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Chapter 1

Introduction

The rapid growth of digital communications and electronic data exchange
makes information security a crucial issue in industry, business, and admin-
istration. Modern cryptography provides essential techniques for securing
information and protecting data [1]. Among cryptographic techniques, Blind
Source Separation (BSS)-based methods have received recently some atten-
tion in speech and image encryption fields.

However, from our point of view, BSS-based techniques are more suitable
for cryptanalysis purposes rather than for cryptographic ones. This is due
essentially to the fact that BSS-based techniques are, by their definition,
tools developped to recover a set of independent source signals from their
observed mixtures without knowledge of the mixing coefficients [2, 3]. This
is, by analogy, the same formulation of the cryptanalysis problem i.e. re-
covering a plain-text (or a set of plain-texts) from cipher-texts (mixtures of
plain-texts and cryptographic keys) without knowing the cryptographic keys
(mixing coefficients).

This observation about limitations on using safely, from a cryptographic point
of view, BSS-based techniques in cryptographic field gave us a stimulus to de-
velop a new technique which would bypass these limitations. This gives arise
to a subspace-based encryption technique which is the core added-value of
this thesis. The developped subspace-based technique is applied for speech,
image and data signals. Several tests and evaluations are conducted to assess
the cryptographic robustness of this technique. An assessment methodology
is applied for subspace-based encryption technique to appreciate its quality

9



and security levels.

1.1 Motivation

There is a growing interest, in recent years, in the use of blind source separa-
tion techniques in cryptographic domain. Some research groups through the
world are trying to propose new encryption algorithms based on blind source
separation (BSS) techniques [4]-[10]. As an example, the intractability of the
underdetermined blind source separation problem has been used to present
a BSS-based speech encryption.

However, some weaknesses from a cryptographic point of view have been re-
cently published [11]. The already proposed techniques should be discussed
in detail together with their drawback induced from the use of the blind
source separation like approach. Solutions based on background knowledge
acquired from the blind identification field should be proposed to improve
the existing BSS-based encryption algorithms. This gives arise to subspace-
based encryption methods.

This thesis aims to construct an encryption scheme based on subspace con-
cept and by taking advantge from the feedback acquired from the use of blind
source separation techniques in the encryption field.

1.2 Goal

In this thesis, we have focused on studying and analysing the use of the
subspace concept by investigating first the opportunity of using blind source
separation techniques in the encryption domain. We will be discussing the
various constraints related to the performance of these techniques. The main
tasks of the project are to survey the current status, identify the limitations
of these techniques and propose alternative approaches. The analysis would
approach the various aspects of the security of blind source techniques used
in the encryption domain and their performance. We are looking forward
to provide a new research direction towards subspace-based techniques to
bypass the limitations and drawbacks inherent to the BSS techniques used
in encryption field. Specifically we would be focusing on the security aspects
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of such techniques.

1.3 Methodology

We shall conduct a comprehensive analysis of the use of blind source separa-
tion techniques in cryptographic domain. Our approach is goal-oriented in
the sense that we study the characteristics of BSS techniques that could be
relevant to cryptography requirements. For this purpose, an introduction to
both cryptography requirements and BSS techniques is first presented.

Then the use of BSS techniques in cryptographic field is detailed before
analyzing whether these BSS techniques fulfill or not the cryptography re-
quirements. This analysis will be conducted using cryptanalysis techniques.
In the case where this analysis shows that BSS techniques, in the actual state
of the art, partially fulfill cryptographic requirements, efforts will be made
to propose a new approach which could bring enhancement at this level, ac-
tually, subspace-based techniques.

The subspace-based techniques are first applied in encryption field then feed-
back acquired from their applications on speech, image and data signals,
would be used to conduct a quality and security evaluation of these tech-
niques from a cryptographic point of view. Proceeding this way will give us
complementary elements necessary for making a conclusion on the opportu-
nity of using subspace-based techniques in the encryption domain.

1.4 Outline

In this thesis, the work starts with studying the opportunity of using blind
source separation techniques in the encrytpion domain. Then, after studying
the state of the art of these techniques and their weaknesses, from a crytpo-
graphic point of view, obtained from former published cryptanalysis works,
a new system based on subspace concepts is proposed. To achieve this goal,
the thesis is organized as follows: Chapter 2 introduces a brief background on
cryptographical and cryptanalysis techniques beside a general reminder on
the key concepts of linear algebra used throughout the work and a description
of blind source separation techniques. This description is oriented towards

11



caracteristiques of blind source separation techniques which are relevant to
cryptography domain. A state of the art of the use of blind source separation
techniques in encryption field is presented. Particularly, cryptanalysis results
of these techniques are given within this chapter.

Starting from the cryptographic weaknesses of blind source separation ap-
proach, chapter 3 introduces subspace-based encryption techniques. Our pro-
posed encryption system based on orthogonal subspace concept is studied in
detail. An iterative version of the orthogonal subspace scheme is presented.
Then, in chapter 4, an oblique subspace-based encryption scheme is presented
beside its iterative version. In chapter 5, several tests using cryptanalysis
attacks are conducted on both orthogonal and oblique subspace-based en-
cryption systems to evaluate their robustness from a security point of view.
Results are discussed in detail in chapter 6 in terms of quality and security.
This is achieved by using subjective and objective measurements for quality
assessment and security evaluation of the proposed system.

Chapter 7 concludes finally the thesis by giving a summary of the main con-
tributions of the work, the limitations and constraints then gives suggestions
for future work and issues.
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Chapter 2

Background

2.1 Cryptography

Hiding some information or making it incomprehensive to others is a very
old human need. Several means were used to meet this need but the pro-
cess of putting the bases of a whole science, called nowadays cryptology,
started only at the seventh century. If cryptology experienced all this de-
velopment several centuries before, it is because it met partly quite precise
needs of the society/state of that time and even anticipated the future needs
in precise fields. Kings needed powerful tools to ensure the confidentiality
of their correspondances through the various areas of their kingdoms [12, 13].

Cryptography has been a restricted area controlled only by military and
diplomatic entities throughout the world. That is why it had and still has,
somewhat, a specific reputation. However, during last decades, the fast devel-
opment of information and communications technologies causes a widespread
use of cryptological tools. It has been implemented in various equipments
and devices, by software and hardware means.

On the other hand, even confidentiality has been the main objective of cryp-
tography, other objectives are targeted by this science:

• Data integrity: A message sent over a transmission medium should be
check-able, by the receiver, whether it has been altered or modified,
fully or partially. Data integrity ensures that the transmitted message
has been received actually as it was sent by the sender.
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• Authentication: Data origin authentication ensures that there is no
sender identity usurpation i.e. the origin of the data is correct. This
gives the ability to the receiver to verify data origin. On the other
hand, entity authentication provides the guarantee that the sender and
the receiver could identify each other during all the process of commu-
nications.

• Non-repudiation: Non repudiation ensures that it is impossible to later
deny sending and/or receiving a message [1].

Of course, other techniques are used to complement and to enhance the cryp-
tography objectives cited above like public key infrastructure and electronic
certification. However these areas are out of the scope of this thesis.

Usually, in the cryptography litterature, the term plain-text is used to refer
to the message to be transmitted over communications medium, whatever
its nature is. It could be a text, audio, video or data. After encryption,
it becomes a cipher-text. A general descriptive equation of an encryption
operation is given as:

x = E(ke, p) (2.1)

where x is the cipher-text, p is the plain-text, ke is the key (encryption pa-
rameter) and E is the encryption algorithm.

On the receiving side, to recover the plain-text, the cipher-text c is decrypted
using a decryption algorithm D:

p = D(kd, x) (2.2)

where kd is the decryption key. ke and kd could be either different or the
same. It depends on the type of the cryptography system.

2.1.1 Classical cryptography

The objective of classical cryptography is to guarantee the confidentiality
of the plain-text to be encrypted and sent to a receiver. The principles of
perfect secrecy as shown by C. Shannon, in 1949, in his mathematical treat-
ment entitled ”Communication Theory of Secrecy Systems”, require that the
encryption key length must be at least the same as the plain-text length [14].
The encryption key has also to be randomly generated and used once. This
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ensures a perfect secrecy or what it is called ”one-time pad” or Vernam cipher.

In classical cryptography, the encryption scheme has always been a sym-
metric one in the sense that both sender and receiver have to share the
same encryption keys before starting exchanging encrypted messages. This
requirement procures a high degree of confidentiality in case where the en-
cryption keys have been ”correctly” generated and distributed to both sender
and receiver.

However, from an operational point of view, the management of such a
scheme becomes very hard in the presence of an important number of users,
senders and receivers, who have to exchange encrypted messages. This is
due to the huge amount of encryption keys that must be generated and
distributed to all users. This amount of encryption keys to be shared is
n(n − 1)/2 where n is the number of users. As an example, if there is only
a thousand (1000) of users, the number of encryption keys to be generated
and shared is 499.500 keys, which is indeed a huge amount of keys.

The generation of such a number of keys does not constitute in itself a
constraint because of the availability of several efficient processes, software
and/or hardware, of generation of cryptographic keys. The difficulty arises
from the complexity of the process to be adopted to ensure ”correctly” a
secure distribution of such an amount of encryption keys to all users, partic-
ularly if these users are located in areas far from each other.

These operational constraints have given arise to another class of cryptogra-
phy so as to bypass the limitations of classical cryptography.

2.1.2 Modern cryptography

On the other hand, complexity theory constitutes the foundation of modern
cryptography. It is based on what is called ”computational complexity”. The
assumptions of modern cryptography are the existence of one-way functions
and of true randomness. One-way functions are functions whose inversion is
computationally intractable. An important result of modern cryptography
is that true randomness can be arbitrarily well approximated by pseudo ran-
domness, i.e., the randomness furnished by classical (as opposed to quantum)
computers. Security of cryptographic schemes is demonstrated by reduction
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to computational problems whose hardness is an empirical fact.

A property of modern encryption schemes is that they are possibly asymmet-
ric, i.e., different keys are used for en- and decryption. The first published
treatment of asymmetric schemes appeared in 1976 under the title ”New
Directions in Cryptography” by W. Diffie and M. Hellman [15]. The first
published implementation of an asymmetric scheme appeared in 1978 and is
due to R. Rivest, A. Shamir, and L. Adleman [16].

Cryptographic operators

The traditional occupation of cryptographers is the construction of opera-
tors for cryptographic tasks such as en- and decryption, electronic signature
generation and verification, and destructive compression of data (data hash-
ing). The traditional occupation of cryptanalysts is the ”destruction” of
those operators, i.e., the breaking of their intended functionality.

Cryptographic protocols

A more modern occupation of cryptographers is the construction of protocols
for cryptographic concerns (e.g., trust, confidentiality, identity, and commit-
ment) by employing cryptographic operators. Such concerns arise in the
context of communications in hostile environment. The occupation of hostile
communicators (so-called adversaries) is the ”destruction” of those protocols,
i.e., the breaking of their intended functionality. Adversaries can be passive
or active.

Cryptographic algorithms

In a cryptographic algorithm, key generation is the process of generating keys.
The same key/different key can be used for encrypting and decrypting. The
cryptographic algorithms can be classified into the following principal types
of cryptographic algorithms: symmetric cryptography, asymmetric cryptog-
raphy and cryptographic hash functions.

• Symmetric-key cryptography: is an algorithm, where the same shared
key is used for encryption and decryption. Thus, data is kept secret by
keeping this key secret. These symmetric-key algorithms can further
be divided into block ciphers and stream ciphers. Block ciphers take a
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number of bits at a time and encrypt them into a single block. A few
examples of block cipher are Skipjack, RC5, DES [17] and AES [18].
Whereas, stream ciphers encrypts each message one at a time. A few
examples of commonly used symmetric-key algorithms are Blowfish,
RC4, TDES, Twofish, Serpent, DES and AES [19].

• Asymmetric-key cryptography: is an algorithm, where the user uses a
pair of keys a public and a private key. This public key is widely dis-
tributed among the communicating partners, while keeping the private
key secret. Thus, the encrypted message sent to one of the commu-
nicating partners can be decrypted by the corresponding private key
only. The examples include, Diffie-Hellman, Digital Signature Stan-
dard (DSS), Elliptic curve cryptography (ECC), Secure Socket Layer
(SSL) and RSA encryption algorithm. Asymmetric cryptography can
be further classified into two main branches: Public-key and Digital
signatures.

• Public-key is a type of encryption, where a message is encrypted with
the recipients public-key and can be decrypted only by the recipient
having the respective private key thus ensuring confidentiality.

• Digital signatures is a message signed by sender private key and at the
recipient end it can be verified by sender public key, thus ensuring au-
thenticity [19].

A cryptographic hash function is a transformation that takes input
a long string of any length and output is a fixed-size string called hash
value. This hash value is a concise form of the long message. These
hash functions are used in cryptography for a variety of computational
purposed. These hash functions are used in message integrity checks
and digital signatures. The two most commonly used hash functions
are MD5 and SHA-1 [20].

• A Message Authentication Code (MAC) can be summarized as the
cryptographic secure sum of a message. It takes as input a secret-key
and an arbitrary-length message, authenticates it and gives as output
an authenticated message. The MAC is included in the packet sent.
The recipient node must be in the possession of the secret key. It
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calculates the MAC and compares it with the received message. This
is done in order to verify the messages integrity and authenticity. MACs
can be constructed from the cryptographic primitives as hash functions
or from block cipher algorithms (OMAC, CBC-MAC) [21].

• Comparison: Symmetric-key algorithms are comparatively less compu-
tative than asymmetric-key algorithms. Besides this, symmetric-key
algorithms are typically hundreds to thousands time faster than the
asymmetric-key algorithm. The disadvantage of a symmetric-key algo-
rithm is the need of a shared secret key with both the communicating
partners. These keys need to be distributed safely and need to be
changed regularly. Thus, safe key-management which includes select-
ing, distribution and safety is a known issue.

2.2 Cryptanalysis

Cryptanalysis is the second half of cryptology; science which includes cryp-
tography. The desire of knowing the secrets of other persons or groups which
use cryptographic tools to secure their communications gives arise to crypt-
analysis. During a long time, the confrontation between cryptography and
cryptanalysis was occurring on a pure mathematical ground. Mathematical
solutions for securing correspondences were defeated by other mathematical
tools [22].

In the earlier cryptographic techniques such as alphabetical substitutions
or permutations, cryptanalysis was based on frequency analysis of the used
languages.

Except brute force attack which remains the last approach to use because of
its time and computing resources consumption, some recent techniques have
proven to be very efficient against several cryptographic algorithms. As the
cryptographic algorithms become more complex, the cryptanalysis becomes
more difficult. To reduce this difficulty, new approaches have taken place [22].

Successful attacks may, for example, recover the plain-text (or parts of the
plain-text) from the cipher-text, substitute parts of the original message, or
forge the digital signatures [1]. Nowadays, providing evidence that the ro-
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bustness of a cryptographic algorithm is not as it was claimed is a successfull
attack eventhough it does not recover, fully or partially, any of the plain-text
or the encryption key.

2.2.1 A brief historical view

It would be interesting to have a brief view on the history of cryptanaly-
sis. During the campaign of translation of books and manuscripts written in
several difficult and old languages, and sometimes in dead languages, there
was a pressing need to master all known cryptographic tools and techniques.
Some of these books and manuscripts, especially in certain areas like chem-
istry and magic, contained encrypted paragraphs. This need gave rise to a
new science: cryptanalysis [12].

A research group (using modern terminology) under the supervision of Yakoob
Ibn Ishak Al-Kindi, known as Alkindus, worked at Bait Al-Hikmah in Bagh-
dad, on decrypting the encrypted paragraphs in order to complete the trans-
lation process of all the submitted manuscripts [12].

They were the first to discover and write down the methods of cryptanal-
ysis [23]. Among the 290 manuscripts he wrote in various fields, appears
the oldest one which discovered and wrote down the methods of cryptanal-
ysis: Rissalatoon fi istikhradji al mooamma (a writing in extracting the en-
crypted) [12].

Al-Kindi founded the principles of cryptanalysis. He proposed four methods
of decryption: quantitative techniques, qualitative techniques, probable word
and letters combination. In his manuscript Kitaboo al-moo amma (book of
the encrypted), an important handbook of cryptology even centuries later,
Al-Kindi proposed a classification diagram of encryption methods and their
related cryptanalysis techniques [12].

On another hand, other conditions supported the emancipation of this new
science. Disciplines that were developed at that time, like grammar and
mathematics, had considerable contribution. Cryptanalysis had an enor-
mous requirement for tools of analyzing languages in which the encrypted
texts were written. This helped the mastering of the qualitative approach
in cryptanalysis. As for the quantitative approach, like calculating letters
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frequencies of several languages, mathematics were very developed.

Centuries later, the second world war balanced because of a cryptanalysis
team hard work at Bletchley park in U.K. They broke Enigma, the famous
german encryption machine and got the ability to ”read” the confidential
messages exchanged within german army. They got the posibility to know
e.g. the plans and the positions.

Here is a general classification of cryptanalysis attacks [1]:

2.2.2 Cryptanalysis attacks

cipher-text-only attack

This is the most general attack where the attacker has access only to cipher-
text. Since cipher-texts are sent and received via communications medi-
ums (e.g. networks, radio, satellites), one has to suppose the availability, by
default, of all cipher-texts to potential attackers. So, this attack should be
considered for every cryptographic algorithm assessment and is considered
as the basic level for security robustness evaluation.

Known-plain-text attack

In this type of attack, it is assumed that the attacker can get pairs of plain-
text-cipher-text. The attack consists of trying to decrypt the cipher-text
using information extracted and gathered from pairs of plain-text-cipher-text.
Using the information extracted from these pairs, the attacker attempts to
decrypt a cipher-text for which he does not have the plain-text. The use of
standard formats of messages could be useful to the attacker in conducting
known-plain-text attack [1].

Chosen-plain-text attack

In this type of attack, it is assumed that the attacker can encrypt plain-texts
of his choice and get their correspnding cipher-texts. Naturally, to realize
such an attack, the attacker has to get access, at least, once to the encryption
device [1]. Then, the cryptanalysis work consists of trying to decrypt cipher-
texts for which he does not have the corresponding plain-text.
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Adaptively-chosen-plain-text attack

This type of attack is similar to the chosen plain-text attack except that
here, the attacker can get more pairs of plain-text-cipher-text by doing some
analysis and can have access as long as he wants to the encryption device [1].

Chosen-and adaptively-chosen-cipher-text attack

In this type of attack, the attacker has the ability to choose cipher-texts and
then decrypt them to get the corresponding plain-texts. He needs to have
access to the decryption device [1].

Despite the type of the cryptanalysis attack, a basic principle of cryptanal-
ysis is to assume that the algorithm is not secret i.e. it is well known by the
attacker.

2.2.3 Non-classical cryptanalysis approach

The robustness of a cryptographic application depends not only on its pure
mathematical model but also on its implementation on soft and/or hard-
ware devices. Some parameters which are not involved in the mathematical
aspect of cryptographic solutions and, hence, trend to be ignored in the se-
curity evaluation such as execution time and power consumption can be very
important and reveal secret information. This can cause the break of a, the-
oretically secure, cryptographic algorithm [22].

”Side channel attacks” are attacks that exploit this side channel informa-
tion to retrieve the secret information treated by cryptographic devices [22].
Several types of side channel attacks are already published in the litterature.
They include timing attacks [24], power analysis attacks [25], electromag-
netic attacks [26], fault induction attacks and template attacks [27, 28]. For
a cryptographic system to remain secure it is imperative that the secret keys,
that it uses to perform the required security services, are not revealed in any
way [29].

Where cryptosystems are being used in real applications, not only mathe-
matical attacks have to be taken into account. Hard and software imple-
mentations themselves present a vast field of attacks. Side-Channel Attacks
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exploit information that leaks from a cryptographic device [25].

2.3 A brief reminder on some basics on linear

algebra

This is not a linear algebra section, however it turns out that many impor-
tant mathematical properties of cryptography and cryptanalysis are based on
algebraic concepts [20]. That is why a brief reminder is necessary for elimi-
nating any reader confusion on the cryptographic construction explained in
this thesis.

Subspace : The space H spanned by a collection of vectors {xk}

H := {α1x1 + · · ·+ αnxn|αi ∈ C, ∀i}

is called a linear subspace.

Basis : An independent collection of vectors that together span a subspace
is called a basis for that subspace.
If the vectors are orthogonal (xi

Hxj = 0, i = j), it is an orthogonal basis.

Projection : A square matrix P is a projection if PP = P.
It is an orthogonal projection if also PH = P.

• The norm of an orthogonal projection is ‖P‖ = 1.

• For an isometry Û, the matrix P = ÛÛH is an orthogonal projection
(onto the space spanned by the columns of Û).

Notations

T , H , ♯ denote transpose, conjugate-transpose, Moore-Penrose pseudoin-
verse, respectively. We will denote matrices and vectors with boldface type,
using capital letters for matrices and lower-case letters for vectors. Given
a matrix A ∈ CN×r, we denote the range subspace of CN spanned by the
r ≤ N columns of A by 〈A〉.
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2.4 Blind source separation in cryptography

In this section, we presente an overview of the use of blind source separation
techniques in the cryptography field.

2.4.1 Blind source separation (BSS) techniques

Let us first start by introducing the blind source separation (BSS). The
latter aims to recover a set of unknown mutually independent source signals
from their observed mixtures without knowing the mixing coefficients [2, 3].
Suppose that there exists M independent source signals and N observed
mixtures of the source signals (usually M ≤ N). The linear BSS mixing
model is as follows:

x(t) = Hs(t) (2.3)

where s(t) = [s1(t), · · · , sM(t)]T , which is an M × 1 column vector collecting
the source signals, vector x(t) similarly collects the N observed (mixed) sig-
nals, and H is an N×M mixing matrix that contains the mixing coefficients.

The purpose of BSS is to find an M × N demixing matrix W such that
the M × 1 output vector u(t) verifies

u(t) = Wx(t) = WHs(t) = PDs(t) (2.4)

where P and D denote a permutation matrix and diagonal matrix, respec-
tively. When M ≤ N , the blind source separation and more specifically
source recovery is possible. However, when M > N , BSS becomes generally
impossible except under specific conditions [30, 31, 32]. This is referred to
as the under-determined BSS problem.

2.4.2 BSS-based encryption

Among cryptographic techniques, Blind Source Separation (BSS)-based meth-
ods have received recently some attention in speech and image encryption
fields.

In [33], a scheme using BSS techniques is proposed for encryption pur-
pose. A series of encryption schemes based on BSS is introduced [4, 5, 6].
In [4] and [5], the linear mixing model of blind source separation is used
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in image encryption. The transmitted images are hidden in a noise image
by specific mixing before encryption and then recovered through BSS after
decryption [4]. A speech encryption algorithm which integrates a modified
time domain scrambling scheme was used to mask the speech signal with a
random noise by specific mixing [6]. A speech encryption scheme is presented
in [7] by taking advantage of the underdetermined BSS problem to construct
the mixing matrix for encrypting multiple segments simultaneously and en-
hancing the security level of the previous schemes.

In [7], the encryption procedure, including the use of key signals, has been
represented as:

x(t) = App(t) +Akk(t) (2.5)

where p(t) = [p1(t), · · · , pM(t)]T and k(t) = [k1(t), · · · , kM(t)]T represent M
input plain-signals and M key signals, respectively. Ap and Ak are M ×M
matrices, both of which elements are within [−1, 1]. The decryption proce-
dure, as long as As is invertible, is given by:

p(t) = A−1
p (x(t)−Akk(t)). (2.6)

In the BSS-based encryption scheme [7], the key signals k1(t), · · · , kM(t)
are as long as the plain-signals and have to be generated by a pseudo-random
number generator (PRNG) with a secret seed, which serves as the secret key.
The mixing matrices As and Ak, being secret parameters, may be known by
the receiver as secret keys and hence their estimation by a BSS approach at
the receiver should not be necessary. Hence, the BSS approach is, in this case,
worth to be used in a cryptanalysis process rather than in an encryption one.

However, some weaknesses from a cryptographic point of view exist and
the security against some attacks is not sufficiently strong.The encryption
procedure described in equation (2.5) could be presented under the form of
two steps [11]:

• Step 1: x(1)(t) = Ap p(t);

• Step 2: x(t) = x(1)(t) +Akk(t).

As it is presented above, one can see that this procedure is equivalent to
a simple matrix-based block cipher in the first step and a simple-addition
based stream cipher. The security of this BSS-based encrytpion scheme is
analyzed in the following section.
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2.4.3 Cryptanalysis of BSS-based encryption

In this section, security weaknesses and defects of BSS-based encryption
scheme are discussed especially its weaknesses against known/chosen-palintext
attack and chosen-cipher-text attack [11].

The mixing matrix A

As long as the principles of BSS techniques are respected, the mixing matrix
A seems to be not required at the decryption side to separate the encrypted
signals [11]. However, if it is so, i.e. A is not a secret parameter and consid-
ering that x∗(t) = A−1

p x(t) is the equivalent obtained encrypted-signal to the
encryption procedure described by equation (2.5), the encryption procedure
could hence be given by:

x∗(t) = p(t) +A−1
p Ak(t) (2.7)

As it is shown in the the encryption procedure given by equation (2.7), there
is no underdetermined BSS problem [11].

On another hand, if the mixing matrix A is not a secret parameter, the
BSS-based encryption scheme would be in front of the problem of closely-
related input signals as it is the case in an image and its watermarked version.
This difficulty is due to an essential hypothesis in BSS systems: the input
signals are mutually independent of each other. Thus, it is clear that the
mixing matrix A must be part of secret parameter used in BSS encryption
scheme [11].

How key space is large?

A mixing matrix A of dimension P × Q, the secret key parameter of BSS-
based encryption scheme, has the interval [-1,1] for all its elements [4]-[10]. So,
the number of all possible mixing matrix A is R(P+Q) where R is determined
by the finite precision under which the cryptosystem is realized. P and Q are
the number of input plain-signals and the number of key signals, respectively.
Note that the BSS-based encryption scheme is mainly based on the principle
of creating an underdetermined case by constructing a vector which contains
both the plain-signals and the key signals. This gives arise to a (P + Q)
cipher-signals and leads to a R(P+Q) possible mixing matrices. For exam-
ple, if the cryptosystem is implemented with n-bits fixed-point arithmetic,
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R = 2n ; if it is implemented with IEEE floating-point arithmetic, R = 231

(single-precision) or R = 263 (double-precision) [11, 34].

Furthermore, the key signals k(t) are generated using a Pseudo Random
Number Generator (PRNG) with a key seed I0 which has a length of J bits.
This means that the size of the key space of key signals k(t) is 2J . Thus, the
size of the whole key space of the BSS-based encryption scheme is RP (P+Q)2J .
In the case where A = [B, βB], the size of the key space is RP 2

2J [11].

Divide-and-Conquer (DAC) Attack

The encryption procedure described in equation (2.5) could be rewritten as:

p(t) = Â xk(t) (2.8)

where xk(t) = [x1(t), · · · , xP (t), k1(t), · · · , kQ(t)]T and

Â = A−1
p [I,−Ak] = [A−1

p ,−A−1
p Ak]

As it can be seen from the above equation, the knowledge of k(t) and the
i-th row of Â allows recovering pi(t). This means that a divide-and-conquer
attack (DAC) could separately break P rows of Â. Hence, the number of pos-
sible mixing matrices becomes PR(P+Q) rather than RP (P+Q). Consequently,
the size of the whole key space will be PR(P+Q)2J rather than RP (P+Q)2J

[11].

Sensitivity to the mixing matrix A

A good cryptosystem should have a high sensitivity to key mismatch. This
means that if two slightly different encryption keys are used to encrypt the
same plain-text, the obtained cipher-texts should be very different [11, 17].
In the BSS encryption scheme, considering two mixing matrices A1 = [a1;i,j]
and A2 = [a2;i,j] of size M x N , if ǫ is the maximal difference of all elements,
then ∆xi, the i-th element of ∆x is given by:

∆x = A1p(t)−A2p(t)
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One can see that ∆x verifies the following inequality:

|∆xi| = |
N
∑

j=1

(a1;i,j − a2;i,j)pj |

≤
N
∑

j=1

|a1;i,j − a2;i,j |.|pj|

≤ Nǫ max(|p(t)|)
(2.9)

where |p(t)| is the vector which contains absolute values of all elements of
p(t), i.e., |p(t)| = [ |p1(t)| ... |pN(t)| ]T . The mixing matrix can be approxi-
amtely guessed under a relatively large finite precision ǫ [11].

This low sensitivity of BSS-based encryption scheme to the mixing matrix
is verified by the results obtained from encrypting a plain-text p(t) using a
mixing matrix A and decrypting the resulting cipher-text x(t) using a mis-
matched mixing matrix (A, ǫR) where ǫ ∈ [0, 1] andR is a P×(P+Q). After
decryption, one gets p̂(t) which is an estimated version of p(t). The exhaus-
tively search for an approximate version of the mixing matrix A under the
finite precision ǫ 0.01 allows to get a good estimation of the plain-texts [11].

Figure (2.1) shows the experimental relationship in the BSS-based encryp-
tion scheme between the recovery error and the value of ǫ for respectively a
digital image and a speech signal. Beside the fact that experimental results
confirm that a plain-text can be approximately recovered by a mismatched
key, humans have a good capability of distinguishing images and speechs
even in presence of errors [11].

Figure (2.2) shows a recovered plain-speech resulting from an exhaustively
search of the mixing matrix A with a relatively large value of ǫ = 0.1.

Sensitivity to the key signals k(t)

The BSS-based encryption scheme has a low sensitivity to key signals mis-
match because of the same reason of its low sensitivity to mixing matrix
mismatch. If the maximal difference of all elements of two key signals k1(t)
and k2(t) is ǫ, then each element of |Akk1(t)−Akk2(t)| is not greater than
Q max(|Ak|)ǫ = Qǫ.
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Figure 2.1: The experimental relationship between the recovery error and
the value of ǫ in BSS encryption system for, (a) the plain-text is an image,
(b) the plain-text is a speech signal
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Figure 2.2: A recovered speech from an exhaustively search of the mixing
matrix A when P = 2 and A = [B,B]: (a) the original plain-speech; (b) the
recovered speech
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Differential attack

The differential ∆x(t) between two cipher-texts x(1)(t) and x(2)(t) obtained
from encrypting two plain-texts p(1)(t) and p(2)(t) using the same encryption
key (A, I0) is given by:

∆x(t) = A−1
p ∆p(t) (2.10)

where ∆x(t) = x(1)(t) − x(2)(t) and ∆p(t) = p(1)(t) − p(2)(t). Due to the
low sensitivity of BSS-based encryption scheme to mixing matrix A (as it is
shown in Sec. (2.4.3), an exhaustive search could be applied to recover Ap

[11]:

∆p(t) = A−1
p ∆x(t) (2.11)

In fact, the effect of key signals k(t) does not exist anymore when a differential
attack is applied. Then, a mixed view of two interested plain-texts is obtained
from the above calculation of the plain-text difference.

Low sensitivity to plain-text

In a good cryptosystem, the encryption of two plain-texts with a very slight
difference should be very different [11]. However, in the BSS-based encryption
scheme, when we use two very close plain-texts p1(t) and p2(t) for which the
maximal difference of all elements is ǫ, then each element of |App1(t) −
App2(t)| is not greater than P max (|Ap|)ǫ = P × ǫ. This low sensitivity
increases when the two plain-texts are closely correlated as in the case of a
plain-text and its watermarked version [11].

Known-plain-text attack

By encrypting plain-texts with the same key, one can get in this type of
attack plain-text differences . From equation (2.10), the mixing matrix can
be determined using P plain-text differences as follows:

Ap = ∆x(t)(∆p(t))
−1 (2.12)

where ∆p(t) and ∆x(t) are P ×P matrices, constructed row by row from the
P plaint-texts and the corresponding cipher-texts differences, respectively.
Considering that n dstinct plain-texts can generate n(n − 1)/2 plain-text
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differences [11]. The number n of required plain-texts to yield at least P
plain-text differences is given by n ≥

√
P after solving the inequality:

n ≥ ⌈
√

P − 1/4 + 1/2⌉ ≈
√
P (2.13)

Chosen plain-text/cipher-text attack

With a slight difference, the chosen-plain-text attack and the differential
known-plain-text attack applied on BSS-based encryption scheme give roughly
the same result [11]. In the chosen-cipher-text attack, one can choose a num-
ber of cipher-texts and observe the corresponding plain-texts.

2.4.4 Conclusion on cryptanalysis of BSS-based en-

cryption scheme

The security robustness of BSS-based encryption scheme is evaluated. The
cryptanalysis robustness study considers the cipher-text-only attack approach
in terms of the resistance level to divide-and-conquer (DAC) attack and to
differential attack, as well as the evaluation of sensitivity to the mixing ma-
trix, to the key signals and to the plain-text. In known-plain-text attack
approach, the number of required plain-texts to yield at least P plain-text
differentials has been evaluated [11].

At this level, the analysis of the security robustness of BSS-based encryp-
tion scheme has shown that, in the actual architecture of this system, some
weaknesses, from a crptographic point of view, still exist. First, the key sig-
nals k(t) do not play any important security role in the case of a differential
attack. This means that the effect of the second term of the encryption pro-
cedure described in equation (2.5) is cancelled. Second, the use of the mixing
matrix several times beside the low sensitivity of encryption/decryption con-
stitute a weakness of BSS-based encryption scheme.

However, from another point of view, in the BSS-based encryption scheme,
the low sensitivity of decryption to cipher-text could be seen as an advantage
in the case of the need to lossy decryption. Lossy decryption means that even
when the receiver gets a cipher-text which is slightly different from the re-
quetsed one, the decryption process could be achieved successfully. The lossy
decryption is usefull in some real applications where the cipher-text could be

31



compressed with some lossy algorithms to save the required storage. But,
from a cryptographic point of view, this feature constitutes a considerable
weakness [11].
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Chapter 3

Orthogonal Subspace-based
Encryption

In this chapter, we take advantage from the security defects of BSS-based
encryption scheme revealed by the cryptanalysis attacks to propose a new
encryption scheme based on subspace concept. The first approach is based
on orthogonal subspace concept. The design of such a system mainly consists
of the optimization of the following attributes:

• Crytpographic robustness based essentially on confusion and diffusion
principles.

• Quality of restitution of the original signal after decryption.

3.1 Subspace-based Encryption

The two main steps in an encryption scheme are the encryption and the de-
cryption steps. In practice, the output of the encryption step is transmitted
through a communication channel then received at the receiver hand before
being processed in the decryption step. For simulation purposes, we con-
sider that the communication channel is ideal and hence, the output of the
encryption step is actually the input of the decryption step.

3.1.1 Encryption

The block diagram of the proposed encryption scheme is shown in Fig-
ure (3.1). The data are first fed to the segment splitter which consists of
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Figure 3.1: Block diagram of the proposed orthogonal subspace-based en-
cryption.

dividing the original signal into L segments:

p(t) = [p1(t), · · · , pM(t)]T , t = 1, · · · , L (3.1)

where M is the segment length. The plain signal contains L ×M samples,
it is split in L segments of M samples, the M samples form the M × 1 vector
p(t) of equation (3.2). Hence, L is the number of segments. It becomes the
sample size of the vector x(t) of equation (3.2). These segments are used in
the encryption process (the subspace-based encryption block) to obtain the
following encrypted signal:

x(t) = A(t)p(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(t))] (3.2)

where A(t) and B(t) are (M + 1)×M and (M + 1)×M full rank key ma-
trices, respectively. The introduction of matrices A(t) and B(t) is motivated
by the task of increasing the key space that would be needed for cryptanal-
ysis. Note that the key matrices are generated for each vector x(t). This
property makes any estimation of the signal subspace impossible from only
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one snapshot. These matrices can be generated by a pseudo-random number
generator (PRNG) with a secret seed that serves as the secret key.

β is a factor that controls the signal to noise ratio. This factor (β) should
be chosen as large as possible in order to provide very low Signal to Noise
Ration (SNR), g(.) is a component-wise nonlinear function that verifies

g(0) = 0. (3.3)

k(t) is a random M × 1 key signal vector generated by any robust key signal
generator and ⊙ denotes the Hadamard operator. P⊥

A(t) is the projector on
the orthogonal subspace to the one spanned by the columns of the key matrix
A(t). The latter is refereed herein to as the key subspace. The projector P⊥

A(t)

is given by

P⊥

A(t) = I−PA(t) = I−A(t)(A(t)HA(t))−1A(t)H (3.4)

where PA(t) is the orthogonal projector on the key subspace, and (.)H and I
denote the Hermitian operator and the identity matrix, respectively. For
the purpose of robustness evaluation, we use in the sequel the following
component-wise nonlinear function:

g(v) =
v√

1 + v2
(3.5)

that verifies condition (3.3).

3.1.2 Decryption

On the receiver hand, the encrypted data vector is first projected on the
corresponding key subspace; this is done by the following operation:

xp(t) = PA(t)x(t) (3.6)

where xp(t) is the obtained projected data. Since the projectors PA(t) and
P⊥

A(t) are orthogonal (i.e. PA(t)P
⊥

A(t) = 0), the above projection leads to the
following result

xp(t) = A(t)p(t) (3.7)
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and the original plain-text (the decrypted signal) is obtained by using the
key matrice A(t):

p(t) = (A(t))♯xp(t) (3.8)

where (.)♯ denotes the pseudo-inverse operator.

Note that in the above recovery procedure, one does not need to know the
key signals k(t) neither the matrix B(t).

The k(t) in equation (3.2) is not the same as that used in the blind source
separation-based encryption scheme. The difference is in the way of its use.
In blind source separation-based encryption scheme, k(t) is included in the
transmitted source vector in order to generate an under-determined blind
source separation source (BSS) problem.

In our proposed method, k(t) is used with conjoncture with a non-linearity
of the data as an additive perturbation term that also generate an under-
determined blind source separation source(BSS) problem. The dimension of
k(t) is M×1. k(t) is generated by any pseudo random or random generator.
There is no specific range for values of k(t). It depends on the chosen key
generator.

Of course, the randomness quality of the key signals of any encryption system
can affect the encryption results. In our case, this is also true. However, the
randomness quality is guaranteed by the pseudo random or random genera-
tor used in the encryption system (see [35]-[38]) .

For simplicity, the Matlab generic instruction ”random” has been used. Sev-
eral pseudo random and random generators exist, both in software and
hardware forms, and any generator which fulfills the randomness criteria
largely described in the literature (e.g. NIST tests of randomness, Maurer
test) [39, 40] can be used to generate k(t). However, the issue of studying
and evaluating the randomness of the key generators, both pseudo random
and random, is over the scope of this thesis.

Currently, the factor β in equation (3.2) should be chosen as large as possible
in order to provide very low SNR. For such chosen values that should lead
to secure encrypted data, we can not get small eigenvalues for this subspace.
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If one set β = 0, this means that we have no encryption according to the
proposed scheme. Even if one can estimate A from the encrypted data x,
the estimate Â will be given with some estimation error say ∆A:

Â = A+∆A

Note that the existing correlation between the two terms of equation (3.2)
will increase the estimation error if one find a way to estimate A or its
subspace. Beside this property, several tests have been conducted to measure
the sensitivity of the proposed scheme even to very small matrix mismatch.
Results of these tests are presented in chapter 6.

3.2 Iterative Orthogonal Subspace-based En-

cryption

The iteration of an encryption scheme for a number of rounds is usually ap-
plied on cryptosystems to enhance their security characteristics and hence,
strengthen their resistance to cryptanalysis attacks. At this level, our pro-
posed subspace-based encryption scheme described in section (3.1) consti-
tutes one round. The output of the first round is re-injected as the input
for the second round and so on. The output of the last round represents
the output of the whole encryption scheme i.e. the iterative subspace-based
encryption scheme. Figure (3.2) shows the block diagram of the proposed
iterative subspace-based encryption scheme.

3.2.1 Encryption

The splitted segments of equation (3.1) are used in the iterative encryption
process to obtain the following encrypted signal:

xn(t) = An(t)x(n−1)(t) + βP⊥

An(t)Bn(t)[k(t)⊙ g(x(n−1)(t))] (3.9)

where xn(t) and x(n−1)(t) denote the nth and (n − 1)th encrypted segments.
n ≥ 1 and x(0)= p(t), the plain-text. An(t) and Bn(t) are (M +1)×M full
rank key matrices, respectively. Note that the encryption process described
in equation (3.9) is performed on several iterations.
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Figure 3.2: Block diagram of the iterative subspace-based encryption.

3.2.2 Decryption

Once the cipher-text is obtained, the decryption procedure could be achieved
by projecting the last encrypted segment xn(t) as described by the following
equation:

xp,n(t) = PAn(t)xn(t) (3.10)

where xp,n(t) is the obtained projected data. Since the projectors PAn(t) and
P⊥

An(t)
are orthogonal (i.e. PAn(t)P

⊥

An(t)
= 0), the above projection leads to

the following result:

xp,n(t) = An(t)x(n−1)(t) (3.11)

The decrypted signal at iteration n− 1, is then obtained by

x(n−1)(t) = (An(t))
♯xp,n(t) (3.12)

where (.)♯ denotes the pseudo-inverse operator. The above equations are per-
formed iteratively till restituting the original plain-text.
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3.3 Conclusion

In this chapter, an orthogonal subspace-based encryption scheme is pre-
sented. Characteristics of this scheme, from a security point of view, are
described. First, the key matrix A is generated for each segment of the
plain-text which means that there are as many key matrices as segments of
plain-text. Second, the key signals k(t) used during the encryption step are
no longer necessary for achieving decryption at the receiver side. Third, a
nonlinearity is guaranteed in this system through the use of a component-
wise nonlinear function. Fourth, in the absence of a plain-text at the input
of the proposed encryption scheme, there is no output at the receiver side i.e.
there is no cipher-text. Fifth, a correlation is achieved between the various
components of the encryption procedure.

Furthermore, the iterative orthogonal subspace-based encryption approach,
through the process of applying the encryption for several rounds, provides
an added value in the sense that it allows to acuumulate characteristics which
are already guaranteed by the one-round orthogonal system. Of course, the
application of several rounds in the iterative orthogonal subspace-based en-
cryption scheme has a cost in terms of processing speed and consequently
time of execution. A compromise, depending on the requirements of the
target field of application of the subspace-based encryption scheme, has to
be found between number of iterations and processing speed. This issue
becomes more important when a hardware implementation is considered.
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Chapter 4

Oblique Subspace-based
Encryption

In this chapter, we propose an encryption scheme based on oblique subspace
concept rather than orthogonal subspace concept as described previously in
chapter (3). The differences between the two approaches are shown and
a conclusion on the added value of the oblique subspace-based approach is
given. As it is mentioned in section (3.1), the output of the oblique subspace-
based encryption and the input of the oblique subspace decryption are the
same. For clarity, a brief review of oblique projection is given in the following
section.

4.1 Oblique Projection

Let us recall the following notations, we denote the orthogonal projection
on range subspace 〈A〉 by PA, and the orthogonal projection on range space
orthogonal to 〈A〉 by P⊥

A = I−PA.

The oblique projection matrix on one range of the subspace 〈A〉 obliquely to
the null subspace 〈B〉 is defined by:

EAB = A(AHP⊥

BA)−1AHP⊥

B (4.1)

and

EBA = PB(I− EAB) (4.2)
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4.1.1 Properties

The matrix EAB is idempotent, but not symmetric, and has the following
properties [41]:

• Range subspace 〈A〉 and null subspace 〈B〉:

EABA = A,EABB = 0 (4.3)

• The two matrices decompose the projection PAB as follows:

PAB = EAB + EBA (4.4)

• The oblique projection operator is invariant to change of basis [42].

Next, this concept of Oblique Projection is exploited to improve our proposed
subspace-based encryption.

4.2 Encryption System based on Oblique Pro-

jection

As it was mentioned in section (3.1), we consider that the communication
channel is ideal and then, the output of the encryption step is exacly the
input of the decryption step. These two main steps in an encryption scheme
will be explained in the following sections.

4.2.1 Encryption

The main difference between the block diagram of the proposed oblique
subspace-based encryption scheme shown in Figure (4.1) and the block di-
agram shown in Figure (3.1) is in the subspace-based encryptor i.e. the
subspace-based encryptor shown in Figure (4.1) is an oblique subspace-
based encryptor rather than an orthogonal one.

The plain-text is first divided into L segments before being fed to the oblique
subspace-based encryptor to give arise to the following cipher-text (encrypted
signal):

x(t) = A(t)p(t) + βB(t)[k(t)⊙ g(p(t))] (4.5)
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Figure 4.1: Block diagram of the oblique subspace-based encryption.

where A(t) and B(t) are (M+1)×M and (M+1)×1 full rank key matrices,
respectively.

Note that the key matrices are also, as it is the case in the orthogonal
subspace-based encryption, generated for each vector x(t).
β is a factor that controls the signal to noise ratio and g(.) is a component-
wise nonlinear function that verifies the same condition required for the or-
thogonal subspace-based encryption i.e.

g(0) = 0

k(t) is a random M × 1 key signal vector generated by any robust key signal
generator and ⊙ denotes the Hadamard operator. For the purpose of ro-
bustness evaluation, we use in the sequel the same component-wise nonlinear
function:

g(v) =
v√

1 + v2

that verifies condition (4.6).
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4.2.2 Decryption

To achieve decryption, the encrypted data vector received is first projected
as it is described in the following equation:

xp(t) = EA(t)B(t)x(t) (4.6)

where xp(t) is the obtained projected data on the range subspace 〈A(t)〉
obliquely to the null subspace 〈B(t)〉.

Since we have:

EA(t)B(t)A(t) = A(t)

and

EA(t)B(t)B(t) = 0

the above projection leads to the following result:

xp(t) = A(t)p(t) (4.7)

and the original plain-text (the decrypted signal) is obtained by using the
key matrix A(t):

p(t) = (A(t))♯xp(t) (4.8)

where (.)♯ denotes the pseudo-inverse operator.

As it is shown above, there is no need to have, at the receiver side, the
key signals k(t) neither the matrix B(t).

The factor (β) should be chosen as large as possible in order to provide very
low SNR. For such chosen values that should lead to secure encrypted data,
we can not get small eigenvalues for this subspace. As it is mentioned for
the orthogonal subspace-based encryption scheme, the existing correlation
between the two terms of oblique subspace encryption formula will increase
the estimation error if one find a way to estimate A or its subspace. Sev-
eral experiments have been conducted to assess the security robustness of
the proposed oblique subspace encryption scheme. Results of these tests are
presented in chapter 6.
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4.3 Iterative Oblique Subspace-based Encryp-

tion

Following the same methodology adopted in the iterative orthogonal subspace-
based encryption, the oblique subspace-based encryption described in section
(4.2) constitutes one round in the iterative oblique subspace-based encryp-
tion scheme. The other rounds are comparable to the first one and follow the
same procedure except in the input and the output parameters. This means
that, for encryption purpose, the input of the second round is exactly the
output of the first round and so on. At the end of the encryption process,
let us say after n rounds, the output of the nth round is the output of the
whole iterative oblique subspace encryption scheme. Figure (4.2) shows the
block diagram of the proposed iterative oblique subspace-based encryption
scheme.
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Figure 4.2: Block diagram of the iterative oblique subspace-based encryption.
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4.3.1 Encryption

In the iterative oblique subspace-based encryption scheme, the splitted seg-
ments described in equation (3.1) are fed to the sytem to get the following
encrypted signal:

xn(t) = An(t)x(n−1)(t) + βBn(t)[k(t)⊙ g(x(n−1)(t))] (4.9)

where xn(t) and x(n−1)(t) denote the nth and (n− 1)th encrypted segments.
n ≥ 1 and x(0)= p(t), the plain-text. An(t) and Bn(t) are (M +1)×M and
(M + 1) × 1 full rank key matrices, respectively. Note that the encryption
process described in equation (4.9) is performed on several iterations.

4.3.2 Decryption

The decryption procedure of the received cipher-text could be achieved by
projecting the last encrypted segment xn(t) as described by the following
equation:

xp,n(t) = EAn(t)Bn(t)xn(t) (4.10)

where xp,n(t) is the obtained projected data on the range subspace 〈An(t)〉
obliquely to the null subspace 〈Bn(t)〉.

Since we have:
EAn(t)Bn(t)An(t) = An(t)

and
EAn(t)Bn(t)Bn(t) = 0

the above projection leads to the following result:

xp,n(t) = An(t)x(n−1)(t) (4.13)

The decrypted signal at iteration n− 1, is then obtained by

x(n−1)(t) = (An(t))
♯xp,n(t) (4.14)

where (.)♯ denotes the pseudo-inverse operator. The above equations are
performed iteratively till restituting the original plain-text.
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4.4 Conclusion

Through this chapter, we see that the oblique subspace-based encryption
scheme is a more general scheme than the orthogonal one in the sense where
this later is a specific case of the oblique one.

Characteristics of this scheme, from a cryptographic point of view, as men-
tioned in section (3.3), are the generation of key matrix for each segment of
plain-text, the no-need to the key signals k(t) used during the encryption
step in the decryption procedure, the nonlinearity brought by the use of a
component-wise nonlinear function, the cipher-text vanishes if there is no
plain-text at the input of the encryption scheme and the correlation between
the various elements of the encryption procedure. Furthermore, the itera-
tive oblique subspace-based encryption approach provides an enhancement
of these characteristics through the processs of several rounds.

On the other hand, the enhancement provided by the oblique approach, in
comparison with the orthogonal approach, consists of making the task of the
cryptanalyst more complicated since for the orthogonal subspace-based ap-
proach, the knowledge of one subspace leads automaically to the knowledge
of the other subspace (the orthogonal one), while in the oblique subspace-
based approach, both range subspaces 〈A〉 and 〈B〉 should be guessed and
hence increases the dimension of the search space.
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Chapter 5

Cryptographic Robustness of
the Subspace-based Encryption
Systems

In this chapter, the proposed subspace-based encryption schemes, orthogonal
and oblique, are evaluated to assess their robustness, from a cryptographic
point of view, and their quality of recovering the original signal (plain-text).
The cryptographic robustness assessment approach is cryptanalysis-oriented
in the sense that cryptanalysis attacks are applied on the proposed subspace-
based encryption schemes. Results of these cryptanalysis attacks are used to
make a comparison with the BSS-based encryption scheme.

5.1 Interpretation of the Subspace-based En-

cryption in terms of Confusion and Dif-

fusion requirements

In the design of most published cryptographic systems, two important princi-
ples are present in the designer’s mind: Confusion and Diffusion. Confusion
is based on the idea of obscuring the relationship between plain-text, cipher-
text and keys. This is done by mixing linearity and nonlinearity [43].

Diffusion is the other important principle of cryptographic system design
and is based on the idea that every bit of the cipher-text should depend
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on every bit of the plain-text and every bit of the key. This ensures that
the statistics of the plain-text are dissipated within the cipher-text so that
an attacker cannot predict the plain-text that corresponds to a particular
cipher-text, even after observing a number of ”similar” plain-texts and their
corresponding cipher-texts [43].

Generally, in most of the published cryptographic systems, substitution and
permutation are the main two operations applied, both or separately, on
plain-texts in order to ensure confusion and diffusion.

While the terminology (substitution and permutation) used nowadays is
roughly the same since centuries and the objective is to make the cipher-
text the most complex and inintelligible, the confusion and diffusion terms
are relatively recents. Of course, the approaches and techniques have seen
a huge developpement during the long history of cryptology to ensure con-
fusion and diffusion. As an example, the security of Advanced Encryption
Standard (AES) [18], the most known and recent cryptographic standard, is
mainly based on the robustness of S-boxes, the ”Substitution” boxes. Diffu-
sion in the AES SP -network is achieved by a linear transformation [44].

On another hand, some crytpographic systems use other approaches and
techniques to guarantee a high degree of confusion and diffusion. In our
system, we are in this category of cryptographic sytems. There is no permu-
tation or substitution in the known sense of the terms, rather there is a new
approach based on subspace concept to guarantee the same security objec-
tives targeted by substitution and permutation i.e. confusion and diffusion.

In our proposed subspace-based encryption system, confusion is achieved
by the linearity and and nonlinearity that obscure the relationship between
the plain-text, the cipher-text and the key. Furthermore, we see from equa-
tion (5.1) that each value of the cipher-text x(t) depends on each value of
the plain-text and the key what ensures the diffusion requirement.

In the following sections, the robustness, from a security point of view, of
the proposed subspace-based cryptographic system is analysed and evalu-
ated. Several tests using some cryptanalysis attacks are conducted on both
orthogonal and oblique subspace-based encryption systems, for both iterative
and simple versions.
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5.2 Cipher-text-only attack

This is the most known and realistic attack since it does not require more
than the availability of cipher-texts which can be obtained by a system similar
to the system which is under attack or even by interception of cipher-texts.
Generally, communications are using public infrastructures and protocols
(e.g. telephone networks, internet) and hence, could be intercepted.

5.2.1 Sensitivity to PA(t)

If two distinct keys are used to encrypt the same plain-text, the sensitivity
of a cryptosystem to its secret key is evaluated in accordance to the differ-
ence between the two encrypted signals obtained from encrypting the same
plain-text. This means that given two distinct keys, even if their difference
is the minimal value under the current finite precision, the encryption and
decryption results of a robust cryptosystem should still be completely differ-
ent [11, 17].

In other words, a robust cryptosystem, from a cryptographic point of view,
should have a high sensitivity to the secret key [11, 17]. A very low sensitivity
means that a mismatched key can approximately recover the plain-text. In
the sequel, we show that the involved computation in our proposed subspace-
based encryption scheme is very sensitive to projection mismatch.

Orthogonal subspace-based encryption scheme

Let us first rewrite for ease of use the encryption equation (3.2) as:

x(t) = yp(t) + βz(t) (5.1)

where yp(t) = A(t)p(t) and z(t) = P⊥

A(t)B(t)[k(t) ⊙ g(p(t))]. Consider the
following mismatched projector

P̂A(t) = PA(t) + ǫI (5.2)

with ǫ a finite precision value and I a (M + 1) × (M + 1) identity matrix.
Using the mismatched projector P̂A(t) for decryption, one gets:

P̂A(t)x(t) = (PA(t) + ǫI)yp(t) + β(PA(t) + ǫI)z(t)

= (1 + ǫ)yp(t) + βǫz(t) (5.3)
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In equation (5.3), we have used the fact that PA(t)yp(t) = yp(t) andPA(t)z(t) =
0. Note from the same equation (5.3) that the decrypted data by the mis-
matched projector is still encrypted according to the proposed encryption
equation (3.2).

By choosing β = O(1
ǫ
), equation (5.3) shows that, even for a very small value

of ǫ, there is a very significant difference between the decryption results ob-
tained by the actual projector PA(t) and its mismatched version P̂A(t). This
means that the proposed subspace-based encryption scheme is very sensitive
to projector mismatch. Hence, it verifies an important principle of crypto-
graphic robustness that is the high sensitivity to secret parameter mismatch.
This high sensitivity is checked by using the following experiment procedure
[11]:

Step 1: For a randomly-generated projector and keys (PA(t),k(t)), compute the
cipher-text x(t) corresponding to a plain-text p(t).

Step 2: With a mismatched projector PA(t) + ǫI, decrypt x(t) to get p̂(t), an
estimated version of p(t), where ǫ ∈ [0, 1].

Detailed results and discussion of this experiment are shown in chapter 6.

Iterative orthogonal subspace-based encryption scheme

For the iterative orthogonal subspace-based encryption scheme, let us rewrite
the encryption equation:

xn(t) = An(t)x(n−1)(t) + βP⊥

An(t)Bn(t)[k(t)⊙ g(x(n−1)(t))]

where xn(t) and x(n−1)(t) denote the nth and (n− 1)th encrypted segments.
n ≥ 1 and x(0)= p(t), the plain-text. as:

xn(t) = y(p,n)(t) + βzn(t) (5.4)

where y(p,n)(t) = An(t)x(n−1)(t)
and
zn(t) = P⊥

An(t)
Bn(t)[k(t)⊙ g(x(n−1)(t))].

If we consider the following mismatched projector

P̂An(t) = PAn(t) + ǫI (5.5)
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with ǫ a finite precision value and I a (M + 1)× (M + 1) identity matrix.
The decrypted data x(p,n) using the mismatched projector is then given by

P̂An(t)xn(t). one gets:

P̂An(t)xn(t) = (PAn(t) + ǫI)y(p,n)(t) + β(PAn(t) + ǫI)zn(t)

= (1 + ǫ)y(p,n)(t) + βǫzn(t) (5.6)

Note from equation (5.6) that the decrypted data by the mismatched pro-
jector is still encrypted according to the proposed encryption equation (3.2).

By choosing β = O(1
ǫ
), equation (5.6) shows that, even for a very small

value of ǫ, there is a very significant difference between the decryption re-
sults obtained by the actual projector PAn(t) and its mismatched version

P̂An(t). Note that the iteration on n makes an accumulation on the initial
mismatch on the projector and hence makes the encryption more sensitive
to projector mismatch.

Adopting the same methodology applied for the orthogonal subspace-based
encryption scheme to check the high sensitivity of iterative orthogonal subspace-
based encryption scheme to key mismatch, the following procedure is applied:

Step 1: Generate random projector and keys (PAn(t),k(t)), then compute the
cipher-text xn(t) corresponding to a plain-text p(t).

Step 2: Using a mismatched projector PAn(t) + ǫI, decrypt xn(t) to get p̂(t),
an estimated version of p(t), where ǫ ∈ [0, 1].

Detailed results and discussion of this experiment are shown in chapter 6.

Oblique subspace-based encryption scheme

Let us rewrite the encryption equation (4.5) as:

x(t) = yp(t) + βz(t) (5.7)

where yp(t) = A(t)p(t) and z(t) = B(t)[k(t)⊙ g(p(t))]. A(t) and B(t) are
(M +1)×M and (M +1)× 1 full rank key matrices, respectively. Following
the same methodology as in the orthogonal approach, let us consider the
mismatched oblique projector:

ÊA(t)B(t) = EA(t)B(t) + ǫI (5.8)
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with ǫ a finite precision value and I a (M + 1) × (M + 1) identity matrix.
The mismatched projector ÊA(t)B(t) is used for decryption; one gets:

ÊA(t)B(t)x(t) = (EA(t)B(t) + ǫI)yp(t)

+ β(EA(t)B(t) + ǫI)z(t)

= (1 + ǫ)yp(t) + βǫz(t) (5.9)

In equation (5.9) , we have used the fact that EA(t)B(t)yp(t) = yp(t) and
EA(t)B(t)z(t) = 0. Note from the same equation (5.9) that the decrypted data
obtained from the use of a very small-mismatched oblique projector is still
encrypted according to the oblique subspace-based encryption equation (4.5).

For a very small value of ǫ, by choosing β = O(1
ǫ
), equation (5.9) shows that

there is a very significant difference between the decryption results obtained
by the actual oblique projector EA(t)B(t) and its mismatched version ÊA(t)B(t).
This leads to say that this oblique subspace-based encryption scheme is very
sensitive to projector mismatch i.e. this encryption scheme fulfils the require-
ment of high sensitivity to secret parameter mismatch.

Adopting the same methodology of experimentation used previously for or-
thogonal subspace-based encryption scheme to check the high sensitivity of
oblique subspace-based encryption scheme to projector mismatch, the fol-
lowing procedure is applied:

Step 1: Generate random projector and keys (EA(t)B(t),k(t)), and compute the
cipher-text x(t) which corresponds to a plain-text p(t).

Step 2: Decrypt x(t) to get p̂(t), an estimated version of p(t), by using the
mismatched projector EA(t)B(t) + ǫI, where ǫ ∈ [0, 1].

Results of this experimentation are shown and discussed in chapter 6.

Iterative oblique subspace-based encryption scheme

For the iterative oblique subspace-based encryption scheme, let us rewrite
the encryption equation (4.9) as:

xn(t) = yn(t) + βzn(t) (5.10)
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where yn(t) = An(t)x(n−1)(t) and zn(t) = Bn(t)[k(t)⊙ g(x(n−1)(t))]. Let us
consider a mismatched oblique projector:

ÊAn(t)Bn(t) = EAn(t)Bn(t) + ǫI (5.11)

with ǫ a finite precision value and I a (M+1)×(M+1) identity matrix. The
decrypted data x(p,n)(t) obtained from applying the mismatched projector is

then given by ÊAn(t)Bn(t) xn(t). One gets:

ÊAn(t)Bn(t)xn(t) = (EAn(t)Bn(t) + ǫI)y(p,n)(t)

+ β(EAn(t)Bn(t) + ǫI)zn(t)

= (1 + ǫ)y(p,n)(t) + βǫzn(t) (5.12)

From equation (5.12), one can see that the decrypted data by the oblique
mismatched projector is still encrypted according to the proposed iterative
oblique encryption equation (4.9).

By choosing β = O(1
ǫ
), equation (5.12) shows that, even for a very small

value of ǫ, this iterative oblique subspace-based encryption scheme presents
very significant difference in the corresponding cipher-texts. Note that as
in the case of the iterative orthogonal subspace-based encryption, the itera-
tion on n makes an accumulation on the initial mismatch on the projector
and hence makes the encryption more sensitive to projector mismatch. The
same procedure followed previously is applied to show the high sensitivity of
iterative oblique subspace-based encryption scheme to projector mismatch.

Step 1: Choose a number of iterations n (n ≥ 2).

Step 2: Generate random oblique projector and keys (EAn(t)Bn(t),k(t)), then
compute the cipher-text xn(t) corresponding to a plain-text p(t).

Step 3: Apply the iterative oblique decryption formula on xn(t) to get p̂(t), an
estimated version of p(t), using the mismatched projector EAn(t)Bn(t)+
ǫI where ǫ ∈ [0, 1].

Results of this experimentation are shown and discussed in chapter 6.

5.2.2 Sensitivity to k(t)

The subspace-based encryption scheme is also very sensitive to the key sig-
nals. This is due to the same reason of its high sensitivity to projector
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PA(t). Furthermore, The key signals k(t) are generated randomly for each
plain-text through the random or the pseudo-random generator as shown in
Figure (3.1). Let us re-write the encryption equation (3.2) for an orthogonal
subspace-based encryption scheme:

x(t) = A(t)p(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(t))] (5.13)

where A(t)and B(t) are (M+1)×M and (M+1)×M full rank key matrices,
respectively. k(t) is generated for each vector x(t). Consider now a second
operation of encrypting the same plain-text p(t) using the same key matrix
A(t). An expected result of this encryption operation should be the same
cipher-text x(t) obtained as an output of the equation (5.13). However,
this is not the case in our proposed subspace-based encryption scheme. The
obtained cipher-text is given by the following equation:

x1(t) = A(t)p(t) + βP⊥

A(t)B(t)[k1(t)⊙ g(p(t))] (5.14)

where the cipher-text x1(t) is different from x(t) because the key signal k1(t)
is totally different from the key signal k(t) used in the first encryption. This
is due to the random (or pseudo-random) generator used to generate the key
signals that generates each time a different sequence of keys. More gener-
ally, the cipher-texts obtained from the use of the same plain-text and the
same key matrix in a subspace-based encryption scheme are always different.
This is an imporatnt feature which has an impact on the resistance of the
proposed subspace encryption scheme to cipher-text only attack. Actually, a
cryptanalyst gathering a set of let us say N cipher-texts has no information
about the number of the corresponding plain-texts. This number could be
the same number of cipher-texts or less. This uncertainty about the number
of the corresponding plain-texts provides an additive level of resistance to
this class of cryptanalysis attack.

5.2.3 Sensitivity to plain-text

Another cryptographic property required by a robust cryptosystem is that
the encryption must be very sensitive to plain-text, i.e., the cipher-texts of
two plain-texts with a slight difference should be much different [11, 17]. This
property matches well with the proposed subspace-based encryption scheme.
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Using the same key and given two plain-texts p(1)(t) and p(2)(t) with a very
slight difference, the obtained result presents a significant sensitivity to this
slight difference. It has been tested that no one could detect the slight
difference between the two plain-texts (e.g. two speech signals). In other
words, for a person, in the speech application, the two speech signals are
actually the same. However, their encrypted versions are too different.

5.2.4 Differential attack

The difficulty of solving nonlinear equations can be useful for designing cryp-
tosystems. A differential attack, is based on the assumption that two iden-
tical key signals are used to encrypt at least two plain-texts [11]. However,
the key space of a good pseudo random number generator, which generates
pseudo random sequences having statistical properties similar to those of
random sequences, should be large enough to prevent the occurrence of two
identical key signals. Moreover, even when we assume that two identical key
signals have been used to encrypt two plain-texts, the differential attack can
not be realized.

Orthogonal subspace-based encryption scheme

Let us assume that two plain-texts p(1)(t) and p(2)(t) are encrypted using
the same key parameters (PA(t),k(t)). From equation (3.2), one has:

x(1)(t) = A(t)p(1)(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(1)(t))] (5.15)

and
x(2)(t) = A(t)p(2)(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(2)(t))] (5.16)

Combining equations (5.15) and (5.16), leads to

∆x(t) = A(t)∆p(t) + βP⊥

A(t)B(t)[k(t)⊙ [g(p(1)(t))− g(p(2)(t))]] (5.17)

where ∆x(t) is the cipher-text differential described as:

∆x(t) = x(1)(t)− x(2)(t) (5.18)

and ∆p(t) is the plain-text differential described as:

∆p(t) = p(1)(t)− p(2)(t) (5.19)
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Note that even if the same key is used to obtain the cipher-texts x(1)(t)
and x(2)(t), the additive subspace perturbation term is still present in equa-
tion (5.17). Moreover, the plain-text differential ∆p(t) can not be computed
because of the permanent presence of the terms p(1)(t) and p(2)(t) in equa-
tion (5.17). This is due, as mentioned in section (3.1), to the existing cor-
relation between the additive subspace perturbation term and the plain-text
term of the proposed encryption equation (3.2).

Iterative orthogonal subspace-based encryption scheme

By assuming that two plain-texts p(1)(t) and p(2)(t) are encrypted using the
same key parameters (PAn(t),k(t)). From equation (3.9), one has:

x(1)
n (t) = An(t)x

(1)
(n−1)(t) + βP⊥

An(t)Bn(t)[k(t)⊙ g(x
(1)
(n−1)(t))] (5.20)

where x
(1)
n (t) and x

(1)
(n−1) denote the nth and (n− 1)th encrypted segments of

the first plain-text. n ≥ 1 and x(1)(0)= p(1)(t) is the first plain-text.

And

x(2)
n (t) = An(t)x

(2)
(n−1)(t) + βP⊥

An(t)Bn(t)[k(t)⊙ g(x
(2)
(n−1)(t))] (5.21)

where x
(2)
n (t) and x

(2)
(n−1) denote the nth and (n− 1)th encrypted segments of

the second plain-text. n ≥ 1 and x(2)(0)= p(2)(t) , the second plain-text.

Combining equations (5.20) and (5.21), one gets

∆xn
(t) = An(t)∆x(n−1)

(t)

+ βP⊥

An(t)Bn(t)[k(t)⊙ [g(x
(1)
(n−1)(t))− g(x

(2)
(n−1)(t))]] (5.22)

where ∆xn(t) and ∆x(n−1)
are the cipher-text differentials described as:

∆xn(t) = x(1)
n (t)− x(2)

n (t) (5.23)

and

∆x(n−1)
(t) = x

(1)
(n−1)(t)− x

(2)
(n−1)(t) (5.24)
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where

∆x0(t) = x
(1)
0 (t)− x

(2)
0 (t)

= p(1)(t)− p(2)(t)

= ∆p(t) (5.25)

One can see that even if the same key is used to obtain the cipher-texts
x
(1)
n (t) and x

(2)
n (t), the additive subspace perturbation term is still present

in equation (5.22). Moreover, the plain-text differential ∆p(t) can not be
computed because of the permanent presence of the terms p(1)(t) and p(2)(t)
in equation (5.22). This is due, as mentioned in section (3.2), to the existing
correlation between the additive subspace perturbation term and the plain-
text term of the proposed encryption equation (3.9).

Oblique subspace-based encryption scheme

Let us assume that two plain-texts p(1)(t) and p(2)(t) are encrypted using
the same key parameters (EA(t)B(t),k(t)). From equation (4.5), one has:

x(1)(t) = A(t)p(1)(t) + βB(t)[k(t)⊙ g(p(1)(t))] (5.26)

and
x(2)(t) = A(t)p(2)(t) + βB(t)[k(t)⊙ g(p(2)(t))] (5.27)

Combining equations (5.26) and (5.27), gives

∆x(t) = A(t)∆p(t) + βB(t)[k(t)⊙ [g(p(1)(t))− g(p(2)(t))]] (5.28)

where ∆x(t) is the cipher-text differential described as:

∆x(t) = x(1)(t)− x(2)(t) (5.29)

and ∆p(t) is the plain-text differential described as:

∆p(t) = p(1)(t)− p(2)(t) (5.30)

Note that the additive oblique subspace perturbation term is still present
in equation (5.28) even if the same key is used to obtain the cipher-texts
x(1)(t) and x(2)(t). Moreover, the first term ∆p(t) could not be computed
because of the permanent presence of p(1)(t) and p(2)(t) in equation (5.28).
The existing correlation between the additive oblique subspace term and
the plain-text term in this encryption scheme presents a protection against
differential attack.
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Iterative oblique subspace-based encryption scheme

Assuming that two plain-texts p(1)(t) and p(2)(t) are encrypted using the
same key parameters (EAn(t)Bn(t),k(t)), from equation (4.9), one gets:

x(1)
n (t) = An(t)x

(1)
(n−1)(t) + βBn(t)[k(t)⊙ g(x(n− 1)(1)(t))] (5.31)

and

x(2)
n (t) = An(t)x

(2)
(n−1)(t) + βBn(t)[k(t)⊙ g(x(n− 1)(2)(t))] (5.32)

Combining equations (5.31) and (5.32), gives

∆xn
(t) = An(t)∆x(n−1)

(t)

+ βBn(t)[k(t)⊙ [g(x
(1)
(n−1)(t))− g(x

(2)
(n−1)(t))] (5.33)

where ∆xn(t) is the cipher-text differential described as:

∆xn(t) = x(1)
n (t)− x(2)

n (t) (5.34)

and ∆x(n−1)
= x

(1)
(n−1)(t)− x

(2)
(n−1)(t) for n ≥ 1.

For n = 1, the following equation

∆x0(t) = x
(1)
0 (t)− x

(2)
0 (t) = p(1)(t)− p(2)(t)

describes the plain-text differential. This becomes the same case as in the
oblique subspace-based encryption scheme.

For n ≥ 1, the cipher-text differential could not be computed because of
the presence of the additive oblique subspace perturbation term even the
same key is used in the encryption process. This protection against differ-
ential attack is guaranteed by the existing correlation between the additive
perturbation term and the plain-text term.

Added-value of non linear function g(.)

During the conception process of this subspace-based encryption scheme, the
choice of the nonlinearity has been an important step. On one side, it has to
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ensure a high degree of nonlinearity and on the other side it has to prevent,
or at least to make very difficult, the use of known cryptanalysis attacks. A
condition which we have stated to select the nonlinear function g(p(t)) is
that it verifies g(0) = 0.

Actually, one can choose any non-linearity that verifies the above condi-
tion and ensures a correlation between the two terms of equation (3.2). The
choice of an indicator function for example does not fulfill these requirements
because it will make the additive second term of equation (3.2) uncorrelated
with the first term. One of our objectives is to make these two terms corre-
lated in order to prevent their recovery from, to our knowledge, any statistical
signal processing techniques. Also, this correlation between the two terms
makes the proposed system robust to differential attack as shown in subsec-
tion (5.2.4).

The importance of the condition described above for selecting the nonlin-
ear function g(p(t)) i.e. g(0) = 0 could be explained via an inverse example.
For example, assuming that g(0) 6= 0 and the second term of equation (3.2)
lives in a M-L dimensional subspace and there is no contents presented to
encryption, then equation (3.2) reads:

x(t) = βP⊥

A(t)B(t)[k(t)⊙ g(p(t))]

Hence, a Principal Component Analysis will provide a projector on the sub-
space spanned by P⊥

AB that is orthogonal to the space spanned by matrix
A. Since only a projector on the space spanned by A that is needed for
the decryption, this will crack the algorithm. To overcome this problem, the
condition g(pi(t)) = 0 if pi(t) = 0 has been set. Hence, if no plain-text is
presented in the encryption equation (3.2) (i.e. p(t) = 0), the cryptosystem
will provide no contents (i.e. x(t) = 0).

To our knowledge, the aforementioned problem has no solution yet from
a statistical signal processing point of view. This important property allows
to ban the use of any signal processing-based cryptanalysis technique in ab-
sence of plain-text.
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Chapter 6

Application and Performance
Evaluation

This chapter presents the results of the experimentations conducted on the
proposed subspace-based encryption method for the four proposed schemes:
orthogonal, iterative orthogonal, oblique and iterative oblique subspace-based
encryption schemes. These experimentations target to assess the proposed
schemes by evaluating aspects related to both security robustness from a
cryptographic point of view and quality of reconstruction of plain-texts at
the decryption level.

For security assessment purpose, the evaluation approach adopts some crypt-
analysis attacks. For quality assessment, the evaluation process uses both
subjective and objective measurements. The tests and experimentations were
conducted on speech signals, images and binary phase shift keying data.

6.1 Application to speech signal

Security robustness evaluation

In practice, ǫ the finite precision value that would be used in the cryptanal-
ysis by exhaustive search, varies usually from 0.1 to 0.01. If ǫ is chosen too
small, the key space becomes huge and the cryptanalysis by exhaustive search
becomes impracticable.
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Table 6.1: SNR(dB) of four original speech segments in four encrypted seg-
ments and four decrypted segments.

x1(t) x2(t) x3(t) x4(t) xp(t)
p1(t) -204.28 -189.76 -183.23 -206.62 404.25
p2(t) -208.66 -193.14 -186.61 -210.00 361.62
p3(t) -216.20 -200.68 -194.14 -217.54 341.09
p4(t) -207.39 -191.87 -185.34 -208.73 352.03

The decryption requires a matrix pseudo-inversion. This might be expen-
sive (especially if M is large) and might result in numerical problems if A(t)
is ill-conditioned. However, the numerical problems that could rise from the
possible ill-conditioning of matrix A(t) depend on the quality of the random
or pseudo-random generator. In our experiments, M is chosen equal to 4, we
have also run experiments with M = 2 and there were no significant effects
on the encryption performance.

Quality performance analysis

In the objective evaluation, signal-to-noise ratio (dB) was used. The signal-
to-noise ratio (SNR) in dB of each original segment in both the decrypted
segments and encrypted ones is computed. Results of this computation is
shown in Table 6.1.

The results are obtained from the use of the subspace-based encryption when
applied on a speech file containing a record of a person saying lyrics of a child
song in english (the child song is entitled ”let’s laugh together”).

The original signal was sampled at a rate of 22.05 KHz and the number
of bits per sample used to encode the data in the file was 16 bits/sample.
One can see that the original segments are well covered using the proposed
subspace-based method. In the decrypted segments, one can see that the
signals are recovered with a very high SNR which ensures excellent voice
quality in the case of speech encryption. On the other hand, the encrypted
segments present a very low SNR.

For the subjective evaluation, a listening test through the subjective Degra-
dation Category Rating (DCR) was conducted by using a 5-point scale for
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evaluating the degradation: degradation is inaudible (5), degradation is au-
dible but not annoying (4), degradation is slightly annoying (3), degradation
is annoying (2), and degradation is very annoying (1) [7, 45]. The Degrada-
tion Mean Opinion Score (DMOS) represents the mean value of the results
obtained from the listener’s appreciation.

For this purpose, twenty listeners, ten male and ten female, were invited
to give their scoring after hearing the original speech and the decrypted one.
The DMOS obtained from this testing was 5. Thus, the excellent voice qual-
ity was also approved by the listeners.

Figure (6.1) shows results obtained from applying orthogonal subspace en-
cryption on the speech file described in section (6.1) with a factor β equal
to 106. Figure (6.1)-(a) shows the original signal whereas Figure (6.1)-(b)
shows the key signals k(t) used during encryption. Figure (6.1)-(c) shows the
signal encrypted according to equation (3.2) with a segment length M = 4.
Note also that the encrypted signal has more samples than the original one,
actually L samples more where L is the segment number. This sample ex-
cess comes from the fact that the dimension of the key matrices A(t) is
(M + 1) × M . After decryption with the proposed subspace method, the
recovered signal is shown in Figure (6.1)-(d). As one can see from this figure,
there is no visual difference between the original speech and the decrypted
one.

Figure (6.2) shows results obtained from applying iterative orthogonal sub-
space encryption on the same speech file used in orthogonal subspace en-
cryption with a factor β equal to 106. Figure (6.2)-(a) shows the original
signal whereas Figures (6.2)-(b) and (c) show the key signals k(t) used dur-
ing encryption and the obtained encrypted signal, respectively according to
equation (3.9) with a segment length M = 4 and 2 rounds encryption. Note
that, as mentioned in the orthogonal subspace encryption, the encrypted sig-
nal has also more samples than the original one. Figure (6.2)-(d) shows the
recovered signal after decryption. One can see similarity between the original
speech and the decrypted one.

Figure (6.3) shows results obtained from applying oblique subspace encryp-
tion on the speech file described in section (6.1) with a factor β equal to 106.
Figure (6.3)-(a) shows the original signal whereas Figure (6.3)-(b) shows the
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Figure 6.1: An example of orthogonal subspace-based speech encryption,
(a) Original speech, (b) Key signals, (c) Encrypted speech, (d) Decrypted
speech.
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Figure 6.2: An example of iterative orthogonal subspace-based speech en-
cryption with 2 iterations, (a) Original speech, (b) Key signals, (c) Encrypted
speech, (d) Decrypted speech.
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key signals k(t) used during encryption. Figure (6.3)-(c) shows the signal
encrypted according to equation (4.5) with a segment length M = 4. Note
that the encrypted signal has more samples than the original one, actually
L samples more where L is the segment number. This sample excess comes,
as mentioned for the orthogoanl subspace encryption, from the fact that the
dimension of the key matrices A(t) is (M + 1)×M . After decryption with
the proposed oblique subspace method, the recovered signal is shown in Fig-
ure (6.3)-(d). As one can see from this figure, there is no visual difference
between the original speech and the decrypted one.

Figure (6.4) shows results obtained from applying iterative oblique subspace
encryption on the same speech file used in oblique subspace encryption with
a factor β equal to 106. Figure (6.4)-(a) shows the original signal whereas
Figures (6.4)-(b) and (c) show the key signals k(t) used during encryption
and the obtained encrypted signal, respectively according to equation (4.9)
with a segment length M = 4 and 2 rounds encryption (n = 2). Note that,
as mentioned in the orthogonal subspace encryption, the encrypted signal
has also more samples than the original one. Figure (6.4)-(d) shows the
recovered signal after decryption. Visually, there is no difference between
the original speech and the decrypted one.

In order to assess the impact and to see the differences in using either or-
thogonal or oblique-based encryption, for 1-round or iterative approach, a
two-steps comparison is made. This means that, first, a comparison is made
within the same approach (orthogonal or oblique) between 1-round and it-
erative approaches. Second, a comparison is made between orthogonal and
oblique-based encryptions, for both 1-round and iterative approaches.

Following this methodology, as a comparison between the cipher-texts and
their corresponding decrypted signals obtained from the use of orthogonal
and iterative orthogonal subspace-based encryption for different iterations,
Figure (6.5) shows the results for 1-round, 2-rounds, 3-rounds and 4-rounds
encryption respectively. One can see that the amplitude level of the en-
crypted signal increases proportionally to the number of iterations. Actually,
the amplitude level is multiplied by a factor 2 when the number of iterations
increases by 1. At the decryption side, the original signal is recovered and
no visual difference is found between the recovered signals of the different
iterations.
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Figure 6.3: An example of oblique subspace-based speech encryption, (a)
Original speech, (b) Key signals, (c) Encrypted speech, (d) Decrypted speech.
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Figure 6.4: An example of iterative oblique subspace-based speech encryption
with 2 iterations, (a) Original speech, (b) Key signals, (c) Encrypted speech,
(d) Decrypted speech.
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Figure 6.5: A comparison between cipher-texts and recovered signals for
orthogonal and iterative orthogonal subspace-based speech encryption, (a)-
(b) 1-round, (c)-(d) 2-rounds, (e)-(f) 3-rounds, (g)-(h) 4-rounds.

71



Figure (6.6) shows the ciphert-texts and their corresponding decrypted sig-
nals when we use the oblique and iterative oblique subspace-based encryption
for different iterations: 1-round, 2-rounds, 3-rounds and 4-rounds encryption
respectively. As it is mentioned in the orthogonal-based encryption scheme,
one can see in Figure (6.6) that the amplitude level of the encrypted signal
is proportional to the the number of iterations, actually by a factor 2. If the
iterations number increases by 1, the amplitude level is multiplied by a factor
2. Whereas in the decryption side, one can see that there is no significant
difference between the recovered signals of the different iterations.

Figure (6.7) shows a comparison between the ciphert-texts obtained from the
use of iterative orthogonal and iterative oblique subspace-based encryption
schemes for different iterations: 1-round, 2-rounds, 3-rounds and 4-rounds
encryption respectively. One can see that the amplitude level of the oblique-
based encryption scheme is higher than the amplitude level of the orthogonal-
based encryption scheme when considering the same iterations number.

Whereas Figure (6.8) shows a comparison between the corresponding de-
crypted signals when we apply iterative orthogonal and iterative oblique
subspace-based encryption schemes for different iterations: 1-round, 2-rounds,
3-rounds and 4-rounds encryption respectively. One can see that roughly, the
decrypted signals are well recovered.

Figures (6.9) and (6.10) show a comparison in terms of sensitivity levels
to plain-text mismatches of respectively 0.1 and 0.01 between iterative or-
thogonal subspace-based encryption schemes for different iterations: 1-round,
2-rounds, 3-rounds and 4-rounds encryption. One can see that, for the same
level of plain-text mismatch, the sensitivity of the orthogonal-based encryp-
tion scheme, revealed by the cipher-text difference level, increases when the
number of iterations rises. On the other side, even when the plain-text mis-
match level decreases (from 0.1 to 0.01), the sensitivity decreases but remains
at high levels, with a cipher-text difference varying roughly between 104 and
107.

Figure (6.11) and Figure (6.12) show a comparison in terms of sensitivity
levels to plain-text mismatches of respectively 0.1 and 0.01 between itera-
tive orthogonal and iterative oblique subspace-based encryption schemes for
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Figure 6.6: A comparison between cipher-texts and recovered signals for
oblique and iterative oblique subspace-based speech encryption, (a)-(b) 1-
round, (c)-(d) 2-rounds, (e)-(f) 3-rounds, (g)-(h) 4-rounds.
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Figure 6.7: A comparison between cipher-texts for iterative orthogonal and
iterative oblique subspace-based speech encryption, (a)-(c)-(e)-(g) 1, 2, 3 and
4-rounds orthogonal encryption, (b)-(d)-(f)-(h) 1, 2, 3 and 4-rounds oblique
encryption.
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Figure 6.8: A comparison between recovered signals for iterative orthogonal
and iterative oblique subspace-based speech encryption, (a)-(c)-(e)-(g) 1, 2,
3 and 4-rounds orthogonal encryption, (b)-(d)-(f)-(h) 1, 2, 3 and 4-rounds
oblique encryption.
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Figure 6.9: A comparison in terms of sensitivity levels to a 0.1 plain-text
mismatch between iterative orthogonal subspace-based encryption schemes
for different iterations, (a) plain-text mismatch, cipher-text difference for:
(b) 1-round, (c) 2-rounds, (d) 3-rounds, (e) 4-rounds.
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Figure 6.10: A comparison in terms of sensitivity levels to a 0.01 plain-text
mismatch between iterative orthogonal subspace-based encryption schemes
for different iterations, (a) plain-text mismatch, cipher-text difference for:
(b) 1-round, (c) 2-rounds, (d) 3-rounds, (e) 4-rounds.
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different iterations: 1-round, 2-rounds, 3-rounds and 4-rounds encryption.
One can see that, for the same plain-text mismatch level, the sensitivity
of the oblique-based encryption scheme is higher than the sensitivity of the
orthogonal-based encryption scheme. This can be seen by comparing the
obtained cipher-text difference level which also increases when the number
of iterations rises.

In Figure (6.13)-(a), the experimental relationship between the recovery
error and the value of mismatch level ǫ is plotted for different iterations when
the iterative orthogonal subspace encryption is used. The value of the factor
β is equal to 106 and the values of ǫ varie from 10−3 to 1. For the smallest
value of ǫ used during experimentations, one can see that the corresponding
recovery error expressed in terms of Mean Absolute Error (MAE) is high
(104) for a 2-rounds encryption. However, for the same smallest value of ǫ,
the recovery error rises to 105 for a 6-rounds encryption.

The second experimental relationship, between the recovery error and the
value of the factor β for the iterative orthogonal encryption scheme is shown
in Figure (6.13)-(b). One can see that there is a linear relationship between
the factor β and the recovery error. For the same value of β, let us say 106,
the recovery error varies from 104 to 105 when the number of iterations varies
from 2 to 6.

Figure (6.14)-(a) shows a plot of the experimental relationship between the
recovery error and the value of mismatch level ǫ for different iterations when
the iterative oblique subspace encryption is used. The values of ǫ varie from
10−3 to 1 and the value of the factor β is equal to 106. One can see that
the recovery error expressed in terms of Mean Absolute Error (MAE) is high
(103) for a 10−3 value of ǫ when we apply a 2-rounds encryption. However,
for the same value of ǫ, the recovery error rises to reach a level of 109 for a
6-rounds encryption.

Then, the experimental relationship between the recovery error and the value
of the factor β for the iterative oblique encryption scheme is shown in Fig-
ure (6.14)-(b). One can see that there is roughly a linear relationship between
the factor β and the recovery error. For the same value of β, let us say 106,
the recovery error varies from 103 to 109 when the number of iterations varies
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Figure 6.11: A comparison in terms of sensitivity levels to a 0.1 plain-text
mismatch between iterative orthogonal and iterative oblique subspace-based
encryption schemes for different iterations, (a) plain-text mismatch, (b)-(d)-
(f)-(h) 1, 2, 3 and 4-rounds orthogonal encryption, (c)-(e)-(g)-(i) 1, 2, 3 and
4-rounds oblique encryption.
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Figure 6.12: A comparison in terms of sensitivity levels to a 0.01 plain-text
mismatch between iterative orthogonal and iterative oblique subspace-based
encryption schemes for different iterations, (a) plain-text mismatch, (b)-(d)-
(f)-(h) 1, 2, 3 and 4-rounds orthogonal encryption, (c)-(e)-(g)-(i) 1, 2, 3 and
4-rounds oblique encryption.

80



10
−3

10
−2

10
−1

10
0

10
4

10
5

10
6

10
7

10
8

ε

M
A

E

 

 

2 rounds
3 rounds
4 rounds
5 rounds
6 rounds

(a)

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

b

M
A

E

 

 

2 rounds
3 rounds
4 rounds
5 rounds
6 rounds

(b)

Figure 6.13: The experimental relationship, in speech encryption, between
the recovery error and the value of ǫ and β for different rounds in the iterative
orthogonal subspace encryption scheme, (a) β = 106, (b) ǫ = 0.001.
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Figure 6.14: The experimental relationship, in speech encryption, between
the recovery error and the value of ǫ and β for different iterations in the
iterative oblique subspace encryption scheme, (a) β = 106, (b) ǫ = 0.001.
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from 2 to 6.

As a comparison between the above mentionned experimental relationships,
of both iterative orthogonal and iterative oblique encryption schemes, one
can see that the initial level of recovery error is higher in the 2-rounds it-
erative orthogonal scheme than in the 2-rounds iterative oblique scheme for
the same values of β and ǫ. However, starting from a 3-rounds encryption,
this recovery error level rises quickier to reach higher levels in the itreative
oblique scheme than in the iterative orthogonal scheme for the same values
of β and ǫ.

6.2 Application to image signal

Beside the speech application, the proposed subspace-based encryption scheme
is applied on image. Figure (6.15) shows an example of this application. Fig-
ure (6.15)-(a), (b) and (c) show respectively the original image, the encrypted
image and the decrypted one. As one can see, there is no distinguishable dif-
ference between the original and recovered images while the encrypted image
is visually well protected.

Figures (6.16)-(a) and (6.16)-(b) show a comparison in terms of sensitivity
levels to plain-text mismatches of respectively 0.1 and 0.01 when we apply
orthogonal subspace-based encryption scheme on the image used previously.
One can see that the sensitivity of the orthogonal-based encryption scheme,
revealed by the cipher-text difference level, is at lower levels comparing to
the speech application’s case in terms of empirical measurements.

However, Figure (6.17) shows, visually, the high level of sensitivity of the
orthogonal subspace-based encryption scheme when applied on an image.
One can see that for a very small key mismatch, it is impossible to recover
the original image. As it can be seen, the decrypted image looks like an
encrypted one. In Figure (6.18), the experimental relationship between the
recovery error and the value of mismatch level ǫ is plotted when orthogonal
subspace-based scheme is used in image encryption for different iterations.
The value of the factor β is equal to 106 and the values of ǫ varie from 10−3
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Figure 6.15: An example of orthogonal subspace-based image encryption, (a)
Original image, (b) Encrypted image, (c) Decrypted image.
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Figure 6.16: Sensitivity, in image encryption, to plain-text with β = 106 for,
(a) ǫ = 0.1, (b) ǫ = 0.01.

85



Original Image

(a)
Encrypted Image

(b)
Decrypted Image

(c)

Figure 6.17: An example of sensitivity of orthogonal subspace-based image
encryption to a very small key mismatch, (a) Original image, (b) Encrypted
image, (c) Decrypted image.
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Figure 6.18: The experimental relationship in orthogonal subspace-based
image encryption between the recovery error and the value of ǫ for β = 106.
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Figure 6.19: The experimental relationship, in orthogonal subspace-based
image encryption, between the recovery error and the value of β for ǫ = 0.001.
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to 1. For the smallest value of ǫ, one can see that the corresponding recovery
error is high (7× 103).

The experimental relationship, between the recovery error and the value of
the factor β when the orthogonal subspace-based scheme is used in image
encryption, for different iterations, is shown in Figure (6.19). One can see
that there is a linear relationship between the factor β and the recovery error.

However, Figure (6.20) shows the experimental relationship between the re-
covery error and the value of mismatch level ǫ when oblique subspace-based
scheme is used in image encryption for 1 and 2 rounds. The value of the
factor β is equal to 106 and the values of ǫ varie from 10−3 to 1. One can see
the rise in the Mean Absolute Error (MAE) when we apply a second round
for the same value of ǫ.

6.3 Application to binary phase shift keying

(BPSK) data

Beside the speech and image applications, the proposed orthogonal subspace-
based encryption scheme is applied on binary data. Figures (6.21) and (6.22)
show an example of this application. Figure (6.21)-(a), (b) and (c) show
respectively the original data, the encrypted data and the decrypted one.
We see that the data are correctly recovered. Note that the encrypted data
has more samples than the original one, actually L samples more where L
is the segment number (100 in this example). This sample excess comes
from the fact that the dimension of the key matrices A(t) is (M + 1)×M .
Figure (6.22) shows the random key signal used during encryption process of
binary data.

Figures (6.23)-(a) and (6.23)-(b) show a comparison in terms of sensi-
tivity levels to plain-text mismatches of respectively 0.1 and 0.01 when we
apply orthogonal subspace-based encryption scheme on binary data.

The experimental relationship between the recovery error and the value
of mismatch level ǫ for different iterations when the iterative orthogonal
subspace encryption is applied on binary data is shown in Figure (6.24)-(a).
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Figure 6.20: The experimental relationship, in oblique subspace-based image
encryption, between the recovery error and the value of ǫ = 0.001 for β = 106.
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Figure 6.21: An example of orthogonal subspace-based BPSK data encryp-
tion, (a)Original data, (b) Encrypted data, (c) Decrypted data.
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Figure 6.22: The key signal used in the example of the orthogonal subspace-
based BPSK data encryption.
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Figure 6.23: Sensitivity, in orthogonal subspace-based BPSK data encryp-
tion, to plain-text with β = 106 for, (a) ǫ = 0.1, (b) ǫ = 0.01.
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The values of ǫ varie from 10−3 to 1 and the value of the factor β is equal to
106. One can see that the recovery error expressed in terms of Mean Absolute
Error (MAE) is high (5× 103) for a 10−3 value of ǫ when we apply a 1-round
encryption. However, for the same value of ǫ, the recovery error rises to reach
a level of 5× 104 for a 3-rounds encryption.

For the oblique approach, Figure (6.24)-(b) shows a plot of the experi-
mental relationship between the recovery error and the value of mismatch
level ǫ for different iterations. The values of ǫ varie from 10−3 to 1 and the
value of the factor β is equal to 106. One can see that the recovery error
expressed in terms of Mean Absolute Error (MAE) is low (103−) for a 10−3

value of ǫ when we apply a 1-round encryption. However, for the same value
of ǫ, the recovery error rises to reach a level of 104 for only a 2-rounds en-
cryption. One can see that the impact of applying a second round in this
scheme is much more important than the impact of the other rounds.

As a comparison in terms of experimental between both iterative orthog-
onal and iterative oblique encryption schemes, one can see that the initial
level of recovery error is higher in the 1-round iterative orthogonal scheme
than in the 1-round iterative oblique scheme for the same value of ǫ. However,
starting from a 2-rounds encryption, this recovery error level rises quickier
to reach higher levels in the iterative oblique scheme than in the iterative
orthogonal scheme for the same value ǫ.
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Figure 6.24: The experimental relationship between the recovery error and
the value of ǫ for different iterations when applied to BPSK data, (a) iterative
orthogonal subspace scheme, (b) iterative oblique subspace scheme.
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Chapter 7

Conclusion

In this thesis, an investigation of the opportunity of using techniques based
on the subspace concept in the encryption field is conducted. First, the in-
vestigation starts with studying blind source separation (BSS) techniques
and their application in the encryption domain. Analysis of the robustness
characteristics of some BSS-based encryption techniques shows weaknesses
from a crytpographic point of view.

Then, a new approach based on the subspace concept is presented in or-
der to bypass the above weaknesses. The first approach presented in this
thesis is based on orthogonal subspace technique then applied in speech, im-
age and data encryption. The second approach is based on oblique subspace
technique and is also applied for speech, image and data encryption.

For both orthogonal and oblique subspace-based encryption approachs, it-
erative versions are developped and applied for speech, image and data en-
cryption. The need for iterations is a known issue in the design of crypto-
graphic algorithms. In our proposed subspace-based encryption algorithm,
this need is motivated by the added-value, from a cryptographic robustness
point of view, provided by the application of successive iterations. Of course,
iterations do not have an impact on the quality of recovering the original
plain-text.

On another hand, several simulations and tests are conducted to evaluate
the robustness of the subspace-based schemes presented in this thesis. That
is why, crytpanalysis techniques are used to appreciate and to evaluate this
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robustness. Experimental results and discussion confirm an enhancement in
security level with respect to BSS-based encryption techniques. These results
show a new direction, for using non-classical approach in encryption domain,
inspired from digital signal processing field.

Originality of the thesis contributions

The originality of the thesis contributions consists of the following added
values:

• The judicious choice of the second term of equation (3.2) which de-
scribes the encryption operations. This term is made as complicated
as possible to not be recovered or attacked by the cryptanalysis tech-
niques used against blind source separation-based encryption schemes.
This additive term is nonlinear and correlated with the first term of
the encryption procedure.

• The proposed subspace-based encryption scheme provides no cipher-
text at the output if there is no plain-text at the input i.e. the cipher-
text vanishes if there is no plain-text provided. To our knowledge, this
problem has no solution yet from a statistical signal processing point
of view.

• Only a part of the cryptographic keys used in the procedure of en-
cryption is necessary for decryption. The proposed subspace technique
provides the ability to have this interesting feature.

• The cipher-texts obtained after encrypting the same plain-text using
the same key matrix in the proposed subspace encryption scheme are
totally different. This feature represents an enhancement in the resis-
tance to cipher-text-only cryptanalysis attack. The uncertainty about
the exact number of plain-texts corresponding to a number of collected
cipher-texts represents a considerable constraint at the beginning itself
of a cryptanalysis attack and consequently constitutes, from a security
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point of view, an important feature of our proposed system.

• The key space provided by the key matrix is huge because of the gener-
ation of a key matrix for each cipher-text vector. The high sensitivity
of the proposed subspace-based encryption scheme to key matrix en-
sures that this mixing matrix cannot be approxiamtely guessed under
a relatively large finite precision ǫ.

• The iterative subspace-based encryption scheme gives better results,
from a cryptographic robustness point of view, than the one-iteration
subspace scheme. This is due to the accumulation, provided by the suc-
cessive iterations, of the basic security characteristics of the proposed
subspace-based encryption method. Of course, the iterations have a
cost in terms of processing speed. A compromise, depending on the
requirements of the target field of application of the subspace-based
encryption scheme, has to be found between the number of iterations
and processing speed.

• The oblique subspace encryption approach provides an enhancement
of the results, from a cryptographic robustness point of view, already
achieved by the orthogonal subspace approach.

• Confusion and diffusion are the two most important security require-
ments for a cryptographic system. While in most of the published cryp-
tographic systems, confusion and diffusion are guaranteed through the
application mainly of substitution and permutation operators, our pro-
posed subspace-based approach provides the same security objectives
but differently. Confusion which consists of obscuring the relation-
ship between the plain-text, the cipher-text and the key is achieved
through the linearity and the nonlinearity existing in the subspace-
based encryption procedure. Diffusion is achieved through creating a
tight dependency of each value of the cipher-text on each value of the
plain-text and each value of the key.
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• During the design of the subspace-based encryption scheme, a special
attention has been given beside the security robustness and quality of
recovered signals, to ease of use and to the ability to achieve hardware
implementation later (hardware implementers are more important than
cryptographers). Because of hardware implementation requirements,
the decryption scheme could not be an inverse operation of the en-
cryption scheme i.e. one could not apply a hardware backward process
(transistors do not allow a current return), it is recommended to make
the decryption scheme the most comparable, in hardware sense, to the
encryption one.

At this step, the subspace-based decryption scheme does not require
a backward process, rather it applies the same approach by project-
ing the cipher-text (encrypted signal) on a subspace. Of course, the
calculation of the pseudo-inverse of a matrix to recover the original
signal remains an issue for future optimization of our proposed scheme
in order to give the best conditions for hardware implementations.
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Appendix C

Résumé

Introduction

Le développement rapide des communications et des échanges de données
électroniques fait de la sécurité de l’information un enjeu crucial dans
l’industrie, le commerce et l’administration. La cryptographie moderne
propose des techniques essentielles pour garantir l’information et la pro-
tection des données. Les méthodes basées sur la Séparation Aveugle de
Sources (Blind Source Separation BSS) figurent parmi les techniques
cryptographiques dont l’application a connu récemment un engouement
dans le domaine du cryptage de la voix et de l’image.

Cependant, de notre point de vue, les techniques de BSS sont plus
adaptées à des fins de cryptanalyse plutôt qu’à des fins de cryptogra-
phie. Ceci est dû essentiellement au fait que les techniques de BSS
sont, de par leur définition, des outils développés pour récupérer un en-
semble de signaux de sources à partir de leurs mélanges observés sans
connâıtre les coefficients du mélange. Il s’agit, par analogie, de la même
formulation du problème de cryptanalyse à savoir la récupération d’un
texte en clair (ou un ensemble de textes en clair) à partir de textes
cryptés (mélanges de textes en clair et de clés cryptographiques) sans
connâıtre les clés cryptographiques (coefficients de mélange).

Ce constat sur les limites de l’utilisation en toute sécurité, d’un point
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de vue cryptographique, des techniques BSS nous a motivés pour con-
cevoir une nouvelle technique qui pourrait contourner ces limites, ce
qui a donné naissance à une technique de cryptage basée sur les sous-
espaces, technique qui représente le coeur de la valeur ajoutée de cette
thèse. Des tests d’évaluation de la robustesse cryptographique et de la
qualité de restitution des signaux d’origines ont été conduits. Ces tests
ont concerné des signaux de parole, d’image et de données.

Objectif

Dans cette thèse, nous nous sommes concentrés sur l’étude et l’analyse
de l’utilisation du concept de sous-espace en étudiant en premier lieu la
possibilité d’utiliser les techniques de BSS dans le domaine du cryptage.
Les diverses contraintes, notamment celles inhérentes à la robustesse
cryptographique, liées à l’utilisation de ces techniques sont, par la suite,
analysées. Les résultats de l’analyse sont utilisés pour donner une nou-
velle orientation de la recherche et du développement de techniques
alternatives basés sur le concept de sous-espace.

Méthodologie

Nous procédons dans cette thèse à une analyse complète de l’utilisation
des techniques BSS dans le domaine cryptographique. Notre approche
est orientée ”objectif” dans le sens où elle se penche sur les caractéristiques
des techniques BSS qui pourraient présenter un intérêt par rapport aux
exigences cryptographiques et ce, en adoptant pour des outils de crypt-
analyse pour conduire cette analyse. A l’issue, de nouvelles aproches
basées sur le concept de sous-espace sont conçues et proposées pour
apporter des améliorations au niveau des caratéristiques de sécurité
cryptographique.
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Principes et rappels

Etat de la technique antérieure

Une série de différents schémas de chiffrement basés sur les techniques
BSS a été proposée où les images transmises sont couvertes par une
image bruit en utilisant un mélange spécifique avant le chiffrement puis
elles sont récupérées par le biais de techniques BSS après le déchiffrement.
Un modèle de mélange linéaire de séparation aveugle de sources a été
utilisé dans le chiffrement d’image. Un algorithme de chiffrement de
parole, intégrant une version modifiée du schéma de brouillage dans
le domaine temporel et une méthode de brouillage d’amplitude, a été
utilisé pour masquer un signal de parole avec un bruit aléatoire par la
voie d’un mélange spécifique. Un schéma de chiffrement de parole util-
isant les avantages du problème de séparation aveugle de sources sous-
déterminée pour construire la matrice de mélange afin de chiffrer simul-
tanément des segments multiples et augmenter le niveau de sécurité des
schémas précédent, a été présenté.

Cependant, des faiblesses, d’un point de vue cryptographique, des
méthodes proposées ont été relevées où il a été souligné que la sécurité
contre certaines attaques de cryptanalyse n’est pas suffisamment forte
notamment les attaques à texte chiffré seulement et les attaques différen-
tielles. Aussi, la totalité des clefs générées et utilisées pour le chiffre-
ment du signal ou de la parole doit être utilisée pour opérer le déchiffrement
et récupérer le signal d’origine.

Chiffrement basé sur le sous-espace

La figure (C.1) est un schéma du bloc de chiffrement/déchiffrement
basé sur les techniques sous espaces.

Le signal d’origine est divisé en L segments:

p(t) = [p1(t), · · · , pM(t)]T , t = 1, · · · , L (C.1)

où M est la longuer du segment. Le signal en clair, contenant L×M
échantillons, est divisé en L segments de M échantillons chacun. Les
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Figure C.1: Schéma block du chiffrement proposé basé sur le sous-espace
orthogonal

M échantillons forment le vecteur p(t), de taille M × 1, de l’équation
(C.2). Donc, L est le nombre de segments et devient la dimension de
l’échantillon du vecteur x(t) de l’équation (C.2). Ces segments sont
utilisés dans le processus de chiffrement (le block de chiffrement basé
sur le sous-espace) pour obtenir le signal chiffré suivant:

x(t) = A(t)p(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(t))] (C.2)

où A(t) et B(t) sont des (M + 1)×M et (M + 1)×M matrices clef à
rang complet, respectivement. L’introduction des matricesA(t) et B(t)
est motivée par le souhait d’agrandir l’espace clef qui serait nécessaire
pour conduire une attaque de cryptanalyse. Il est à signaler que les
matrices clef sont générées pour chaque vecteur x(t). Cette propriété
rend impossible toute estimation du sous-espace du signal à partir d’un
seul échantillon. Ces matrices peuvent être générées par un générateur
pseudo-aléatoire avec une semence secrète qui sert de clef secrète. β
est un facteur qui contrôle le rapport signal/bruit (SNR). Ce facteur
(β) devrait être choisi le plus large possible pour donner un rapport
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signal/bruit très petit, g(.) est une fonction nonlinéaire (component-
wise) qui vérifie la condition suivante:

g(0) = 0. (C.3)

k(t) est un M × 1 vecteur de signal clef aléatoire généré par n’importe
quel générateur robuste de signaux et⊙ représente l’opérateur d’Hadam-
ard. P⊥

A(t) est le projecteur sur le sous-espace orthogonal à celui en-

gendré par les colonnes de la matrice clef A(t) qui représente le sous-
espace clef. Le projecteur P⊥

A(t) est donné par:

P⊥

A(t) = I−PA(t) = I−A(t)(A(t)HA(t))−1A(t)H (C.4)

où PA(t) est le projecteur orthogonal au sous-espace clef, et (.)H et I
représentent l’opérateur Hermitien et la matrice identité, respective-
ment. Pour les besoins de l’évaluation de la robustesse, nous utilisons
la fonction nonlinéaire suivante (component-wise):

g(v) =
v√

1 + v2
(C.5)

qui vérifie la condition (C.3).

Déchiffrement

Du côté du récepteur, le vecteur de données chiffrées est projeté sur le
sous-espace clef correpondant; Ceci est effectué comme suit:

xp(t) = PA(t)x(t) (C.6)

où xp(t) est la donnée projetée obtenue. Du moment que les projecteurs
PA(t) et P⊥

A(t) sont orthogonaux (c.à.d. PA(t)P
⊥

A(t) = 0), la projection
ci-dessus donne le résultat suivant:

xp(t) = A(t)p(t) (C.7)

et le texte en clair d’origine (le signal déchiffré) est obtenu en utilisant
la matrice clef A(t):

p(t) = (A(t))♯xp(t) (C.8)
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où (.)♯ représente l’opérateur pseudo-inverse.

Il est à souligner que la corrélation qui existe entre les deux termes
de l’équation (C.2) va augmenter l’erreur d’estimation s’il y aurait un
moyen d’estimer A ou son sous-espace. En plus de cette propriété,
plusieurs tests ont été effectués pour mesurer la sensibilité du système
proposé aux plus petites variations de matrice.

Chiffrement itératif basé sur le sous-espace orthog-
onal

L’approche d’itération pour un certain nombre de rounds est généralem-
ent appliquée dans les systèmes de chiffrement afin d’améliorer leurs
caractéristiques de sécurité et, partant, de renforcer leur résistance aux
attaques de cryptanalyse. A ce niveau, le système de chiffrement pro-
posé basé sur le sous-espace et décrit dans la section (C) constitue un
round. La sortie du premier round est réinjectée dans l’entrée pour le
second round et ainsi de suite. La sortie du dernier round représente
la sortie de l’ensemble du système de chiffrement itératif basé sur le
sous-espace.

Chiffrement

Les segments de l’équation (C.1) sont utilisés dans le processus du
chiffrement itératif basé sur le sous-espace pour obtenir le signal crypté
suivant:

xn(t) = An(t)x(n−1)(t) + βP⊥

An(t)Bn(t)[k(t)⊙ g(x(n−1)(t))]

où xn(t) et x(n−1)(t) représentent les n
ème et (n−1)ème segments chiffré.

n ≥ 1 et x(0)= p(t) , le texte en clair. An(t) et Bn(t) sont (M+1)×M
des matrices de rang complet, respectivement. Il est à souligner que le
processus de chiffrement décrit dans (C.9) est appliqué sur différentes
itérations.
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Déchiffrement

Une fois le texte chiffré obtenu, la procédure de déchiffrement pourrait
être réalisée en projetant le dernier segment chiffré xn(t) tel que décrit
par l’équation suivante:

xp,n(t) = PAn(t)xn(t) (C.9)

où xp,n(t) est la donnée projetée obtenue. Du moment que les pro-
jecteurs PAn(t) et P

⊥

An(t)
sont orthogonaux (c.à.d. PAn(t)P

⊥

An(t)
= 0), la

projection décrité ci-dessus donne le résultat suivant:

xp,n(t) = An(t)x(n−1)(t) (C.10)

Le signal déchiffré à l’itération n− 1, est alors obtenue par:

x(n−1)(t) = (An(t))
♯xp,n(t) (C.11)

où (.)♯ désigne l’opérateur pseudo-inverse. Les équations décrites ci-
dessus sont appliquées de manière itérative jusqu’à restitution du texte
en clair d’origine.

Chiffrement basé sur le sous-espace oblique

Dans ce chapitre, nous proposons un schéma de chiffrement basé sur le
concept de sous-espace oblique plutôt que le concept orthogonal comme
décrit précédemment. Les différences entre les deux approches sont
présentées et une conclusion sur la valeur ajoutée de l’approche basée
sur le sous-espace oblique est donnée.

Système de chiffrement basé sur le sous-espace oblique

Nous considérons que le canal de communication est idéal et que la
sortie de l’étape de chiffrement est exactement l’entrée de l’étape de
déchiffrement.
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Chiffrement

La principale différence entre le système de chiffrement basé sur le sous-
espace oblique et celui orthogonal réside dans l’opérateur de chiffrement
qui est basé sur le sous-espace oblique au lieu du sous-espace orthogo-
nal.

Le texte en clair est divisé en L segments avant d’être introduit dans
l’opérateur de chiffremnt basé sur le sous-espace oblique pour produire
le texte chiffré suivant (signal chiffré):

x(t) = A(t)p(t) + βB(t)[k(t)⊙ g(p(t))] (C.12)

où A(t) et B(t) sont des matrices clef de rang complet de dimensions
respectives (M + 1)×M et (M + 1)× 1.

Déchiffrement

Pour effectuer le déchiffrement, le vecteur de données chiffrées reçu est
projeté tel que décrit par l’équation suivante:

xp(t) = EA(t)B(t)x(t) (C.13)

où xp(t) est la donnée projetée obtenue sur le sous-espace image 〈A(t)〉
obliquement au sous-espace nul 〈B(t)〉.

Sachant que:
EA(t)B(t)A(t) = A(t)

et
EA(t)B(t)B(t) = 0

où
EAB = A(AHP⊥

BA)−1AHP⊥

B

et
EBA = PB(I− EAB)

la projection décrite ci-dessus donne le résultat suivant:

xp(t) = A(t)p(t) (C.14)
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et le texte en clair d’origine (signal déchiffré) est obtenu en utilisant la
matrice clé A(t):

p(t) = (A(t))♯xp(t) (C.15)

où (.)♯ désigne l’opérateur pseudo-inverse.

Chiffrement Itératif basé sur le Sous-Espace Oblique

En suivant la même méthodologie adoptée dans le chiffrement itératif
basé sur le sous-espace orthogonal, le chiffrement basé sur le sous-espace
oblique décrit dans la section (4.2) constitue un round dans le schéma
de chiffrement itératif basé sur le sous-espace oblique. Les autres rounds
sont comparables à la première et suivent la même procédure. Cela
signifie que, à des fins de chiffrement, l’entrée du second round est
exactement la sortie du premier round et ainsi de suite. A la fin du
processus de chiffrement, disons après n rounds, la sortie du nème est
la sortie de l’ensemble du schéma de chiffrement itératif basé sur le
sous-espace oblique.

Chiffrement

Dans le système de chiffrement iteratif basé sur le sous-espace oblique,
les segments divisés décrits dans le l’équation (C.1) sont injectés dans
le système pour donner le signal chiffré suivant:

xn(t) = An(t)x(n−1)(t) + βBn(t)[k(t)⊙ g(x(n−1)(t))] (C.16)

où xn(t) et x(n−1)(t) désignent les nème (n − 1)ème segments chiffrés.
n ≥ 1 et x(0)= p(t) , le texte en clair. An(t) et Bn(t) sont des matrices
clé de rang complet de dimensions respectives (M+1)×M et (M+1)×1.
Il est à noter que le processus décrit dans l’équation (C.16) est effectué
sur plusieurs itérations.

Déchiffrement

A la réception du texte chiffré, la procédure de déchiffrement peut être
effectuée en projetant le dernier segment chiffré xn(t) tel que décrit par
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l’équation suivante:

xp,n(t) = EAn(t)Bn(t)xn(t) (C.17)

où xp,n(t) est la donnée projetée obtenue sur le sous-espace image
〈An(t)〉 obliquement au sous-espace nul 〈Bn(t)〉.

Sachant que
EAn(t)Bn(t)An(t) = An(t)

et
EAn(t)Bn(t)Bn(t) = 0

on obtient:
xp,n(t) = An(t)x(n−1)(t) (C.18)

Le signal déchiffré à l’itération n− 1, est donné par

x(n−1)(t) = (An(t))
♯xp,n(t) (C.19)

où (.)♯ désigne l’opérateur pseudo-inverse. Les équations décrites ci-
dessus sont effectuées itérativement jusqu’à restitution du texte en clair
d’origine.

Robustesse cryptographique des systèmes

de chiffrement basés sur les sous-espaces

L’approche d’évaluation de la robustesse cryptographique est une crypt-
analyse orientée vers l’application d’attaques sur les systèmes de chiffre-
ment basés sur les sous-espaces, orthogonaux et obliques, respective-
ment. Les résultats de ces attaques de cryptanalyse sont utilisés pour
faire une comparaison avec le schéma de chiffrement basé sur la tech-
nique BSS.

Interprétation en termes d’exigences de confusion
et de diffusion

Dans la conception de la majorité des systèmes cryptographiques publiés,
deux principes importants sont présents dans l’esprit du concepteur:
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confusion et diffusion. La confusion est basée sur l’idée d’obscurcir la
relation entre le texte en clair, le texte chiffré et les clés de chiffrement.
Ceci est réalisé par le biais de mélange de linéarité et de non-linéarité.

La diffusion est l’autre principe important de la conception du système
cryptographique et se fonde sur l’idée que chaque bit du texte chiffré
doit dépendre de chaque bit du texte en clair et chaque bit de la clé
de chiffrement. Cela garantit que les statistiques du texte en clair sont
dissipées dans le texte chiffré de sorte qu’un attaquant ne peut pas
prédire le texte en clair qui correspond à un texte chiffré particulier,
même après avoir observé un certain nombre de textes en clair ”simi-
laires” et leurs textes chiffrés (cryptogrammes) correspondant.

En règle générale, dans la plupart des systèmes cryptographiques publiées,
la substitution et la permutation sont les deux principales opérations
appliquées, conjointement ou séparément, sur les textes en clair afin
d’assurer la confusion et la diffusion.

Dans notre système proposé, la confusion est obtenue par la linéarité
et la non-linéarité alors que l’équation (C.20) montre que l’exigence de
la diffusion est assurée parce que chaque valeur du texte chiffré dépend
de chaque valeur du texte en clair et de chaque valeur de la clé de
chiffrement.

Attaque à texte chiffré seulement

C’est l’attaque la plus connue et la plus réaliste, car elle ne nécessite
pas plus que la disponibilité des textes chiffrés.

Sensibilité à PA(t)

Si deux clés distinctes sont utilisées pour chiffrer le même texte en clair,
la sensibilité d’un système cryptographique à sa clé secrète est évaluée
en fonction de la différence entre les deux signaux chiffrés obtenus.

Pour plus de simplicité et de clareté, l’équation (C.2) pourrait être
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reformulée comme suit:

x(t) = yp(t) + βz(t) (C.20)

où yp(t) = A(t)p(t) et z(t) = P⊥

A(t)B(t)[k(t)⊙g(p(t))]. Si on considère
le projecteur biaisé suivant:

P̂A(t) = PA(t) + ǫI (C.21)

avec ǫ une valeur de précision finie et I est une matrice idéntité de
taille (M + 1) × (M + 1). En utilisant le projecteur biaisé P̂A(t) pour
le déchiffrement, on obtient:

P̂A(t)x(t) = (PA(t) + ǫI)yp(t) + β(PA(t) + ǫI)z(t) (C.22)

= (1 + ǫ)yp(t) + βǫz(t) (C.23)

Dans l’équation (C.23), nous avons utilisé le fait que PA(t)yp(t) =
yp(t) et PA(t)z(t) = 0. Il est à noter que, d’après l’équation (C.23),
les données déchiffrées en utilisant le projecteur biaisé sont toujours
chiffrées suivant le système de chiffrement proposé et décrit par l’équatio-
n (C.2).

En choisissant β = O(1
ǫ
), l’équation (C.23) montre que, même pour

de très petites valeurs de ǫ, il y a une différence significative entre les
résultats obtenus en déchiffrant avec le projecteur actuel PA(t) et sa

version biaisée P̂A(t). Cela signifie que le système de chiffrement pro-
posé basé sur le sous-espace est très sensible aux variations du pro-
jecteur. Par conséquent, il vérifie un important principe de la ro-
bustesse cryptographique à savoir la haute sensibilité aux variations
des paramètres secrets. Cette grande sensibilité est vérifiée par le biais
de l’expérimentation suivante:

Etape 1: Pour un projecteur et des clés générés aléatoirement (PA(t),k(t)),
on obtient un texte chiffré x(t) correspondant à un texte en clair
p(t).

Etape 2: Avec un projecteur biaisé PA(t)+ǫI, on déchiffre x(t) pour obtenir
p̂(t), une version estimée de p(t), où ǫ dans [0,1].

Les résultats et l’analyse de cette expérimentation démontrent une
grande sensibilité aux variations du projecteur.
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Chiffrement itératif basé sur le sous-espace oblique Les données
déchiffrées x(p,n)(t) obtenues en appliquant le projecteur biaisé sont

décrites par ÊAn(t)Bn(t) xn(t). On obtient:

ÊAn(t)Bn(t)xn(t) = (EAn(t)Bn(t) + ǫI)y(p,n)(t) + β(EAn(t)Bn(t) + ǫI)zn(t)

= (1 + ǫ)y(p,n)(t) + βǫzn(t) (C.24)

Le résultat de l’opération de déchiffrement en utilisant un projecteur
biaisé est toujours chiffré d’après le modèle de chiffrement proposé d’où
la grande sensibilité du système de chiffrement itératif basé sur le sous-
espace oblique.

Sensibilité aux signaux clé k(t)

Le système de chiffremnt basé sur le sous-espace, orthogonal ou oblique,
est très sensible aux signaux clé pour les mêmes raisons déjà décrites
dans la sensisbilité au projecteur PA(t). Si on considère une seconde
opération de chiffrement du même texte en clair p(t) en utilisant la
même matrice clé A(t). Un résultat attendu de cette opération de
chiffrement devrait être le même texte chiffré x(t). Cependant, ce n’est
pas le cas dans notre système proposé.

Ceci est dû au fait que le générateur aléatoire (ou pseudo-aléatoire)
utilisé pour générer les signaux clé génére chaque fois une séquence
différente. C’est une caractéristique importante qui a un impact sur
la résistance du système de chiffrement proposé à l’attaque au texte
chiffré seulement. L’incertitude sur le nombre de textes en clair cor-
respondants à un nombre de texte chiffrés collectés fournit un niveau
supplémentaire de résistance à cette classe d’attaque de cryptanalyse.

Sensibilité au texte en clair

Une autre propriété cryptographique requise par un système de chiffre-
ment robuste est que le chiffrement doit être très sensible aux plus pe-
tites variations du texte en clair. Cette propriété correspond bien avec
le schéma de chiffrement proposé basé sur le sous-espace, orthogonal
ou oblique.
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Attaque différentielle

La difficulté de résolution d’équations non linéaires peut être utile pour
la conception de systèmes de chiffrement. Une attaque de différentielle
est basée sur l’hypothèse que deux signaux clé identiques sont utilisés
pour chiffrer au moins deux textes en clair. Cependant, l’espace clés
d’un bon générateur de nombre pseudo-aléatoires, qui génère des séquen-
ces pseudo-aléatoires ayant des propriétés statistiques similaires à celles
des séquences aléatoires, doit être suffisamment grand pour prévenir
l’apparition de deux signaux de valeurs identiques. Par ailleurs, même
si nous supposons que les deux signaux clés identiques ont été utilisés
pour chiffrer les deux textes en clair, l’attaque différentielle ne peut
pas être réalisée sur le système de chiffrement basé sur le sous-espace,
orthogonal et oblique.

Chiffrement basé sur le sous-espace orthogonal Si on suppose
que deux textes en clair p(1)(t) et p(2)(t) sont chiffrés en utilisant les
mêmes paramètres clé (PA(t),k(t)). A partir de l’équation (C.2), on a:

x(1)(t) = A(t)p(1)(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(1)(t))] (C.25)

et

x(2)(t) = A(t)p(2)(t) + βP⊥

A(t)B(t)[k(t)⊙ g(p(2)(t))] (C.26)

En combinant les équations (C.25) et (C.26), on obtient:

∆x(t) = A(t)∆p(t)+βP⊥

A(t)B(t)[k(t)⊙[g(p(1)(t))−g(p(2)(t))]] (C.27)

où ∆x(t) est le différentiel de texte chiffré décrit par:

∆x(t) = x(1)(t)− x(2)(t) (C.28)

et ∆p(t) est le différentiel de textes en clair décrit par:

∆p(t) = p(1)(t)− p(2)(t) (C.29)

Il est à noter que si la même clé est utilisée pour obtenir les textes
chiffrés x(1)(t) et x(2)(t), le terme de la perturbation additive du sous-
espace est toujours présent dans l’équation (C.27). Par ailleurs, le
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différentiel de textes en clair ∆p(t) ne peut être calculé en raison de
la présence permanente des termes p(1)(t) et p(2)(t) dans l’équation
(C.27). Ceci est dû à la corrélation existante entre le terme de la
perturbation additive du sous-espace et le terme du texte en clair du
système de chiffrement proposé (C.2).

Chiffrement itératif basé sur le sous-espace oblique En combi-
nant les équations descriptives de chaque texte chiffré conformément au
modèle de chiffrement itératif basé sur le sous-espace oblique et après
simplification, on obtient:

∆xn
(t) = An(t)∆x(n−1)

(t) + βBn(t)[k(t)⊙ [g(x
(1)
(n−1)(t))− g(x

(2)
(n−1)(t))]

(C.30)
où ∆xn(t) est le différentiel de textes chiffrés. Pour n ≥ 1, le différentiel
de textes chiffrés ne peut pas être calculé en raison de la présence du
terme de perturbation additive du sous-espace oblique. Ceci constitue
une protection contre l’attaque différentielle.

Valeur ajoutée de la fonction nonlinéaire g(.)

Durant le processus de conception du système de chiffremnt basé sur
le sous-espace, le choix de la fonction nonlinéaire a constitué une étape
cruciale. D’un côté, il fallait assurer un degré élevé de nonlinéarité et
de l’autre côté, il fallait prévenir, ou du moins rendre très difficile, toute
attaque de cryptanalyse connue.

Applications et évaluation des performances

Application au signal parole

Evaluation de la robustesse de sécurité

En pratique, ǫ la valeur de précision finie qui pourrait être utilisée dans
une cryptanalyse par recherche exhaustive varie généralement entre 0.1
et 0.01. D’où la valeur de l’ordre de 100 choisie pour β.
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Dans les tests menés, M est choisi égale à 4, d’autres tests ont été
effectués avec M = 2 et il n’y avait pas d’effects significatifs sur la
performance de chiffrement.

Analyse de la performance en qualité

Le rapport signal-sur-bruit (SNR) en dB de chaque segment du signal
chiffré et celui déchiffré est calculé. Les résultats ont été obtenus en
appliquant le système de chiffrement sur un fichier de parole. Le signal
d’origine a été échantillonné à une fréquence de 22.05 KHz et le nombre
de bits par échantillon utilisés pour coder les données dans le fichier
était 16 bits/échantillon. Les segments du signal d’origine sont bien
couverts. Dans les segments décryptés, les signaux sont récupérés avec
un SNR très élevé, ce qui assure une excellente qualité vocale dans
le cas du chiffrement de la parole. D’autre part, les segments chiffrés
présentent un très faible SNR.

Conclusion

Une nouvelle approche basée sur le concept de sous-espace est présentée
dans le but de contourner les faiblesses des systèmes de chiffrement
basés sur les techniques de BSS. La première approche présentée dans
cette thèse est basée sur la technique du sous-espace orthogonal ensuite
appliquée à la parole, l’image et des données binaires. La deuxième ap-
proche est basée sur la technique du sous-espace oblique et est également
appliquée pour la parole, l’image et le cryptage des données. Pour
les approches de chiffrement orthogonaux ou obliques, des versions
itératives sont développées. D’une part, les itérations améliorent les
performances enregistrées dans la version à un seul round et d’autre
part, l’approche oblique présente des performances supérieures à celles
de l’approche orthogonale. Ce travail permet d’ouvrir un nouvel axe
de recherche dans les systèmes de chiffrement basés sur le concept de
sous-espace.
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Figure C.2: La relation expériementale, dans le chiffrement de la parole, entre
l’erreur de recouvrement et la valeur de ǫ et β dans le chiffrement itératif
basé sur le sous-espace oblique pour différentes itérations, (a) β = 106, (b)
ǫ = 0.001

127



Originalité de la contribution de la thèse

Un schéma de chiffrement basé sur le sous-espace respectivement or-
thogonal et oblique, à 1-round et itératif, est présenté en mettant en
relief ses caractéristiques, d’un point de vue de sécurité. Tout d’abord,
la matrice clef A est générée pour chaque segment du texte en clair, ce
qui signifie qu’il y a autant de matrices clé que de segments de texte
en clair. Deuxièmement, les signaux clé k(t) utilisés lors de l’étape
de chiffrement ne sont plus nécessaires, du côté du récepteur, pour ef-
fectuer le déchiffrement. En troisième lieu, une non-linéarité est assurée
dans ce système par l’utilisation d’une fonction non linéaire. En qua-
trième lieu, en l’absence d’un texte en clair à l’entrée du système de
chiffrement proposé, il n’y a pas de sortie au niveau du côté de réception
c.à.d. qu’il n’y a pas de texte chiffré. Cinquièmement, une corrélation
est établie entre les différentes composantes du système de chiffrement.

De plus, la démarche itérative de chiffrement basé sur le sous-espace, à
travers le processus d’application du chiffrement sur plusieurs rounds,
apporte une valeur ajoutée dans le sens où elle permet l’accumulation
des caratéristiques déjà garanties par le système orthogonal à un seul
round. Bien sûr, l’application de plusieurs rounds dans le schéma de
chiffrement itératif basé sur le sous-espace orthogonal a un coût en ter-
mes de vitesse de traitement et par conséquent en temps d’exécution.
Un compromis, selon les exigences de la zone cible de l’application du
schéma de chiffrement, doit être trouvé entre le nombre d’itérations et
la vitesse de traitement. Cette question devient plus importante quand
une implémentation matérielle est considérée.

Le système de chiffrement à base de sous-espace oblique est un schéma
plus général que l’orthogonal dans le sens où ce dernier est un cas par-
ticulier de l’oblique. L’approche oblique apporte une amélioration des
performances déjà enregistrées par l’approche orthogonale.
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  ملخص
الفضاء الجزئي لتجاوز نقاط  إلى ستندم للتعمية ح نظام جديداقترتم افي ھذه الأطروحة، 

 الأعمى فصلالعتمد على تقنيات ت التي للتعمية ةمنظلأالضعف، من الناحية الأمنية، 
منحرف، ال وأمتعامد الالفضاء الجزئي  إلىستندة الم التعميةأنظمة صممت  لقد .درامصلل
فيما  .مستردة الشارات الإتحليلھا من حيث متانة الأمن وجودة تم متكررة، والبسيطة وال

تقييم الجودة باستخدام  في حين يتم التعمية فكاستخدام ھجمات ، فيتم بتحليل الأمن يخص
لى إ المقترح المستند التعميةنظام و تجريب  يتم تطبيق .أدوات موضوعية و أخرى ذاتية

 التعميةنظام ل تظھر النتائج التجريبية. لصورة والبياناتواعلى الصوت الفضاء الجزئي 
وجھة فيدة من مال و ةھمالمالميزات بعض إلى بالإضافة الأداء تحسنا ملحوظا في  المقترح

  .التعميةنظر 

فضاء جزئي ، متعامد فضاء جزئي، للمصادر أعمى فصل تشفير، تعمية، :كلمات مفتاحية 
  .بيانات صوت، صورة،، فك التعمية، منحرف

Résumé 
Dans cette thèse, un nouveau système de chiffrement basé sur le sous-espace 
est proposé pour contourner les faiblesses, d’un point de vue de sécurité, des 
systèmes de chiffrement basés sur les techniques de séparation aveugle de 
sources. Les schémas de chiffrement basés sur les sous-espaces orthogonaux ou 
obliques, simples et itératifs, sont conçus et analysés en termes de robustesse de 
sécurité et de qualité des signaux récupérés. L’analyse de la sécurité est 
conduite en utilisant les attaques de cryptanalyse alors que l’évaluation de la 
qualité est effectuée en utilisant à la fois des outils objectifs et subjectifs. Le 
système de chiffrement proposé basé sur le sous-espace est appliqué pour la 
parole, l’image et des données binaires. Les résultats expérimentaux montrent 
une amélioration des performances en plus de quelques fonctionnalités 
intéressantes et spécifiques, d’un point de vue cryptographique, apportées par 
le système de chiffrement proposé. 
Mots clés: Chiffrement, Cryptage, Séparation aveugle de sources, Sous-espace 
orthogonal, Sous-espace oblique, Cryptanalyse, Parole, Image, Données 
binaires. 
 

Abstract 
In this thesis, a new subspace-based encryption system is proposed to bypass 
the weaknesses, from a security point of view, of the encryption schemes based 
on blind source separation techniques. Orthogonal and oblique subspace-based 
encryption schemes, both simple and iterative, are designed and analyzed in 
terms of security robustness and quality of recovered signals. Security analysis 
is conducted using cryptanalysis attacks whereas quality assessment is 
achieved using both objective and subjective tools. The proposed subspace-
based encryption system is applied for speech, image and data. Experimental 
results show an enhancement in the performances beside some interesting and 
specific features, from a cryptographic point of view, brought by the proposed 
encryption system. 
Keywords: Encryption, Enciphering, Blind source separation, Orthogonal 
subspace, Oblique subspace, Cryptanalysis, Speech, Image, Data. 
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