REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

LAVALEF

المدرسة الوطنية المتعددة التقنيات Ecole Nationale Polytechnique

JV Gas SH-BP-Statoil In Salah

Département de Génie Chimique Laboratoire Valorisation des énergies fossiles

Mémoire de Projet de Fin d'Etudes pour l'obtention du diplôme d'ingénieur d'état en

Génie Chimique

Optimisation du système de décarbonatation au site gazier de *Krechba*

Réalisé par : Newfel FARADJI

Sous la direction de : M. Rabah BOUARAB M. Hamza GHELLAB Professeur Ingénieur Exploitation ENP BP

Présenté et soutenue publiquement le 20/06/2019

Composition du Jury :

Président	M. Toudert AHMED-ZAID	Professeur	ENP
Promoteur	M. Rabah BOUARAB	Professeur	ENP
Examinateurs	M. Ammar SELATNIA	Professeur	ENP
	Mme. Ouardia REBAS	Docteur	ENP

ENP 2019

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

LAVALEF

المدرسة الوطنية المتعددة التقنيات Ecole Nationale Polytechnique

JV Gas SH-BP-Statoil In Salah

Département de Génie Chimique Laboratoire Valorisation des énergies fossiles

Mémoire de Projet de Fin d'Etudes pour l'obtention du diplôme d'ingénieur d'état en

Génie Chimique

Optimisation du système de décarbonatation au site gazier de *Krechba*

Réalisé par : Newfel FARADJI

Sous la direction de : M. Rabah BOUARAB M. Hamza GHELLAB Professeur Ingénieur Exploitation ENP BP

Présenté et soutenue publiquement le 20/06/2019

Composition du Jury :

Président	M. Toudert AHMED-ZAID	Professeur	ENP
Promoteur	M. Rabah BOUARAB	Professeur	ENP
Examinateurs	M. Ammar SELATNIA	Professeur	ENP
	Mme. Ouardia REBAS	Docteur	ENP

ENP 2019

Dédicaces

Au nom du **Dieu** tout puissant, je dédie ce modeste travail à :

La mémoire de ma grand-mère, ma tante et mon cousin ;

Mes **parents**, les deux personnes qui ont beaucoup sacrifié pour moi, aidé et soutenu, sans eux je n'aurais eu la volonté d'atteindre ce niveau ;

Ma sœur Kaouther qui a toujours été là pour moi ;

Toute ma famille ;

Tous mes amis, camarades et plus particulièrement Mlle Meriem Idir, et Rihab Benaissa;

Toute la famille d'AIESEC qui m'a toujours soutenu et aidé vraiment ;

Tous les enseignants de **Polytech** ainsi que l'**EPST Tlemcen** en particulier qui ont contribué à ma formation durant tout le parcours de mes études jusqu'à ce jour ;

Toute l'équipe de BP et surtout Mr Hamza Ghellab, Said Aneche, Jean Noel, Abdelkader et Mlle Meriem Zouyed ;

Tous ceux qui m'aiment et que j'aime, et à tous ceux qui m'ont encouragé et cru on moi;

Tous les mots ne sauraient exprimer la gratitude, l'amour, le respect, la reconnaissance...

Remerciements

Tout d'abord, je remercie **Dieu** tout puissant de m'avoir donné le courage et la patience durant toutes ces longues années d'études.

Toutes mes infinies gratitudes à mon promoteur Mr **Rabah Bouarab**, pour son encadrement, sa qualité humaine, sa patience et son dynamisme et de m'avoir guidé et conseillé pour mener à bien ce travail.

Je remercie aussi les membres du jury, professeur **T.Ahmed-Zaid**, professeur **A.Selatnia**, docteur **O.Rebas**, qui m'ont fait l'honneur d'accepter le jugement de mon travail.

Je remercie également Mr Hamza Ghellab pour son encadrement à BP, pour sa disponibilité et ses suggestions, et pour m'avoir permis l'accès aux informations nécessaires pour la réalisation de ce travail. Ainsi que Mr Said Aneche et Jean Noel pour l'aide qu'ils m'ont fourni, ainsi que toute l'équipe de BP.

Je souhaite adresser aussi tous mes remerciements aux personnels du service formation de **Krechba** de **In Salah Gas**, Mr **Abdelkader** et Mlle **Meriem Zouyed** qui m'ont aidé et ont ainsi contribué à l'élaboration de ce travail.

Enfin, je remercie tous ceux qui ont contribué de près ou de loin à l'élaboration de ce modeste travail, trouvent ici l'expression de mes profondes gratitudes et respects.

تحسين نظام نزع الغازات الحمضية فى الحقل الغازي بكريتشبا

ملخص:

يعتبر الغاز الطبيعي مصدرا هاما للطاقة مع أثر بيئي منخفض مقارنه مع غير ها من الطاقات الأحفورية. إن وجود ثاني أكسيد الكربون في الغاز الطبيعي يؤثر مباشرة على سلامة المعدات ، كما أن له خاصية التمديد التي تخفض من القيمة الطاقوية للغاز و بالتالي يؤدي إلى ارتفاع تكلفة النقل. الهدف من هذا العمل هو تحسين نظام نزع الغازات الحمضية على مستوى الحقل الغازي بكريتشبا. يعتمد نظام نزع الغازات الحمضية على ظاهرة الامتصاص ، في هذا العمل طبقنا الامتصاص الكيميائي باستخدام ميثيل ثنائي إثانول أمين كوسيط امتصاص. أمين كوسيط امتصاص. أكريت المحاكاة باستعمال البرنامج أسبن هايزيس، النتائج التي تم الحصول عليها تظهر أن الوحدة قللت من محتوى غاز ثنائي أكسيد الكربون من 6,94 بالمائة في الخام إلى أقل من 3,0 بالمائة في الغاز المعالج.

الكلمات الدالة: الغاز الطبيعي، نزع الغازات الحمضية، ثنائي أكسيد الكربون، امتصاص، ميثيل ثنائي إثانول أمين، معالجة الغاز.

Optimization of decarbonation system at Krechba's gas site

Abstract:

The natural gas is considered as an important source of energy with a reduced environmental impact compared to other fossil energies.

The presence of CO_2 in natural gas acts directly on the integrity of the equipments, it's regarded as a thinner reducing the energetic value of gas while increasing transport cost.

The objective of this work is to optimize the decarbonation system on the level of gas field of *Krechba*.

Decarbonation is based on the phenomenon of absorption, in this work we applied chemical absorption by using amine MDEA like absorber, simulation was made by the software *Aspen HYSYS*, the results showed that the unit reduces the content of CO_2 from 6,94% molar in the crude to less than 0,3% molar in the treated gas.

Key Words : Natural gas, Decarbonation, CO₂, Absorption, MDEA, Treatment of gas.

Optimisation du système de décarbonatation au site gazier de Krechba

Résumé :

Le gaz naturel est considéré comme une source importante d'énergie avec un impact environnemental réduit par rapport aux autres énergies fossiles.

La présence du CO_2 dans le gaz naturel agit directement sur l'intégrité des équipements. Il est considéré comme diluant réduisant la valeur énergétique du gaz tout en augmentant le coût de transport.

L'objectif de ce travail, est d'optimiser le système de décarbonatation au niveau du champs gazier de *Krechba*. La décarbonatation est basée sur le phénomène d'absorption, dans ce travail on a appliqué l'absorption chimique en utilisant l'amine MDEA comme absorbeur, la simulation a été faite par le logiciel *Aspen HYSYS*, les résultats obtenus montrent que l'unité réduit la teneur du CO_2 de 6,94% molaire dans le brut à moins de 0,3% molaire dans le gaz traité.

Mots clés : Gaz naturel, Décarbonatation, CO₂, Absorption, MDEA, Traitement de gaz.

LISTE DES TABLEAUX

LISTE DES FIGURES

LISTE DES ABREVIATIONS

INTRODUCTION GÉNÉRALE	
------------------------------	--

PARTIE THEORIQUE

CHAPITRE I : LE GAZ NATUREL

I.1. Origine de gaz naturel	13
I.2. Types de gaz naturel	13
I.3. Caractéristiques du gaz naturel	14
I.4. Les techniques de traitement et réinjection de gaz	15
I.5. Gaz naturel dans le monde	16
I.6. Le gaz naturel en Algérie	17

CHAPITRE II : LA ZONE D'ETUDE KRECHBA

II.1. Situation géographique	20
II.2. Evolution du champ gazier de <i>Krechba</i>	21
II.3. Les sites d'ISG	22
II.4. Technique de traitement du gaz à <i>Krechba</i>	23
II.5. Spécification commercial du gaz de <i>Krechba</i>	28

CHAPITRE III : LE PROCEDE DE DECARBONATATION

III.1. L'acidité de gaz naturel	.30
III.2. Les procédés de décarbonatation par absorption	30

PARTIE PRATIQUE

CHAPITRE IV : SIMULATION DU PROCEDE DE DECARBONATTION

IV.1. Présentation du logiciel Aspen HYSYS	35
IV.2. Description du procédé d'absorption	35

TABLE DES MATIERES

IV.3. Modèles thermodynamiques	
IV.4. Modélisation du système étudié	40
CHAPITRE V : RESULTATS ET DISCUSSION	
CONCLUSION GÉNÉRALE	73
BIBLIOGRAPHIE	74

TABLEAU I : Spécifications typiques pour un gaz commercial
TABLEAU II : Spécifications commercials du gaz de Krechba
TABLEAU III : Classification des gaz selon leur composition (CNDG) 30
TABLEAU IV : Les limitations de solubilité d'équilibre en utilisant le modèle Amine package (CNDG) 37
TABLEAU V.1 : Résultats du cas chantier (simulation sur <i>preheater</i> , absorbeur, LP)52
TABLEAU V.2 : Résultats du cas chantier (simulation sur HP, stripper, reflux)
TABLEAU V.3 : Résultats du 2 ^{eme} cas (simulation sur <i>preheater</i> , absorbeur, LP)
TABLEAU V.4 : Résultats du 2 ^{eme} cas (simulation sur HP, stripper, reflux)
TABLEAU V.5 : Résultats du 3 ^{eme} cas (simulation sur <i>preheater</i> , absorbeur, LP)
TABLEAU V.6 : Résultats du 3 ^{eme} cas (simulation sur HP, stripper, reflux)
TABLEAU V.7 : Résultats du 4 ^{eme} cas (simulation sur <i>preheater</i> , absorbeur, LP)61
TABLEAU V.8 : Résultats du 4 ^{eme} cas (simulation sur HP, stripper, reflux)62
TABLEAU V.9 : Résultats du 4 ^{eme} cas (simulation sur AMINE IN, 041 IN, 041 OUT)63
TABLEAU V.10 : Résultats du 4 ^{eme} cas (simulation sur TEE-100, TEE-101, MIX-101, MIX-102)
TABLEAU V.11 : Résultats du 5 ^{eme} cas (simulation sur <i>preheate</i> r, absorbeur, LP)66
TABLEAU V.12 : Résultats du 5 ^{eme} cas (simulation sur HP, stripper, reflux)67
TABLEAU V.13 : Résultats du 6 ^{eme} cas (simulation sur <i>preheater</i> , absorbeur, LP)69
TABLEAU V.14 : Résultats du 6 ^{eme} cas (simulation sur HP, stripper, reflux)70
TABLEAU V.15 : Quantité de CO2 présente dans le gaz traité au MDEA

LISTE DES FIGURES

FIGURE I.1 : Roche à gaz à condensat	13
FIGURE I.2 : Roche à gaz associé	14
FIGURE I.3 : Mode de récupération par injection	16
FIGURE I.4 : Evolution des réserves de gaz naturel dans le monde	16
FIGURE I.5: Evolution de la production mondiale du gaz naturel pa	ır région
	17
FIGURE I.6 : Voies d'exportations gazières Algériennes	
FIGURE II.1 : Situation géographique d'In Salah gaz	20
FIGURE II.2 : Concept de développement	20
FIGURE II.3 : diagramme en bloc de l'installation de <i>Krechba</i>	
FIGURE II.4 : Projet de compression de <i>Krechba</i>	
FIGURE II.5 : In Salah CPF	23
FIGURE II.6 : Hydrates de Methane	24
FIGURE II.7: Absorbeur et trains de regeneration de la solution d'amine	
FIGURE III.1: procédé de la décarbonatation	
FIGURE III.2 : Schéma fonctionnel de la décarbonatation à base d'amine MDEA	32
FIGURE IV.1 : Choix du modèle thermodynamique (Amine Package)	
FIGURE IV.2 : Choix des composants du fluide	
FIGURE IV.3 : Fenêtre d'information du Gaz <i>Inlet</i>	
FIGURE IV.4 : PFD de simulation de procédé d'absorption par Amine	
FIGURE IV.5 : Convergence de l'absorbeur de CO ₂	
FIGURE IV.6 : Convergence du regenerateur d'Amine	
FIGURE IV.7 : Simulation au complet de l'unite d'absorption	40
FIGURE IV.8 : Schéma fonctionnel d'unité d'élimination de CO ₂	
FIGURE IV.9 : Description du système de décarbonatation	
FIGURE IV.10 : Prechauffeur et refroidisseur de gaz	
FIGURE IV.II : L'absorbeur de CO_2	
FIGURE IV.12 : Ballon de Flash HP et BP	43
FIGURE IV.13 : Ballon et pompes de reflux	43
FIGURE IV.14 : Décarbonisateur de CO ₂	44
FIGURE IV.15 : Pompes d'Amine riche et échangeurs d'Amine riche/pauvre	45
FIGURE IV.16 : Rebouilleurs du décarbonisateur de CO ₂	45
FIGURE IV.17 : Pompes de surpression et circulation d'Amine pauvre	
FIGURE IV.18 : Filtres d'Amine	47
FIGURE V.1 : Simulation des procédés d'absorption et de régénération des gaz aci	des50
FIGURE V.2 : Flux entrant et sortant au niveau du <i>Stripper</i>	51
FIGURE V.3 : Quantité de CO ₂ dans le gaz traité en fonction de la température du	
gaz	71
FIGURE V.4 : Quantité de CO ₂ dans le gaz traité en fonction de la température de l'	'amine
pauvre	72

AGRU: Acid Gas Removal Unit **DEA** : Diethanolamine **DGA** : Diglycolamine **DIPA**: di-isopropanolamine **MEA**: Monoethanolamine **MDEA** : Methyldiethanolamine **TEA**: Triethanolamine CNDG : Centre National de Dispatching de Gaz CPF: Central Processing Facility ou Installation centrale de procédé **ISG** : In Salah Gaz HMR: Hassi R'Mel IA: In Amenas **REG**: Reggan **TEG:** Teguentour **GBF:** Garet el Befinat HMN: Hassi moumen **KBA:** Krechba **GMD:** Gour Mahmoud **PFD:** Process Flow Diagrams **PCI:** Pouvoir calorifique inferieur **PCS:** Pouvoir calorifique supérieur ppm : Partie par million TEG: Tri éthylène glycol **BDV** : blow down valve **PSV** : pressure safety valve C₁: Methane (CH₄) C_2 : Ethane (C_2H_6) C₃: Propane (C₃H₈) C_4 : Butane (C_4H_{10}) C_5 : Pentane (C_5H_{12}) HP: High pressure / Ballon à haute température LP: Low pressure / Ballon à basse température **P** : Pression GNL : Gaz naturel liquéfié, GPL : Gaz pétrolier liquéfié **BP** : British Petroleum **VSD** : Variable Speed Drive **ON-SPEC** : Conforme aux spécifications **OFF-SPEC** : Non-conforme aux spécifications

Le gaz naturel, est un mélange gazeux d'hydrocarbures naturellement présent dans certaines roches poreuses. Il est extrait par forage et répond à l'accroissement des besoins actuels en énergie : combustible fossile, carbochimie,...

Le transport du gaz naturel, après son traitement, consiste à l'acheminer depuis la zone d'extraction jusqu'à la zone de consommation afin d'alimenter les réseaux de distribution.

La production, le traitement et surtout le transport du gaz naturel représente donc un enjeu technique et économique important, sachant que la plus part des réserves de gaz naturel dans le monde sont situées en mer ou dans des zones difficiles (Arctique, Sibérie, Désert,...).

Le rôle essentiel de l'unité de traitement est de séparer la partie liquide (condensât - GPL - eau) de la partie gazeuse (gaz humide) dans une première étape. La deuxième étape concerne son traitement en vue de produire du condensât, du GPL et du gaz sec,... Il est difficile de produire et de traiter le gaz naturel, en toute sécurité, en prenant compte :

i) L'aspect environnemental après un torchage important de gaz polluants.

ii) Un taux de production élevé du gaz d'exportation ON-SPEC.

iii) L'intégrité des équipements.

Le gaz naturel peut contenir des quantités très variables de gaz acides (CO_2 , H_2S) et autres contaminants (eau, mercaptans,...) qu'il est indispensable d'éliminer. La présence du CO_2 dans le gaz naturel provoque la corrosion des équipements ainsi que son comportement comme diluant, réduisant la valeur énergétique du gaz tout en augmentant le coût de transport.

L'élimination du CO₂ se fait souvent par des procédés d'absorption utilisant des solvants chimiques. L'opération qui consiste à éliminer le CO₂ est appelée la décarbonatation.

Le but de cette étude est d'utiliser le simulateur Aspen *HYSYS*, en mode statique, pour étudier l'opération de décarbonatation au champ gazier de *Krechba* sur catalyseur chimique type MDEA. Le travail est divisé en 5 chapitres :

- ✓ Le premier chapitre présente les généralités sur le gaz naturel dans le monde et en Algérie.
- ✓ Le deuxième chapitre donne une vue d'ensemble sur le champ gazier de *Krechba*.
- ✓ Le troisième chapitre décrit le procédé de décarbonatation.
- ✓ Le quatrième chapitre est consacré au procédé de simulation *HYSYS*.
- ✓ Le cinquième chapitre donne les résultats de la simulation ainsi qu'une discussion des différents cas étudiés.

Partie théorique

Chapitre I Le gaz naturel

Introduction :

Le gaz naturel est un combustible fossile. Il s'agit d'un mélange d'hydrocarbures trouvé naturellement sous forme gazeuse (dont la composition et la nature changent suivant les régions d'extraction) et d'eau avec quelques impuretés en proportions variables (N_2 , CO_2 , H_2S , composés sulfurés, etc.). C'est la deuxième source d'énergie la plus utilisée dans le monde après le pétrole et son usage se développe rapidement.

Il dispose de nombreuses qualités, abondance relative, souplesse d'utilisation, qualités écologiques, prix compétitifs. La mise en œuvre de cette énergie repose sur la maîtrise technique de l'ensemble de la chaîne gazière, qui va de l'extraction aux utilisateurs, en passant par le stockage, le transport, la distribution.

I.1.Origine de gaz naturel :

Les différentes compositions du gaz naturel sont dues à la diversité de ses origines :

I.1.1.Un gaz bactérien (biochimique) :

Son origine est l'action de bactéries sur les débris organiques qui s'accumulent dans les sédiments.

I.1.2.Un gaz thermique :

Les sédiments sont portés à des températures et pressions croissantes, subissant ainsi une dégradation thermique qui va donner à coté des hydrocarbures lors de l'évolution des bassins sédimentaires, une grande quantité de composés non hydrocarbonés.

I.1.3.Un gaz inorganique :

Les gaz volcaniques ou les sources hydrothermales contiennent parfois du méthane et les inclusions fluides des minéraux des roches métamorphiques ou magmatiques renferment souvent des hydrocarbures légers, principalement du méthane.

I.2. Types de gaz naturel :

L'apparition d'une phase liquide dépend des conditions de température et de pression dans le réservoir et en surface, ce qui conduit à distinguer les types suivants :

a- Gaz à condensat : Formation d'une phase hydrocarbure liquide dans la roche réservoir (Figure I.1).

FIGURE I.1 : Roche à gaz à condensat.

b – Gaz sec et gaz humide : coexistence avec une phase d'eau uniquement.

c- Gaz associé : Coexistence avec une phase huile dans le réservoir (Figure I.2).

FIGURE I.2 : Roche à gaz associé.

I.3. Caractéristiques du gaz naturel :

Selon la norme ISO 15970/71:2008, le gaz naturel possède les caractéristiques suivantes :

a- Masse volumique :

C'est la masse de l'unité de volume du gaz exprimé en Kg/m³. Elle est fonction de la température et de la pression. En d'hors des conditions spécifiées, on se réfère à des conditions dites normale ou standard.

b- La densité :

Elle est définie pour un gaz comme étant le rapport de sa masse volumique à celle de l'air dans des conditions bien déterminées de température et de pression. Comme elle peut être obtenue à partir de sa masse moléculaire que l'on peut définir à partir de sa composition chimique. [1]

c- Volume massique :

Il représente le volume occupé par unité de masse de gaz, exprimé en m³/Kg.

d- Composition chimique :

En plus du méthane C_1 , le gaz naturel peut contenir d'autres hydrocarbures tels que l'éthane C_2 , le propane C_3 , le butane C_4 , le pentane C_5 et à des concentrations plus faibles des hydrocarbures lourds. Les hydrocarbures C_3 - C_4 forment la fraction GPL. La fraction la plus lourde correspond aux hydrocarbures à cinq atomes de carbone ou plus, appelée gazoline (essence).

Le gaz naturel peut contenir des constituants autres que des hydrocarbures notamment de l'eau et des gaz acides CO_2 , H_2S ainsi que de l'azote de l'hélium et de faibles quantités d'hydrogène ou d'argon.

e- Pouvoir calorifique :

Il est défini comme étant la chaleur dégagée par la combustion d'une unité de volume du gaz, mesurée dans les conditions standards (25° C). Le pouvoir calorifique pour le gaz naturel s'exprime en J/m³. On distingue deux pouvoirs calorifiques :

1. Pouvoir calorifique supérieur PCS : Il correspond à la chaleur dégagée lorsque tous les produits de combustion sont ramenés à la température ambiante, l'eau formée étant à l'état liquide.

2. Pouvoir calorifique inférieur PCI : Il correspond à la combustion dans laquelle l'eau reste à l'état vapeur ; le PCI diffère du PCS d'une quantité de chaleur latente de vaporisation de l'eau.

I.4.Les techniques de traitement et réinjection du gaz naturel :

I.4.1.Traitement de gaz :

Le traitement du gaz naturel consiste à séparer les constituants présents à la sortie du puits tel que l'eau, le gaz acide et les hydrocarbures lourds pour amener le gaz à des spécifications de transport ou des spécifications commerciales.

La répartition de ces traitements entre les lieux de production et de livraison résulte des considérations économiques. Il est généralement préférable de ne réaliser sur le site de production que les traitements qui rendent le gaz transportable. Les principaux traitements qui sont effectués sont :

Le gaz naturel ainsi que ses différentes fractions liquides éventuellement contenues dans l'effluent des puits sont transportées sous forme de :

Gaz naturel comprimé (transport par gazoduc).

- Gaz du pétrole liquéfié (GPL).
- Gaz naturel liquéfié (GNL).
- Produits chimiques divers (méthanol, ammoniac, urée ...etc.)

Il peut être ainsi nécessaire d'éliminer au mois partiellement :

- L'hydrogène sulfuré H₂S : toxique et corrosif.
- Le dioxyde de carbone CO₂ : corrosif.
- Le mercure : corrosif dans certains cas.
- L'eau conduisant à la formation des hydrates.
- Les hydrocarbures qui se condensant dans les réseaux de transport.
- L'azote. [1]

Les spécifications à respecter pour le gaz traité sont liées aux conditions de transport qui visent à éviter la corrosion et le blocage de la conduite par les hydrates. Nous imposons dans ce cas une valeur maximale aux points de rosée (eau et hydrocarbures). La valeur du point de rosée hydrocarbures dépend des conditions de transport et peut être par exemple fixée à -2 °C pour éviter tout risque de formation de phase liquide. Les spécifications typiques pour un gaz commercial en suivant les normes imposées par le CNDG (centre national de distribution de gaz) sont données dans le tableau I:

TABLEAU I : Spécifications typiques pour un gaz commercial.

Point de rosée HC	-2 °C à 70 bars
Point de rosée H ₂ O	-8°C à 80 bars
Teneur en CO ₂	≤0.3%

I.4.2. Technique de réinjection du gaz

a-Objectif de la réinjection :

La récupération des hydrocarbures liquides, limitée par suite de la condensation au niveau des réservoirs, assure le maintien de la pression du gisement, améliore la récupération des hydrocarbures bruts et permet la récupération des gaz injectés à travers les puits à gaz.

b- Principe de réinjection :

Pour permettre l'injection du gaz associé dans le gisement, il faut augmenter sa pression à une valeur suffisante afin de vaincre la pression naturelle de gisement. Ceci revient à fournir une certaine énergie au gaz réinjecté (Figure I.3). [2]

FIGURE I.3 : Mode de récupération par injection.

I.5.Gaz naturel dans le monde

I.5.1. Réserves de gaz :

A la fin de l'année 2017 les réserves totales de gaz dans le monde sont estimées a 193.5 milliards de m^3 (Selon *BP*). Les réserves prouvées de gaz représentent, en équivalent énergétique, plus de 95 % des réservés prouvées du pétrole brut.

L'évolution des réserves de gaz naturel à travers le monde sont illustrée par la figure I.4.

FIGURE I.4 : Evolution des réserves de gaz naturel dans le monde.

Il ressort de ces illustrations que les réserves de gaz se trouvent essentiellement en Europe, Eurasie et au Moyen Orient. En ce qui concerne les réserves prouvées, elles se situent pour 33.7% en Europe et pour 40.5% en *Moyen Orient*. Les parts des autres régions étant toutes inferieures à 25%.

Par comparaison avec le pétrole brut, dont les deux tiers des réserves prouvées se trouvent au Proche-Orient, le gaz naturel représente une diversification géographique des sources d'énergie dans le monde.

I.5.2. Production mondiale du gaz naturel :

Les principaux pays producteurs durant les années 2015, 2016, et 2017 sont l'Amérique du nord (*Etats-Unis*) avec un taux de production de $950*10^9$ m³ suivi des pays de la CEI (représentés par la *Russie*) avec $800*10^9$ m³. D'autres Etats possèdent également une certaine importance tels que le *Moyen-Orient* ($600*10^9$ m³), *l'Asie-Océanie* ($550*10^9$ m³), *l'Europe, l'Afrique,* et *l'Amérique du sud* (environ $200*10^9$ m³ chacun).

FIGURE I.5 : Evolution de la production mondiale du gaz naturel par région.

I.6. Gaz naturel en Algérie :

L'Algérie est considérée comme étant un important producteur de gaz au niveau mondial. A la fin de 1953, plusieurs recherches aboutirent à la mise en évidence d'une zone très riche en gaz notamment dans la région de *Hassi R'Mel*. Le premier forage HR1 a été réalisé en 1956. Huit puits sont alors réalisés, délimitant ainsi une structure anticlinale constituant un grand réservoir de gaz.

Depuis la mise en exploitation, plusieurs étapes ont été marquées avant d'atteindre la phase actuelle de développement (Figure I.6):

• De 1961 à 1971 : la production annuelle de gaz brut passe de 0,8 à 3,2 milliards de m^3 et celle du condensat passe de 126 000 à 623 000 tonnes.

• De 1971 à 1974 : plusieurs études ont permis de définir le mode d'exploitation du champ. Une extension du centre de traitement est réalisée par adjonction de six nouvelles unités d'une capacité totale de 300.106 m³/j.

• Depuis 1980, l'Algérie a pu réaliser diverses installations de liquéfaction de gaz naturel permettant sa commercialisation sous forme liquide et son transport dans des méthaniers vers le marché extérieur (*Etats-Unis, Europe*, etc.).

CHAPITRE I

LE GAZ NATUREL

• Au cours des dix dernières années les bassins de *Berkine* et d'*Illizi* ont enregistré les taux de réussite les plus élevées dans le domaine de l'exploration, avec respectivement 51% et 50%. **[3]**

FIGURE I.6 : Voies d'exportations gazières Algériennes.

Chapitre II: La zone d'étude Krechba

CHAPITRE II

In Salah Gaz est une filiale de Sonatrach qui travaille en collaboration avec BP et Statoil depuis 2004 pour la production et la commercialisation du gaz. Ce partenariat vise à développer Sept champs principaux : Krechba, Teg, Reg, Garet el Befinat, Hassi Moumene, In Salah et Gour Mahmoud.

II.1.Situation géographique :

L'appellation du projet *În Salah Gaz* est dérivée du nom de la ville d'*In Salah* qui est située à 1230 km au sud d'*Alger* (Figure II.1). Elle comporte des ressources parmi les plus riches du pays. **[4]**

FIGURE II.1 : Situation géographique d'In Salah gaz. [5]

Selon un plan de développement de la première phase, le gaz déshydraté provenant du *Teg* et *Reg* est envoyé vers les installations centrales de traitement de *Krechba* (*CPF*) à travers le gazoduc 38 (Figure II.2). **[6]**

FIGURE II.2 : Concept de développement. [7]

Le gaz du champ de *Krechba* est combiné avec ceux venant de *Teg* et de *Reg*. Le mélange de gaz provenant des trois sites est traité avec une solution d'amine pour éliminer le CO_2 avant son acheminement vers *Hassi R'Mel*.

Une fois à *Hassi R'Mel* le gaz est re-comprimé puis acheminé au collecteur du Centre National de distribution du Gaz. **[8]**

II.2. Evolution du champ gazier de Krechba :

La production de gaz provenant de *Reg*, *Teg* et *de Krechba* a démarré en juillet 2004, et l'évolution des ces champs a passé par plusieurs phases, qui sont

A-phase I :

Durant la première année, la pression d'alimentation était maintenue entre 83 et 85 bars afin d'arriver à une capacité de gaz de vente d'environ 9 billion m^3/an . Cependant, il a été constaté au bout de quelques années que la pression des puits commençait à décliner drastiquement. Cette situation a requis la compression du gaz pour soutenir la production.

Les installations de traitement se composent d'un système de déshydratation à Glycol assurant l'ajustement du point de rosée et d'une unité de séparation et de refroidissement du gaz via le dispositif turbo- expander.

Les flux de gaz en provenance de *Krechba*, *Reg et Teg* sont mélangés dans le *CPF* de *Krechba*. Le CO_2 est alors extrait du courant gazeux par un processus d'absorption à la solution d'amine. Le gaz traité à *Krechba* est en suite transporté à *Hassi R'Mel* à travers le pipeline de diamètre 48'' le long des 456 km (Figure II.3). [9]

FIGURE II.3 : Diagramme en bloc de l'installation de Krechba. [10]

B- Phase II : Projet de compression d'*ISG* :

Les pressions d'écoulement en tête de puits du champ de *Krechba* ne cessent de décroitre durant ces dernières années. Afin de maintenir une production de gaz stable et continue pour une longue période à partir du champ de *Krechba*, il est préconisé de réduire la pression d'écoulement par des boosters de stations de compression qui seront installés au niveau du site de *Krechba*. La mise en place de ces installations de compression facilitera la réduction de pression en tête de puits des réservoirs existants de 25 à 50 bars (Figure II.4). Le projet doit satisfaire les pics de production sur des périodes prolongées correspondent à un débit horaire maximum de 10,35*10⁹ m³ par an. **[11]**

FIGURE II.4 : Projet de compression de Krechba. [12]

Cette installation est dotée d'équipements du train de compression tel que l'épurateur, le refroidisseur et la boucle de recyclage. Elle se compose d'un seul train de compression entrainé par un moteur électrique *VSD*. Les besoins additionnels d'électricité associés à ce compresseur seront fournis par le nouveau turbogénérateur de *Krechba*. [13]

II.3.Les sites d'ISG :

Le projet *In Salah Gaz* est basé sur le développement de sept champs de gaz tel que décrit plus haut. Les champs *Krechba, Teg et Reg* sont appelés gisements de gaz nord, alors que les champs de *Gour Mahmoud, In Salah, Hassi Moumene,* et *Garet El-Benifat* sont appelés gisements de gaz sud.

II.3.1.*Reg* :

Ce site se compose d'un système de collecte de gaz et d'installations de traitement. Ces dernières sont dotées d'un séparateur tri-phasique, d'un système de déshydratation au Glycol, et 2 trains de régénération de glycol.

Le Projet Compression *Reg* comporte deux trains de compresseurs, à un seul étage, et l'équipement auxiliaire nécessaire aux installations de traitement actuelles.

Il est prévu, à l'avenir, au niveau de ce projet des points de raccordement d'un 2ème étage de compression dans le cas de chute pression du réservoir. [14]

II.3.2. *Teg* :

Ce site se compose d'un système de collecte de gaz et d'installations de traitement. Ces dernières sont dotées d'un séparateur tri-phasique, d'un système de déshydratation au Glycol et deux trains de régénération de glycol. Le gaz déshydraté sera acheminé vers le CPF Krechba par gazoduc de 38 pouces.

II.3.3. In Salah CPF :

Ce projet dit Champs du Sud est raccordé à quatre Champs satellites : *Garet el Befinat (GBF), Hassi Moumene (HMN), In Salah (IS)* et *Gour Mahmoud (GMD)* et ce dans le but de soutenir le plateau de production lorsque celle du nord est en difficulté (Figure II.5). **[15]**

FIGURE II.5 : In Salah CPF.

II.3.4. Hassi R'Mel :

Le gaz traité provenant de l'installation centrale de *Krechba* circule dans un pipeline (450 Km, 48") pour atteindre la station de re-compression GR3 de Hassi R'Mel située à 2 Km au Sud Ouest des stations existantes GR2 et GR3 et à environ 7 Km du point de raccordement des collecteurs du Centre National de Dispatching du Gaz.

La station de re-compression est conçue pour augmenter la pression et réguler la température du gaz d'exportation au niveau du point de raccordement du CNDG à 71 bar et 50°C au maximum. **[16]**

II.4. Techniques de traitement de gaz à Krechba :

D'une façon générale, le traitement du gaz naturel consiste en un retrait de certains constituants en sortie des puits de production pour le rendre compatible avec les spécifications requises pour son transport et surtout pour obtenir un produit d'exportation *ON-SPEC* commercialisable et des condensats stabilisés, d'où nous pouvons citer 3 techniques de traitement du gaz naturel qui sont : la déshydratation, la décarbonatation, l'absorption chimique.

II.4.1.La déshydratation :

La déshydratation est un procédé de réduction de la teneur en eau au moyen de techniques de traitement appropriées afin d'éviter les problèmes de risque de :

- corrosion des pipes,
- formation d'hydrates causant le bouchage des conduites,
- solidification dans les procédés cryogéniques,...

a- Formation des hydrates de gaz naturel :

a.1-Nature et Structure :

Un hydrate est une combinaison physique de l'eau et d'autres petites molécules de gaz produisant un solide qui a une apparence semblable à de la glace. Les hydrates sont donc des cristaux qui ont l'aspect de la neige. En effet, en présence d'un gaz léger, les molécules d'eau peuvent former une structure cristalline régulière comprenant des cavités ou cages, dans lesquelles sont piégées les molécules de gaz (Figure II.6). De manière générale, la formation des hydrates est favorisée par la présence de fines particules jouant le rôle de germes de cristallisation.

LA ZONE D'ETUDE KRECHBA

FIGURE II.6 : Hydrates de Méthane.

Les hydrates associent à un hydrocarbure donnent un nombre déterminé de molécules d'eau et ce nombre dépend de la taille de molécules d'hydrocarbure, d'où on peut distinguer deux structures cristalline pour les hydrates :

a. Les petites molécules des gaz (CH_4 , C_2H_6 , et H_2S) froment avec l'eau, un corps centré de structure cubique s'appelle (structure I).

b. Les grandes molécules (C_3H_8 et i- C_4H_{10}) forment la (structure II) avec 17 molécules d'eau par une molécule du gaz.

a.2-Prévention des hydrates :

Les hydrates ne pouvant se former sans que l'eau liquide soit en contact avec le gaz, et pour éliminer ce problème, certaines étapes peuvent être suivies :

- Chauffage des conduites de transport pour maintenir le gaz au dessus de la température de formation des hydrates.

- Réduction de la pression dans les conduites en isotherme.

-L'emploi des solvants miscibles en phase gazeuse qui permettent d'abaisser la température de formation des hydrates en modifiant la fugacité de l'eau.

- Utilisation d'inhibiteurs tels que les alcools, qui servent à abaisser le point de congélation de l'eau.

- Des constituants tels que l'ammoniaque, qui agissent sur sa structure.

- Des sels, qui en solution réduisent son activité. [17]

b- Les méthodes de déshydratation :

La présence d'eau entraîne différents problèmes pour l'exploitation suivant les conditions de température et de pression qui règnent dans une installation, la vapeur d'eau peut se condenser et provoquer la formation des hydrates, se solidifier ou favoriser la corrosion si le gaz contient des composants acides. Pour éviter ce problème, il est nécessaire de réduire la teneur en eau du gaz au moyen de techniques de traitement appropriées, telles que :

- ✓ L'absorption
- ✓ L'adsorption
- ✓ La perméation gazeuse

c- La déshydratation au niveau de Krechba :

La déshydratation du gaz est opérée dans 2 trains identiques afin d'éliminer toute condensation à l'intérieur du réseau de pipelines inter-champs y compris les points morts

tels que les racleurs pour prévenir la corrosion des pipelines.

Les gisements de Reg et Teg contiennent un volume de dioxyde de carbone considérable et des traces de H₂S, qui en présence d'eau, deviennent hautement corrosifs pour l'acier dur particulièrement sous des conditions relatives de basses températures.

c.1- Le Glycol :

Le glycol est un produit chimique ayant deux groupes d'hydroxydes séparés $(OH)_2$. Il contribue à une grande solubilité avec l'eau (hygroscopicité) et à la réactivité avec beaucoup de solution organique sur une chaine de carbone généralement linéaire et aliphatique. La formule générale des glycols est $HO(C_2H_4)_nHO$.

c.2- Propriétés physico-chimiques du Tri-Ethylène Glycol :

- Formule moléculaire brute : C₆H₁₄O₄
- Propriétés physiques État physique : Liquide
- Masse moléculaire : 150,17 g/mol
- Masse volumique : 1,1274 g/ml à 20 °C
- Solubilité dans l'eau : Miscible
- Densité de vapeur (air=1) : 5,17
- Point de fusion : -5,00 °C
- Point d'ébullition : 285,00 °C
- Tension de vapeur : < 0,01 mm de Hg (0,00133322 kPa) à 20 °C
- Concentration à saturation : 13,1578 ppm
- Facteur de conversion (ppm->mg/m³) : 6,142
- Apparence: Liquide transparent, incolore, inodore
- Point d'éclair : 177,00 °C Coupelle fermée
- Point d'éclair : 165,50 °C Coupelle ouverte
- T° d'auto inflammation : 371 °C
- Limite inférieure d'explosibilité : 0,9% à 25 °C

• Inflammabilité et explosibilité: Peut s'enflammer s'il est chauffé fortement et en présence d'une source d'ignition.

c.3- Procédé de Déshydratation au Glycol :

Le procédé de déshydratation s'opère lorsque le Tri-Ethylène Glycol et le gaz ascendant sont mis en contact à travers une section de garnissage où aura lieu l'absorption de la vapeur d'eau.

Le glycol saturé en vapeur d'eau est ensuite dirigé vers une section de régénération pour le débarrasser de l'eau absorbée. Le glycol, préchauffé, entre dans la colonne de régénération où il s'écoule à travers un lit de garnissage puis dans le rebouilleur. Les vapeurs sortant du rebouilleur montent à travers le lit de garnissage de la colonne de régénération où elles entrent en contact avec le glycol et le débarrassent de la majeure partie de son eau.

II.4.2.La décarbonatation :

Deux trains d'extraction de CO_2 en service traitent le courant combiné de gaz de *Teg* et de *Reg* ainsi que les installations de traitement de *Krechba* afin de satisfaire les spécifications commerciales relatives au gaz produit à savoir 0,3 %mol en CO_2 (Figure II.7).

L'unité d'élimination de gaz acide est constituée d'une section d'absorption de CO_2 où le gaz acide est piégé par procédé d'absorption sur MDEA et d'une section de régénération où

l'agent absorbant est récupéré pour usage en circuit à boucle fermée.

a- Section d'absorption de CO₂ :

• Préchauffeur & Colonne d'absorption :

Le gaz d'alimentation arrive aux deux trains à partir du collecteur d'admission de *CPF Krechba* à une pression d'environ 70 à 73 bars et une température de 25 à 35 °C. Le préchauffeur de gaz HA-028101 permet d'augmenter la température du gaz d'alimentation au environ de 55 °C par échange de chaleur avec la solution d'amine régénérée et refroidie par un système de ventilateur à air.

Le gaz d'alimentation préchauffé est acheminé vers le bas de la colonne d'absorption verticale où il est mis en contact avec un flux à contre-courant d'une solution d'amine pauvre descendant à travers la colonne. La solution d'amine pauvre entre dans le haut de la colonne à environ 55°C via un distributeur de liquides. La colonne est munie d'un seul lit à garnissage de 8 mètres de hauteur qui permet un contact intime entre le courant de gaz et l'agent d'absorption.

La solution d'amine absorbe le CO_2 et le H_2S se trouvant dans le gaz. Le gaz traité quitte le haut de la colonne d'absorption à une pression d'environ 71 bars et une température d'environ 55°C et passe dans le contacteur de Glycol de gaz d'exportation.

b- Section de régénération :

• Ballon HP

La solution d'amine saturée de CO_2 passe dans le ballon flash HP à une température de l'ordre de 83 °C et à une pression de 6 bars. La détente entre l'absorbeur et le ballon HP entraîne la séparation instantanée du CO_2 de la solution.

La vapeur instantanée riche en CO_2 (environ 50 % mole) provenant du ballon HP est acheminée sous contrôle de pression soit vers le ballon de *reflux* soit vers la torche gaz acide pour l'élimination des vapeurs en excès.

Le ballon est muni d'un lit à garnissage (hauteur de 3 m) pour assister la libération du méthane et du CO_2 de la solution d'amine riche.

La solution passe ensuite sous contrôle de niveau vers le ballon flash BP. La détente de pression entre le ballon HP et le ballon BP entraîne la libération d'un surcroît de CO_2 de la solution d'amine riche.

• Ballon BP & Condenseur

Il est muni d'un lit à garnissage (hauteur de 6 m). Il fonctionne à une pression de 1,7 bar L'amine circule vers le bas, à contre-courant avec le CO_2 venant du stripper.

Le courant de gaz sortant du ballon BP à 78 °C passe au condenseur à air HC-28104, où il est refroidi jusqu'à 55 °C régulée par l'utilisation combinée des ventilateurs à pas variable.

Les pompes d'amine riche fonctionnent sur contrôle de débit en cascade avec le niveau du ballon BP.

• Ballon et pompes de reflux

Le gaz refroidi passe vers le ballon de reflux où l'eau condensée est recueillie puis repompée vers le ballon BP par les pompes sous contrôle de niveau. L'eau recyclée à partir des installations de compression de CO₂, rejoint le ballon de reflux. L'eau d'appoint déminéralisée est également fournie au ballon de reflux.

Le courant de gaz acide humide, à une pression de 1,5 bars et une température de 55 °C, passe ensuite vers les installations de compression de CO_2 pour réinjection. En cas d'indisponibilité de système de réinjection, le gaz est éventé à partir de l'évent de gaz acide.

• Pompes amine riche, échangeurs à Plaques, Stripper et rebouilleurs

La solution d'amine riche venant du ballon BP est véhiculée par les pompes d'amine riche PA 028103A/B sous une pression de refoulement de 5 barg avant d'être introduite dans les échangeurs à plaques HB-028102A/B/C/D. La solution d'amine riche préchauffée, alimente par la suite le haut du stripper VE-028104 où le CO₂ est dégagé de la solution. Le stripper est muni de deux lits de garnissage (hauteur de 5 m chacun). Le stripper fonctionne à une pression de 1,8 bars au sommet de la colonne, la chaleur étant fournie par des rebouilleurs qui emploient l'eau chaude.

Le courant de tête de vapeur de CO₂ venant de stripper passe vers le Ballon flash BP.

La solution d'amine régénérée à une température de 121°C passe dans l'échangeur à plaques.

• Pompes Booster, Echangeur solution pauvre et pompes de circulation

La solution refroidie est augmentée en pression d'environ 5 bar, par les pompes booster. La solution d'amine riche est refroidie ensuite à 62 °C dans l'aéro-réfrigérant HC-0128103 qui est refroidi à l'air.

La solution régénérée refroidie est ensuite augmentée en pression par la pompe de circulation PA -028102A/B à environ 75 bars et encore refroidie à 55 °C contre du gaz d'alimentation dans le préchauffeur d'alimentation en gaz HA -028101 et puis est envoyée vers le CO_2 absorber. Les pompes de circulation fonctionnent sur contrôle de débit.

• Filtres

Sur chaque train, 15 % de la solution, passe du refoulement aéro-Réfrigérant de l'amine pauvre vers un système de filtration. Ce système est constitué d'un filtre de garde CB028101A/B en amont, d'un filtre à charbon active CB-028102 et d'un filtre mécanique CB028203A/B placé en aval du filtre à charbon. **[18]**

FIGURE II.7 : Absorbeur et trains de régénération de la solution d'amine.

II.4.3.Absorption chimique en utilisant la solution d'amine :

Les solvants chimiques sont généralement des solutions aqueuses à base d'amines. Les amines sont des molécules organiques comportant une ou plusieurs fonctions amines (–N). Le groupement amine assure la basicité de la solution nécessaire à la réaction avec les gaz acides.

Ces amines sont classées suivant le degré de substitution de leur atome d'azote. Pour le captage du CO_2 :

> **Primaire :** la monoéthanolamine (MEA) et la diglycolamine (DGA). Ce sont des amines très réactives avec les gaz acides et qui permettent des séparations de grande pureté. Cependant leur capacité d'absorption du CO2 est relativement faible :

Secondaire : la diéthanolamine (DEA) et la diisopropanolamine (DIPA). Elles sont moins réactives que les amines primaires et ne sont donc à utiliser que pour des objectifs moins exigeants en termes de pureté. La dégradation avec le COS et le CS_2 est aussi moindre que pour les amines primaires. La tension de vapeur de la DEA est assez faible, limitant les pertes par évaporation. Par contre, il existe plusieurs réactions irréversibles avec le CO_2 , formant des produits de dégradation corrosifs.

➤ -Tertiaire : la N-méthyldiéthanolamine (MDEA) et la Triéthanolamine (TEA). Ces amines sont encore moins réactives que les amines secondaires mais leur capacité d'absorption est plus grande.

La MDEA n'agit pas directement avec le CO_2 mais comme un catalyseur pour l'hydratation du CO_2 . La solution aqueuse peut contenir 60 mass.% de MDEA sans que les pertes par évaporation soient trop importantes. De plus elle est très résistante aux dégradations thermiques et chimiques. [19]

II.5. Spécification commercial du gaz de Krechba :

Le groupement d'*In Salah Gaz (Sonatrach BP-Statoil)* a signé un contrat de vente de $9*10^9 \text{ m}^3$ de gaz par an avec le centre national de distribution de gaz naturel (CNDG), depuis 2010 le réservoir de district 3 a commencé à dégrader, le gaz doit répondre aux principales spécifications de vente, parmi ces spécifications on trouve le point de rosé d'eau et la teneur en gaz acide CO₂.

Ce tableau suivant montre les 3 spécifications exigé par le centre national de distribution de gaz naturel CNDG :

Indelate in a specifications commercials du gaz de micenda, [20]		
Point de rosé d'hydrocarbure	-2 °C	
Point de rosé d'eau	-8 °C	
Teneur en gaz acide CO ₂	<0.3%	

TABLEAU II : Spécifications commercials du gaz de Krechba. [20]

Chapitre III Le procédé de décarbonatation

Introduction :

Le dioxyde de carbone est un composé inorganique dont la formule chimique est CO_2 . Il se présente, dans les conditions normales de température et de pression, comme un gaz incolore, inodore et à la saveur piquante.

Le gaz carbonique est un puissant gaz à effet de serre. Il est produit lors des processus de combustion. Pour cette raison, la production industrielle et les émissions automobiles représentent un problème écologique majeur. Il est présent dans l'atmosphère dans une proportion approximativement égale à 0,0375 % en volume, soit 375 ppm en volume. Mais elle augmente invariablement, d'environ 2 ppm en volume/an, du fait de l'usage excessif des combustibles fossiles.

III.1.L'acidité du gaz naturel :

Le gaz de *Krechba* est un gaz humide acide car sa composition en hydrocarbures est supérieure à 10%. Le tableau III exprime la classification des gaz selon leur composition.

Catégorie	1	2	3	4
Hydrocarbure	<10%	<10%	>10%	>10%
H ₂ S	<1	>1	<1	>1
CO ₂	<2	>2	<2	>2
Appellation	Gaz sec	Gaz sec	Gaz humide	Gaz humide
	non acide	acide	non acide	acide

Tableau III : Classification des gaz selon leur composition (CNDG).

III.2.Les procédés de décarbonatation par Absorption :

L'absorption consiste en un transfert de matière entre une phase gazeuse et une phase liquide. Cette dernière étant constituée d'un corps pur ou d'un mélange de plusieurs substances (solvant). Pour que l'absorption soit possible, la pression partielle du soluté dans le gaz doit être supérieure à sa pression partielle dans l'absorbant, c'est- à- dire le gaz et l'absorbant ne peuvent pas être en équilibre.

Le procédé de décarbonatation peut être effectué par plusieurs voies (absorption ou adsorption) comme le montre la figure III.1. La voie utilisée au niveau du site gazier de *Krechba* l'absorption chimique organique à base d'amine MDEA.

FIGURE III.1 : Procédé de la décarbonatation. [16]

Le choix des conditions opératoires est fonction de la solubilité du gaz, qui augmente quand sa pression partielle augmente. On a donc toujours intérêt à faire fonctionner les colonnes d'absorption à la pression la plus haute possible. Ce sera en général la pression à laquelle le gaz à traiter est disponible.

La solubilité du gaz est plus grande quand la température du solvant est faible. En conséquence dans les installations de traitement de gaz par absorption chimique, il y'a une colonne d'absorption et une colonne de régénération. On refroidit toujours le solvant régénéré tout en chauffant la solution qui sort au fond de l'absorbeur.

III.2.1.Procédé d'absorption chimique :

L'absorption chimique nécessite une colonne de séparation (à plateaux ou à garnissage) dans laquelle le transfert de matière est favorisé par une importante surface de contact entre le liquide et le gaz.

Le gaz à purifier est introduit en pied de colonne d'absorption, tandis que la solution (l'amine) est introduite en tête de colonne.

La solution riche en soluté (L'amine) s'écoulant en pied de colonne est réchauffée, dans un échangeur croisé avec la solution pauvre, c'est à dire avec la solution régénérée. Cette solution riche est alors introduite dans la colonne de régénération.

Dans les unités traitant les gaz acides à pression élevée un ballon de détente maintenu à pression intermédiaire est parfois utilisé avant la colonne de régénération. Le solvant pauvre provenant de la colonne de régénération, après un premier refroidissement dans l'échangeur avec le solvant riche, puis refroidissement plus poussé avec de l'air ou de l'eau, est réintroduit dans la colonne d'absorption. Le gaz séparé sortant de la tête de la colonne de régénération contient de la vapeur d'eau, laquelle est condensée puis recyclée dans la colonne de régénération. Le gaz acide restant est envoyé vers un stockage.

La chaleur nécessaire pour la régénération est apportée par de la vapeur par l'intermédiaire d'un rebouilleur. Elle permet d'élever la température de la solution riche jusqu'à la température de bulle du solvant pauvre, d'apporter la chaleur de dissociation des composés ayant réagi, de déplacer l'équilibre de réaction afin de libérer le gaz acide, et de vaporiser la solution aqueuse faisant office de reflux dans la colonne.

a- Procédé amine :

Les amines sont largement utilisées pour l'élimination du CO_2 dans le flux de gaz naturel. Leur réactivité et leur disponibilité à bas coût, particulièrement la monoéthanolamine (MEA) et la diéthanolamine (DEA),... les rendent très attractives.

La monoéthanolamine (MEA) est très réactive et peut absorber simultanément CO_2 et H_2S . Sa faible masse moléculaire de la MEA lui confère un pouvoir absorbant important pour les solutions modérément concentrées.

La diéthanolamine (DEA) aide à surmonter les limitations d'absorption du MEA et peut être utilisée même en présence de COS et CS_2 . C'est une amine secondaire moins efficace pour l'absorption du CO_2 . Les produits de dégradation de la DEA sont moins corrosifs que ceux de la MEA.

La diglycolamine (DGA) est aussi employée pour le traitement du gaz naturel pour son pouvoir d'élimination des gaz H_2S et CO_2 mais aussi le COS et les mercaptans.

La méthyldiéthanolamine (MDEA) élimine sélectivement le H_2S et une grande partie de CO₂, et le Schéma fonctionnel détaillé de la décarbonatation à base d'amine MDEA est donné dans la figure III.2.

FIGURE III.2 : Schéma fonctionnel de la décarbonatation à base d'amine MDEA.

b- Procédé de carbonate de potassium :

Il utilise du carbonate de potassium pour éliminer le CO_2 du gaz naturel selon le processus :

 $K_2CO_3 + CO_2 + H_2O \longrightarrow 2KHCO_3$

Cela fonctionne mieux pour une gamme de pression partielle du CO_2 entre 30 à 90 psia. Le carbonate de potassium chaud est utilisé fréquemment pour un gaz naturel ayant des teneurs moyennes en gaz acides de 5 à 35 % en volume.

La réaction avec le dioxyde de carbone donne deux parties de bicarbonate de potassium pour chaque partie de carbonate de potassium qui a réagi. Par conséquent, la concentration de la solution du solvant utilisé (K_2CO_3) pour l'enlèvement de CO_2 est contrôlée par la solubilité du bicarbonate de potassium au lieu de la solubilité du carbonate de potassium.

III.4.2.Procédé d'absorption physique :

L'élimination du CO_2 par des procédés d'absorption physique est basée sur la solubilité du CO_2 dans le solvant. Cette dernière dépend de la pression partielle et de la température du gaz d'alimentation. Elle est favorisée par une basse température et une pression partielle de CO_2 élevée. La régénération du solvant se fait à une pression plus basse ou par entraînement à la vapeur.

Partie pratique

Chapitre IV Simulation du procédé de décarbonatation
Introduction

La simulation est un outil d'aide à la décision, exploitée dans différents domaines de l'engineering et de la recherche scientifique en général, permettant d'analyser le comportement d'un système et d'optimiser son fonctionnement. Un module n'est pas une représentation exacte de réalité physique, mais il est seulement apte à restituer les caractéristiques les plus importants du système d'analyse.

Le but de ce travail est de proposer un modèle de simulation du procédé de décarbonatation par absorption d'amine et d'optimiser les paramètres de marche de ce système sur logiciel Aspen *HYSYS*.

IV.1. Présentation du logiciel Aspen HYSYS

HYSYS est un outil de dimensionnement utilisé pour s'assurer que les conceptions optimales sont bien identifiées. Il est aussi utilisé pour modéliser les unités existantes et s'assurer que les équipements sont conformes aux spécifications prescrites où tout changement spécifié sur un élément est répercuté dans tout le modèle.

HYSYS a été développé pour l'industrie du pétrole. Il a été conçu pour permettre le traitement d'une vaste gamme de problèmes allant des séparations bi et tri-phasiques, de compression à la distillation et la transformation chimique bien qu'il soit utilisé pour d'autres types de procédés chimiques telles que les simulations statique et dynamique. **[21]**

IV.2.Description du procédé d'absorption

Lorsqu'on met en œuvre l'absorption d'une espèce gazeuse dans une solution liquide, il se produit un transfert de la phase gazeuse vers la phase liquide au niveau de l'interface. Les conditions dans la région très proche de cette interface sont très difficiles à observer expérimentalement. On est, de ce fait, souvent amené à utiliser des modèles simples issus de la mécanique des fluides et décrivant des couches limites au voisinage de l'interface.

Le facteur le plus important dans le phénomène de transfert de matière est l'existence d'une résistance au transfert de matière localisée dans une région de faible épaisseur, adjacente à l'interface.

IV.2.1. Théorie de transfert de matière :

Dans le cas des faibles concentrations d'un corps dissous dans la phase liquide, la loi d'Henry s'applique selon:

$$P_i = K_i * x_i ... (1)$$

La pression partielle $P_{\rm i}$ du corps dissous dans la phase gazeuse est donnée par la loi de Dalton :

$$P_i = y_i * P \dots (2)$$

La combinaison donne le rapport d'équilibre pour la concentration de phase vapeur avec la phase liquide :

$$y_i = (K_i * x_i) / P \dots (3)$$

Avec :

 \mathbf{x}_i : la fraction molaire du corps dans la phase liquide.

 \mathbf{y}_i : la fraction molaire du corps dans la phase gazeuse.

 P_i : la pression partielle du gaz en bar

P : pression totale en bar

K_i : la constante d'Henry.

IV.2.2.Mécanismes d'absorption avec réactions :

Le CO_2 est transféré du gaz vers le liquide où il s'absorbe en solution. Une fois en solution, le CO_2 peut réagir avec d'autres composants. En règle générale, les réactions ayant

lieu entre le CO_2 et L'amine primaire (MEA, NH_2C_2HOH) sont :

$CO_2 + RNH_2 \rightarrow RH_2^+NCOO^-$

$RH_2+NCOO^- + RNH_2 \rightarrow RH_2NCOO^-NRH_2^+$

IV.3. Modèles thermodynamiques

IV.3.1. Modèle thermodynamique d'amine package :

Le modèle d'amine package se base sur celui de Robinson et al. 1978 **[21]**. Il est disponible avec option Aspen *HYSYS* (Figure IV.1).

🖕 Fluid Package: Basis-1	- • •
Property Package Selection Property Package Filter Annone> All Types EOSs Activity Models Chao Seader Chien Null Clean Fuels Pkg COMThermo Pkg DBR Amine Package Aunoch Property Wizard All Types All Types EOSs Activity Models Chao Seader Models Vapour Press Models Miscellaneous Types Vapour Press Models Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal Non-Ideal 	ine Solutions
Component List Selection Component List - 1 View	
Set Up Parameters Binary Coeffs StabTest Phase Order Rxns Tabular Notes	l
Delete Name Basis-1 Property Pkg Amine Pkg - KE	Edit Properties

FIGURE IV.1 : Choix du modèle thermodynamique (Amine Package).

Pour déterminer les propriétés de l'amine, le modèle thermodynamique Peng – Robinson [21] est utilisé pour la phase vapeur:

$$p = \frac{RT}{v - b} = \frac{a(T)}{v(v + b) + b(v - b)} \dots (4)$$

Avec :

 $a = \alpha (45724) R^2 T_C^2 / P_C$

 $b = (0,07780) RT_C/P_C$

Tc = température critique en °C

Pc = pression critique en bar

 α = paramètre calculé par le *HYSYS*

 $\mathbf{R} = 8,314 \text{ J/mol/K}$ (constante des gaz parfaits)

Pour la phase liquide, on utilise le modèle électrolyte Li-Mather [14]:

$$y_i \Phi_i^{v} P = H_i x_i y_i^{L} ...$$
(5)

Avec :

 \mathbf{x}_i : la fraction molaire du corps dans la phase liquide.

 y_i^L : la fugacité liquide en bar.

 y_i : la fraction molaire du corps dans la phase gazeuse.

 ϕ_i^V : la fugacité liquide en bar.

P : la pression totale en bar.

La solubilité des gaz acides à l'état d'équilibre et les paramètres cinétiques pour les solutions aqueuses d'alcanolamines en contact avec le CO₂ sont incorporés dans leur modèle de propriétés, lequel modèle est adapté aux données expérimentales étendues aux données internes de Robinson **[21]**. Le tableau IV.1 donne les limitations de solubilité d'équilibre qui devraient être observées en utilisant ce modèle de propriétés.

TABLEAU IV : Les limitations	de solubilité d'équilibre	e en utilisant le modèle Amine
	package (CNDG).	

Alkanolamine	Concentration D'Alkanolamine wt% (massique)	Pression Partielle De Gaz Acide (psia)	Température (°F)
Monoethanolamine, MEA	0 - 30	0.00001 - 300	77 - 260
Diethanolamine, DEA	0 - 50	0.00001 - 300	77 - 260
Triethanolamine, TEA	0 - 50	0.00001 - 300	77 - 260
Methyldiethanolamine, MDEA*	0 - 50	0.00001 - 300	77 - 260
Diglycolamine, DGA	50 - 70	0.00001 - 300	77 - 260

L'absorption de CO_2 par les solutions aqueuses d'alcanolamine implique des réactions exothermiques. Les effets de la chaleur sont des facteurs importants dans ce type d'absorption et sont donc pris en considération dans le modèle de propriétés des amines. Le modèle permet des simulations d'absorption sur colonnes à étages par modification des paramètres ayant une influence directe sur l'absorption du dioxyde de carbone tels que la pression, la température, la composition en phase, le débit, la conception mécanique des plateaux,...

IV.3.2.Modèle d'équilibre

La concentration de CO₂ dans le gaz est exprimée par la pression partielle de CO₂. L'équilibre entre les concentrations de CO₂ dans la phase gaz p_{CO2} et dans la phase liquide C_{CO2} est représenté comme étant la pression en fonction de la concentration.

Cette expression est prise comme une fonction de la température, de la pression et des concentrations des composants dans la solution. Il y a beaucoup de modèles disponibles pour décrire cette fonction. Dans Aspen *HYSYS*, l'équilibre de gaz/liquide, pour un constituaient, est normalement prévu en utilisant des k-valeurs définies par l'équation :

$$K_i = \frac{y_i}{x_i} \cdots (6)$$

Où

y_i : fraction du constituaient (i) dans la phase gazeuse,

 \mathbf{x}_i : fraction du constituaient (i) dans la phase liquide.

Le modèle de Peng-Robinson [21] convient bien aux systèmes contenant les hydrocarbures, l'eau, l'air et les gaz de combustion. Ce modèle décrit l'équilibre des concentrations en CO_2 dans le gaz et d an s le liquide.

CHAPITRE IV SIMULATION DU PROCEDE DE DECARBONATATION

IV.3.3.Modèles de colonne dans le logiciel de simulation

Une colonne d'absorption de CO_2 est une unité où le gaz diffuse vers le haut et la solution d'amine coule vers le bas. Le CO_2 est transféré à partir de la phase gazeuse vers la phase liquide où elle réagit avec la solution d'amine. La colonne de désorption de CO_2 , également étagée, renferme un rebouilleur au fond pour fournir la chaleur nécessaire au solvant riche et un condenseur au-dessus pour la sortie de CO_2 .

Pour commencer, on choisit les composants du fluide et leurs compositions (Figures IV.2, 3).

Add Component	-Selected Components]	Components Avai	lable in the Component Library	View Filters	
Traditional Hypothetical Other			⊚ Sim Name	Full Name / Synonym	Formula	
		<add pure<="" th=""><th>Ethane Propane</th><th>C2 C3</th><th>CH4 C2H6 C3H8 C4H10</th><th>Î</th></add>	Ethane Propane	C2 C3	CH4 C2H6 C3H8 C4H10	Î
		<-Substitute->	n-Butane i-Pentane	n-C4 i-C5 n-C5	C4H10 C5H12 C5H12	
		Remove>	n-Hexane n-Heptane n-Octane	C6 C7 C8	C6H14 C7H16 C8H18	
		Sort List	n-Nonane n-Decane n-C11	C9 C10 C11	C9H20 C10H22 C11H24	
		View Component	n-C12 n-C13	C12 C13	C12H26 C13H28	-
Selected Compon	ent by Type		Snow Synony	rms 🔛 Cluster		
Delete		Name Compo	nent List - 2			

FIGURE IV.2 : Choix des composants du fluide.

Worksheet		Mole Fractions
C IV	Nitrogen	0,004450
Conditions	C02	0,064900
Properties	Methane	0,911960
Composition	Ethane	0,013700
K Value	Propane	0,002690
Hum Vesiables	i-Butane	0,000270
User variables	n-Butane	0,000479
Notes	i-Pentane	0,000119
Cost Parameters	n-Pentane	0,000114
	Edit Edit I	Properties Basis
· · · ·		
Worksheet Att	achments _ Dynamics OK OK OK	

FIGURE IV.3 : Fenêtre d'information du Gaz Inlet.

Après introduction des paramètres agissant directement sur l'absorption de CO_2 tels que le débit, la température et la pression, le logiciel *HYSYS* se charge du calcul de la suite des facteurs restants. Ce logiciel se sert de sa flexibilité de calcul en amant pour simuler vers la fin tout le procédé d'absorption (Figures IV.4, 5 et 6). Une des tâches rigoureuses est la convergence de l'absorbeur avec le régénérateur.

CHAPITRE IV

SIMULATION DU PROCEDE DE DECARBONATATION

FIGURE IV.4 : PFD de simulation de procédé d'absorption par amine.

FIGURE IV.5 : Convergence de l'absorbeur de CO₂.

FIGURE IV.6 : Convergence du régénérateur d'amine.

La simulation au complet de l'unité d'absorption est illustrée par la figure IV.7.

FIGURE IV.7 : Simulation au complet de l'unité d'absorption.

IV.3.4.Aspect mathématique général

Pour inclure un modèle de colonnes d'absorption dans un logiciel de simulation, toutes les équations décrivant l'équilibre, le gaz et les écoulements liquides doivent être résolues pour chaque étage. Ceci mène souvent aux problèmes de convergence. Le modèle de colonnes dans Aspen *HYSYS* a un défaut des caractéristiques de convergence et un ensemble de défauts de paramètres de calcul. Les programmes de simulation sont traditionnellement divisés en programmes modulaires.

Les entrées de chaque module de calcul doivent être connues avant le calcul. Les résultats de calculs du module sont donnés au niveau des sorties.

IV.4. Modélisation du système étudié :

IV.4.1. Unité de décarbonatation à simuler

Deux trains de décarbonatation du gaz naturel basés sur un procédé d'absorption chimique et de désorption pour éliminer le CO₂ avec une solution aqueuse de MDEA a été simulé. La colonne d'absorption est équipée de 24 plateaux d'environ 0,5 m de hauteur l'étage.

Le gaz déshydraté provenant des installations de *Teg* et *Reg* est mélangé avec celui de *Krechba*, également déshydraté et conditionné dans les installations de traitement propres au champ.

Le mélange de gaz résultant est ensuite dirigé vers les cyclones de séparation pour assurer une ultime décantation avant de passer dans l'unité d'élimination de gaz acide où le CO₂ est éliminé du gaz d'exportation. IL est ensuite acheminé à l'unité de déshydratation.

Le CO₂ éliminé est fortement compressé dans l'unité de compression pour assurer sa réinjection ou son torchage (En cas de capacité de réinjection insuffisante ou indisponibilité des installations de compression CO₂). **[22]**

IV.4.2.Unité D'élimination de Gaz Acide

Cette opération d'élimination de CO_2 est assurée par deux trains d'extraction en service à 50% chacun. L'installation traite le flux combiné de gaz d'exportation des champs de *Reg*, *Teg* et *Krechba* à une pression d'environ 72,3 bar et à des températures variant entre 25 et 35 °C (Figure IV.8).

FIGURE IV.8 : Schéma fonctionnel d'unité d'élimination de CO₂.

a- Base de design :

Le procédé d'absorption, à phase unique, de L'amine MDEA est utilisé pour le traitement du gaz d'exportation afin de satisfaire les spécifications relatives au gaz produit (inférieur à 0.3 % mol de CO₂).

La teneur maximale en eau du gaz d'alimentation sera équivalente à un point de rosée en eau de -2°C à 70 bars.

FIGURE IV.9 : Description du système de décarbonatation.

b- Description du Système

• Le gaz d'alimentation arrive aux deux trains d'élimination du CO_2 à partir du collecteur d'entrée de *Krechba* à travers le cyclone de séparation à une pression d'environ 72,3 bar et à une température variable de 25°C à 35°C.

• Par ailleurs, un dispositif de préchauffage du flux gazeux est prévu pour maintenir la température de gaz d'alimentation à environ 55 °C par échange thermique avec la solution d'amine préalablement refroidie à l'aide de ventilateurs à air (Figure IV.10), et ce avant que le gaz n'entre dans l'absorbeur CO_2 .

FIGURE IV.10 : Préchauffeur et refroidisseur de gaz.

• Le gaz d'alimentation préchauffé est, alors, acheminé vers le bas de la colonne d'absorption où il est mis en contact avec un flux à contre courant d'une solution d'amine MDEA pauvre (Figure IV.11).

FIGURE IV.11 : Absorbeur de CO₂.

• La colonne est munie d'un seul lit à garnissage structuré à 8 mètres de hauteur.

• La solution de MDEA pauvre absorbe le CO₂ se trouvant dans le gaz.

• Le gaz traité quitte le haut de la colonne d'absorption à une pression de 71,4 bar et une température d'environ 55°C et passe aux installations de déshydratation de gaz d'exportation.

• La solution de MDEA riche provenant du fond de l'absorbeur à une température avoisinant 83°C est acheminée au ballon flash HP à sa pression de fonctionnement de 6 bars sous contrôle de niveau.

• Comme la solution d'amine est flashée de la haute pression à une pression moyenne dans le ballon de flash HP (Figure IV.12), entrainera la séparation instantanée du CO_2 de la solution.

FIGURE IV.12 : Ballon de Flash HP et BP.

• Le gaz flashé riche en CO_2 (environ 50 % moles) provenant du ballon HP est ensuite orienté vers le stripper et le ballon de reflux (Figure IV.13) pour rejoindre le système de réinjection ou éventuellement vers la torche gaz acide.

FIGURE IV.13 : Ballon et pompes de reflux.

• Le ballon flash HP est muni d'une installation de distribution de liquide et d'un lit à garnissage aléatoire d'anneaux d'une hauteur de 3 mètres pour assister la libération du méthane/ CO_2 dissous de la solution d'MDEA riche.

• La pression de la solution d'amine riche résultante est abaissée davantage, acheminée vers le ballon flash LP, qui fonctionne à une pression de 1,7 bars.

• Le ballon flash LP est muni d'une installation de distribution de liquide et d'un lit à garnissage aléatoire (anneaux Pall métallique de type Flexible 2'') d'une hauteur de 6.0 mètres.

• Le distillat CO_2 de tête du stripper (Figure IV.14) à une température de 103°cet une pression de 1,8 bars, alimentera par le bas le ballon flash BP où il joue le rôle d'agent d'épuisement et améliore l'efficacité de séparation du CO_2 .

FIGURE IV.14 : Décarbonisateur de CO₂.

• Le courant de gaz acide de tête sortant du ballon flash BP sous une température avoisinante de 78°C, passe au condenseur flash LP, où il est refroidi jusqu'à une température de 55°C.

• Le courant de gaz acide refroidi passe ensuite vers le ballon de reflux, où l'eau condensée est éliminée puis repompée vers le ballon flash LP sous contrôle de niveau.

• Le courant de gaz acide humide, à une pression de 1,5 bars et à une température de 55°C, passe ensuite vers les installations de compression /réinjection CO_2 .

• Il est à noter que le procédé de réinjection est très mauvais pour la nature ainsi que la production, car les gaz acides injectés dans le sol vont augmenter par la suite la quantité de CO_2 dans le gaz d'alimentation dans les puits (actuellement à 6,5%) et ceci agit directement sur la rentabilité des équipements, c'est pour ça que *BP* opte pour le torchage partiel.

• La solution d'a MDEA riche venant du ballon flash LP est préchauffée à 115°C par échange thermique avec la solution d'a MDEA pauvre dans l'échangeur pauvre/riche (Figure IV.15).

FIGURE IV.15 : Pompes d'amine riche et échangeurs d'amine riche/pauvre.

• La solution d'a MDEA riche préchauffée, alimente par la suite le haut du stripper CO_2 où le CO_2 est dégagé de la solution.

• Le stripper est muni d'une installation de distribution de liquide et d'un lit à garnissage aléatoire, chacun ayant une hauteur de lit de 5 mètres.

•Le stripper fonctionne à une pression de 1,8 bars au sommet de la colonne et un transfert de chaleur dû à l'échange thermique fournie par les 3 rebouilleurs stripper en service à 33% de rendement chacun (Figure IV.16).

FIGURE IV.16 : Rebouilleurs du décarbonisateur de CO₂.

• Ces derniers emploient de l'eau chaude en circulation comme source de chauffage pour satisfaire les besoins calorifiques.

FIGURE IV.17 : Pompes de surpression et circulation d'Amine pauvre.

• Le courant du flux de vapeur de CO_2 , provenant de la tête du stripper passe vers le ballon flash LP.

• Une solution de MDEA régénéré chaude, ayant une température de 121°C quitte la base du stripper et est refroidie à 89 °C grâce à l'échange de transfert de chaleur dû à la riche solution de MDEA dans l'échangeur pauvre /riche

• La solution d'amine pauvre est par la suite refroidie à environ 62°C dans le refroidisseur à air d'amine régénérée.

•La solution d'amine pauvre sera par la suite refroidie à l'air jusqu'à 55°C contre du gaz d'alimentation dans le préchauffeur d'alimentation et puis est envoyée vers l'absorber CO₂.

• Sur chaque train, un écoulement continu de la solution d'amine pauvre équivalent à 15% de la solution dans l'inventaire, passe de la décharge du refroidisseur de la solution d'amine régénérée à un système de filtration de la solution d'amine pauvre.

CHAPITRE IV SIMULATION DU PROCEDE DE DECARBONATATION

• Ce système se compose d'un filtre de garde en amont, d'un filtre à charbon actif et d'un filtre mécanique placé en aval du filtre à charbon (Figure IV.18).

FIGURE IV.18 : Filtres d'amines.

Chapitre V Résultats et discussion

L'objectif de notre optimisation est d'avoir un gaz d'expédition, conforme aux spécifications avec un pourcentage molaire en CO_2 inférieur à 0,3% (Figure V.1). Ce qui induit, par conséquent, l'élimination du CO_2 contenu dans le gaz et le respect des paramètres de design ainsi que la température de tête du *stripper* (Figure V.2). Cette dernière est fixée aux alentours de 103°C pour préserver les pipelines et les colonnes contre la corrosion due à la présence simultanée de l'eau et du dioxyde de carbone.

Pour ce faire, nous envisageons de traiter l'effet de la variation de la température, de la pression, du débit massique sur L'amine pauvre en CO_2 et sur le gaz d'alimentation contenant 6,94% de CO_2 au niveau de l'absorbeur :

1^{er} Cas étudié : cas chantier

Les paramètres de traitement de gaz de Krechba au niveau du preheater :

Gaz : Tg = 50 °C, Pg = 7400 Kpa, Qg = 430000 Kg/h Amine MDEA : Ta = 79°C, Pa = 7200 Kpa, Qa = 995000 Kg/h

Ils conduisent, après absorption, à une fraction molaire du CO_2 de 0.297%. Par conséquent, la quantité de CO_2 absorbée (définie comme la différence entre la quantité de l'amine riche sortant de l'absorbeur et la quantité de l'amine pauvre entrant dans l'absorbeur) est égale à :

$Q_{abs} = 1030585, 3 - 995000 \text{ Kg/h} = 35585, 3 \text{ Kg/h}$

L'amine riche en CO_2 (2,490 % molaire) est alors acheminée vers le *stripper*. Le gaz émanant du stripper, contenant 99,98 % en CO_2 , est ensuite envoyé dans le ballon BP. Ce qui traduit par la bonne séparation gaz-amine (Tableaux V.1 et V.2).

FIGURE V.1 : Simulation des procédés d'absorption et de régénération des gaz acides.

FIGURE V.2 : Flux entrant et sortant au niveau du Stripper.

TABLEAU V.1 : Résultats du cas chantier (simulation sur preheater, absorbeur, LP).

Conditions	Preheater				Absorbeur				LP						
	Gas inlet	Gas Outlet	Amine inlet	Amine outlet	Lean amine	Gas inlet	Gas outlet	Rich amine	24" Rich amine inlet	34Water from reflux	36 Stripping gas	24'	29 Top to HC-104	30 To Rich amine pump	
Vapour	1	1	0	0	0	1	1	0	0,0003	0	0,0000803	1	1	0	
Temperature[C]	50	71,4	79	73,3	73,3	71,4	75,5	84,14	84,05	43	73	99	84,14	83,14	
Pressure[Kpa]	7400	7400	7200	7200	7200	7400	7200	7400	250	250	270	250	250	270	
Molar Flow [kgmole/h]	23579	23579	35372	35372	35372	23579	22836	36115	36080	110	0	1100	1306	36006,3	
Mass Flow [kg/h]	430000	430000	995000	995000	995000	430000	394415	1030585,3	1029984	2000	0	50545	50041,2	1031987	
Std Ideal Liq Vol Flow[m3/h]	1274,4	1274,4	979,9	979,9	979,9	1274,4	1229,6	1025	1023	2	0	62	60	1026,1	
Molar Enthalpy [Kj/kgmole]	14000	14000	- 1.8E+04	- 1.9E+04	- 1.9E+04	14000	15000	-19000	-19000	-33000	-21000	12000	12000	-19000	
Molar Entropy [Kj/kgmole-C]	191,5	193	105	104,4	100	190	190	100	100	76	100	200	214	100	
Heat Flow[Kj/h]	320000000	34000000	- 6,50E+08	- 6.7E+08	- 6.7E+08	34000000	340000000	-670000000	-6,7E+08	-3600000	0	14000000	16000000	-67000000	
Composition			i	1		1						1			
H2O	1.88E- 04	0,000188	0,9	0,9	0,9	1.88E- 04	0,00669	0,8784	0,87817	0,99986	0,884936	0	0,2168	0,8744	
Hydrogen	8.26E- 04	0,000826	0	0	0	8.26E- 04	0,000851	0,000000982	7,84E-08	4,10E-12	8,33E-08	0	0,00000211	5,27E-14	
Nitrogen	4.45E- 03	0,00445	0	0	0	4.45E- 03	0,00458	0,00000273	1,22E-07	4,70E-12	1,54E-07	0	0,00000329	3E-14	
CO2	6.49E- 02	0,0649	0	0	0	6.49E- 02	0,00297	0,0238	0,0238	5,30E-05	0,0164	0,9996	0,780765	0,0274	
Methane	0,912	0,911959	0	0	0	0,91196	0,94017	0,000936	0,00008	7,00E-09	0,000108	0	0,0021	6,88E-11	
Ethane	1.37E- 02	0,0137	0	0	0	1.37E- 02	0,0371	0,0000111	8,83E-07	9,00E-11	0,00000119	0	0,0000244	6,78E-13	
Propane	2.69E- 03	0,00269	0	0	0	2.69E- 03	0,00277	0,000001478	9,1E-08	7,50E-12	1,34E-07	0	0,00000252	4,38E-14	
i-Butane	2.70E- 04	0,00027	0	0	0	2.70E- 04	0,000278	1,85E-08	7,46E-11	2,10E-16	6,28E-11	0	2,26E-09	2,70E-17	
n-Butane	4.79E- 04	0,000479	0	0	0	4.79E- 04	0,0004955	3,17E-08	1,41E-10	3,56E-16	1,07E-10	0	3,85E-09	4,60E-18	
i-Pentane	1.19E- 04	0,000119	0	0	0	1.19E- 04	0,0001232	9,64E-09	7,46E-11	2,80E-16	4,91E-11	0	2,37E-09	4,60E-17	
n-Pentane	1.14E- 04	0,000114	0	0	0	1.14E- 04	0,000117	9,27E-09	6,93E-11	2,60E-16	4,54E-11	0	1,94E-09	4,50E-17	
n-Hexane	1.00E- 04	0,0001	0	0	0	1.00E- 04	0,00012	6,14E-08	6,45E-09	2,70E-13	2,77E-09	0	0,000000178	3,48E-14	
n-Heptane	8.21E- 05	0,0000821	0	0	0	8.21E- 05	0,0000847	6,97E-09	8,1E-11	4,50E-16	4,49E-11	0	2,23E-09	2,92E-18	
n-Octane	7.10E- 05	0,000071	0	0	0	7.10E- 05	0,0000734	5,79E-09	7,64E-11	5,00E-16	3,97E-11	0	2,1E-09	3,30E-18	
n-Nonane	2.00E- 05	0,00002	0	0	0	2.00E- 05	0,0000206	1,41E-09	1,83E-11	1,15E-16	9,17E-12	0	5,03E-10	2,71E-17	
n-Decane	6.00E- 06	0,000006	0	0	0	6.00E- 06	0,0000062	1,65E-10	6,32E-13	1,50E-18	3,91E-13	0	1,74E-11	5,55E-19	
H2S	1.50E- 05	0,000015	0	0	0	1.50E- 05	4,439E-06	0,00000971	0,0000097	7,30E-08	0,0000985	0,0004	0,000114	0,0000113	
MDEAmine	0	0	0,1	0,1	0,1	0	0,00000493	0,098	0,098	6,30E-05	0,0985	0	0,000054	0,0982	

Conditions	HP				Stripper						Reflux				
	Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC- 029104	29H From demin water	29L' Min Flow	29I To reflux drum	29B to vent
Vapour	0,0015	0,001	1	0	0,0251	0	0,0252	1	0	0	0	0,89	0	0	1
Temperature[C]	84	67	84,1	84,1	108	120	108	103	90	120,5	49,6	55	41	51	52,3
Pressure[Kpa]	700	700	700	700	250	250	250	250	250	250	150	180	250	150	150
Molar Flow [kgmole/h]	36115	0	35	36080	35947,5	20971,6	0	1148,5	49221,2	18961,7	222,04	1330,86	111,02	472,15	1191,76
Mass Flow [kg/h]	1030586	0	602	1029984	1028629,2	922955,2	0	50544,2	1384571,3	533383,9	4000	51402	2000	8517,9	48884,1
Std Ideal Liq Vol Flow[m3/h]	1024	0	1,791738	1024	1021,9	1118,3	0	61,2	1363,6	525,3	4,008	61,351	2,004	8,537	58,827
Molar Enthalpy [Kj/kgmole]	- 1.9E+04	- 2.1E+04	15000	-19000	-15000	13000	-15000	12000	-17000	-14000	-32000	6400	- 3.3E+04	-32000	11000
Molar Entropy [Kj/kgmole-C]	100	100	220	100	110	41	110	210	110	110	77	200	76	78	210
Heat Flow[Kj/h]	- 6.7E+08	0	520000	-670000000	-53000000	28000000	0	14000000	-850000000	-260000000	-7200000	8500000	- 3.6E+06	-15000000	13000000
Composition						1	T	T	T	1			,	, <u> </u>	
H2O	0,87748	0,88206	0,07267	0,87817	0,877	0	0,88	0	0,9	0,9	1	0,2049114	0,9999	0,999458	0,11221
Hydrogen	9.82E- 07	9.79E- 07	0,000934	7,65E-08	5,28E-14	0	7,04E-14	0	0	0	0	2,12E-06	4,10E-12	4,10E-12	0,0000024
Nitrogen	2.73E- 06	2.79E- 06	0,00269	1,2E-07	2,95E-14	0	4E-14	0	0	0	0	3,35E-06	4,70E-12	4,70E-12	3,73E-06
CO2	2.38E- 02	1.87E- 02	0,0283	0,024	0,0249	1	0,0249	0,9998	0	0	0	0,7926705	5,30E-04	5,30E-04	0,889495
Methane	9.36E- 04	49,2E- 03	0,8834	0,0000798	6,88E-11	0	9,17E-11	0	0	0	0	0,00222	7,00E-08	7,00E-08	0,00251
Ethane	1.11E- 05	1.16E- 05	0,0105	8,82E-07	6,77E-13	0	9,03E-13	0	0	0	0	0,0000245	9,20E-10	9,20E-10	0,0000277
Propane	1.48E- 06	1.56E- 06	0,00144	9,08E-08	4,37E-14	0	5,83E-14	0	0	0	0	2,54E-06	8,00E-12	8,00E-12	2,84E-06
i-Butane	1.85E- 08	1.32E- 08	0,000019	8,21E-11	2,55E-17	0	1,04E-18	0	0	0	0	2,43E-09	2,10E-16	2,10E-16	2,56E-09
n-Butane	3.18E- 08	2,26E- 08	0,0000326	1,41E-10	4,59E-17	0	1,78E-18	0	0	0	0	4,15E-09	3,50E-16	3,50E-16	4,36E-09
i-Pentane	9.95E- 09	6,97E- 09	0,0000102	7,44E-11	4,85E-17	0	1,89E-18	0	0	0	0	2,18E-09	2,90E-16	2,90E-16	2,33E-09
n-Pentane	9.28E- 09	6,51E- 09	0,000095	6,93E-11	4,48E-17	0	1,75E-18	0	0	0	0	2,03E-09	2,60E-16	2,60E-16	2,16E-09
n-Hexane	6.15E- 08	4,22E- 08	0,0000568	6,45E-09	3,53E-14	0	1,16E-14	0	0	0	0	1,78E-07	2,70E-13	2,70E-13	2,02E-07
n-Heptane	6.96E- 09	4,69E- 09	7,13E-06	8,1E-11	2,92E-16	0	3,88E-18	0	0	0	0	2,35E-09	4,50E-16	4,50E-16	2,53E-09
n-Octane	5.79E- 09	3.81E- 09	0,0000059	7,7E-11	3,30E-18	0	4,44E-18	0	0	0	0	2,21E-09	4,80E-16	4,80E-16	2,39E-09
n-Nonane	1.41E- 09	9,08E- 10	1,44E-06	1,83E-11	2,70E-17	0	1,05E-18	0	0	0	0	5,29E-10	1,20E-16	1,20E-16	5,85E-10
n-Decane	1.65E- 10	40,8E- 11	1,7E-07	6,42E-13	5,56E-20	0	7,41E-21	0	0	0	0	1,87E-11	1,00E-18	1,00E-18	2E-11
H2S	9.71E- 06	9.83E- 06	0,0000232	0,0000097	0,0000112	0	0,000012	2.00E- 04	0	0	0	0,000112	5,00E-08	5,00E-08	0,000156
MDEAmine	9.844E- 02	9.83E- 02	0,0000199	0,0982	0,0973	0	0,0984	0	0,1	0,1	0	0,0000512	1,23E-04	1,23E-04	1,8E-08

TABLEAU V.2 : Résultats du cas chantier (simulation sur HP, stripper, reflux).

2^{eme} Cas étudié :

Cette nouvelle configuration tient compte de la variation de température du gaz d'alimentation brut et de l'agent de traitement, en l'occurrence l'amine pauvre, de telle sorte à avoir :

- Gaz alimentant le *preheater*, coté tube : Tg = 50 °C Pg = 7400 Kpa Qg = 430000 Kg/h
 Agent de traitement (l'amine) : Ta = 77°C
 - Pa = 7200 Kpa Qa = 995000 Kg/h

Ces paramètres conduisent, après absorption, à une fraction molaire du CO_2 de 0.27 %. Soit une quantité de dioxyde de carbone absorbée égale à :

 $Q_{abs} = 1033084,9 - 995000 \text{ Kg/h} = 38084,9 \text{ Kg/h}$

L'amine riche, en dioxyde de carbone, est par la suite acheminée vers le stripper avec une composition molaire de 87,5 % en H₂O, 2,88 % en CO₂ et 9,61 % en amine *MDEA*.

Le gaz émanant du stripper, contenant 99,98 % en CO₂, est ensuite envoyé dans le ballon BP (Tableaux V.3 et V.4).

Gas Amine Rich 34Water 36 24' 29 Top to 30 To Rich amine Gas inlet Amine Lean Gas inlet Rich amine 24" Gas outlet Stripping Outlet inlet outlet amine amine inlet from reflux HC-104 gump gas 0 0 0.000475 0 0 0 1 1 0 Vapour 1 1 0 1 1 50 70,4 72,27 72,27 70,4 74,27 84,12 83,88 39,9 82,7 94,4 84,06 83,56 Temperature[C] 77 Pressure[Kpa] 7400 7400 7200 7200 7200 7400 7200 7400 228 233 250.6 260 228 270 Molar Flow 23578,93 574,3 574,3 1280 23579 35372 35372 35372 23578,93 22774,68 36176,15 36141 56 36065,12 [kgmole/h] 430000 430000 995000 995000 430000 391915,1 1033084,9 1032479,8 1000 25272 2,53E+04 48680,4 1035344,68 Mass Flow [kg/h] Std Ideal Lig Vol 1274,4 1274,4 979,9 979,9 979,9 1274,4 1226,5 1027,8 1025 1 30,4 30,7 58 1030,26 Flow[m3/h] Molar Enthalpy 14000 14000 -18500 15000 -19000 -19000 -33000 -4500 -3.50E+03 12000 -19000 14000 [Kj/kgmole] 1.9E+04 1.9E+04 Molar Entropy 191.5 192 102.65 192 190 100 100 76 150 156 216 100 102.65 102.65 [Kj/kgmole-C] Heat Flow[Kj/h] 320000000 340000000 -6,8E+08 340000000 335000000 -676000000 -6.7E+08 -3660000 7.00E+06 7000000 15200000 -676000000 6.7E+08 6.8E+08 Composition 0,99977 H2O 1.88E-0,000188 0,9 0,9 0,9 1.88E-0,00637 0,8768 0,8769 0,884936 0 0,22869 0,8722023 04 04 8.26E-0,000826 0 0 0 8.26E-0,000853 0,00000098 7,4E-08 8,20E-12 8,33E-08 0 0,0000021 3,5E-14 Hydrogen 04 04 Nitrogen 4.45E-0.00445 0 0 0 4.45E-0.00459 0,00000272 1,15E-07 9,40E-12 1,54E-07 0 0,00000323 2E-14 03 03 **CO2** 0.0252 6.49E-0.0649 0 0 6.49E-0.00272 0.0252 1.06E-04 0.0164 0.9997 0.76886 0.0298 0 02 02 Methane 0.912 0.911959 0 0 0 0.91196 0.9427 0.000935 0.000078 1.40E-08 0.000108 0 0.002 4.59E-11 Ethane 1.37E-0.0137 0 0 0 1.37E-0.038125 0,0000111 8.6E-07 1.80E-10 0.00000119 0 0.0000242 4.52E-13 02 02 2.69E-Propane 0.00269 0 0 2.69E-0,00278 0,000001476 8,8E-08 1,50E-11 1,34E-07 0 0,00000249 2.92E-14 0 03 03 7.44E-11 4.20E-16 2.09E-09 5.30E-19 2.70E-0.00027 0 2.70E-0.000279 1.84E-08 6.28E-11 i-Butane 0 0 0 04 04 4.79E-0.000479 0.000496 3.16E-08 1.28E-10 7.10E-16 1.07E-10 3.55E-09 9.00E-19 n-Butane 0 0 0 4.79E-0 04 04 i-Pentane 0,000119 0,0001235 9,31E-09 6,84E-11 5,60E-16 4,91E-11 2,58E-09 9,10E-19 1.19E-0 1.19E-0 0 0 04 04 n-Pentane 1.14E-0,000114 0 1.14E-0,000118 9,24E-09 6,35E-11 5,20E-16 4,54E-11 0 1,85E-09 8,80E-19 0 0 04 04 n-Hexane 1.00E-0,0001 0 0 0 1.00E-0,0001033 6,12E-08 6,31E-09 5,30E-13 2,77E-09 0 0,00000178 5,8E-14 04 04 n-Heptane 8.21E-0,0000821 0 0 0 8.21E-0,0000849 6,96E-09 7,5E-11 9,00E-16 4,49E-11 0 2,11E-09 1,95E-18 05 05 n-Octane 7.10E-0.000071 0 0 7.10E-0.0000736 5.78E-09 7.1E-11 9.60E-16 3.97E-11 0 0.00000002 2.21E-18 0 05 05 2.00E-0.00002 0.0000207 1.7E-11 2.28E-16 9.17E-12 4.77E-10 5.30E-19 n-Nonane 0 0 0 2.00E-1.4E-09 0 05 05 6.00E-0.000006 6.211E-06 1.64E-10 5.71E-13 3.16E-18 3.91E-13 1.6E-11 3.70E-21 n-Decane 0 0 0 6.00E-0 06 06 9,71E-06 3,00E-04 H2S 1.50E-0,000015 0 0 0 1.50E-8,71E-08 0,00000972 1,45E-07 0,00000985 0,00016 0,0000105 05 05

Absorbeur

TABLEAU V.3 : Résultats du 2^{eme} cas (simulation sur *preheater*, absorbeur, LP).

S

Ъ.

Conditions

Preheater

CHAPITRE V

MDEAmine

0

0

0,1

0,1

0,1

0

0,00000462

0,0978

0,0979

1,25E-04

0,0985

0

0,0000567

0,098

Conditions	HP				Stripper						Reflux					
	Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC- 029104	29H From demin water	29L' Min Flow	29I To reflux drum	29B to vent	95
Vapour	0,0018	0,0011	1	0	0,0335	0	0,063	1	0	0	0,42	0,45	0	0	1	
Temperature[C]	83,97	73,2	84,05	84,06	107,4	117	108	103	90	120,4	48	49	39,8	45,4	45,4	
Pressure [Kpa]	700	700	700	700	241	245	250	241	243	250	130	110	230	100	100	4
Molar Flow [kgmole/h]	36176,15	0	35,1	36141	36065,2	26892	60,5	1148,5	49221,5	18961,4	726	721	18237,8	18572,73	1111,54	
Mass Flow [kg/h]	1033085	0	605	1032480	1035344,7	922962	1739,8	50544,2	1192286	516700	24980	26700	329109	335153	45633,75	
Std Ideal Liq Vol Flow[m3/h]	1027	0	1,794	1026,01	1030,3	1013,6	1,8	61,2	1363,8	525,3	29,3	31,71	330	335,9	55	
Molar Enthalpy [Kj/kgmole]	- 1.9E+04	-20000	15000	-19000	-14600	-2000	-12500	12000	-17150	-14020	-4000	-1,38E+04	- 3.3E+04	-31800	10400	
Molar Entropy [Kj/kgmole-C]	100	100	220	100	110	76	115	210	108,5	111	134	480	75,8	768	216	
Heat Flow[Kj/h]	- 6.7E+08	0	520000	-6,78E+08	-527000000	-2,2	-6,50E+05	14000000	-8,8E+08	-280000000	-7200000	2,40E+06	-2500000	-6,08E+08	11600000	
Composition										-				-		
H2O	0,8763	0,88	0,07263	0,8769	0,875	0	0,876	0	0,9	0,9	1	0,204911415	0,9998	0,999485	0,11074	
Hydrogen	9.8E- 07	9.8E- 07	0,000933	7,45E-08	3,5E-14	0	3,5E-14	0	0	0	0,00E+00	0,00000212	8,20E-12	8,20E-12	0,00000242	
Nitrogen	2.72E- 06	2.77E- 06	0,00268	1,16E-07	1,9E-14	0	2E-14	0	0	0	0,00E+00	0,00000335	9,40E-12	9,40E-12	0,00000372	
CO2	2.52E- 02	2,1E- 02	0,0294	0,025	0,0288	1	0,029	0,9998	0	0	0,00E+00	0,792670479	1,05E-04	1,05E-04	0,88899	
Methane	9.35E- 04	9,75E- 04	0,8822	0,0000775	4,59E-11	0	4,59E-11	0	0	0	0,00E+00	0,00222	1,40E-08	1,40E-08	0,00255	
Ethane	1.11E- 05	1.15E- 05	0,0105	8,57E-07	4,5E-13	0	4,52E-13	0	0	0	0,00E+00	0,0000245	1,83E-10	1,83E-10	0,000028	
Propane	1.48E- 06	1.52E- 06	0,00144	8,78E-08	2,9E-14	0	2,92E-14	0	0	0	0,00E+00	0,00000254	1,60E-11	1,60E-11	0,00000286	
i-Butane	1.84E- 08	1.52E- 08	0,0000189	7,45E-11	5,00E-19	0	5,20E-19	0	0	0	0,00E+00	2,43E-09	4,20E-16	4,20E-16	2,4E-09	
n-Butane	3.17E- 08	2,6E- 08	0,0000325	1,29E-10	9,00E-19	0	9,00E-19	0	0	0	0,00E+00	4,15E-09	7,00E-16	7,00E-16	4,09E-09	
i-Pentane	9.93E- 09	8,1E- 09	0,0000102	6,8E-11	9,50E-19	0	9,50E-19	0	0	0	0,00E+00	2,18E-09	5,70E-16	5,70E-16	2,21E-09	
n-Pentane	9.26E- 09	7,61E- 09	0,00000947	6,35E-11	8,80E-19	0	8,80E-19	0	0	0	0,00E+00	2,03E-09	5,20E-16	5,20E-16	2,05E-09	Ī
n-Hexane	6.14E- 08	4,98E- 08	0,0000567	6,3E-09	5,9E-14	0	5,8E-14	0	0	0	0,00E+00	0,000000178	5,30E-13	5,30E-13	0,00000205	
n-Heptane	6.95E- 09	5,59E- 09	0,00000712	7,5E-11	1,95E-18	0	1,95E-18	0	0	0	0,00E+00	2,35E-09	9,00E-16	9,00E-16	2,43E-09	
n-Octane	5.77E- 09	4,59E- 09	0,00000588	7,2E-11	2,23E-18	0	2,23E-18	0	0	0	0,00E+00	2,21E-09	9,50E-16	9,50E-16	2,3E-09	
n-Nonane	1.41E- 09	1,1E- 9	0,00000143	1,7E-11	5,30E-19	0	5,30E-19	0	0	0	0,00E+00	5,29E-10	2,30E-16	2,30E-16	5,49E-10	
n-Decane	1.64E- 10	1,28E- 10	0,00000169	5,9E-13	3,70E-21	0	3,70E-21	0	0	0	0,00E+00	1,87E-11	3,20E-18	3,20E-18	1,84E-11	
H2S	9.72E- 06	9.8E- 06	0,0000236	9,715E-06	0,0000105	0	0,0000106	2.00E- 04	0	0	0,00E+00	0,000112	9,50E-08	9,50E-08	0,000187	
MDEAmine	9.878E-	9.82E-	0,0000199	0,09798	0,0961	0	0,0981	0	0,1	0,1	0,00E+00	0,0000512	1,23E-04	4,11E-04	1,76E-08	Ī

TABLEAU V.4 : Résultats du 2^{eme} cas (simulation sur HP, stripper, reflux).

3^{eme} Cas étudié :

Ce cas reflète les conditions réelles de production de gaz traité à Krechba, à savoir :

• Gaz d'alimentation : Tg = 50 °C Pg = 7400 Kpa

Qg = 430000 Kg/h

• Amine MDEA : Ta = 73°C Pa = 7200 Kpa Qa = 995000 Kg/h

Le gaz d'expédition après traitement à l'amine est composé de 0,23 % molaire en CO_2 . C'est donc un gaz conforme aux spécifications avec un pourcentage molaire en CO_2 inférieur à 0,30 % :

Q_{abs} = 103735.6 - 995000 Kg/h = **42635,6 Kg/h**

Par ailleurs, il est à préciser que l'amine de traitement (riche en dioxyde de carbone) arrive dans le ballon *HP* dans les conditions de température et de pression de l'ordre de 81,36 °C et de 700 kPa respectivement et un débit de 1037635,6 Kg/h. Tandis que les vapeurs à la sortie de ce ballon sont dominées par la présence de méthane (89,188 % en CH₄ et 2,65 % en CO₂) (Tableaux V.5 et V.6).

Les gaz acides torchés du ballon de reflux sont composés de 88,775% molaire en CO_2 et 0,02% molaire en H₂S à un débit de Q_{ga} = 39758,3 Kg/h.

Conditions	Preheater				Absorbeur				LP					
	Gas inlet	Gas Outlet	Amine inlet	Amine outlet	Lean amine	Gas inlet	Gas outlet	Rich amine	24" Rich amine inlet	34Waterfrom reflux	36 Stripping gas	24'	29 Top to HC-104	30 To Rich amine pump
Vapour	1	1	0	0	0	1	1	0	0,000524	0	1	0,000257	1	0
Temperature[C]	50	66,9	73	68,74	68,74	66,9	69,32	81,55	81,3	34,6	103	85,6	81,5	83,25
Pressure[Kpa]	7400	7400	7200	7200	7200	7400	7200	7400	200	215,6	231,1	270	200	270
Molar Flow [kgmole/h]	23578,88	23578,88	35372	35372	35372	23578,88	22655,59	36295,2	36260,35	0,1	1148,5	0	1123,3	36286
Mass Flow [kg/h]	430000	430000	995000	995000	995000	430000	387364,35	1037635,6	1037037,2	2	50544,2	0	42567	1045013,3
Std Ideal Liq Vol Flow[m3/h]	1274,4	1274,4	979,9	979,9	979,9	1274,4	1221,1	1033,2	1031,5	0	61,2	0	50,6	1042
Molar Enthalpy [Kj/kgmole]	13600	14000	-19000	19500	-19500	13600	14600	-19000	-19000	-33000	12000	-19000	12000	-19000
Molar Entropy [Kj/kgmole-C]	190	190	100	100	100	190	190	100	100	75	210	100	220	100
Heat Flow[Kj/h]	31000000	335000000	- 670000000	- 695000000	- 695000000	335000000	330000000	-690000000	-690000000	-3700	14000000	0	13000000	- 690000000
Composition												-		
H2O	0,000188	0,000188	0,9	0,9	0,9	0,000188	0,00524	0,87178	0,874723	0,99952	0	0,874005	0,23034	0,867
Hydrogen	0,000826	0,000826	0	0	0	0,000826	0,000858	0,000000974	7,28E-08	1,64E-11	0	6,52E-08	0,00000238	4,60E-36
Nitrogen	0,00445	0,00445	0	0	0	0,00445	0,00462	0,00000271	0,000000112	1,88E-11	0	9,09E-08	0,00000367	4,20E-38
CO2	0,0649	0,0649	0	0	0	0,0649	0,00233	0,0275	0,0276	0,000212	0,9998	0,0283	0,76682	0,0356
Methane	0,91196	0,91196	0	0	0	0,91196	0,94763	0,000936	0,0000783	2,78E-08	0	0,0000672	0,00256	3,60E-33
Ethane	0,0137	0,0137	0	0	0	0,0137	0,0299	0,000011	0,00000858	3,64E-10	0	0,00000737	0,0000281	2,26E-35
Propane	0,00269	0,00269	0	0	0	0,00269	0,0028	0,00000148	8,84E-08	3E-11	0	7,17E-08	0,0000029	1,97E-37
i-Butane	0,00027	0,00027	0	0	0	0,00027	0,000281	1,72E-08	5,88E-11	8,39E-16	0	2,58E-11	1,92E-09	2,38E-48
n-Butane	0,000479	0,000479	0	0	0	0,000479	0,000499	2,96E-08	1,01E-10	1,43E-15	0	4,39E-11	3,27E-09	4,00E-48
i-Pentane	0,000119	0,000119	0	0	0	0,000119	0,000124	9,25E-09	5,49E-11	1,13E-15	0	3,53E-11	1,79E-09	7,37E-45
n-Pentane	0,000114	0,000114	0	0	0	0,000114	0,000119	8,63E-09	5,1E-11	1,05E-15	0	3,27E-11	1,66E-09	6,78E-45
n-Hexane	0,0001	0,0001	0	0	0	0,0001	0,000104	0,00000057	5,5E-09	1,06E-12	0	6,89E-09	0,00000178	1,80E-35
n-Heptane	0,0000821	0,0000821	0	0	0	0,0000821	0,0000854	6,43E-09	6,1E-11	1,79E-15	0	5,02E-11	1,97E-09	2,10E-45
n-Octane	0,000071	0,000071	0	0	0	0,000071	0,0000739	5,32E-09	5,76E-11	1,89E-15	0	5,05E-11	1,87E-09	5,33E-45
n-Nonane	0,00002	0,00002	0	0	0	0,00002	0,0000208	1,29E-09	1,37E-11	4,49E-16	0	1,2E-11	4,44E-10	1,20E-45
n-Decane	0,000006	0,000006	0	0	0	0,000006	0,00000625	1,5E-10	4,37E-13	6.29E-18	0	1.79E-13	1.5E-11	1.2E-50
H2S	0,000015	0,000015	0	0	0	0,000015	3,38E-08	0,00000974	0,00000973	1,88E-07	0,0002	0,00000972	0,00017	0,0000055
MDEAmine	0	0	0,1	0,1	0,1	0	0,0000358	0,0974	0,0975	0,000246	0	0,0976	0,000054	0,0974

TABLEAU V.5 : Résultats du 3^{eme} cas (simulation sur *preheater*, absorbeur, LP).

58

CHAPITRE V

TABLEAU V.6 : Résultats du 3^{eme} cas (simulation sur HP, stripper, reflux).

59

Conditions	HP				Stripper						Reflux				
	Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC-029104	29H From demin water	29L' Min Flow	29I To reflux drum	29B to vent
Vapour	0,00115	1.13E- 03	1	0	0,0425	0	0,10112	1	0	0	0,86	0	0	0	1
Temperature[C]	81,36	83,92	81,46	81,5	105,4	108	118,6	103	89,3	120	45	30	33,5337	33,3923	33,3923
Pressure[Kpa]	700	700	700	700	231,1	239,5	250	231,1	235,3	250	100	50	200	50	50
Molar Flow [kgmole/h]	36295,3	0	35,94	36260,38	36285,7	32812	120,8	1148,9	49203	18889	1123,25	110	36362	36631	968
Mass Flow [kg/h]	1037635,6	0	598,6	1037037,2	1045013,4	479845	3479,6	50544,2	28466505	500000	42570	1996	656216,7	661024,4	39758,3
Std Ideal Liq Vol Flow[m3/h]	1033,2	0	1,8	1031,5	1042	899	3,5	61,2	1313,6	524	50,8	2	655	662,4	48
Molar Enthalpy [Kj/kgmole]	-19000	- 1.9E+04	15000	-19000	-14500	-15000	-10000	12000	-17160	-14038	3860	-34000	-33000	-33000	9800
Molar Entropy [Kj/kgmole-C]	100	100	215	100	110	110	120	210	108,5	111	196	75	75	75	220
Heat Flow[Kj/h]	-69000000	0	516000	-6,9E+08	- 515000000	- 4,90E+08	-1300000	14000000	- 1,75E+10	4,25E+09	4200000	- 3700000	- 1200000000	- 1200000000	9450000
Composition								-							
H2O	0,871782	0,878	0,0659	0,874723	0,8681	0,9	0,8689	0	0,9	0,9	0,2313	1	0,99975	0,99978	0,105
Hydrogen	0,000000975	9.82E- 07	0,000938	7,28E-08	4,56E-36	0	2,7E-36	0	0	0	0,00000238	0	1,64E-11	1,83E-11	0,00000275
Nitrogen	0,00000271	2.72E- 06	0,0027	1,12E-07	4,20E-38	0	2,32E-38	0	0	0	0,00000367	0	1,88E-11	2,16E-11	0,00000423
CO2	0,0276	2.52E- 02	0,0265	0,0276	0,0356	0	0,0345	0,9998	0	0	0,767	0	0,000212	0,000212	0,88775
Methane	0,000937	9.31E- 04	0,89188	0,0000783	3,62E-33	0	7,05E-33	0	0	0	0,00256	0	2,78E-08	3,16E-08	0,00312
Ethane	0,000011	1.10E- 05	0,0106	8,58E-07	2,25E-35	0	4,39E-35	0	0	0	0,0000281	0	3,64E-10	4,14E-10	0,0000324
Propane	0,00000148	1.47E- 06	0,00144	8,84E-08	1,97E-37	0	3,82E-37	0	0	0	0,0000029	0	3E-11	3,47E-11	0,00000335
i-Butane	1,72E-08	1.94E- 08	0,0000179	5,88E-11	2,38E-48	0	2,21E-48	0	0	0	1,92E-09	0	8,39E-16	8,96E-16	2,22E-09
n-Butane	2,96E-08	3.33E- 08	0,0000306	1,01E-10	4,02E-48	0	3,74E-48	0	0	0	3,27E-09	0	1,43E-15	1,53E-15	3,78E-09
i-Pentane	9,25E-09	1.05E- 08	0,0000095	5,49E-11	7,37E-47	0	6,98E-47	0	0	0	1,79E-09	0	1,13E-15	1,19E-15	2,07E-09
n-Pentane	8,63E-09	9.77E- 09	0,000089	5,1E-11	6,78E-47	0	6,43E-47	0	0	0	1,66E-09	0	1,05E-15	1,1E-15	1,92E-09
n-Hexane	0,00000057	6.49E- 08	0,0000534	5,5E-09	1,80E-35	0	1,84E-35	0	0	0	1,78E-07	0	1,06E-12	1,04E-12	0,00000205
n-Heptane	6,43E-09	7.38E- 09	0,00000662	6,1E-11	2,10E-45	0	2,02E-45	0	0	0	1,97E-09	0	1,79E-15	1,84E-15	2,3E-09
n-Octane	5,32E-09	6.14E- 09	0,00000546	5,76E-11	5,32E-45	0	5,22E-45	0	0	0	1,87E-09	0	1,89E-15	1,93E-15	2,16E-09
n-Nonane	1,3E-09	1.50E- 09	0,00000133	1,37E-11	1,20E-45	0	1,18E-45	0	0	0	4,44E-10	0	4,49E-16	4,56E-16	5,13E-10
n-Decane	1,5E-10	1.75E- 10	0,000000155	4,37E-13	1,23E-50	0	1,19E-50	0	0	0	1,42E-11	0	6,29E-18	6,56E-18	1,65E-11
H2S	0,00000974	9.76E- 06	0,0000225	9,73E-06	0,0000107	0	0,0000903	2.00E-04	0	0	0,000168	0	0,00000188	0,000000151	0,0002
MDEAmine	0,0974	9.78E- 02	0,0000171	0,0975	0,0975	0,1	0,0978	0	0,1	0,1	0,000055	0	0,000246	0,000246	1,68E-08

CHAPITRE V

4^{eme} Cas étudié :

Dans ce cas d'étude, nous agissons particulièrement sur la température de l'amine de traitement à l'entrée de l'absorbeur de telle sorte que :

• Gaz entrant : Tg = 64,7°C Pg = 7330 Kpa Qg = 430000 Kg/h

• Amine de traitement : Ta = 67,02°C Pa = 7500 Kpa Qa = 995000 Kg/h

Cette situation conduit à une quantité de dioxyde de carbone absorbée égale à :

 $Q_{abs} = 1037189 - 995000 \text{ Kg/h} = 42189 \text{ Kg/h}$

Il faut signaler que l'échange thermique au niveau des trois *strippers* rebouilleurs est assuré par de l'eau chaude à une température de 132 °C. Ce qui a fait déclencher les alarmes de l'installation car la température barrière est fixée à 125 °C en utilisant le modèle Amine - package.

La pression de refoulement d'un débit 995000 Kg/h d'amine pauvre est assuré par la pompe booster est égale à 1144 Kpa.

Nous concluons, ici aussi, que le gaz d'expédition, composé de 0,24 % molaire en dioxyde de carbone, est un gaz conforme aux spécifications. Les résultats de cette étude sont regroupés dans les tableaux V.7, 8, 9 et 10.

TABLEAU V.7 : Résultats du 4 ^{er}	^{me} cas ((simulation sur	preheater,	absorbeur,	LP)).
--	---------------------	-----------------	------------	------------	-----	----

Conditions	Preheater				Absorbeur				LP					
	Gas inlet	Gas Outlet	Amine inlet	Amine outlet	Lean amine	Gas inlet	Gas outlet	Rich amine	24" Rich amine inlet	34 Water From reflux	36 Stripping gas	24'	29 Top to HC-104	30 To Rich Amine pump
Vapour	1	1	0	0	0	1	1	0	0,000226	0	1	2.34E- 04	1	0
Temperature[C]	30	64,7	73	67,02	67,02	64,7	67	80	80	35	103	86	80,2	83
Pressure[Kpa]	7330	7330	7500	7500	7500	7330	7200	7400	200	215,6	233	270	200	270
Molar Flow [kgmole/h]	23578,9	23578,9	35372	35372	35372	23578,9	22659	36291,9	36257,4	0,089	1148,5	0	1017,3	36388,7
Mass Flow [kg/h]	430000	430000	995000	995000	995000	430000	387812,9	1037189	1036601,6	2	50544,2	0	39181,2	1047966,6
Std Ideal Liq Vol Flow[m3/h]	1274,4	1274,4	979,9	979,9	979,9	1274,4	1221,7	1032,6	1030,9	0	61,22	0	48	1045,5
Molar Enthalpy [Kj/kgmole]	13000	14000	-19000	-20000	-20000	14000	14000	-19000	-19000	- 3.3E+04	12000	-1,80E+04	12000	-19000
Molar Entropy [Kj/kgmole-C]	190	190	100	100	100	190	190	100	100	75	210	100	220	100
Heat Flow[Kj/h]	29000000	320000000	-670000000	-700000000	-700000000	33000000	320000000	-700000000	-700000000	- 3.7E+03	14000000	0	12000000	-7E+08
Composition		- <u>F</u>	1	T			-	1	-	- T		-	T	
H2O	0,000188	0,000188	0,9	0,9	0,9	0,000188	0,00489	0,873	0,8776	0,9998	0	0,872	0,205	0,8681
Hydrogen	0,000826	0,000826	0	0	0	0,000826	0,000858	0,00000974	7,64E-08	1.64E- 11	0	6.52E- 08	2.56E- 06	1,79E-35
Nitrogen	0,00445	0,00445	0	0	0	0,00445	0,00562	0,000002702	0,00000121	1.88E- 11	0	9.09E- 08	4.06E- 06	1,72E-37
CO2	0,0649	0,0649	0	0	0	0,0649	0,00237	0,02601	0,0261	2.12E- 04	0,9998	2.83E- 02	0,78859	0,0343
Methane	0,91196	0,91196	0	0	0	0,91196	0,94762	0,000942	0,0000834	2.78E- 08	0	6.72E- 05	2.94E- 03	5,54E-30
Ethane	0,0137	0,0137	0	0	0	0,0137	0,0342	0,0000111	0,00000914	3.64E- 10	0	7.37E- 07	3.14E- 05	2,86E-32
Propane	0,00269	0,00269	0	0	0	0,00269	0,00279	0,00000149	9,58E-08	3.00E- 11	0	7.17E- 08	3.22E- 06	3,38E-34
i-Butane	0,00027	0,00027	0	0	0	0,00027	0,000281	1,63E-08	6,35E-11	8.39E- 16	0	2.58E- 11	2.12E- 09	9,08E-48
n-Butane	0,000479	0,000479	0	0	0	0,000479	0,000499	0,00000028	1,09E-10	1.43E- 15	0	4.39E- 11	3.62E- 09	1,53E-47
i-Pentane	0,000119	0,000119	0	0	0	0,000119	0,000124	8,73E-09	5,78E-11	1.13E- 15	0	3.53E- 11	1.93E- 09	2,80E-46
n-Pentane	0,000114	0,000114	0	0	0	0,000114	0,000119	8,15E-09	5,36E-11	1.05E- 15	0	3.27E- 11	1.79E- 09	2,54E-46
n-Hexane	0,0001	0,0001	0	0	0	0,0001	0,000104	5,35E-08	5,18E-09	1.06E- 12	0	6.89E- 09	1.74E- 07	5,94E-35
n-Heptane	0,0000821	0,0000821	0	0	0	0,0000821	0,0000854	6,02E-09	6,24E-11	1.79E- 15	0	5.02E- 11	2.08E- 09	7,70E-45
n-Octane	0,000071	0,000071	0	0	0	0,000071	0,0000739	4,46E-09	5,85E-11	1.89E- 15	0	5.05E- 11	1.95E- 09	1,96E-44
n-Nonane	0,00002	0,00002	0	0	0	0,00002	0,0000208	1,2E-09	1,39E-11	4.49E- 16	0	1.20E- 11	4.63E- 10	3,83E-43
n-Decane	0,000006	0,000006	0	0	0	0,000006	0,00000625	1,39E-10	4,64E-13	6.29E- 18	0	1.79E- 13	1.55E- 11	4,25E-48
H2S	0,000015	0,000015	0	0	0	0,000015	6,07E-09	0,0000931	0,000093	1.88E- 07	0,0002	9.72E- 06	1.30E- 04	0,0000106
MDEAmine	0	0	0,1	0,1	0,1	0	0,0000326	0,0976	0,0977	2.46E-	0	9.76E-	4.76E-	0,0975

CHAPITRE V

TABLEAU V.8 : Résultats du 4 ^{eme} cas (simulation sur HP, stripper, reflux).	
--	--

	Conditions	HP				Stripper						Reflux				
NO		Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52 To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC- 029104	29H From Demin water	29L' Min Flow	29I To reflux drum	29B to vent
SSI	Vapour	0,00108	1.13E- 03	1	0	0,0433	0	0,089	1	0	0	0,89	0	0	0	1
	Temperature[C]	79	84	80	79	105	111	120	103	95	120	45,3	32	35	35	35
5	Pressure[Kpa]	700	700	700	700	231,1	239,5	250	231,1	235,3	250	100	50	220	50	50
SIC	Molar Flow [kgmole/h]	36291,9	0	34,5	36257,4	36388,7	1325470,6	120,8	1148,5	1988404,7	-627562,1	1017,3	110,8	36364,5	36978,7	903,9
	Mass Flow [kg/h]	1037187,1	0	585,5	1036601,6	1047966,6	37284944,5	3479,6	50544,2	55933010	- 17653065.5	39181,2	1996	656216,7	660260,8	37133,1
S Е	Std Ideal Liq Vol Flow[m3/h]	1032,6	0	1,8	1030,9	1045,3	36720,8	3,5	61,2	55086,8	-17386	46,8	2	667,9	660	45
AT	Molar Enthalpy [Kj/kgmole]	-19000	- 1.9E+04	15000	-19000	-15000	-15000	-10500	12000	-17000	-14000	4900	-34000	-33000	-33000	9900
ΕÏ	Molar Entropy [Kj/kgmole-C]	100	100	210	100	110	110	120	210	110	110	200	75	75	75	220
SU	Heat Flow[Kj/h]	-700000000	0	500000	-7E+08	- 530000000	- 20000000000	-1300000	14000000	- 34000000000	8800000000	5000000	- 3700000	- 1200000000	- 1300000000	8800000
Щ	Composition															
	H2O	0,873	0,878	0,0551	0,8776	0,8681	0,9	0,8689	0	0,9	0,9	0,215	1	0,99956	0,99958	0,13
	Hydrogen	0,00000974	9.82E- 07	0,000945	7,64E-08	1,79E-35	0	2,7E-36	0	0	0	0,0000025	0	1,38E-11	1,87E-11	282E- 06
	Nitrogen	0,000002702	2.72E- 06	0,00272	1,21E-07	1,71E-37	0	2,32E-38	0	0	0	0,000004	0	1,5E-11	2,22E-11	4.47E- 06
	CO2	0,02601	2.52E- 02	0,0251	0,0261	0,0343	0	0,0345	0,9998	0	0	0,78376	0	0,000193	0,000193	0,8627
	Methane	0,000942	9.31E- 04	0,90393	0,0000834	4,54E-30	0	7,05E-33	0	0	0	0,00294	0	2,32E-08	0,00000032	3.1E- 03
	Ethane	0,0000111	1.10E- 05	0,0107	9,14E-07	2,86E-32	0	4,39E-35	0	0	0	0,0000311	0	2,94E-10	4,1E-10	3.37E- 05
	Propane	0,00000149	1.47E- 06	0,00146	9,58E-08	2,77E-34	0	3,82E-37	0	0	0	3,21E-06	0	2,43E-11	3,5E-11	3.54E- 06
	i-Butane	1,63E-08	1.94E- 08	0,0000171	6,35E-11	9,07E-48	0	2,21E-48	0	0	0	2,12E-09	0	6,17E-16	9,64E-16	2.33E- 09
	n-Butane	0,00000028	3.33E- 08	0,000029	1,09E-10	1,53E-47	0	3,74E-48	0	0	0	3,62E-09	0	3,4E-15	1,65E-15	4.02E- 09
	i-Pentane	8,73E-09	1.05E- 08	0,00000912	5,78E-11	2,75E-46	0	6,98E-47	0	0	0	1,93E-09	0	1,13E-15	1,25E-15	2.12E- 09
	n-Pentane	8,15E-09	9.77E- 09	0,00000851	5,36E-11	2,54E-46	0	6,43E-47	0	0	0	1,79E-09	0	1,05E-15	1,16E-15	1,95E- 09
	n-Hexane	5,35E-08	6.49E- 08	0,0000509	5,18E-09	5,93E-35	0	1,84E-35	0	0	0	1,74E-07	0	1,06E-12	1E-12	1,91E- 07
	n-Heptane	6,02E-09	7.38E- 09	0,00000628	6,24E-11	7,70E-45	0	2,02E-45	0	0	0	2,08E-09	0	1,79E-15	1,88E-15	2.29E- 09
Ц Ц	n-Octane	4,46E-09	6.14E- 09	0,00000517	5,85E-11	1,96E-44	0	5,22E-45	0	0	0	1,95E-09	0	1,89E-15	1,96E-15	2.15E- 09
TR	n-Nonane	1,2E-09	1.50E- 09	0,00000125	1,39E-11	3,83E-43	0	1,18E-45	0	0	0	4,63E-10	0	3,35E-16	4,63E-16	5.1E- 10
Ιd	n-Decane	1,39E-10	1.75E- 10	0,000000146	4,64E-13	4,24E-48	0	1,19E-50	0	0	0	1,55E-11	0	4,56E-18	6,95E-18	1.71E- 11
Η	H2S	0,00000931	9.76E- 06	0,0000189	0,0000093	0,0000106	0	0,00000903	2.00E- 04	0	0	0,000166	0	0,000000199	0,00000013	1.85E- 04
	MDEAmine	0,0976	9.78E- 02	0,0000144	0,0977	0,0975	0,1	0,0978	0	0,1	0,1	0,0000476	0	0,000246	0,000246	2,3E- 08

. 1	Conditions	AMINE IN				041 IN				041 OUT			-
SION		52 Amine from co2 stripper	52A MDEA IN (SA)	52B MDEA IN (SB)	52C MDEA IN(SC)	50A Hot water	50B H Water IN(TA)	50C H Water IN(TB)	50D H Water IN(TC)	50BB H Water OUT (TA)	50CC H Water out(TB)	50DD H Water out(TC)	50AAA H Water return
US	Vapour	0	0	0	0	0	0	0	0	0	0	0	0
S	Temperature[C]	94,4	94,4	94,4	94,4	132	132	132	132	100	100	100	100
Ħ	Pressure[Kpa]	235,3	235,3	235,3	235,3	1500	1500	1500	1500	1490	1490	1490	1490
ETI	Molar Flow [kgmole/h]	1988404,7	662735,3	662735,3	662934,1	141539,9	47175,15	47175,15	47189,6	47175,2	47175,2	47189,4	141539,8
TS	Mass Flow [kg/h]	55933010	18642472,2	18642472,2	18648065,5	2549854,3	849866,4	849866,4	850121,4	849866,4	849866,4	850121,4	2549854,3
TA.	Std Ideal Liq Vol Flow[m3/h]	55086,8	18360,4	18360,4	18365,9	2555	851,6	851,6	851,8	851,6	851,6	851,8	2555
SUI	Molar Enthalpy [Kj/kgmole]	-17000	-17000	-17000	-17000	-26000	-26000	-26000	-26000	-28000	-28000	-28000	-28000
RE	Molar Entropy [Kj/kgmole-C]	110	110	110	110	85	85	85	85	82	82	82	82
	Heat Flow[Kj/h]	-3700000000	-13000000000	-1300000000	-1300000000	-3800000000	-1200000000	-120000000	-1,2E+09	-130000000	-1,3E+09	-1,3E+09	-400000000
	Composition												
	H2O	0,9	0,9	0,9	0,9	1	1	1	1	1	1	1	1
	Hydrogen	0	0	0	0	0	0	0	0	0	0	0	0
	Nitrogen	0	0	0	0	0	0	0	0	0	0	0	0
	CO2	0	0	0	0	0	0	0	0	0	0	0	0
	Methane	0	0	0	0	0	0	0	0	0	0	0	0
	Ethane	0	0	0	0	0	0	0	0	0	0	0	0
	Propane	0	0	0	0	0	0	0	0	0	0	0	0
	i-Butane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Butane	0	0	0	0	0	0	0	0	0	0	0	0
	i-Pentane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Pentane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Hexane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Heptane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Octane	0	0	0	0	0	0	0	0	0	0	0	0
RI	n-Nonane	0	0	0	0	0	0	0	0	0	0	0	0
	n-Decane	0	0	0	0	0	0	0	0	0	0	0	0
AP	H2S	0	0	0	0	0	0	0	0	0	0	0	0
CH.	MDEAmine	0,1	0,1	0,1	0,1	0	0	0	0	0	0	0	0

TABLEAU V.9 : Résultats du 4^{eme} cas (simulation sur AMINE IN, 041 IN, 041 OUT).

TABLEAU V.10 : Résultats du 4^{eme} cas (simulation sur TEE-100, TEE-101, MIX-101, MIX-102).

Conditions	TEE-100 (rie	ch in)			TEE-101(lea	n in)			MIX-101(rich out)) MIX-102(lean out)							
	38 From rich MDEA pump	39MDEA inlet A	40 MDEA inlet B	41MDEA inlet C	51Lean MDEA from CO2 stripper	59A MDEA inlet A to pump booster	59B MDEA inlet B to pump booster	59C MDEA inlet C to pump booster	39A MDEA outlet to stripper A	40A MDEA outlet to stripper B	41A MDEA outlet to stripper C	42 Rich amine to stripper	57A MDEA outlet to pump booster A	57B MDEA outlet to pump booster B	57C MDEA outlet to pump booster C	57 To lean MDEA booster pump
Vapour	0	0	0	0	0	0	0	0	0,0128	0,0128	0,0128	0,0128	0	0	0	0
Temperature[C]	84	84	84	84	125,9	125,9	125,9	125,9	119	119	119	119	82,8	82,8	82,8	82,8
Pressure[Kpa]	872,8	872,8	872,8	872,8	250	250	250	250	862,8	862,8	862,8	862,8	240	240	240	240
Molar Flow [kgmole/h]	36389	12128,4	12128,4	12132	35372	11789,5	11789,5	11793	12129	12129	12132	36388,7	11789,5	11789,5	11793	35372
Mass Flow [kg/h]	1047972	349289	349289	349393,1	995000	331633,5	331633,5	331733	349287,3	349287,3	349392,1	1047966,6	331633,5	331633,5	331733	995000
Std Ideal Liq Vol Flow[m3/h]	1046	348,4	348,4	348,5	979,9	326,6	326,6	326,7	348,4	348,4	348,5	1045,3	326,6	326,6	326,7	979,9
Molar Enthalpy [Kj/kgmole]	-19000	-19000	-19000	-19000	-13000	-13000	-13000	-13000	-15000	-15000	-15000	-15000	-18000	-18000	-18000	-18000
Molar Entropy [Kj/kgmole-C]	100	100	100	100	110	110	110	110	110	110	110	110	110	110	110	110
Heat Flow[Kj/h]	- 690000000	- 230000000	- 230000000	- 230000000	- 480000000	- 160000000	- 160000000	- 160000000	- 180000000	- 180000000	- 180000000	- 530000000	- 210000000	- 210000000	- 210000000	- 640000000
Composition																1
H2O	0,87	0,87	0,87	0,87	0,9	0,9	0,9	0,9	0,87	0,87	0,87	0,87	0,9	0,9	0,9	0,9
Hydrogen	1,79E-35	1,79E-35	1,79E-35	1,79E-35	0	0	0	0	1,79E-35	1,79E-35	1,79E-35	1,79E-35	0	0	0	0
Nitrogen	1,71E-37	1,71E-37	1,71E-37	1,71E-37	0	0	0	0	1,71E-37	1,71E-37	1,71E-37	1,71E-37	0	0	0	0
CO2	0,0343	0,0343	0,0343	0,0343	0	0	0	0	0,0343	0,0343	0,0343	0,0343	0	0	0	0
Methane	4,54E-30	4,54E-30	4,54E-30	4,54E-30	0	0	0	0	4,54E-30	4,54E-30	4,54E-30	4,54E-30	0	0	0	0
Ethane	2,81E-33	2,81E-33	2,81E-33	2,81E-33	0	0	0	0	2,81E-33	2,81E-33	2,81E-33	2,81E-33	0	0	0	0
Propane	2,77E-34	2,77E-34	2,77E-34	2,77E-34	0	0	0	0	2,77E-34	2,77E-34	2,77E-34	2,77E-34	0	0	0	0
i-Butane	9,10E-48	9,10E-48	9,10E-48	9,10E-48	0	0	0	0	9,10E-48	9,10E-48	9,10E-48	9,10E-48	0	0	0	0
n-Butane	1,53E-47	1,53E-47	1,53E-47	1,53E-47	0	0	0	0	1,53E-47	1,53E-47	1,53E-47	1,53E-47	0	0	0	0
i-Pentane	2,75E-46	2,75E-46	2,75E-46	2,75E-46	0	0	0	0	2,75E-46	2,75E-46	2,75E-46	2,75E-46	0	0	0	0
n-Pentane	2,54E-46	2,54E-46	2,54E-46	2,54E-46	0	0	0	0	2,54E-46	2,54E-46	2,54E-46	2,54E-46	0	0	0	0
n-Hexane	5,93E-35	5,93E-35	5,93E-35	5,93E-35	0	0	0	0	5,93E-35	5,93E-35	5,93E-35	5,93E-35	0	0	0	0
n-Heptane	7,67E-45	7,67E-45	7,67E-45	7,67E-45	0	0	0	0	7,67E-45	7,67E-45	7,67E-45	7,67E-45	0	0	0	0
n-Octane	1,96E-44	1,96E-44	1,96E-44	1,96E-44	0	0	0	0	1,96E-44	1,96E-44	1,96E-44	1,96E-44	0	0	0	0
n-Nonane	3,83E-43	3,83E-43	3,83E-43	3,83E-43	0	0	0	0	3,83E-43	3,83E-43	3,83E-43	3,83E-43	0	0	0	0
n-Decane	4,24E-48	4,24E-48	4,24E-48	4,24E-48	0	0	0	0	4,24E-48	4,24E-48	4,24E-48	4,24E-48	0	0	0	0
H2S	0,0000106	0,0000106	0,0000106	0,0000106	0	0	0	0	0,0000106	0,0000106	0,0000106	0,0000106	0	0	0	0
MDEAmine	0,0975	0,0975	0,0975	0,0975	0,1	0,1	0,1	0,1	0,0975	0,0975	0,0975	0,0975	0,1	0,1	0,1	0,1

64

CHAPITRE V

5^{eme} cas d'étude :

Nous sommes ici dans la configuration où le débit du gaz alimentant l'absorbeur est fixé à 390000 kg/h. La température du gaz admis dans l'absorbeur est d'environ 64 °C :

- Gaz entrant dans l'absorbeur: Tg = 63,95°C Pg = 7260 Kpa Qg = 390000 Kg/h
 - Amine MDEA : Ta = 67°C Pa = 8000 Kpa Qa = 995000 Kg/h

Le traitement du gaz à l'amine a conduit à l'absorption d'une quantité de CO₂ de :

 $Q_{abs} = 1033508 - 995000 \text{ Kg/h} = 38508 \text{ Kg/h}$

A l'exemple des cas précédents, nous concluons que le gaz, traité dans ce 5^{e} cas d'étude, est conforme aux normes de l'usine (0,24 % molaire en CO₂) *ON-SPEC* (Tableaux V.11 et V.12).

Conditions	Preheater				Absorbeur				LP					
	Gas inlet	Gas Outlet	Amine inlet	Amine outlet	Lean amine	Gas inlet	Gas outlet	Rich amine	24" Rich amine inlet	34 Water From reflux	36 Stripping gas	24'	29 Top to HC-104	30 To Rich Amine pump
Vapour	1	1	0	0	0	1	1	0	0,000208	0	1	2.10E- 03	1	0
Temperature[C]	32	63,95	75	67	67	63,95	68	80	80	35	103	86	80	80
Pressure[Kpa]	7260	7260	8000	8000	8000	7260	7200	7400	200	200	300	200	200	200
Molar Flow [kgmole/h]	21385	21385	35372	35372	35372	21385	20547	36210	36176	0	1149	0	1150	36175
Mass Flow [kg/h]	390000	390000	995000	995000	995000	390000	351492	1033508	1032926	2	50544,2	0	44004	1039468
Std Ideal Liq Vol Flow[m3/h]	1155,82	1155,82	979,95	979,95	979,95	1155,82	1107,6	1028,17	1026,39	0	61,24	0	52,47	1035,16
Molar Enthalpy [Kj/kgmole]	13000	14000	-19000	-20000	-20000	14000	14000	-19000	-19000	- 3.3E+04	12000	- 1.8E+04	12000	-19000
Molar Entropy [Kj/kgmole-C]	190	190	100	100	100	190	190	100	100	75	210	100	220	100
Heat Flow[Kj/h]	28000000	30000000	-670000000	-700000000	-700000000	30000000	30000000	-69000000	-69000000	- 3.7E+03	14000000	0	13000000	-6,9E+08
Composition							·							
H2O	0,000188	0,000188	0,9	0,9	0,9	0,000188	0,00705	0,876	0,88	1	0	0,87	0,22	0,87
Hydrogen	0,000826	0,000826	0	0	0	0,000826	0,000858	0,00000976	7,75E-08	1.64E- 11	0	6.52E- 08	2.44E- 06	2,94E-37
Nitrogen	0,00445	0,00445	0	0	0	0,00445	0,00462	0,00000271	0,00000123	1.88E- 11	0	9.09E- 08	3.88E- 06	2,82E-39
CO2	0,0649	0,0649	0	0	0	0,0649	0,00236	0,0249	0,0249	2.12E- 04	0,9998	2.83E- 02	0,77892	0,0319
Methane	0,91196	0,91196	0	0	0	0,91196	0,9475	0,000942	0,0000842	2.78E- 08	0	6.72E- 05	2.65E- 03	9,05E-34
Ethane	0,0137	0,0137	0	0	0	0,0137	0,032516	0,0000111	0,00000923	3.64E- 10	0	7.37E- 07	2.90E- 05	5,71E-36
Propane	0,00269	0,00269	0	0	0	0,00269	0,00279	0,00000149	9,68E-08	3.00E- 11	0	7.17E- 08	3.05E- 06	5,53E-38
i-Butane	0,00027	0,00027	0	0	0	0,00027	0,000281	1,65E-08	6,83E-11	8.39E- 16	0	2.58E- 11	2.15E- 09	1,56E-49
n-Butane	0,000479	0,000479	0	0	0	0,000479	0,000499	2,83E-08	1,17E-10	1.43E- 15	0	4.39E-	3.67E- 09	2,63E-49
i-Pentane	0,000119	0,000119	0	0	0	0,000119	0,000124	8,83E-09	6,18E-11	1.13E- 15	0	3.53E-	1.94E- 09	4,73E-48
n-Pentane	0,000114	0,000114	0	0	0	0,000114	0,000119	8,23E-09	5,73E-11	1.05E- 15	0	3.27E- 11	1.80E- 09	4,36E-48
n-Hexane	0,0001	0,0001	0	0	0	0,0001	0,000104	5,42E-08	5,34E-09	1.06E- 12	0	6.89E- 09	1.68E- 07	1,01E-36
n-Heptane	0,0000821	0,0000821	0	0	0	0,0000821	0,0000854	6,1E-09	6,63E-11	1.79E- 15	0	5.02E-	2.09E- 09	1,32E-46
n-Octane	0,000071	0,000071	0	0	0	0,000071	0,0000739	5,03E-09	6,21E-11	1.89E- 15	0	5.05E-	1.95E- 09	3,38E-46
n-Nonane	0,00002	0,00002	0	0	0	0,00002	0,0000208	1,22E-09	1,47E-11	4.49E- 16	0	1.20E-	4.64E- 10	7,65E-47
n-Decane	0,000006	0,000006	0	0	0	0,000006	0,0000625	1,41E-10	5,02E-13	6.29E- 18	0	1.79E- 13	1.58E- 11	8,47E-52
H2S	0,000015	0,000015	0	0	0	0,000015	5,47E-09	0,0000886	0,0000885	1.88E-	0,0002	9.72E-	2.02E- 04	8,77E-06
MDEAmine	0	0	0,1	0,1	0,1	0	0,0000339	0,0977	0,0978	2.46E-	0	9.76E-	4.93E-	0,0978

TABLEAU V.11 : Résultats du 5^{eme} cas (simulation sur *preheater*, absorbeur, LP).

CHAPITRE V

TABLEAU V.12 : Résultats du 5^{eme} cas (simulation sur HP, stripper, reflux).

Conditions	HP				Stripper						Reflux					
	Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52 To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC- 029104	29H From Demin water	29L' Min Flow	29I To reflux drum	29B to vent	67
Vapour	0,00107	1.13E- 03	1	0	0,0316	0	0,0664	1	0	0	0,915	0	0	0	1	
Temperature[C]	80	84	80	80	110	118	120	103	90	120	52	30	42	42	42	Î.
Pressure[Kpa]	700	700	700	700	300	300	300	300	300	300	100	50	400	50	50	
Molar Flow [kgmole/h]	36210	0	34	36176	36175	32811	121	1149	49222	18961	1150	111	42535	42727	1069	
Mass Flow [kg/h]	1033508	0	581,475	1032926	1039468	922966	3479,65	50544,2	1384588	533378	44004,03	1995,972	767527	770988	42539,1	Ī
Std Ideal Liq Vol Flow[m3/h]	1028,17	0	1,78	1026,39	1035,16	909	3,47	61,24	1363,64	525,31	52,47	2	769,09	772,56	51,01	
Molar Enthalpy [Kj/kgmole]	-19000	- 1.9E+04	15000	-19000	-14000	-14000	-12000	12000	-17000	-14000	6900	-34000	-33000	-33000	10000	
Molar Entropy [Kj/kgmole-C]	100	100	210	100	110	110	120	210	110	110	210	75	76	76	220	
Heat Flow[Kj/h]	-690000000	0	500000	-6,9E+08	-520000000	- 470000000	-1400000	14000000	- 850000000	- 270000000	8000000	-3700000	-1400000000	-1400000000	11000000	
Composition																
H2O	0,876	0,876	0,0611	0,88	0,87	0,9	0,87	0	0,9	0,9	0,218	1	1	1	0,16	
Hydrogen	0,00000976	9.82E- 07	0,000946	7,75E-08	2,94E-37	0	2,7E-36	0	0	0	2,44E-06	0	1,11E-11	1,72E-11	2.62E- 06	
Nitrogen	0,00000271	2.72E- 06	0,00273	1,23E-07	2,82E-39	0	2,32E-38	0	0	0	3,88E-06	0	1,17E-11	1,99E-11	4.17E- 06	
CO2	0,0249	2.52E- 02	0,019	0,0249	0,0319	0	0,0345	0,9998	0	0	0,778924	0	0,000174	0,000174	0,83791	
Methane	0,000942	9.31E- 04	0,90396	0,0000842	9,05E-34	0	7,05E-33	0	0	0	0,00265	0	1,86E-08	2,85E-08	2.85E- 03	
Ethane	0,0000111	1.10E- 05	0,0107	9,23E-07	5,71E-36	0	4,39E-35	0	0	0	0,000029	0	2,23E-10	3,47E-10	3.12E- 05	
Propane	0,00000149	1.47E- 06	0,00146	9,68E-08	5,53E-38	0	3,82E-37	0	0	0	3,05E-06	0	1,86E-11	3,01E-11	3.28E- 06	
i-Butane	1,65E-08	1.94E- 08	0,0000173	6,83E-11	1,56E-49	0	2,21E-48	0	0	0	2,15E-09	0	3,95E-16	9,74E-16	2.31E- 09	
n-Butane	2,83E-08	3.33E- 08	0,0000297	1,17E-10	2,63E-49	0	3,74E-48	0	0	0	3,67E-09	0	6,74E-16	1,66E-15	3.94E- 09	
i-Pentane	8,83E-09	1.05E- 08	0,00000924	6,18E-11	4,73E-48	0	6,98E-47	0	0	0	1,94E-09	0	5,48E-16	1,26E-15	2.09E- 09	
n-Pentane	8,23E-09	9.77E- 09	0,0000861	5,73E-11	4,36E-48	0	6,43E-47	0	0	0	1,8E-09	0	5,09E-16	1,17E-15	1.94E- 09	
n-Hexane	5,42E-08	6.49E- 08	0,0000514	5,34E-09	1,01E-36	0	1,84E-35	0	0	0	1,68E-07	0	6,46E-13	9,48E-13	1.81E- 07	
n-Heptane	6,1E-09	7.38E- 09	0,0000636	6,63E-11	1,32E-46	0	2,02E-45	0	0	0	2,09E-09	0	8,81E-16	1,88E-15	2.24E- 09	
n-Octane	5,03E-09	6.14E- 09	0,00000524	6,21E-11	3,38E-46	0	5,22E-45	0	0	0	1,95E-09	0	9,35E-16	1,95E-15	2.10E- 09	
n-Nonane	1,22E-09	1.50E- 09	0,00000127	1,47E-11	7,65E-47	0	1,18E-45	0	0	0	4,64E-10	0	2,21E-16	4,62E-16	4.99E- 10	
n-Decane	1,41E-10	1.75E- 10	0,00000148	5,02E-13	8,47E-52	0	1,19E-50	0	0	0	1,58E-11	0	2,82E-18	7,08E-18	1.70E- 11	
H2S	0,0000886	9.76E- 06	0,0000176	8,85E-06	0,00000877	0	0,00000903	2.00E- 04	0	0	0,000202	0	0,00000209	0,000000146	2.20E- 04	
MDEAmine	0,0977	9.78E- 02	0,0000152	0,0978	0,0978	0,1	0,0978	0	0,1	0,1	0,0000493	0	0,000247	0,000247	2.97E- 08	

6^{eme} Cas d'étude :

Dans ce cas, on fixe le débit du gaz entrant à 430000 kg/h tout en diminuant sa température (de 63,9 à 63,2 °C) et celle de l'amine pauvre de telle sorte à avoir les conditions suivantes :

 Gaz entrant dans l'absorbeur : Tg = 63,2°C Pg = 7260 Kpa Qg = 430000 Kg/h

• Amine pauvre : Ta = 66,17°C Pa = 8000 Kpa Qa = 995000 Kg/h

Le traitement de ce gaz, à l'amine MDEA, a conduit à l'absorption d'une quantité de CO_2 de :

$Q_{abs} = 1037505 - 995000 \text{ Kg/h} = 42505 \text{ Kg/h}$

Le gaz d'expédition est composé de 0,24 % molaire en CO_2 . Les vapeurs sortant du ballon *HP* (2,14 % molaire en CO_2), du ballon *BP* (77,73 % molaire en CO_2), du ballon reflux (83,81 % molaire en CO_2) sont collectées dans un ballon de gaz acides avant d'être envoyées vers la torche acide (Tableaux V.13 et V.14).

TABLEAU V.13 : Résultats du 6^{eme} cas (simulation sur *preheater*, absorbeur, LP).

	Conditions	Preheater				Absorbeur				LP						
ION		Gas inlet	Gas Outlet	Amine inlet	Amine outlet	Lean amine	Gas inlet	Gas outlet	Rich amine	24" Rich amine inlet	34 Water From reflux	36 Stripping gas	24'	29 Top to HC-104	30 To Rich Amine pump	60
SS	Vapour	1	1	0	0	0	1	1	0	0,000255	0	1	2.10E- 03	1	0	ĺ
\Box	Temperature[C]	31	63,2	75	66,17	66,17	63,2	67	80	79	34	102	85	79	79,89	
	Pressure[Kpa]	7260	7260	8000	8000	8000	7260	7200	7400	200	200	300	200	200	200	
ä	Molar Flow [kgmole/h]	23578,86	23578,86	35372	35372	35372	23578,86	22655,18	36296	36261	0,15	1149	0	1240	36167	
	Mass Flow [kg/h]	430000	430000	995000	995000	995000	430000	387495,2	1037505	1036913	2	50544,2	0	47360	1040101	
2	Std Ideal Liq Vol Flow[m3/h]	1274,37	1274,37	979,946	979,946	979,946	1274,37	1221,269	1033,044	1031,25	2.00E- 03	61,2412	0	57	1036,05	
A	Molar Enthalpy [Kj/kgmole]	13000	14000	-19000	-20000	-20000	14000	14000	-19000	-19000	- 3.3E+04	12000	- 1.8E+04	12000	-19000	
	Molar Entropy [Kj/kgmole-C]	190	190	100	100	100	190	190	100	100	75	210	100	220	100	
Ë.	Heat Flow[Kj/h]	30000000	330000000	-670000000	-700000000	-700000000	33000000	330000000	-690000000	-690000000	- 3.7E+03	14000000	0	13600000	-6,9E+08	
\mathbf{Z}	Composition	0.000400	0.000400				0.000/00	0.00500		0.077	1.		0.070			
	H2O	0,000188	0,000188	0,9	0,9	0,9	0,000188	0,00502	0,873	0,877	1	0	0,872	0,221	0,87	
	Hydrogen	0,000826	0,000826	0	0	0	0,000826	0,000858	9,74E-07	7,58E-08	1.64E- 11	0	6.52E- 08	0,00000231	2,41E-37	
	Nitrogen	0,00445	0,00445	0	0	0	0,00445	0,00462	0,0000027	0,00000012	1.88E-	0	9.09E- 08	0,0000033	2,29E-37	
	CO2	0,0649	0,0649	0	0	0	0,0649	0,00235	0,0262	0,0262	2.12E- 04	0,9998	2.83E- 02	0,777334	0,0323	
	Methane	0,91196	0,91196	0	0	0	0,91196	0,94767	0,00094	0,0000822	2.78E- 08	0	6.72E- 05	0,002	7,43E-34	
	Ethane	0,0137	0,0137	0	0	0	0,0137	0,0351	0,000011	9,02E-07	3.64E- 10	0	7.37E- 07	0,0000274	4,69E-36	
	Propane	0,00269	0,00269	0	0	0	0,00269	0,0028	0,00000148	9,41E-08	3.00E- 11	0	7.17E- 08	0,0000028	4,53E-38	
	i-Butane	0,00027	0,00027	0	0	0	0,00027	0,000281	1,66E-08	6,36E-11	8.39E- 16	0	2.58E- 11	1,94E-09	1,20E-49	
	n-Butane	0,000479	0,000479	0	0	0	0,000479	0,000499	2,84E-08	1,1E-10	1.43E- 15	0	4.39E- 11	3,31E-09	2,03E-49	
	i-Pentane	0,000119	0,000119	0	0	0	0,000119	0,000124	8,89E-09	5,81E-11	1.13E- 15	0	3.53E- 11	1,77E-09	3,68E-48	
	n-Pentane	0,000114	0,000114	0	0	0	0,000114	0,000119	8,28E-09	5,4E-11	1.05E- 15	0	3.27E- 11	1,64E-09	3,40E-48	
	n-Hexane	0,0001	0,0001	0	0	0	0,0001	0,000104	5,46E-08	5,3E-09	1.06E- 12	0	6.89E- 09	1,61E-07	8,13E-37	
	n-Heptane	0,0000821	0,0000821	0	0	0	0,0000821	0,0000854	6,14E-09	6,3E-11	1.79E- 15	0	5.02E- 11	1,92E-09	1,04E-46	
~ Э	n-Octane	0,000071	0,000071	0	0	0	0,000071	0,0000739	5,09E-09	5,92E-11	1.89E- 15	0	5.05E- 11	1,8E-09	2,70E-46	
ЯI	n-Nonane	0,00002	0,00002	0	0	0	0,00002	0,0000208	1,23E-09	1,41E-11	4.49E- 16	0	1.20E- 11	4,28E-10	6,00E-47	
h	n-Decane	0,000006	0,000006	0	0	0	0,000006	0,00000625	1,42E-10	4,67E-13	6.29E- 18	0	1.79E- 13	1,42E-11	6,52E-52	
HΑ	H2S	0,000015	0,000015	0	0	0	0,000015	6,44E-09	0,00000931	0,0000093	1.88E- 07	0,0002	9.72E- 06	0,000214	8,59E-06	
	 MDEAmine 	0	0	0,1	0,1	0,1	0	0,0000337	0,0976	0,0975	1.88E- 08	0	9,76E-02	4.93E05	9.78E-02	

TABLEAU V.14 : Résultats du 6^{eme} cas (simulation sur HP, stripper, reflux).

Conditions	HP				Stripper						Reflux				
	Rich amine	16'	17 Acid gas outlet	Rich amine outlet	43 Rich MDEA from exchanger	53 From stripper reboiler	43'	36 To LP Flash drum	52 To stripper reboiler	47 Lean MDEA to exchanger	29A Acid gas from HC- 029104	29H From Demin water	29L' Min Flow	29I To reflux drum	29B to vent
Vapour	0,0011	1.13E- 03	1	0	0,0323	0	0,0664	1	0	0	0,913	0	0	0	1
Temperature[C]	80	83	80	80	109	117	118	103	90	118	53	28,89	41	41	41
Pressure[Kpa]	700	700	700	700	300	300	300	300	300	300	100	50	400	50	50
Molar Flow [kgmole/h]	36296	0	34,68	36261	3617	32811	120	1148,5	49221,77	18962	1240,26	110,79	42534,97	42739	1148
Mass Flow [kg/h]	1037505	0	591,272	1036913	1040101	922966	3479,89	50544,2	1000000	533378	47359,2	1995,97	767527	771200	45686,6
Std Ideal Liq Vol Flow[m3/h]	1033,04	0	1,79219	1031,25	1036,05	909,005	3,46818	61,2412	1363,6	525,309	56,4438	2	769,094	772,77	54,76787
Molar Enthalpy [Kj/kgmole]	-19000	- 1.9E+04	15000	-19000	-14000	-14000	-12000	12000	-17000	-14000	6700	-34000	-33000	-33000	10000
Molar Entropy [Kj/kgmole-C]	100	100	210	100	110	110	120	210	110	110	210	75	76	76	220
Heat Flow[Kj/h]	-690000000	0	510000	-6,9E+08	-520000000	- 470000000	-1400000	14000000	- 850000000	- 270000000	8360000	- 3700000	-1400000000	-1400000000	12000000
Composition				1		T	l)	I	1	1	n		1	
H2O	0,87	0,878	6.15E- 02	0,877	0,87	0,9	0,87	0	0,9	0,9	0,219	1	0,99958	0,99956	0,16
Hydrogen	0,000000974	9.82E- 07	9.43E- 04	7,58E-08	2,41E-37	0	2,7E-36	0	0	0	0,00000231	0	1,11E-11	1,63E-11	0,00000248
Nitrogen	0,0000027	2.72E- 06	2.72E- 03	1,2E-07	2,29E-39	0	2,32E-38	0	0	0	0,00000363	0	1,17E-11	1,87E-11	0,00000391
CO2	0,0262	2.52E- 02	2.14E- 02	0,0262	0,0327	0	0,0345	0,9998	0	0	0,77734	0	0,000174	0,000174	0,838062
Methane	0,00094	9.31E- 04	0,901	0,0000822	5,8E-34	0	7,05E-33	0	0	0	0,0025	0	1,86E-08	0,00000027	0,0027
Ethane	0,000011	1.10E- 05	1.06E- 02	9,02E-07	3,66E-36	0	4,39E-35	0	0	0	0,0000274	0	2,23E-10	3,28E-10	0,0000295
Propane	0,00000148	1.47E- 06	1.45E- 03	9,41E-08	3,53E-38	0	3,82E-37	0	0	0	0,00000286	0	1,86E-11	2,83E-11	0,0000308
i-Butane	1,66E-08	1.94E- 08	1.74E- 05	6,36E-11	8,41E-50	0	2,21E-48	0	0	0	1,94E-09	0	3,95E-16	8,79E-16	2,09E-09
n-Butane	2,84E-08	3.33E- 08	2.98E- 05	1,1E-10	1,42E-49	0	3,74E-48	0	0	0	2,94E-09	0	6,74E-16	1,5E-15	3,56E-09
i-Pentane	8,89E-09	1.05E- 08	9.26E- 06	5,81E-11	2,62E-48	0	6,98E-47	0	0	0	1,77E-09	0	5,48E-16	1,15E-15	1,91E-09
n-Pentane	8,28E-09	9.77E- 09	8.63E- 06	5,4E-11	3,39E-48	0	6,43E-47	0	0	0	1,64E-09	0	5,09E-16	4,85E-16	1,77E-09
n-Hexane	5,46E-08	6.49E- 08	5.17E- 05	5,3E-09	8,18E-37	0	1,84E-35	0	0	0	0,0000016	0	6,46E-13	9,1E-13	0,00000174
n-Heptane	6,14E-09	7.38E- 09	6.39E- 06	6,3E-11	1,03E-46	0	2,02E-45	0	0	0	1,92E-09	0	8,81E-16	1,73E-15	2,07E-09
n-Octane	5,09E-09	6.14E- 09	5.26E- 06	5,92E-11	2,65E-46	0	5,22E-45	0	0	0	1,8E-09	0	9,35E-16	1,8E-15	1,94E-09
n-Nonane	1,23E-09	1.50E- 09	1.28E- 06	1,41E-11	6,00E-47	0	1,18E-45	0	0	0	4,28E-10	0	2,21E-16	4,27E-16	4,61E-10
n-Decane	1,42E-10	1.75E- 10	1.49E- 07	4,67E-13	6,52E-52	0	1,19E-50	0	0	0	1,42E-11	0	2,82E-18	6,38E-18	1,54E-11
H2S	0,0000931	9.76E- 06	1,95E- 05	0,000093	0,0000859	0	0,00000903	2.00E-04	0	0	0,000214	0	0,00000209	0,00000155	0,000243
MDEAmine	0,0976	9.78E-	1.54E-	0,0976	0,0978	0,1	0,0978	0	0,1	0,1	0,00005	0	0,000247	0,000247	2,97E-08

CHAPITRE V
Nous regroupons les résultats des six cas étudiés précédemment dans le tableau V.15 et les figures V.3 et V.4 :

TABLEAU V.15	: Quantité de	CO ₂ présente dans	le gaz traité au MDEA.
---------------------	---------------	-------------------------------	------------------------

Température du gaz à traiter*	Température de l'amine*	CO ₂ ** (% molaire)
(°C)	(°C)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
71,4	73,3	0,297
70,4	72,3	0,272
66,9	68,7	0,233
64,7	67,0	0,237
63,9	67,0	0,236
63,2	66,2	0,235

* Entrée absorbeur.

** Gaz d'expédition.

FIGURE V.3 : Quantité de CO₂ dans le gaz traité en fonction de la température du gaz.

Cette courbe représente la variation du pour centage molaire en CO_2 en fonction de la température du gaz aliment ant l'absorbeur.

Nous remarquons que dans l'intervalle $[63-67]^{\circ}C$: Le gaz d'expédition est conforme aux spécifications et le %molaire du CO₂ est inférieur à 0.3%. Au-delà de ces températures, la concentration du dioxyde de carbone augmente très rapidement et dépasse le seuil exigé : à savoir 0,3 % de CO₂.

FIGURE V.4 : Quantité de CO₂ dans le gaz traité en fonction de la température de l'amine pauvre.

Cette courbe représente la variation du pourcentage molaire en CO_2 en fonction de la température de L'amine pauvre entrant dans l'absorbeur.

Nous remarquons que dans l'intervalle $[66-69]^{\circ}$ C : la teneur de CO₂ est inférieur à 0,3 % et cela donne un gaz d'expédition conforme aux spécifications. Au-delà de 69°C le pourcentage molaire en CO₂ croit rapidement et cela produit un gaz *OFF-SPEC* (supérieur à 0.3%).

En Conclusion, nous retenons que les cas ayant donné satisfaction aux ingénieurs sont du point de vue :

• Production et consommation d'énergie :

 I^{er} cas : c'est le cas idéal pour l'installation (production) car il conduit à un débit massique appréciable (394415 Kg/h) et ayant consommé le moins d'énergie.

• Intégrité des équipements :

 3^e cas : La formation des chlorides, hydrates,... généralement générés par interaction de l'eau sur le dioxyde de carbone sont la cause directe de la corrosion des pipelines. Ce cas d'étude pourrait être retenu car il retient le moins possible d'eau.

• <u>L'environnement :</u>

 5^e cas : Le procédé de décarbonatation donne naissance à des gaz acides, composés majoritairement de CO₂. Ces gaz sont, par la suite, soit comprimés et injectés dans le sol, soit torchés. Leur valorisation est tellement couteuse que *British Petroleum* opte pour le torchage partiel. Le 5^e cas est considéré comme étant le cas qui a conduit à la plus faible quantité de CO₂ à torcher.

L'étude présentée dans ce travail est une contribution à la recherche de solutions par simulation sur logiciel *Aspen HYSYS* aux problèmes de présences de gaz acides (CO₂, H₂S) dans le gaz naturel.

Les difficultés techniques rencontrées lors des études expérimentales dans le domaine pétrochimique et de raffinage orientent l'opérateur à privilégier le plus souvent l'approche par simulation.

Il s'agit de l'étude par absorption chimique du CO_2 , contenu à 6,94 % molaire dans le gaz de *Krechba*, sur une amine de type *MDEA*. La teneur en dioxyde de carbone doit être obligatoirement ramenée à moins 0,30 % dans le gaz d'expédition.

Pour ce faire, nous avons relevé tous les paramètres de fonctionnement de chaque appareil constituant le cycle de décarbonatation : températures, pressions, débits,... tout en présentant un aperçu global sur la modélisation et le principe de fonctionnement des simulateurs. A cet effet, six cas d'étude ont été retenu. Cela passe par une bonne séparation entre le gaz et le dioxyde de carbone, le respect strict des paramètres de design, la température de tète de stripper qui est à l'ordre de 103°C, et de l'intégrité de ces équipements : préservation des pipelines, et des colonnes contre la corrosion.

Les résultats obtenus en mode statique sont favorables :

 \checkmark Le 1^{er} cas est le cas optimal pour la production et la consommation d'énergie.

✓ Le 3^{eme} cas représente l'état de marche actuel à *Krechba*. Il est le meilleur cas pour assurer l'intégrité des équipements

✓ Le 5^{eme} cas est le meilleur pour la protection de l'environnement.

Nous pouvons retenir que l'optimisation en mode statique que nous avons effectuée au niveau du champ gazier de *Krechba* peut être considérée comme une base de données pour une simulation réelle en mode dynamique.

[1] : A.ROJET . Le gaz naturel production traitement et transport. Edition TECHNIP « PARIS » -1997,page 253-299

[2] : José M Robles simulation of gaz power plant HYSYS.

[3] : Benlagha , Ahmed ; Setti , Amine. Optimisation des paramétres opératoires relatifs à la section de stabilisation en vue de récupérer le maximum de produits finis (GPL,condensat). Mémoire de fin d'étude master. Université mohammed khider Biskra.2012

[4] : In Salah Gaz, Rapport environnementale de 2006.

[5]: In Amenas & In Salah Gas Project Services Guidelines, 2006, 2009.

[6] : In Salah Gas, Brochure d'induction ISG BS01, Section 3 : Description du projet In Salah Gas, Numéro 1, Révision 0 – Janvier 2004.

[7]: In Salah Gaz, Environmental Impact Statement, UU00-E-XXRC-077-0007-B, juin 2000.

[8]: ISG- Krechba Design basis – training services 2009 Rev 0.

[9]: ISG phase-1, Reg and Teg, Design Basis.2008.

[10] : C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, Y. Ferard, Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 2011. 36 (10) : p. 2725-2732

[11] : Système de compression in salah gaz KBA. Révision1 (6-8)

[12] : Introduction to kba 2 éme étage de compression.UUOO-P-UUMU-000-1035-Petrofac.

[13] : ISG Southern Fields Development Project-IS CPF . Petrofac.UUOO-P-UUMU-000 1000.

[14] : Foundation course manual, Reg 2nd stage compression, introduction, 2008.

[15] : ISG Southern Fields Development Project, IS CPF Présentation générale de SFDP.

[16] : OM03 .Operations de traitement de hassi R'Mel . In salah Gaz PROJET DE FORMATION

[17]: Berretima El Hadj Belkacem, Aribi Lakhdar, la deshydrataion du gaz, techniques et Problèmes, 2011

[18] : OM03, opération de traitement sur les installations de Krechba, 2004.

[19]: Ben azia abd el kader ; Bameur Mohamed Ishak.Simulation du captage de CO_2 par une solution d'Amine.Mémoire de fin d'étude Ingénieur .2015

[20]: Département production service optimisation_ in salah gaz.

[21]: Hysys Process Doucumentation, Hyprotech, Ing, AEA Groupe, Calgary, 2000 (CD.ROM)

[22] : OM04.Operations de traitement de krechba.Numero 1, Revision 0-Janvier.2004.