and robust control using

different approximation structures to get a better performance with minimum knowledge of the

system to be controlled.

In this chapter we will introduce the mathematical formulation problem, then the control strategy

based on backstepping will be highlighted in section 6.3. Section 6.4 is devoted to the proposed

control strategy where the main contribution is mentioned. The application of this method to an

ABS system will be detailed in section 6.5. Finally, we end up with some concluding remarks in

section 6.6.

6.2 Problem Formulation and Assumptions

Given a Single Input Single Output Nonlinear System described by the following state equation:{
ξ̇ = f(ξ, u)

y = g(ξ)
(6.2.1)
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where ξ is the state vector with dimension n and u, y ∈ < are the system input and output respec-

tively. f, g are unknown smooth functions of appropriate dimension. The objective is to design a

controller for the above system so that the output y tracks a given trajectory yref with bounded

tracking error.

6.3 Backstepping Control Design

Assume that there exists a nonlinear nonsingular mapping that transforms system (6.2.1) to the

triangular strict feedback form :

ẋ1 = x2 + ϕ1(x1)

ẋ2 = x3 + ϕ2(x1, x2)
...

ẋn−1 = xn + ϕn−1(x1, x2, . . . , xn−1)

ẋn = β(x)u+ ϕn(x)

y = x1

(6.3.1)

This assumption is always applicable for electromechanical systems.

Backstepping is a nonlinear control synthesis method in which a control Lyapunov function is

derived in a stepwise manner ensuring the stability of the nonlinear system [55]. It can be applied

to derive a control law that stabilizes the transformed system (6.3.1) given that all the states are

available for feedback and the nonlinear terms are known with high precision. At each step we

construct a control Lyapunov function using a pseudo control signal from the state vector until we

reach the last step where the actual stabilizing control is derived along its associated Lyapunov

function ensuring the stability of the whole system.

Our idea to overcome the problem of uncertainty in the nonlinear terms is based on an ap-

proximated model of the plant at hand and we proceed in applying the steps of backstepping as

follows:

6.3.1 Step 1

Let z1 = x1 − yref be the tracking error, its dynamics is governed by:

ż1 = x2 + ϕ1(x1)− ẏref (6.3.2)
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Define the Lyapunov function for the system z1 as V1 = 1
2z

2
1 , the derivative of V1 along the

tracking error dynamics (6.3.2) is given by:

V̇1 = z1[x2 + ϕ1(x1)− ẏref ] (6.3.3)

To render it negative definite, we choose the fictitious control

α1(x1) = −c1z1 − ϕ1(x1) + ẏref , we get V̇1 = −c1z2
1

6.3.2 Step 2

Define z2 as the difference between the desired value of x2 and its actual value z2 = x2 − α1(x1),

and γ2(x1, x2) = ∂α1
∂x1

[x2 + ϕ1], the augmented error dynamics will be expressed as:
ż1 = −c1z1 + z2

ż2 = x3 + ϕ2(x1, x2) + c1[−c1z1 + z2]

+γ2(x1, x2)− ÿref

(6.3.4)

Choosing the candidate Lyapunov function V2 = 1
2

[
z2

1 + z2
2

]
, its derivative along the augmented

error dynamics (6.3.4) is given by

V̇2 = −c1z2
1 + z2{z1 + x3 + ϕ2(x1, x2)

+c1[−c1z1 + z2] + γ1(x1, x2)− ÿref}
(6.3.5)

To make V̇2 negative definite, the following fictitious control is chosen

α2(x1, x2) = −c2z2 − z1 − c1 [−c1z1 + z2]

−ϕ2(x1, x2)− γ1(x1, x2) + ÿref
(6.3.6)

which results in V̇2 = −c1z2
1 − c2z2

2

6.3.3 Step (n− 1)

Let zn−1 = xn−1 − αn−2(x1, . . . , xn−1), the augmented tracking error dynamics become:

ż1 = −c1z1 + z2

ż2 = −z1 − c2z2 + z3

...

żn−2 = −zn−3 − cn−2zn−2 + zn−1

żn−1 = xn + ϕn−1(x1, . . . , xn−1)

+Cn−1Z
T
n−1 + γn−1(x1, . . . , xn−1)− y(n−1)

ref

(6.3.7)
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where


γ1 = ϕ1,

γk−1 =
∑k−2
i=1

∂γk−2
∂xi

[xi+1 + ϕi]

k=2,3,··· ,n

.

and Cn−1Zn−1 is used to simplify writing by groupping the linear combination of zi’ s.

Choosing the candidate Lyapunov function:

Vn−1 = 1
2

∑n−1
i=1 z

2
i ,

its derivative along the error dynamics in (6.3.7) is
V̇n−1 = −

∑n−2
i=1 ciz

2
i + zn−1zn−2

+zn−1

[
xn + ϕn−1 + Cn−1Z

T
n−1 + γn−1 − y(n−1)

ref

]
By choosing
αn−1 = −cn−1zn−1 − ϕn−1 (x1, . . . , xn−1)− zn−2

−Cn−1Z
T
n−1 − γn−1(x1, . . . , xn−1) + y

(n−1)
ref

V̇n−1 is forced to be negative and it is given by

V̇n−1 = −
∑n−1
i=1 ciz

2
i .

6.3.4 Step (n)

This is the last step where the control signal appears. By defining zn = xn − αn−1, the error

dynamics take the following form:

ż1 = −c1z1 + z2

ż2 = −z1 − c2z2 + z3

...

żn−2 = −zn−3 − cn−2zn−2 + zn−1

żn−1 = −zn−2 − cn−1zn−1 + zn

żn = β(x)u+ ϕn(x) + CnZ
T
n

+γn(x)− y(n)
ref

(6.3.8)

where γn(x) =
∑n−1
i=1

∂γn−1
∂xi

[xi+1 + ϕi+1] and, CnZTn is a linear combination of the components of

the augmented error vector z.

In this design step we can augment the above Lyapunov function by a quadratic term 1
2z

2
n then

we get the stabilizing control law to make it negative definite as:

u =
αn(x)
β(x)

(6.3.9)
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where αn = −cnzn − ϕn(x)− zn−1 − CnZTn − γn(x) + y
(n)
ref

which yields to V̇n = −
∑n
i=1 ciz

2
i

The resultant linear system is stable and has the following structure:

ż =



−c1 1 · · · 0 0

−1 −c2
. . . 0 0

0
. . . . . . 1 0

... −1 −cn−1 1

0 · · · 0 −1 −cn


z (6.3.10)

and the all the error signals zi tend exponentially to zero.

6.4 The Proposed Controller

The control law given in equation (6.3.9) can be implemented if these conditions are fulfilled [10]:

• All the state are accessible for feedback,

• All the nonlinear functions are precisely known, and

• β(x) 6= 0,∀x ∈ <n

To relax the first two conditions we can use the same idea as in [59] by introducing neural

networks for their approximation ability to compensate for the uncertain terms tgat appear in the

last step of backstepping, and continue with another step to derive the adaptation laws for neural

network weights.

However the control is not exactly known, and we assume that its best estimate is given by:
α̂(xm,ẑ,y

(n)
ref )

β̂(xm)
, which depends only on the measured states xm, the nth derivative of the output of a

reference signal to be tracked, and ẑ, an estimate of the augmented tracking error dynamics z.

Defining u = α(x)
β(x) + uad, an implementable augmented control signal which is composed of the

backstepping control signal plus an adaptive term designed to cancel the effect of the unknown

terms. Substituting on u in equation (6.3.9), the system dynamics can be expressed as:

ż = Cbsz + b[uad −4] (6.4.1)
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where Cbs =



−c1 1 · · · 0 0

−1 −c2
. . . 0 0

0
. . . . . . 1 0

... −1 −cn−1 1

0 · · · 0 −1 −cn


,

b =
[

0 0 · · · 0 1
T
]
, and 4 represents the nonlinear unknown terms to be canceled by uad.

This structure looks like the form obtained by a feedback linearization scheme [63, 64], however it

is more suitable because we will get the adaptation law of the neural network weights in a constructive

way by augmenting the existing Lyapunov function.

6.4.1 Neural Network compensator

Usually in the literature, neural networks are used in function approximation in the modeling phase

[93], however we will use them in controller design given some conditions are fulfilled. However

here we can use either a simple feed-forward neural network of two layers as shown on figure 6.1 to

approximate the error term 4 or any other type of parameterized function approximator [11].

 

Output 
Layer 

W 

Hidden
Layer 

V 

Output 
Vector 

Input 
Vector 

Figure 6.1: A Neural Network with two layers

The approximated error signal can be expressed as:

4 = WTΦ(V, µ) + ε(µ) ∀µ ∈ D (6.4.2)

where

V ∈ DV ⊂ <N1 is the hidden layer weight vector
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W ∈ DW ⊂ <N2 is the output layer weight vector

Φ is a set of basis functions

µ is the network input vector, and

ε is the neural network reconstruction error

Assuming that the approximation reconstruction error is bounded on some domainD by ‖ε(µ)‖ ≤

ε∗, ∀µ ∈ D.

The weight vectors are assumed to be bounded ‖W‖ ≤ W ∗ and their adjustment can be done

online. However the whole controller implementation will be difficult as the number of the parameters

increases for complex problems. So the first layer parameters can be adjusted offline in such a way

Φ(V, µ) is a basis [93] whereas the adaptation law for the second layer is included in the controller

design

The adaptive control signal uad is designed to cancel the unknown nonlinear terms 4.

uad = ŴTΦ(V, µ) (6.4.3)

where Ŵ are the estimates of W weights, the initial values of these estimates W0 can simply be

set to zero, while µ is an implementable input vector to the NN defined as:

µ =
[
zT ȳT

d ūT
d 1

]
with ȳd , and ūd are vectors of delayed values of the output and control

signals respectively [63]. The tracking error terms z must be available for the implementation of the

pseudo-control signal α̂.

6.4.2 Neural network weights adaptation

Let W̃ = Ŵ −W , the generalized error vector E =
[
zT W̃T

]T
and defining the augmented

Lyapunov function

Va(E) =
1
2

[
zTz + W̃TF−1W̃ )

]
(6.4.4)

where F > 0 is an adaptation gain.

Differentiating Va with respect to E gives

V̇a = −
n∑
i=1

ciz
2
i + W̃TF−1 ˙̃W

+zn[W̃TΦ(V, µ)− ε(µ)]
(6.4.5)
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Using the fact that W̃ = Ŵ −W , equation (6.4.5) can be written as

V̇a = −
n∑
i=1

ciz
2
i + W̃TF−1 ˙̂

W

+zn[W̃TΦ(V, µ)− ε(µ)]
(6.4.6)

Hence, we can derive this adaptive law for the network parameters W which will make the

derivative augmented Lyapunov function to be negative definite in some domain.

˙̂
W = −F

[
Φ(V, µ)zn + 2G(Ŵ −W0)

]
(6.4.7)

Substituting (6.5.30) in (6.4.6) yields

V̇a = −
n∑
i=1

ciz
2
i − W̃T

[
Φ(V, µ)zn + 2G(Ŵ −W0)

]
+zn[W̃TΦ(V, µ)− ε(µ)]

(6.4.8)

or

V̇a = −
n∑
i=1

ciz
2
i − 2W̃TG(Ŵ −W0)− znε(µ) (6.4.9)

Using the fact that the neural networks weight vector is bounded, the derivative of the augmented

Lyapunov candidate can be upper bounded as

V̇a ≤ −
n∑
i=1

ciz
2
i + |zn|ε∗

−G‖W̃‖2 −G‖Ŵ −W0‖2 +G‖W −W0‖2
(6.4.10)

Putting N =
n−1∑
i=1

ciz
2
i +G‖Ŵ −W0‖2 yields

V̇a ≤ −N − cnz2
n + |zn|ε∗

−G‖W̃‖2 +G‖W −W0‖2
(6.4.11)

Completing the squares using ε∗|zn| = − 1
2 (ε∗ − |zn|)2 + 1

2ε
∗2 + 1

2z
2
n , we get

V̇a ≤ −N − cnz2
n −G‖W̃‖2 +G‖W −W0‖2

− 1
2 (ε∗ − |zn|)2 + 1

2ε
∗2 + 1

2z
2
n

(6.4.12)

Further, it can be written as

V̇a ≤ −N − (cn − 1
2 )z2

n −G‖W̃‖2 − 1
2 (ε∗ − |zn|)2

+G‖W −W0‖2 + 1
2ε
∗2

(6.4.13)

The following conditions
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|z̃n| >
√

2ε∗2+2G‖W−W0‖2
2cn−1

‖W̃‖2 >
√

ε∗2+G‖W−W0‖2
G

(6.4.14)

with cn >
1
2 , and G > 0 ensures that V̇a ≤ −N . Which is negative definite in some domain defined

by conditions in (6.4.14).

The resulting controller looks like the controller proposed in [64] however here it is obtained

in a constructive manner for a triangular system without adding an SPR condition. It can be

implemented and we have a freedom in selecting the linear controller gains ci to achieve a desirable

performance.

It must be emphasized that Takagi-Segino Fuzzy systems are mathematically almost the same

as RBF Neural Networks. They can also be used as adaptive function approximators. The off-line

training becomes the selection of the fuzzy rules (membership functions, shapes,..). Whereas the

On-line adaptive law is the same as presented for RBF neural networks.

6.5 Application to a Laboratory ABS System

6.5.1 ABS System Modeling

The anti-lock braking system (ABS) in cars were implemented in the late 70s [1]. The main objective

of the control system is to prevent wheel-lock while braking. Usually we are interested in the tire slip

on each of the four wheels in the car. Only longitudinal motion is considered. The laboratory setup

of ABS available at CREA, Centre de Robotique, d’Electrotechnique et d’Automatique d’Amiens)

[56], that represents an anti-lock brake system is shown on Figure 6.2, and is schematized on Figure

6.3.

In this simplified ABS system, the lower car-road wheel is animating relative road motion and

the upper car wheel permanently remaining in a rolling contact with the lower wheel. The wheel

mounted to the balance lever is equipped in a tyre. The car-road wheel has a smooth surface which

can be covered by a given material to animate a surface of the road.

There are three torques acting on the upper wheel: the braking torque M1 , the friction torque

in the upper bearing and the friction torque among the wheels. There are two torques acting on

the lower wheel: the friction torque in the lower bearing and the friction torque among the wheels.

Besides these we have two forces acting on the lower wheel: the gravity force of the upper wheel and
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Figure 6.2: ABS Laboratory set-up

the pressing force of the shock absorber.

Denoting the system parameters as:

• x1 = ω1 , the angular velocity of the upper wheel with radius r1, and moment of inertia J1

• x2 = ω2 , the angular velocity of the lower wheel with radius r2, and moment of inertia J2

• λ , the slip which is the relative difference of the wheel velocities,

• M1 , the brake torque, it is the input signal of the model,

• µ , the friction coefficient between the upper and lower wheels,

• Fn , the normal force - the upper wheel acting on the lower wheel.

The equations of motion of the system can be expressed

J1ẋ1 = Fnr1µ(λ)− d1x1 −M10 −M1 (6.5.1)

J2ẋ1 = −Fnr2µ(λ)− d2x2 −M20 (6.5.2)
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Figure 6.3: Schematic diagram of ABS

or

J1ẋ1 = F1 −M1 (6.5.3)

J2ẋ1 = F2 (6.5.4)

using the auxiliary variables F1, F2

F1 = Fnr1µ(λ)− d1x1 −M10 (6.5.5)

F2 = −Fnr2µ(λ)− d2x2 −M20 (6.5.6)

and assuming that there is a derived model for friction coefficient based on the following model:

µ(λ) =
w4λ

p

a+ λp
+ w3λ

3 + w2λ
2 + w1λ (6.5.7)

where wi are model parameters. The driving system of the brake is governed by the following

equation:

Ṁ1 = c31(b1u+ b2 −M1) (6.5.8)

The dynamics of the driving system are very fast compared to those of the mechanical system, in

the rest of this chapter we will consider it as a control gain, so we can write:

M1 = Kuu (6.5.9)

6.5.2 ABS backstepping control

For ABS laboratory set-up the slip is defined as:
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λ = 1− r1x1

r2x2
(6.5.10)

The control objective is essentially to control the value of the slip λ to a given set point λ∗ that is

either constant or supplied by a higher supervising system. The slip dynamics can be expressed as:

λ̇ = − r1

r2x2

[
ẋ1 −

x1

x2
ẋ2

]
(6.5.11)

Multiplying both sides of equation (6.5.11) by x2

x2λ̇ = −r1

r2

[
ẋ1 −

x1

x2
ẋ2

]
(6.5.12)

Using the fact that r1x1
r2x2

= (1− λ), we get

x2λ̇ = −r1

r2
ẋ1 + (1− λ)ẋ2 (6.5.13)

Defining the integrated slip error

z1 =
∫ t
h=0

(λ− λ∗)dh, and the slip error

z2 = λ− λ∗.

Its dynamics take the following form:

{
ż1 = z2

ż2 = − r1
x2r2

ẋ1 + 1
x2

(1− λ)ẋ2 − λ̇∗
(6.5.14)

The first step in backstepping considers z2 as a fictitious control signal that stabilizes the z1

dynamics. Introducing the first Lyapunov candidate function:

V1 =
1
2
z2

1 (6.5.15)

its derivative along the error dynamics is expressed as

V̇1 = z1ż1 = z1z2 (6.5.16)

yields the following fictitious control :

z∗2 = −k1z1 (6.5.17)
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Defining e2 = z2 − z∗2 = z2 + k1z1, the error dynamics take the following form
ż1 = e2 − k1z1

ė2 = − r1
x2r2

ẋ1 + 1
x2

(1− λ)ẋ2 − λ̇∗

+k1(e2 − k1z1)

(6.5.18)

Substituting for ẋ1 and ẋ2 in equation (6.5.18)


ż1 = e2 − k1z1

ė2 = − r1
x2r2J1

(F1 − s1M1)

+ 1
x2

(1− λ)F2
J2
− λ̇∗ + k1(e2 − k1z1)

(6.5.19)

The second step of backstepping suggests the following Lyapunov function

V2 =
1
2

(z2
1 + e2

2) (6.5.20)

Differentiating V2 along the error dynamics one gets:

V̇2 = −k1z
2
1 + e2

(
−λ̇∗ + k1(e2 − k1z1)

)
+e2

[
z1 − r1

x2r2J1
(F1 −M1) + 1

x2
(1− λ)F2

J2

] (6.5.21)

Using the following control signal

M1 = F1 − F2r2J1
r1J2

(1− λ)

−x2r2J1
r1

(
z1 − λ̇∗ + k1(e2 − k1z1) + k2e2

) (6.5.22)

will render V̇2 negative definite that is:

V̇2 = −k1z
2
1 − k2e

2
2 (6.5.23)

6.5.3 ABS Neural Network Augmented Control

The desired braking torque that makes the slip tend to the desired slip can be derived given that

all model parameters are precisely known which is not the case due to the estimated friction forces

that depend on road conditions so the control signal will be augmented by an adaptive term that

compensate for uncertainty.

Let
M̂1 = F̂1 − F̂2r2J1

r1J2
(1− λ)

−x2r2J1
r1

(
z1 − λ̇∗ + k1(e2 − k1z1) + k2e2

) (6.5.24)
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The actual control signal u which is the dc voltage applied to the electro-mechanical actuator

that will deliver the necessary braking torque is obtained by an inversion of a simplified model that

maps the input voltage space to its corresponding delivered braking torque.

u∗ = K−1
u

(
F̂1 − F̂2r2J1

r1J2
(1− λ)

)
−K

−1
u x2r2J1
r1

(
z1 − λ̇∗ + k1(e2 − k1z1) + k2e2

) (6.5.25)

This known part of the control signal u∗ is augmented by an adaptive element ua supplied by an

artificial neural network to compensate for neglected and unknown terms.

u = u∗ + ua (6.5.26)

Substituting on u in equation (6.5.19), the system dynamics can be expressed as:

{
ż1 = e2 − k1z1

ė2 = −z1 − k2e2 + [uad −4]
(6.5.27)

where 4 represents the nonlinear unknown terms to be canceled by uad.

The error signal can be expressed as:

4 = WTΦ(V ) + ε (6.5.28)

The adaptive control signal ua is designed to cancel the unknown nonlinear terms 4.

ua = ŴTΦ(V, e1, z2, x1, x2) (6.5.29)

The adaptive law for the network parameters W is expressed as

˙̂
W = −F

[
Φ(V, e1, z2, x1, x2)z2 + 2G(Ŵ −W0)

]
(6.5.30)

6.5.4 Simulation and Experimental results

Before we proceed for testing the proposed control method for the ABS laboratory set-up, we have

conducted simulations on a Simulink model for the system. In this simulation we assumed that the

wheels are initially rotating at a given speed then at t0 a braking action is demanded. The two

figures (6.5, 6.5) illustrate the simulation results of simple relay control and the proposed scheme.
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Figure 6.4: Relay Control Simulation Results

It is clearly evident that the proposed controller reached the desired slip (about or smaller 20%)

whereas the relay control slip is oscillating (10-40%) which is not desired.

Before starting the implementation of the control algorithm, some experiments are taken to get

the appropriate model parameters:

Figure 6.6 shows the angular speeds of both wheels where the control brake is les than 20% of its

maximum value showing that the friction forces are more important than that of the braking action.

However when the brake action increased above 20% the braking force becomes more effective

and the sleep is becoming more important when the braking force is increased as illustrated by

figures 6.7,6.8.

We have applied the proposed control law for the ABS Laboratory system using MATLAB/SIMULINK

Real time for windows Target environment. The Neural Network is implemented by a Simulink C-

S Function which is complied by Matlab C++ compiler then it is integrated in Simulink as an

S-function.

The experiment consists on accelerating the two wheels until we reach a given angular speed,
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Figure 6.5: Proposed Controller Simulation Results

then a controlled braking action will be taken in such a way to prevent wheel lock.

The same experiment was conducted by achieving different speed levels with different contact

conditions.

First, we have applied a relay swishing control as described in the ABS laboratory manual ([1])

to compare it with the results obtained using backstepping augmented controller.

Figure 6.9 presents the results of relay control with high slip (> 40%). Whereas (Figure 6.10

shows the obtained satisfactory results for the normal case where no material is added to change

the contact condition between the two wheels simulating the normal road conditions. Figure 6.14

shows the performance of the controller when the wheel contact condition is changed by adding

some product like a resin between the rotating wheels to simulate wet road condition where the slip

is important.

In all cases the controller achieves an acceptable performance and the adaptive elements adapts

for the changing environment.
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friction forces are more important than braking
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Figure 6.6: Open Loop (0− 20%) Braking applied for average speed

6.6 Conclusion

A new adaptive nonlinear controller is presented in this thesis to address a class of uncertain non-

linear systems where the stability is ensured for the closed loop system and all the errors (tracking,

observer, and neural network weights) tend asymptotically to zero. The RBF center selection is done

using orthogonal least squares structure selection method to minimize the number of parameters of

the resulting controller. We have mentioned only Neural Networks in this chapter for function ap-

proximation. Finally we have applied this method to an ABS system to show the design choices

and the achieved performance although we have assumed a partly known model of the system to be

controlled.



109

25 30 35 40
0

5

10

Time (sec)

ω
1, ω

2 −
 (

ra
d/

se
c)

Effective braking

 

 

25 30 35 40
0

0.2

0.4

0.6

0.8

Time (sec)

λ 

u=23%

u=26%

u=28%

u=30%

u=40%
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Figure 6.10: Proposed Controller Experimental Results
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Figure 6.11: Neural Network Weight History and Control Signal
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Figure 6.12: Proposed Controller Experimental Results for Highest Speed
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Figure 6.13: Neural Network Weight History and Control Signal
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Figure 6.14: Proposed Controller Experimental Results for wet road condition



Chapter 7

Application To Induction Machine

7.1 Introduction

In the first part of my thesis, I have presented some tools that help the control engineer to design

control laws that solve the problem with systems that have not a well known model. Development

and growth of emerging technologies suggests new actuation and electromechanical devices every

year for industry applications in different fields and in the other hand the continuous improvement

and invention of new computer and hardware device that ease the implementation of complex control

algorithms motivates research to gain from this and enhance the control laws to get more precision

and comfort.

In this chapter we will apply function approximation based control for an electromechanical

system which is the induction machine which is widely used in industry.

The induction motor is an electromechanical device that converts an electrical energy to a me-

chanical energy [11, 12] . It is one of the most widely used actuators for industrial applications

today mostly because of its low cost, ruggedness and reliability. The important parameters of an

induction motor that are susceptible to uncertainties on operating conditions are the load torque

and the rotor resistance. The variation of rotor resistance of the induction motor can even be a

100% during operation due to rotor heating. In the case of most loads with a widely varying speed

of operation, like in electric vehicle, pumps, blowers the torque varies as a function of time instead

of being constant or changing in steps.

The control of induction motors is a difficult task. The system is nonlinear, coupled and multi-

variable having two control inputs (stator voltages) and two output variables (rotor speed and flux

113
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modulus), required to track the desired reference trajectories. To ease difficulties, a Field-Orientation

Control [24] is the most popular and widely used approach. Due to the high costs and drawbacks

of accurate flux sensors an approach to estimate the flux by flux estimators is more effective. This

method is called the Indirect Field-Orientation control.

The advances in nonlinear control theory have caused a notable impact on the control of induction

motor. With adaptive backstepping design technique researchers were able to successfully design

controllers which achieved global stabilization in the presence of uncertain parameters. Using this

design methodology, the construction of both the feedback control laws and associated Lyapunov

functions is systematic. Strong properties of global or local stability are built into the nonlinear

system with uncertain parameters in a number of steps which is never higher than the system order.

Many recent works have focussed on compensation of rotor resistance and load torque effects while

also removing the need for rotor flux measurements. In [65] a rotor flux calculation method is used

to achieve control under rotor resistance and torque uncertainty. This method requires the motor

to be initially at rest. In [26] a rotor flux estimation method was designed to develop an adaptive

controller to compensate for rotor resistance uncertainty and uncertainty in mechanical subsystem,

which exhibited a singularity when the magnitude of the estimated rotor flux was equal to zero. In

[72] a global adaptive controller is designed to achieve speed control in the case of rotor resistance

uncertainty and constant unknown load torque. In [30] an adaptive backstepping controller for

induction motors which is adaptive with time-varying load torque and uncertain rotor resistance

conditions is presented.

In this chapter, we will apply different control algorithms based on function approximation to

control the induction machine. Usually the control law is derived by augmenting a backstepping

controller by an artificial neural network which can be extended for a larger class of nonlinear

systems with partially known models. In section two the problem will be formulated, then field

oriented control method is presented in section three . Backstepping will be applied for the known

part of the system in section four. Neural network augmentation is detailed in section five. simulation

results are presented in section six . Section seven is devoted to some concluding remarks.
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7.2 Induction Machine Modeling

The starting point for the control of the induction motor is the system of nonlinear differential

equations which characterize its behavior. Under the assumptions of linearity of the magnetic circuit

and neglecting iron losses, the dynamics of a np pole-pair two phase induction motor are given by

the following system of differential equations [24]:



usa = Rsisa + Ls
disa
dt +M d

dt (iracos(npθ)− irbsin(npθ))

usb = Rsisb + Ls
disb
dt +M d

dt (irasin(npθ)− irbcos(npθ))
0 = Rrira + Lr

dira
dt +M d

dt (isacos(npθ) + isbsin(npθ))

0 = Rrirb + Lr
dirb
dt +M d

dt (−isasin(npθ) + isbcos(npθ))

J dωdt = npM [isb (iracos(npθ)− irbsin(npθ))

−isa (irasin(npθ)− irbcos(npθ))]

(7.2.1)

with the flux linkages of the motor phases given by
λsa = Lsisa +M (iracos(npθ)− irbsin(npθ))

λsb = Lsisb +M (irasin(npθ)− irbcos(npθ))
λra = Lrira +M (isacos(npθ) + isbsin(npθ))

λrb = Lrirb +M (−isasin(npθ) + isbcos(npθ))

(7.2.2)

where Ls , µ0πl1l2N
2
S

8g , Lr , µ0πl1l2NSNR
8g .

Here Ns and NR are the number of windings per pole-pair of the stator and rotor phases,

respectively. The retarding torque produced by the friction in the ball bearings of the machine is

modeled here by −fω, where f is the viscous friction coefficient .

The control problem is to choose the input stator voltages usa and usb in such a way to make

the motor angular velocity ω tracks a given reference trajectory. The stator currents are usually

accessible. However, the rotor currents are typically not available for feedback. In fact, the most

common type of induction motor is the squirrel cage motor, where rotor currents are distributed on

the surface of the rotor making it very impractical to measure the current in each rotor bar. The

resulting flux can be measured using Hall effect sensors placed in the air gap, but such sensors are

very expensive and reduce the overall reliability of the system. The control problem is still difficult

due to the coupled complicated model of the system described in equation (7.2.1). To overcome this

problem one could transform it into a simplified form in which cos(npθ) and sin(npθ) expressions
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are eliminated. Using the following transformation for the flux linkages[
ψra

ψrb

]
=

[
cos(npθ) −sin(npθ)

sin(npθ) cos(npθ)

][
λra

λrb

]
(7.2.3)

Then the dynamic model of the machine in terms of the state variables ω, ψra, ψrb, isa, and isb

can be written in this form

dω
dt = µ (isbψra − isaψrb)− f

Jω −
1
J τL

dψra
dt = −ηψra − npωψrb + ηMisa
dψrb
dt = −ηψrb + npωψra + ηMisb
disa
dt = β (ηψra + npωψrb)− γisa + 1

σLs
usa

disb
dt = β (ηψrb − npωψra)− γisb + 1

σLs
usb

(7.2.4)

with µ , npM
JLr

, σ , 1− M2

LrLs
, η , Rr

Lr
, β , M

σLrLs
, and γ , M2Rr

σL2
rLs

+ Rr
σLs

.

7.3 Conventional Field-Oriented Control

The control objective is to design a controller in which the stator voltages are selected in order to

control the torque, speed and/or position of the motor. The key idea of field-oriented control is to

go to another state space representation where the currents regulating the flux and the speed are

decoupled [3]. The new coordinate system is a rotating system whose angular position is defined by

ρ , arctan(ψrbψra
). So, instead of working with (ψrb, ψra), one uses the polar coordinate representation

(ρ, ψd) given by

ρ , arctan(
ψrb
ψra

), ψd =
√
ψ2
ra + ψ2

rb.

The stator phase currents and voltages are then expressed in this new coordinates as follows[
id

iq

]
=

[
cos(ρ) sin(ρ)

sin(ρ) cos(ρ)

][
isa

isb

]
(7.3.1)

[
ud

uq

]
=

[
cos(ρ) sin(ρ)

sin(ρ) cos(ρ)

][
usa

usb

]
(7.3.2)

The quantity ψd is referred to as the magnitude of the rotor field flux while ρ is the angle of the

rotor field flux. This coordinate system is one that is moving (oriented) with this field flux and thus

is called the rotor-flux field oriented coordinate system. The currents id and iq are called the direct
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and quadrature currents, respectively. Similarly, the voltages ud and uq , are called the direct and

quadrature voltages, respectively. The rotation matrix used in (7.3.1) and (7.3.2) is called the direct

quadrature or (dq) transformation.
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Figure 7.1: Transformation to the field-oriented (dq) coordinate system.

The electromagnetic dynamic model of the induction motor in the fixed stator (direct and quad-

rant) d-q reference frame can be developed yielding

dω
dt = µψdiq − f

Jω −
1
J τL

dψd
dt = −ηψd + ηMid
did
dt = −γid + βηψd + npωiq + ηMi2q/ψd + 1

σLs
ud

diq
dt = −γiq − βnpωψd − npωid − ηMidiq/ψd + 1

σLs
uq

dρ
dt = npω + ηMiq/ψd

(7.3.3)

Note that the electromagnetic torque τe = Jµψdiq is now just proportional to the product of two

state variables ψd and iq. Furthermore, applying the nonlinear state feedback control for system

(7.3.3)

[
ud

uq

]
= σLs

[
−βηψd − npωiq − ηMi2q/ψd + ūd

βnpωψd + npωid + ηMidiq/ψd + ūq

]
(7.3.4)
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Then the closed loop system is obtained as follows:

dω
dt = µψdiq − f

Jω −
1
J τL

dψd
dt = −ηψd + ηMid
did
dt = −γid + ūd
diq
dt = −γiq + ūq
dρ
dt = npω + ηMiq/ψd

(7.3.5)

From (7.3.5), it is clear after field-oriented control and nonlinear state feedback, the final closed-

loop system has a simpler structure. Moreover, the flux amplitude dynamics depend only on the

direct current id and the direct voltage ud. Thus, it can be regulated to achieve a given flux

amplitude that can generate the desired electromagnetic torque τ . However, the robustness to

parameter variation of field orientation and nonlinear state feedback control cannot be guaranteed

since the designed controller relies entirely on the exact values of the induction motor parameters

which are usually estimated so any mismatch could cause system instability and the desired objective

is no longer achieved. Much work in the literature of robust control have been devoted to deal with

such a problem but there is no a universal solution. To solve the problem of unknown variations in

plant parameters and structure, authors in [53] proposed a robust backstepping whereas a combined

Neural Network and backstepping controller is presented in [85] to gain from universal approximation

property of Neural Networks and ensure the stability of the closed loop system by an Augmented

Lyapuonv Function. The main feature of the proposed approach is the application of the novel

Lyapunov functions to construct the NN-based backstepping adaptive controller. A simpler strategy

is followed here where Neural networks are used for error approximation for nonlinear unknown and

neglected terms in the last step of backstepping.

7.4 Bacstepping Control

Let τ∗e = Jµψ∗diq be the desired torque to be generated with the corresponding reference flux ψ∗d.

Defining the flux and the speed errors as:[
ψ̃d

ω̃

]
=

[
ψd − ψ∗d
ω − ω∗

]
(7.4.1)

Differentiation of equation (7.4.1) yields to the following error dynamics{ ˙̃
ψd = −η(ψ̃d + ψ∗d) + ηMid − ψ̇∗d
˙̃ω = µψdiq − f

J (ω̃ + ω∗)− 1
J τL − ω̇

∗
(7.4.2)
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7.4.1 Step 1

Let us define the first Lyapunov candidate :

V1 =
1
2

[
ψ̃d

2
+ ω̃2

]
(7.4.3)

For which the time derivative is expressed as:

V̇1 = ψ̃d
˙̃
ψd + ω̃ ˙̃ω (7.4.4)

Substituting for the error dynamics in (7.4.4) yields

V̇1 = ψ̃d

[
−η(ψ̃d + ψ∗d) + ηMid − ψ̇∗d

]
+ ω̃

[
µψdiq −

f

J
(ω̃ + ω∗)− 1

J
τL − ω̇∗

]
(7.4.5)

Assuming that (ψd 6= 0, ∀t ≥ t0) is ensured, to render 7.4.5 negative definite, we may choose

the fictitious control signals, the direct and quadratic currents id and iq as

 i∗d = 1
ηM

(
ηψ∗d + ψ̇∗d

)
− k1ψ̃d

i∗q = 1
µψd

(
f
Jω
∗ + 1

J τL + ω̇∗ − k2ω̃
) (7.4.6)

with k1 and k2 are positive design parameters ensuring that the tracking error dynamics will

converge exponentially to zero.

7.4.2 Step 2

Let ĩd and ĩq be the direct and quadratic current errors defined as:[
ĩd

ĩq

]
=

[
id − i∗d
iq − i∗q

]
(7.4.7)

The augmented error dynamics become{ ˙̃
ψd = −η(1 +Mk1)ψ̃d + ηMĩd
˙̃id = −γĩd + ūd − γi∗d − i′∗d

{
˙̃ω = −( fJ + k2)ω̃ + µψdĩq
˙̃iq = −γĩq + ūq − γi∗q − i′∗q

(7.4.8)

Defining the fictitious control signals{
vd = ūd − γi∗d − i′∗d
vq = ūq − γi∗q − i′∗q

(7.4.9)



120

The second step of backstepping suggests the following Lyapunov candidate

V2 = V1 +
1
2

[
ĩd

2
+ ĩq

2
]

(7.4.10)

The derivative of V2 along the augmented error dynamics (7.4.8) is given by

V̇2 = V̇1 + ĩd
˙̃id + ĩq

˙̃iqV̇2 = −η(1 +Mk1)ψ̃d
2

+ ĩd
(
ηMp̃sid − γĩd + vd

)
−( fJ + k2)ω̃2 + ĩq

(
µψdω̃ − γĩq + vq

) (7.4.11)

This is the last step of standard backstepping where the control signals appear and could be

chosen in a manner to render the derivative of the Lyapunov candidate negative definite as follows:

{
vd = −ηMp̃sid − k3ĩd

vq = −µψdω̃ − k4ĩq
(7.4.12)

with k3 and k4 are positive parameters selected to ensure that the current dynamics converge

faster than those of the speed and flux.

The obtained control law is implemented given all the state variables are available for feedback

and the induction motor parameters are known exactly. In the next section we will propose a control

technique to make our designed controller robust and we will use instead of the missed states their

estimates.

7.5 Neural Network Augmented Controller

The control law given in equation (7.4.12) can be implemented if these conditions are fulfilled:

• All the state are accessible for feedback, and

• All the nonlinear functions are precisely known.

To relax the first two conditions we can use the same idea as in [61] by introducing neural networks

for their approximation ability and continue with backstepping to derive the adaptation laws for

neural network weights.

According to equations (7.3.4,7.4.4 and 7.4.11) the control signals depend on all the system

parameters, assuming that for each parameter % we have available an estimate %̂. The control

strategy will be changed by adding an adaptive neural network component in equation (7.4.12)

which becomes:
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{
vd = −ηMp̃sid − k3ĩd + uad

vq = −µψdω̃ − k4ĩq + uaq
(7.5.1)

Substituting for vd, and vq in system equations (7.4.8) and assuming that all neglected terms for

each subsystem as an error signal ei. The extended error dynamics take the form:{ ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + ed − uad

{
˙̃ω = −c2ω̃ + µψdĩq
˙̃iq = −c4ĩq − µψdω̃ + eq − uaq

(7.5.2)

The two subsystems are almost identical, we will consider only the dynamics of the flux subsystem

to simplify writing:

{ ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + ed − uad

(7.5.3)

Usually in the literature, neural networks are used in function approximation in the modeling

phase [93], however we will use them in controller design to cancel the effect of uncertainty due to

neglected dynamics and unknown or varying system parameters, given some conditions are fulfilled.

Assume that there exists an artificial neural network as shown in fig. 7.2 that approximates the

neglected dynamics ed.

 

Output 
Layer 

W 

Hidden
Layer 

V 

Output 
Vector 

Input 
Vector 

Figure 7.2: A Neural Network with two layers

The approximated error signal can be expressed as:

ed = WTΦ(V, µ) + ε(µ) ∀µ ∈ D (7.5.4)

where
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V ∈ DV ⊂ <N1 is the hidden layer weight vector

W ∈ DW ⊂ <N2 is the output layer weight vector

Φ is a set of basis functions

µ is the network input vector, and

ε is the neural network reconstruction error

It has been proven that a neural network that satisfies the conditions of the Stone Weierstrass

can approximate any continuous function to any desired accuracy over a compact set [85].

Assuming that the approximation reconstruction error is bounded on the compact set and there

exists ideal constant weights W ∗ and V ∗ such that ‖ε(µ)‖ ≤ ε∗, ∀µ ∈ D with constant ε∗ > 0.

The weight vectors are assumed to be bounded ‖W‖ ≤ W ∗ and their adjustment can be done

online. However the whole controller implementation will be difficult as the number of the parameters

increases for complex problems. So the first layer parameters can be adjusted off-line in such a way

Φ(V, µ) is a basis [93] whereas the adaptation law for the second layer is included in the controller

design.

7.5.1 Neural Network Inner Weight Vector Adaptation

Substituting for ed in equation (7.5.3) yields

{ ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d +WTΦ(V, µ) + ε(µ)− uad

(7.5.5)

The adaptive control signal uad is designed to cancel the effect of unknown nonlinear terms and

is chosen to take the following form.

uad = ŴTΦ(V, µ) (7.5.6)

Since the inner layer weights V are adjusted off-line to fit the real weights V then we can write

the mismatch between the adaptive signal and the real neural network as:

ed − uad = WTΦ(V, µ)− ŴTΦ(V, µ) + ε(µ)

= WT(Φ(V, µ) + ev)− ŴTΦ(V, µ) + ε(µ)

=
(
WT − ŴT

)
Φ(V, µ) + δ

(7.5.7)
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where δ is a bounded signal represents the reconstruction error of the neural network plus the

error caused by the inner weights mismatch and verifies the following inequality [84].

δ ≤ ‖V ∗‖F ‖µŴT Ŝ′‖F + ‖W ∗‖ ‖Ŝ′V̂ µ‖+ |W ∗|

where

Ŝ = Φ(V, µ), Ŝ′ = diag{ŝ′1, ŝ′2, ..., ŝ′N1}

with ŝ′i = d[s(µa)]/dµa|µa=vTi µ
, i = 1, 2, ...N1

Let W̃ = W − Ŵ the error between the real neural network weight and its estimate.

Thus equation (7.5.5) can be rewritten as

{ ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + W̃TΦ(V, µ) + δ

(7.5.8)

Introducing the augmented Lyapunov function

V ad =
1
2

(
ψ̃d

2
+ ĩ2d + W̃TF−1W̃

)
(7.5.9)

where F is an adaptation gain.

The adaptation law for the network weights can be derived to ensure that V ad is a Lyapunov

function as follows:

˙̂
W = −F

[
Φ(V, µ)̃id + 2G(Ŵ −W0)

]
(7.5.10)

where W0 is an initial estimated value of W and G is a positive design gain.

Proposition 7.5.1. For system (7.5.3), controller (7.5.6) and adaptive law (7.5.10), there exist a
compact set Ξ, and positive constants ci and given that all assumptions about the neural network
weights and reconstruction error are verified then all the signals in the closed-loop system are bounded
and the states remain in the compact set Ξ for all time.

Proof. Differentiating V ad with respect to the error dynamics in equation(7.5.8) yields

V̇ ad = −c1ψ̃d
2
− c3ĩd

2
+ W̃TF−1 ˙̃W + ĩd

[
W̃TΦ(V, µ) + δ

]
(7.5.11)

Using the fact that ˙̃W = − ˙̂
W , equation (7.5.11) can be written as

V̇ ad = −c1ψ̃d
2
− c3ĩd

2 − W̃TF−1 ˙̂
W + ĩd

[
W̃TΦ(V, µ) + δ

]
(7.5.12)

Substituting (7.5.10) in (7.5.12) yields

V̇ ad = −c1ψ̃d
2
− c3ĩd

2 − 2W̃TG(Ŵ −W0)− ĩdε(µ) (7.5.13)
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Using the fact that the neural networks weight vector is bounded, the derivative of the augmented
Lyapunov candidate can be upper bounded as

V̇ ad ≤ −c1ψ̃d
2
− c3ĩd

2
+ |ĩd|ε∗

−G‖W̃‖2 −G‖Ŵ −W0‖2 +G‖W −W0‖2
(7.5.14)

Putting U = c1ψ̃d
2

+G‖Ŵ −W0‖2 yields

V̇ ad ≤ −U − c3ĩd
2

+ |ĩd|ε∗
−G‖W̃‖2 +G‖W −W0‖2

(7.5.15)

Completing the squares using ε∗|ĩd| = − 1
2

(
ε∗ − |ĩd|

)2
+ 1

2ε
∗2 + 1

2 ĩd
2

, we get

V̇ ad ≤ −U − c3ĩd
2 −G‖W̃‖2 +G‖W −W0‖2

− 1
2

(
ε∗ − |ĩd|

)2
+ 1

2ε
∗2 + 1

2 ĩd
2 (7.5.16)

Further, it can be written as

V̇ ad ≤ −U − (c3 − 1
2 )ĩd

2 −G‖W̃‖2 − 1
2

(
ε∗ − |ĩd|

)2
+G‖W −W0‖2 + 1

2ε
∗2 (7.5.17)

The following conditions

|ĩd| >
√

2ε∗2+2G‖W−W0‖2
2c3−1

‖W̃‖2 >
√

ε∗2+G‖W−W0‖2
G

(7.5.18)

with c3 >
1
2 , and G > 0 ensures that V̇ ad ≤ −U . Which is negative definite in some domain defined

by conditions in (7.5.18).
Note that the resulting closed loop system is stable in a given region and the convergence rate of

ĩd and ψ̃d is adjusted by appropriate selection of the design gains in such a manner the ĩd dynamics
converge faster than those of ψ̃d. To determine the region of convergence we may use equation
(7.5.12), and the boundedness of δ.

Following [85], it can be shown that:

V̇ ad ≤ −c1ψ̃2
d − c4ĩ2d +

1
4λ1

δ2 (7.5.19)

where c4 = c3 − λ1 and λ1 is any positive constant such that c3 > λ1.
Using the fact that δ is upper bounded and defining X = [ψ̃d, ĩd]T , we conclude that V̇ ad is

negative definite whenever ‖X‖ ≥ δ

2
√
λ1 min(c1,c4)

.

It is then straightforward to get that V̇ ad is negative outside a compact set Ξ = {X : ‖X‖ ≤
‖δ‖∞

2
√
λ1 min(c1,c4)

}

The resulting controller looks like the controller proposed in [61] however here it is obtained

in a constructive manner for a triangular system without adding an SPR condition. It can be

implemented and we have a freedom in selecting the linear controller gains ci to achieve a desirable

performance.
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7.5.2 Hidden layer weight off-line selection

As stated earlier, we have many choices in designing the hidden layer weights depending on the

used type of neural network. In this note we will show a design alternative based on Radial Basis

Function Neural Networks (RBFNN), which are highly recommended for function approximation

due to their simple training.

An RBFNN is composed of two layers; a hidden layer contains a set of neurons with their

associated centers, the output of each neuron gives the distance between the input vector µ and its

center νi. The output ψ of the network is a linear combination of the outputs of the hidden layer

as.

ψ(µj) =
N1∑
i=1

wiϕij (7.5.20)

where ϕij = exp
(
‖µj−νi‖

ρ

)
is a Gaussian activation function of the distance between the input µj

and the ith center νi. Defining W =
[
w1 · · · wN1

]
, V =

[
ν1 · · · νN1

]
. The design of an

RBF network to approximate a given function consists of selecting V in such a way that we construct

a set of basis functions [52, 80] and W is adjusted online using an adaptive law to be illustrated

in the next subsection. Therefore we have an identification problem based on model (7.5.20) which

includes the selection of N1 model terms V =
[
ν1 · · · νN1

]
from a full model set of M > N1

terms U =
[
µ1 · · · µM

]
(typically hundreds or even thousands of terms) while µi is defined

earlier as a tapped delay line of possible values of the input/output and the estimate of z.

We construct the regression matrix ΦL corresponding to the set of the input vectors UL a subset

of the starting set of centers U .

ΦL =


ϕ11 · · · ϕ1L

...
. . .

...

ϕL1 · · · ϕLL

 . (7.5.21)

Notice that this matrix is symmetric and all the diagonal elements are ones. It has been shown

that the orthogonal algorithm can be employed in selecting the optimal model structure V and to

estimate the parameters simultaneously [49]. The orthogonal term selection is formulated using the

error reduction ratio vector ERRL =
[
erri · · · errL

]
defined by:

ERRL =
WTΦ2

LW

ΨTΨ
(7.5.22)
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To find N1 optimal model terms V a stepwise approach is applied to the full model set U . At

each step, the model term with the maximum errj value from all of the model terms excluding the

previously selected terms is chosen. The selection is terminated at the N1th step where a desired

tolerated error tol is reached.

1−
N1∑
k=1

errk < tol (7.5.23)

7.6 Simulation Results

In this section we will investigate the performance of the proposed control strategy to an induction

motor. Simulations have been performed with the following induction motor parameters: 1.5kW

nominal rate power; 1430rpm nominal angular speed; two pairs pole; 220V nominal voltage; 6.1A

nominal current.

The other parameters of the machine under investigation are summarized in Table 7.1.

Table 7.1: Induction Machine Simulation Parameters

Parameter Value
Lr 94 mH
Ls 105 mH
Rs 1.47 Ω
Rr 0.79 Ω
p 2
J 0.0077 Kg m2

f 0.0029 Kg m2/s

The tracking performance of speed and flux is shown in the following figures: 1- The ideal case

(exact model fig. 7.3), 2- Figures (7.4,7.6) show the poor performance in the presence of uncertainty

(+/− 50%) of parameter variation without neural network augmentation.

Figures (7.5,7.7) show the tracking performance after neural network augmentation, It is clear

that the neural network has compensated for the unknown terms.

Simulations show that this method is robust for induction machine parameter variation.
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Figure 7.3: Simulation Without Uncertainty but unknown load.

7.7 Conclusion

A new robust adaptive nonlinear controller is proposed to address the tracking problem for a two

phase induction machine based on a modified version of FOC. In this scheme, the stability is ensured

for the closed loop system and all the errors (tracking and neural network weights) tend asymptot-

ically to zero. The RBF center selection is done using orthogonal least squares structure selection

method to minimize the number of parameters of the resulting controller. Finally simulations are

presents to highlight the achieved performance although we have assumed a partly known model of

the system to be controlled.
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Figure 7.4: Simulation with +50 % uncertainty but without ANN.
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Figure 7.5: Simulation with +50% uncertainty with ANN
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Figure 7.6: Simulation with −50% uncertainty but without ANN
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Figure 7.7: Simulation with −50% uncertainty with ANN



Chapter 8

Conclusions and Future Work

In this thesis we have presented a new approach based on combining two existing tools, Artificial

Intelligence as Adaptive function approximators and Backstepping feedback control method to solve

the problem for a class of nonlinear uncertain systems. First we have highlighted the mathematical

definitions and tools used for nonlinear systems analysis and some robustness related issues to ad-

dress nonlinear uncertain systems. After the presentation of some existing methods based on robust

and adaptive nonlinear control theory to overcome systems with uncertainties, we have proposed

a new adaptive control design methodology that combines the backstepping approach in addition

to NN-based adaptive elements for nonlinear uncertain systems that belong to a class of feedback

linearizable systems. Its stability is proved through Augmented Lyapunov Function. The Proposed

control methodology is validated experimentally through an application to an antilock braking lab-

oratory test bed which is nonlinear and uncertain in which the friction forces are poorly modeled

and vary according to road conditions.

As a second Application we have tested the developed approach on an electromechanical device

that is MIMO, nonlinear system, operating on extremely nonlinear dynamic regimes where the

uncertainty is present due to the varying load and resistance parametric variations due to high

temperature and unknown torque.

A comparison study is performed on the performance of a classical Field oriented control design

and two different classes of neural networks: linearly parameterized Radial Basis Functional (RBF)

NN and nonlinearly parameterized Single Hidden Layer (SHL) NN for the speed tracking problem

for the induction Machine.

130
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As a future study we recommend the integration of neural networks in the design of state observers

to achieve output feedback and to reduce the cost of the induction machine control systems. Another

issue which will be an interesting topic to be discussed and studied in detail is the optimization of

the structure of the artificial intelligent element used for nonlinear function approximation based

either on genetic Algorithms or other technics that achieve global optimum.

The validation of the new proposed controller for the induction machine by an experimental

study may open other problems that are not highlighted through simulation study. The extension

of the developed method to other electromechanical devices is also a good research area.
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