République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique Département Génie Civil

Laboratoire de génie sismique et de dynamique des structures

Mémoire de Master En Génie civil

Intitulé :

Etude paramétrique des effets d'interaction sol-structure compte tenu des modes supérieurs

Proposé et dirigé par Pr. M.HAMMOUTENE Présenté par AKIL Mounir

Soutenu le (16/06/2015) devant le jury composé de :

Président : Directeur de mémoire : Examinateurs : Pr. B.TILIOUINE Pr. M. HAMMOUTENE Mme. A.CHERID Mme.H.MOHABEDDINE Professeur à l'ENP Professeur à l'ENP M.A.A à l'ENP M.A.Aà l'ENP

Promotion Juin 2015 ENP : 10, avenue HacèneBadi, El Harrach, Alger Tel : 213 21 52 53 01/03 – Fax : 213 21 59 7973

<u>REMERCIEMENTS</u>

Le présent mémoire n'aurait pas vu le jour sans l'aide bienveillante, la compréhension et le dévouement d'un certain nombre de personnes qui, par leur présence et leurs conseils, m'ont apporté leur soutien.

A Dieu, à qui j'adresse mes remerciements par sa grâce infinie pour nous et qu'on implore pour intervenir dans l'œuvre de notre travail.

Mes hautes gratitudes vont à mon encadreur à L'ENP, Pr HAMMOUTENE pour sa disponibilité, sa patience et ses conseils qui m'ont permis de concrétiser ce travail.

Je tiens à exprimer ma sincère gratitude au PrTILIOUINE, Mme Cherid, Mme Mohabeddine, Mr Chabane qui m'ont prêté de leur temps le plus précieux et m'ont aidé par leurs inestimables directives.

J'aimerais aussi témoigner ma reconnaissance à tous mes professeurs pour leur contribution dans la réussite de mes études à l'ENP durant ces trois années.

Enfin, je tiens à témoigner ma profonde gratitude aux parents et à mes amis pour leur contribution, leur soutien et leur patience au cours de la réalisation de ce mémoire.

Merci à toutes et à tous.

Avec un énorme plaisir, un cœur ouvert et une immense joie, que je dédie mon travail à :

Mes très chers, respectueux et magnifiques parents qui m'ont soutenu tout au long de ma vie.

Ma sœur Nassima ;

Ma sœur Nadjet ;

Mes grands parents auxquels je souhaite une longue vie pleine de santé ;

Mes oncles, tantes, cousins et cousines ;

Mes amis : Mohamed, Fares, Abderraouf, sifeddine, Abdenour.

A toutes les personnes qui m'ont encouragé ou aidé au long de mes études de loin et de prés.

MOUNIR

RESUME :

Dans ce présent travail on a développé une méthode d'analyse simplifié basée sur un spectre de réponse afin d'étudier l'effet d'interaction sol-structure sur le comportement dynamique d'un barrage poids en béton sous l'effet d'un mouvement du sol compte tenu des modes supérieurs de vibration.

Mots clés : Barrage poids, interaction sol-structure, spectre de réponse.

ABSTRACT :

In the present work we developed a simplified analysis method based on a response spectrum to study the effect of soilstructure interaction on the dynamic behavior of a concrete gravity dam under the effect of a ground motion. given the higher vibration modes

Keywords: Dam gravity, soil-structure interaction, response spectrum.

LISTE DES NOTATIONS ET SYMBOLES:

ag Ef	 = Accélération maximale du mouvement (unité g) = Module d'élasticité de Young du sol de fondation = Module d'élasticité de Young du barrage en béton
Ef	 Module d'élasticité de Young du sol de fondation Module d'élasticité de Young du barrage en béton
	= Module d'élasticité de Young du barrage en béton
Es	
<i>f</i> ₁ (y)	= Forces laterales equivalentes dues au mode de vibration fondamental agissantes sur le barrage (en KN/m pour une longueur de 1 m)
g	= Accélération de la pesanteur
Hs	=Hauteur du barrage (en mètres)
L_1 et $ ilde{L}_1$	=Coéfficients d'integrales définis dans l'équation (en 1/g)
M_1 et \widetilde{M}_1	= Coéfficients de masse définis dans l'équation (en 1/g)
$m_s(x,y)$	= Masse unité du béton
$S_a(\tilde{T}_f,\tilde{\xi}_f)$	= Ordonnée de la pseudo-accélération de spectre de réponse pour un mouvement de surface donné, pour une période T_i et un amortissement ξ_i (en g).
<i>T</i> ₁	 Période de vibration fondamental du barrage sur un sol rigide et réservoir vide (en secondes)
\tilde{T}_1	= Période de vibration fondamental du barrage tenant compte de l'interaction sol- barrage
t	= Temps (en secondes)
W _S	= 24.9KN/m2*1mètre de longueur=poids volumique du béton.
$w_s(y)$	= poids volumique du barrage (en KN/m pour 1 mètre de longueur et 1 mètre de hauter)
X	= Coordonnée suivant la largeur du barrage (en mètres)
у	= Coordonnée suivant la hauteur du barrage (en mètres)
η_f	= Constante d'amortissement hystéristique du sol de fondation (sans unité)
ξ1	= Taux d'amortissement du barrage sur sol rigide et réservoir vide
$\bar{\xi}_{f}$	= Taux d'amortissement tenant compte de l'interaction sol-barrage
$\phi_1(y)$	= Fonction de forme (courbure) du barrage du mode fondamentale (sans unité)
f _{sc} (y)	= les forces latérales dues au modes supérieurs

LA LISTE DES FIGURES

Figure (I.1) : Facteur d'amplification dynamique moyen pour $\xi = 5\%(\eta = 1)$
Figure (I.2) : barrage poids6
Figure (I.3) : Barrage de Vassivière6
Figure (I.4): Barrage de Luzège7
Figure (I.5) : Coupe verticale d'un barrage voute7
Figure (I.6) : Barrage de Grandval8
Figure (I.7): Barrage de Faux-la-Montagne
Figure (I.8) : Barrage à contreforts
Figure (III.1) : la distribution des forces latérales du barrage de Bouzina avec
le coefficient hystérétique=0.10 20
Figure (III.2) : la distribution des forces latérales du barrage de Bouzina avec
le coefficient hystérétique =0.25 21
Figure (III.3): la distribution des forces latérales du barrage de Bouzina avec
le coefficient hystérétique = 0.50
Figure (III.4) : la distribution des forces latérales du barrage de Bouzina23
Figure (III.5) : la distribution des contraintes en face amont du barrage de Bouzina
avec le coefficient hystérétique=0.1024
Figure (III.6) : la distribution des contraintes en face amont du barrage de Bouzina avec le coefficient hystérétique=0.25
Figure (III.7) : la distribution des contraintes en face amont du barrage de Bouzina avec le coefficient hystérétique=0.50 26
Figure (III.8) : la distribution des contraintes en face amont du barrage de Bouzina27
Figure (III.9) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.10
Figure (III.10) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.25
Figure (III.11) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.50 30
Figure (III.12) : la distribution des contraintes en face aval du barrage de Bouzina31
Figure (III.13):la distribution des déplacements en fonction du rapport Ef/Es pourdifférentes valeurs de η_f
Figure(V.14): la distribution des déplacements maximaux

La liste des tableaux

Tableau (I.1): coefficient d'accélération de zone A (%g)......4

TABLE DES MATIERES

DEDICACES	
REMERCIEMENTS	
RESUME	
LISTE DES NOTATIONS ET SYMBOLES	
LISTE DES FIGURES	
LISTE DES TABLEAUX	
TABLE DES MATIERES	
INTRODUCTION.	1
<u>CHAPITRE I</u> :LES GENERALITES	
I.GENERALITES SUR LES SEISMES	3
I.1 Définition.	3
I.2 Les mesures des séismes	3
I.3 spectre en accélération S_a (T, ξ) (RPA99 / version 2003)	3
IL GENERALITE SUR LES BARRAGES	5
I.1 Les différents types de barrage	5
I.1.1 Les barrages en matériaux meubles	5
I.1.2 Les barrages-poids en béton	6
I.1.3 Barrages-voutes	7
I.1.4 Barrages à contreforts	7
<u>CHAPITRE II</u> : LA METHODE DU MODELE GENERALISE EQUIVALENT	
I.APPROXIMATION DE LA REPONSE DUE LA CONTRIBUTION DU MODE	
FONDAMENTAL	9
I.1 Approximation unidimensionnelle de la structure	9
I.2 Influence de la période et du taux d'amortissement dans interaction	10
sol barrage	10
II. APPROXIMATION DE LA REPONSE DUE A LA CONTRIBUTION DES MOD)ES
SUPERIEURS	11
II.1 La methode de correction statique	11 12
II.2 Barrages avec reservoir vide	1 <i>4</i> 1 <i>4</i>
II 3 1 Barrage reposant sur une fondation rigide avec réservoir vide	14
II 3.2 Barrage reposant sur une fondation flexible avec un réservoir vide	14 14
II.4 Calcul des contraintes	15
II.5 Calcul de la réponse sismique totale	15
III LES ETAPES DE LA METHODE DU SVSTEME GENERALISE	16
III.1 Première partie · Le calcul des forces et des contraintes sismiques	10 17
III.2 Deuxième partie : Contribution des modes Supérieurs.	
III.3 Troisième partie : Calcul des contraintes	19

IV.CONCLUSION	.19
<u>CHAPITRE III</u> : ANALYSE SIMPLIFIEE DE LA REPONSE DU BARRAGE	
BOUZINA	

I. EVALUATION DE LA REPONSE DU BARRAGE DE BOUZINA	
I.1 La distribution des forces latérales	20
I.2 Distribution des contraintes	24
I.3 Evaluation des déplacements	32
II. Principales observations	
II.1 Périodes propres	34
II.2 Forces sismigues équivalentes	
II.3 Les contraintes	
II.4 Les déplacements	35
*	

CONCLUSION

BIBLIOGRAPHIE

ANNEXES

Les barrages représentent des systèmes constructifs complexes à caractères économiques et stratégiques importants. Construits en zone sismique, ils constituent un danger potentiel permanent pour les populations avoisinantes. Leur rupture totale ou partielle, est en général accompagnée par des conséquences catastrophiques sur le double plan, humain et matériel.

le calcul de stabilité fondé sur l'hypothèse d'un comportement quasi-statique de barrages supposés parfaitement encastrés au sol de fondation, soumis à l'action essentiellement, de leurs poids propres et des pressions hydrostatiques, constituent une grossière simplification de la réalité, loin de satisfaire aux normes d'exigence en matière de conception et de sécurité parasismique de tels ouvrages.

C'est pourquoi plusieurs chercheurs ont été amenés à développer des méthodes numériques et analytiques pour le calcul des barrages sous excitation sismique bien que les méthodes et leurs implémentation poids idéalisation numériques soient d'une grande valeur pour la phase final de l'étude de nouveaux barrages ou pour l'évaluation de la sécurité des barrages existants, ils doivent cependant être simplifiés pour le calcul dans l'étude primaire et la phase d'évaluation.

C'est pour cela que dans le cadre de cette étude, nous avons été amené à présenter une méthodologie simplifiée l'étude des barrages basée sur un approche analytique mettant en jeu les caractéristiques généralisées d'un monolithe de barrage pour l'étude de l'interaction solbarrage dans le cas de la réponse du mode fondamental à une excitation sismique. Cette approche simplifiée consiste à modéliser le barrage en un système équivalent à un degré de liberté (1ddl) dont la période T_f et le taux d'amortissement ξ_f ont été modifiées de fait à prendre en compte les effets compliqués de l'interaction rocher de fondation-barrage.

Il a été montré que l'interaction barrage-sol de fondation modifie la période de vibration naturelle et le pourcentage d'amortissement additionnel du système à un degré de liberté équivalent représentant la réponse du mode de vibration fondamental du barrage. Pour une section standard, le pourcentage d'allongement de la période et l'amortissement additionnel due à l'interaction sol-structure dépend de plusieurs paramètres dont les plus significatifs sont le rapport des modules d'élasticité E_f/E_s , où E_f et E_s sont le module d'élasticité du sol de fondation et le module d'élasticité de béton du barrage respectivement. Le pourcentage d'allongement de période R_f est cependant, insensible aux variations des valeurs de η_f

La méthode d'analyse simplifié permet dévaluer la réponse du barrage en tenant compte de l'interaction sol-structure, pour le mode fondamental qui se trouve être dominant, dans telles structures, néanmoins, il est intéressant d'étudier l'influence des modes de vibration supérieurs sur la réponse du barrage d'une part, de même que l'effet des paramètres E_f/E_s , η_f , ξ_f sur cette même réponse d'autre part.

Pour cela, nous considérons trois valeurs du rapport des rigidités E_f/E_s à savoir 0.2, 1 et 4et trois valeurs du coefficient hystéritique η_f à savoir : 0.10, 0.25 et 0.50 le dernier paramètre compte de dissipation d'énergie et de l'amortissement matériel du rocher de fondation.

C'est ainsi que ce travail s'attelle dans un premier temps à présenter une étude paramétrique dans le but est d'étudier l'effet du rapport des rigidités E_f/E_s et du coefficient hystéritique η_f sur la distribution des forces latérales tout le long de la hauteur de la face amont du barrage,

INTRODUCTION

sur la distribution des contraintes qui en résultent sur les forces amont et aval de même que d'étudier l'effet de ce même paramètre sur la variation des déplacements du monolithe du barrage.

Cette étude paramétrique est mené en considérant le cas du barrage de Bouzina qui est un barrage poids en béton compacté au rouleau(BCR) et qui est situé à une cinquantaine de kilomètres au sud ouest de la ville de Batna qui se trouve être le relief lieu de la wilaya.

Le présent document a été divisé en quatre chapitres, le premier chapitre rappelle brièvement des généralités sur les séismes et ses différents représentations, les généralités sur les barrages ont été présentés dans ce chapitre.

Le deuxième chapitre présente la méthode simplifiée utilisée dans cette étude et qui est nommée « Méthode à système généralisé équivalent », l'approche est développée pour le mode fondamental, puis généralisée en suite en intégrant la contribution des modes supérieurs par une approximation faisant appel à la méthode de correction dite « statique » les diverses étapes du calcul de la réponse sismique sont détaillées dans ce chapitre.

Le troisième chapitre traite de l'application de la méthode simplifiée au cas du barrage de Bouzina (wilaya de Batna). Une étude paramétrique est menée pour montrer l'effet des paramètres E_f/E_s , η_f pour le mode fondamental, puis par la suite en integrant la correction statique due aux modes supérieurs.

Enfin le chapitre quatre présent des conclusions générales relatives à cette étude et donne des recommandations à l'attention des ingénieurs des entreprises et bureaux d'études.

En outre, des possibilités de développement de cette recherche sont présentées dans la perspective de travaux futurs.

CHAPITRE I

I. GENERALITES SUR LES SEISMES

Depuis son apparition sur terre l'Homme a eu à faire face, pour sa survie, à de nombreux phénomènes naturels tels que les tempêtes, les pluies diluviennes, les effondrements de cavernes, les grands glissements de terrains... Mais l'un des phénomènes le plus terrifiant, qu'il a eu, qu'il a et qu'il aura à affronter, c'est ce brusque mouvement du sol dû à une fracture brutale dans l'écorce terrestre, appelé tremblement de terre.

I.1 Définition:

L'action sismique consiste en un mouvement vibratoire du sol de forte amplitude et de caractère aléatoire qui correspond à la propagation d'une perturbation ayant pris naissance à l'endroit où s'est produit le séisme (foyer ou hypocentre).

La manière la plus connue pour décrire un évènement sismique est donnée par son spectre de réponse d'accélération. Un spectre de réponse condense les informations sur l'amplitude, et la fréquence du mouvement du sol, par contre aucune information sur la durée et le nombre de cycles n'est représentée[1].

I.2 Présentation du spectre de réponse :

Le spectre de réponse \Leftrightarrow la réponse maximale à un mouvement dynamique ou des forces d'un système à un degré de liberté avec amortissement.

Le spectre de calcul doit être un spectre de réponse lisse, sans irrégularités naturelles, représentant l'intensité et les caractéristiques vibratoires d'un calcul sismique qui devrait être confirmé, par des investigations sismologiques et géologiques poussées.

<u>Remarque</u> : Dans la suite de ce mémoire le spectre de réponse utilisé est celui de règlement parasismique algérien (RPA 99)

I.3 spectre en accélération S_a (Τ, ξ) (RPA99 / version 2003):

Dans cette partie, nous précisons les aspects techniques concernant le calcul l'accélération sismique à l'aide du spectre de réponse issus du document technique "DTR BC 2-48" portant sur les "Règles Parasismiques Algériennes RPA 99"qui a été approuvé par la commission technique permanente pour le Contrôle Technique de la Construction (CTC) et dont l'actualisation en 2003 tient compte également des leçons tirées des récents séismes survenus en Algérie tels que ceux de Oued Djer (oct. 1988), Tipaza (oct. 1989), Mascara (août 1994), Boumerdes (Mai 2003) ou à l'étranger, tels que Spitak / Arménie (1988), LomaPriéta / Californie (1989), Sanjan / Iran (1990), Northridge /Californie (1994), Kobé/Japon (1995) et Izmit/Turquie(1999).

CHAPITRE I : LES GENERALITES

L'accélération sismique totale a_g , appliquée à la base de la structure, est calculée selon la formule :

 $\mathbf{a}_{\mathbf{g}} = \mathbf{A} \mathbf{D}$

Labicau I.I . Coefficient d'acceleration							
de zone A (%g)							
	Zone						
Groupe	Ι	II	III				
1A	0,12	0,25	0,35				
1B	0,10	0,20	0,30				
2	0,08	0,15	0,25				
3	0,05	0,10	0,15				

Tableau I.1 · coefficient d'accélération

-D : facteur d'amplification dynamique moyen, dont les graphes sont représenté sur la Fig. 14, fonction de la catégorie de site, du facteur de correction d'amortissement(η) et de la période fondamentale de la structure (T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^2_3 & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)^2_3 (3.0/T)^5_3 & T \ge 3.0s \end{cases}$$

•T₂ période caractéristique, associée à la catégorie du site et donnée par le tableau 4.7 Le facteur D est par ailleurs donné sous forme graphique à la figure 4.1pour un amortissement $\xi = 5\%$

•n: facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/\big(2+\xi\big)} \geq 0.7$$

où ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Quant $\xi = 5\%$, on a $\eta = 1$

Figure I.1 : Facteur d'amplification dynamique moyen pour $\xi = 5\%(\eta = 1)$

II. Généralités sur les barrages :

Les barrages, ouvrages hydrauliques édifiés au travers d'une vallée, ont pour objet de retenir, en les accumulant en hauteur, les eaux d'une rivière. Leur objectif primitif et qui demeure toujours essentiel est l'irrigation. Ils peuvent également être utilisés en tant que régulateurs de crues, à des fins énergétiques (production d'énergie hydroélectrique) ou pour l'alimentation en eau potable.

Ces différentes fonctions sont souvent associées afin de valoriser un même barrage. Mais, dans la gestion du stock de l'eau, une prépondérance est toujours donnée à l'une d'entre elles. D'autres utilisations, bien que secondaires, sont également à mentionner : usages industriels (rétention d'effluents boueux), navigation, création de polders, de plans d'eau...[2]

II.1 Les différents types de barrage :

La forme de la vallée, la nature du sol, les matériaux à disposition sur le site déterminent le type de barrage. Les barrages sont construits en béton ou en maçonnerie; les digues (ou barrages en remblai) sont en terre ou en enrochement[3].

II.1.1Les barrages en matériaux meubles :

Les barrages en terre font partie des premiers ouvrages d'art réalisés par l'homme. Le développement des engins de terrassement et de compactage et une meilleure connaissance de la mécanique des sols permettent de réaliser de nos jours des ouvrages importants (jusqu'à 300 m de hauteur) dans des conditions économiques intéressantes.

La principale difficulté de ce type de barrage provient des tassements dus à l'écrasement et au dérapage des blocs entre eux. Survenant lors de la construction et se poursuivant après, ils peuvent mettre en péril l'organe souple d'étanchéité. Pour accélérer le tassement, les blocs constitutifs du barrage sont arrosés intensément afin de lubrifier leurs contacts.

II.1.2 Les barrages-poids en béton :

La stabilité des barrages-poids sous l'effet de la poussée de l'eau est assurée par le poids du matériau. Ces ouvrages peuvent être en maçonnerie ou en béton, en maçonnerie hourdée à la chaux pour les plus anciens, en béton compacté au rouleau pour les plus récents. Ce type de barrage (figure 16) convient bien pour des vallées larges ayant une fondation rocheuse. Ils sont souvent découpés en plots à la construction, l'étanchéité entre plots étant assurée par un dispositif placé à l'amont des joints.

Figure (I.2) : barrage poids[3]

Figure (I.3) : Barrage de Vassivière [3]

CHAPITRE I : LES GENERALITES

II.1.3 Barrages-voutes :

Les barrages-voûtes sont des barrages généralement en béton dont la forme courbe permet un report des efforts de poussée de l'eau sur les rives rocheuses de la vallée. L'utilisation de l'effet d'arc bien connu des constructeurs de cathédrales est plutôt récente dans le domaine des barrages (encore qu'on en trouve des applications dès le XIIIème siècle en Iran ainsi que, sous une forme plus rustique, par les Romains).

Figure (I.4) : Barrage de Luzège[3]

Figure (I.5) : Coupe verticale d'un

barrage voute[3].

La présence de culées peut toutefois permettre un report plus aisé des efforts sur les rives.

II.1.4 Barrages à contreforts :

Un barrage à contreforts comprend:

- Une série de murs parallèles, généralement de forme triangulaire, plus ou moins épais et plus ou moins espacés (les contreforts).
- > Une bouchure entre contreforts transmettant à ceux-ci la poussée de l'eau.

La bouchure peut être constituée :

-D'une dalle plane en béton.-D'un élargissement du contrefort vers l'amont.-D'une voûte de faible portée.

CHAPITRE I : LES GENERALITES

Figure (**I.6**) : Barrage de Grandval[3]

Figure(I.7): Barrage de Faux la Montagne[3]

Figure (**I.8**) : Barrage à contreforts[3].

Les barrages à contreforts sont bien adaptés aux vallées larges avec une fondation rocheuse de bonne qualité.

Remarque : Les barrages en remblai (en terre) sont majoritaires avec près de 63% du total des barrages enregistrés (figure 16). Il s'agit évidement du type de barrage le plus ancien et il demeure des traces ou des barrages en remblai datant des civilisations les plus anciennes. De plus, ce type de barrage peut s'adapter avec beaucoup de types de fondations. Le barrage de Nurek au Tadjikistan, en remblai, est le plus haut barrage du monde (300m de haut).

Dans les régions de forte sismicité il y a lieu de tenir compte de l'effet sismique dans les projets des barrages poids. On sait que les règles de la résistance des matériaux sur lesquelles sont basés les calculs de barrages, supposent implicitement que les forces appliquées à ces ouvrages sont statiques ou évoluent très lentement. Mais les tremblements de terre exercent des forces dynamiques de courte durée et de forte intensité, dont il est nécessaire de tenir compte de cet effet en effectuant un calcul basée sur un spectre de réponse,

I. APPROXIMATION DE LA REPONSE DUE A LA CONTRIBUTION DU MODE FONDAMENTAL DE VIBRATION

A partir des nouveaux paramètres Notre méthode proposée pour le calcul dynamique des barrages est basée sur l'utilisation des spectres de réponse. La détermination des forces maximum permet d'évaluer les efforts maximum dans la structure. Selon que l'on dispose d'un spectre de déplacement ou d'un spectre d'accélération, on aura ainsi ces efforts. Les forces latérales maximales agissant horizontalement sur un barrage poids reposant sur un sol flexible s'écrivent [4]:

$$f_1(x,y) = \frac{\tilde{L}_1}{\tilde{M}_1} \frac{S_a(\tilde{T}_1, \tilde{\xi}_1)}{g} [w_s(x,y)\phi_1^x(x,y)]$$
(II.1)

Où

x est la coordonnée suivant la largeur du monolithe du barrage et y la coordonnée suivant la hauteur mesurée à partir de la base du barrage.

 $w_s(x,y) = b(y)*\rho$; poids par unité de hauteur du barrage (ρ ; poids volumique du béton, b(y); la largeur du barrage à une hauteur donner y).

 $S_a(\tilde{T}_1, \tilde{\xi}_1)$, l'ordonnée du spectre de réponse en accélération associée à la période fondamentale de

vibration \tilde{T}_1 et à un pourcentage d'amortissement critique $\tilde{\xi}_1$ du système sol-structure équivalent.

$$M_{1} = \iint m_{s}(x, y) \left\{ [\phi_{1}^{x}(x, y)]^{2} + \left[\phi_{1}^{y}(x, y)\right]^{2} \right\} dx dy$$
(II.2)

$$L_1 = \iint m_s(x, y)\phi_1^x(x, y)dxdy \tag{II.3}$$

Avec M_1 représentant la masse généralisée et L_1 le coefficient des forces sismiques généralisées.

Vu la complexité des termes (dépendants des fréquences et à valeurs complexes) et sur la base de résultats d'essais, des approximations sont faites pour déterminer plus simplement ces forces latérales.

I.1 Approximation unidimensionnelle de la structure:

L'équation (17) peut en outre être simplifiée du fait que les variations des déplacements dans le mode fondamental de vibration, $\phi_1^x(x,y)$, à travers la largeur du monolithe sont faibles. Dans ce cas, les forces latérales maximales $f_1(x,y) = f_1(y)$ par unité de hauteur du barrage associées au mode fondamental de vibration s'écrivent:

La masse généralisée et le coefficient de la force sismique sont représentés par des intégrales unidimensionnelles:

$$f_1(y) = \frac{\tilde{L}_1}{\tilde{M}_1} \frac{S_a(\tilde{T}_1, \tilde{\xi}_1)}{g} \{ w_s(y) \, \phi(y) \}$$
(II.4)

Où $\phi_1^x(x, y) = \phi_1^x(0, y) = \phi_1^x(y)$ est la composante horizontale du déplacement du barrage dans le mode fondamental de vibration et w_s (y) est le poids par unité de hauteur. On en déduit que la masse généralisée M₁ et le coefficient de force sismique généralisée L₁ définis par les équations (20) et (21) peuvent être représentés par des intégrales unidimensionnelles telles que:

$$M_{1} = \frac{1}{g} \int_{0}^{H} w_{s}(y)\phi^{2}(y) \, dy \tag{II.5}$$

$$L_{1} = \frac{1}{g} \int_{0}^{H} w_{s}(y) \phi(y) \, dy$$
(II.6)

I.2 Influence de la période et du taux d'amortissement dans interaction sol – barrage :

Interaction sol de fondation -barrage augmente la période naturelle de vibration et le taux d'amortissement critique du système généralisé équivalent représentant la réponse du mode fondamental de vibration du barrage. Comme on l'a déjà noté précédemment le rapport de période R_f et le taux d'amortissement critique ξ_f .

 $\tilde{T}_{\rm f}$ dus à interaction sol de fondation - barrage, dépendent de plusieurs facteurs à savoir; Le rapport $E_{\rm f}/E_{\rm s}$ avec $E_{\rm s}$ = module d'élasticité du barrage en béton, $E_{\rm f}$ = module d'élasticité du sol de fondation, η_f = la constante d'amortissement hystéritique du sol de fondation (dissipation d'énergie, hystérétique).

Il est à noter que R_f est indépendant de η_f , et augmente quand le rapport E_f / E_s diminue (pour une valeur fixe de E_s , plus E_f / E_s est petit plus le sol est flexible).

Les résultats d'analyses de plusieurs sections de barrages, obtenus en utilisant les méthodes dynamiques ont permis de donner R_f et ξ_f pour différentes valeurs de Ef/Es et η_f .

Le taux d'amortissement ξ_f augmente pour la diminution du rapport E_f / E_s et avec une augmentation du facteur d'amortissement hystérétique η_f .

II. APPROXIMATION DE LA REPONSE DUE A LA CONTRIBUTION DES MODES SUPERIEURS

II.1 La méthode de correction statique :

La méthode de correction statique c'est une méthode d'analyse permettant de corriger la troncature modale, cette méthode a été présentée pour la première fois par Hansteen et Bell[5]. Divisons les fréquences de la structure en un ensemble de fréquences basses pour lesquelles la résistance d'inertie est grande, et un ensemble de fréquences élevées pour lesquelles la résistance est essentiellement statique. Alors, la superposition modale peut s'écrire :

$$u(t) = u_d(t) + u_s(t) = \sum_{i=1}^d \phi_i z_i(t) + \sum_{i=d+1}^{n_{eq}} \phi_i z_i(t)$$
(II.7)

Dans l'expression précédente, les forces d'inertie sont importantes dans les d premiers modes inferieurs et la réponse doit être calculée par les procédures d'analyse dynamique (intégrale de Duhamel, intégration pas à pas). Cependant, pour les $(n_{eq}-d)$ modes restants, une analyse statique est suffisante et les réponses modales sont données par :

$$z_{ist}(t) = \frac{\tilde{p}_i(t)}{\tilde{k}_i} = \frac{\phi_i^T f g(t)}{\phi_i^T K \phi_i}$$
(II.8)

On a donc

$$u_{ist}(t) = \phi_i z_{ist}(t) = \frac{1}{\tilde{k}_i} \phi_i \phi_i^T fg(t)$$
(II.9)

Soit

$$F_i = \frac{1}{\tilde{k}_i} \phi_i \phi_i^T \tag{II.10}$$

Alors

$$u_{ist}(t) = F_i p(t) = F_i f g(t)$$
(II.11)

Où F_i peut être interprété comme la matrice de flexibilité du mode i. la réponse totale est donc

$$u(t) = \sum_{i=1}^{d} \phi_i z_i(t) + \sum_{i=d+1}^{neq} F_i p(t)$$
(II.12)

La formulation de la réponse totale, telle que donnée par l'équation.6, ne nécessite pas le calcul de la réponse dynamique pour les modes supérieurs. Cependant, cette formulation requiert le calcul de tous les modes propres, afin d'obtenir F_i . Une façon d'éviter le calcul de tous les modes consiste à déterminer le déplacement statique dû à tous les modes selon l'expression suivante:

$$u_{st}^{(n_{eq})}(t) = K^{-1}p(t)$$
(II.13)

Qui peut aussi s'écrire

$$u_{st}^{(n_{eq})}(t) = u_{st}^d(t) + u_{st}(t)$$
(II.14)

Explicitons ust(t) qui tenant compte les modes supérieurs :

$$u_{st}(t) = u_{st}^{(n_{eq})}(t) - u_{st}^{d}(t) = \left[K^{-1} - \sum_{i=1}^{d} F_i\right] fg(t)$$
(II.15)

II.2 Barrages avec réservoir vide :

Le maximum d'effets de tremblement de terre associés à la contribution de la n ème mode de vibration barrage à la réponse du barrage peut être représenté par des forces latérales équivalentes :

$$f_n(y) = m_s(y)\phi_n(y)\omega_n^2 \overline{Y}_n \tag{II.16}$$

Dans lequel \overline{Y}_n est la valeur maximale de $Y_n(t)$ qui est régie par la n-ième équation modale [6]:

$$\ddot{Y}_{n} + 2\xi_{n}\omega_{n}\dot{Y}_{n} + \omega_{n}^{2}Y_{n} = -\frac{L_{n}}{M_{n}}a_{g}(t)$$
(II.17)

Dans l'équation.11, la masse par unité de hauteur du barrage $m_s(y) = w_s(y)/g$, ω_n et $\phi_n(y)$ sont la fréquence propre et la composante horizontale de la forme de la n ème mode de vibration ; ξ_n est le coefficient d'amortissement de ce mode ; $a_g(t)$ est l'accélération du sol ; La masse généralisée M_n et le coefficient de force de tremblement de terre généralisé L_n sont :

$$M_n = \int_{\substack{0\\H_s}}^{H_s} m_s(y)\phi_n^2(y)dy$$
(II.18a)
$$L_n = \int_{0}^{0} m_s(y)\phi_n(y)dy$$
(II.18b)

Tout comme le cas des bâtiments à plusieurs étages, les effets d'interaction sol-structure peuvent être négligés dans la procédure simplifiée pour calculer les contributions des modes

de vibration plus élevés dans la suite du séisme de barrages. Par conséquent, ces effets d'interaction n'ont pas été inclus dans l'équation (10) et (12).

Puisque les périodes des modes de vibration plus élevés des barrages-poids en béton sont très courts, une approximation de $Y_n(t)$ est donnée par une solution statique de l'équation.11, à savoir, en négligeant les termes inertielle et de l'amortissement :

$$\omega_n^2 Y_n(t) = -\frac{L_n}{M_n} a_g(t), \qquad n = 2,3,..$$
(II.19)

Ainsi, \overline{Y}_n c'est la valeur maximale de $Y_n(t)$, est donnée par

$$\omega_n^2 \overline{Y}_n = -\frac{L_n}{M_n} \overline{a}_g \tag{II.20}$$

Où \overline{a}_q est l'accélération maximale du sol. Substitution l'équation 5 en 1 donne :

$$f_n(y) = -\frac{L_n}{M_n} m_s(y) \phi_n(y) \overline{a}_g \tag{II.21}$$

De la même manière que le déplacement démontré avant, nous pourrions commencer par l'expression des forces latérales équivalentes maximales de la réponse spectrale :

$$f_n(y) = -\frac{L_n}{M_n} m_s(y) \phi_n(y) S_{an}$$
(II.22)

Avec $S_{an} = S_a(T_n, \xi_n)$ est l'ordonnée du spectre de réponse en pseudo-accélération pour le mouvement du sol évaluée à la n-ème période de vibration de mode $T_n = 2\pi/\omega_n$ et le taux d'amortissement ξ_n . Puisque les périodes des modes de vibration plus élevés de barrages poids en béton sont courtes, les coordonnées correspondantes du spectre de réponse en pseudo -accélération sera essentiellement égale à l'accélération maximale du sol c'est-à-dire $S_{an} = \overline{a}_g$.

Avec une petite amplification dynamique, les modes de vibration plus élevés réagissent d'une manière essentiellement statique conduisant à :

$$f_n(y) = -\frac{L_n}{M_n} m_s(y) \phi_n(y) \overline{a}_g \tag{II.23}$$

Donc la réponse maximale dans chaque mode de vibration plus élevée est atteinte lorsque l'accélération du sol atteint son accélération maximale. Sur la base de cette implication du concept de correction statique, les effets maximaux du tremblement de terre associés à tous les modes plus élevés que le mode fondamental de vibration sont donnés par l'équivalent forces latérale :

$$f_{sc}(y) = \sum_{n=2}^{\infty} f_n(y) \tag{II.24}$$

$$f_{sc}(y) = \sum_{n=2}^{\infty} \frac{L_n}{M_n} m_s(y) \phi_n(y) \overline{a}_g$$
(II.25)

La réponse à la déformation d'un barrage à l'accélération du sol ag sera identique à la réponse de la structure fixée la base, soumis à des forces externes à la masse par unité de hauteur, agissant opposé au sens d'accélération du sol.

Mais d'autre part, le mouvement du sol peut être remplacé par une force effective = $m_s(y)a_q(t)$. Si on l'exprimée comme la somme des contributions modales :

$$-m_s(y)a_g(t) = \sum_{n=2}^{\infty} \frac{L_n}{M_n} m_s(y)\phi_n(y)\overline{a}_g$$
(II.26)

Qui peut être utilisé pour réécrire l'équation II.26

$$f_{sc}(t) = -\frac{1}{g} w_s(y) \left[1 - \frac{L_1}{M_1} \phi_1(y) \right] \overline{a}_g$$
(II.27)

II.3 Calcul des forces latérales équivalentes dues aux modes supérieurs

II.3.1 Barrage reposant sur une fondation rigide avec réservoir vide:

Les périodes des modes supérieurs de vibration des barrages poids en béton sont courtes, alors les ordonnées de la pseudo-accélération du spectre de réponse sont pratiquement égales à l'ordonnée correspondant à la période nulle (à l'accélération maximale du sol).

Avec une petite amplification dynamique, les modes supérieurs de vibration répondent d'une manière statique à un mouvement de surface sismique, ce qui conduit à un concept de "correction statique". Les effets maximaux du séisme associés aux modes supérieurs peuvent être approximativement exprimés par une correction statique comme suit:

$$f_{sc}(y) = \frac{1}{g} \left\{ w_s(y) \left[1 - \frac{L_1}{M_1} \phi(y) \right] \right\} a_{max}^x$$

Où a_{max}^{x} désigne l'accélération maximale du sol.

Seule la forme propre correspondant au mode fondamental de vibration intervient dans cette équation et les formes propres correspondant aux modes supérieurs de vibration ne sont pas exigées ainsi la méthode s'en trouve considérablement simplifiée.

II.3.2 Barrage reposant sur une fondation flexible avec un réservoir vide :

Dans le cas du calcul de l'interaction sol-structure des barrages, la contribution des modes supérieurs de vibration dans la méthode utilisée, est négligeable. Ce qui est généralement le cas des bâtiments à plusieurs étages.

Ainsi l'équation précédente reste valable. Afin, de montrer la précision de cette équation (basée sur la méthode de "correction statique"), un monolithe de barrage du Pine Fiat a été modélisé en éléments finis, soumis à la composante S69E du séisme de Taft. En prenant l'hypothèse de base rigide [27], la réponse du barrage a été calculée comme une fonction du temps, en considérant un nombre variable de modes propres de vibration du barrage encastré

En plus des deux modes propres correspondant à la flexibilité de la fondation, il a été démontré d'après les résultats obtenus à partir de trois analyses suivantes:

- En utilisant les huit premiers modes de vibration, qui donnent pratiquement la réponse exacte;
- En utilisant uniquement le mode fondamental de vibration;
- En utilisant le mode fondamental de vibration et la correction statique pour la réponse des contributions des modes supérieurs; que dans certains cas, la contribution des modes supérieurs peut être significative et cette contribution est estimée de manière satisfaisante par la méthode de "correction statique".

II.4 Calcul des contraintes

On calcule les forces sismiques latérales équivalentes relatives au mode fondamental de vibration $f_1(y)$ et celles relatives aux modes supérieurs $f_{sC}(y)$ par les formules précédentes. On a divisé le barrage en onze (11) blocs d'égale hauteur, on remplace ces forces $f_1(y)$ et $f_{sc}(y)$ réparties par des forces concentrées équivalentes appliquées aux centres de gravité des blocs. On considère le monolithe du barrage comme une poutre console et on calcule les contraintes de flexion sur la face amont et sur la face aval du monolithe au bas de chaque bloc à partir des formules élémentaires de la résistance des matériaux. On passe ensuite au calcul des contraintes principales (ce sont les contraintes extrêmes et le cisaillement maximum est connu: rayon du cercle de Mohr).

II.5 Calcul de la réponse sismique totale

En général, les efforts maximaux f_1 et f_{sc} , ne se produisent pas en même temps lors d'un séisme, de sorte que la somme de leurs valeurs absolues conduira inévitablement à une borne supérieure excédant de loin la réponse sismique totale. Plusieurs règles de combinaisons quadratiques (partielle de type S.R.S.S ou complète de type C.Q.C) ont été proposées en vue de mieux estimer les efforts maximaux à partir des valeurs spectrales.

Dans cette étude, les efforts ont été combinés selon la règle S.R.S.S en vue d'obtenir la sollicitation sismique maximale de calcul:

$$f_d = \sqrt{{f_1}^2 + {f_{sc}}^2}$$

Par ailleurs, les réponses (déplacements et contraintes en particulier) étant directement proportionnelles aux coordonnées modales généralisées et les intercorrélations modales étant faibles du fait de la séparation des modes de vibration des systèmes sols-barrages poids, les réponses dynamiques maximales totales pourront être également déterminées à l'aide d'une expression identique à la relation (27).

Les contraintes principales sur les parements amont et aval peuvent alors être évaluées par la formule suivante:

$$\sigma_d = \frac{1}{\cos^2\theta} \sigma_y \tag{II.28}$$

Où θ désigne l'angle que fait la direction du parement considéré avec la verticale.

On remarque également que les contraintes principales sur le parement aval seront plus importantes que celles qui s'appliquent sur la face amont ce qui nous oblige de faire une correction de 75%.

Les réponses maximales r_1 et r_{sc} ne se produisent pas en même temps durant le séisme; elles peuvent être combinées pour obtenir une estimation de la réponse dynamique r_d suivant des règles de combinaisons modales de type S.R.S.S (Square Root of Sum of Squares).

$$r_d = \sqrt{r_1^2 + r_{sc}^2}$$
(II.29)

ou encore de type S.A.V. (Sum of Absolute Values) qui fournit un résultat sécuritaire, pas toujours compatible avec l'économie du projet.

$$r_d = |r_1| + |r_{sc}| \tag{II.30}$$

La règle S.R.S.S est retenue ici du fait qu'elle repose notamment sur la considération fondamentale que les réponses sont directement proportionnelles aux coordonnées modales généralisées.

III. LES ETAPES DE LA METHODE DU SYSTEME GENERALISE

La méthode du système généralisé équivalent est une méthode qui donne des résultats satisfaisants, dans le calcul des contraintes et des efforts induits par un séisme, par rapport aux méthodes dynamiques. C'est une méthode qui, à partir d'un spectre de réponse moyen lisse de calcul tient compte des effets d'interactions à savoir:

- interaction barrage-sol de fondation : R_f , ξ_f ;
- contribution des modes supérieures ("correction statique"): f_{sc};

Cette méthode d'analyse demande peu de paramètres pour décrire le système sol - eau - barrage: E_s, ξ_1 , H_s, E_f, η_f , H et α . Le module d'élasticité E_s du barrage en béton, le taux d'amortissement visqueux pour les barrages en béton est compris entre 1 et 10 %. Cependant, pour' le cas d'un séisme intense, on prendra un taux d'amortissement $\xi_1 = 5$ % (résultat déduit des tests de vibrations forcés sur les barrages) La hauteur du barrage est mesurée à partir de la base jusqu'à la crête H_s. Le module d'élasticité du sol de fondation E_f et η_f le coefficient d'amortissement hystérétique du sol de fondation déterminé à partir des investigations sur site et des tests appropriés. En l'absence de données sur les propriétés de l'amortissement du sol de fondation, on prendra la valeur de $\eta_f = 0.1$. H est la hauteur du plein d'eau, mesurée de la surface libre au fond du réservoir.

Le calcul de la réponse sismique du barrage se fait en trois parties[7]:

III.1 Première partie : Le calcul des forces et des contraintes sismiques :

Dues au mode fondamental de vibration

- 1) calcul de la période (en secondes) du mode fondamental de vibration du barrage T₁, encastré avec un réservoir vide (sans aucune interaction).
- 2) Calcul de la période du mode fondamental de vibration du barrage sur un sol flexible avec réservoir vide:
- S'il n'y a aucune interaction $\Rightarrow \tilde{T}_1 = T_1$
- S'il y a interaction sol barrage $\Rightarrow \tilde{T}_f = R_f T_1$

Si $E_f/E_s > 4 \Longrightarrow R_f = 1$ et $\xi_f = 0$ on néglige l'interaction sol-barrage (sol rigide)

3) Calcul du taux d'amortissement $\tilde{\xi}_f$ du barrage pour la période du mode fondamental de vibration du système généralisé équivalent.

 ξ_f : taux d'amortissement dû à l'interaction sol-barrage est donné en fonction de E_f/E_s et η_f .

On remarque que cinq cas peuvent se présenter:

I^{er} cas : lorsque le barrage est encastré avec un réservoir vide:

$$R_f = 1$$
 et $\xi_f = 0 \implies \tilde{\xi}_1 = \xi_1$

<u> 2^{eme} cas</u> : lorsque le barrage repose sur un sol flexible avec un réservoir vide;

$$R_f \neq 1$$
; et $\xi_f \neq 0 \implies \tilde{\xi}_1 = \frac{1}{R_f^3} \xi_1 + \xi_f$

Si $\tilde{\xi}_1 < \xi_1 \Rightarrow \tilde{\xi}_1 = \xi_1$

4) Calcul de la masse généralisée M_1

$$M_1 = \frac{1}{g} \int_0^H w_s(y) \phi^2(y) \, dy = \frac{1}{g} \sum_{i=1}^n w_i \, \phi^2(y)$$

On divise le monolithe de barrage en n blocs et w_i est le poids du bloc i On peut aussi utiliser une formule approchée. Mi = $0.043w_s$ /g avec w_s = poids total du monolithe

5) Calcul du coefficient de la force sismique généralisée ;

$$\tilde{L}_{1} = L_{1} = \frac{1}{g} \int_{0}^{H} w_{s}(y) \phi(y) \, dy = \frac{1}{g} \sum_{i=1}^{n} w_{i}(y_{i}) \phi_{i}(y)$$

On peut aussi calculer L_1 à partir d'une formule approchée : $L_1 = 0.13$ W_s*g avec $W_s = poids$ total du monolithe.

Nota : On peut éviter le calcul des étapes 7 et 8 en utilisant:

- $\frac{\tilde{T}_1}{\tilde{M}_1} = 3$ pour les barrages avec réservoir vide.
- 6) Calcul des forces sismiques latérales équivalentes $f_1(y)$ associées au mode fondamental de vibration :

Le rapport $\frac{\tilde{T}_1}{\tilde{M}_1}$ calculé dans les étapes 7 et 8

 $S_a(\tilde{T}_1, \tilde{\xi}_1) =$ ordonnée de la pseudo-accélération du spectre sismique.

7) Calcul des efforts concentrés sur chaque bloc:

- Terme de masse : masse répartie trapézoïdale que l'on transforme en un effort concentré

 $F_i = (q_i + q_{i+1})/(2 h)$ qui est appliqué au centre de gravité du bloc (point déjà connu).

- Terme de pression : masse répartie trapézoïdale que l'on transforme en un effort concentré

Fi - $(qi + q_{i+i}) / (2h)$ qui est appliqué au centre de gravité de chaque trapèze.

Connaissant les efforts concentrés et leur point d'application, on considère notre monolithe comme une poutre console, tout en négligeant son poids (monolithe), et on suppose que ce dernier travaille en flexion simple.

La console ainsi considérée est assez élancée pour que les efforts de cisaillement soient négligeables; dans le cas d'une poutre élancée, la poutre travaille en flexion ; mais dans le cas d'un poteau court, le poteau travaille plus en cisaillement qu'en flexion. Donc pour notre cas nous allons déterminer :

Calcul des moments de flexion au niveau de chaque bloc.

III.2 Deuxième partie : Contribution des modes Supérieurs

8) Calcul des forces latérales dues aux modes supérieurs

$$f_{sc}(y) = \frac{1}{g} \left\{ w_s(y) \left[1 - \frac{L_1}{M_1} \phi(y) \right] \right\} a_g$$

avec :

y : ordonnée suivant la hauteur

g : accélération de la pesanteur

 w_s et ϕ sont calculés dans l'étape précédente.

 a_g = accélération maximale donnée par le spectre de réponse pour T = 0 on trouve $S_a = a_g$.

III.3 Troisième partie : Calcul des contraintes

Calcul des contraintes du mode fondamental σ_1 :

1 - Les contraintes de flexion sur chaque face (amont et aval) et à chaque niveau.

$$\sigma = \frac{M}{I}$$
 avec M : moment de flexion = $\sum F_i X_i$

$$v = \frac{b}{2}; I = b^3 \frac{h}{12}$$
 et $\sigma = 6 \frac{M}{b^2}$

$$\sigma_1 = \sigma_y sec^2 \theta = \frac{1}{\cos^2 \theta} \sigma_y$$

Avec θ = angle que fait la verticale et la face du barrage.

- Calcul des contraintes des modes supérieurs σ_{sc} (de la même façon que σ_1)

- Calcul des contraintes totales σ_{tot} :

Combinaison $\sigma_d = |\sigma_1| + |\sigma_{sc}|$ ABSUM

$$\sigma_{tot} = \sqrt{\sigma_1^2 + \sigma_{sc}^2} \qquad \text{SRSS}$$

IV.CONCLUSION:

Une méthodologie simplifiée prenant en compte les effets de la flexibilité du rocher de fondation à été présentée. Cette méthode modélise le monolithe de barrage comme un système à 1ddl dont la période propre de vibration et l'amortissement incluse les effets compliqués de l'interaction rocher de fondation-barrage.

L'effet des modes supérieurs a été inclus à travers une correction statique qui tient compte de fait que les périodes de ces modes sont de plus en plus rigides.

CHAPITRE III

I. EVALUATION DE LA REPONSE DU BARRAGE DE BOUZINA

I.1 La distribution des forces latérales :

Figure (III.1) : la distribution des forces latérales du barrage de Bouzina avec le coefficient hystérétique=0.10

Figure (III.2) : la distribution des forces latérales du barrage de Bouzina avec le coefficient hystérétique = 0.25.

Figure (III.3): la distribution des forces latérales du barrage de Bouzina avec le coefficient hystérétique = 0.50.

Figure (III.4) : la distribution des forces latérales du barrage de Bouzina.

I.2 Distribution des contraintes :

Figure (III.5) : la distribution des contraintes en face amont du barrage de Bouzina avec le coefficient hystérétique=0.10

Figure (III.6) : la distribution des contraintes en face amont du barrage de Bouzina avec le coefficient hystérétique=0.25.

Figure (III.7): la distribution des contraintes en face amont du barrage de Bouzina avec le coefficient hystérétique=0.50.

Figure (III.8) : la distribution des contraintes en face amont du barrage de Bouzina .

- ➤ <u>Face aval</u>:
- $\eta_f = 0.10$

Figure (III.9) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.10.

Figure (III.10) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.25.

Figure (III.11) : la distribution des contraintes en face aval du barrage de Bouzina avec le coefficient hystérétique=0.50.

Figure (III.12) : la distribution des contraintes en face aval du barrage de Bouzina.

I.3 .Evaluation des déplacements :

Figure (V.13): la distribution des déplacements en fonction du rapport Ef/Es pour différentes valeurs de η_f .

Figure(V.14): la distribution des déplacements maximaux.

II.PRINCIPALES OBSERVATIONS

Les principales constatations et conclusions déduire de la présente étude, sont résumées dans les paragraphes subséquents.

II.1 Périodes propres :

Dans le tableau 1 sont représentées les valeurs des accélérations en fonction des paramètres vibratoires du barrage (la période et l'amortissement) et cela pour différentes valeurs du rapport des modules d'élasticité Ef/Es (4, 1, 0.2) et le coefficient hystérétique η_f (0.10, 0.25, 0.50). On constate que :

- L'interaction sol-structure conduit à une augmentation sensible des périodes propres de vibration quelque soit les valeurs de coefficient hystérétique η_f notamment pour les sols de fondation flexible.
- La période fondamental résonance d'un barrage supposé encastré à sa base(T₁=0.16s), lorsque le rapport des modules d'élasticité sol-barrage tend vers des valeurs supérieurs où égale à 4 (sol de fondation très rigide).

II.2 Forces sismiques équivalentes :

Les figures (V.5,6,7,8) et le tableau représentes à titre indicatifs, la distribution des forces sismiques équivalentes le long du parement amont du barrage de Bouzina pour trois valeurs du rapport des modules d'élasticité Ef/Es(4,1,0.2) de coefficient hystérétique η_f différent (η_f =0.10,0.25,0.50) soumis à des accélérations d'un spectre de réponse proposé par RPA les distributions sont représentées séparément par la méthode fondamental, les modes supérieurs et les forces combinées. On retiendra que :

- L'utilisation de la formule (III.37) on voit immédiatement que les forces latérales dépendent uniquement l'accélération.
- La distribution des forces sismiques latérales pour des valeurs du rapport de module d'élasticité grandes (Ef/Es=4) a des différences notables par rapport à celle obtenue avec des rapports du module petite (Ef/Es=0.2).
- La distribution des forces sismique en élévation est non linéaire il est a remarquer que l'effort maximum n'est pas situé en crête malgré la forme du mode est maximale en crête et cela dû aux produit de deux fonctions ;une est le mode augmente avec la hauteur et l'autre est la masse diminue en augmentant, cela nous conduit à une tel distribution , la résultante de la force latérale est située au 2/3 de la hauteur à partir de la base.
- L'interaction sol-structure n'influe pas pratiquement sur les efforts sismiques induits par la contribution des modes supérieurs.
- La contribution des modes supérieurs dans le calcul des forces sismiques est relativement importante à la base où elle atteint sa valeur maximale.

• Les forces sismiques obtenues diminuent de manière significative lorsque la flexibilité du sol de fondation augmente à l'exception des forces au voisinage de la base où elles deviennent pratiquement confondues.

II.3 Les contraintes :

A partir des figures (V.9,10,11,12,13) représentant les valeurs des contraintes principales déterminées respectivement en utilisant la théorie classique de la résistance des matériaux (RDM) et la méthode des éléments finis (MEF) on peut conclure :

- Les contraintes principales sont substantiellement plus importantes au voisinage de l'encastrement et au niveau du changement brusque de rigidité qu'au niveau des autres points du corps du barrage.
- Les contraintes maximales au niveau des sections horizontales, calculées par la RDM sont généralement plus élevées que celles déterminées par la MEF à l'exception des contraintes situées au voisinage des zones de concentrations.
- Les contraintes maximales évaluées d'après la théorie de la RDM au niveau d'une section, sont situées aux extrémités de cette section, ce qui confirme à l'hypothèse de linéarité des déformations.

En revanche, la méthode des éléments finis permet de distinguer des positions différentes des niveaux maxima des contraintes dont la distribution est clairement non linéaire ce qui est plus conforme à la réalité des faits.

II.4 Les déplacements :

Les figures (V.14) illustrent l'influence de l'effet de l'interaction sol-barrage sur les déplacements sous l'excitation sismique. On remarque clairement que :

- L'interaction sol-structure conduit à des déplacements plus importants pour des rapports des modules d'élasticité Ef/Es plus élevés et ils sont maximaux en crête.
- Le modèle pendulaire équivalent fournit une approximation excellente des déplacements par rapport à des résultats obtenus par la méthode des éléments finis.

Les effets du phénomène de l'interaction sol-structure sur les efforts et la réponse sismiques dans les barrages poids en béton courts et élevés, ont été étudiés. La méthodologie et le programme de calcul en éléments finis développés dans le cadre de la présente étude permettent d'obtenir une estimation rapide des forces sismiques latérales de calcul, des niveaux de déplacements et de contraintes dans les barrages. Les résultats numériques obtenus sur la base de l'étude d'une section horizontale donnée, calculées par la résistance des matériaux sont généralement plus élevées que celles déterminées par la méthode des éléments finis.

- La réponse du barrage rapporté au mode supérieur est négligeable et la réponse est donnée principalement par le mode fondamental de vibration.
- La réponse sismique d'un barrage peut être substantiellement affectée par ses caractéristiques dynamiques ainsi que par les propriétés mécaniques et de dissipation d'énergie du sol de fondation sous-jacent.
- La prise en compte de la flexibilité du sol de fondation conduit à une augmentation sensible des périodes propres de vibration quelque soient les caractéristiques géométriques et mécaniques des barrages.
- La période fondamentale de résonance d'un barrage supposé encastrer à sa base, lorsque le rapport des modules d'élasticité sol-barrage tend vers des valeurs supérieures ou égales à 4(effet d'interaction sol-structure négligeable).
- Le pourcentage d'amortissement critique du système sol-barrage équivalent et le facteur d'amortissement hystérétique du sol de fondation sont plus important.
- L'effet de l'interaction sol-structure sur le pourcentage d'amortissement critique du système sol-barrage équivalent peut être négligé pour le rapport d'élasticité solbarrage relativement importants (Ef/Es>4).

Tout travail humain et scientifique étant imparfait par essence et sujet à l'amélioration, nous estimons que nous avons essayé de notre mieux d'évaluer la réponse sismique totale du barrage BOUZINA.

BIBLIOGRAPHIE

La liste des ouvrages:

[5] HANSTEEN O. E., BELL K., «On the accurracy of Mode Superposition Analysis in Structural Dynamics », Earthquake Engineering and Structural Dynamics, vol.7,n°5,p. 405-411,1979.

La liste des projets de fin d étude:

- [4] Mr. AKIL Mounir « Etude du comportement sismique d'un barrage poids compte tenu des effets d'interaction sol-structure », Projet de fin d'étude, école nationale polytechnique, promotion Juin 2015.
- [3]BENMALEK Sidahmed Islam « étude statique et dynamique de l'interaction solstructure (cas d'un barrage en béton) », projet de fin d'études, école nationale polytechnique, promotion 2010, page (13, 15,17).
- [7] Cherid née Touat Djamila « effets de l'interaction dynamique sol-structure sur la réponse sismique des barrages » ; thèse de magister, école nationale polytechnique, juin 1996.
- [6]Salah eddine moussaoui « investigation du comportement sismique des systèmes sols-barrages par la technique des vecteurs de ritz »,école nationale polytechnique, juin 1995.

Les sites internet:

- ▶ [1]http://www.bie.fr/ le : 25/02/2015.
- [2]http://www.icold-cigb.org/FR/Registre_des_barrages/general_synthesis.asp

Annexe A

Tableau A.1: le mode fondamental standard	φ.	10	v)des	s barrages	poids en	1 béton
---	----	----	-------	------------	----------	---------

y/Hs	$\phi_1(y)$
1.00	1.000
0.95	0.866
0.90	0.735
0.85	0.619
0.80	0.530
0.75	0.455
0.70	0.389
0.65	0.334
0.60	0.284
0.55	0.240
0.50	0.200
0.45	0.165
0.40	0.135
0.35	0.108
0.30	0.084
0.25	0.065
0.20	0.047
0.15	0.034
0.10	0.021
0.05	0.010
0.00	0.000

		Pourcentage d'amortissement additionel ξ_f					
Ef/Es	R f	$\eta_f = 0.01$	$\eta_f = 0.10$	$\eta_f = 0.25$	$\eta_f = 0.50$		
5.0	1.043	0.015	0.014	0.019	0.024		
4.5	1.048	0.015	0.016	0.021	0.026		
4.0	1.054	0.015	0.018	0.023	0.030		
3.5	1.062	0.015	0.020	0.027	0.034		
3.0	1.071	0.016	0.024	0.031	0.039		
2.5	1.083	0.020	0.028	0.037	0.046		
2.0	1.099	0.028	0.035	0.046	0.057		
1.5	1.129	0.039	0.047	0.060	0.073		
1.4	1.139	0.042	0.050	0.063	0.078		
1.3	1.150	0.044	0.053	0.068	0.084		
1.2	1.162	0.047	0.058	0.073	0.090		
1.1	1.174	0.050	0.062	0.079	0.096		
1.0	1.187	0.054	0.068	0.086	0.105		
0.9	1.204	0.060	0.075	0.094	0.115		
0.8	1.223	0.068	0.083	0.104	0.127		
0.7	1.248	0.077	0.093	0.116	0.142		
0.6	1.286	0.088	0.105	0.131	0.161		
0.5	1.335	0.103	0.121	0.151	0.186		
0.4	1.400	0.117	0.143	0.178	0.221		
0.3	1.496	0.145	0.173	0.217	0.273		
0.2	1.678	0.186	0.220	0.279	0.362		

<u>Tableau A.2</u>: les valeurs standard s de Rf et ξ_f , le rapport d'allongement de la période et le pourcentage d'amortissement additionnel due a l'interaction rocher de fondation-barrage.

	f1 (y)	F1 (y)		M	l(y)
H(m)	Base flexible	Base rigide	Base flexible	Base rigide	Base flexible	Base rigide
62.7	9.873	12.813	0.000	0.000	0.000	0.000
61.2	8.550	11.096	9.211	11.954	6.909	8.966
56.43	12.084	15.682	19.528	25.344	72.925	94.641
50.16	13.413	17.407	32.277	41.888	232.594	301.856
43.89	13.290	17.248	45.629	59.216	474.759	616.133
37.62	11.998	15.570	58.273	75.625	799.035	1036.972
31.35	10.324	13.398	69.433	90.109	1198.333	1555.172
25.08	7.851	10.188	78.520	101.902	1661.395	2156.126
18.81	5.809	7.539	85.350	110.766	2174.645	2822.211
12.54	3.663	4.753	90.086	116.912	2724.313	3535.560
6.27	1.821	2.363	92.828	120.471	3297.597	4279.556
0	0.000	0.000	93.739	121.652	3882.438	5038.551

<u>**Tableau A.3**</u> : les valeurs des forces latérales et les efforts dans les cas d'un barrage sur une base rigide et flexible.

 $\underline{\textbf{Tableau A.4}}: la distribution des contraintes en amont et en aval par RDM$

		La distribution des contraintes C1(y)				
	Section 1/6*(b^2)	Base	rigide	Base flexible		
H(m)		AMONT (MPA)	AVAL (MPA)	AMONT(MPA)	AVAL (MPA)	
62.7	6.00	0.000	0.000	0.000	0.000	
61.2	6.00	0.147	0.252	0.113	0.194	
56.43	16.87	0.550	0.948	0.424	0.730	
50.16	39.42	0.751	1.293	0.579	0.996	
43.89	71.48	0.845	1.456	0.651	1.122	
37.62	113.01	0.900	1.550	0.693	1.194	
31.35	164.01	0.930	1.601	0.717	1.234	
25.08	224.48	0.942	1.622	0.726	1.250	
18.81	294.42	0.940	1.619	0.724	1.248	
12.54	373.83	0.927	1.597	0.715	1.231	
6.27	462.71	0.907	1.562	0.699	1.204	
0	561.07	0.881	1.517	0.679	1.169	

H(m)	Amont (MPA)	Aval (MPA)
62.7	0.000	0.000
61.2	0.080	0.008
56.43	0.300	0.250
50.16	0.450	0.350
43.89	0.550	0.400
37.62	0.680	0.450
31.35	0.700	0.480
25.08	0.720	0.520
18.81	0.730	0.550
12.54	0.740	0.560
6.27	0.750	0.580
0	0.780	0.600

<u>Tableau A.5</u> : la distribution des contraintes en amont et en aval par MEF

<u>**Tableau A.6**</u> : la comparaison des déplacements entre la méthode RDM et MEF

H(m)	Déplacement (MEF)	Déplacement(RDM)
62.7	0.0074	0.0062
61.2	0.0072	0.0054
56.43	0.0066	0.0046
50.16	0.0059	0.0033
43.89	0.0051	0.0024
37.62	0.0045	0.0017
31.35	0.0035	0.0012
25.08	0.0026	0.0008
18.81	0.002	0.0005
12.54	0.0017	0.0003
6.27	0.0006	0.0001
0	0.0000	0.0000

Annexe B:

La fonction de réponse en fréquence du système SDF équivalent à la réponse de mode fondamental de barrage repose sur une base de rocher flexible avec un réservoir vide est développée dans la présente annexe. La fonction de réponse en fréquence, $Y_1(co)$, de la coordonnée modale fondamentale du système barrage-rocher de fondation peut être exprimée à partir de l'équation. 24 comme :

$$\left\{-\omega^2 M_1 + i\omega 2\xi_1 M_1 \omega_1 + \omega_1^2 M_1 - \omega^2 M_1 \left(1 + \frac{i2\xi_1 \omega}{\omega_1}\right) F(\omega)\right\} \tilde{Y}_1(\omega) = -L_1$$
(1)

La fonction de réponse en fréquence, $\overline{Y}_1(\omega)$, de système SDF équivalent peut être obtenu à partir de l'équation. 30 par évaluation du terme de la flexibilité base-rock dépendant de la fréquence, F (ω), à la fréquence de vibration naturelle, $\widetilde{\omega}_f$, du système SDF équivalent, qui reste à déterminer. Séparer les termes réels et imaginaires dans l'équation. 30, donne :

$$\left\{-\omega^2 M_1 \left(1 + Re[F] - 2\xi_1 \frac{\widetilde{\omega}_f}{\omega_1} Im[F]\right) + i\omega M_1 \left(2\xi_1 \frac{\widetilde{\omega}_f^2}{\omega_1} Re[F]\right) + \omega_1^2 M_1\right\} \bar{\bar{Y}}_1(\omega) = -L_1$$
(2)

Avec

 $F = F(\tilde{\omega}_f)$. Le terme réel $2\xi_1 \frac{\tilde{\omega}_f}{\omega_1} Im[F]$, est un produit de deux termes d'amortissement qui peuvent être négligés en raison de son petit effet sur la réponse du système SDF équivalent.

La fréquence de vibration naturelle $\tilde{\omega}_f$ du système SDOF, est approximativement donnée par la fréquence d'excitation qui annule la partie réelle de l'équation. 31:

$$-\tilde{\omega}_{f}^{2}M_{1}(1+Re[F]) + \omega_{1}^{2}M_{1} = 0$$
(3)

D'où

$$\frac{\tilde{\omega}_f}{\omega_1} = \frac{1}{\sqrt{1 + Re[F]}} = \frac{1}{R_f} \Rightarrow T_f = R_f T_1 \tag{4}$$

On divisant eq 31 par (1+ Re[F]) on obtient :

$$\begin{cases} -\omega^2 M_1 + \frac{i\omega M_1}{1 + Re[\omega]} \left(2\xi_1 \omega_1 - \omega_f Im[F] - 2\xi_1 \frac{\omega_f^2}{\omega_1} Re[F] \right) + \frac{\omega_1^2 M_1}{1 + Re[F]} \right\} \overline{Y}_1(\omega) \\ = \frac{-L_1}{1 + Re[F]} \end{cases}$$
(5)

D'après l'équation $26 \rightarrow \left(\frac{\omega_f}{\omega_1}\right)^2 = \frac{1}{1+Re[F]}$ qui l'on substitue dans l'équation précédente. On obtient donc :

$$\begin{split} \left\{ -\omega^2 M_1 + i\omega M_1 \frac{\omega_f^2}{\omega_1^2} \left(2\xi_1 \omega_1 - \omega_f Im[F] - 2\xi_1 \frac{\omega_f^2}{\omega_1} Re[F] \right) + \omega_f^2 M_1 \right\} \bar{\bar{Y}}_1(\omega) &= -L_1 \frac{\omega_f^2}{\omega_1^2} \\ \left\{ -\omega^2 M_1 + i\omega 2M_1 \omega_f \left(\xi_1 \left(\frac{\omega_f}{\omega_1} \right) - \frac{1}{2} \left(\frac{\omega_f}{\omega_1} \right)^2 Im[F] - \xi_1 \left(\frac{\omega_f}{\omega_1} \right)^3 Re[F] \right) + \omega_f^2 M_1 \right\} \bar{\bar{Y}}_1(\omega) \\ &= -L_1 \frac{\omega_f^2}{\omega_1^2} \end{split}$$

Ce qui s'écrit :

$$\{-\omega^2 M_1 + i\omega 2M_1 \omega_f \tilde{\xi}_f + \omega_f^2 M_1\} \overline{\bar{Y}}_1(\omega) = -L_1 \frac{\omega_f^2}{\omega_1^2}$$
Avec
$$\tilde{\xi}_f = \xi_1 \left(\frac{\omega_f}{\omega_1}\right) - \frac{1}{2} \left(\frac{\omega_f}{\omega_1}\right)^2 Im[F] - \xi_1 \left(\frac{\omega_f}{\omega_1}\right)^3 Re[F]$$

On a $\tilde{\xi}_f$, est le coefficient d'amortissement du système SDOF équivalent , la quantité $\operatorname{Re}[F] = \left(\frac{\omega_f}{\omega_1}\right)^2 - 1$, qui introduite dans l'expression de $\tilde{\xi}_f$ donne :

$$\tilde{\xi}_{f} = \xi_{1} \left(\frac{\omega_{f}}{\omega_{1}}\right) - \frac{1}{2} \left(\frac{\omega_{f}}{\omega_{1}}\right)^{2} Im[F] - \xi_{1} \left(\frac{\omega_{f}}{\omega_{1}}\right)^{3} \left(\left(\frac{\omega_{f}}{\omega_{1}}\right)^{2} - 1\right)$$
$$\tilde{\xi}_{f} = \left(\frac{\omega_{f}}{\omega_{1}}\right)^{3} \xi_{1} - \frac{1}{2} \left(\frac{\omega_{f}}{\omega_{1}}\right) Im[F] \qquad \text{eq } 28$$

D'où

$$\tilde{\xi}_f = \left(\frac{\omega_f}{\omega_1}\right)^3 \xi_1 + \xi_f$$

Avec $\xi_f = -\frac{1}{2} \left(\frac{\omega_f}{\omega_1} \right) Im[F] \text{ eq } 29$

Annexe C:

Donc le système maintenant possède 3 degrés de liberté :

- le déplacement horizontal Y₁ de la masse m ;
- le déplacement horizontal $u_0(t)$ de la fondation ;
- la rotation θ de la fondation autour d'un axe horizontal ;

Les équations d'équilibre dynamique du système s'obtiennent aisément à partir des équations de Lagrange en prenant comme variables généralisées q_i :

$$q_1 = Y_1$$
$$q_2 = u_0$$

$$q_3 = \theta$$

On a la relation évidente entre le déplacement absolu u de la masse m et les variables precedents:

$$u = u_g + u_0 + Y_1 + h\theta$$

Désignant par T l'énergie cinétique totale :

$$T = \frac{1}{2}m(\dot{u}_g + u_0 + Y_1 + h\theta)$$

Par V l'énergie potentielle :

$$V = \frac{1}{2}(Ku^2 + K_h u_0^2 + K_\theta \theta^2)$$

Et par le travail des forces non conservatrices (forces d'amortissement) :

$$\delta W = - \left(C \dot{Y}_1 \delta u + C_h \dot{u}_0 \delta u_0 + C_\theta \theta \dot{\delta} \theta \right)$$

Les équations de Lagrange s'écrivent :

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \left(\frac{\partial T}{\partial q_i}\right) + \left(\frac{\partial V}{\partial q_i}\right) = \frac{\delta W}{\delta q_i}$$

Soit avec les notations précédentes en tenant compte des relations entre l'accélération, vitesse et déplacement

$$x = i \omega x$$
, $\ddot{x} = -\omega^2 x$

Et en introduisant les pourcentages d'amortissement critique :

$$\xi = \frac{\omega C}{2k}$$
, $\xi_h = \frac{\omega C_h}{2k_h}$, $\xi_\theta = \frac{\omega C_\theta}{2k_\theta}$

$$\begin{cases} -m\omega^2(u_0 + Y + h\theta) + K(1 + 2i\xi)Y = m\omega^2 a_g \\ -m\omega^2(u_0 + Y + h\theta) + K_h(1 + 2i\xi_h)Y = m\omega^2 a_g \\ -mh\omega^2(u_0 + Y + h\theta) + K_\theta(1 + 2i\xi_\theta)Y = mh\omega^2 a_g \end{cases}$$

On introduisant les notations suivantes :

$$m\omega_{s}^{2} = K, \qquad m\omega_{h}^{2} = K_{h}, \qquad mh^{2}\omega_{\theta}^{2} = K_{\theta}$$

D'où
$$M_{1}\ddot{Y}_{1}(t) + C_{1}\dot{Y}_{1}(t) + K_{1}Y_{1}(t) + L_{1}u_{0}(t) + L_{1}^{\theta}\theta(t) = -L_{1}ag(t)$$
(6a)
$$L_{1}\ddot{Y}_{1}(t) + m_{t}u_{0}(t) + L_{x}^{\theta} \ \theta(t) + V(t) = -m_{t}ag(t)$$
(6b)

$$L_1^{\theta} \ddot{Y}_1(t) + L_x^{\theta} u_0(t) + I_t \theta(t) + M(t) = -L_x^{\theta} ag(t)$$
(6c)

Annexe D

ō

Barrages avec réservoir vide :

Le maximum d'effets de tremblement de terre associés à la contribution de la n ème mode de vibration barrage à la réponse du barrage peut être représenté par des forces latérales équivalentes :

$$f_n(y) = m_s(y)\phi_n(y)\omega_n^2 \overline{Y}_n \tag{C.1}$$

Dans lequel \overline{Y}_n est la valeur maximale de $Y_n(t)$ qui est régie par la n-ième équation modale :

$$\ddot{Y}_n + 2\xi_n \omega_n \dot{Y}_n + \omega_n^2 Y_n = -\frac{L_n}{M_n} a_g(t)$$
(C.2)

Dans l'équation.11, la masse par unité de hauteur du barrage $m_s(y) = w_s(y)/g$, ω_n et $\phi_n(y)$ sont la fréquence propre et la composante horizontale de la forme de la n ème mode de vibration ; ξ_n est le coefficient d'amortissement de ce mode ; $a_g(t)$ est l'accélération du sol ; La masse généralisée M_n et le coefficient de force de tremblement de terre généralisé L_n sont :

$$M_n = \int_{\substack{0\\H_s}}^{H_s} m_s(y)\phi_n^2(y)dy$$
(C.3)
$$L_n = \int m_s(y)\phi_n(y)dy$$
(C.4)

Tout comme le cas des bâtiments à plusieurs étages, les effets d'interaction sol-structure peuvent être négligés dans la procédure simplifiée pour calculer les contributions des modes de vibration plus élevés dans la suite du séisme de barrages. Par conséquent, ces effets d'interaction n'ont pas été inclus dans l'équation (10) et (12).

Puisque les périodes des modes de vibration plus élevés des barrages-poids en béton sont très courts, une approximation de $Y_n(t)$ est donnée par une solution statique de l'équation.11, à savoir, en négligeant les termes inertielle et de l'amortissement :

$$\omega_n^2 Y_n(t) = -\frac{L_n}{M_n} a_g(t), \qquad n = 2,3,..$$
(C.4)

Ainsi, \overline{Y}_n c'est la valeur maximale de $Y_n(t)$, est donnée par

$$\omega_n^2 \overline{Y}_n = -\frac{L_n}{M_n} \overline{a}_g \tag{C.5}$$

Où \overline{a}_g est l'accélération maximale du sol. Substitution l'équation 5 en 1 donne :

$$f_n(y) = -\frac{L_n}{M_n} m_s(y) \phi_n(y) \overline{a}_g \tag{C.6}$$

De la même manière que le déplacement démontré avant, nous pourrions commencer par l'expression des forces latérales équivalentes maximales de la réponse spectrale :

$$f_n(y) = -\frac{L_n}{M_n} m_s(y) \phi_n(y) S_a(T_n, \xi_n)$$
(C.7)

D'où le mode fondamental est donnée par :

$$f_1(y) = -\frac{L_1}{M_1} m_s(y) \phi_1(y) S_a(\tilde{T}_1, \tilde{\xi}_1)$$
(C.8)

$$\left\{-\omega^2 M_1(1+Re[F])+i\omega M_1\left(2\xi_1\frac{\widetilde{\omega}_f^2}{\omega_1}Re[F]\right)+\omega_1^2 M_1\right\}\overline{\bar{Y}}_1(\omega)=-L_1$$

ANNEXE DES TABLEAUX

	Ef/Es	$ ilde{T}_{f}$	$ ilde{\xi}_f$	${\sf Sa}(\widetilde{T}_f,\widetilde{\xi}_f)$
	4	0.168	6.07	0.292
η_{f} =0.10	1	0.190	9.79	0.241
	0.2	0.268	23.06	0.116
	4	0.168	6.57	0.283
η_{f} =0.25	1	0.190	11.59	0.225
	0.2	0.268	28.96	0.105
	4	0.168	7.27	0.272
η_{f} =0.50	1	0.190	13.49	0.211
	0.2	0.268	37.26	0.093

Tableau 1 : les propriétés de mode fondamental et leurs pseudo-accélérations associées.

Tableau 2 : les propriétés de chaque bloc en mode fondamental simplifié.

Bloc	Ws(t/m)	Centre de gravité	$\phi_1(y)$	$w_s * \phi_1(y)$	$w_s * \phi_1(y)^2$
1	22.41	61.95	0.968	21.69	21.00
2	95.38	58.57	0.880	83.93	73.86
3	198.59	53.08	0.614	121.93	74.87
4	281.72	46.87	0.452	127.34	57.56
5	364.94	40.64	0.332	121.16	40.22
6	448.15	34.39	0.238	106.66	25.39
7	531.37	28.13	0.193	102.55	19.79
8	614.58	21.87	0.108	66.37	7.17
9	697.79	15.61	0.065	45.36	2.95
10	781.05	9.35	0.034	26.55	0.90
11	864.227	3.09	0.100	86.42	8.64
Total	4900.15			909.98	332.35

I. <u>Le mode fondamental</u> 1. <u>Distribution des forces latérales</u>

Tableau 3a : distribution des forces latérales pour $\eta_f = 0.10$ en KN/m:

	f1(y) pour $\eta_f = 0.1$					
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2			
62.7	119.33	98.73	47.60			
61.2	103.34	85.50	41.22			
56.43	146.06	120.84	58.26			
50.16	162.12	134.13	64.67			
43.89	160.64	132.90	64.08			
37.62	145.01	119.98	57.84			
31.35	124.78	103.24	49.77			
25.08	94.89	78.51	37.85			
18.81	70.22	58.09	28.01			
12.54	44.27	36.63	17.66			
6.27	22.01	18.21	8.78			
0	0.000	0.000	0.000			

	f1(y) pour $\eta_f = 0.25$					
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2			
62.7	115.80	91.96	42.82			
61.2	100.28	79.64	37.09			
56.43	141.73	112.55	52.41			
50.16	157.32	124.93	58.18			
43.89	155.88	123.79	57.65			
37.62	140.72	111.75	52.04			
31.35	121.09	96.16	44.78			
25.08	92.08	73.12	34.05			
18.81	68.14	54.11	25.20			
12.54	42.96	34.12	15.89			
6.27	21.35	16.96	7.90			
0	0.000	0.000	0.000			

Tableau 3b : distribution des forces latérales pour $\eta_f = 0.25$ en en KN/m:

Tableau 3c : distribution des forces latérales pour $\eta_f = 0.50$ en en KN/m:

	f1(y) pour $\eta_f=0.5$				
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2		
62.7	111.34	86.13	38.03		
61.2	96.42	74.59	32.93		
56.43	136.28	105.42	46.55		
50.16	151.26	117.02	51.66		
43.89	149.88	115.95	51.19		
37.62	135.30	104.67	46.21		
31.35	116.42	90.07	39.76		
25.08	88.53	68.49	30.24		
18.81	65.51	50.68	22.38		
12.54	41.31	31.95	14.11		
6.27	20.53	15.88	7.01		
0	0.000	0.000	0.000		

2. Les contraintes :

		c1(y) pour eta f=0.10					
H(m)	Section	Es/	Es=4	Es/E	Es=1	Es/Es=0.2	
11(11)	1/6*(b^2)	AMONT	AVAL	AMONT	AVAL	AMONT	AVAL
62.7	6.00	0.000	0.000	0.000	0.000	0.000	0.000
61.2	6.00	0.136	0.235	0.113	0.194	0.054	0.094
56.43	16.87	0.512	0.883	0.424	0.730	0.204	0.352
50.16	39.42	0.699	1.204	0.579	0.996	0.279	0.480
43.89	71.48	0.787	1.356	0.651	1.122	0.314	0.541
37.62	113.01	0.838	1.443	0.693	1.194	0.334	0.576
31.35	164.01	0.866	1.492	0.717	1.234	0.345	0.595
25.08	224.48	0.877	1.511	0.726	1.250	0.350	0.603
18.81	294.42	0.875	1.508	0.724	1.248	0.349	0.601
12.54	373.83	0.864	1.488	0.715	1.231	0.345	0.593
6.27	462.71	0.845	1.455	0.699	1.204	0.337	0.580
0	561.07	0.820	1.413	0.679	1.169	0.327	0.563

Tableau 4a : distribution des contraintes pour $\eta_f = 0.10$ en MPA:

Tableau 4b : distribution des contraintes pour $\eta_f = 0.25$ en MPA:

		c1(y) pour $\eta_f = 0.25$						
H(m)	Section	Es/	Es=4	Es/E	Es=1	Es/Es	Es/Es=0.2	
11(11)	1/6*(b^2)	AMONT	AVAL	AMONT	AVAL	AMONT	AVAL	
62.7	6.00	0.000	0.000	0.000	0.000	0.000	0.000	
61.2	6.00	0.132	0.228	0.105	0.181	0.049	0.084	
56.43	16.87	0.497	0.856	0.395	0.680	0.184	0.317	
50.16	39.42	0.679	1.169	0.539	0.928	0.251	0.432	
43.89	71.48	0.764	1.316	0.607	1.045	0.283	0.487	
37.62	113.01	0.813	1.401	0.646	1.112	0.301	0.518	
31.35	164.01	0.840	1.447	0.667	1.149	0.311	0.535	
25.08	224.48	0.851	1.466	0.676	1.164	0.315	0.542	
18.81	294.42	0.850	1.463	0.675	1.162	0.314	0.541	
12.54	373.83	0.838	1.444	0.666	1.146	0.310	0.534	
6.27	462.71	0.820	1.412	0.651	1.121	0.303	0.522	
0	561.07	0.796	1.371	0.632	1.089	0.294	0.507	

		$c1(y)$ pour $\eta_f = 0.50$						
U(m)	Section	Es/	Es=4	Es/E	Es=1	Es/Es	Es/Es=0.2	
11(11)	1/6*(b^2)	AMONT	AVAL	AMONT	AVAL	AMONT	AVAL	
62.7	6.00	0.000	0.000	0.000	0.000	0.000	0.000	
61.2	6.00	0.127	0.219	0.099	0.170	0.043	0.075	
56.43	16.87	0.478	0.823	0.370	0.637	0.163	0.281	
50.16	39.42	0.652	1.124	0.505	0.869	0.223	0.384	
43.89	71.48	0.734	1.265	0.568	0.979	0.251	0.432	
37.62	113.01	0.782	1.347	0.605	1.042	0.267	0.460	
31.35	164.01	0.808	1.392	0.625	1.077	0.276	0.475	
25.08	224.48	0.818	1.410	0.633	1.091	0.280	0.481	
18.81	294.42	0.817	1.407	0.632	1.088	0.279	0.481	
12.54	373.83	0.806	1.388	0.623	1.074	0.275	0.474	
6.27	462.71	0.788	1.357	0.610	1.050	0.269	0.464	
0	561.07	0.765	1.318	0.592	1.020	0.261	0.450	

Tableau 4c : distribution des contraintes pour $\eta_f = 0.50$ en MPA:

II. <u>LES Modes supérieurs :</u>

Tableau 5_: Distribution des forces latérales en KN/m:

	fsc(y)
H(m)	Es/Es=4,1,0.2
62.7	-36.17
61.2	-28.53
56.43	-34.85
50.16	-24.07
43.89	-4.87
37.62	21.07
31.35	49.22
25.08	81.98
18.81	112.24
12.54	143.12
6.27	172.23
0	201.23

		Csc (y)		
H(m)	Section	Es/Es=4,1,0.2		
	1/6*(b^2)	AMONT	AVAL	
62.7	6.00	0.000	0.000	
61.2	6.00	-0.040	-0.068	
56.43	16.87	-0.143	-0.247	
50.16	39.42	-0.183	-0.314	
43.89	71.48	-0.187	-0.322	
37.62	113.01	-0.175	-0.301	
31.35	164.01	-0.152	-0.261	
25.08	224.48	-0.120	-0.206	
18.81	294.42	-0.081	-0.140	
12.54	373.83	-0.038	-0.065	
6.27	462.71	0.010	0.017	
0	561.07	0.060	0.104	

Tableau 6 : la distribution des Les contraintes en MPA:

III. La combinaison des deux modes :1. Distribution des forces latérales

Tableau 7a : La distribution des forces latérales pour $\eta_f = 0.10$ en KN/m:

	f(y) combiné				
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2		
62.7	124.69	105.14	59.78		
61.2	107.21	90.13	50.13		
56.43	150.16	125.77	67.89		
50.16	163.90	136.27	69.00		
43.89	160.71	132.99	64.26		
37.62	146.53	121.81	61.56		
31.35	134.14	114.37	70.00		
25.08	125.40	113.51	90.29		
18.81	132.40	126.39	115.68		
12.54	149.81	147.73	144.20		
6.27	173.63	173.19	172.46		
0	201.23	201.23	201.23		

	Fcombiné(y)				
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2		
62.7	121.31	98.81	56.05		
61.2	104.26	84.59	46.79		
56.43	145.95	117.82	62.94		
50.16	159.15	127.23	62.96		
43.89	155.96	123.89	57.85		
37.62	142.29	113.72	56.14		
31.35	130.71	108.02	66.54		
25.08	123.28	109.85	88.77		
18.81	131.31	124.60	115.04		
12.54	149.42	147.13	144.00		
6.27	173.55	173.06	172.41		
0	201.23	201.23	201.23		

Tableau 7b : La distribution des forces latérales pour $\eta_f = 0.25$ en KN/m:

Tableau 7c : La distribution des forces latérales pour $\eta_f = 0.50$ en KN/m:

	Fcombiné(y)				
H(m)	Es/Es=4	Es/Es=1	Es/Es=0.2		
62.7	117.07	93.42	52.48		
61.2	100.55	79.86	43.57		
56.43	140.66	111.03	58.14		
50.16	153.16	119.47	56.99		
43.89	149.96	116.05	51.42		
37.62	136.93	106.77	50.79		
31.35	126.40	102.64	63.28		
25.08	120.66	106.82	87.38		
18.81	129.96	123.15	114.45		
12.54	148.96	146.64	143.81		
6.27	173.45	172.96	172.37		
0	201.23	201.23	201.23		

3. Les contraintes :

Tableau 8a : La distribution des contraintes pour $\eta_f = 0.10$ en MPA:

	Combinaiso pour B	on des modes Ef/Es=1	Combinaison des modes pour Ef/Es=4		Combinaison des modes pour Ef/Es=0.2	
H(m)	Amont	Aval	Amont	Aval	Amont	Aval
62.7	0.000	0.000	0.000	0.000	0.000	0.000
61.2	0.142	0.245	0.120	0.206	0.067	0.116
56.43	0.533	0.917	0.448	0.771	0.250	0.430
50.16	0.723	1.246	0.607	1.045	0.333	0.574
43.89	0.810	1.394	0.678	1.167	0.365	0.629
37.62	0.857	1.475	0.715	1.232	0.377	0.650
31.35	0.879	1.515	0.732	1.261	0.377	0.650
25.08	0.886	1.525	0.736	1.267	0.370	0.637
18.81	0.879	1.514	0.729	1.255	0.359	0.617
12.54	0.865	1.489	0.716	1.233	0.347	0.597
6.27	0.845	1.455	0.699	1.204	0.337	0.581
0	0.822	1.416	0.681	1.173	0.333	0.573

Tableau 8b : La distribution des contraintes pour $\eta_f = 0.25$ en MPA:

	Combinaiso pour F	on des modes Ef/Es=4	Combinaison des modes		Combinaison des modes pour Ef/Es=0.2	
H(m)	Amont	Aval	Amont	Aval	Amont	Aval
62.7	0.000	0.000	0.000	0.000	0.000	0.000
61.2	0.138	0.238	0.112	0.194	0.063	0.109
56.43	0.518	0.891	0.420	0.724	0.233	0.401
50.16	0.703	1.210	0.569	0.980	0.310	0.534
43.89	0.786	1.355	0.635	1.093	0.339	0.584
37.62	0.832	1.433	0.669	1.152	0.348	0.599
31.35	0.854	1.471	0.684	1.179	0.346	0.596
25.08	0.860	1.481	0.687	1.182	0.337	0.580
18.81	0.853	1.470	0.680	1.170	0.325	0.559
12.54	0.839	1.445	0.667	1.148	0.312	0.538
6.27	0.820	1.412	0.651	1.121	0.303	0.522
0	0.798	1.375	0.635	1.093	0.300	0.517

	Combinaiso	on des modes	Combinaison des modes		Combinaison des	
	pour E	Ef/Es=4	pour E	Ef/Es=1	modes pour	Ef/Es=0.2
H(m)	Amont	Aval	Amont	Aval	Amont	Aval
62.7	0.000	0.000	0.000	0.000	0.000	0.000
61.2	0.133	0.230	0.106	0.183	0.059	0.101
56.43	0.499	0.860	0.397	0.683	0.217	0.374
50.16	0.678	1.167	0.537	0.924	0.288	0.496
43.89	0.758	1.305	0.598	1.030	0.313	0.539
37.62	0.801	1.380	0.630	1.084	0.319	0.550
31.35	0.822	1.416	0.643	1.108	0.315	0.542
25.08	0.827	1.425	0.644	1.110	0.304	0.524
18.81	0.821	1.414	0.637	1.097	0.291	0.500
12.54	0.807	1.390	0.625	1.076	0.278	0.478
6.27	0.788	1.358	0.610	1.050	0.269	0.464
0	0.768	1.322	0.595	1.025	0.268	0.462

Tableau 8c : La distribution des contraintes pour $\eta_f = 0.50$ en MPA:

4. Les déplacements :

> Pour $\eta_f = 0.10$

	Déplacement en (mm)			
H(m)	Ef/Es=4	Ef/Es=1	Ef/Es=0.2	
62.7	8.9	7.4	3.6	
61.2	8.7	7.2	3.5	
56.43	8.0	6.6	3.2	
50.16	7.1	5.9	2.8	
43.89	6.2	5.1	2.5	
37.62	5.4	4.5	2.1	
31.35	4.3	3.5	1.7	
25.08	3.1	2.6	1.2	
18.81	2.5	2	1.0	
12.54	2.1	1.7	0.8	
6.27	0.7	0.6	0.3	
0	0.0	0	0.0	

▶ Pour $\eta_f = 0.25$

	Déplacement en (mm)				
H(m)	Ef/Es=4	Ef/Es=1	Ef/Es=0.2		
62.7	8.6	6.9	3.2		
61.2	8.4	6.7	3.1		
56.43	7.8	6.2	2.9		
50.16	6.9	5.5	2.5		
43.89	6.0	4.8	2.2		
37.62	5.2	4.1	1.9		
31.35	4.2	3.3	1.5		
25.08	3.0	2.4	1.1		
18.81	2.4	1.9	0.9		
12.54	2.0	1.6	0.7		
6.27	0.7	0.5	0.2		
0	0	0	0		

> Pour $\eta_f = 0.50$

	Déplacement en (mm)			
H(m)	Ef/Es=4	Ef/Es=1	Ef/Es=0.2	
62.7	8.3	6.4	2.8	
61.2	8.1	6.3	2.8	
56.43	7.5	5.8	2.6	
50.16	6.6	5.1	2.3	
43.89	5.8	4.5	2.0	
37.62	5.0	3.9	1.7	
31.35	4.0	3.1	1.4	
25.08	2.9	2.2	1.0	
18.81	2.3	1.8	0.8	
12.54	1.9	1.5	0.7	
6.27	0.6	0.5	0.2	
0	0.0	0.0	0.0	