RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

des Structures

Département Génie Civil Laboratoire Génie Sismique et Dynamique des Structures Mémoire en vue de

l'obtention du diplôme de Master en Génie Civil

Performance sismique d'un pont-dalle équipé de dispositifs d'isolation parasismiques nonlinéaires

Zakaria Mohamed TOUMI

Sous la direction de M. B. TILIOUINE Professeur ENP M. M. OUANANI Docteur U.Djelfa

Présenté et soutenu publiquement le 16/06/2016

Composition du Jury :

Président	М.	M.HAMMOUTENE	Professeur	ENP
Rapporteurs	М. М.	B.TILIOUINE M.OUANANI	Professeur Docteur	ENP U.Djelfa
Examinateurs	М. М	M.DEMIDEM	MAA	ENP
	IVI.	M. IAMAHLUULI	Doctorant	U.CHLEF

ENP (2016)

Remerciements

Au terme de ce travail, Nous tenons à remercier Dieu, le Tout Puissant, de nous avoir donné le courage, la volonté et la patience pour achever le présent PFE.

Notre reconnaissance, va principalement à notre Directeur de mémoire, le Professeur Boualem TILIOUINE qui nous a tant aidés et instruits par son savoir, son dévouement et ses précieux conseils. Qu'il trouve ici l'expression de notre profonde gratitude.

Nous tenons également à remercier notre Co-directeur M. Mouloud OUANANI, pour sa disponibilité et son aide fournies durant notre travail.

Nous remercions infiniment nos chers parents pour leur soutien indéfectible tout au long de notre formation et pour leurs multiples encouragements tout au long de notre vie.

Nous tenons à remercier par avance les membres du jury, qui nous font l'honneur d'évaluer notre travail.

Enfin, on tient à exprimer toute notre reconnaissance aux personnes qui ont contribué de près ou de loin à faire aboutir ce travail.

Dédicaces

Je dédie ce travail aux deux personnes qui ont la place la plus particulière dans mon cœur...

Vous avez tout sacrifié pour moi n'épargnant ni santé ni efforts. Vous m'avez donné un magnifique modèle de labeur et de persévérance.

Je suis redevable d'une éducation dont je suis fier.

Merci Maman,... Merci Papa...

Mon Eternelle Reconnaissance à Ma Grand-Mère que Dieu t'accueille dans son vaste paradis, repose en paix où tu es, et Vis à jamais dans mon cœur.

A ma sœur source d'amour, de support, et de générosité

A Houda avec qui j'ai partagé beaucoup

Et à mon collègue Yanis pour son dévouement, sa minutie et son stress positif

Zakaria

الخسائر المسجلة خلال الهزات الأرضية القوية، بينت درجة حساسية هياكل الجسور للزلازل و ضرورة تطوير استراتيجية تحليلية و تصميمية لحماية أفضل لهذا الصنف من الهياكل. لتحقيق هذا الهدف يمكن تركيب عوازل زلزالية و أجهزة تخميد. يقترح هذا العمل إستراتيجيتين تصميمية مضادة للزلازل لجسر بلاطي واقع في ولاية مسيلة، الغاية منها هو التحكم في إجابة الجسر للتأثير الزلزالي. في هذا الإطار أقيمت دراسات زمنية لا خطية مبنية خاصة على نظام الـ FNA ، لغرض فص تأثير تخميد العزل للإزاحة النسبية للبلاطة و القوى المؤثرة على مستوى الأعمدة، من ثم أجريت دراسة متغيرة العوامل حتى يتمكن لنا من إختيار العوامل الناسبة للتصميم . من جهة و زيادة القوى مدفيديف الأعمدة من جهة أخرى، أما في حالة تزويد الجسر الأصلي بأجهزة تخميد فسجل انخفاض معتبر في إزاحات و تسارعات البلاطة، قوى القص و كذا العزوم المؤثرة على قواعد الدعامات . من جهة و زيادة القوى مدفيديف الأعمدة من جهة أخرى، أما في حالة تزويد الجسر الأصلي بأجهزة على قواعد الدعامات . لما من جهة و زيادة القوى مدفيديف الأعمدة من جهة أخرى، أما في حالة تزويد الجسر الأصلي بأجهزة على قواعد الدعامات.

ABSTRACT

The damage observed during strong earthquakes clearly shows how vulnerable bridge structures are and highlights the need to develop methodologies of analysis and desing in order to better protect them. This goal can be reached by installing seismic isolators and dampening devices. This paper proposes two seismic design methodologies that aim to reduce the response of a bridge to seismic activity applied to a slab bridge located in the Wilaya of M'Sila. Firstly, dynamic nonlinear time history analysis based on the FNA algorithm were carreid out in order to observe the effect of isolation dampening on the relative displacement of the deck, as well as the strains on the bases of the piers. Following that, a parametric study of the bridge fitted with Lead Rubber Bearing isolation devices was carried out in order to choose the ideal design parameters.

A cross check of the results shows that, in the case of LRB isolation, significant reductions on the displacment of the deck were recorded while in return, the strain on the piers bases increased. However introducing dampers to the reference model resulted in considerable reductions with regards to the displacement, deck accelerations, shear forces and moments acting on the pier bases.

Keywords : *Base isolation, paraseismic devices, Lead Rubber Bearing ,viscous damper, nonlinear time history analysis, slab bridge.*

Résumé

Les dégâts importants enregistrés lors des séismes de forte intensité, ont clairement montré le degré de vulnérabilité des structures de ponts et la nécessité de développer des stratégies d'analyse et de conception, en vue de mieux protéger cette catégorie particulière de structures. Un tel objectif peut être réalisé à l'aide de l'installation d'isolateurs parasismiques et de dispositifs amortisseurs. Le présent travail, propose deux stratégies de conception parasismique dont la finalité est de réduire la réponse sismique d'un pont-dalle implanté à la Wilaya de M'sila. Dans ce cadre, des analyses dynamiques non-linéaires temporelles basées notamment sur l'algorithme FNA, ont été effectuées en vue d'examiner le comportement dynamique de la structure. Une étude paramétrique du pont équipé de dispositifs d'isolation de type " Lead Rubber Bearing" a été également effectuée afin de choisir les paramètres de conception appropriés.

L'examen des résultats montre que dans le cas d'isolation par des isolateurs à noyau de plomb, des réductions sensibles sur les déplacements du tablier sont enregistrées mais toutefois accompagnés d'une augmentation des efforts à la base des piles. Par ailleurs, l'introduction d'amortisseurs aux culées du modèle de référence a permis de noter des diminutions considérables sur les déplacements et les accélérations du tablier, les efforts tranchants et les moments de flexion agissant à la base des piles.

Mots-clés : Isolation sismique, dispositifs parasismiques, analyse dynamique temporelle non-linéaire, LRB, amortisseurs visqueux, pont dalle.

Table des matières

In	trodu	ction	11
1	Con	ception des Isolateurs sismiques de type LRB	13
	1.1	Conception des Isolateurs sismiques de type LRB	13
	1.2	Vérification des différents problèmes d'instabilité	18
2	Inve	estigation numérique	21
	2.1	Introduction	21
	2.2	Présentation de l'ouvrage	21
	2.3	Modélisation du modèle 3D de référence	23
	2.4	Outils de l'analyse dynamique temporelle	24
	2.5	Les modèles d'isolation sismique	30
		2.5.1 Modèle complètement isolé par des « LRB »	30
		2.5.2 Modèle équipé d'amortisseurs externes	39
3	Etu	de paramétrique sur les propriétés de l'isolateur de type « LRB »	47
	3.1	Principe	47
	3.2	Résultats et interprétations	47
Co	onclus	sion	49
Bi	bliog	raphie	50
Ar	inexe		51
A	Acc	élérogrammes générés à partir du spectre réglementaire du « RPOA »	51

Liste des tableaux

1.1	Nuances et propriétés des élastomères	16
2.1	Résultats de la réponse du modéle de référence	29
2.2	Détermination des paramétres du LRB	30
2.3	Comparaison des déplacements et des vitesses entre le modéle isolé par « LRB	
	» et par « NRB »	35
2.4	Comparaison de l'effort tranchant à la base de la pile entre le modéle isolé par	
	« LRB » et par « NRB »	36
2.5	Distorsions maximales de l'isolateur « LRB »	37
2.6	Comparaison des efforts à la base de la pile entre les modéles avec et sans	
	amortisseurs	43
2.7	Comparaison des déplacements, vitesses et accélérations entre les modéles avec	
	et sans amortisseurs	44
3.1	Paramètres des LRB pour différents coefficients d'amortissement	47

Table des figures

1.1	Paramètres caractéristiques du LRB	14
1.2	Programme Matlab pour un dimensionnement simplifié des isolateurs sismiques	
	LRB	15
1.3	Etapes de dimensionnement du LRB	20
2.1	Details de la modélisation	22
2.2	Représentation 1-D	23
2.3	Modèle 3-D du pont de référence	24
2.4	Accélérogramme généré à partir du spectre élastique horizontal du RPOA pour	
	le sol 2	25
2.5	Fenêtre de l'analyse dynamique temporelle par intégration directe	27
2.6	Fenêtre de l'analyse dynamique temporelle par superposition modale	28
2.7	Modèle complètement isolé par des « LRB »	30
2.8	Modélisation des isolateurs sismiques de type « LRB » au niveau des culées	31
2.9	Modélisation des isolateurs sismiques de type « LRB » au niveau des piles	32
2.10	Détail de la modélisation des isolateurs sismiques « LRB »	33
2.11	Dimension de l'isolateur« LRB »	34
2.12	Comparaison des déplacements en fonction du temps du modèle isolé par «	
	NRB » et celui par « LRB »	38
2.13	Comparaison des vitesses en fonction du temps du modèle isolé par « NRB » et	
	celui par « LRB »	38
2.14	Relation force-déplacement de l'isolateur « LRB »	39
2.15	Modèle équipé d'amortisseurs externes	39
2.16	Détails de modélisation de l'amortisseur visqueux pure	41
2.17	Modélisation des amortisseurs visqueux pures sur SAP 2000	42
2.18	Comparaison des déplacements en fonction du temps entre le modèle isolé par	
	« NRB » avec et sans amortisseurs supplémentaires	45
2.19	Comparaison des vitesses en fonction du temps entre le modèle isolé par « NRB	
	» avec et sans amortisseurs supplémentaires	45
2.20	Comparaison des accélérations en fonction du temps entre le modèle isolé par	
	« NRB » avec et sans amortisseurs supplémentaires	46
2.21	Loi de comportement de l'amortisseur visqueux pure de type « CV^{α} »	46
3.1	la relation force-déplacement des « LRB » de taux d'amortissement différents .	49

Table des notations

A_{red}	: section réduite
A_0	: section efficace
A_1	: section effective
A_p	: l'aire du noyau de plomb
A_{sf}	: section minimale
C_{eff}	: coeffcient d'amortissement effectif
D_{cible}	: déplacement cible
D_y	: déplacement élastique
E_D	: énergie dissipé par cycle
E_c	: module de Young équivalent
F_d	: force d'amortissement
F_s	: force de rappel
F_y	: limite élastique de la plaque d'acier
K_H	: rigidité horizontale
K_V	: rigidité verticale
K_e	: rigidité élastique
K_{eff}	: rigidité effective du systéme d'isolation
K_p	: rigidité plastique
K_r	: module élastique
P_{DL+LL}	: chargement total
S_d	: pseudo-déplacement
S_e	: pseudo accélération
S_v	: pseudo-vitesse
T_D	: période cible
d_p	: diamétre du noyau de plomb
f_{py}	: limite élastique du noyau de plomb
r_N	: vecteur force des éléments non-linéaire
t_r	: hauteur de l'élastomère
t_s	: épaisseur d'une frette d'acier
u_g	: déplacement horizontal du sol
$\delta_{rol-out}$: déplacement admissible de non-glissement
ξ_{eff}	: taux d'amortissement effectif
σ_c	: contrainte axiale admissible

ε_b	: élongation au repos de l'élastomère
ε_c	: déformation due à l'effort axiale
d	: diamètre de l'isolateur
HDRB	: High damping rubber bearing
LRB	: Lead rubber bearing
NRB	:Naturel rubber bearing
A	: l'aire totale de l'élastomère
Acc	: accélérogramme
В	: largeur de l'élastomère
C.I	: complètement isolé
$C.I + CV^{\alpha}$: complètement isolé équipé d'amortisseurs externes
C	: matrice d'amortissement
Dc	: découplage
E	: module de Young
E_c	: module de Young équivalent
G	: module de cisaillement
K	: matrice de rigidité élastique
L	: longeur de l'élastomère
M	: matrice masse diagonale
N	: nombre de couche d'élastomère
Q	: résistance caractéristique
S	: coefficient de forme
g	: accélération de la pesanteur
k	: coefficient modificateur
m	: masse qui revient à l'isolateur
r	: vecteur force appliqué
t, t_i, t_{i+1}	: temps, incrément
t	: épaisseur d'une couche d'élastomère
lpha,eta	: coefficients de Newmark
γ_{max}	: distorsion maximale
ξ	:taux d'amortissement

Introduction

Les Dommages très sévères constatés après les tremblements de terre de Norhridge (Californie, 1994) et de Kobé (Japon, 1995) et la mise hors service de plusieurs structures et ce malgré les ajustements considérables apportés dans les normes de conception de ces ouvrages dans les années 1980, ont poussé l'incorporation des technologies innovatrices pour la première fois en Amérique du Nord dans le domaine de la construction parasismique.

L'isolation sismique à la base consiste à découpler le mouvement du sol du mouvement de la structure dans le but de réduire les forces transmises à cette dernière. En outre, en raison de la vulnérabilité sismique de notre pays, le développement et l'intégration des concepts de ces nouvelles technologies deviennent une nécessité pour la protection des ponts qui représentent des maillons indispensables pour les liaisons entre les différentes régions.

L'approche conventionnelle dans la conception parasismique est basée sur la combinaison de la résistance avec la ductilité pour pallier aux sollicitations sismiques, c'est pour cela que l'ingénieur devra s'appuyer sur la ductilité fournie par les matériaux afin d'éviter les catastrophes et garantir la stabilité de la structure devant de graves séismes, cependant cette méthode possède l'inconvénient de provoquer des déformations plastiques irréversibles à frais de réparation non négligeables à cause du niveau élevé de l'énergie générée durant un mouvement sismique. L'autre approche consiste à utiliser des technologies parasismiques comme l'élastomère fretté ou tout autre système se caractérisant par une raideur k , avec l'incorporation ou pas des dispositifs de dissipation d'énergie qui ont pour objectif principal l'absorption d'une partie importante de l'énergie sismique et la diminution autant que possible , des dégâts dans les éléments structuraux .

Dans la présente étude, on propose d'étudier la réponse dynamique temporelle de deux modèles d'isolation pour un pont dalle situé à Msila.

Chapitre 1

Conception des Isolateurs sismiques de type LRB

1.1 Conception des Isolateurs sismiques de type LRB

La conception de l'isolateur LRB est basée selon (Naeim et Kelly, 1999) sur l'utilisation de la rigidité post élastique et de l'amortissement hystérétique du noyau de plomb. Ce comportement peut être idéalisé par une relation bilinéaire de type force-déplacement et caractérisé par les paramètres suivants :

— Une rigidité élastique K_e très importante due à la présence du noyau en plomb qui est approximativement égale à 10 fois la rigidité post élastique K_p .[1]

$$\frac{K_e}{K_p} = 10\tag{1.1}$$

— La rigidité effective :

$$K_{eff} = \frac{(4m\pi^2)}{T_D^2}$$
(1.2)

Avec :

m : La masse qui revient sur l'isolateur.

- T_D : la période cible d'isolation.
- Le déplacement cible D_{cible} déduit du spectre de réponse élastique à la période d'isolation équivalente :

$$D_{cible} = \frac{S_a T_D^2}{4\pi^2} \tag{1.3}$$

Où :
$$S_a$$
 : Pseudo-accélération déduite du spectre de réponse élastique.

- L'énergie de dissipation par cycle

$$E_D = 2\pi K_{eff} D_{cible}^2 \xi_{eff} \tag{1.4}$$

Avec :

 ξ_{eff} : Amortissement effectif du dispositif.

FIGURE 1.1 – Paramètres caractéristiques du LRB

La détermination des paramètres du « Lead Rubber Bearing » cités ci-dessus peut se faire selon l'algorithme proposé par Naeim et Kelly, en suivant les étapes suivantes :

- 1. Le déplacement élastique D_y correspondant à la force d'écoulement F_y est supposé nul dans un premier temps.
- 2. La résistance caractéristique Q est calculée par la relation suivante :

$$Q = \frac{E_D}{4(D_{cible} - D_y)} \tag{1.5}$$

3. L'approximation de Q est utilisée par la suite pour calculer la rigidité post-élastique K_p :

$$K_p = K_{eff} - \frac{Q}{D_{cible}} \tag{1.6}$$

4. La rigidité élastique est déduite du rapport

$$\frac{K_e}{K_p} = 10$$

5. Le déplacement élastique D_y est recalculé jusqu'à sa convergence :

$$D_y = \frac{Q}{K_e - K_p} \tag{1.7}$$

Un programme a été développé sous Matlab en vue d'établir un dimensionnement simplifié des isolateurs sismiques de type LRB selon la méthode exposée ci-dessus.

Les données à introduire sont :

- La période cible d'isolation $T_D(s)$
- La pseudo-accélération du spectre de réponse élastique S_a selon la zone sismique, l'importance du pont et la catégorie du sol.
- La masse « m » qui revient à l'isolateur en tonnes (t)
- Le taux d'amortissement ξ de l'isolateur sismique.

Les paramètres de sortie sont :

- La rigidité effective K_{eff}
- Le déplacement cible D_{cible}
- La résistance caractéristique Q
- La rigidité post élastique K_p
- La rigidité élastique K_e
- Le déplacement élastique D_y

```
td=input('donner td')
Sa=input('donner Sa')
xi=input('donner xi')
m=input('donner la masse')
keff=4*m*pi^2/td^2
D=Sa*td^2/(4*pi^2)
wd=2*pi*D^2*keff*xi;
Dy=0;
for i=1:20
Q=wd/(4*(D-Dy))
Kp=keff-Q/D
Ke=10*Kp
Dy=Q/(K1-Kp)
end
```

FIGURE 1.2 – Programme Matlab pour un dimensionnement simplifié des isolateurs sismiques LRB.

L'isolateur sismique a pour fonction de découpler la structure considérée, toutefois il doit être judicieusement dimensionné afin de résister aux charges statiques et dynamiques auxquelles il sera soumis durant sa durée de vie.

Pour cela, nous exposerons dans ce qui suit une méthode de dimensionnement proposée par « Jong-Dar Yau » qui a pour but de conférer aux isolateurs sismiques de type « Lead Rubber bearing » un dimensionnement adéquat, apte à résister aux différents chargements. Pour commencer, les propriétés des matériaux, à savoir le module de Young E, le module cisaillement G et le facteur de modification k doivent être sélectionnés de la table 1.1 ci-dessous.[2]

Rubber Hardness	Young's Modulus	Shear Modulus G	Modified Factor
IRHD ± 2	$E (N/cm^2)$	(N/cm^2)	k
30	92	30	0.93
35	118	37	0.89
40	150	45	0.85
45	180	54	0.8
50	220	64	0.73
55	325	81	0.64
60	445	106	0.57
65	585	137	0.54
70	735	173	0.53
75	940	222	0.52

TABLE 1.1 – Nuances et propriétés des élastomères

La hauteur totale des couches d'élastomère (t_r) est définit par le rapport entre le déplacement cible D_{cible} et la distorsion maximale γ_{max} de l'isolateur.

$$t_r = \frac{D_{cible}}{\gamma_{max}} \tag{1.8}$$

L'aire du noyau de plomb (A_p) est déterminée par le rapport suivant :

$$A_p = \frac{Q}{f_{py}} \tag{1.9}$$

Où :

 f_{py} : la limite élastique du noyau de plomb est égale à $10MN/m^2$

Pour déterminer l'aire totale des élastomères (A) et l'épaisseur t d'une seule couche

1. Calculer le facteur de forme S de l'équation suivante :

$$\frac{K_v}{K_h} = \frac{\frac{E_c A}{t_r}}{\frac{GA}{t_r}} = \frac{E_c}{G} = \frac{E(1+2kS^2)}{G} \ge 400$$
(1.10)

Où

- E_c : le module de Young équivalent de l'association entre frettes d'acier et élastomère
- K_v : La rigidité verticale de l'isolateur
- K_h : La rigidité horizantale de l'isolateur
- 2. Calculer la section efficace A_0 de l'isolateur, en se basant sur la contrainte axiale admissible σ_c et cela sous le cas d'un chargement vertical $P_{(DL+LL)}$

$$\sigma_c = \frac{P_{DL+LL}}{A_0} \le 80 Kgf/cm^2 = 7.84 MN/m^2 \tag{1.11}$$

 $P_{(DL+LL)}$: Est la charge totale en KN qui revient à l'isolateur

3. Déterminer la section effective A_1 de l'isolateur, à partir des déformations de cisaillement induites par les charges verticales :

$$\gamma_c \Big|_{DL+LL} = 6S \frac{P_{DL+LL}}{E_c \times A_1} \le \frac{\varepsilon_b}{3}$$
(1.12)

Où : ε_b : représente l'élongation de l'élastomère au repos sélectionnée selon le guide de spécification « American Association of State Highway and Transportation officials [1983] »

S : le coefficient de forme

4. Déterminer la section minimale A_{sf} à la rupture de l'isolateur par effort de cisaillement

$$A_{sf} = \frac{K_e t_r}{G} \tag{1.13}$$

Avec K_r qui représente le module élastique de l'isolateur

$$K_p = K_r \left(1 + 12 \frac{A_p}{A_0} \right) \tag{1.14}$$

Et K_p qui est la rigidité post élastique du LRB dans la direction horizontale :

$$K_p = K_{eff} - \frac{Q}{D_{cible}}$$

 A_{sf} est utilisée pour déterminer les dimensions de l'isolateur, pour en déduire à travers les relations suivantes la section réduite A_{re} qui représentera par la suite la section effective A_2 :

 $A_{re} = L(B - D_{cible})$ pour les appareils rectangulaires

$$A_{re} = \frac{d^2}{4}(\beta - \sin\beta)$$
 Pour les appareils circulaires

$$\beta = 2\cos^{-1}\left(\frac{D_{cible}}{d}\right)$$

Avec :

- D_{cible} : le déplacement cible horizontal
- B, L : dimensions en plan de l'isolateur rectangulaire avec ($B \le L$)

d : diamètre de l'isolateur circulaire

5. La section de l'isolateur (A) est alors le maximum des 3 sections A_0 , A_1 et A_2 calculées précédemment

$$A = max(A_0, A_1, A_2)$$

6. Choisir l'épaisseur (t) des couches d'élastomère à partir du coefficient de forme S:

 $S = \frac{LB}{2 \times (L+B)t}$ pour un appareil rectangulaire

 $S = \frac{d}{4t}$ pour un appareil circulaire

Où :

- t : épaisseur d'une couche d'élastomère
- 7. utiliser $t_r = N \times t$ pour determiner le nombre de couches d'élastomère N
- 8. Epaisseur des frettes en acier t_s

$$t_s = \frac{2(t_i + t_{i+1})P_{DL+LL}}{A_{re}F_s} \ge 2mm$$
(1.15)

Avec :

 t_i, t_{i+1} : représentent l'épaisseur de l'élastomère au niveau supérieur et inférieur de la

plaque d'acier $F_s: 0.6F_y$ $F_y:$ Limite élastique de la plaque d'acier (= 247.7MN/m²) $A_{red}:$ La surface réduite de l'isolateur sous un déplacement horizontal

1.2 Vérification des différents problèmes d'instabilité

Après avoir déterminé les dimensions en plan et la hauteur de notre isolateur, il est important de vérifier la stabilité de notre appareil vis-à-vis des différents problèmes d'instabilité :

1. la condition de la contrainte au cisaillement suivante doit être satisfaite :

$$\gamma_{c,DL+LL} = 6S\varepsilon_c = 6S\frac{P_{DL+LL}}{E_cA} \le \frac{\varepsilon_b}{3}$$
(1.16)

Où tous les paramètres ont été définis précédemment dans l'Equation (1.12)

2. Condition de stabilité au flambement : pour éviter que l'appareil d'appui ne devienne instable, la contrainte de compression moyenne σ_c de l'appareil d'appui doit satisfaire la condition suivante :

$$\sigma_c = \frac{P}{A} < \sigma_{cr} = \frac{GSL}{2.5t_r} \tag{1.17}$$

Où L est la valeur de la dimension de l'appareil dans le cas d'une section rectangulaire (on prendra le diamètre d dans le cas d'une section circulaire)

3. Capacité de diffusion de l'énergie : le corps en Plomb doit être dimensionné convenablement afin de lui permettre une bonne dissipation d'énergie, pour cela ses dimensions doivent satisfaire la condition suivante :

$$1.25 \le \frac{H}{d} \le 5.0$$
 (1.18)

Où

H = La hauteur du dispositif

- d =diamétre du noyau de plomb
- 4. Condition de non-glissement : le déplacement D de l'appareil d'appui sous le chargement d'un tremblement de terre doit satisfaire la condition suivante :

$$D \le \delta_{(roll-out)} = \left(\frac{P_{DL+LL} \times L}{P_{DL+LL} + K_p \times h}\right)$$
(1.19)

Où K_p représente la rigidité plastique de l'appareil d'appui dans la direction horizontale

L'organigramme qui résume les étapes de dimensionnement est élaboré ci-après :

FIGURE 1.3 – Etapes de dimensionnement du LRB

Chapitre 2

Investigation numérique

2.1 Introduction

Dans cette partie, une application sur un pont dalle sera traitée selon le règlement algérien « RPOA ». L'analyse dynamique sera établie sur deux modèles par la méthode de superposition modale (FNA). L'excitation dynamique introduite sous forme d'accélérogrammes artificiels, est générée à partir du spectre de réponse élastique correspondant aux données sismiques et géologiques du pont.

Le premier modèle sera totalement isolé par la mise en place d'isolateurs sismiques de type « LRB » au niveau des piles et des culées, le deuxième quant à lui sera équipé d'amortisseurs externes visqueux purs de type CV^{α} .

2.2 Présentation de l'ouvrage

L'exemple que nous allons traiter, considère un type de pont assez répandu. Il s'agit d'un pont dalle comportant 3 travées égales de 25m, reposant sur deux piles de section (1.5×6) , de 8m de hauteur.

Le tablier repose sur 16 appareils d'appui en élastomère fretté « NRB », de $(800 \times 800 \times 150)$ mm dotés d'un module de cisaillement de 1.2 MPA (4 sur chaque pile et chaque culée).

Le pont est implanté à M'sila : zone sismique II.a, catégorie d'importance 1, sol de catégorie (S2).

La figure 2.1 résume les principales caractéristiques du pont.

FIGURE 2.1 – Details de la modélisation

-Béton :

$$f_{ck} = 35MPa$$
 $\rho = 2.5t.m^{-3}$ $E = 33GPa$

-Masse du tablier :

$$M_{tablier} = 3936 tonnes$$

-La rigidité du système d'appui : Les appuis sont supposés des éléments plaques, la rigidité est sous la forme suivante :

$$K_{pile} = \frac{3EI}{L^3} \times \frac{1}{(1+\phi)}$$

avec :

$$-\phi = \frac{3EI}{L^2KGA}$$

- I : Inertie de la section de la pile

- L : Hauteur de la pile

$$K_{neoprenne} = 5120KN/m$$
$$K_{appui} = \frac{1}{\frac{1}{K_{pile}} + \frac{e}{4 \times a \times b \times G}}$$
$$K_{systeme} = \frac{2}{\frac{1}{K_{pile}} + \frac{e}{4 \times a \times b \times G}} + 8 \times 5120$$

- -

$$K_{systeme} = 79501 K N.m^{-1}$$
$$\Rightarrow T = 2.\pi . \sqrt{\frac{M_{vibrante}}{K_{systme}}}$$
$$\Rightarrow T = 1,39s$$

La même période fondamentale est obtenue par le modèle 1D :

FIGURE 2.2 – Représentation 1-D

2.3 Modélisation du modèle 3D de référence

En vue d'illustrer le comportement sismique 3-D, un modèle tridimensionnel du pont de référence a été développé à l'aide du logiciel de calcul « SAP 2000 ». La figure suivante illustre le modèle 3D :

FIGURE 2.3 – Modèle 3-D du pont de référence

L'analyse modale du modèle de référence a permis d'obtenir une période fondamentale de 1,40 secondes dans le sens longitudinal.

2.4 Outils de l'analyse dynamique temporelle

L'analyse dynamique temporelle a été conduite par l'introduction d'accélérogrammes artificiels générés à partir du spectre de réponse élastique correspondant aux données sismiques et géologiques du pont.

L'étude a été menée en considérant un échantillon de 20 accélérogrammes, chaque accélérogramme est appliqué dans le sens longitudinal à 100%, alors que dans le sens latéral, il sera appliqué à hauteur de 30%. Ces pourcentages sont recommandés par les différents règlements dans le cas de l'analyse par accélérogramme artificiel. Si on avait considéré un séisme réel donné par ses 2 composantes Nord-sud et Est-Ouest, nous aurions pris ces deux composantes sans prendre en compte aucun pourcentage vu qu'il s'agit d'enregistrement réel.

FIGURE 2.4 – Accélérogramme généré à partir du spectre élastique horizontal du RPOA pour le sol 2

En présence d'un comportement non-linéaire provenant dans notre cas des isolateurs sismiques et des amortisseurs, l'analyse doit se faire par l'une des méthodes suivante qui confèrent des résultats exacts.

1. Analyse dynamique temporelle non-linéaire par intégration pas-à-pas sous SAP 2000 « Méthode de Newmark » :

La méthode de Newmark consiste en une intégration pas-à-pas à travers une discrétisation de l'intervalle d'excitation en une suite de courts incréments de temps Δt .

Le logiciel « SAP 2000 » nous propose 5 types de schémas d'intégration :

- La méthode de Newmark,
- La méthode de Wilson,
- La méthode de collocation,
- La méthode de Hiber Hughes-Taylor,
- La méthode de Chung and Hulbert.

Chacune de ces méthodes se caractérise par des paramètres permettant de maîtriser la convergence de la méthode, il convient de les choisir soigneusement de telle sorte à assurer la convergence de la méthode et d'atteindre le résultat final.

En ce qui concerne la méthode de Newmark, les coefficients γ et β sont respectivement égaux à 0.5 et 0.25 afin d'assurer une convergence inconditionnellement stable.

Load Case Data - Nonlinear Direct Integration History	
Load Case Name	
ACC_1 Set Def Name Modify/Show Time History Design	
Initial Conditions Analysis Type Time History Type	
Zero Initial Conditions - Start from Unstressed State C Linear C Modal	
C Continue from State at End of Nonlinear Case	
Important Note: Loads from this previous case are included in the current case	
Modal Load Case	
Use Modes from Case	
Loads Applied	
Load Type Load Name Function Scale Factor	
Accel U2 ACC H_1 0.3Add	
Modify	
- Delete	
Show Advanced Load Parameters	
Time Step Data	
Number of Output Time Steps 2000 Transient	
Output Time Step Size 0.01 C Periodic	
_ Other Parameters	
Damping Proportional Damping Modifu/Show	
Time Integration Hilber-Hughes-Taylor Modify/Show	
Nonlinear Parameters Default Modify/Show Cancel	
Time Integration Param	leters
Method	
Newmark	Gamma 0,5
	Beta 0.25
C Marine	Thete
• wilson	
Collocation	Gamma
	Beta
	Theta
O Hilber - Hughe	s-Taylor Gamma
	Beta
	Alpha
C Church and Hu	ilbert Gamma
	Pata
	Alpha
	Alpha-m
	IK Cancel

FIGURE 2.5 – Fenêtre de l'analyse dynamique temporelle par intégration directe

2. Analyse dynamique temporelle non-linéaire par superposition modale (FNA) sous SAP 2000

La méthode du « Fast Non linear Analyses » est une approche extrêmement efficace pour déterminer la réponse de la structure vis-à-vis d'une excitation sismique introduite sous forme d'accélérogramme. Elle est utilisée lorsque les non linéarités sont concentrées comme dans notre cas au niveau des isolateurs sismiques et des amortisseurs. Elle procure des résultats d'une manière beaucoup plus rapide que la méthode d'intégration pas-à-pas.

A titre de comparaison, une analyse par superposition modale de notre structure par l'application d'un accélérogramme dans les trois sens, prend 7 secondes, alors que la même procédure effectuée par la méthode de Newmark dure environs 4 minutes et 33 secondes.

Load Case Name	Set Def Name	Notes Modify/Show	Load Case Type Time History	▼ Design
Initial Conditions • Zero Initial Conditions	Start from Unstresse	d State	Analysis Type	Time History Type Modal
C Continue from State at Important Note: Load curre	End of Modal History s from this previous ca nt case	ase are included in the	Time History Motion	C Direct Integration
Modal Load Case Use Modes from Case		MODAL	C Periodic	
Accel U1 Accel U2 Accel U3	ACC H_1 ACC H_1 ACC H_1 ACC V_1	1. 0.3 0.3 0.3 	Add Modify Delete	
Time Step Data Number of Output Tim Output Time Step Size	ie Steps	200	0	
Other Parameters Modal Damping	Proportional	Damping M	odify/Show	ОК

FIGURE 2.6 – Fenêtre de l'analyse dynamique temporelle par superposition modale

Vu la rapidité d'exécution et l'exactitude des résultats proposés par la méthode de superposition modale « FNA », on retiendra cette dernière pour l'élaboration de nos prochains résultats.

L'Analyse du modèle de référence sous l'effet de 20 accélérogrammes donne les déplacements, l'effort tranchant dans le sens longitudinal (V_x) et transversal (V_y) à la base d'une pile. Les résultats sont résumés dans le tableau suivant :

Accélérogramme	Déplacement (cm)	V_x (KN)	V_y (KN)
01	9.81	2022.34	204.31
02	10.28	1992.31	187.99
03	10.10	1933.79	199.66
04	10.03	2036.32	198.78
05	9.61	1874.28	202.91
06	10.58	2078.23	208.90
07	10.12	1970.85	185.54
08	10.66	213739	209.56
09	8.04	1705.36	194.75
10	9.96	1953.26	178.74
11	9.87	1875.01	207.51
12	9.82	2010.98	200.64
13	8.96	1998.41	199.51
14	10.39	2035.61	211.96
15	9.28	1732.31	207.69
16	8.96	1851.97	199.97
17	10.63	2169.29	204.31
18	9.40	1848.29	199.75
19	10.48	1897.98	213.65
20	10.37	2026.37	210.66
Moyenne	9.92	1957.52	201.34

TABLE 2.1 - Résultats de la réponse du modéle de référence

Nous remarquons du tableau ci-dessus, des déplacements élevés du tablier, pour cela nous proposons dans ce qui suit plusieurs conceptions afin de faire face au problème de ces mêmes déplacements.

2.5 Les modèles d'isolation sismique

2.5.1 Modèle complètement isolé par des « LRB »

Dans le but de réduire les déplacements engendrés par les sollicitations sismiques, nous proposons un premier modèle complétement isolé et cela en plaçant des isolateurs sismiques de type « LRB » au niveau des piles et des culées (figure 2.7).

FIGURE 2.7 – Modèle complètement isolé par des « LRB »

On commence tout d'abord par déterminer les paramètres des dispositifs d'isolation en appliquant le programme Matlab présenté précédemment [figure 1.2].

Le dimensionnement des LRB se fera pour la même période d'isolation obtenue à travers le modèle isolé par « NRB », et cela afin d'effectuer une comparaison entre les deux modèles.

Paramétres d'entrée	Paramétres de sortie
	$K_{eff} = 12815KN$
$T_{D=}1.40s$	$D_{cible} = 4.21cm$
Sa= 0.84	Q = 355, 39KN
$\xi = 33\%$	$K_p = 4371.8$
m=636,21 tonnes	$K_e = 43718KN$
	$D_y = 0.9cm$

TABLE 2.2 – Détermination des paramétres du LRB

	Link/Support Type	MultiLinear	Plastic _		
	Property Name	LRB ABUT		Set Default Name	
	Property Notes			Modify/Show	
	Total Mass and Weig	ht			- 1
	Mass J	1,000E-03	Rotational In	ertia 1 JU,	-
	Weight	0,	Rotational In	ertia 2 0,	-
			Rotational In	ertia 3 0,	
	Factors For Line, Area	a and Solid Spri	ings		
	Property is Defined fo	or This Length I	In a Line Spring	1.	
	Property is Defined for	or This Area In /	Area and Solid Springs	1,	
	Directional Properties			P-Delta Parameter	15
	Direction Fixed	NonLinear	Properties	Advanced	
			Modify/Show for UT.		
	IV U2	v	Modify/Show for U2.		
	V U3 V		Mc ify/Show for U3.	<u></u>	
	🔽 R1 🗖		M dify/Show for R1.	···	
	🔽 R2 🗖		odify/Show for R2.	OK	
	🔽 R3 🗖		4odify/Show for R3.		
	Fix All C	Clear All			
oport Directional Pr	operties				
pport Directional Pr	operties				
oport Directional Pr	operties	Hyster	resis Type And Parameters		
port Directional Pr tification operty Name	operties	Hyster	resis Type And Parameters teresis Type Kineməti	c v	
port Directional Pr ification operty Name ection	Operties	Hyster Hyst	resis Type And Parameters leresis Type Kinemati Parameters Are Bacuicad E	c 🗸	
port Directional Pr ification sperty Name ection pe	operties LRB ABUT JU2 MultiLinear Plastic	Hyster Hysto No F	resis Type And Parameters leresis Type Kinemati Parameters Are Required Fo	c 💌	
fort Directional Pr fication perty Name section se	operties LRB ABUT U2 MultLinear Plastic Yes	Hyster Hyster No F	resis Type And Parameters veresis Type Kinemati Parameters Are Required Fo	c 💌 💌	
rt Directional Pr ation arty Name tion inear is Used For Linea	operties LRB ABUT U2 MultiLinear Plastic Yes rr Analysis Cases	Hyster Hyster Hyster Hyster	resis Type And Parameters leresis Type Kinemati Parameters Are Required Fo resis Definition Sketch	c 💌 💌	
Directional Pr tion y Name on ear s Used For Linea re Stiffness	Voperties	Hyster Hyster Hyster Mutt	resis Type And Parameters ieresis Type Kinemati Parameters Are Required Fo resis Definition Sketch illinear Plastic - Kinema	c v or This Hysteresis Type	
t Directional Pr ation ity Name ity Name ity Stiffness ive Stiffness ive Damping	Voperties	Hyster Hyster No F	resis Type And Parameters teresis Type Kinemati Parameters Are Required Fo resis Definition Sketch illinear Plastic - Kinema	c or This Hysteresis Type ttic	
t Directional Pr ation ty Name on near s Used For Linea ve Stiffness ve Stiffness ve Damping eformation Locat	ILRB ABUT U2 MultiLinear Plastic Yes ar Analysis Cases [12815, [1884,53] on	Hyster Hyst No F	resis Type And Parameters eresis Type Kinemati Parameters Are Required Fo resis Definition Sketch illinear Plastic - Kinema	c or This Hysteresis Type tic	
t Directional Pr tion ty Name on s Used For Linea ve Stiffness ve Damping sformation Locat ce from EndJ	operties	Hyster Hyster Hyster	resis Type And Parameters teresis Type Kinemati Parameters Are Required Fo resis Definition Sketch itlinear Plastic - Kinema	c or This Hysteresis Type the	
t Directional Pr ution ty Name on is Used For Linea ve Stiffness ve Damping eformation Locati ce from End-J ear Force-Deform	operties	Hyster Hyster No F	resis Type And Parameters teresis Type Kinemati Parameters Are Required Fo resis Definition Sketch Illinear Plastic - Kinema	c C C C C C C C C C C C C C	
t Directional Pr tion ty Name on hear s Used For Linea ve Stilfness ve Damping sformation Location ce from End-J sar Force-Deform Displ Form 0.0421 -539	ILRB ABUT U2 MultiLinear Plastic Yes ar Analysis Cases 12815, 1884,53 ion 0, ation Definition	Hyster Hyst No F	resis Type And Parameters eresis Type Kinemati Parameters Are Required Fo resis Definition Sketch illinear Plastic - Kinema	c or This Hysteresis Type tic	
rt Directional Pr sation sty Name tion inear is Used For Linea tive Stiffness tive Damping Deformation Locat nace from EndJ near Force-Deform <u>Displ Fon</u> -0.0421 -533 0.000E-03 -333. 0 0 - 03	operties	Hyster Hyster	resis Type And Parameters leresis Type Kinemati Parameters Are Required Fo resis Definition Sketch itilinear Plastic - Kinema	c or This Hysteresis Type tic	
rt Directional Pr eation arty Name tion inear ise Used For Linea tive Stiffness tive Damping Deformation Locati nce from End-J near Force-Deform Displ For -0.0421 - 539 9.000E-03 - 393, 0, 0, 0, 3000E-03 - 333.	in Definition	Hyster Hysto No F	resis Type And Parameters teresis Type Kinemati Parameters Are Required For resis Definition Sketch illinear Plastic - Kinema	c c c c c c c c c c c c c c	
Directional Pr tion y Name m s Used For Linea re Stiffness re Damping formation Locati te from End-J ar Force-Deform Displ For J00E-03 - 393, 0, 00, 00E-03 - 393, 0, 0421 - 539, 0421 - 539,	Verties	Hyster Hyst	resis Type And Parameters eresis Type Kinemati Parameters Are Required Fo resis Definition Sketch illinear Plastic - Kinema	c or This Hysteresis Type	
Directional Pr	operties	Hyster Hyster Mult	resis Type And Parameters teresis Type Kinemati Parameters Are Required For resis Definition Sketch illinear Plastic - Kinema	c or This Hysteresis Type tite	

FIGURE 2.8 - Modélisation des isolateurs sismiques de type « LRB » au niveau des culées

r	Link/Support Property Data	
	Link/Support Tupe	lill inear Plastic
	Property Name Line	Modifu/Show
	Total Mass and Weight	
	Mass and weight	-03 Botational Inertia 1
	Weight 0	Botational Inertia 2
	weight jos	Potational Inotia 2
	Factors Factors Account C	hit Colore
	Property is Defined for This I	Length In a Line Spring
	Property is Defined for This	Area In Area and Solid Springs
		- B.Delta Parametere
	Direction Fixed Nonl	Linear Properties
	ן עז וע ע	Modify/Show for U1
	V2 🗆 🕅	Modify/Show for U2
	🔽 U3 🗔 🦻	Modify/Show for U3
	🔽 R1 🗔 🛛	Modify/Show for R1
	🔽 R2 🗔 J	Modify/Show for R2
	🔽 R3 🗔 J	Modify/Show for R3
	Fix All Clear All	
Link/Support Directional R	Properties	
Edit		
Identification		rysteresis Type And Parameters
Property Name	LRB PIERS	Hysteresis Type Kinematic
Direction	U2	No Parameters Are Required For This Hysteresis Type
Туре	MultiLinear Plastic	
NonLinear		Lauri D. G.Y., Clash
Effective Stiffsess	12815,	Multilinear Plastic - Kinematic
Effective Damping	1884,53	
- Shear Deformation Loca	ation	The second second
Distance from End-J	0,	and the the
- Multi-Linear Force-Defor	rmation Definition	
Displ Fo 1 -0.0421 -53 2 -9.000E-03 -39 3 0, - 4 9.000E-03 393 5 0.0421 53	xice 19.51 3.462 0. 3.462 9.51	
Order Rows	elete Row Add Row 6	
		Cancel

FIGURE 2.9 - Modélisation des isolateurs sismiques de type « LRB » au niveau des piles

FIGURE 2.10 - Détail de la modélisation des isolateurs sismiques « LRB »

En se basant sur l'organigramme présenté précédemment (Figure 1.3), le dimensionnement de nos dispositifs d'isolation donne les résultats suivants :

Caractéristiques du matériau :

$$\begin{split} E &= 4.45 \times 10^{-3} KN.m^{-2} \qquad \varepsilon = 500\% \qquad G = 1.06 \times 10^{3} KN.m^{-2} \\ &\gamma_{max} = 50\% \qquad k = 0,57 \\ \text{Limite élastique du noyau de plomb :} \qquad f_{py} \qquad = 10 \ MN.m^{-2} \\ \text{Contrainte normale admissible :} \qquad \sigma_c \qquad = 7.84 \times 10^4 \ KN.m^{-2} \\ \text{Limite élastique des plaques en acier :} \qquad F_s \qquad = 1.65 \times 10^5 \ KN.m^{-2} \end{split}$$

- a- La surface du plomb : $A_p = 0.0355 \ m^2 \Rightarrow d_p = 21.5 \ cm$
- b- Hauteur de la couche d'élastomère : $t_r = 21.05 \ cm$
- c- La surface d'élastomère : $A = Max(A_0, A_1, A_2)$
- d- Sachant que : $A_0 = 0.796 m^2$ $A_1 = 0,43 m^2$ $A_2 = 0,528 m^2$

 $\Rightarrow A = 0.796m^2$ (on optera pour une section rectangulaire de $(90 \times 90) cm$)

- e- Epaisseur d'une couche d'élastomère : $t = 2.25 \ cm$
- f- Nombre de couches d'élastomère :N = 10 couches
- g- Epaisseur des frettes : $t_s = 5 mm$

h- Hauteur totale : $H = 31 \ cm$

Les conditions de résistance au cisaillement, de stabilité au flambement, de capacité de diffusion d'énergie et de non-glissement sont toutes satisfaites.

FIGURE 2.11 - Dimension de l'isolateur« LRB »

A présent, nous allons comparer les résultats obtenus par l'analyse dynamique du modèle isolé par « LRB », avec le modèle de référence isolé par « NRB ».

Les tables suivantes résument l'étude comparative entre les deux modèles. Dans la table 2.3, on compare les déplacements maximales et vitesses maximales du tablier, et dans la table 2.4 on compare les efforts tranchants développés à la base d'une pile.

	Déplacement (cm)			Vitesse (m/s)				
Accélérogramme	LRB	NRB	Réduction (%)	LRB	NRB	Réduction (%)		
01	3,19	9,81	67	0,23	0,417	43		
02	3,8	10,28	63	0,28	0,442	37		
03	2,97	10,1	71	0,28	0,479	41		
04	2,96	10,03	70	0,2	0,442	41		
05	3,03	9,61	68	0,28	0,452	37		
06	2,95	10,58	72	0,24	0,477	48		
07	3,61	10,12	64	0,26	0,445	42		
08	3,76	10,66	65	0,27	0,527	48		
09	2,81	8,04	65	0,26	0,454	41		
10	3,14	9,96	68	0,25	0,482	47		
11	3,38	9,87	66	0,24	0,433	45		
12	3,43	9,82	65	0,24	0,495	50		
13	2,79	9,96	72	0,25	0,482	47		
14	3,03	10,39	71	0,26	0,457	42		
15	3,49	9,28	62	0,3	0,457	34		
16	3,07	8,96	66	0,3	0,415	26		
17	2,99	10,63	72	0,27	0,448	39		
18	3	9,4	67	0,26	0,437	38		
19	3,16	10,48	70	0,24	0,433	42		
20	3,22	10,37	69	0,25	0,486	48		
Moyenne	3,19	9,92	68	0,26	0,458	42		

TABLE 2.3 – Comparaison des vitesses et déplacements du modéle complètement isolé par « LRB » et par « NRB ».

		$V_x(\mathbf{K})$	N)	V_y (KN)			
Accélérogramme	LRB	NRB	Réduction (%)	LRB	NRB	Réduction (%)	
1	2585,87	2022,35	-28	386,13	204,31	-89	
2	2801,44	1992,31	-41	396,32	188,00	-111	
3	2574,34	1933,80	-33	371,74	199,67	-86	
4	2591,80	2036,33	-27	363,09	198,79	-83	
5	2623,38	1874,28	-40	376,86	202,92	-86	
6	2573,80	2078,24	-24	384,34	208,91	-84	
7	2629,09	1970,85	-33	354,33	185,55	-91	
8	2613,82	2137,39	-22	399,02	209,57	-90	
9	2632,40	1705,37	-54	386,63	194,76	-99	
10	2564,90	1953,27	-31	340,98	178,74	-91	
11	2623,81	1875,01	-40	348,32	207,51	-68	
12	2581,69	2010,99	-28	334,13	200,64	-67	
13	2656,06	1998,42	-33	381,49	199,55	-91	
14	2611,49	2035,62	-28	389,99	211,97	-84	
15	2671,54	1732,31	-54	371,35	207,69	-79	
16	2591,02	1851,98	-40	389,32	199,97	-95	
17	2611,40	2169,29	-20	343,88	204,31	-68	
18	2564,48	1848,30	-39	362,91	199,75	-82	
19	2608,54	1897,98	-37	354,97	213,65	-66	
20	2599,37	2026,38	-28	388,75	210,66	-85	
Moyenne	2615.51	1957.52	-34	371.23	201.35	-84	

TABLE 2.4 – Comparaison de l'effort tranchant à la base de la pile du modéle complètement isolé par « LRB » et par « NRB ».

Nous remarquons à travers ces résultats, que l'introduction des « LRB » dotés d'un taux d'amortissement élevé, a permis de mieux contrôler les déplacements, par une réduction de 68%. On note aussi, qu'une diminution considérable de la vitesse relative du tablier a été enregistrée.

Cependant, la grande rigidité du « LRB » a rendu la structure moins souple, ce qui a amené à l'augmentation de l'effort tranchant à la base de la pile, de 34% dans le sens longitudinal et de 84% dans le sens transversal. Par ailleurs, les distorsions maximales de nos isolateurs, restent inférieures à leurs limites imposées lors du dimensionnement qui est de 20% [table 2.5].

Accélérogramme	Distorsion (%)
01	10,27
02	12,27
03	9,585
04	9,58
05	9,786
06	9,621
07	11,74
08	12,07
09	9,075
10	10,21
11	10,98
12	11,04
13	9,019
14	9,871
15	11,34
16	10,03
17	9,698
18	9,957
19	10,22
20	10,41
Moyenne	10,34

TABLE 2.5 – Distorsions maximales de l'isolateur « LRB »

Les résultats ainsi obtenus sont complétés par les graphes comparatifs des déplacements et des vitesses relatives du tablier :

FIGURE 2.12 – Comparaison des déplacements en fonction du temps du modèle complètement isolé par « NRB » et par « LRB »

FIGURE 2.13 – Comparaison des vitesses en fonction du temps du modèle complètement isolé par « NRB » et par « LRB »

FIGURE 2.14 - Relation force-déplacement de l'isolateur « LRB »

2.5.2 Modèle équipé d'amortisseurs externes

Etant donné que la conception précédente s'avère être une solution non économique, due à l'augmentation des efforts à la base, un nouveau modèle d'isolation est proposé. Chaque extrémité du pont est équipée de deux amortisseurs visqueux purs de type CV^{α} [figure 2.15]

FIGURE 2.15 – Modèle équipé d'amortisseurs externes

Le coefficient d'amortissement de l'amortisseur supplémentaire est estimé par la méthode de pré dimensionnement développée par Michel Kahan.[3]

On obtient un coefficient d'amortissement C_{eff} égal à 1347kN.s/m.

A noter que l'introduction des amortisseurs n'influe pas sur la période de vibration de la structure, du fait qu'ils ne contribuent pas à rigidifier le système. Cependant la rigidité du liquide visqueux à l'intérieur des amortisseurs est très importante, elle avoisine la valeur de $9.10^6 KN/m$ [4], ce qui le rend incompressible.

La figure 2.16 illustre la manière avec laquelle on modélise les amortisseurs visqueux non-linéaires.

Link/Suppo	rt Type Da	amper	•					
Property N	lame am	ortisseur		Se	et Default Name			
Property No	tes			N	Modify/Show			
Total Mass a	and Weight							
Mass	1,000	E-03	Rotational Ir	nertia 1	0,			
Weight	0,		Rotational Ir	nertia 2	0,			
			Rotational Ir	nertia 3	0,			
Factors For L	line, Area and S	Solid Springs						
Property is D	efined for This	Length In a L	ine Spring		1,			
Property is D	Defined for This	Area In Area	and Solid Springs		1,			
Directional P	roperties				P-Delta Parameter:			
Direction	Fixed Nor	nLinear	Properties	- 1	Advanced			
	_	Ľ –	Modify/Show for UT					
	-		Modiry/Show for U2					
E 03			Modity/Show for U3					
			Modity/Show for H1		······			
I RZ			Modify/Show for R2		<u>UK</u>			
	_	_						
E R3	Clear A		Modify/Show for R3		Cancel			
☐ R3 Fix All	Clear A		Modify/Show for R3		Cancel			
Fix All	Clear A	Directional Prop	Modify/Show for R3		Cancel			
Fix All	Link/Support	Directional Prop	Modify/Show for R3		Cancel			
Fix All	Link/Support	Directional Prop	Madify/Show for R3 perties		Cancel			
Fix All	Link/Support	Directional Prop	Modify/Show for R3 perties amortisseur U1		Cancel			
Fix All	Link/Support Identificati Propetty Directio Type	Directional Prop	Modify/Show for R3 perties amortisseur U1 Damper Yes		Cancel			
Fix All	Link/Support	Directional Prop	Modify/Show for R3 Perties amortisseur U1 Damper Yes Analysis Cases		Cancel			
Fix All	Link/Support Identificati Propetty Directio Type NonLint Propetties Effectiv	Directional Prop ion v Name n Used For Linear. e Stiffness	Modify/Show for R3		Cancel			
Fix All	Link/Support	Directional Prop ion v Name n Used For Linear e Stiffness e Damping	Modify/Show for R3 perties amortisseur U1 Damper Yes Analysis Cases 0, 0, 0, 0,		Cancel			
Fix All	Link/Support	LI Directional Prop ion v Name n Used For Linear. e Stiffness e Damping	Modify/Show for R3		Cancel			
R3 Fix All	Clear A Link/Support	Directional Prop ion v Name n Used For Linear. e Stiffness e Damping	Modify/Show for R3 perties amortisseur U1 Damper Yes Analysis Cases 0, 0, 0,		Cancel			
Fix All	Link/Support	II Directional Prop ion v Name n ear Used For Linear. e Stiffness e Damping Used For Nonline s	Modify/Show for R3		Cancel			
R3 Fix All	Link/Support	Linear Directional Prop ion v Name n Used For Linear. e Stiffness e Damping Used For Nonline s g Coefficient	Modify/Show for R3		Cancel			
R3 Fix All	Clear A Link/Support	Directional Prop ion v Name n Used For Linear. e Stiffness e Damping Used For Nonline s g Coefficient g Exponent	Modify/Show for R3 perties amortisseur U1 Damper Yes 0, 0, 0, ear Analysis Cases [3000000, 1347, 0,3]		Cancel			
R3 Fix All	Clear A Link/Support Identificati Propetty Directio Type NonLin Propetties Effectiv Effectiv Stiffnes Stiffnes Dampin	Directional Prop ion v Name n ear Used For Linear. e Stiffness e Damping Used For Nonline s g Coefficient g Exponent	Modify/Show for R3 perties amortisseur U1 Damper Yes Analysis Cases 0, 0, 0, 1347, 0,3		Cancel			
R3 Fix All	Link/Support	Directional Prop ion vame n ear Used For Linear. e Stiffness e Damping Used For Nonline s g Coefficient g Exponent	Modify/Show for R3		Cancel			

FIGURE 2.16 – Détails de modélisation de l'amortisseur visqueux pur

FIGURE 2.17 – Modélisation des amortisseurs visqueux purs sur SAP 2000

Pour évaluer la pertinence du modèle exposé, il est intéressent de le comparer au modèle de référence isolé par « NRB ». Les tableaux suivants résument les résultats obtenus par l'analyse dynamique. Le premier compare les efforts tranchants (V_x, V_y) et le moment (M_y) à la base d'une pile, alors que pour le second on compare les déplacements, les vitesses et les accélérations du tablier.

		$V_x($	KN)	V_y (KN)			M_y (KN)		
Accéléro	A.A	S.A	Réduc (%)	A.A	S.A	Réduc (%)	A.A	S.A	Réduc (%)
01	485	2022	76	201	204	1,8	3337	15692	79
02	648	1992	67	183	188	2,7	4530	15828	71
03	536	1934	72	194	200	2,9	3779	15444	76
04	573	2036	72	193	199	3,1	4235	15908	73
05	594	1874	68	199	203	1,9	4079	15063	73
06	521	2078	75	202	209	3,3	3694	16479	78
07	561	1971	72	181	186	2,6	3641	15300	76
08	522	2137	76	205	210	2,4	3420	16786	80
09	639	1705	63	188	195	3,3	4384	13116	67
10	460	1953	76	178	179	0,7	3137	15289	79
11	490	1875	74	203	208	2,1	3433	15102	77
12	610	2011	70	199	201	0,8	4130	15341	73
13	483	1998	76	196	200	1,8	3376	15839	79
14	542	2036	73	204	212	3,9	4042	16049	75
15	568	1732	67	204	208	1,7	4183	13958	70
16	505	1852	73	193	200	3,3	3459	14362	76
17	571	2169	74	201	204	1,8	3963	16956	77
18	551	1848	70	195	200	2,6	4360	14600	70
19	576	1898	70	206	214	3,4	3965	15386	74
20	520	2026	74	203	211	3,7	3317	15842	79
Moyenne	547	1957	72	196	201	2,5	3823	15416	75

TABLE 2.6 – Comparaison des efforts à la base de la pile du modéle isolé avec et sans amortisseurs

Accéléro : Accélérogramme

A.A : avec amortisseurs externes

S.A : sans amortisseurs externes

	Dé	Déplacement (cm) Vitesse (m/s)			Accélération (m/ s^{-2})				
Accéléro	A.A	S.A	Réduc (%)	A.A	S.A	Réduc (%)	A.A	S.A	Réduc (%)
01	2,1	9,8	79	0,19	0,42	55	2,6	3,0	14
02	2,46	10,3	76	0,19	0,44	57	2,6	3,7	29
03	2,02	10,1	80	0,16	0,48	66	3,2	4,7	34
04	2,26	10,0	78	0,18	0,44	60	2,8	3,7	25
05	2,42	9,6	75	0,14	0,45	70	2,8	3,7	25
06	2,18	10,6	79	0,15	0,48	69	2,5	3,8	36
07	2,08	10,1	80	0,16	0,45	65	2,7	4,0	33
08	2,03	10,7	81	0,17	0,53	69	3,1	3,9	20
09	2,7	8,0	66	0,19	0,46	57	3,0	3,9	23
10	1,96	10,0	80	0,16	0,48	67	2,7	3,8	29
11	1,91	9,9	81	0,15	0,43	65	2,3	3,7	38
12	2,48	9,8	75	0,17	0,50	66	3,2	4,1	22
13	2,09	10,0	79	0,18	0,48	64	3,1	3,8	19
14	2,29	10,4	78	0,18	0,46	61	2,7	3,6	25
15	2,37	9,3	75	0,20	0,46	57	2,8	4,0	30
16	1,87	9,0	79	0,17	0,42	60	3,1	4,5	32
17	2,11	10,6	80	0,17	0,45	62	2,8	3,6	21
18	2,47	9,4	74	0,14	0,44	68	3,4	3,3	-3
19	2,17	10,5	79	0,15	0,43	66	2,7	4,5	40
20	2,16	10,4	79	0,15	0,49	69	2,7	3,7	26
Moyenne	2,21	9,92	77	0,16	0,45	63	2,83	3,85	26

TABLE 2.7 – Comparaison des déplacements, vitesses et accélérations du modéle isolé avec et sans amortisseurs

Accéléro : Accélérogramme

A.*A* : avec amortisseurs externes

S.A : sans amortisseurs externes

L'incorporation d'amortisseurs visqueux purs au niveau des extrémités, a induit à une réduction des efforts à la base. On observe une diminution de l'ordre de : 72% de l'effort tranchant dans le sens longitudinal (Vx), et de 75% du moment fléchissant (M_y) . A signaler que l'effort tranchant dans le sens transversal (V_y) reste pratiquement constant.

On remarque que cette solution apporte aussi une diminution considérable des déplacements, des vitesses et des accélérations, plus grande que celle enregistrée pour le modèle complètement isolé par « LRB ».

Les résultats ainsi obtenus sont complétés par des graphes comparatifs entre le modèle présenté et le modèle de référence isolé par « NRB » :

FIGURE 2.18 – Comparaison des déplacements en fonction du temps du modèle isolé par « NRB » avec et sans amortisseurs supplémentaires.

FIGURE 2.19 – Comparaison des vitesses en fonction du temps du modèle isolé par « NRB » avec et sans amortisseurs supplémentaires.

FIGURE 2.20 – Comparaison des accélérations en fonction du temps du modèle isolé par « NRB » avec et sans amortisseurs supplémentaires.

FIGURE 2.21 – Loi de comportement de l'amortisseur visqueux pur de type « CV^{α} »

Chapitre 3

Etude paramétrique sur les propriétés de l'isolateur de type « LRB »

3.1 Principe

La Conception proposée par utilisation d'isolateurs sismiques de type « LRB », a permis de mener une étude paramétrique sur l'influence du choix du taux d'amortissement sur l'ensemble des paramètres. Durant cette étude, on déterminera les différentes propriétés et dimensions des isolateurs « LRB », et cela pour différents taux d'amortissement compris dans l'intervalle suivant : $20\% \le \xi_{eff} \le 35\%$.

Ceci se fera pour une période d'isolation fixe de 1.4 secondes, qui amènera à une rigidité effective constante de l'ensemble des différents isolateurs.

3.2 Résultats et interprétations

L'utilisation de notre programme Matlab [figure 1.2] et de notre organigramme [figure 1.3], a permis de déterminer les valeurs des différents paramètres. Les résultats sont résumés dans le tableau suivant :

$T_D = 1.40$										
	K _{eff} =12815									
$\xi(\%)$	D(cm)	Q/W(%)	$K_p(\mathbf{KN})$	$K_e(\mathbf{KN})$	D_y (mm)	$d_p(cm)$	Ν	Dim(m)		
33	4,21	5,69	4371,8	43718	9	21,27	10	0,9 imes 0,9		
30	4,47	4,98	5866,6	58666	5,9	19,89	10	1×1		
25	4,87	4,28	7335,8	73358	4	18,43	11	$1, 1 \times 1, 1$		
20	5,4	3,68	8554,6	85546	3	17,1	12	$1,25\times 1,25$		

TABLE 3.1 - Paramètres des LRB pour différents coefficients d'amortissement

La table 3.1 montre que le taux d'amortissement influe sur la majorité des paramètres. Les points à retenir sont :

- Le fait de diminuer la valeur du taux d'amortissement, entraîne une augmentation du déplacement cible D_{cible} .
- L'augmentation du déplacement cible, amène à la baisse de la résistance caractéristique Q et du déplacement élastique D_y , et ainsi qu'à la hausse de la rigidité élastique (K_e) et plastique (K_p) .
- Le nombre de couches d'élastomères est en fonction du déplacement cible, la hausse de ce dernier entraîne l'addition du nombre de couches.
- La réduction de la résistance caractéristique Q, se répercutera sur le diamètre du noyau de plomb qui diminuera à son tour.
- La détermination des dimensions en plan de la surface des élastomères est dépendante du taux d'amortissement souhaité, car la réduction de la surface du plomb augmentera la vulnérabilité à la rupture de l'isolateur par effort de cisaillement, cette défaillance sera comblée par la variation des dimensions en plan des élastomères, qui augmenteront pour chaque diminution de la valeur du taux d'amortissement.

Les résultats obtenus sont complétés par des graphes illustratifs (figure 3.1), qui montrent l'influence du choix du taux d'amortissement sur la relation force-déplacement de l'isolateur sismique.

FIGURE 3.1 - la relation force-déplacement des « LRB » de taux d'amortissement différents

On observe de la figure 3.1, que la pente est identique pour tous les isolateurs, cela est dû à la rigidité effective constante résultante du choix de la période d'isolation. Cependant, la variation des surfaces à l'intérieur de la courbe est flagrante. En effet, on remarque une proportionnalité entre le taux d'amortissement et la surface intérieure délimitée par la courbe, c'est-à-dire : plus le taux d'amortissement est grand, plus la surface à l'intérieur de la courbe est grande. Cette variation est relative à la quantité d'énergie dissipée par le système d'isolation, car plus l'amortissement est élevé, plus la dissipation à l'intérieur du dispositif demeure élevée.

Conclusion

Durant cette étude, différentes conceptions basées sur le principe de l'isolation sismique ont été illustrées sur un pont dalle isolé par des « Natural Rubber Bearing », placés au niveau des piles et des culées. L'isolation a été effectuée par l'introduction d'isolateurs sismiques de type « LRB » et d'amortisseurs visqueux purs. L'évaluation de ce principe d'isolation a été établie par l'analyse dynamique temporelle non linéaire, conduite par des accélérogrammes artificiels générés à partir du spectre réglementaire du « RPOA ».

A partir des résultats obtenus pour les deux modèles, il est possible à présent de tirer les conclusions suivantes :

- L'incorporation des isolateurs sismiques de type «LRB» à la place des «NRB», conduit à l'augmentation de l'amortissement et de la rigidité du système, qui entraîne une meilleure maîtrise des déplacements par une réduction de 68%. Par ailleurs, le fait de rendre la structure moins souple, augmente la valeur de l'effort tranchant à la base des piles. Ceci nous amène à dire, que cette conception d'isolation s'avère une solution non économique.
- L'introduction d'amortisseurs visqueux purs de type « CV^α» en parallèle avec les « NRB », a permis de régulariser le problème de l'augmentation des efforts à la base des piles rencontré lors de la conception par « LRB ». Cette conception a entraîné une baisse de 72% de l'effort tranchant (Vx), et de 75% du moment fléchissant (My). A noter aussi qu'une atténuation des déplacements, des vitesses et des accélérations a été enregistrée. De ce fait, on peut dire que cette conception s'avère efficace en termes de réduction des efforts et de maîtrise des déplacements.
- L'étude paramétrique menée, met en évidence l'influence du taux d'amortissement fixé sur l'ensemble des paramètres de l'isolateur sismique « LRB ».
- L'analyse dynamique temporelle par « FNA » (Fast Non linear Analysis) génère des résultats plus rapidement que celle de Newmark.

Bibliographie

- [1] Naiem F & Kelly J.M. *Design of Seismic Isolated Structures*. John Wiley & Sons, New York, 1999.
- [2] Chang K& Yau J Yang Y. *Earthquake Engineering Handbook*. Charles Scawthorn & Wai-Fah Chen, Boca Raton, USA, 2003.
- [3] Vivier A & Davi D. Prise en compte des dispositifs antisismiques dans les calculs ouvrages d'art sous séisme. *8éme Colloque National AFPS, Ecole des Ponts ParisTech*, 2011.
- [4] Oudai N & Smaoui A. Mémoire de fin d'études sur les méthodes d'analyse dynamique appliquées aux amortisseurs visqueux non linéaires : Evaluation et application au calcul des ponts,. Directeur du thése Pr. Tiliouine.B, Ecole Nationale Polytechnique, Alger, Algérie, 2013.

Annexe A

Accélérogrammes

Les accélérogrammes générés à partir du spectre réglementaire du « RPOA »par SIMQKE :

-A partir du spectre élastique horizontal :

4-

7-

10-

13-

16-

19-

A partir du spectre élastique verical :

1-

2-

3-

6-

12-

17-

20-

