

Ecole Nationale Polytechnique

Département : Génie civil

المدرمة الرطنية المتعددة التقنيمات 1 لمكستيبية – BIBLIOTHEQUE Ecolo Nationale Polytechnique

Projet de fin d'études pour l'obtention du diplôme d'Ingéniorat d'état

en Génie Civil

Thème :

Analyse des Problemes de Conduction

DE LA CHALEUR EN REGIME STATIONNAIRE

PAR DIFFERENTES METHODES NUMERIQUES

Proposé et dirigé par : *Mr*. M. DEMIDEM

Présenté par : KACIMI EL HASSANI Ahmed Amine HARKATI Mounir

Promotion JUIN 2003 ENP, 10 avenu Hacène Badi, El Harrache, Alger

DEDICACES

المدرسة الوطنية المتعددة التغنيات المحكستيسية --- BIBLIOTHEQUE Ecole Nationale Polytechnique

A la mémoire du très cher grand-père : Sidi El Cheikh El Emir,

Je dédie ce travail...

A ma mère

A mon père

A ma sœur et mes tantes

A mes chers oncles : Mohamed, Ahmed et Belkacem

Amine

A mon père

A ma mère et sa famille

A mes frères et mes sœurs

A tous les amis

Mounir

Remerciements

Nous tenons à remercier notre promoteur Mr DEMIDEM pour ses précieux conseils, son aide et suivi du travail durant toute l'année.

Nous remercions aussi l'ensemble du personnel de la bibliothèque de l'E.N.P pour leur coopération ainsi que tous nous amis. Que toute personne qui a contribué à la réalisation de ce travail, trouve –ici- l'expression de notre gratitude.

Mots clés: transfert de la chaleur, séparation des variables, Poisson, Laplace, conduction, Galerkine, différences finies, éléments finis.

RESUME

Notre travail a consisté en l'étude du problème de conduction de la chaleur dans un domaine rectangulaire (ou carré) pour un régime stationnaire, en se limitant au problème de Dirichlet comme type de conditions aux limites (C.A.L) et en utilisant les méthodes de Galerkine, différences finies et éléments finis. A cet effet, de nombreux cas ont été traité pour pouvoir comparer par la fin entre les résultats issus des différentes méthodes et en déduire les caractéristiques de chaque méthode dans le traitement de ce type de problèmes.

ABSTRACT

The study of the heat conduction problem through a rectangular (or square) domain in the steady state and for Dirichlet boundary problem is present in this work. Thus, we have used : Galerkine, finite differences and finite elements methods.

For this aim, a various cases were been treated in order to compare between the results of this methods then deduce the characteristics of each method in the treatement of this kind of problems.

ملخص

يتمثل هذا البحث في در اسة المسائل المتعلقة بانتشار الحرارة بواسطة خاصية الناقلية في وسط مستطيل (أو مربع) في حالة الثبوتية مقتصرين على شرط ديريكليه المتناهي واستعملنا لذلك التقنيات : غالركين، الفروق المحدودة و الأجزاء المحدودة.

لهذه الغاية ، تم معالجة حالات متعددة لنتمكن من المقارنة بين النتائج المحصلة من مختلف التقنيات و نستنتج خواص كل تقنية في معالجة مثل هذه المسائل.

المدرسة الوطنية المتعددة التقنيسات المحكستيبية -- BIBLIOTHEQUE Ecela Nationala Polytechnique

TABLE DES MATIERES

	Page
INTRODUCTION	01
CHAPITRE I LES EQUATION AUX DERIVEES PARTIELLES	
I.1) INTRODUCTION	03
I.2) TYPE DES EQUATION AUX DERIVEES PARTIELLE	04
I.2.1) le type hyperbolique	05
I. 2.2) Le type elliptique	05
I.2.3) le type parabolique (L'équation de la chaleur)	07
I.3) METHODES DE RESOLUTION	09
I.3.1) Régime stationnaire	09
I.3.2) Régimes instationnaires	09
I.4) EXEMPLE SUR LA RESOLUTION ANALYTIQUE DU PROBLEME	10
I.4.1) équation de poisson	10
I.5) METHODE DE GALERKINE	14
I.5.1) Propriété de meilleure approximation	14
I.5.2) Exemple	17
CHAPITRE II LE TRANSFERT DE LA CHALEUR	
II.1) INTRODUCTION	20
II.2) MODES DE TRANSFERT DE LA CHALEUR	20
II. 2.1) La conduction	20
II.2.1.1) Loi de Fourier	21
II.2.2) la convection	22
II.2.3) La radiation :	23
II.3) EQUATION GENERALE DE LA CONDUCTION	24
II.3.1) L'élaboration de l'équation de Laplace	24
II3.1). a équation de conservation de l'énergie	24
II.4) SOLUTION DE L'EQUATION DE LAPLACE POUR LA PLAQUE RECTANGULAIRE	28
température: $T=\Phi$ (x) II.4-2) Cas ou les deux cotes sont à la même température T1 et deux cote	29
aux températures F1 et F2 II.4.3) Cas ou les quatre cotes sont aux températures F1,F2,G1 et G2	34 35

نيات	شمددة ألتق	لحثية ال	الو	رسة	المد	
RIBLIA	Thequi	a speciato	ã.	·	لمك	١
Ecolo	Nationa	le Pol	yte	icht	ផ្ទែល	3

III.1) INTRODUCTION	
III.2) METHODE DES DIFFERENCES FINIS	
III.2.1) Introduction	
III.2.2) Etapes de mise en œuvre	
III.2.2.a) Etape de discrétisation	
III.2.2.b) Etape d'approximation	
III.2.2.c) Etape de résolution	
III.2.3) Théorème de Taylor- Analyse d'approximation en différences	
finies III.2.3.a) Théorème de Taylor (1D)	
III.2.3.b) approximation en différences finies et opérateurs en différences	
finies	
III.3) EFESENTATION DES DERIVEESTAN DES DIFFENENCES FINIES	
CARTESIENNES	
III.5) PRESENTATION DE L'ALGORITHME M.D.F	
III.3) EXEMPLE	
CHAPITRE IV PRESENTATION DE LA METHODE DES	
ELEMENTS FINIS	
IV.2) PRINCIPE DU TRAVAIL VIRTUEL	
IV.3) APPROXIMATION PAR ELEMENTS FINIS	
IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales	
IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales IV.3.2) Eléments de référence	19. 19. 19. 19.
 IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales IV.3.2) Eléments de référence IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF 	
 IV.3) APPROXIMATION PAR ELEMENTS FINIS. IV.3.1) Approximation nodales. IV.3.2) Eléments de référence. IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF IV.4.1) approche variationnelle	1919 - 19
 IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales IV.3.2) Eléments de référence IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF IV.4.1) approche variationnelle IV.4.1.1) Etapes de dérivation des équations de la MEF 	
 IV.3) APPROXIMATION PAR ELEMENTS FINIS. IV.3.1) Approximation nodales. IV.3.2) Eléments de référence. IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF	
 IV.3) APPROXIMATION PAR ELEMENTS FINIS. IV.3.1) Approximation nodales. IV.3.2) Eléments de référence. IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF IV.4.1) approche variationnelle IV.4.1.1) Etapes de dérivation des équations de la MEF IV.5) EXEMPLE IV.6)CONVERGENCE DE LA METHODE DES ELEMENTS FINIS 	
 IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales IV.3.2) Eléments de référence IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF IV.4.1) approche variationnelle	
 IV.3) APPROXIMATION PAR ELEMENTS FINIS IV.3.1) Approximation nodales IV.3.2) Eléments de référence IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF IV.4.1) approche variationnelle	• Bird • • • • • •
 IV.3) APPROXIMATION PAR ELEMENTS FINIS. IV.3.1) Approximation nodales. IV.3.2) Eléments de référence. IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF	

Les solutions des équations de Poisson et de Laplace et des équations analogues possèdent de multiples propriétés: elles sont analytiques, ne peuvent pas avoir de maximum ni de minimum à l'intérieur d'un domaine où l'équation est vérifiée. On appelle *fonctions harmoniques* les fonctions qui vérifient l'équation de Laplace.

La monotonie

On dit qu'une fonction F est monotone si pour tout couple

pour tout couple
$$(v, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$$
:
 $(v-v)(F(v)-F(v)) \ge 0.$
(I-4)

Si F est linéaire par rapport à grad u, on peut écrire:

$$F_i\left(\overrightarrow{\text{grad}} u\right) = \sum_{j=1}^{n} a_{ij}(x, u) \frac{\partial u}{\partial x_i}$$

La condition de monotonie signifie alors que la partie symétrique de la matrice des a_{ij} est positive, et définie positive s'il y a monotonie stricte.

On notera en particulier que dans le cas de l'équation de Poisson-Laplace c'est l'opérateur: Δ (Laplacien) qui a la propriété de monotonie.

I.1.3) le type parabolique (L'équation de la chaleur) :

Si les équations hyperboliques décrivent l'évolution des phénomènes physiques réversibles, les phénomènes irréversibles relèvent du type parabolique dont le prototype est l'équation de la chaleur, dite aussi de Fourier:

$$\frac{\partial u}{\partial t} = \Delta_x u + f, \qquad (I-5)$$

E.N.P 2002/2003

Notons tout de suite qu'au contraire de l'équation des ondes cette équation est modifiée par le changement de t en - t.

Elle décrit la diffusion de la chaleur, mais aussi bien d'autres phénomènes de diffusion, en particulier celle d'un corps en solution.

Les problèmes bien posés typiques de l'équation de la chaleur, et des équations paraboliques en général, sont des *problèmes mixtes*. On donne un domaine ouvert Y de l'espace et on cherche une solution u sur $[0, \infty [X \Omega qui vérifie une condition initiale : <math>u(0, x) = u_0(x), u_0$ fonction donnée et, à chaque instant t, une condition sur la frontière, condition de Dirichlet, ou de Neumann ou mêlée.

La différence avec le cas hyperbolique est à chercher dans le comportement vis-à-vis de la variable temps.

Pour résoudre l'équation générale (I-5), il faut s'imposer une condition initiale (en général, la distribution initiale de la température) et des conditions aux limites à la surface du corps conducteur, conditions que l'on classe en trois types principaux:

1111

- a) distribution de température imposée (variable ou non dans le temps) ou condition de Dirichlet;
- b) distribution imposée de densité de flux de chaleur (variable ou non dans le temps) ou condition de Neumann;
- c) relation entre la densité de flux de chaleur à la surface du corps et la température au même endroit. Si cette relation est linéaire, on appelle cette condition la condition de Fourier.

E.N.P 2002/2003

I.3) METHODES DE RESOLUTION :

On se limitera dans le contexte de notre étude au cas des corps homogènes et isotropes sans sources de chaleur internes.

I.3.1) Régime stationnaire:

Si les températures ne varient pas dans le temps, le champ de température est alors une fonction harmonique des variables d'espace x, y et z. L'équation de la chaleur s'écrit:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

La détermination du champ de températures se ramène à un problème mathématique étudié depuis longtemps, pour lequel de nombreuses méthodes de résolution peuvent être appliquées: On va mettre en marche une méthode approximative dite de Galerkine, des méthodes numérique : différences finies et éléments finis pour comparer en fin avec la solution exacte.

I.3.2) Régimes instationnaires:

L'équation de la chaleur (1-5) est une équation aux dérivées partielles linéaires du type parabolique. On pourra ainsi obtenir la solution générale d'un problème thermique en superposant linéairement des solutions particulières; mais ce n'est pas le contexte de notre étude, on s'intéresse seulement au cas stationnaire.

I.4) EXEMPLE SUR LA RESOLUTION ANALYTIQUE DU PROBLEME:

I.4-1) Equation de poisson:

Cette équation caractérise le phénomène de torsion elle s'écrit:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{f} \tag{I-6}$$

Avec u=0 au x=0, a et y=0, b (Fig. I-1).

On peut prendre comme une première approximation

 $u = \alpha \mathbf{x}(\mathbf{x} - \mathbf{a})\mathbf{y}(\mathbf{y} - \mathbf{b}) \tag{I-7}$

La formulation de Galerkine peut être écrite

$$\int_{0}^{a} \int_{0}^{b} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} - f \right) \delta u \, dx \, dy = 0 \qquad (I-8)$$

E.N.P 2002/2003

the second s

- 10 -

T

Où $\delta u = \delta \alpha x (x - a) y (y - b)$. Après substitution de (I-7) on trouve que:

$$\frac{\alpha}{90} \left[a^3 b^3 (a^2 + b^2) \right] - \frac{a^3 b^3}{36} f = 0$$
 (I-9)

$$\alpha = \frac{5}{2} \frac{f}{a^2 + b^2}$$
 (I-10)

$$u = \frac{5f}{a^2 + b^2} (x^2 - ax)(y^2 - by)$$
 (I-11)

L'évaluation de (I-11) au point du centre x=a/2, y=b/2 donne :

$$u_{c} = \frac{5}{32} f \frac{a^{2}b^{2}}{a^{2} + b^{2}}$$
(I-12)

Soulevant maintenant le même exemple mais en utilisant des séries trigonométriques pour approximer u. on suppose, en tenant compte du symétrie, que :

$$u = \sum_{k} \sum_{l} \alpha_{kl} \sin \frac{k\pi x}{a} \sin \frac{l\pi y}{b}$$
(I-13)

Cette expression satisfait les conditions aux limites et les fonctions sinusoïdales sont orthogonales.

T' IT'

$$\int_{0}^{a} \sin \frac{m\pi x}{a} \sin \frac{n\pi x}{a} dx = 0 \qquad \text{si } m \neq n$$
$$= \frac{a}{2} \qquad \text{si } m = n \qquad (I-14)$$

E.N.P 2002/2003

The second s

- 11 -

T

Après substitution de (I-13) en (I-8) et en tenant compte de l'orthogonalité, on a :

$$\alpha_{kl} \int_{0}^{a} \int_{0}^{b} \left(\frac{\pi^{2}k^{2}}{a^{2}} + \frac{\pi^{2}l^{2}}{b^{2}} \right) \sin^{2} \frac{k\pi}{a} x \sin^{2} \frac{l\pi}{b} y dx dy - \int_{0}^{a} \int_{0}^{b} f \sin \frac{k\pi}{a} x \sin \frac{l\pi}{b} y dx dy = 0$$
(I-15)

L'équation donne après intégration.

$$\alpha_{kl} = \frac{16a^2b^2}{\pi^4 kl(b^2k^2 + a^2l^2)}f$$
 (I-16)

à noter que les équations sont découplées due à l'orthogonalité des fonctions de bases. La solution approximative est:

$$u = \sum_{k} \sum_{l} f \frac{16 a^{2} b^{2}}{\pi^{4} k l (b^{2} k^{2} + a^{2} l^{2})} \sin \frac{k \pi x}{a} \sin \frac{l \pi y}{b}$$
(I-17)

Quand le nombre de termes est infini, on aura la solution exacte.

Dans le cas ou a=b, valeur dans le point du centre (x=a/2, y=b/2). (*):

k et l varient de 1 à 199, c.a.d pour un nombre de termes = $199 \times 199 = 397801$ termes. on a :

$$\mathbf{u}_{c} = (8 - \frac{16}{15} + \frac{8}{81} + \frac{16}{65} - \frac{16}{255} - \frac{32}{350} + \dots) \frac{\mathbf{a}^{2}}{\pi^{4}} \mathbf{f} = \mathbf{u}_{exact} = \frac{28.71}{\pi^{4}} \left(\frac{\mathbf{a}}{2}\right)^{2} \mathbf{f}$$
(I-18)

pour a = 10 m, on trouve.

$$u_c = 7.369 f$$

E.N.P 2002/2003

State States

- 12 -

Remarque ^(*) :

L'attention des utilisateurs d'ouvrages numériques spécialisés est attirée quant à l'utilisation sans vérification de la solution exacte de Poisson, donnée dans certaines références, comme ci-dessous.

$$u_{c} = (8 + \frac{16}{15} + \frac{8}{81}...)\frac{a^{2}}{\pi^{4}}c = u_{exact} = \frac{36.64}{\pi^{4}}\left(\frac{a}{2}\right)^{2}f$$

Ce qui donne pour a=10 m :

$$u_{c} = 9,447 f$$

La correction que nous avons apportée à cette formule nous a permis de confirmer les résultats trouvés à ceux obtenus par les différentes méthodes numériques utilisées.

E.N.P 2002/2003

- 13 -

I.5) METHODE DE GALERKINE:

I.5.1) Propriété de meilleure approximation :

La méthode de Galerkine, possède une propriété de minimisation pour une certaine classe d'équations différentielles.

Définitions :

Un opérateur différentiel £ est dit homogène si:

f(u=0)=0

Un système d'équations linéaires aux dérivées partielles :

$$[\pounds]{u} + {f_v} = 0$$

est dit homogène si :

$$\mathbf{f}_{\mathbf{v}} = 0$$

Les Conditions Aux Limites :

$$[C]{u} = {f_s}$$

sont dites homogènes si :

$$\{\mathbf{f}_{s}\} = 0$$

Un système différentiel linéaire est auto-adjoint si:

$$\int_{V} \langle u \rangle [\pounds] \{V\} dV = \int_{V} \langle v \rangle [\pounds] \{u\} dV$$

ou u et v sont des fonctions suffisamment dérivables sur V, qui satisfont les C.A.L homogènes:

$$C(u) = C(v) = 0.$$

A Station

Théorème 1 :

Tout opérateur linéaire défini positif et auto-adjoint, défini sur un espace doté d'un produit interne $\langle .,. \rangle$, génère l'existence d'un second produit interne, appelé produit interne énergétique (energy inner product) : EIP

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathrm{f}} \equiv \langle \mathrm{fu}, \mathbf{v} \rangle$$
 (I-19)

E.N.P 2002/2003

Les EIP sont IP pour la méthode de Galerkine (u remplacé par û et v par ϕ_i). La norme énergétique tient son non du fait que l'EIP correspond souvent à une mesure de l'énergie dans plusieurs systèmes physiques.

De plus, les équations de Galerkine représentent une minimisation de cette mesure énergétique (énergie potentielle d'un système) pour une certaine de problèmes physique. Autrement dit, pour une certaine class de problèmes, la méthode de Galerkine minimise l'erreur commise dans l'approximation numérique lorsque cette erreur est mesurée par la norme énergétique.

Théorème 2 :

Soit l'équation différentielle linéaire suivante :

$$\mathfrak{tu}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \qquad ; \mathbf{x} \in \Omega \qquad (I-20)$$

Ou £ est un opérateur défini positif et auto adjoint. Le produit interne est défini par :

$$\langle f(\mathbf{x}), g(\mathbf{x}) \rangle \equiv \int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x}$$
 (I-21)

soit une solution approchée recherchée dans S_N avec une base fonctionnelle $\{\phi_J\}_{J+1}^N$, alors pour une approximation du u(x) de la forme :

$$\widehat{u}(\mathbf{x}) = \sum_{j=1}^{N} a_j \phi_j(\mathbf{x})$$
(I-22)

la méthode de Galerkine pour le calcul des coefficients $\{a_j\}_{j=1}^N$ minimise l'erreur $(u-\hat{u})$ au sens de la norme énergétique

$$\left\|\mathbf{u} - \widehat{\mathbf{u}}\right\|_{\varepsilon} = \left[\left\langle \left(\mathbf{u} - \widehat{\mathbf{u}}\right), \left(\mathbf{u} - \widehat{\mathbf{u}}\right)\right\rangle_{\varepsilon}\right]^{\frac{1}{2}}$$
(I-23)

E.N.P 2002/2003

- 15 -

Démonstration :

 $\|\mathbf{u} - \widehat{\mathbf{u}}\|_{\mathcal{E}}$ et $\|\mathbf{u} - \widehat{\mathbf{u}}\|_{\mathcal{E}}^2$ ont un minimum au même point. On s'intéressera à $\|\mathbf{u} - \widehat{\mathbf{u}}\|_{\mathcal{E}}^2$ pour des raisons de commodité.

$$\begin{aligned} \left\| \mathbf{u} - \widehat{\mathbf{u}} \right\|_{\pounds}^{2} &= \langle \pounds (\mathbf{u} - \widehat{\mathbf{u}}), (\mathbf{u} - \widehat{\mathbf{u}}) \rangle \\ &= \langle \pounds \mathbf{u}, \mathbf{u} \rangle - \langle \pounds \widehat{\mathbf{u}}, \mathbf{u} \rangle - \langle \pounds \mathbf{u}, \widehat{\mathbf{u}} \rangle + \langle \pounds \widehat{\mathbf{u}}, \widehat{\mathbf{u}} \rangle \\ &= \langle \pounds \mathbf{u}, \mathbf{u} \rangle - 2 \langle \pounds \mathbf{u}, \widehat{\mathbf{u}} \rangle + \langle \pounds \widehat{\mathbf{u}}, \widehat{\mathbf{u}} \rangle \end{aligned}$$

or
$$\widehat{\mathbf{u}} = \sum_{j=1}^{N} \mathbf{a}_{j} \phi_{j}$$

$$\begin{split} \left| \mathbf{u} - \widehat{\mathbf{u}} \right|_{\mathbf{\pounds}}^{2} = \langle \mathbf{\pounds} \mathbf{u}, \mathbf{u} \rangle - 2 \langle \mathbf{\pounds} \mathbf{u}, \left(\sum_{j=1}^{N} a_{j} \phi_{j} \right) \rangle + \langle \mathbf{\pounds} \left(\sum_{J+1}^{N} a_{j} \phi_{j} \right), \left(\sum_{k=1}^{N} a_{k} \phi_{k} \right) \rangle \\ = \langle \mathbf{\pounds} \mathbf{u}, \mathbf{u} \rangle - 2 \sum_{j=1}^{N} a_{j} \langle \mathbf{\pounds} \mathbf{u}, \phi_{j} \rangle + \sum_{j=1}^{N} \sum_{k=1}^{N} a_{j} a_{k} \langle \mathbf{\pounds} \phi_{j}, \phi_{k} \rangle \end{split}$$
(I-24)

La minimisation de $\left\| u - \widehat{u} \right\|_{\mathfrak{k}}^2$ se fait comme suit :

$$\frac{\partial}{\partial \mathbf{U}_{i}} \left\| \mathbf{u} - \widehat{\mathbf{u}} \right\|_{\mathbf{f}}^{2} = 0 \quad , \forall i$$

$$\frac{\partial}{\partial U_{i}}\left\|\boldsymbol{u}-\widehat{\boldsymbol{u}}\right\|_{\mathtt{f}}^{2}=-2\langle \mathtt{f}\boldsymbol{u},\boldsymbol{\varphi}_{i}\rangle+2\sum_{j=1}^{N}a_{j}\langle \mathtt{f}\boldsymbol{\varphi}_{j},\boldsymbol{\varphi}_{i}\rangle$$

 $\|\mathbf{u} - \widehat{\mathbf{u}}\|_{\mathbf{f}}^2$ est minimum lorsque $\{a_j\}$ est choisi de sorte que :

$$\sum_{j=1}^{N} a_{j} \langle \pounds \phi_{j}, \phi_{i} \rangle = \langle \pounds u, \phi_{i} \rangle = \langle f, \phi_{i} \rangle$$

TIL

E.N.P 2002/2003

- 16 -

T

Où
$$\langle \pounds \left(\sum_{j=1}^{N} a_{j} \phi_{j} \right), \phi_{i} \rangle = \langle f, \phi_{i} \rangle$$

et finalement :

$$\int_{\Omega} (\pounds \hat{u} - f) \phi_i dx = 0 \qquad : \text{Formulation de Galerkine} \qquad (I-25)$$

Ainsi, lorsque \pounds est défini positif et auto-adjoint, la méthode de Galerkine produit une solution qui minimise l'erreur $(u-\hat{u})$ au sens de la norme de l'énergie.

A ce titre, la solution de Galerkine est considérée comme la 'meilleure approximation'.

I.5.2) Exemple:

On considère le cas de la figure (I-2) pour une plaque carré, avec a=b=10 m. la solution de Galerkine est sous la forme :

$$\widehat{u}(x) = \sum_{j=1}^{N} a_{j} \phi_{j}(x)$$

N : le nombre de paramètres d'approximation $\{a_i\}$.

En utilisant les fonctions suivantes :

$$\Phi1(x,y) = (x^2-25) + (y^2-25)$$

$$\Phi2(x,y) = [(x)^2 + (y)^2] \cdot \Phi1(x,y)$$

$$\Phi3(x,y) = [(x)^2 \cdot (y)^2] \cdot \Phi1(x,y)$$

E.N.P 2002/2003

- 17 -

Notation:

A: surface de la plaque.

L'exponentiel:

Exemple : E9 = 10^{9} .

a)Approximation à 1 paramètre :

 $u(x,y)=a_1.\Phi_1I(x,y).$

D'où l'équation:

$$[I(\Phi_1.\pounds(\Phi_1))].a_i = -[I(\Phi_1)].f$$

Après calcul, on trouve :

2.22222E6.a_i=27777.8 f.

 $=>a_i=0.0125$

la solution au centre :

$$u_c = u(0,0) = 7.812 f.$$

b) Approximation à 2 paramètres :

$$\mathbf{u}(\mathbf{x},\mathbf{y}) = \Phi_{\mathbf{i}}(\mathbf{x},\mathbf{y}) \cdot (a_1 + a_2 \cdot [(\mathbf{x})^2 + (\mathbf{y})^2]).$$

D'où le System symétrique:

$$[I(\Phi_1.\pounds(\Phi_1))].a_i+[I(\Phi_1.\pounds(\Phi_2))].a_i=-[I(\Phi_1)].f$$

$$[I(\Phi_2.\pounds(\Phi_1))].a_i+[I(\Phi_2.\pounds(\Phi_2))].a_i=-[I(\Phi_2)].f$$

Après calcul, on trouve :

2.22222E6.a₁+1.90476E7.a₂=27777.8 f 1.90476E7.a₁+5.82011E9.a₂=277778 f

 $a_1 = 0.011688$ f. $a_2 = 0.000095$ f.

E.N.P 2002/2003

La solution au centre :

$$u_c = u(0,0) = 7.305 \text{ f.}$$

c) Approximation à 3 paramètres :

$$u(x,y) = \Phi_i(x,y). (a_1 + a_2. [(x)^2 + (y)^2] + a_3. [(x)^2.(y)^2]])$$

Après calcul, on trouve :

2.22222 E6. a_1 + 1.90476 E7. a_2 + 3.96825E7. a_3 =27777.8 f 1.90476 E7. a_1 + 5.82011 E8. a_2 + 1.88964E9. a_3 =277778 f 3.96825 E7. a_1 +1.88964 E9. a_2 + 1.29913 E10. a_3 = 694444 f.

$$\label{eq:a1} \begin{split} a_1 &= 0.011797 \ f. \\ a_2 &= 0.000066 \ f. \\ a_3 &= 0.000008 \ f. \end{split}$$

La solution au centre :

 $u_c = u(0,0) = 7.373$ f.

La méthode de Galerkine présente une très bonne approximation de la solution de ce problème. C'est une méthode puissante qui converge rapidement avec un bon choix des fonctions.

Cependant, son emploi devient difficile dans des cas plus compliqués ce qui nous amène à l'utilisation d'autres méthodes numériques telles que la M.D.F et notamment la M.E.F.

Chapitre II :

Le transfert de la chaleur

II.1) INTRODUCTION:

La thermique est la branche de la physique qui traite des échanges de chaleur accompagnés ou non d'échange de masse et de changement de phases. Elle peut donc être considérée comme partie intégrante de la thermodynamique des phénomènes irréversibles puisque, pour avoir l'échange de chaleur entre différentes parties d'un système, il est nécessaire que ce système soit en dehors de l'équilibre thermodynamique.

II.2) MODES DE TRANSFERT DE LA CHALEUR :

Il a fallu longtemps pour que l'on puisse distinguer entre les divers types d'échanges de chaleur et les classer en rayonnement, conduction, convection naturelle et convection forcée. D'ailleurs ne parle-t-on pas encore de «radiateurs» de chauffage central ou d'automobile, bien qu'une partie importante du flux de chaleur soit transmise à l'atmosphère par convection naturelle dans le premier cas et par convection forcée dans le second ?

II.2.1) La conduction :

Le phénomène de la conduction de la chaleur existe dans tous les corps, solides ou fluides, bien que, pour ces derniers, le transfert d'enthalpie dû à la présence d'un écoulement ait tendance à masquer le phénomène de conduction.

Celui-ci se traduit par une élévation de température de proche en proche qui, pour les solides, correspond à un accroissement de l'énergie de vibration du réseau cristallin et, pour les fluides, à une transmission d'énergie cinétique opérée par les chocs entre les molécules.

C'est à J. Fourier (1822) que l'on doit la théorie analytique de la conduction de la chaleur qui a amené, en dehors des applications physiques, à des progrès en analyse mathématique

Le processus de conduction de la chaleur s'effectue de proche en proche, la chaleur passant spontanément des corps les plus chauds aux corps les plus froids, la température tendant alors à s'uniformiser lorsqu'il n'y a pas de source de chaleur interne.

E.N.P 2002/2003

- 20 -

.....

II.2.1.1) Loi de Fourier

Le flux de chaleur à travers une surface est, par définition, la quantité de chaleur (mesurée en joules dans le système SI) qui traverse, par unité de temps (la seconde), cette surface. La densité de flux de chaleur q; en un point est le rapport du flux de chaleur passant à travers un élément de surface entourant ce point à l'aire de cet élément.

Cette densité est proportionnelle (pour un corps isotrope) et opposée au gradient de température au point considéré:

$$\vec{q} = -\lambda \text{ grad } u$$
 (II – 1)

C'est la loi de Fourier, λ étant le coefficient de conductibilité thermique ou *conductivité thermique*.

Pour les corps composites :

$$\vec{q} = -\lambda \,\overline{\text{grad}} \,\mathbf{u}$$
 (II – 2)

La densité de flux de chaleur est le produit contracté d'un tenseur de conductivité thermique et du gradient de température. Pour les corps composites, l'élément de surface qui entre dans la définition de la densité de flux de chaleur ne doit pas être trop petit. La loi correspondant à l'expression (II - 2) n'est valable que pour les grandeurs dont on prend la moyenne dans un volume élémentaire; les dimensions de celui-ci doivent être de l'ordre de grandeur de plusieurs dimensions des éléments des corps composites: les diamètres des fibres pour les fibres enrobées ou les diamètres des pores pour les milieux poreux.

E.N.P 2002/2003

- 21 -

Revenant au cas d'un corps homogène, la densité de flux de chaleur suivant la longueur est donné par :

$$q = -\lambda A \frac{\partial u}{\partial x}$$
(II - 3)

Où

q : la densité de flux.

A : la surface du corps au travers lequel se fait le flux de chaleur..

 λ :conductivité thermique du corps .

u : Température.

x : paramètre de la longueur.

II.2.2) La convection :

Le phénomène de conduction peut se produire normalement dans n'importe quel système dans lequel un mouvement électronique ou moléculaire est possible. Dans le cas des liquides et des gazes, la conduction joue un rôle relativement moins important dans le transfert de l'énergie.

Quant à la convection, la plus grande influence sur ce transfert est due au mouvement du fluide lui-même qui peut, en ce système, être en mouvement par flottabilité au moyen des pompes, ventilateurs, et causé par des forces météorologiques et celles de la marée.

Dans tels cas, On doit s'attendre à ce que le transfert de chaleur soit plus grand que dans des cas comparables pour les systèmes solides.

Le premier qui a analysé avec succès la totalité du phénomène complexe de convection était Isaac Newton en 1701, il a proposé son équation générale de la densité de flux :

$$q = hA.(u_h - u_c) \tag{II-4}$$

E.N.P 2002/2003

- 22 -

Où :

q : la densité de flux .

A : l'aire de la surface du corps au travers laquelle se propage la chaleur.

h :coefficient du transfert de la chaleur.

u_h : Température de la surface du corps.

uc: Température du milieu ambiant.

II.2.1) La radiation :

Le principe de transfert de chaleur par radiation est un mécanisme de transfert d'énergie complètement différent des deux autres modes : la convection et la conduction. Ces deux derniers nécessitent un contact physique entre surfaces, fluides et surfaces, le transfert par radiation peut bien se produire dans le vide, tout a fait comme la propagation de la lumière qui se fait à travers l'air.

Du point de vue d'engineering, la principale découverte en radiation, c'était en 1884, quand Stefan et Boltzmann ont proposé la loi gouvernante l'émission d'énergie à travers une surface chauffée, la densité de flux est donné par :

$$q = \sigma.A.u^4 \tag{II} - 5$$

Où :

q : la densité de flux .

u⁴ : la température du corps.

 σ : la constante de Stefan-Boltzman.

A : l'aire de la surface du corps au travers laquelle se propage la chaleur.

1. 8 200

II.3) EQUATION GENERALE DE LA CONDUCTION :

II.3-1) L'élaboration des équations gouvernantes :

II..3-1) a) équation de conservation de l'énergie:

La loi de Fourier s'emploie dans le cas d'un solide ou d'un fluide au repos par rapport à un référentiel donné. Par rapport à ce dernier, le premier principe de la thermodynamique donne en chaque point l'équation de conservation de l'énergie.

Principe de conservation de l'énergie:

$$E_{in} + E_g = E_{out} + E_{ie} \tag{II-6}$$

 $E_{in} =$ Énergie affluée au système.

 $E_g =$ Énergie générée à l'intérieur du système.

 $E_{out} =$ Énergie écoulée par le système.

E_{ie} = Variation dans l'énergie interne du système.

Comme, en conduction pure, le travail est nul, si l'on néglige la dilatation thermique.

On considère un petit élément matériel dans un corps solide, comme il est figuré dans Fig. (II.1). Il est d'une forme rectangulaire parallélépipédique et à faces dx, dy, dz. L'équation (II.5) peut être reformulée comme suivant:

(II - 7)

E.N.P 2002/2003

On a :

Chaleur générée par les sources internes: q dv = q dx dy dz

tq: q est la chaleur crée par unité de volume,

Donc, l'équation (II-5) peut s'écrire sous la forme:

$$(q_x + q_y + q_z).dt + q.dx.dy.dz = (q_{x+dx} + q_{y+dy} + q_{z+dz}).dt + C. \rho.dx.dy.dz.du$$
(II - 8)

On a: u(x,y,z):

1-1) Coordonnées cartésiennes:

Ce qui entre :

Х

Ŧ

Dans la direction de x :

à travers le plan QQ'MM' :

$$\mathbf{q}\Big|_{\mathbf{x}} = -\lambda_{\mathbf{x}} \cdot S \cdot \frac{\partial u}{\partial x}\Big|_{\mathbf{x}} \tag{II} - 9$$

E.N.P 2002/2003

- 25 -

Dans la direction de y :

à travers le plan PQMN :

$$\mathbf{q}\Big|_{y} = -\lambda_{y} \cdot S \cdot \frac{\partial u}{\partial y}\Big|_{y}$$
(II-10)

Dans la direction de z :

à travers le plan NN'MM' :

$$q|_{z} = -\lambda_{z}.S.\frac{\partial u}{\partial z}|_{z}$$
 (II-11)

Ce qui sorte :

$$q\Big|_{x+dx} = -\lambda_x \cdot S \cdot \frac{\partial u}{\partial x}\Big|_{x+dx} \cdot dt$$
$$q\Big|_{y+dy} = -\lambda_y \cdot S \cdot \frac{\partial u}{\partial y}\Big|_{y+dy} \cdot dt$$
$$q\Big|_{z+dz} = -\lambda_z \cdot S \cdot \frac{\partial u}{\partial z}\Big|_{z+dz} \cdot dt$$

1

$$f(x+dx) = f(x) + f'(x)dx$$

Donc:

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} dx$$

T.C.

E.N.P 2002/2003

ALL PROPERTY.

- 26 -

T

En remplaçant le tout dans l'équation (II-7), on obtient :

$$q \, dx \, dy \, dz \, dt = -\lambda_x \, dx \, dy \, dz \, \frac{\partial^2 u}{\partial x^2} \, dt - \lambda_y \, dx \, dy \, dz \, \frac{\partial^2 u}{\partial y^2} \, dt - \lambda_z \, dx \, dy \, dz \, \frac{\partial^2 u}{\partial z^2} \, dt + C \, \rho \, dx \, dy \, dz \, du$$

Si: $\lambda_x = \lambda_y = \lambda_z$

$$\rightarrow q \, dt = -\lambda \, dt \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho.c \, du \text{, on devise le tout par dt et on obtient:}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{q}{\lambda} = \frac{\rho.c \, \partial u}{\lambda \, \partial t}$$
D' où
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{q}{\lambda} = \frac{1}{a} \frac{\partial u}{\partial t} \quad (\text{II} - 12)$$
Avec: $a = \frac{\lambda}{\rho.c}$ (diffusivité *thermique*).

Dans le cas d'un corps isotrope et homogène et sans sources de chaleur internes, l'équation (II - 11) devient:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{a} \frac{\partial u}{\partial t}$$
(II - 13)

Cas de régime permanent :

u ne varie pas en fonction du temps : $\frac{\partial u}{\partial t} = 0$

Donc, l'équation (II – 12) devient: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -\frac{q}{\lambda}$

18. C.A.

Posons : $-\frac{q}{\lambda} = f$,

On obtient l'équation de Poisson: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f$ (II – 14)

E.N.P 2002/2003

N. 450 101 101 70

- 27 -

Si de plus, il n'y a pas de création de chaleur (aucune source de chaleur) : q=0 L'équation (II-14) se réduit à l équation de Laplace :

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$
 (II-15)

pour le cas bidimensionnel, (II – 15) s'écrit: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ (II – 16)

II.4) SOLUTION DE L'EQUATION DE LAPLACE POUR LA PLAQUE RECTANGULAIRE :

Considérons une plaque homogène (K uniforme), sans source interne, et isolée sur ses faces x et y (pas de conduction dans la direction Oz), en régime permanent, il s'agit de résoudre l'équation différentielle linéaire de Laplace :

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{II-17}$$

Plaçons l'origine des coordonnées l'un des angles du rectangle (figure II-2) Supposons (méthode de séparation des variables) que la solution peut se mettre sous la forme:

$$u = X(x)Y(y) \tag{II-18}$$

Ce qui conduit, en substituant (II-18) dans (II-17) à:

$$-\frac{X''}{X} = \frac{Y''}{Y}$$
 Où X''=X et Y''=Y.

- 11

E.N.P 2002/2003

- 28 -

Le membre de gauche est fonction de x seulement, tandis que le membre de droite est fonction de Y seulement.

Ces deux membre ne peuvent être égaux à une même constante $+/-\lambda^2$, appelée constante de séparation, dont le signe sera détermine par la nature des conditions aux limite, Prenons pour l'instant le signe (+).

Ceci équivaut aux deux équations différentielles ordinaires:

$$\frac{\partial^2 X}{\partial x^2} + \lambda^2 X = 0 \tag{II-19}$$

$$\frac{\partial^2 Y}{\partial x^2} - \lambda^2 Y = 0 \tag{II} - 20)$$

donc les solutions sont respectivement :

$$X = B_3 \sin(\lambda x) + B_4 \cos(\lambda x)$$
$$Y = B_4 \sin(\lambda y) + B_2 \cos(\lambda y)$$

Donc, la solution générale de l'équation indéfinie (II-13) est:

$$\mathbf{u} = \left[\mathbf{B}_1 \sinh(\lambda y) + \mathbf{B}_2 \cosh(\lambda y) \right] \left[\mathbf{B}_3 \sin(\lambda x) + \mathbf{B}_4 \cos(\lambda x) \right]$$
(II - 21)

dont on détermine les constantes B et λ en utilisant les conditions aux limites.

II.4.1) Cas ou les trois cotes sont à la même température T1 et une cote à la température $T=\Phi(x)$:

en x=0,T=T1 ou
$$u$$
=T-T1=0, \forall y (II-22)

en x=L,T=T1 ou u=T-T1=0, \forall y (II-23)

E.N.P 2002/2003

- 29 -

Les trois premières conditions aux limites (C.A.L) sont homogènes. On demande u(x, y)?

La C.A.L n° 3 montre que pour que, quel que soit x, on ait U=0 en y=0, il faut que B2=0 et (II-19) se ramène à :

$$u = B_l sinh(\lambda y) \left[B_3 sin(x) + B_4 cos(\lambda x) \right]$$
(II - 26)

La C.AL n°1 permet de déduire semblablement que pour quel que soit y, on ait u=0 en x=0, il faut que B₄ =0, donc

$$u = B sinh(\lambda y) sin(\lambda x) \qquad Avec B=B_1B_2 \qquad (II - 27)$$

La C.A.L nº 2 donne

$$0 = B \sinh(\lambda y) \sin(\lambda x) \quad \forall y \in [0, H]$$

TEC EL

D'où:

$$\sin(\lambda L) = 0$$
, c'est à dire $\lambda_n = \frac{n\lambda}{L}$, $n = 1, 2, ...$ (II – 28)

Chacun des λ de (II – 28) conduit à une solution générale sera donc la solution de toutes ces solutions particulières:

E.N.P 2002/2003

- 30 -

$$u = \sum_{n=0}^{\infty} B_n \sinh(\lambda_n y) \sin(\lambda_n x)$$

Où B_n représente la constante B pour chacune des solutions.

En effet, pour chaque valeur de λ correspond un système d'équations différent (II-19) et (II-20) et donc les solutions X, Y possédant des constantes B différentes (pour chaque λ). comme pour n =0, λ_n = 0, ce qui ne conduit à rien, il reste :

$$u = \sum_{n=1}^{\infty} B_n \sinh(\lambda_n y) \sin(\lambda_n x)$$
(II - 29)

la C.A.L n°4 donne :

$$f(x) = \sum_{n=0}^{\infty} B_n \sinh(\lambda_n y) \sin(\lambda_n x)$$
(II-30)

$$\frac{\operatorname{Avec}^{\lambda_n} = \frac{n\lambda}{L}, \qquad n=1,2,\dots}{0 \le x \le L}$$

D'après la théorie des fonctions orthogonales, Une fonction arbitraire f(x) peut -si la série converge –être représentée par une série de fonctions

12 - 1 - 14-17

$$f(x) = \sum_{n=1}^{\infty} C_n \sin(\lambda_n x)$$
(II-31)

Où les C_n sont données par

$$C_{n} = \frac{2}{L} \int_{0}^{L} f(x) Sin(\lambda_{n} x) dx$$

avec $\lambda_{n} = \frac{n\lambda}{L}$, $n = 1, 2, 3...$ (II-32)

E.N.P 2002/2003

- 31 -

On voit que les constante Bn peuvent s'exprimer par:

$$B_{n}Sinh(\lambda_{n}H) = \frac{2}{L}\int_{0}^{L} f'(x)Sin(\lambda_{n}x')dx'$$
...
(II-33)

Permet de calculer Bn.

D'où la solution finale est :

$$u = \frac{2}{L} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \left(\frac{\sinh\left(\frac{n\pi y}{L}\right)}{\sinh\left(\frac{n\pi H}{L}\right)} \right) \sin\left(\frac{n\pi x}{L}\right)_0^L f(x') \sin\left(\frac{n\pi x'}{L}\right) dx' \quad (\text{II} - 34)$$

La série en question converge habituellement assez lentement, de sorte qu'un assez grand nombre de termes est nécessaire.

Si $f(x)=F_2 = constante, en y=H$,

$$\frac{u}{F_2} = 2\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \left(\frac{Sinh\left(\frac{n\pi y}{L}\right)}{Sinh\left(\frac{n\pi H}{L}\right)} \right) Sin\left(\frac{n\pi x}{L}\right)$$
(II - 35)

Dans ce cas, si la somme est écrite

$$\sum_{n=1,3,5..}^{\infty}$$

Le facteur $\frac{1-(-1)^n}{n\pi}$ devient $\frac{2}{n\pi}$

E C. C. S.

E.N.P 2002/2003

h 4 -

A State of a state of the state of the

- 32 -

$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{Sinh\left(\frac{n\pi y}{L}\right)}{Sinh\left(\frac{n\pi H}{L}\right)} \right) Sin\left(\frac{n\pi x}{L}\right) F2$$
(II - 36)

b) Deuxième cas :

en x=0,T=T1 ou u =T-T1=0, $\forall y$ en x=L,T=T1 ou u =T-T1=0, $\forall y$ en y=0,T=T1 ou u =F1 en x=H,T=T1 ou u =T-T1=0, $\forall x$

avec le changement de variables :

$$\begin{cases} \overline{\mathbf{x}} = \mathbf{x} \\ \overline{\mathbf{y}} = -\mathbf{y} + \mathbf{H} \end{cases}$$

TT

et la solution devient :

$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{Sinh\left(\frac{n\pi(-y+H)}{L}\right)}{Sinh\left(\frac{n\pi H}{L}\right)} \right) Sin\left(\frac{n\pi x}{L}\right) F_1$$
(II – 37)

II.4-2) Cas ou les deux cotes sont à la même température T1 et deux cote aux températures F1 et F2: Y

Pour le cas ou les deux cotes sont chargées, on procède par superposition des cas (II - 34) et (II - 35):

$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{nSinh\left(\frac{n\pi H}{L}\right)} Sin\left(\frac{n\pi x}{L}\right) \left(Sinh\left(\frac{n\pi(-y+H)}{L}\right) - F_1 + \left(Sinh\left(\frac{n\pi y}{L}\right)\right) - F_2 \right)$$
(II-38)

b) Deuxième cas (Fig II-5) :

E.N.P 2002/2003

ALL DING DURCH

- 34 -
pour ce cas on procède par changement de variables :

$$\begin{cases} \overline{x} = y \\ \overline{y} = x \end{cases}$$
$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{nSinh\left(\frac{n\pi L}{H}\right)} Sin\left(\frac{n\pi y}{H}\right) \left(Sinh\left(\frac{n\pi(-x+L)}{H}\right)\right) G_1 + \left(Sinh\left(\frac{n\pi x}{H}\right)\right) G_2 \right)$$
(II - 39)

II.4.3) Cas ou les quatre cotes sont aux températures F1,F2,G1 et G2:

••

Fig. II-6

Pour le cas ou les quatre cotes sont chargées, on procède par superposition des cas (II - 38) et (II - 39):

$$u = \frac{4}{\pi} \left(\sum_{n=1}^{\infty} \frac{1}{n.\operatorname{Sinh}\left(\frac{n\pi H}{L}\right)} \operatorname{Sin}\left(\frac{n\pi x}{L}\right) \left(\left(\operatorname{Sinh}\left(\frac{n\pi(-y+H)}{L}\right)\right) \operatorname{F}_{1} + \left(\operatorname{Sinh}\left(\frac{n\pi y}{L}\right)\right) \operatorname{F}_{2} \right) \right) + \sum_{n=1}^{\infty} \frac{1}{n\operatorname{Sinh}\left(\frac{n\pi y}{H}\right)} \operatorname{Sin}\left(\frac{n\pi y}{H}\right) \left(\left(\operatorname{Sinh}\left(\frac{n\pi(-x+L)}{H}\right)\right) \operatorname{G}_{1} + \left(\operatorname{Sinh}\left(\frac{n\pi x}{H}\right)\right) \operatorname{G}_{2} \right) \right) (II - 40)$$

E.N.P 2002/2003

- 35 -

Historiquement, la méthode de séparation des variables est peut être la plus ancienne méthode systématique de résolution des E.D.P, utilisée par D'Alembert, D.Bernoulli, et Euler environ 1750 l'ors de leur traitements de l'équation des ondes. Après, elle est considérablement raffinée et généralisée et elle reste une méthode très importante jusqu'aujourd'hui.

Son emploi reste limité à des cas relativement simples ce qui a mis l'accent sur la puissance des méthodes numériques dans le traitement des problèmes complexes.

Chapitre III :

La méthode des Différences Finies

III.1) INTRODUCTION:

Plus peut-être que tout autre domaine des mathématiques, les équations aux dérivés partielles étaient prédisposées à bénéficier de l'utilisation des ordinateurs, pour de nombreuses raisons. La plus importante est leur intervention dans de nombreux problèmes techniques. C'est d'ailleurs un problème d'hydrodynamique, dont la solution devait «améliorer» les premières bombes atomiques, qui a fait l'objet de la première application traitée sur ordinateur.

Une deuxième raison est la complexité des problèmes aux dérivées partielles. Pour s'en faire une idée, réfléchissons à ce que représente la résolution numérique d'un problème aux limites. Très schématiquement, on sera amené à résoudre un système de N équations à N inconnues, où N est de l'ordre de grandeur de (1/h)n; ici, h est le pas de discrétisation (dont dépendra la précision de la solution) et n le nombre de variables indépendantes. C'est dire que, même avec une approximation très grossière pour un problème simple, N se comptera en centaines pour deux variables et en milliers pour trois variables indépendantes. On n'oubliera pas, pour estimer ces ordres de grandeur, que le volume des calculs croît plus vite que N.

Une troisième raison vient donner toute son importance à la deuxième; c'est dans cette théorie que, plus encore que dans beaucoup d'autres branches des mathématiques, les situations où on dispose de solutions explicites sont rares. Il en est de même des solutions semi explicites sous forme de séries.

L'analyse numérique des équations aux dérivées partielles n'est pas née avec les ordinateurs, tant s'en faut; la situation est plus complexe. De toute façon, l'introduction de l'analyse numérique comme branche particulière des mathématiques est un fait relativement récent, qui exprime son extrême spécialisation.

Un des premiers travaux mathématiques sur les équations aux dérivées partielles – le mémoire de Daniel Bernoulli publié en 1753 – contient deux procédés d'approximation de la solution. L'un est celui des séries trigonométriques; l'autre consiste à remplacer la corde vibrante par un nombre fini de masses ponctuelles reliées par un fil élastique sans masse, ce qui donne une approximation du type différences finies. Il est vrai que, au XVIII^{eme} siècle, ces

E.N.P 2002/2003

In the Party in the stand

- 37 -

procédés étaient considérés comme des outils de démonstration et non comme des méthodes numériques. Quand Fourier, au début du XIX^{eme} siècle, reprend la méthode des séries trigonométriques, il l'applique à l'équation de la chaleur qu'il vient de trouver. Il est alors pleinement conscient de l'importance du calcul numérique des solutions que cette méthode permet. La résolution des équations aux dérivées partielles sans l'aide d'un ordinateur est maintenant limitée soit à des cas très particuliers, soit à l'approximation grossière de problèmes simples.

III.2) METHODE DES DIFFERENCES FINIS:

III.2.1) Introduction :

De nombreux problèmes sur les structures conduisent à la résolution d'équation aux dérivées partielles, c'est le cas pour les plaques en flexion, pour les barres de section non circulaire en torsion et aussi pour l'analyse bidimensionnelle et tridimensionnelle des contraintes. Quand, ces équations, sont adjointes des conditions de chargement ou des conditions aux limites compliquées, la résolution rigoureuse du système se présent comme un problème redoutable. La méthode des différences finies constitue alors un outil généralement efficace pour résoudre ces équations. Expressions fondamentales des différences finies peuvent être développées pour s'appliquer à des fonctions de deux variables ou plus. On peut choisir comme système de coordonnées soit le système cartésien qui est le cas dans notre étude².(wan)

L'avantage fondamental de la méthode des différences finies est l'approximation d'équations différentielles par des équations algébriques. En effet, il est procédé au remplacement d'une équation différentielles continue, dont l'espace solution est généralement de dimension infinie, par un ensemble d'équations algébriques dont l'espace solution est de dimension finie.

TE STA

E.N.P 2002/2003

AT MALE AND A DEPENDENT OF THE PARTY OF THE

III.2.2) Etapes de mise en œuvre :

La mise en ouvre de la méthode des différences finies se fait en trois étapes :

III.2.2.a) Etape de discrétisation :

Elle consiste à identifier un nombre fini de points discrets (nœuds) dans le domaine spatio- temporel d'intérêt. C'est en ces points que la solution exacte est approchée.

Dans le cas de cette étude, on se limite au régime stationnaire de la conduction, Le domaine est seulement spatial.

III.2.2.b) Etape d'approximation :

Elle consiste à remplacer les dérivés apparaissant dans l'équation différentielle par des approximations en différences discrètes. Ces approximations sont écrites en terme d'évaluations nodales de la fonction inconnue. Cette étape mène vers un ensemble d'équations algébriques avec des valeurs nodales discrètes comme inconnues.

III.2.2.c) Etape de résolution :

Elle consiste à résoudre le système d'équations algébriques obtenues à l'étape précédente, et permet l'obtention d'une approximation discrète de la solution de l'équation différentielle d'origine.

III.2.3) Théorème de Taylor- Analyse d'approximation en différences finies :

III.2.3.a) Théorème de Taylor (1D)

Soit une fonction $u(x) \in C^{N}[\omega_{1}, \omega_{2}]$, et soit x_{k} un point de $[\omega_{1}, \omega_{2}]$, alors pour tout point $x \in [\omega_{1}, \omega_{2}]$.

E.N.P 2002/2003

$$\mathbf{u}(\mathbf{x}) = \mathbf{u}(\mathbf{x}_{k}) + \frac{d\mathbf{u}}{d\mathbf{x}}\Big|_{\mathbf{x}_{k}} (\mathbf{x} - \mathbf{x}_{k}) + \frac{d^{2}\mathbf{u}}{d\mathbf{x}^{2}}\Big|_{\mathbf{x}_{k}} \frac{(\mathbf{x} - \mathbf{x}_{k})^{2}}{2!} + \dots + \frac{d^{N-1}\mathbf{u}}{d\mathbf{x}^{N-1}}\Big|_{\mathbf{x}_{k}} \frac{(\mathbf{x} - \mathbf{x}_{k})^{N-1}}{(N-1)!} + R^{N}$$
(III-1)
ou $R^{N} = \frac{d^{N}\mathbf{u}}{d\mathbf{x}^{N}}\Big|_{\mathbf{x}} \frac{(\mathbf{x} - \mathbf{x}_{k})}{N!}, \quad \xi \in [\mathbf{x}, \mathbf{x}_{k}]$

Corollaire : séries infinies de Taylor

Soit une fonction $u(x) \in C^{\infty}[\omega_1, \omega_2]$, et soit un point $x_k \in [\omega_1, \omega_2]$, alors pour tout $x \in [\omega_1, \omega_2]$ $u(x) = \sum_{n=0}^{\infty} \frac{d^n u}{dx^n} \bigg|_{x_k} \frac{(x - x_k)^n}{n}$

Le théorème de Taylor constitue un outil d'analyse des approximations en différences finies.

III.2.3.b) approximation en différences finies et opérateurs en différences finies :

$$\frac{du}{dx} = \lim_{h \to 0} \frac{u(x+h) - u(x)}{(x+h) - x} = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$
(III-2)

Dans la méthode des différences finies, il s'agit de remplacer la dérivée par le taux d'accroissement. Une approximation en différences finies d'une dérivée n'est pas unique.

1. $\frac{du}{dx}(x_i) \approx \frac{u_{i+1} - u_i}{x_{i+1} - x_i}$ (Forward differnce) différence avancée. 2. $\frac{du}{dx}(x_i) \approx \frac{u_i - u_{u-1}}{x_i - x_{i-1}}$ (Backward differnce) différence retardée. 3. $\frac{du}{dx}(x_i) \approx \frac{u_{i+1} - u_{i-1}}{x_{i+1} - x_{i-1}}$ (Central differnce) différence centrée. Approximation pour $\frac{d^2u}{dx^2}(x_i)$:

E.N.P 2002/2003

- 40 -

$$\frac{d^{2}u}{dx^{2}}\Big|_{x_{i}} \approx \frac{\frac{du}{dx}\Big|_{i+\frac{1}{2}} - \frac{du}{dx}\Big|_{i-\frac{1}{2}}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} \approx \frac{\left(\frac{u_{i+1} - u_{i}}{x_{i+1} - x_{i}}\right) - \left(\frac{u_{i} - u_{i-1}}{x_{i} - x_{i-1}}\right)}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}}$$
(III- 3)

si l'espacement nodal est constant : Δx

$$\frac{\mathrm{d}^2 \mathbf{u}}{\mathrm{d}\mathbf{x}^2}\Big|_{\mathbf{x}_i} \approx \frac{\mathbf{u}_{i+1} - 2\mathbf{u}_i + \mathbf{u}_{i-1}}{(\Delta \mathbf{x})^2}$$

 \mathbf{v}

Les opérateurs les plus utilisés en différences finies définis comme suit :

Forward difference Operator, Δ	$\Delta \mathbf{u}_{i} \equiv \mathbf{u}_{i+1} - \mathbf{u}_{i}$
Backward difference Operator, ∇	$\nabla u_{i} \equiv u_{i} - u_{i-1}$
Central difference Operator, δ	$\delta u_i \equiv u_{i+\frac{1}{2}} - u_{1-\frac{1}{2}}$

III.3) REPESENTATION DES DERIVEES PAR LES DIFFERENCES FINIES

Les dérivées d'une fonction y (x) sont définies comme étant la variation de y ou de ses dérivées par rapport à x et elles sont représentées de la façon suivante : Dérivée première :

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y(x) - y(x - \Delta x)}{\Delta x}$$

IL SAME

Dérivée seconde :

$$\frac{d^2 y}{dx^2} = \lim_{\Delta x \to 0} \frac{\Delta}{\Delta x} \left(\frac{\Delta y}{\Delta x} \right) = \lim_{\Delta x \to 0} \frac{\frac{y(x + \Delta x) - y(x)}{\Delta x} - \frac{y(x) - y(x - \Delta x)}{\Delta x}}{\Delta x}$$

E.N.P 2002/2003

in the start of the

- 41 -

Ainsi qu'on peut le voir sur la figure(III-1), quand Δx ne tend pas vers zéro mais a une valeur finie h les dérivées au point $x = x_n$ sont représentées par des expressions en fonction de différences finies, soit :

$$\left(\frac{\Delta u}{\Delta x}\right)_n = \frac{u_{n+1} - u_n}{h}$$
 ou $\frac{u_n - u_{n-1}}{h}$

~

Les différences d'ordre supérieur peuvent être déduits de la même façon. Le symbole Δ utilisé dans ces expressions est appelé opérateur de différence. Ainsi la différence première Δu Est $u_n - u_{n-1}$ Et la différence seconde $\Delta^2 u$ est $u_{n+1} - 2u_n + u_{n-1}$ les

dérivées $\frac{du}{dx}$, $\frac{d^2u}{dx^2}$, Etc., sont représentées respectivement par les différences finies Δu , $\Delta^2 u$ Etc., divisées par h,h², etc.

E.N.P 2002/2003

- 42 -

III.4) EXPRESSION DES DIFFERENCES FINIES EN COORDONNEES CARTESIENNES:

Les différences partielles finies d'uns fonction u = f(x, y) par rapport à une seule des variables x ou y s'expriment comme les différences finies ordinaires.

dans le cas des différences au centre , one en déduit les expressions suivantes :

$$\frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i-1,j}}{2h}, \qquad \frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$$
(III-4)

$$\frac{\partial u}{\partial y} = \frac{u_{i,j+1} - u_{i,j-1}}{2k}, \qquad \frac{\partial^2 u}{\partial y^2} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}$$
(III-5)

les indices i et j désignent la position des points pivots comme on peut le voir sur la figure (III-2) les différences finies par rapport à x et à y à la fois sont obtenues en prenant la première différences partielles dans une direction et en prenant la différences.

E.N.P 2002/2003

- 43 -

III-5) EXEMPLE:

de l'équation de poisson :

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{f}$$

$$\mathbf{k}^2 \mathbf{u}_{i+1,j} + \mathbf{k}^2 \mathbf{u}_{i-1,j} - 2(\mathbf{k}^2 + \mathbf{h}^2)\mathbf{u}_{i,j} + \mathbf{h}^2 \mathbf{u}_{i,j+1} + \mathbf{h}^2 \mathbf{u}_{i,j-1} = \mathbf{k}^2 \mathbf{h}^2 \mathbf{f}$$

exemple de l'équation de poisson

 $h=k=5m \Rightarrow u = 6.25f$

Pour un maillage 10×10 éléments, on retrouve: $u_5 = 7.3 \text{ lf}$

E.N.P 2002/2003

- 44 -

III-5) PRESENTATION DE L'ALGORITHME MDF :

On a développé un programme de calcul par MDF qui traité les cas de la plaque rectangulaire. Les etaps de calcul sont résumée comme ci-dessous:

R. A. A.

E.N.P 2002/2003

The search of the second second

Chapitre IV :

Présentation de la méthode des éléments finis

IV.1) INTRODUCTION:

La méthode des éléments finis (M.E.F) connaît un développement rapide et significatif dans la plupart de ses applications aux différents domaines des sciences appliquées. Les problèmes de transfert de chaleur bénéficient donc de l'outil numérique que représente cette méthode.

la M.E.F est essentiellement une méthode d'approximation d'une fonction inconnue sur un domaine continu par l'utilisation de fonctions connues, généralement polynomiales, sur un ensemble de sous domaines compatibles entre eux et représentant au mieux le milieu d'origine. Principalement, cette technique d'approximation est utilisée pour transformer les équations aux dérivées partielles en système d'équations algébriques.la formulation de la M.E.F peut se faire selon la principe des travaux virtuel.

IV.2) PRINCIPE DU TRAVAIL VIRTUEL :

Pour qu'un corps déformable soit en équilibre, il faut et il suffit que le travail des forces extérieures soit égale au travail de déformation pour tous champ de déplacement virtuel cinématiquement admissible (vérifiant les conditions aux limites) :

$$\delta \varpi = \delta u$$
 (IV-1)

Commençons par un exemple très simple, la déformation d'une tige élastique fixée à un bout et soumise à une force longitudinale F à l'autre. Imaginons cette tige composée de N petits ressorts accrochés bout à bout (ce sont les «éléments finis»). Au repos, le *i*-ème ressort va du point x_{i-1} au point x_i , avec $x_0 = 0$ et $x_N = L$, longueur de la tige. Appelons u_i le déplacement de x_i . Nous supposons les ressorts linéaires, c'est-à-dire qu'ils suivent une loi de Hooke, avec une constante que nous prendrons égale à $k_i / (x_i C x_{i-1})$, en ne supposant donc pas la tige homogène. Appliquons alors le principe des travaux virtuels à un déplacement de

l'extrémité du *i*-ème ressort (point qui, au repos, se trouve en x_i). On obtient

$$\begin{cases} k_{i} \cdot \frac{u_{i} - u_{i-1}}{x_{i} - x_{i-1}} - k_{i+1} \cdot \frac{u_{i+1} - u_{i}}{x_{i+1} - x_{i}} = 0, \\ k_{N} \cdot \frac{u_{N} - u_{N-1}}{x_{N} - x_{N-1}} = F. \end{cases}$$
(IV-2)

Ce système nous permet de calculer une solution approchée du problème. (Dans la première de ces équations, le premier terme est le travail effectué sur le *i*-ème ressort, le second sur le (i + 1)-ème ressort; on obtient l'équation en sommant élément par élément.) Nous sommes ainsi parvenus à une solution approchée sans tenir compte de l'équation différentielle qui s'écrit comme indique ci- dessous et dont la solution exacte peut étre obtenue analytiquement.

$$\frac{d}{dx}\left[k(x)\frac{du}{dx}\right] = 0,$$
(IV-3)

Ce point est typique de la première phase de l'histoire des méthodes d'éléments finis qui ont surtout été développées par des ingénieurs sur la base de considérations physiques où l'équation aux dérivées partielles n'apparaissait pas. C'est la raison pour laquelle ces méthodes sont restées quelque temps cachées aux mathématiciens. Mais la situation avait ses inconvénients, en particulier un gaspillage d'énergie du fait qu'il fallait réinventer une même méthode pour chaque champ nouveau d'application.

1

ENP 2002/2003

IV.3) APPROXIMATION PAR ELEMENTS FINIS:

IV.3.1) Approximation nodales:

Un modèle mathématique d'un système physique fait intervenir plusieurs variables ou fonctions dites exactes $u_{ex}(x)$: température, vitesses, épaisseurs, etc. Celles-ci sont représentées par des fonctions « approchée » u(x) telles que la différence : $e(x) = u(x) - u_{ex}(x)$, soit assez « petite » pour l'objectif visé.

Pour construire une fonction « approchée », nous pouvons :

- Choisir un ensemble finis de fonctions dépendant de *n* paramètres $a_i \rightarrow (u(x, a_1, a_2, ..., a_n))$.
- Déterminer les paramètres a_i , en faisant par exemple coïncider $u_{ex}(x)$ et u(x) en n points $x_1, x_2, ..., x_n$, c'est à dire en annulant e(x) en ces n points.

Le plus souvent, la fonction approchée u est linéaire en a_i :

$$u(x) = P_1(x)a_1 + P_2(x)a_2 + \dots + P_n(x)a_n$$
(IV-4)

$$u(x) = \langle P_1(x) \quad P_2(x) \quad \dots \quad P_n(x) \rangle \begin{cases} a_1 \\ a_2 \\ \dots \\ a_n \end{cases} = \langle P \rangle \{a\}$$
(IV-5)

Où :

- *P_i*: Sont des fonctions connues linéairement indépendantes, telles que des polynômes ou des fonction trigonométriques.
- a_i : Sont les paramètres d'approximation (paramètres généraux).

Cependant nous pouvons choisir comme paramètres a_i les valeurs de la fonction u_{ex} en *n* points appelés *nœuds de coordonnées* $x_1, x_2, ..., x_n$. Imposons de plus que la fonction approchée *u* coïncide avec la fonction u_{ex} en ces nœuds :

1.

$$u(x_i) = u_{ex}(x_i) = u_i$$

ENP 2002/2003

The state of the second

- 48 -

La fonction approchée (IV-4) s'écrit :

$$u(x) = N_1(x)u_1 + N_2(x)u_2 + \dots + N_n(x)u_n$$

$$u(x) = \langle N_1(x) \quad N_2(x) \quad \dots \quad N_n(x) \rangle \begin{cases} u_1 \\ u_2 \\ \dots \\ u_n \end{cases} = \langle N \rangle \{u_n\}$$
(IV-6)

 u_i : Sont les paramètres nodaux ou variables nodales d'approximation.

P(x): Fonctions de base de l'approximation

N(x): Les fonctions d'interpolation.

IV.3.2) Eléments de référence:

De manière à simplifier la définition analytique des éléments de forme complexe, introduisons la notion d'élément de référence : un élément de référence V^r est un élément de forme simple, repéré dans un espace de référence, qui peut être transformer en chaque élément réel V^e par une transformation géométrique τ^e . Par exemple le cas d'un triangle:

Figure IV.1 : relation entre élément de référence et élément réel

1

ENP 2002/2003

7

La transformation τ^e définit les coordonnées \mathbf{x}^e de chaque point de l'élément réel à partir des coordonnées ξ du point correspondant de l'élément de référence : $\tau^e : \xi \to x^e = x^e(\xi)$

La transformation τ^e dépend de la forme et de la position de l'élément réel, donc des coordonnées des nœuds géométriques qui le définissent. Il y a donc une transformation τ^e différente pour chaque élément réel : $\tau^e : \xi \to x^e = x^e (\xi, x_i, x_j,)$

où x_i, x_j, \dots sont les coordonnées des nœuds géométriques qui appartiennent à l'élément e. Nous utiliserons une transformation τ linéaire par rapport aux coordonnées $\{x_k, y_y\}$ des nœuds géométriques de l'élément réel V^e :

$$\tau: \xi \to x(\xi) = \langle \overline{N}(\xi) \rangle \{x_n\}$$
(IV-7)

où \overline{N}_i sont les fonctions de transformation géométrique.

pour l'approximation sur un élément de référence Nous choisissons sur le domaine V un ensemble de n nœuds d'interpolation de coordonnées (x_i) confondues ou non avec les nœuds géométriques . Sur chaque élément V nous utilisons une approximation nodale de type (IV.5) de la fonction exacte. $u_{ex}(x)$.

$$u_{ex}(x) \approx u(x) = \begin{bmatrix} N_1(x) & N_2(x) & \dots & N_n(x) \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_n \end{cases} = \begin{bmatrix} N(x) \end{bmatrix} \{ u_n \} \quad (IV-8)$$

Où : x appartient au domaine V^e

ENP 2002/2003

 $u_1, u_2, ..., u_n$ sont les valeurs de u_{ex} à l'énième nœud d'interpolation de l'élément sur l'élément de référence.

N(x): Sont les fonctions d'interpolation sur l'élément de référence.

Remplaçons l'approximation sur l'élément réel par l'approximation correspondante sur l'élément de référence :

$$u_{ex} \approx u(\xi) = \langle N(\xi) \rangle \{u_n\}$$
(IV-9)

à partire de l'équation (éq.IV.7), on a :

$$\mathfrak{r}: \xi \to x(\xi) = \langle \overline{N}(\xi) \rangle \{x_n\}$$
(IV-10)

 $\overline{N}(\xi)$: Sont des polynômes en ξ appelées fonctions de transformation géométrique

- τ : Est la transformation géométrique permettant de remplacer la définition analytique de chaque élément dans l'éspace (x) par la définition analytique plus simple, de son élément de référance.
- u_n : Sont les variables nodales de l'élément.

 $N(\xi)$: Les fonctions d'interpolation sur l'élément de référence.

En général, les fonctions N(x) ne sont utilisées que pour des éléments simples. Elles sont le plus souvent remplacées par les fonctions $N(\xi)$ où (x) et (ξ) , et sont liés par la transformation (τ) définie par (IV-10).

Pour la Construction des fonctions $N(\xi)$ et $\overline{N}(\xi)$, on recommande de suivre les etapes suivants:

- 1. Choix de la base polynomiale $\langle P_i(\xi) \rangle$
- 2. Evaluation de la matrice nodale $[P_n] = [P_j(\xi_i)]$; $i, j=1, 2, ..., n_d$
- 3. Inversion de la matrice nodale $[P_n]$
- 4. Calcul de $\langle N \rangle$ aux points ξ désirés : $\langle N(\xi) \rangle = \langle P(\xi) \rangle [P_n]^{-1}$
- 5. Calcul de la matrice $[B_{\xi}]$.

ENP 2002/2003

Choix de la base polynomiale:

Exprimer $u(\xi)$ sur l'élément de référence sous la forme d'une combinaison linéaire de fonctions connues indépendantes $(P_i(\xi))$. Le choix de ces fonctions est l'une des opérations de base de la méthode des éléments finis :

$$u(\xi) = \langle P_1(\xi) \ P_2(\xi) \ \dots \ P_n(\xi) \rangle \begin{cases} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{cases} = \langle P(\xi) \rangle \{a\}$$
(IV-11)

Où :

 $\{a\}$: Sont dites variables généralisées de l'élément par opposition a variables nodales $\{u_n\}$. $\langle P(\xi) \rangle$: Sont les approximations généralisées par opposition aux approximations nodales $\{u_n\}$.

L'ensemble des fonctions $P_i(\xi)$ constitue la base polynomiale de l'approximation, son nombre de termes doit être égal au nombre de degré de liberté (n_d) de l'élément. Nous utilisons le plus souvent une base polynomiale complète.

Pour construire les fonctions de transformation géométrique \overline{N} , choisissons de la même manière des expressions de (x) de la forme.

$$\begin{cases} x(\xi) = \langle \overline{P}(\xi) \rangle \{a_x\} \\ y(\xi) = \langle \overline{P}(\xi) \rangle \{a_y\} \\ z(\xi) = \langle \overline{P}(\xi) \rangle \{a_z\} \end{cases}$$
(IV-12)

le nombre de fonctions $\overline{P}(\xi)$ et de coefficients $\{a_x\}$, $\{a_y\}$, $\{a_z\}$ est égal au nombre de nœuds géométrique de l'élément.

ENP 2002/2003

The second s

* <u>Relations entre variables généralisées et variables nodales:</u>

Sachant qu'à chaque nœud la fonction $u(\xi)$ prend la valeur $u_i = u_{ex}(\xi_i)$ donc :

$$\begin{cases} u_{1} \\ u_{2} \\ \vdots \\ \vdots \\ u_{nd} \end{cases} = \{u_{n}\} = \begin{cases} \langle P_{1}(\xi_{1}) & P_{2}(\xi_{1}) & \dots & P_{nd}(\xi_{1}) \rangle \\ \langle P_{1}(\xi_{2}) & P_{2}(\xi_{2}) & \dots & P_{nd}(\xi_{2}) \rangle \\ \vdots \\ \langle P_{1}(\xi_{2}) & P_{2}(\xi_{2}) & \dots & P_{nd}(\xi_{2}) \rangle \end{cases}$$
(IV. 13)

D'où :

$$\{u_n\} = [P_n]\{a\} \Longrightarrow \{a\} = [P_n]^{-1}\{u_n\}$$
(IV-14)

Et en écrivant les relations (éq.IV.24) aux nœuds géométriques on aboutit à :

$$\begin{cases} \{x_n\} = [\overline{P}_n] \{a_x\} \\ \{y_n\} = [\overline{P}_n] \{a_y\} \\ \{z_n\} = [\overline{P}_n] \{a_z\} \end{cases}$$
(IV-15)

Donc, on pourra exprimer les variables généralisées $\{a\}$ en fonction des coordonnées nodales généralisées par :

$$\{a_x\} = [\overline{P}_n]^{-1} \{x_n\}$$

$$\{a_y\} = [\overline{P}_n]^{-1} \{y_n\}$$

$$\{a_z\} = [\overline{P}_n]^{-1} \{z_n\}$$

$$(IV-16)$$

• Expression des fonctions N et \overline{N} :

Reportant (éq.IV.14) dans (éq.IV.11) l'équation devient :

ENP 2002/2003

- 53 -

$$u(\xi) = \langle P(\xi) \rangle [P_n]^{-1} \{u_n\}$$

$$u(\xi) = \langle N(\xi) \rangle \{u_n\}$$
(IV.17)

Où :

$$\langle N(\xi) \rangle = \langle P(\xi) \rangle [P_n]^{-1}$$
 (IV.18)

Idem , pour le cas des fonctions $\overline{N}\,$ on obtient :

$$\{x(\xi)\} = \langle \overline{N} \rangle \{x_n\}$$

$$\{y(\xi)\} = \langle \overline{N} \rangle \{y_n\}$$

$$\{z(\xi)\} = \langle \overline{N} \rangle \{z_n\}$$

$$(IV-19)$$

Où :

$$\langle \overline{N}(\xi) \rangle = \langle \overline{P}(\xi) \rangle [\overline{P}_n]^{-1}$$
 (IV-20)

***** Dérivation de la fonction $u(\xi)$:

Par dérivation de (éq.IV.17), nous obtenons :

$$\begin{cases}
 u_{\xi} \\
 u_{\eta} \\
 u_{\zeta}
 \end{bmatrix} = \begin{bmatrix}
 \langle P_{,\xi} \rangle \\
 \langle P_{,\eta} \rangle \\
 \langle P_{,\eta} \rangle
 \end{bmatrix} \begin{bmatrix}
 P_n
]^{-1} \{u_n\} = \begin{bmatrix}
 \langle N_{,\xi} \rangle \\
 \langle N_{,\eta} \rangle \\
 \langle N_{,\zeta} \rangle
 \end{bmatrix} \{u_n\} = \begin{bmatrix}
 B_{\xi}
] \{u_n\}.$$
(IV.21)

la notation indicielle suivante veut dire : $f_{,x} \equiv \frac{\partial f}{\partial x}$

15

ENP 2002/2003

A CONTRACTOR OF A CONTRACTOR O

la jacobienne de la transformation τ , qui lient les dérivées par rapport aux coordonnée normalisées et celles en coordonnées cartésiennes, s'écrit :

$$\begin{cases} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \zeta} \\ \frac{$$

Ce que nous noterons :

$$\left\{\frac{\partial}{\partial\xi}\right\} = [J]\left\{\frac{\partial}{\partial x}\right\} \operatorname{et}\left\{\frac{\partial}{\partial x}\right\} = [J]^{-1}\left\{\frac{\partial}{\partial\xi}\right\}$$
(IV.23)

Où : [J] est la matrice jacobienne de la transformation géométrique.

1. 1.

Ainsi, on arrive au changement de variable permettant de passer de l'intégrale d'une fonction f sur l'élément réel V^e à une intégration simple sur l'élément de référence V' (cas de la matrice de rigidite).

$$K = \int_{V'} \left[B_{\xi} \right]^{T} \left[D \right] \left[B_{\xi} \right] det(J) d\xi d\eta d\zeta$$
(IV-24)

ENP 2002/2003

:

Chapitre IV:

IV.4) DERIVATION DES EQUATIONS POUR DE LA MEF :

IV.4.1) approche variationnelle :

Dans cette approche, on considère la minimisation de la fonctionnelle I donnée par l'équation (IV-1) qui satisfait les C.A.L précisés.

L'équation de Poisson: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{q}{\lambda} = 0$ (IV-25)

on pose $\frac{q}{\lambda} = -f$, l'équation (IV-39) devient:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{f}$$
(IV-26)

IV.4.1.1) Etapes de dérivation des équations de la MEF :

Etape Nº1 : diviser le domaine V en E éléments finis pour chaque nœud.

Etape N°2 : adopter une forme convenable de la variation de température *u en* chaque élément fini et exprimer $u^{(e)}(x, y)$ en élément *e* par :

$$u^{(e)}(x,y,t) = [N(x,y)] \vec{u}^{(e)}$$
 (IV-27)

Etape N°3 : exprimer la fonctionnelle l comme étant la somme des quantités élémentaires I^(e) comme :

$$I = \sum_{e=1}^{E} I^{(e)}$$
 (IV-28)

$$I^{(e)} = \iint_{A^{(e)}} \left[k_x \left(\frac{\partial u^{(e)}}{\partial x} \right)^2 + k_y \left(\frac{\partial u^{(e)}}{\partial y} \right)^2 + -2(q) u^{(e)} \right] dA \qquad (IV-29)$$

ENP 2002/2003

- 56 -

1.1.1.1.1.1

pour la minimisation de la fonctionnelle I ,on utilise les conditions nécessaires :

$$\frac{\partial I}{\partial u_i} = \sum_{e=1}^{E} \frac{\partial I^{(e)}}{\partial u_i} = 0, i = 1, 2, \dots, M$$

avec M :le nombre total des variables nodales, de l'équation (IV-43),on a :

$$\frac{\partial I^{(e)}}{\partial u_i} = \iint_{A^{(e)}} \left[k_x \cdot \frac{\partial u^{(e)}}{\partial x} \cdot \frac{\partial}{\partial u_i} \left(\frac{\partial u^{(e)}}{\partial x} \right) + k_y \cdot \frac{\partial u^{(e)}}{\partial y} \cdot \frac{\partial}{\partial u_i} \left(\frac{\partial u^{(e)}}{\partial y} \right) - (q) \frac{\partial u^{(e)}}{\partial u_i} \right] dA \qquad (IV-30)$$

L'équation (IV-41) donne

$$\frac{\partial u^{(e)}}{\partial x} = \left[\frac{\partial N_1}{\partial x} \frac{\partial N_2}{\partial x} \dots \frac{\partial N_p}{\partial x} \right] \vec{u}^{(e)}
\frac{\partial}{\partial u_i} \left(\frac{\partial u^{(e)}}{\partial x} \right) = \frac{\partial N_i}{\partial x}
\frac{\partial u^{(e)}}{\partial u_i} = N_i$$
(IV-31)

Ainsi, l'équation (IV-44) s' exprime par :

$$\frac{\partial I^{(e)}}{\partial u} = \left[k^{(e)}\right] \vec{u}^{(e)} - \vec{P}^{(e)} \tag{IV-32}$$

$$K_{ij}^{(e)} = \iint_{\mathcal{A}^{(e)}} \left(k_x \frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + k_y \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} + \dots \right) dA$$
(IV-33)

$$P_i^{(e)} = \iint_{A_i^{(e)}} qN_i dV \tag{IV-34}$$

et

ENP 2002/2003

T

Etape N°4 : Réécrire les équations. (IV-42) dans la matrice de forme comme suivant :

$$\frac{\partial I}{\partial u} = \sum_{e=1}^{E} \left(\left[K^{(e)} \right] u^{(e)} - \vec{P}^{(e)} \right) = \vec{0}$$
 (IV-35)

Où :

$$\vec{u} = \begin{cases} u_1 \\ u_2 \\ \vdots \\ \vdots \\ \vdots \\ u_p \end{cases}$$
: Vecteur température des variables nodales du système.

en utilisant le processus d'assemblage, l'équation (IV-49) devient :

V. CI

$$[K] = \sum_{e=1}^{E} [K^{(e)}]$$
(IV-36)

$$\vec{P} = \sum_{e=1}^{E} \vec{P}^{(e)}$$
 (IV-37)

ENP 2002/2003

TATATA AND TATATA AND A MARKED AND A PARTY OF

5

IV.5) EXEMPLE :

Construction des fonctions $N(\xi)$ d'un élément quadrilatéral isoparamétique à 4 nœuds.

Puisque l'élément est isoparamétique, les nœuds sont à la fois nœuds géométriques et d'interpolation.

a) Choix de la base polynomiale:

nous avons $n_d = 4$ variable nodales, et ne pouvons donc pas utiliser un polynôme complet. le meilleur choix, qui respecte la symétrie et la continuité de u entre les éléments, est une base bilinéaire en ξ et η

$$\langle P \rangle = \langle 1 \xi \eta \xi \eta \rangle.$$

notons que $u(\xi) = \langle P \rangle \{a\}$ devient linéaire sur chaque coté $\xi = \pm 1$ et $\eta = \pm 1$.

ENP 2002/2003

A State of the second s

- 59 -

b) Evaluation de $[P_n]$:

Evaluons $\langle P(\xi) \rangle$ en chacun des 4 nœuds de coordonnées ξ_i :

$$\begin{bmatrix} P_n \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \qquad \{\xi_n\} = \begin{cases} -1 \\ 1 \\ 1 \\ -1 \end{cases} \qquad \{\eta_n\} = \begin{cases} -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{cases}$$

c) Inversion de $[P_n]$:

Dans ce cas, la matrice $[P_n]$ est orthogonale puisque les produits scalaires de ses différentes colonnes sont nuls. Chaque vecteur colonne a pour norme 4. Donc:

d) Expression de $\langle N \rangle$:

$$\langle N \rangle = \langle N_1 \ N_2 \ N_3 \ N_4 \rangle = \langle P \rangle [P_n]^{-1}$$

$$\langle N \rangle = \left\langle \frac{1 - \xi - \eta + \xi \eta}{4}; \frac{1 + \xi - \eta - \xi \eta}{4}; \frac{1 + \xi + \eta + \xi \eta}{4}; \frac{1 - \xi + \eta - \xi \eta}{4} \right\rangle$$

$$\langle N \rangle = \frac{1}{4} \langle (1 - \xi)(1 - \eta); (1 + \xi)(1 - \eta); (1 + \xi)(1 + \eta); (1 - \xi)(1 + \eta) \rangle.$$

L'élément est isoparamétrique:

$$\left< \overline{N} \right> \equiv \left< N \right>$$

A solution

ENP2002/2003

- 60 -

$$\begin{aligned} \mathbf{x}(\xi,\eta) &= \left\langle \mathbf{N}_{1} \ \mathbf{N}_{2} \ \mathbf{N}_{3} \ \mathbf{N}_{4} \right\rangle \begin{cases} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \end{cases} \\ \mathbf{y}(\xi,\eta) &= \left\langle \mathbf{N}_{1} \ \mathbf{N}_{2} \ \mathbf{N}_{3} \ \mathbf{N}_{4} \right\rangle \begin{cases} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{3} \\ \mathbf{y}_{4} \end{cases}$$

e) Détermination de [J]:

The thready of the L. Reits

Dérivation les fonction \overline{N} on obtenir, selon (IV.27):

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$
$$\begin{bmatrix} J \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -(1-\eta) & (1-\eta) & (1+\eta) & -(1-\eta) \\ -(1-\xi) & -(1+\xi) & (1+\xi) & (1-\xi) \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{bmatrix}$$

Dans le cas particulier ou l'élément est rectangulaire de cotés a et b $x_2=x_3=a$ et $x_1=x_4=0$ $y_3=y_4=b$ et $y_1=y_2=0$

T L

- 61 -

Tel que : a=b=10 Donc: det(J)=25

De (IV-8)

$$\begin{cases} u_{\xi} \\ u_{\eta} \end{cases} = \begin{bmatrix} \langle P_{,\xi} \rangle \\ \langle P_{,\eta} \rangle \end{bmatrix} [P_n]^{-1} \{ u_n \} = \begin{bmatrix} \langle N_{,\xi} \rangle \\ \langle N_{,\eta} \rangle \end{bmatrix} \{ u_n \} = \begin{bmatrix} B_{\xi} \end{bmatrix} \{ u_n \}$$
$$\begin{bmatrix} \langle N_{,\xi} \rangle \\ \langle N_{,\eta} \rangle \end{bmatrix} = \begin{bmatrix} B_{\xi} \end{bmatrix}$$

Donc:

Par ailleurs:

$$B_{\xi} = \frac{1}{4} \begin{bmatrix} -(1-n) & (1-n) & (1+n) & -(1-n) \\ -(1+\xi) & -(1+\xi) & (1+\xi) & (1-\xi) \end{bmatrix}$$
D'ou:

$$K = \int_{-1-1}^{1} B^{T} . k. B. det(J). d\xi. d\eta$$

1	1	0
Avec:		1

Donc:

$$K=25\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} \end{pmatrix}$$

TIL

ENP 2002/2003

Landstan (* 1992) 347-1541

IV-6) CONVERGENCE DE LA METHODE DES ELEMENTS FINIS :

La convergence de la solution éléments finis vers la solution exacte au fur et à mesure que le nombre d'éléments augmente peut se faire soit d de manière monotone soit de manière non monotone.

IV.6.1) Convergence monotone :

Les éléments doivent être complets et compatibles.

a) Elément complet :

Les fonctions de déplacement doivent être en mesure de représenter :

- déplacement de corps rigide : $\sum h = 1$
- état de déformation constante

A mesure que le nombre d'éléments dans un maillage, augment la taille de l'élément devient petite et la déformation au sein de l'élément tend vers une valeur constante.

b) Elément compatible :

Les déplacements au sein des éléments et à travers les limites séparant les éléments doivent être continue. Physiquement la compatibilité assure qu'il n'y aura pas apparition d'espace ou vides entre éléments lorsque l'assemblage est chargé.

La comptabilité est difficile à satisfaire lorsque les d.d.l. aux nœuds sont dépendants (déplacement, rotation) : flexion de plaques, Coques. Il est avantageux d'avoir des d.d.l.indépendants.

 $\begin{array}{c} \text{complétude} \\ \text{compatibilité} \end{array} \Rightarrow \text{Convergence monotone} \end{array}$

ENP 2002/2003

IV.6.2) Convergence non monotone :

En pratique, nous remarquons souvent que la solution éléments finis converge vers la solution exacte malgré l'emploi d'éléments ne préservant pas la continuité inter éléments. Il s'agit dans ce cas de convergence non monotone due à l'utilisation d'éléments incompatibles.

III-7) PRESENTATION DE L'ALGORITHME MEF :

On a mis au point un programme MEF qui traite tout les cas du problème étudié.

Les étapes de calcul sont résumées comme ci-dessous:

ENP 2002/2003

......

Chapitre V:

Etude comparative des résultats

V.1) INTRODUCTION :

Dans un premier temps, nous allons présenter les résultats de la résolution de l'équation de poisson par les trois méthodes : analytique (ANA), Galerkine (GLK) et différence finies (MDF), (Cas traité dans les chapitres I et III).

On passe à la résolution de l'équation de Laplace, pour les différents cas de chargements.

À noter que pour la MEF on a utilisé trois types de maillage :

- un maillage régulier semblable à celui utilisé en MDF,
- un maillage raffiné régulier : on a augmenter régulièrement le nombre de d.d.l.
- un maillage raffiné non régulier : on a raffiné le maillage aux limites de la plaque.

Notations:

Notation	Signification
u10x10	u obtenu par MDF maillage de 10x10 éléments.(10 suivant x et 10 suivant y).
Glk1	u obtenu par GLK avec un seul paramètre: a ₁
u1	u obtenu en y=1m.
Emax	L'erreur maximale obtenu dans le cas de chargement indiqué.

E.N.P 2002/2003

ALL PROPERTY AND

- 66 -

V.2) Equation de Poisson :

a) Étude de convergence de la MDF :

Fig.V-1: Variation de la température à mi-hauteur.

b) Étude de convergence de la GLK :

u (en ° C)

E.N.P 2002/2003

- 67 -
c) Comparaison ANA-MDF :

Fig.V-3: Variation de la température en fonction de la hauteur I d) Comparaison GLK-MDF :

E.N.P 2002/2003

- 68 -

a) Cas de chargement A :

F1 = 0 F2 = 0 $G1 \neq 0$ G2 = 0

b) Cas de chargement B :

 $\begin{cases} F1 = 0\\ F2 \neq 0\\ G1 \neq 0\\ G2 = 0 \end{cases}$

c) Cas de chargement C :

F1 = 0 F2 = 0 $G1 \neq 0$ $G2 \neq 0$

d) Cas de chargement D :

 $\begin{aligned} F1 &= 0\\ F2 \neq 0\\ G1 \neq 0\\ G2 \neq 0 \end{aligned}$

Notation:

Le potentiel est indiqué comme suivant:

Par exemple, un potentiel de 100° C pour le cas A est noté ainsi : A100.

E.N.P 2002/2003

TERMENT

F

c) Maillage raffiné non régulier :

Cas de chargement A:

Fig. .V.8 : Maillage raffiné non régulier

TE - FT -

E.N.P 2002/2003

NUM MANAGERY (1)

righter waterist entry for

F

> Cas de la plaque carré :

a) Maillage régulier :

Cas de chargement B:

Fig. V-9 : Maillage régulier

E.N.P 2002/2003

- 72 -

b) Maillage raffiné non régulier :

Cas de chargement B:

E.N.P 2002/2003

- 73 -

V.3.1) VARIATION DE LA TEMPERATURE EN FONCTION DE LA HAUTEUR:

> Cas de la plaque rectangulaire:

Fig.V-11: Variation de la température en fonction de la hauteur H.

E.N.P 2002/2003

c) Cas de chargement C :

Fig.V-13: Variation de la température en fonction de la hauteur H.

d) Cas de chargement D :

E.N.P 2002/2003

- 75 -

8

Cas de la plaque carré:

E.N.P 2002/2003

Fig.V-17: Variation de la température en fonction de la hauteur H.

E.N.P 2002/2003

- 77 -

V.3.2) COMPARAISON ANA-MDF:

Cas de la plaque rectangulaire:

a) Cas de chargement A100 : y=1,3 m : Emax=6 %

Fig.V-19: Variation de la température en fonction de la hauteur H.

E.N.P 2002/2003

T 17

τ.

d) Cas de chargement D150 : y=1m : Emax=3 %

5

E.N.P 2002/2003

٣

Cas de la plaque carré:

a) Cas de chargement A100 : y=1,9m : Emax=2 %

Fig.V-23: Variation de la température en fonction de la hauteur H.

E.N.P 2002/2003

- 80 -

.

Fig.V.-25: Variation de la température en fonction de la hauteur H.

Fig.V-26 Variation de la température en fonction de la hauteur H.

The bar of the

V. 3.3) COMPARAISON MEF-MDF:

- > Cas de la plaque rectangulaire:
- Maillage régulier:

a) Cas de chargement A 100: y=1,3m : Emax=17 %

Fig.V-30: Variation de la température en fonction de la hauteur H

E.N.P 2002/2003

.....

- 82 -

a) Cas de chargement A 150: y=1,3m : Emax=17 %

Fig.V-32: Variation de la température en fonction de la hauteur H.

b) Cas de chargement B150 : y=3m : Emax=15 %

Fig.V-33: Variation de la température en fonction de la hauteur H.

E.N.P 2002/2003

- 83 -

Maillage régulier (tableau):

a) Cas de chargement A100 : y=1,3m : Emax=17 %

	Y X	0		2	3	4	5	6
MEF	1	100,000	36,590	16,260	7.043	2 983	1 094	0.000
MDF	1	100	43,193	19.62	9.057	4.092	1,578	0,000
E	%	0	15	17	22	27	31	0
MEF	2	100,000	53,580	22,920	9,965	4,219	1 547	0.000
MDF	2	100	53,154	26,228	12,518	5 731	2 222	0,000
Erreur	%	0	1	13	20	26	30	0

Tab.V-1

b) Cas de chargement A150 : y=1,3m : Emax=17 %

-	y X	0	1	2	3	4	5	6
MEF	1	150,000	54,890	24.390	10,570	4 475	1 640	0.000
MDF	1	150	64,79	29,429	13,586	6,138	2 368	0,000
E	%	0	15	17	22	27	31	0
MEF	2	150,000	80,370	34,380	14.950	6.329	2 320	0.000
MDF	2	150	79,73	39,342	18,778	8,596	3 333	0,000
Erreur	%	0	1	13	20	26	30	0

Tab.V-2

Maillage régulier raffiné:

b) Cas de chargement A150 : y=1,3m : Emax=7%

ł	y X	0	1	2	3	4	5	6
MEF	1	150.000	62.780	27.290	12.160	5.300	1.987	0 000
MDF	1	150	64.79	29.429	13.586	6,138	2 368	0.000
E	%	0	3	7	10	14	16	0
MEF	2	150.000	81.200	38.070	17.160	7.493	2.810	0.000
MDF	2	150	79.73	39.342	18.778	8.596	3.333	0
Erreur	%	0	2	3	9	13	16	0

Tab.V-3

¥ I ···

E.N.P 2002/2003

- 84 -

Maillage raffiné non régulier:

a) Cas de chargement A100 : y=1,3m : Emax=9 %

	Y X	0	1	2	3	4	5	6
MEF	1	100,000	42,120	17.800	7,751	3 291	1 212	0.000
MDF	1	100	43,193	19.62	9.057	4 092	1.578	0,000
E	%	0	2	9	14	20	23	0
MEF	2	100,000	55,070	25,170	10,940	4 644	1710	0.000
MDF	2	100	53,154	26,228	12,518	5 731	2 222	0,000
Erreur	%	0	4	4	13	19	23	0

1000		
9	h V - 4	
	Nº 1 1	

b) Cas de chargement A150 : y=1,3m : Emax=9%

	Y X	0	1	2	3	4	5	6
MEF	1	150,000	63,180	26,700	11 630	4 937	1 817	0.000
MDF	1	150	64,79	29,429	13 586	6 138	2 368	0,000
E	%	0	2	9	14	20	23	0
MEF	2	150,000	82,610	37,750	16 400	6 966	2 565	0.000
MDF	2	150	79,73	39.342	18,778	8,596	3 333	0,000
Erreur	%	. 0	4	4	13	19	23	0

Tab.V-5

-p.

and the second second second second second

- 85 -

7

- > Cas de la plaque carré:
- Maillage régulier:

a) Cas de chargement A 100: y=1,9m : Emax=14 %

Fig.V-34: Variation de la température en fonction de la hauteur H.

1 17

E.N.P 2002/2003

Section .

a) Cas de chargement A 150: y=1,9m : Emax=14 % u (en ° C) 150 - → MEF 130 --- MDF 110 90 70 50 30 10 -10 0 x (en m) 2 3 1 4 5 6 7 8 9 10

Fig.V-36: Variation de la température en fonction de la hauteur H.

b) Cas de chargement B150 : y=1,9m : Emax=14 %

-

E.N.P 2002/2003

the second second second second

....

Maillage régulier (tableau) : ٠

a) Cas de chargement B100 : y=1m : Emax=14 %

y∖x		0	1	2	3	4	5	6	7	8	9	10
MEF	1	100	43.200	27.130	19.290	14.620	11.360	7.589	6.460	4.282	2.139	0
MDF	1	100	50	30.190	20.761	15.406	11.829	9.701	6.680	4.43	2.215	0
Erreur	%	0	14	10	7	5	4	3	3	3	3	0
MEF	2	100	88.310	77.260	67.230	58.150	49.630	41.110	32.060	22.160	11.360	0
MDF	2	100	88.171	77.160	67.279	58.369	50	41.631	32.721	22.840	11.829	0
Erreur	%	0	0	0	0	0	1	1	2	3	4	0

b) Cas de chargement B150 : y=1m : Emax=14 %

y∖ x		0	1	2	3	4	5	6	7	8	9	10
MEF	1	150	64.800	40.700	28.930	21.940	17.040	13.140	9.690	6.423	3.208	0
MDF	1	150	57.000	45.285	31.142	23.109	17.744	13.607	10.020	6.645	3.222	0
Erreur	%	0	14	10	7	5	4	3	3	3	3	0

Maillage raffiné non régulier: **

a) Cas de chargement B100 : y=1m : Emax=6 %

[Y X	0	1	2	5	8	9	10	
MEF	1	100,000	48,500	28,260	11,390	4,280	2,138	0,000	8
MDF	1	100	50	30,19	11,829	4,43	2,215	0	
Erreur	%	0	3	6	4	3	3	0	Tab.V-8
MEF	5	100,000	88,530	77,640	49,900	22,220	11,390	0,000	
MDF	5	100	88,171	77,16	50	22,84	11,829	0	
Erreur	%	0	0	1	0	3	4	0	

b) Cas de chargement B150 : y=1m : Emax=6 %

Ľ	Y X	0	1	2	5	8	9	10	
MEF	1	150.000	72.750	42.400	17.090	6.420	3.210	0.000	
MDF	1	150	75	45.285	17.744	6.645	3.322	0	
Erreur	%	0	3	6	4	3	3	0	Tab.V-9
MEF	5	150.000	132.800	116.500	74.850	33.330	17.090	0.000	L
MDF	5	150	132.256	115.74	75	34.26	17.744	0	
Erreur	%	0	0	1	0	3	4	0	

E.N.P 2002/2003

A STORE OF BOOM

- 88 -

....

à.

Tab.V-6

Tab.V-7

V. 3.4) COMPARAISON GENERALE MEF-MDF:

Maillage du domaine:
 Particulièrement simple dans le cas des domaines réguliers. Dans tous les cas (n = 1, 2, 3) il existe
des algorithmes de maillage performants quelques soit le domaine utilisé. • le maillages irrégulières ne posent pas
de problème.
Définition des éléments finis:
 Simple pour les éléments finis de classe ⁶⁰ ° utilisés dans la résolution de problèmes d'ordre 2.
 Plus délicate pour les éléments finis de classe ^{& m} utilisés dans la résolution de problèmes d'ordre 2m + 2.
• Pour tous les éléments finis, on peut écrire des sous-programmes généraux. Alors leur utilisation est immédiate.
Prise en compte des conditions aux limites:
• Elles font partie intégrante de la formulation du problème à résoudre.
Formation de la matrice de rigidité: • son calcul comporte deux niveaux : i) pour chaque élément fini. on forme la matrice de rigidité élémentaire, ii) la matrice du système est la « somme » des matrices de rigidité élémentaires (assemblage). • La matrice du système est creuse

E.N.P 2002/2003

- 89 -

.

Formation du second membre du Système:	Formation du second membre du système:
•Souvent délicate, en particulier si la	•Simple et généralement
frontière est curviligne ou si les	effectuée avec celle de la matrice de
conditions aux limites sont compliquées.	rigidité.
Résolution du système: • On utilise généralement des méthodes itératives, Gauss, etc	Résolution du système: • On utilise généralement des méthodes directes qui permettent aujourd'hui de prendre en compte les grands systèmes.
Étude de la convergence:	Étude de la convergence:
• Elle est délicate. Il faut établir les	• Systématique, comportant des étape
propriétés de consistance et de stabilité.	indépendantes les unes de autres
Ces études n'ont rien de systématique;	• Les estimations d'erreur dépendent
elles sont étroitement liées aux données	directement des qualités d'approximation
du problème et à la méthode de	de l'espace d'éléments finis
différences finies choisie.	utilisé.

V. 3.5) INTERPRETATIONS DES RESULTATS:

Les applications traitées dans notre étude nous ont permis de voir le degré de puissance de chacune des méthodes utilisées.

Pour le cas de l'équation de Poisson, on a constaté que la méthode de Galerkine à donné une très bonne approximation de la solution avec un taux d'erreur d'environ 1% d'erreur avec deux paramètres et de 0.06 % avec trois paramètres d'approximation.

Cette méthode offre une très bonne approximation mais son emploi reste limité à des cas relativement simples ou l'on peut introduire les conditions aux limites de façon systématique qui assure une convergence rapide vers la solution du problème.

Quant à la méthode des différences finies, elle représente une bonne approximation (environ 1 % d'erreur pour le cas de la plaque carré pour l'équation de Poisson, et 2 % pour celui de Laplace).

L'emploi de la MDF est conseillé pour les cas ou nous sommes ramenés à utiliser des maillages réguliers pour des problèmes qui ne présentent pas complexité de forme géométrique ou de conditions aux limites.

La souplesse de la méthode des éléments finis nous a permis d'adopter trois types de maillages :

- maillage régulier.
- maillage raffiné régulier.
- maillage raffiné régulier.

L'erreur est réduite au fur et à mesure qu'on adopte le bon choix du maillage ce qui revient à l'expérience de l'ingénieur qui va choisir son modèle selon ses exigences économiques.

and the second se

- 91 -

Conclusion générale

Conclusion

Notre travail a consisté en l'étude du problème de conduction de la chaleur dans un domaine rectangulaire (ou carré) pour un régime stationnaire, en se limitant au problème de Dirichlet comme type de conditions aux limites (C.A.L) et en utilisant les méthodes de Galerkine, différences finies et éléments finis.

Pour la solution analytique, on a utiliser la méthode de séparation des variables qui est peut être la plus ancienne méthode systématique de résolution des E.D.P, utilisée par D'Alembert, D.Bernoulli, et Euler environ 1750 l'ors de leur traitements de l'équation des ondes .Elle a été considérablement raffinée et généralisée et elle reste une méthode très importante jusqu'aujourd'hui.

Son emploi reste limité à des cas relativement simples ce qui a mis l'accent sur la puissance des méthodes numériques dans le traitement des problèmes complexes.

La méthode de Galerkine présente une très bonne approximation de la solution de ce problème. C'est une méthode puissante qui converge rapidement avec un bon choix des fonctions.Cependant, son emploi devient difficile dans des cas plus compliqués ce qui nous amène à l'utilisation d'autres méthodes numériques telles que la M.D.F et notamment la M.E.F.

La MEF est relativement récente, et d'abord appliquée à des problèmes d'élasticité et de résistance des matériaux, s'applique aussi aux équations de la conduction, à une ou plusieurs dimensions, en régime stationnaire ou non.

Alors que la MDF remplace l'équation différentielle exacte en jeu par une équation aux différences (essentiellement en remplaçant les dérivées par une approximation algébrique), la MEF remplace la solution exacte par une solution approchée. Cette dernière méthode est essentiellement basée sur le calcul des variations, c'est à dire sur la recherche des extrema d'une fonctionnelle donnée.

2.2

Stranger Statistics in the bootstate of the state

La MDF offre une bonne approximation pour des ces simples de C.A.L ou le maillage est régulier et la forme géométrique est simple à manipuler.

La MEF présente une souplesse à adopter n'importe quelle forme géométrique d'élément et une variété de choix pour le type de maillage correspondant.

E.N.P 2002/2003

and the second second second

1 5

-

Références bibliographiques

BIBLIOGRAPHIE:

 Bardos. C, "Analyse numérique des équations aux dérivées partielles"article. Encyclopédie Universalis, CD ROM. version 6.072.

[2] BENABDELHAK.N;"Etude statique et dynamique des barrages par la méthode des éléments finis et la méthode des éléments frontières". Projet de fin d'étude ENP (1994)

[3] BERRAH.K; "Notes de cours de la méthode des éléments finis".E.N.P.

[4] Boyce. E. W, Diprima .R. C, "Elementary differential equations and boundary value problems", ensselare Polytechnic Institute, Second Edition, New York.London.Sydney.Toronto.

- [5] Ciarlet. P. G, "Introduction à L'analyse numérique Matricielle et à L'optimisation", 5^{eme} tirage, MASSON Paris Milan Barcelone, 1994.
- [6] Comité français de l'isolation, "Guide pratique de l'isolation thermique des bâtiments", Editions Eyrolles.
- [7] Dautry. R, LIONS. J. L, "Analyse mathématique et calcul numérique pour les sciences et les techniques", Volume 4,6,. MASSON Paris Milan Barcelone Mexico, 1988.
- [8] .DeVriendt. A. B, "La transmission de la chaleur: la conduction,", Volume 1, Tome 2,2eme édition.
- [9] DEMIDEM.M; "Notes de cours de la méthode des éléments finis et de la méthode des différences finies".ENP.
- [10] Dhatt. G, Touzot. G, " Une Présentation de la méthode des éléments finis", Maloine S.A, 2^{eme} édition, 1984.
- [11] Imbert . J. F., "Analyse des structures par éléments finis", 1979.
- [12] Lefer. B, "Thermique" article. Encyclopédie Universalis, CD ROM. version 6.072.
- [13] Schenck. H. J, "Heat transfer engieering", Englewood Cliffs, N.J; Prentice-Hall, Inc. 1959.
- [14] Ovaert. J. L, "Méthode des éléments finis", article. Encyclopédie Universalis, CD ROM. version 6.072.
- [15] Rao .S. S, "The finite element method in engineering"
- [16] Rougeron. C, "L'isolation acoustque et thermique dans le bâtiment", éditions Eyrolles, Paris 1979.
- [17] Wang. P. C., "calcul des structures par les méthode numériques et matricielles", Dunod PARIS 1969.
- [18] Zerer. M, "Equations aux dérivées partielles: source et application", article. Encyclopédie Universalis, CD ROM. version 6.072.
- [19] Zienkiewics. O. C., Taylor. R. L., "The finite element Method : Solid and Fluid Mechanics Dynamics and Non-Linearity", volume 2. McGraw-Hill Book Company, 4th edition, 1989.

Tableau représentatif de l'annexe:

4

.

TABLI	EU	
Tab.A-1	cas carré	solution analytique pou l'équation de Poisson
Tab.A-2 à A-9	//	solution analytique pou l'équation de Laplace
Tab.A-11 àn A-13	3 //	solution Galerkine pour l'équation de Poisson
Tab.A-14 à A-17	11	solution MDF pour l'équation de Laplace
Tab.A-18 à A-25		solution MDF pour l'équation de Laplace
Tab.A-26 à A-29	Maillage 1	solution MEF pour l'équation de Laplace
Tab.A-30 à A-31	Maillage 3	solution MEF pour l'équation de Laplace
Tab.A-32 à A-39	cas rectangle	solution Analytique pour l'équation de
		Laplace
Tab.A-40 a	A-47	solution MDF pour l'équation de Laplace
Tab.A-48 à A-52	Maillage 1	solution MEF pour l'équation de Laplace
Tab.A-53 à A-54	Maillage 2	solution MEF pour l'équation de Laplace
Tab.A-55 à A-56	Maillage 3	solution MEF pour l'équation de Laplace

Ι

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1.30711	2.08804	2.56277	2.8217	2.90419	2.8217	2.56277	2.08804	1.30712	0.00001
2	0	2.08804	3.46469	4.33412	4.81555	4.96981	4.81556	4.33413	3.4647	2.08805	0.00002
3	0	2.56277	4.33412	5.48411	6.12987	6.33797	6.12987	5.48412	4.33413	2.56279	0.00002
4	0	2.8217	4.81555	6.12987	6.87446	7.11532	6.87446	6.12988	4.81557	2.82172	0.00003
5	0	2.90419	4.96981	6.33797	7.11532	7.36714	7.11532	6.33798	4.96983	2.90421	0.00003
6	0	2.8217	4.81556	6.12987	6.87446	7.11532	6.87446	6.12988	4.81557	2.82172	0.00003
7	0	2.56277	4.33413	5.48412	6.12988	6.33798	6.12988	5.48412	4.33414	2.56279	0.00002
8	0	2.08804	3.4647	4.33413	4.81557	4.96983	4.81557	4.33414	3.46471	2.08806	0.00002
9	0	1.30712	2.08805	2.56279	2.82172	2.90421	2.82172	2.56279	2.08806	1.30713	0.00001
10	0	0.00001	0.00002	0.00002	0.00003	0.00003	0.00003	0.00002	0.00002	0.00001	0

Equation de Poisson:Solution analytique.

1

Tab.A-1

Π

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	101.514	48.906	27.395	17.452	11.802	8.159	5.623	3.755	2:302	1.094	0
2	99.69	68.226	45.634	31.22	21.776	15.275	10.604	7.108	4.366	2.077	0
3	99.787	75.942	55.685	40.275	28.95	20.634	14.444	9.725	5.987	2.851	0
4	100.482	79.231	60.603	45.228	33.159	23.906	16.841	11.378	7.017	3.344	0
5	99.432	80.169	62.079	46.79	34.535	25	17.653	11.942	7.37	3.513	0
6	100.482	79.231	60.603	45.228	33.159	23.906	16.841	11.378	7.017	3.344	0
7	99.787	75.942	55.685	40.275	28.95	20.634	14.444	9.725	5.987	2.851	0
8	99.69	68.226	45.634	31.22	21.776	15.275	10.604	7.108	4.366	2.077	0
9	101.514	48.906	27.395	17.452	11.802	8.159	5.623	3.755	2.302	1.094	0
10	0.018	0.001	0	0	0	0	0	0	0	0	0

Equation de Laplace: Solution analytique. palque carré 10x10 m2.

Cas A-100

1

-

T

Tab.A-2

III

•

Cas B-100

-

1

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	101.514	50	29.471	20.303	15.146	11.672	8.967	6.606	4.379	2.188	0
2	99.69	70.528	50	37.207	28.793	22.645	17.621	13.095	8.732	4.379	0
3	99.787	79.697	62.793	50	40.328	32.576	25.822	19.449	13.095	6.606	0
4	100.482	84.854	71.207	59.672	50	41.559	33.682	25.822	17.621	8.967	0
5	99.432	88.328	77.354	67.424	58.441	50	41.559	32.576	22.645	11.672	0
6	100.482	91.033	82.379	74.178	66.318	58.441	50	40.328	28.793	15.146	0
7	99.787	93.394	86.905	80.551	74.178	67.424	59.672	50	37.207	20.303	0
8	99.69	95.621	91.268	86.905	82.379	77.354	71.207	62.793	50	29.472	0
9	101.514	97.812	95.621	93.394	91.033	88.328	84.854	79.697	70.528	50	0.001
10	100	101.515	99.69	99.787	100.482	99.432	100.482	99.787	99.69	101.514	100

Tab.A-3

Cas C-100

--

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	101.514	50	29.697	21.207	17.424	16.318	17.424	21.207	29.697	50	101.514
2	99.69	70.303	50	38.328	32.379	30.551	32.379	38.328	50	70.303	99.69
3	99.787	78.793	61.672	50	43.394	41.268	43.394	50	61.672	78.793	99.787
4	100.482	82.576	67.621	56.606	50	47.812	50	56.606	67.621	82.576	100.482
5	99.432	83.682	69.449	58.732	52.188	50	52.188	58.732	69.449	83.682	99.432
6	100.482	82.576	67.621	56.606	50	47.812	50	56.606	67.621	82.576	100.482
7	99.787	78.793	61.672	50	43.394	41.268	43.394	50	61.672	78.793	99.787
8	99.69	70.303	50	38.328	32.379	30.551	32.379	38.328	50	70.303	99.69
9	101.514	50	29.697	21.207	17.424	16.318	17.424	21.207	29.697	50	101.514
10	0.018	0.001	0	0	0	0	0	0	0	0.001	0.018

Tab.A-4

Cas D-100

とない

.....

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	101.514	51.094	31.774	24.058	20.768	19.831	20.768	24.058	31.774	51.094	101.514
2	99.69	72.605	54.366	44.315	39.396	37.921	39.396	44.315	54.366	72.605	99.69
3	99.787	82.548	68.78	59.725	54.772	53.21	54.772	59.725	68.78	82.548	99.787
4	100.482	88.198	78.224	71.05	66.841	65.465	66.841	71.05	78.224	88.198	100.482
5	99.432	91.841	84.724	79.366	76.094	75	76.094	79.366	84.725	91.841	99.432
6	100.482	94.377	89.396	85.556	83.159	82.347	83.159	85.556	89.396	94.377	100.482
7	99.787	96.245	92.892	90.275	88.622	88.058	88.622	90.275	92.892	96.245	99.787
8	99.69	97.698	95.634	94.013	92.983	92.63	92.983	94.013	95.634	97.698	99.69
9	101.514	98.906	97.923	97.149	96.656	96.487	96.656	97.149	97.923	98.906	101.515
10	100	101.515	99.69	99.787	100.482	99.432	100.482	99.787	99.69	101.515	100

Tab.A-5
Cas A-150

1.442

A

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	. 000.	000 .	0
1	152.272	73.359	41.092	26.178	17.703	12.238	8.434	5.632	3.453	1.641	0
2	149.535	102.339	68.451	46.83	32.663	22.913	15.905	10.661	6.549	3.115	0
3	149.681	113.913	83.528	60.413	43.425	30.951	21.666	14.587	8.98	4.276	0
4	150.723	118.847	90.905	67.842	49.738	35.859	25.262	17.066	10.526	5.016	0
5	149.147	120.253	93.119	70.185	51.802	37.5	26.48	17.912	11.055	5.27	0
6	150.723	118.847	90.905	67.842	49.738	35.859	25.262	17.066	10.526	5.016	0
7	149.68	113.913	83.528	60.413	43.425	30.951	21.666	14.587	8.981	4.276	0
8	149.535	102.339	68.451	46.83	32.663	22.913	15.905	10.661	6.549	3.115	0
9	152.271	73.359	41.093	26.178	17.703	12.238	8.434	5.632	3.453	1.641	0
10	0.027	0.001	0	0	0	0	0	0	0	0	0

Tab.A-6

Cas B-150

-

South States of the States of the

• • • •

.....

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	152.272	75	44.207	30.454	22.719	17.508	13.45	9.908	6.568	3.282	0
2	149.535	105.792	75	55.811	43.189	33.968	26.431	19.642	13.098	6.568	0
3	149.681	119.545	94.189	75	60.492	48.863	38.732	29.174	19.642	9.908	0
4	150.723	127.281	106.81	89.508	75	62.339	50.523	38.732	26.431	13.45	0
5	149.147	132.491	116.032	101.136	87.661	75	62.339	48.863	33.968	17.508	0
6	150.723	136.55	123.569	111.267	99.476	87.661	75	60.492	43.189	22.719	0
7	149.68	140.091	130.358	120.826	111.267	101.136	89.508	75	55.811	30.454	0
8	149.535	143.431	136.902	130.358	123.569	116.032	106.81	94.189	75	44.207	0
9	152.271	146.717	143.432	140.091	136.55	132.492	127.281	119.546	105.792	75	0.001
10	150	152.272	149.535	149.681	150.723	149.148	150.723	149.681	149.535	152.271	150

Tab.A-7

Cas C-150

1

	•			1	T						
Y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	152.272	75	44.546	31.81	26.136	24.476	26.136	31.81	44.546	75	152.272
2	149.535	105.454	75	57.492	48.569	45.826	48.569	57.492	75	105.454	149.535
3	149.681	118.189	92.508	75	65.091	61.902	65.091	75	92.508	118,189	149.681
4	150.723	123.863	101.431	84.908	75	71.718	75	84.908	101.431	123.863	150,723
5	149.147	125.523	104.174	88.098	78.282	75	78.282	88.098	104.174	125.523	149,147
6	150.723	123.863	101.431	84.908	75	71.718	75	84.908	101.431	123.863	150.723
7	149.68	118.189	92.508	75	65.092	61.902	65.092	75	92.508	118.189	149.68
8	149.535	105.454	75	57.492	48.569	45.826	48.569	57.492	75	105.454	149,535
9	152.271	75	44.546	31.811	26.137	24.477	26.137	31.811	44,546	75	152.271
10	0.027	0.001	0	0	0	0	0	0	0	0.001	0.027

Tab.A-8

Cas D-150

;

1

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	152.272	76.641	47.66	36.087	31.153	29.747	31.153	36.087	47.66	76.641	152.272
2	149.535	108.907	81.549	66.472	59.095	56.881	59.095	66.472	81.549	108.907	149.535
3	149.681	123.822	103.169	89.587	82.158	79.815	82.158	89.587	103.17	123.822	149.681
4	150.723	132.297	117.336	106.574	100.262	98.197	100.262	106.574	117.336	132.297	150.723
5	149.147	137.762	127.087	119.049	114.141	112.5	114.141	119.049	127.087	137.762	149.148
6	150.723	141.566	134.094	128.334	124.738	123.52	124.738	128.334	134.095	141.566	150.723
7	149.68	144.367	139.338	135.413	132.933	132.088	132.933	135.413	139.339	144.367	149.681
8	149.535	146.546	143.451	141.019	139.474	138.945	139.474	141.019	143.451	146.547	149.535
9	152.271	148.358	146.885	145.724	144.984	144.73	144.984	145.724	146.885	148.359	152.272
10	150	152.272	149.535	149.681	150.723	149.148	150.724	149.681	149.535	152.272	150

Tab.A-9

Х

Equation de Poisson: Solution par la méthode de Galerkine:

à 1 paramètre :

-

1

1

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1.01250	1.80000	2.36250	2.70000	2.81250	2.70000	2.36250	1.80000	1.01250	0
2	0	1.80000	3.20000	4.20000	4.80000	5.00000	4.80000	4.20000	3.20000	1.80000	0
3	0	2.36250	4.20000	5.51250	6.30000	6.56250	6.30000	5.51250	4.20000	2.36250	0
4	0	2.70000	4.80000	6.30000	7.20000	7.50000	7.20000	6.30000	4.80000	2.70000	0
5	0	2.81250	5.00000	6.56250	7.50000	7.81250	7.50000	6.56250	5.00000	2.81250	0
6	0	2.70000	4.80000	6.30000	7.20000	7.50000	7.20000	6.30000	4.80000	2.70000	0
7	0	2.36250	4.20000	5.51250	6.30000	6.56250	6.30000	5.51250	4.20000	2.36250	0
8	0	1.80000	3.20000	4.20000	4.80000	5.00000	4.80000	4.20000	3.20000	1.80000	0
9	0	1.01250	1.80000	2.36250	2.70000	2.81250	2.70000	2.36250	1.80000	1.01250	0
10	0	0	0	0	0	0	0	0	0	0	0

Tab.A-11

Galerkine 1

à 2 paramètres :

-

•

-1

	•								2		
yX	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1,19297	2,02507	2,56813	2,87345	2,97180	2,87345	2,56813	2,02507	1,19297	0
2	0	2,02507	3,42989	4,34213	4,85299	5,01720	4,85299	4,34213	3,42989	2,02507	0
3	0	2,56813	4,34213	5,48957	6,13015	6,33570	6,13015	5,48957	4,34213	2,56813	0
4	0	2,87345	4,85299	6,13015	6,84173	7,06980	6,84173	6,13015	4,85299	2,87345	0
5	0	2,97180	5,01720	6,33570	7,06980	7,30500	7,06980	6,33570	5,01720	2,97180	0
6	0	2,87345	4,85299	6,13015	6,84173	7,06980	6,84173	6,13015	4,85299	2,87345	0
7	0	2,56813	4,34213	5,48957	6,13015	6,33570	6,13015	5,48957	4,34213	2,56813	0
8	0	2,02507	3,42989	4,34213	4,85299	5,01720	4,85299	4,34213	3,42989	2,02507	0
9	0	1,19297	2,02507	2,56813	2,87345	2,97180	2,87345	2,56813	2,02507	1,19297	0
10	0	0	0	0	0	0	0	0	0	0	0

Tab.A-12

Galerkine 2

à 3 paramètres :

.

1

X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1,29252	2,10226	2,57588	2,81815	2,89193	2,81815	2,57588	2,10226	1,29252	0
2	0	2,10226	3,49005	4,34885	4,81114	4,95640	4,81114	4,34885	3,49005	2,10226	0
3	0	2,57588	4,34885	5,49177	6,12814	6,33203	6,12814	5,49177	4,34885	2,57588	0
4	0	2,81815	4,81114	6,12814	6,87571	7,11780	6,87571	6,12814	4,81114	2,81815	0
5	0	2,89193	4,95640	6,33203	7,11780	7,37313	7,11780	6,33203	4,95640	2,89193	0
6	0	2,81815	4,81114	6,12814	6,87571	7,11780	6,87571	6,12814	4,81114	2,81815	0
7	0	2,57588	4,34885	5,49177	6,12814	6,33203	6,12814	5,49177	4,34885	2,57588	0
8	0	2,10226	3,49005	4,34885	4,81114	4,95640	4,81114	4,34885	3,49005	2,10226	0
9	0	1,29252	2,10226	2,57588	2,81815	2,89193	2,81815	2,57588	2,10226	1,29252	0
10	0	0	0	0	0	0	0	0 ·	0	0	0

Tab.A-13

Galerkine 3

Equation de Poisson: Solution par la méthode de différences finies:

y x	0	5	10	
0	0	0	0	
5	0	6.25	0	1
10	0	0	0	

Tab.A-14

- 1

y >	ĸ	0	2.5	5	7.5	10
0		0	0	0	0	0
2.5		0.000	4.300	5.469	4.300	0.000
5		0.000	5.469	7.031	5.469	5.469
7.5		0.000	4.300	5.469	4.300	4.300
10		0	0	0	0	O

XIV

y x	(1.669	3.338	5.007	6.676	8.345	10
	0	0 0	0	0	0	0	0
1.6	9 1.669	3.338	5.007	6.676	3.9	2.645	0
3.3	3.33	69.578	50	38.59	32.673	30.841	0
5.0	5.00	78.314	61.41	50	43.528	41.439	0
6.6	6.676	82.266	67.327	56.472	50	47.86	0
8.3	10	83.423	69.159	58.561	52.14	50	0
	0 0	0	0	0	0	0	0

-

Tab.A-16

Cas10x10

-

and the second se

.

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100	50	30,19	20,761	15,406	11,829	9,071	6,68	4,43	2.215	0
2	100	69,81	50	37,449	29,033	22,84	17,776	13,22	8.825	4.43	0
3	100	79,239	62,551	50	40,439	32,721	25,974	19,597	13,22	6.68	0
4	100	84,594	70,967	59,561	50	41,631	33,802	25,974	17,776	9.071	0
5	100	88,171	77,16	67,279	58,369	50	41,631	32,721	22,84	11.829	0
6	100	90,929	82,224	74,026	66,198	58,369	50	40,439	29,033	15.406	0
7	100	93,32	86,78	80,403	74,026	67,279	59,561	50	37,449	20,761	0
8	100	95,57	91,175	86,78	82,224	77,16	70,967	62,551	50	30,19	0
9	100	97,785	95,57	93,32	90,929	88,171	84,594	79,239	69,81	50	0
10	100	100	100	100	100	100	100	100	100	100	0

Tab.A-17

MDF

.

X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100	48.893	28.091	17.884	12.034	8.289	5.7	3.803	2.331	1.107	0
2	100	67.479	45.588	31.41	21.965	15.42	10.708	7.18	4.412	2.099	0
3	100	75.436	55.371	40.202	28.996	20.72	14.532	9.798	6.039	2.878	0
4	100	78.894	60.259	45.03	33.099	23.93	16.901	11.442	7.068	3.372	0
5	100	79.882	61.74	46.56	34.439	25	17.701	12.001	7.42	3.541	0
6	100	78.894	60.259	45.03	33.099	23.93	16.901	11.442	7.068	3.372	0
7	100	75.436	55.371	40.202	28.996	20.72	14.532	9.798	6.039	2.878	0
8	100	67.479	45.588	31.41	21.965	15.42	10.708	7.18	4.412	2.099	0
9	100	48.893	28.091	17.884	12.034	8.289	5.7	3.803	2.331	1.107	0
10	0	0	0	0	0	0	0	0	0	0	0

V X	0	1	2	3	4	5	6	7	8	0	10
0	0	0	0	0	0	0	0	0	0	9	0
1	100	50	30.19	20.761	15.406	11.829	9.071	6.68	4.43	2 215	0
2	100	69.81	50	37.449	29.033	22.84	17.776	13.22	8.825	4.43	0
3	100	79.239	62.551	50	40.439	32.721	25.974	19.597	13.22	6.68	0
4	100	84.594	70.967	59.561	50	41.631	33.802	25.974	17.776	9.071	0
5	100	88.171	77.16	67.279	58.369	50	41.631	32.721	22.84	11.829	0
6	100	90.929	82.224	74.026	66.198	58.369	50	40.439	29.033	15.406	0
7	100	93.32	86.78	80.403	74.026	67.279	59.561	50	37,449	20.761	0
8	100	95.57	91.175	86.78	82.224	77.16	70.967	62.551	50	30.19	0
9	100	97.785	95.57	93.32	90.929	88.171	84.594	79.239	69.81	50	0
10	100	100	100	100	100	100	100	100	100	100	0

-

---1

Tab.A-19

-22

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100	50	30.422	21.686	17.734	16.577	17.734	21.686	30.422	50	100
2	100	69.578	50	38.59	32.673	30.841	32.673	38.59	50	69.578	100
3	100	78.314	61.41	50	43.528	41.439	43.528	50	61.41	78.314	100
4	100	82.266	67.327	56.472	50	47.86	50	56.472	67.327	82.266	100
5	100	83.423	69.159	58.561	52.14	50	52.14	58.561	69.159	83.423	100
6	100	82.266	67.327	56.472	50	47.86	50	56.472	67.327	82.266	100
7	100	78.314	61.41	50	43.528	41.439	43.528	50	61.41	78.314	100
8	100	69.578	50	38.59	32.673	30.841	32.673	38.59	50	69.578	100
9	100	50	30.422	21.686	17.734	16.577	17.734	21.686	30.422	50	100
10	0	0	0	0	0	0	0	0	0	0	0

Tab.A-20

:

.

XIX

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100	51.107	32.521	24.564	21.106	20.118	21.106	24.564	32.521	51.107	100
2	100	71.909	54.412	44.629	39.741	38.26	39.741	44.629	54.412	71.909	100
3	100	82.116	68.59	59.798	54.97	53.44	54.97	59.798	68.59	82.116	100
4	100	87.966	78.035	71.004	66.901	65.561	66.901	71.004	78.035	87.966	100
5	100	91.711	84.58	79.28	76.07	75	76.07	79.28	84.58	91.711	100
6	100	94.3	89.292	85.468	83.099	82.299	83.099	85.468	89.292	94.3	100
7	100	96.197	92.82	90.202	88.558	87.999	88.558	90.202	92.82	96.197	100
8	100	97.669	95.588	93.961	92.932	92.58	92.932	93.961	95.588	97.669	100
9	100	98.893	97.901	97.122	96.628	96.459	96.628	97.122	97.901	98.893	100
10	100	100	100	100	100	100	100	100	100	100	100

12. 1. 12

Tab.A-21

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150	73.339	42.136	26.826	18.052	12.433	8.55	5.704	3.496	1.661	0
2	150	101.219	68.381	47.114	32.948	23.131	16.062	10.771	6.619	3.149	0
3	150	113.154	83.056	60.302	43.494	31.079	21.798	14.698	9.059	4.316	0
4	150	118.341	90.388	67.544	49.648	35.895	25.352	17.163	10.602	5.057	0
5	150	119.823	92.61	69.839	51.659	37.5	26.551	18.002	11.129	5.311	0
6	150	118.341	90.388	67.544	49.648	35.895	25.352	17.163	10.602	5.057	0
7	150	113.154	83.056	60.302	43.494	31.079	21.798	14.698	9.059	4.316	0
8	150	101.219	68.381	47.114	32.948	23.131	16.062	10.771	6.619	3.149	0
9	150	73.339	42.136	26.826	18.052	12.433	8.55	5.704	3.496	1.661	0
10	0	0	0	0	0	0	0	0	0	0	0

_

-1

Tab.A-22

×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150	75	45.285	31.142	23.109	17.744	13.607	10.02	6.645	3.322	0
2	150	104.715	75	56.173	43.55	34.26	26.664	19.829	13.237	6.645	0
3	150	118.858	93.827	75	60.658	49.081	38.961	29.395	19.829	10.02	0
4	150	126.891	106.45	89.342	75	62.446	50.704	38.961	26.664	13.607	0
5	150	132.256	115.74	100.919	87.554	75	62.446	49.081	34.26	17.744	0
6	150	136.393	123.336	111.039	99.296	87.554	75	60.658	43.55	23.109	0
7	150	139.98	130.171	120.605	111.039	100.919	89.342	75	56.173	31.142	0
8	150	143.355	136.763	130.171	123.336	115.74	106.45	93.827	75	45.285	0
9	150	146.678	143.355	139.98	136.393	132.256	126.891	118.858	104.715	75	0
10	150	150	150	150	150	150	150	150	150	150	0

•

.

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150	75	45.632	32.53	26.601	24.866	26.601	32.53	45.632	75	150
2	150	104.368	75	57.885	49.01	46.261	49.01	57.885	75	104.368	150
3	150	117.47	92.115	75	65.292	62.159	65.292	75	92.115	117.47	150
4	150	123.399	100.99	84.708	75	71.79	75	84.708	100.99	123.399	150
5	150	125.134	103.739	87.841	78.21	75	78.21	87.841	103.739	125.134	150
6	150	123.399	100.99	84.708	75	71.79	75	84.708	100.99	123.399	150
7	150	117.47	92.115	75	65.292	62.159	65.292	75	92.115	117.47	150
8	150	104.368	75	57.885	49.01	46.261	49.01	57.885	75	104.368	150
9	150	75	45.632	32.53	26.601	24.866	26.601	32.53	45.632	75	150
10	0	0	0	0	0	0	0	0	0	0	0

Tab.A-24

y X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150	76.661	48.781	36.846	31.659	30.177	31.659	36.846	48.781	76.661	150
2	150	107.864	81.619	66.944	59.612	57.39	59.612	66.944	81.619	107.864	150
3	150	123.174	102.886	89.698	82.456	80.161	82.456	89.698	102.886	123.174	150
4	150	131.948	117.052	106.506	100.352	98.341	100.352	106.506	117.052	131.948	150
5	150	137.567	126.869	118.921	114.105	112.5	114.105	118.921	126.869	137.567	150
6	150	141.45	133.938	128.202	124.648	123.449	124.648	128.202	133.938	141.45	150
7	150	144.296	139.229	135.302	132.837	131.998	132.837	135.302	139.229	144.296	150
8	150	146.504	143.381	140.941	139.398	138.871	139.398	140.941	143.381	146.504	150
9	150	148.339	146.851	145.684	144.943	144.689	144.943	145.684	146.851	148.339	150
10	150	150	150	150	150	150	150	150	150	150	150

.

-

MEF:	mail	lage	normal).

;

1

y ×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100.000	42.110	25.070	16.460	11.300	7.876	5.449	3.645	2.236	1.063	0
2	100.000	67.790	44.030	30.150	21.100	14.840	10.310	6.915	4.247	2.020	0
3	100.000	75.840	55.240	39.620	28.380	20.190	14.110	9.488	5.835	2.776	0
4	100.000	79.200	60.430	44.890	32.740	23.510	16.510	11.120	6.849	3.261	0
5	100.000	80.150	61.970	46.530	34.180	24.630	17.320	11.680	7.197	3.427	0
6	100.000	79.200	60.430	44.890	32.740	23.510	16.510	11.120	6.849	3.261	0
7	100.000	75.840	55.240	39.620	28.380	20.190	14.110	9.488	5.835	2.776	0
8	100.000	67.790	44.030	30.150	21.100	14.840	10.310	6.915	4.247	2.020	0
9	100.000	42.110	25.070	16.460	11.300	7.876	5.449	3.645	2.236	1.063	0
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0

MEF:(maillage normal).

•

y x	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	100.000	43.200	27.130	19.290	14.620	11.360	8.759	6.460	4.282	2.139	0.000
2	100.000	70.080	48.380	36.110	28.080	22.160	17.260	12.830	8.546	4.282	0.000
3	100.000	79.580	62.330	49.310	39.710	32.060	25.390	19.090	12.830	6.460	0.000
4	100.000	84.810	71.020	59.320	49.570	41.110	33.230	25.390	17.260	8.759	0.000
5	100.000	88.310	77.260	67.230	58.150	49.630	41.110	32.060	22.160	11.360	0.000
6	100.000	91.020	82.330	74.070	66.130	58.150	49.570	39.710	28.080	14.620	0.000
7	100.000	93.390	86.890	80.500	74.070	67.230	59.320	49.310	36.110	19.290	0.000
8	100.000	95.620	91.260	86.890	82.330	77.260	71.020	62.330	48.380	27.130	0.000
9	100.000	97.810	95.620	93.390	91.020	88.310	84.810	79.580	70.080	43.200	0.000
10	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000

MEF:(maillage normal).

.....

:

y ×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150.000	63.170	37.600	24.690	16.950	11.810	8.173	5.468	3.355	1.594	0.000
2	150.000	101.700	66.050	45.230	31.650	22.260	15.470	10.370	6.371	3.030	0.000
3	150.000	113.800	82.870	59.430	42.570	30.280	21.160	14.230	8.753	4.165	0.000
4	150.000	118.800	90.650	67.330	49.110	35.260	24.760	16.690	10.270	4.891	0.000
5	150.000	120.200	92.950	69.800	51.270	36.940	25.980	17.530	10.800	5.141	0.000
6	150.000	118.800	90.650	67.330	49.110	35.260	24.760	16.690	10.270	4.891	0.000
7	150.000	113.800	82.870	59.430	42.570	30.280	21.160	14.230	8.753	4.165	0.000
8	150.000	101.700	66.050	45.230	31.650	22.260	15.470	10.370	6.371	3.030	0.000
9	150.000	63.170	37.600	24.690	16.950	11.810	8.173	5.468	3.355	1.594	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

MEF:(maillage normal).

1

y ×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	150,000	64,800	40,700	28,930	21,940	17,040	13,140	9,690	6,423	3,208	0,000
2	150,000	105,100	72,570	54,160	42,120	33,240	25,900	19,240	12,820	6,423	0,000
3	150,000	119,400	93,490	73,970	59,570	48,090	38,090	28,640	19,240	9,690	0,000
4	150,000	127,200	106,500	88,980	74,350	61,660	49,840	38,090	25,900	13,140	0,000
5	150,000	132,500	115,900	100,800	87,220	74,440	61,660	48,090	33,240	17,040	0,000
6	150,000	136,500	123,500	111,100	99,190	87,220	74,350	59,570	42,120	21,940	0,000
7	150,000	140,100	130,300	120,700	111,100	100,800	88,980	73,970	54,160	28,930	0,000
8	150,000	143,400	136,900	130,300	123,500	115,900	106,500	93,490	72,570	40,700	0,000
9	150,000	146,700	143,400	140,100	136,500	132,500	127,200	119,400	105,100	64,800	0,000
10	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	0,000

MEF : (maillage rafféni non régulier)

æ

. .

y x	0	1	2	5	8	9	10
1	0	0	0	0	0	0	0
2	100,000	48,500	28,260	11,390	4,280	2,138	0
3	100,000	71,010	49,620	22,220	8,543	4,280	0
5	100,000	88,530	77,640	49,900	22,220	11,390	0
8	100,000	95,700	91,410	77,640	49,620	28,260	0
9	100,000	95,850	95,700	88,530	70,010	48,500	0
10	100,000	100,000	100,000	100,000	100,000	100,000	100,000

Tab.A-30

y x	0	1	2	5	8	9	10
0	0	0	0	0	0	0	0
1	150,000	72,750	42,400	17,090	6,420	3,210	0,000
2	150,000	106,500	74,430	33,330	12,810	6,420	0,000
5	150,000	132,800	116,500	74,850	33,330	17,090	0,000
8	150,000	143,500	137,100	116,500	74,430	42,400	0,000
9	150,000	146,000	143,500	132,800	106,500	72,750	0,000
10	150,000	150,000	150,000	150,000	150,000	150,000	150,000

-

Tab.A-31

ANA

en i

••

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	99.196	43.483	18.945	8.483	3.725	1.405	0
2	99.432	54.449	26.049	11.924	5.261	1.987	0
3	99.196	43.483	18.945	8.483	3.725	1.405	0
4	0.018	0	0	0	0	0	0

Tab.A-32

y	<u> </u>	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	C
	1	99.196	52.574	34.044	25.572	18.824	10.497	0
	2	99.432	76.231	60.394	50	39.606	23.769	0
	3	99.196	89.503	81.176	74.428	65.956	47.425	0
	4	100	100.553	100.331	99.432	100.331	100.553	100

Tab.A-32

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	99.196	44.888	22.67	16.965	22.67	44.888	99.196
2	99.432	56.436	31.31	23.849	31.31	56.436	99.432
3	99.196	44.888	22.67	16.965	22.67	44.888	99.196
4	0.018	0	0	0	0	0	0.018

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	99.196	53.98	37.769	34.054	37.769	53.98	99.196
2	99.432	78.218	65.655	61.924	65.655	78.218	99.432
3	99.196	90.908	84.901	82.911	84.901	90.908	99.197
4	100	100.553	100.331	99.432	100.331	100.553	100

Tab.A-34

MIN

1445-1 H 14-14-

.....

.

. T.

y ×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	148.795	65.224	28.417	12.724	5.588	2.108	0
2	149.147	81.673	39.074	17.887	7.892	2.98	0
3	148.795	65.224	28.417	12.724	5.588	2.108	0
4	0.027	0	0	0	0	0	0

-			25
1 1	ah.	Α.	. 17
		1 1-	11

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	148.795	78.862	51.066	38.358	28.236	15.746	0
2	149.147	114.346	90.591	75	59.409	35.654	0
3	148.795	134.254	121.763	111.642	98.934	71.138	0
4	150	150.829	150.496	149.147	150.496	150.829	150

Tab.A-38

X	0	1	2	3	4	5	6
	0	0	0	0	0	0	0
	148.795	80.97	56.653	51.082	56.653	80.97	148.795
	149.147	117.327	98.483	92.886	98.483	117.327	149.148
	148.795	136.362	127.351	124.366	127.351	136.362	148.795
T	150	150.829	150.496	149.148	150.496	150.829	150

З

25.448

35.773

25.448

0

0

4

34.005

46.966

34.005

0

0

5

67.332

84.654

67.332

0

0

6

148.795

149.147

148.795

0.027

0

Tab.A-39

MDF

101T *

:

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	100	43.193	19.62	9.057	4.092	1.578	0
2	100	53.154	26.228	12.518	5.731	2.222	0
3	100	43.193	19.62	9.057	4.092	1.578	0
4	0	0	0	0	0	0	0

2

34.005

46.966

34.005

0

0

1

67.332

84.654

67.332

0

0

0

148.795

149.147

148.795

0.027

0

Y

v

0

1

2

3

4

0

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	C
1	100	52.538	34.687	25.962	19.159	10.923	C
2	100	75.466	60.248	50	39.752	24.534	C
3	100	89.077	80.841	74.038	65.313	47.462	C
4	100	100	100	100	100	100	C

m	1	10
1 a	D.A	-42
		-

Tab.A-41

yX	0	1	2	3	4	5	6
0	0	0	0	0	0	0	C
1	100	44.772	23.711	18.115	23.711	44.772	100
2	100	55.376	31.959	25.037	31.959	55.376	100
3	100	44.772	23.711	18.115	23.711	44.772	100
4	0	0	0	0	0	0	C

1	a	b. A-43	į.

X	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	100	54.117	38.779	35.019	38.779	54.117	100
2	100	77.688	65.979	62.518	65.979	77.688	100
3	100	90.655	84.933	83.096	84.933	90.655	100
4	100	100	100	100	100	100	100

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	150	64.79	29.429	13.586	6.138	2.368	0
2	150	79.73	39.342	18.778	8.596	3.333	0
3	150	64.79	29.429	13.586	6.138	2.368	0
4	0	0	0	0	0	0	0

-1

Tab.A-44

Tab.A-45

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	150	78.807	52.031	38.942	28.739	16.385	0
2	150	113.199	90.373	75	59.627	36.801	0
3	150	133.615	121.261	111.058	97.969	71.193	0
4	150	150	150	150	150	150	0

yX	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	150	67.158	35.567	27.172	35.567	67.158	150
2	150	83.063	47.938	37.555	47.938	83.063	150
3	150	67.158	35.567	27.172	35.567	67.158	150
4	0	0	0	0	0	0	0

Tab.A-47

		-
1.7	L.,	Ł
1.4	P ₄	г.

V

X

81.175

116.532

135.983

58.168

98.969

127.399

	•	NOTICE ADDRESS OF A STREET AND ADDRESS OF A DREET ADDRESS ADDRES						
y	×	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
	1	100.000	36.590	16.260	7.043	2.983	1.094	0.000
	2	100.000	53.580	22.920	9.965	4.219	1.547	0.000
	3	100.000	36.590	16.260	7.043	2.983	1.094	0.000
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000

52.528

93.778

124.644

58.168

98.969

127.399

81.175

116.532

135.983

TIL	1 50
I an.	A-70
T	11 -0

y x	0	1	2	3	4	5	6
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	100.000	45.800	31.700	24.350	17.720	9.598	0.000
2	100.000	75.830	58.840	48.800	37.700	21.360	0.000
3	100.000	89.440	80.860	73.940	65.290	40.540	0.000
4	100.000	100.000	100.000	100.000	100.000	100.000	100.000

Tab.A-51

y x	0	1	2	3	4	5	6
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	150.000	54.890	24.390	10.570	4.475	1.640	0.000
2	150.000	80.370	34.380	14.950	6.329	2.320	0.000
3	150.000	54.890	24.390	10.570	4.475	1.640	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000

y x	0	1	2	3	4	5	6
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	150.000	68.690	47.550	36.520	26.590	14.400	0.000
2	150.000	113.700	88.260	73.200	56.550	32.040	0.000
3	150.000	134.200	121.300	110.900	97.940	60.820	0.000
4	150.000	150.000	150.000	150.000	150.000	150.000	150.000

Tab.A-52

Maillage raffiné régulier

-5. '

-1

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	100.000	36.430	16.270	7.285	3.177	1.191	0.000
2	100.000	50.570	22.950	10.300	4.493	1.685	0.000
3	100.000	36.430	16.270	7.285	3.177	1.191	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000

y x	0	1	2	3	4	5	6
0	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	150,000	54,650	24,410	10,930	4,766	1,787	0,000
2	150,000	75,890	34,420	15,450	6,740	2,527	0,000
3	150,000	54,650	24,410	10,930	4,766	1,787	0,000
4	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Tab.A-54

Maillage raffiné non régulier

1

y x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	C
1	100.000	42.120	17.800	7.751	3.291	1.212	0.000
2	100.000	55.070	25.170	10.940	4.644	1.710	0.000
3	100.000	42.120	17.800	7.751	3.291	1.212	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000

y x	0	1	2	3	4	5	6
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	150.000	63.180	26.700	11.630	4.937	1.817	0.000
2	150.000	82.610	37.750	16.400	6.966	2.565	0.000
3	150.000	63.180	26.700	11.630	4.937	1.817	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Tab.A-55