REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE DEPARTEMENT DE GENIE CHIMIQUE Laboratoire de Valorisation des Energies Fossiles

Projet de Fin d'Etudes En vue de l'obtention du diplôme d'Ingénieur d'Etat en Génie Chimique

Détermination des propriétés physiques des hydrocarbures purs et des fractions pétrollères par deux méthodes : Contribution des Groupes Avec Interaction et Réseaux de Neurones modifiés.

Dirigé par :

Pr .C.E Chitour Dr. N. Skander M^{elle} O.Rebas

Membres du jury

Mme R. DERRICHE, Mr C.E. CHITOUR, Mr A. AIT-KACI, Mr E.H. BEN YOUSSEF, Mr M.BOUKHETALA Melle N.SKANDER Melle O.REBAS Professeur (E.N.S.P) Professeur (E.N.S.P) Professeur (U.S.T.H.B) Professeur (E.N.S.P) Professeur (E.N.S.P) Docteur en Génie Chimique Chercheur (E.N.S.P) Présenté par :

N.Azrou A.Boumahammed.

Président Rapporteur Examinateur Examinateur Invité Invité Invité

Promotion Juin 2009

10 ,Avenue Hassen Badi BP 182 El-Harrach- Alger Tél : 213 21 52 53 01 _ Fax : 213 21 52 29 73 .

Remerciements

Nos remerciements s'adressent en premier lieu à Dieu pour nous avoir donné la force et le savoir pour élaborer ce modeste travail.

Nous remercions respectueusement notre Promoteur *Monsieur Le Professeur C.E. CHITOUR*, pour son précieux encadrement. Qu'il veuille trouver ici l'expression de notre profonde reconnaissance.

Nous exprimons notre profonde gratitude au *Docteur N. SKANDER* pour ses conseils et son aide tout au long de notre projet.

Nous remercions Madame R.DERRICHE, Professeur à l'Ecole Nationale Polytechnique, pour nous avoir honorées en présidant notre jury.

Que soient remerciés Messieurs les membres de jury ; Monsieur A. AIT KACI, Professeur à l'Université des Sciences et des Technologie Houari Boumediene, Monsieur M.BOUKHETELA, Professeur à l'Ecole Nationale Polytechnique, Monsieur H.BENYOUSSEF Professeur à l'Ecole Nationale Polytechnique ; de nous avoir fait l'honneur de juger ce modeste travail.

Nous adressons nos remerciements particuliers à *Monsieur M.BRAHIM* de nous avoir prodigué ses connaissances, et de nous avoir consacré de son temps.

Nos remerciements vont aussi à *Mademoiselle O.REBAS*, qui n'a économisé aucun effort pour nous aider.

Nous profitons de cette occasion pour remercier l'ensemble des professeurs du département de Génie Chimique de l'Ecole Nationale Polytechnique, qui ont contribué à notre formation, en particulier Madame Professeur S.CHARCHARI. Et ainsi tous ceux qui ont participé de prés ou de loin à la réalisation de ce travail.

>	*******************	****
*		米
*		米
※ ※	A l'ALGERIE	**
不米	Ma terre natale, mon pays d'origine.	不 ※
*		米
*	A mes parents	米
*	A papa, qui ma indiqué la bonne voie, en me rappelant que la volonté fait toujours grands	s les *
※	A maman, pour son amour et ses sacrifices	· · · · · · · · · · · · · · · · · · · ·
*	A la mémoire de mon grand-père	*
*	A la mémoire de ma grand-mère	*
ポ ※	Que Dieu le Miséricordieux les accueille dans Son Paradis.	※
※	A mes chers frère et sœurs; Djamel Eddine, Mounira et Ouiem	不 米
*	En leurs espérant plein de succès dans leur vie.	*
※	A mes grands-parents	*
が ※	Que Dieu les protège et les prête bonne santé et longue vie.	**
*		
*	A mes oncles et tantes	*
*	En témoignage de mon amour, de mon profond respect.	*
米	A ma grande famille	*
米 火	Qui est la source de ma fierté.	**
ネ ※	A mes ami(e)s	
*	Oui sont la source de ma confiance.	*
*		*
*	A toute l'équipe du travail au Centre Culturel Universitaire	*
*	Merci pour votre encouragement, et votre soutien	*
米 火	A mon binôme Nawel	**
※	En lui souhaitant plein de réussites.	~ ※
*	A tous ceux qui me sont chers.	*
*		Ahir *
*		ADII [®] *
*		米
***	***********************	****

** *	**************************************
米	Dédicaces 💥
米	
米	Je de die Ce travia *
米	*
米	A Mes Merveilleux Parentz à qui je dois ce que je suis aujourd'hui : **
米	*
米	*
米	A mes grande parents paternel et maternel, tout spécialement « Settí » 🛛 🧩
米	*
*	*
*	A mes exceptionnels frère et sœurs Karím, Síham et Nabíla, qu'ils 💥
米	trouvent ici le témoignage de ma gratitude pour tous leurs sacrifices
*	
*	*
*	A mes petítes níèces et neveu adorés, Anaïs, Amélía, Farah et Ramzí 🛛 💥
*	que dieu les garde pour moi 💥
*	*
*	*
*	A ma belle sœur Assía et mes beaux frères Réda et Ghaní envers 💥
*	lesquelles j'ai une grande estime et un profond respect 💥
*	*
*	Au merveilleux binôme du monde l'explosive Abir à laquelle je 💥
*	souhaite du plus profond de mon cœur que du bonheur et de la réussite 🛛 💥
米	*
*	*
*	A tous mes amis et cousins tout spécialement Selma et Fafouch
*	*
*	
*	et enfin tout particulierement a « El Hadi » qui m'a toujours
*	affection
*	*
*	*
※	Nawel 💥
*	*
*	
*	*
**	******

يهدف عملنا هذا إلى استعمال مبدأ مساهمة المجموعات لإنشاء معادلات رياضية تسمح بتقدير درجة التبخر و معاملات بمعادلة أنطوان لحساب ضغط البخار للهيدروكربونات الخالصة و خلائطها و الكسور البترولية . في الجزء الثاني من عملنا قمنا باستعمال شبكة العصبونات الإصطناعية من أجل تقدير نفس الخصائص . كلمات مفتاحية : ضغط البخار ; درجة التبخر مساهمة المجموعات شبكة العصبونات الإصطناعية الهيدروكربونات الكسور البترولية .

<u>Résumé</u>

Notre étude consiste en l'estimation de la tension de vapeur et la température d'ébullition des hydrocarbures purs et leurs mélanges, ainsi que les fractions pétrolières par deux méthodes.

La première consiste en l'utilisation du principe de contribution de groupes avec interactions pour l'établissement de nouvelles corrélations permettant de prédire les propriétés en question.

La deuxième fait appel à la technique des réseaux de neurones artificiels.

Mots clefs : Pression de vapeur, Température d'ébullition, contribution de groupes, réseaux de neurones.

Abstract

This study consists of the estimation of vapor pressure and boiling point of pure hydrocarbons, the mixtures and the oil fractions by two methods.

The first one is the use of the principle of contribution of groups for the establishment of new correlations, making it possible to predict these proprieties.

The second is applying the technical of neural networks.

Key words: Vapor pressure, boiling point, group contribution, neural networks.

Abréviations

þ

AAD	Absolute Average Deviation
API	American Petroleum Institute
ASOG	Analytical Solution Of Groups
ASTM	American Standard for Testing Materials
C-G	Canstantinou-Gani
CGAI	Contributions de Groupes Avec Interactions
CGSI	Contributions de Groupes Sans Interactions
CPG	Chromatographie en Phase Gazeuse
CPL	Chromatographie en Phase Liquide
ELV	Equilibre Liquide Vapeur
eq	équation
FP	Fraction Pétrolière
L-K	Lee-Kesler
MS	Mass Spectrometry
MSC	Méthode Sans termes Correctifs
MSE	Mean Square Error
РМС	Perceptron MonoCouche
QSPR	Quantitative Structure Activity Relationship
RNA	Réseaux de Neurones Artificiels
TBP	True Boiling Point
TRC	Thermodynamic Research Center
UNIFAC	UNIversal Functional Activity Coefficient
UV	Ultra Violet

A, B, C	Paramètres de l'équation d'Antoine
Aexp Bexp Cexp	Paramètres expérimentaux de l'équation d'Antoine
a, b, c, m, d, n, p	Paramètres des équations de contribution de groupes avec interaction
API	Densité définie par l'American Petroleum Institute
C/H	Rapport massique carbone / hydrogène
% C _P	Pourcentage en carbone paraffinique
% C _N	Pourcentage en carbone naphténique
% C _A	Pourcentage en carbone aromatique
d	Densité
d_4^T	Densité ou masse volumique liquide mesurée à la température T
d_4^{15}	Densité ou masse volumique liquide mesurée à 15 °C
d_4^{20}, d^{20}	Densité ou masse volumique liquide mesurée à 20 °C
d_{F}	Densité des paraffines
d_N	Densité des naphtènes
d_A	Densité des aromatiques
E _i	Energie d'un système de molécules
Gm	Energie de Gibbs d'un système
Gm liq	Energie de Gibbs d'un système liquide
Gm _{vap}	Energie de Gibbs d'un système vapeur
h	Constante de Planck
Hm	Enthalpie d'un système
Hm _{liq}	Enthalpie d'un système liquide

Hm_{vap}	Enthalpie d'un système vapeur
i	Nombre de neurones
Ι	Facteur de caractérisation de Huang
I	Moment d'inertie
K, k	Constante de Boltzmann
Киор	Facteur de caractérisation de Watson et Murphy .
m	Masse
М	Masse moléculaire
m _t	Fraction massique
m _i	Masse réduite
n, n_R	Indice de réfraction
n^{20}, n_d^{20}	Indice de réfraction mesuré à 20 °C .
n _i	Nombre de groupements structuraux dans une molécule
n _j	Nombre de termes d'interactions dans une molécule
N	Nombre de carbone
N _C	Nombre de groupements -CH ₂ -
P , P	Pression
PA	Point d'Aniline
P _C	Pression critique
P _i	Pression partielle du constituant i
P ^S	Pression de saturation
R	Constante des gaz parfaits
r	Distance intermoléculaire
R _A	Nombre de cycles aromatiques
R_I	Refractivity index
R _N	Nombre de cycles naphténiques

R _T	Nombre de cycles totale
5	Teneur en souffre
<u>Sm</u>	Entropie d'un système
Sm _{liq}	Entropie d'un système liquide
Sm _{vap}	Entropie de Gibbs d'un système vapeur
SpGr	Specific gravity
T, t	Température
T _c	Température critique
Teb, Teb	Température d'ébullition
Teb _{mass}	Température d'ébullition massique
Teb _{mol}	Température d'ébullition molaire
Teb _r	Température d'ébullition réduite
Teb _{vol}	Température d'ébullition volumique
Tmav	Température mean average
Tmax	Température maximum
Tmin	Température minimum
T _r	Température réduite
(T _{VV})	Tension de vapeur vrai
$(T_{VV})_i$	Tension de vapeur vrai du constituant i
$(T_{VV})_{mel}$	Tension de vapeur vrai d'un mélange
U	Energie interne d'un système
v	Volume
V _c	Volume critique
V _m	Volume molaire
v _i	Fraction volumique
x _i	Fraction molaire

$X_{(P,N,A)}$	Pourcentage en paraffines ,naphtènes ou aromatiques .
Z	Facteur de compressibilité
Z _C	Facteur de compressibilité critique
Z	Fonction de partition
z	Fonction de partition moléculaire

Lettres Grecques

ρ_s	Masse volumique d'un liquide saturé
3	Energie de cohésion
ω	Facteur acentrique
ω ₀	Dégénérescence à un état fondamentale
θ	Propriété physique donnée
$\Delta \theta_i$, $\Delta \theta_j$	contributions du groupement i et du terme d'interaction j

Liste des tableaux

- Tab. A.1: AAD enregistrés par Skander-Chitour pour l'estimation de **Teb** (2002)
- Tab. B.1 : Principaux groupements et termes d'interaction.
- Tab. B.2 : Les 20 équations testées pour la régression
- Tab. B.3 : AAD enregistrées pour la constante A d'Antoine
- Tab. B.4 : AAD enregistrées pour la constante B d'Antoine
- Tab. B .5 : AAD enregistrées pour la constante C d'Antoine
- Tab. B.6 : AAD corrigées de la constante A d'Antoine
- Tab. B.7 : AAD corrigées de la constante B d'Antoine
- Tab. B.8 : AAD corrigées de la constante C d'Antoine
- Tab. B.9 : Exemples de calcul de AAD par les nouvelles combinaisons
- Tab. B.10 : Meilleurs corrélations sélectionnées pour l'estimation de la tension de vapeur

Tab. B.11 : Résultats de calcul des pressions de vapeur sur les 30 mélanges binaires et ternaires considérés

- Tab. B.12 : Résultats de calcul des pressions de vapeur sur les fractions
- Tab. B.13 : Ecart enregistrés par CGAI pour la Teb
- Tab. B.14: Comparaison des AAD par CGAI et C-G pour Teb
- Tab. B.15 : Résultat de calculs de Teb des mélanges binaires considérés
- Tab. B.16 : Résultat de calculs de Teb des 10 fractions considérées
- Tab. C.1 : Caractéristiques des réseaux établis.

Tab. C.2 : AADmax et AADmoy enregistrées par entrainement et simulation, constante A d'Antoine, n-paraffines+iso paraffines.

Tab. C.3 : AADmax et AADmoy enregistrées par entrainement et simulation, constante B d'Antoine, n-paraffines+iso paraffines.

Tab. C.4: AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, n-paraffines+iso paraffines.

Tab. C.5: AADmax et AADmoy enregistrées par entrainement et simulation, constante A d'Antoine, aromatiques

Tab. C.6: AAD max et AAD moy enregistrées par entrainement et simulation, constante B d'Antoine, aromatiques.

Tab. C.7: AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, aromatiques.

Tab. C.8 : AADmax et AADmoy enregistrées par entrainement et simulation, constante A d'Antoine, naphtènes

Tab. C.9 : AADmax et AADmoy enregistrées par entrainement et simulation, constante B d'Antoine, naphtènes.

Tab. C.10 : AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, naphtènes.

Tab. C.11 : Résultats de calcul des pressions RNA sur les trois familles.

Tab.C.12: AADmax et AADmoy enregistrées par entrainement et simulation, de la Teb des ring group

Tab. C.13: AADmax et AADmoy enregistrées par entrainement et simulation, de la Teb des non ring group

Tab. C.14 : pression de vapeur de la coupe naphta par RNA

Tab. C.15 : Teb par RNA de 10 fractions étroites :

Liste des figures

Fig. A.1: Appareils de distillations ASTM et TBP.

Fig. A.2 : Courbe TBP d'une fraction pétrolière

Fig. A.3: Variation de l'enthalpie de vaporisation, du facteur de compressibilité et leur rapport en fonction de la température (cas réel de l'eau).

Fig. A.4 : Evaporation et ébullition

Fig. B .1 : Nouvelle segmentation des familles

Fig. B .2 : Ecarts enregistrés par L-K ET CGAI pour la tension de vapeur

Fig. B.3 : Comparaison des résultats obtenus par C-G et CGAI pour la Température d'ébullition

Fig. C.1 : le neurone biologique.

Fig. C.2 : Le neurone formel

Fig. C.3 Ecarts enregistrés pour l'estimation de la tension devapeur par : CGAI, RNA-CGSI, et L-K.

SOMMAIRE

INTRODUCTION GENERALE.

PARTIE A : GENERALITES SUR LE PETROLE.

I. Qu'est ce que le pétrole1
II. Un peu d'histoire1
III. Qualités intrinsèques du pétrole2
IV. Pétrole : origine, prospection et production2
IV.1 Origine2
IV.2 Prospection
a) Prospection géologique3
b) Prospection géophysique3
IV.3 Production3
V. Le raffinage : une étape clé4
VI. composition5
VI.1constituants purs5
a) Hydrocarbures5
b) Composés autres que les hydrocarbures7
VI.2Autres composes chimiques complexes8
a) Les asphalténes8
b) Les résines8
VI.3 Méthodes empiriques de calcul de la composition8
a) La méthode n.d.M de Van Nest et Van Westen (1954)9
b) La méthode n.d.PA de Robert10
VII. Analyse et caractérisation du pétrole brut
VII.1 Procèdes de séparation10
a) La distillation préparative de laboratoire (TBP)10
b) La distillation ASTM11
c) La distillation simulée12
VII.2 Analyse du pétrole brut12

a) Méthodes chimiques	.12
b) Méthodes physiques	.13
VIII. Propriétés physiques du pétrole brut	15
VIII.1 Introduction1	15
VIII.2 Propriétés de transport1	16
a) La densité	16
b) La masse molaire	18
VIII.3 Propriétés spécifiques	20
a) Le facteur de caractérisation Kuop	20
b) Le point d'aniline	21
VIII.4 Les propriétés optiques	.21
a) L'indice de réfraction	.21
VII.5 Les propriétés étudiées	.22
a)La pression de vapeur	22
b) La température d'ébullition	28

PARTIE B : ELABORATION DE NOUVELLES CORRELATIONS PAR CGAI.

I. Introduction	32
II. Méthodes de calcul des propriétés des hydrocarbures	.32
II.1 Les équations d'état3	2
II.2 Loi des états correspondants	.32
II.3 Méthode de contribution de groupes	.32
a) Principe	.32
b) Fondement thermodynamique	.33
c)Corrélations basées sur les méthodes des contributions	de
Groupe	.35
III. Application de la méthode de contributions de groupes	35
III.1 La régression	35
III.2 Algorithme de Levenberg-Marquardt	36
III.3 Présentation de Sigma Plot	.36

III.4 Démarche suivie	36
III.5 Présentation des résultats	41
a) La pression de vapeur	.41
b) Température d'ébullition	.56
IV. Conclusion	63

Partie C : APPLICATION DES RESEAUX DE NEURONES ARTIFICIELS.

I. Introduction
II. Historique64
III. L'origine biologique64
IV. Le neurone artificiel65
V. Les modèles des réseaux de neurones artificiels66
VI. L'apprentissage
VII. Ensemble d'apprentissage, ensemble de test67
VIII. Avoir toujours raison, une fausse bonne idée67
IX. Propriété fondamentale des réseaux de neurones formels: l'approximation
parcimonieuse
X. Quand utiliser les réseaux de neurones?68
XI. Présentation de notre problème: Modélisation statique avec un réseau de neurones
non bouclé à apprentissage supervisé68
XII. Résultats obtenus69
XII.1 La pression de vapeur69
XII.2 La température d'ébullition86
XII. 3 Application aux fractions pétrolières
XIII. Perspectives

CONCLUSION GENERALE

INTRODUCTION GENERALE

L'industrie pétrolière a connu un grand essor durant le 20^{ème} siècle, son développement devint alors une priorité. C'est pourquoi les ingénieurs pétroliers s'intéressent de prés à l'amélioration des conditions techniques au sein des unités et plateformes pétrolières. Or la maitrise de ces conditions nécessite essentiellement la bonne connaissance des propriétés des hydrocarbures et leurs mélanges.

L'expérience est la source principale de cette connaissance; cependant il est très souvent ardue en matière de temps et de cout voir très onéreux de mettre en œuvre les procédés expérimentaux.

Afin de palier à ces limites, des méthodes prédictives ont été proposées pour l'estimation des propriétés physicochimiques du pétrole brut et les fractions pétrolières. Parmi celles qui ont connu une grande application dans le domaine, la méthode de contribution de groupe CGAI et celle de la modélisation par les réseaux de neurones artificiels RNA.

Dans le cadre de notre étude, nous nous sommes proposé l'estimation de deux propriétés thermiques du pétrole : la pression de vapeur et la température d'ébullition par le biais des deux méthodes citées précédemment.

Le présent document est structuré en une introduction générale, trois parties que nous détaillerons, une conclusion générale, des annexes et des références bibliographiques:

- **Partie A** : Dans cette partie nous commençons par exposer de manière succincte des généralités sur le pétrole brut, nous passons ensuite à la présentation de sa composition et les différentes méthodes d'analyse auxquelles l'ingénieur fait appel, et enfin nous terminons par les propriétés physicochimiques du pétrole.
- **Partie B** : Dans cette partie, nous présentons d'abords quelques fondements théoriques des principales méthodes prédictives pour l'estimation des propriétés physicochimiques du pétrole, en mettant l'accent sur celle des contributions de groupes qui fait l'objet de la première partie de notre travail. Ensuite nous passerons à son application pour l'élaboration de corrélations pour l'estimation de la tension de vapeur et de la température d'ébullition.
- Partie C : Lors de cette dernière partie nous abordons la modélisation par réseaux de neurones comme deuxième approche, commençant par la présentation de quelques généralités théoriques, puis à l'établissement de réseaux pour la prédiction des deux propriétés étudiées.

I. Qu'est ce que le pétrole ? [1]-[2]

Le mot "pétrole", composé à partir des deux mots latins « petra » et « oléum », signifie littéralement "huile de pierre": on trouve en effet le pétrole dans les roches sédimentaires de la croûte terrestre sous forme liquide. Il existe également sous forme gazeuse ou solide. Selon les gisements, il présente une grande variété, entre le gaz naturel, constitué principalement de méthane, et des formes solides ou semi-solides comme l'asphalte et les bitumes, en passant par toutes les formes intermédiaires liquides.

Pour ce qui est de son appellation la terminologie française, dans le domaine du pétrole et de ses dérivés, envahie par l'emploi de termes anglais ou américains, prête souvent à confusion. Les Anglo-Saxons utilisent parfois le mot *petroleum*, directement issu du latin médiéval, mais beaucoup plus souvent oïl ("huile"), bien que le pétrole ne présente pas les caractéristiques d'une huile, sans doute par référence à l'étymologie latine, « petroleum » signifiant « huile de pierre » comme cité précédemment. Chaque fois que le contexte n'éclaire pas l'acception précise du mot oïl, les Anglo-Saxons disent « crude oïl », que les Français traduisent par pétrole brut, bien que le mot pétrole se suffise de nos jours à lui-même (ce n'était pas le cas au début du siècle, quand l'actuel kérosène, coupe de distillation moyenne du pétrole, était appelé pétrole lampant). En fait Le mot pétrole est strictement synonyme de l'ancien mot « naphte », issu du grec, qui est tombé en désuétude, mais que beaucoup confondent avec le mot anglais « naphta », très officiellement francisé pour désigner l'essence de distillation directement, que l'on avait tendance à confondre avec l'essence-carburant, bizarrement appelée « petrol » par les Britanniques (les Américains disent gazoline).

II. Un peu d'histoire [3]

La découverte du pétrole ne date pas d'aujourd'hui et son usage remonte aux origines de l'homme. Dans l'antiquité les hommes adorèrent le feu, et utilisèrent les affleurements de pétrole naturels afin de maintenir le feu sacré des temples antiques et les roches asphaltiques furent utilisées pour la construction des habitations. Toutes les civilisations qu'a connues l'humanité ont eu recours à son utilisation dans divers domaines. Il fit principalement office de combustible, mais aussi de substance médicinale et matériau de construction.

Les premiers travaux d'extraction furent réalisés par le colonel Edwin L. Drake, connu postérieurement comme "colonel Drake", qui réalisa à Titusville (Pennsylvanie), en 1859. En avril 1861, les foreuses rencontrèrent le premier puits jaillissant qui expulsait le pétrole à un rythme étonnant de 3000 barils par jour. Les préoccupations relatives au niveau de production

furent ainsi dissipées. La production de Pennsylvanie passa de 45.000 en 1860 à 3 millions de barils en 1862.

Ceci engendra une frénétique vague de prospérité qui, dans le cadre de la commercialisation, vit monter et descendre les prix à un rythme vertigineux. C'est ainsi que débuta ce qui fut nommé " la course au pétrole", se caractérisant par la recherche de puits, l'exploitation immédiate et la production accélérée qui provoquèrent un épuisement prématuré de la production. Ce fut donc une époque de grande expansion économique et de rapide développement, caractérisée par une spéculation énorme et une féroce compétition.

Et c'est comme ça que l'or noir fit son apparition et est devenue depuis ; le centre des principaux enjeux géopolitiques existants jusqu'à nos jours.

III. Qualités intrinsèques du pétrole

Comparé aux autres sources d'énergie utilisées par l'homme avant sa découverte, c'est d'abord une source d'énergie dense : elle offre une grande quantité d'énergie pour un faible volume. C'est aussi une source d'énergie liquide : facile à pomper, à stocker, à transporter et à utiliser. Ces qualités lui permettront de détrôner rapidement le charbon pendant la première moitié du XX^e siècle dans tous ses grands domaines d'utilisation : industriel, domestique et, par-dessus tout, dans le domaine des transports.

IV. Pétrole : Origine, prospection et production

IV.1. Origine [4]-[5]

De nombreux savants se sont penchés sur le problème de l'origine du pétrole. Deux théories sont nées : Celle de l'origine «minérale» défendue autrefois par de notables savants tels que Moissan, Sabatier et Berthelot, et celle de l'origine «organique» défendue par Engler et Hofer. C'est cette dernière théorie qui est considérée comme vraisemblable.

Pour ce qui est de l'hypothèse inorganique, plusieurs théories ont été émises, toutes fois les premiers postulats ont attesté que le pétrole se forme par l'action de métaux d'alcali sur les carbonates après quoi l'acétylène est produit par réaction des carbures avec de l'eau et ce selon Berthelot en 1866. Mendeleïev, quand à lui a proposé que l'action des acides dilués ou de l'eau chaude sur un mélange de fer etde carbures de manganèse produit à son tour un mélange d'hydrocarbures desquels le pétrole a évolué. Il y a également plusieurs théories récentes, datant des années quatre-vingt liées à la formation inorganique du pétrole, notamment celle de: Soter, Gold, Osborne, et Szatmari. Cependant, aujourd'hui, d'une manière générale mais

non concluante et prouvée, on accepte que la formation du pétrole résulte principalement de l'affaiblissement de la matière organique dans la terre. En effet d'après la théorie organique ce serait surtout à partir de la microfaune (plancton), et la microflore que se serait formé le pétrole. La matière organique se serait accumulée au fond de la mer, mélangée à des sédiments fins et formant avec eux « le Sapropel » qui est un limon putréfié, la pression développée au fur et à mesure par l'accumulation des sédiments au cours des temps géologiques, la température, l'action de bactéries en milieu réducteur, c'est-à-dire en absence d'oxygène, auraient petit à petit facilité la transformation de ce « Sapropel » en pétrole.

IV.2. Prospection [6]-[7]

Les méthodes de recherche des gisements varient selon que le type du site en présence change de forme ou présente certaines caractéristiques superficielles qui imposent d'elles même la démarche à suivre. Elles sont classées en deux catégories :

a) Prospection géologique

Généralement une campagne d'exploration commence toujours par une analyse des travaux antérieurs et des documents géologiques pétroliers ou non, par la suite une équipe de géologues fait une reconnaissance des surfaces choisies et en étudie les principaux affleurements pour arriver à la fin à mettre en évidence les pièges possibles ayant permis l'accumulation d'hydrocarbures sous forme de gisements.

Ce travail de surface peut être aidé d'une étude photo géologique.

b) Prospection géophysique

Il arrive fréquemment qu'une étude géologique ne soit pas possible, la forme des terrains profonds étant masqués par des terrains récents. On a donc recours à des méthodes géophysiques qui sont pour la plupart des perfectionnements des méthodes qu'utilisaient les observatoires pour l'étude de la physique du globe, parmi elles : la gravimétrie, la magnétométrie, les méthodes électriques et telluriques et la méthode sismique qui est de loin la plus utilisée pour la recherche de gisements pétroliers, et il en existe deux catégories la sismique de réflexion et la sismique de réfraction.

IV.3. Production

Compte tenu des données résultantes de l'étape de prospection, il est nécessaire de confirmer les hypothèses tenues à son issue. C'est l'étape du forage d'exploration qui seule permet de certifier la présence de pétrole. On perce la roche à l'aide d'un trépan. À terre,

l'ensemble du matériel est manipulé à partir d'un mât de forage. En mer, l'appareil de forage doit être supporté au-dessus de l'eau par une plateforme métallique spécialement conçue.

Cependant, avant d'envisager l'exploitation, il est nécessaire d'évaluer la rentabilité du gisement à savoir le volume des réserves récupérables et conditions de production qui ne peuvent être déterminés qu'en procédant à des forages de délinéation en vue de délimiter le gisement.

Enfin, c'est la phase d'exploitation du gisement qui permet d'extraire le pétrole. La technique de forage la plus répandue est celle du forage Rotatory qui s'est beaucoup renouvelée, en particulier avec les forages déviés - permettant de contourner un obstacle souterrain - ou horizontaux – permettant de traverser le réservoir sur toute sa longueur. Les puits multi drains, quant à eux, permettent de limiter le nombre de forages, en traitant plusieurs parties du réservoir à partir d'un point unique.

V. Le raffinage, une étape clé [7]

Le pétrole brut n'est pas utilisé tel quel, il est transformé en différents produits finis : carburants, combustibles, matières premières pour la pétrochimie et autres produits spécifiques (bitume, huiles lubrifiantes). C'est l'objectif du raffinage : mettre à la disposition du consommateur des produits de qualité, dans le respect de normes précises, notamment environnementales, et aux quantités requises par le marché. Cette étape regroupe différentes opérations :

- L'obtention de produits intermédiaires par distillation : les trois principales "coupes" pétrolières sont obtenues dans une tour de distillation : les légers (gaz, naphta et essences), les moyens (kérosène, diesel et fuel domestique) et les lourds (fuel lourd ou résidu atmosphérique).
- L'amélioration de la qualité : cette opération consiste à éliminer, dans les différentes coupes, certains composés indésirables comme le soufre.
- La transformation de coupes lourdes en coupes légères : à l'aide de procédés dédiés, les produits lourds de moins en moins consommés (type fuel lourd) sont transformés en produits légers fortement demandés (diesel et kérosène). Les unités de raffinage impliquées sont "spécifiques". Elles doivent généralement travailler à haute température et/ou forte pression pour générer des hydrocarbures plus légers, "par craquage", et améliorer leur qualité, la plupart des composés indésirables (soufre, métaux, etc.) étant plutôt concentrés dans les coupes initialement lourdes.

 La préparation finale des produits par mélange : on obtient les produits finis par mélange des produits intermédiaires ou semi-finis. Pour faire face à cette série d'opérations, les raffineries doivent disposer d'importants volumes de stockage, d'installations de réception des produits bruts et d'expédition des produits finis.

VI. Composition [8]

Le pétrole est caractérisé comme un " liquide huileux, inflammable, dont la couleur varie du jaune clair au noir, qui se compose d'hydrocarbures très divers en proportions variables, sous pression et température plus ou moins élevées dans les gisements.

Sa composition varie d'un champ à l'autre mais il comporte grossièrement 80 % de carbone, 11 % d'hydrogène et 1 à 2 % de soufre, d'oxygène et d'azote.

VI.1. Constituants purs

Les pétroles bruts sont constitués par des mélanges complexes de corps purs, essentiellement des hydrocarbures. L'identification de tous les constituants d'un pétrole brut en tant qu'hydrocarbures individuels est une tâche très ardue, voire impossible, lorsque les fractions deviennent de plus en plus lourdes. En effet, le nombre de composés et la difficulté de leur description croissent avec le nombre d'atomes de carbone, ils sont classés comme suit :

a) Hydrocarbures

Les hydrocarbures constituent les éléments essentiels du pétrole; leurs molécules ne contiennent que du carbone et de l'hydrogène; elles se divisent en plusieurs familles chimiques selon leur structure qui est basée sur la tétravalence du carbone. Les enchaînements moléculaires carbones - carbones peuvent être :

- Soit réunis par une simple liaison.
- Soit par des liaisons multiples, doubles, ou triples.

On peut citer trois grandes familles d'hydrocarbures :

Paraffines (alcanes saturés), cycloparaffines (naphtènes) et aromatiques.

Hydrocarbures aliphatiques saturés (paraffiniques)

Ces hydrocarbures sont constitués d'un enchaînement d'atomes de carbone portant chacun de 0 à 3 atomes d'hydrogène (sauf pour le plus simple d'entre eux, le méthane: CH₄). Chaque carbone est toujours lié à quatre autres atomes (soit carbone, soit hydrogène) ; leur formule générale est : C_nH_{2n+2} . Ils peuvent être structurés en chaînes droites: ce sont les paraffines normales ou n-alcanes, de formule développée: CH_3 — (CH_2) _n— CH_3 . Leur point d'ébullition s'élève avec le nombre d'atomes de carbone.

Dans les premiers termes, l'addition d'un carbone augmente le point d'ébullition d'environ 25°C; cet incrément devient ensuite plus faible. La masse volumique croît avec le poids moléculaire : 0,626 kg/1 pour le pentane (5 atomes de carbone), 0,791 kg/1 pour le pentacosane (25 atomes de carbone) ; elle reste toujours très inférieure à 1.

Un atome d'hydrogène (ou plusieurs) peut être substitué (s) par un carbone ou une chaîne hydrocarbonée : ce sont les iso-paraffines ou iso-alcanes; ces branchements peuvent se situer à différents emplacements de la chaîne, d'où la possibilité, à nombre d'atomes de carbone égal, de molécules différentes, appelées isomères; exemples : le 2 méthyle hexane et le 3 méthyle hexane. Les iso-paraffines ont un point d'ébullition inférieur à celui des normales paraffines à même nombre d'atomes de carbone.

Hydrocarbures cycliques saturés ou cyclanes (naphténiques)

Dans ces hydrocarbures, il y a cyclisation de toute une partie du squelette carboné. Ils ont des températures d'ébullition et des masses volumiques supérieures à celles des alcanes à même nombre d'atomes de carbone. Les cycles les plus fréquemment rencontrés dans le pétrole brut sont ceux à cinq ou six atomes de carbone. Dans ces cycles, chaque atome d'hydrogène peut être substitué par une chaîne paraffinique (dite alkyle) droite ou ramifiée. On parle d'alkyle cyclopentane ou d'alkyle cyclohexane .La formule générale des cyclanes comprenant un seul cycle est C_nH_{2n} . On trouve également des cyclanes constitués de 2, 3, 4... cycles accolés.

Hydrocarbures aromatiques

Ce sont des hydrocarbures cycliques polyinsaturés présents en concentration élevée dans les parties lourdes des pétroles bruts. La présence dans leur formule d'au moins un cycle à trois doubles liaisons conjuguées leur confère des propriétés remarquables. En effet, les premiers termes (benzène, toluène, xylènes) sont des matières premières de la pétrochimie (ils contribuent également à augmenter l'indice d'octane d'une essence) alors que les homologues supérieurs sont en général néfastes (problèmes d'environnement, de santé publique, de détérioration de l'activité de catalyseurs par leur capacité à former du coke...).

Le motif élémentaire commun à tous les aromatiques est le cycle benzénique. Il est souvent représenté par la présence d'un atome d'hydrogène à chaque sommet de l'hexagone, omis par convention. Leur formule générale est : C_nH_{2n-6}

Les aromatiques peuvent être substitués :

- Soit par des chaînes alkyles pour donner des alkyl-aromatiques, où l'on définit les positions des substituants par les termes ortho, méta, et para par exemple tels que l'orthoxylène et le paraxylène.
- Soit par d'autres aromatiques : c'est ainsi qu'un deuxième cycle aromatique peut se substituer à deux hydrogènes adjacents pour donner des hydrocarbures poly- aromatiques condensés.
- Soit par un cycle naphténique qui peut aussi se substituer à deux atomes d'hydrogène adjacents en formant un hydrocarbure naphténo-aromatique.

Hydrocarbures aliphatiques insaturés (les oléfines)

Dans ceux-ci, certains atomes de carbone de la molécule ne sont plus liés qu'à trois atomes, ce qui implique la présence d'une ou plusieurs doubles liaisons carbone-carbone.

Les oléfines ne se rencontrent pas ou très peu dans le pétrole brut ou les produits de distillation directe (produits appelés « straight run » en anglais) mais peuvent être présents dans les recettes des procédés de raffinage, particulièrement dans les fractions provenant des procédés de conversion des fractions lourdes, que ces procédés soient thermiques ou catalytiques. Les premiers termes de cette famille sont également des matières de base très importantes de la pétrochimie (éthylène, propène, butènes...).

Autres hydrocarbures

Absents ou à l'état de trace dans les pétroles bruts, on rencontre dans les effluents de procédés de conversion, d'autres produits tels que les dioléfines et les hydrocarbures acétyléniques (alcynes), Ces produits constituent les éléments de base de la polymérisation.

b) Composés autres que les hydrocarbures

Dans cette catégorie entrent des molécules contenant d'autres atomes que le carbone et l'hydrogène. On y distingue les composés organiques hétéro-atomiques tels que les composés soufrés, oxygénés et azotés, mais, également, des composés organométalliques.

Composés organiques hétéro-atomiques

i) Composés soufrés

Le soufre est l'hétéro-élément le plus présent dans les pétroles bruts avec des concentrations pouvant atteindre les 8% en poids; teneur généralement corrélée avec la densité du brut et donc sa qualité. Les composés soufrés étant très toxiques et corrosifs, leur concentration doit être réduite avant le raffinage du brut.

Le soufre peut être présent sous forme inorganique tels que l'hydrogène sulfuré H_2S et l'oxysulfure de carbone COS, ou engagé dans des molécules organiques tels que les sulfures R-S-R, les disulfures R-S-R, les thiols ou mercaptans RSH et les thiophènes et leurs dérivés lorsque l'atome de soufre est inséré dans les cycles aromatiques.

ii) Composés oxygénés

Les naphtènes et aromatiques lourds peuvent contenir des atomes d'oxygène pour former des aldéhydes, des cétones ou des acides. L'oxygène est responsable de l'acidité des pétroles bruts qu'on évalue en déterminant la quantité de KOH en milligrammes nécessaire pour neutraliser l'acide carboxylique dans un gramme de pétrole brut.

iii) Composés azotés

L'azote se retrouve davantage dans les fractions lourdes sous forme d'amides, amines, carbazoles ou encore de pyridines qui peuvent donner le caractère basique aux produits pétroliers et constituer ainsi un poison pour les catalyseurs acides.

Composés organométalliques

Les pétroles bruts renferment également des composés organométalliques contenant du vanadium ou du nickel. Ces composés sont communément appelés porphyrines.

VI.2. Autres composés chimiques complexes

Ces composés sont présents dans les fractions les plus lourdes du pétrole et se forment par oxydation des grosses molécules poly-aromatiques concentrées en hétéro éléments.

a) Les asphaltènes

Ce sont des particules de type colloïdal, de couleur noirâtre et de masse moléculaire pouvant varier de 1000 à 10 000 g/mol. Ils sont présents dans les pétroles bruts sous forme de suspensions. Au laboratoire, ils sont précipités à l'heptane normal, la partie soluble étant constituée par les maltènes. Ils sont à l'origine de nombreux problèmes de bouchage au niveau de la formation et des tubings de production, limitant ainsi la production.

b) Les résines

Les résines sont généralement des molécules à caractère aromatique très marqué, leur masse moléculaire peut varier de 500 à 1000 g/mol.

VI.3.Méthodes empiriques de calcul de la composition [9]

Ce sont des méthodes simples, rapides, et peu onéreuses, elles permettent d'avoir rapidement une idée de la composition. Leur précision sans être parfaite, permet néanmoins d'approcher la composition du pétrole brut ou de la fraction pétrolière. Parmi elles les méthodes n.d.m de Van Nest et Westen et n.d.PAde Robert que nous présentons dans ce qui suit.

a) La méthode n.d.M de Van Nest et Van Westen (1954)

Cette méthode empirique a été proposée en 1954. Pour déterminer la composition d'un groupe structurale d'un produit pétrolier il est nécessaire de connaître son indice de réfraction (**n**) (à (0.0001), sa densité (**d**) à (0.0001) et sa masse moléculaire (**M**) à (3%) et éventuellement le pourcentage en souffre (**S**%> 0.02). La méthode nécessite les calculs suivants :

 \triangleright

Pour les fractions liquides (n et d

mesurés à 20°C)

•
$$V = 2.51(n-1.4750) - (d-0.8510)$$
 (1)

•
$$W = (d - 0.8510) - 1.11(n - 1.4750)$$
 (2)

•
$$V > 0: \% C_A = 430V + \frac{3660}{M}$$
 et $R_A = 0.44 + 0.055MV$ (3)

•
$$V < 0: \% C_A = 670V + \frac{3660}{M}$$
 et $R_A = 0.44 + 0.080MV$ (4)

•
$$W > 0: \% C_R = 1440W - 3S + \frac{10000}{M} et R_T = 1.33 + 0.0146M(W - 0.005S)$$
 (5)

•
$$W < 0: \% C_R = 1440W - 3S + \frac{10600}{M}$$
 et $R_T = 1.33 + 0.180M(W - 0.005S)$ (6)

> Pour les fractions liquides (n et d mesurés à 70°C) :

•
$$V = 2.42 (n - 1.4600) - (d - 0.8280)$$
 (7)

•
$$W = (d - 0.8280) - 1.11(n - 1.4600)$$
 (8)

•
$$V > 0: \% C_A = 410V + \frac{3660}{M}$$
 et $R_A = 0.41 + 0.055MV$ (9)

•
$$V < 0: \% C_A = 720V + \frac{3660}{M}$$
 et $R_A = 0.41 + 0.080MV$ (10)

•
$$W > 0: \%C_R = 775W - 3S + \frac{11500}{M}$$
 et $R_T = 1.55 + 0.146M(W - 0.005S)$ (11)

•
$$W < 0$$
: % $C_R = 1440W - 3S + \frac{12100}{M}$ et $R_T = 1.55 + 0.180M(W - 0.005S)$ (12)

Ces valeurs permettent d'aboutir à la connaissance de :

•
$$\% C_N = \% C_R - \% C_A$$
 (13)

•
$$\% C_P = 100 - \% C_R$$
 (14)

•
$$\boldsymbol{R}_{N} = \boldsymbol{R}_{T} - \boldsymbol{R}_{A} \tag{15}$$

- $%C_P %C_N, %C_A$: Pourcentages de carbones paraffiniques, naphténiques et aromatiques.
- R_T, R_N, R_A : Nombres de cycles total, naphténiques et aromatiques.
- **S** : Teneur en souffre exprimée en pourcentage massique.

La méthode n.d.m donne d'après les auteurs une précision de 1.5 % pour les pourcentages en carbone, et de 0.08% pour le nombre de cycles par molécule à condition que le poids moléculaire soit supérieur à 200 g/mol et que ($\[mathcar{le}]{C_A} < 1.5 \[mathcar{le}]{C_N}$) et enfin($\[mathcar{le}]{C_P} > 25 \[mathcar{le}$).De plus, cette méthode présente l'inconvénient d'avoir à faire à deux hypothèses :

- Tous les noyaux aromatiques comme alicycliques sont hexagonaux.
- Tous les cycles sont à l'état catocondensé.

b) La méthode n.d.PA de Robert

Elle est basée sur la mesure de : l'indice de réfraction à 20° C (n^{20}), de la densité à la même température (d^{20}) et du point d'aniline **PA** en^oC. Le calcul de la composition se fait en utilisant les formules suivantes :

• %
$$C_A = 1039.4 n^{20} - 470.4 d^{20} - 0.315 PA - 1094.3$$
 (16)

• % $C_N = -10573.3 n^{20} + 840.15 d^{20} - 0.4619PA + 1662.2$ (17)

•
$$\% C_P = 100 - (\% C_N + \% C_A)$$
 (18)

Cette méthode s'applique aux fractions pétrolières légères et moyennes et donne une bonne précision, néanmoins elle présente l'inconvénient de la détermination du point d'aniline qui n'est pas toujours possible surtout pour les fractions pétrolières lourdes qui sont colorées (difficulté de repérer le point de disparition des deux phases).

VII Analyse et caractérisation du pétrole brut

VII.1 Procédés de séparation [10]

La séparation est une étape clé en raffinage du pétrole, qui sert à séparer le brut en plusieurs fractions, dont chacune sera traitée à part.

La distillation sous ses différentes formes garde son importance en tant que procédé physique de séparation des composés du pétrole et des produits dérivés suivant leurs températures d'ébullition. Parmi les différents types de distillations, nous pouvons citer:

a) La distillation préparative de laboratoire (TBP)

La T.B.P est une opération fondamentale de séparation dans le domaine du raffinage. C'est une distillation discontinue permettant la séparation d'un pétrole brut ou d'une fraction d'hydrocarbures en fonction de la température d'ébullition. C'est une distillation qui est menée dans une colonne à nombre de plateaux élevé, au sommet de laquelle passe toute la totalité des constituants les plus volatils et par la suite tous les constituants purs par ordre de volatilité. Les vapeurs issues de la distillation sont conduites dans la colonne où elles rencontrent le liquide servant de reflux, elles s'enrichissent à son contact en produits légers, et abandonnent les produits les plus lourds qui se condensent et redescendent dans la colonne. Les vapeurs ainsi enrichies en produits légers, passent en tête de colonne et constituent le reflux. Les fractions sont recueillies tous les 5°C. En notant le pourcentage volumique ou massique de chacune d'elles, on peut alors tracer la courbe T.B.P du pétrole brut.

b) La distillation ASTM

L'appareillage utilisé dans cette technique de distillation comporte un ballon de distillation pouvant contenir 100 ou 200 cm³ de produit que l'on chauffe et distille à une vitesse déterminée. Les vapeurs formées sont condensées dans un tube en cuivre baignant dans un mélange d'eau et de glace pilée, puis recueillies dans une éprouvette graduée. On note la température dans le ballon dès l'apparition de la première goutte du condensât à la sortie du tube, c'est le point initial de la distillation. Ensuite, la température est augmentée régulièrement. En fin de distillation, la température décroît par la suite de l'altération thermique des dernières traces liquides dans le ballon. Le maximum de température est le point final de distillation. Ensuite, on présente la température d'ébullition en fonction du pourcentage distillé. Cette méthode est plus rapide mais elle ne se fait qu'à pression atmosphérique et nous devrons arrêter autour de 320°C.

Fig. A.1: Appareils de distillations ASTM et TBP.

Fig. A.2 : Courbe TBP d'une fraction pétrolière .

c) La distillation simulée

La stabilité des colonnes en CPG haute température est un paramètre important pour cause de routine. Une des principales applications dans ce domaine est la distillation simulée utilisée notamment pour la caractérisation des produits pétroliers. Cette méthode permet d'établir la courbe de distillation donnant la fraction massique en fonction de la température d'ébullition, à partir d'un profil chromatographique de l'échantillon et d'une courbe d'étalonnage reliant les temps de rétention de paraffines normales à leur température d'ébullition. La maîtrise de cette analyse implique de suivre le niveau de la dérive de la ligne de base à la fin de l'analyse et la variation des temps de rétention afin de déterminer la fréquence d'analyse des blancs de colonne et du mélange de calibration. La possibilité ce type de méthode en routine dépend donc directement de la stabilité thermique des colonnes.

VII.2 Analyse du pétrole brut:[10]

a) Méthodes chimiques:

Les méthodes chimiques prévoient une action chimique du réactif sur les hydrocarbures d'une classe déterminée (arènes ou alcènes), dont la quantité des produits issus de la réaction est révélée par la variation du volume ou par la quantité des produits. Ces méthodes sont en plus nette régression. Ceci est vraisemblablement dû au fait que les différences des réactivités des différentes familles d'hydrocarbures disparaissent de plus en plus lorsque la masse

moléculaire augmente; en particulier, les chaînes latérales suffisamment longues et nombreuses peuvent masquer les propriétés du cycle. Les hydrocarbures aromatiques présentent cependant une réactivité chimique plus marquée que les autres hydrocarbures ; par suite, des méthodes chimiques : sulfonation, nitration..., permettent de les séparer et même de les doser. De toutes ces méthodes, la sulfonation est la plus employée, pour la réaliser, différentes techniques ont été proposées.

b) Méthodes physiques

Elles sont les plus pertinentes et les plus répandues. Ces méthodes concernent les propriétés optiques; elles sont destinées non seulement à déterminer les quantités d'arènes, de cycloalcanes dans un produit donné, mais aussi à examiner les compositions hybrides du point de vue de leur teneur en différentes unités structurales (noyaux aromatiques et alicycliques, substituants alcoyles). Cela se fait au moyen de différentes techniques :

Les méthodes spectrographiques [4]

Les méthodes spectrographiques reposent sur les propriétés optiques. Ces méthodes occupent depuis quelques années une place prépondérante dans le domaine de l'analyse. Elles peuvent être classées selon le type du spectre utilisé en :

La spectrographie infrarouge

L'infrarouge est la région du spectre qui s'étend de l'extrémité rouge du spectre visible aux plus courtes ondes hertziennes. Il comprend les longueurs d'onde qui vont de 0.8µ à 0.3 mm. Lorsqu'une radiation infrarouge rencontre une molécule, on observe pour certaines longueurs d'onde, une absorption sélective de la lumière correspondant aux fréquences de vibrations caractéristiques des différentes liaisons chimiques. La représentation graphique du pourcentage d'énergie absorbée en fonction de la d'onde ou de la fréquence constitue le spectre infrarouge. L'interprétation de ces spectres permet d'identifier un composé inconnu, de déterminer des structures moléculaires et de faire des mesures quantitatives de concentration. Dans l'industrie pétrolière, cette technique spectrale est utilisée dans la caractérisation des coupes pétrolières en déterminant la répartition par type de carbone. La méthode consiste à mesurer l'absorbance à 1600cm⁻¹ due aux vibrations des enchaînements paraffiniques, lesquelles sont directement corrélées respectivement à la concentration en carbone aromatique et en carbone paraffinique. Le pourcentage en carbone naphténique est déduit des pourcentages des deux autres familles.

La spectrométrie ultraviolet

Dans le spectre du rayonnement électromagnétique, l'ultraviolet se situe en énergie entre les rayons X mous et le visible, ce qui correspond à des énergies d'une centaine à quelques dizaines d'électrons volt. Les molécules rencontrées dans les produits pétroliers et donnant lieu à une absorption dans l'UV sont avant tout les hydrocarbures aromatiques et à un degré moindre les dioléfines conjuguées et les oléfines. Les hydrocarbures saturés, alcanes ou naphtènes, ne donnent aucun signal aux longueurs d'ondes supérieures à 180nm. Cette particularité, qui peut sembler restrictive, est en fait un avantage car la connaissance de la teneur en hydrocarbures aromatiques est très souvent recherchée au cours du raffinage. L'intérêt de l'absorption UV tient également au fait que pour les hydrocarbures, la condensation des noyaux provoque un déplacement de l'absorption vers les grandes longueurs d'onde, ainsi que des variations importantes des coefficients de sensibilité. Cette caractéristique est utilisée pour doser les hydrocarbures aromatiques dans une coupe gasoil.

La spectrométrie de masse

La spectrométrie de masse est réservée exclusivement à l'analyse des gaz ou des fractions légères de l'essence, cependant O'Neal et Wier ont réussit en modifiant le système d'introduction, à obtenir les spectres de masse des hydrocarbures lourds. Des relations ont pu être établies entre le spectre de masse et la structure moléculaire, cette technique est susceptible de fournir des résultats analytiques de plus grand intérêt notamment par le couplage avec la chromatographie en phase gazeuse.

* Les méthodes chromatographiques [11]

Les techniques chromatographiques, en particulier la chromatographie en phase gazeuse, sont très répandues à tous les stades de l'industrie du pétrole et les problèmes traités sont très divers : composition des gaz, recherche et dosage d'impuretés, suivi d'unité, analyse de charges et d'effluents...etc.

La chromatographie en phase gazeuse (CPG)

C'est une méthode d'analyse dans laquelle les molécules se partagent entre une phase stationnaire, constituée par un solvant lourd, et une phase mobile gazeuse, désignée sous le nom de gaz vecteur. La séparation se fait le long d'une colonne contenant le solvant lourd, elle est balayée en permanence par le gaz vecteur, (hélium, hydrogène, argon, azote...). Le produit à séparer est injecté en tête de colonne ou il est vaporisé et entraîné par le gaz vecteur.

Très répandue dans tous les laboratoires d'analyse organique, la chromatographie gazeuse a un pouvoir de séparation très élevé et a toujours été une technique analytique très utilisée pour la caractérisation des hydrocarbures. De ce fait, la chromatographie en phase gazeuse présente des limitations dans trois cas :

- Substances peu volatiles, ce qui est souvent le cas de celles dont la masse moléculaire est supérieure à 300g/mol.
- Substances sensibles à une élévation même modérée de la température (ce qui est le cas de nombreux composés d'intérêt biologique).
- Substances ionisées (car elles sont en général très peu volatiles).

La chromatographie en phase liquide (CPL)

La CPL n'est limitée ni par la volatilité de l'échantillon ni par sa stabilité thermique. De plus, elle est souvent plus efficace que la CPG dans le cas de séparation difficile. Toutefois, les deux méthodes ne sont pas concurrentes mais complémentaires.

Le couplage de la chromatographie en phase gazeuse avec la spectrométrie de masse (CPG -MS)

Le couplage CPG-MS a connu, depuis une vingtaine d'années, un extraordinaire essor. C'est en fait, la seule technique qui permet de séparer, la plus part du temps, d'identifier et de déterminer la structure des constituants d'un mélange complexe sur des quantités très faibles. Une conséquence importante de l'utilisation de l'association CPG-MS sur des mélanges complexes est le nombre élevé de spectres produits en peu de temps.

L'exploitation de ces spectres (couplage, éventuellement mesure d'intensité, dessin du spectre normalisé, comparaison avec des spectres de composés connus) prend un temps considérable.

VIII. Propriétés physiques du pétrole brut

VIII.1 Introduction

A la sortie d'un gisement, le pétrole est quasiment inutilisable; c'est pourquoi son traitement est nécessaire afin d'en générer les différents dérivés de manière à ce que ces derniers répondent à des spécifications bien précises et soient dans des proportions bien définies, et ce, via les divers procédés de raffinage et de transformation moléculaire. Le bon déroulement de ces procédés requiert une indentification très fine du pétrole par l'évaluation de ses nombreuses propriétés. La thermodynamique appliquée constitue la discipline scientifique dont l'objectif essentiel est de générer ces propriétés, afin d'optimiser, entre autre:

- Les conditions d'exploitation d'un gisement de pétrole brut ou de gaz naturel.
- Le rendement d'un procédé de séparation puis de purification d'un produit.

Le rendement d'un procédé de production d'énergie.

En effet, Les projets récents d'exploration et de production des gisements de pétrole brut et de gaz naturel posent aux spécialistes de la thermodynamique des fluides un très grand nombre de défis en continuelle croissance, il s'agit notamment de l'élargissement considérable des domaines de température et de pression pour lesquels il est nécessaire d'estimer les propriétés des fluides, d'une part, d'autre part, le métier de l'exploration nécessite en particulier d'effectuer de telles estimations à partir d'un nombre de données extrêmement faible, tout en étant néanmoins capable d'évaluer de manière précise les incertitudes affectant la composition du fluide au sein du gisement à développer éventuellement. Citons l'exemple de la récupération améliorée de pétrole par injection de gaz qui nécessite la représentation analytique correcte du pétrole pour le calcul de la pression minimale de miscibilité. De plus, l'accumulation progressive de dépôts dans les conduites de transport des bruts paraffiniques est l'un des problèmes majeurs rencontrés lors de l'exploitation de gisements contenant ces huiles. Pour prévenir ce type de problèmes des modèles thermodynamiques compositionnels sont utilisés pour calculer la température de cristallisation commençante, ainsi que la quantité de dépôts solides aux températures inférieures à celle-ci.

Parmi les autres problèmes qui ont été posés, et l'un des plus majeurs est la connaissance des propriétés thermodynamiques et thermo physiques des coupes (résidus de distillation atmosphérique et sous vide) contenant des asphaltènes, ainsi que des bruts dont elles sont issues. En effet, les asphaltènes peuvent obstruer les gisements d'huile, en particulier au voisinage des puits de production, les installations de traitement en surface et les conduites de transport, et/ou empoisonner les catalyseurs de pétrochimie par l'intermédiaire de certains hétéro atomes métalliques qu'ils renferment (nickel et vanadium).La viscosité très élevée des coupes qui les contiennent pose également des problèmes aux ingénieurs chargés de la conception des unités de conversion dans les raffineries. Face à cela, des modèles thermodynamique permettant le calcul des propriétés volumétriques et de floculation des bruts contenant des asphaltènes ont été proposés.

Compte tenu de tous ces problèmes La détermination des caractéristiques physico-chimiques du pétrole brut et ses fractions est le début de toute étude de valorisation.

VIII.2 Propriétés de transport

a) La densité

➢ Définition [9]-[12] : La densité est un paramètre physique sans dimension spécifique à chaque produit. C'est le rapport entre la masse d'un certain volume d'échantillon à une température donnée et celle de même volume de l'échantillon de référence; généralement on se réfère à l'eau à 4°C; elle est notée d_4^T

$$d_4^T = \frac{\text{la masse d'un volume d'un corps à une température T}}{\text{la masse du meme volume d'eauà 4 °C}}$$
(19)

Dans le système francophone, on mesure la d_4^{20} ou la d_4^{15} . Dans le système Anglo-saxon, la « specific gravity » se mesure à 60°F pour l'échantillon ainsi que pour l'eau. Elle peut se calculer à partir de la relation :

$$SpGr_{60^{\circ}F}^{60^{\circ}F} = \frac{d_4^{15}}{0.99904} \tag{20}$$

Dans le système Américain, les densités des bruts sont souvent exprimées en degré (American **API** Petroleum Institute). C'est une fonction hyperbolique de la « specific gravity » :

$$API = \frac{141.5}{spGr_{60^{\circ}F}^{60^{\circ}F}} - 131.5.$$
(21)

Cette propriété est fréquemment utilisée pour classer, d'une manière approximative les pétroles bruts en :

- Bruts légers : $0,76 \le d \le 0,82$.
- Bruts moyens : 0,82 < *d* < 00,86.
- Bruts moyennement lourds : $0,86 \le d < 0,90$.
- Bruts lourds : *d* > 0,90.

La densité des hydrocarbures purs croit des paraffines aux aromatiques, les naphtènes ont des densités intermédiaires entre les deux. Elle est directement proportionnelle au nombre de carbone pour les familles des paraffines et des naphtènes, mais inversement proportionnelle à ce dernier concernant les aromatiques. Les densités des trois familles tendent vers une valeur limite qui correspond à la densité du groupement $-CH_2 - qui a$ été fixée à 0.856.

La relation liant la densité à une température T et celle à 20°C est la suivante :

$$d_4^{20} = d_4^T \pm K(T - 20) \tag{22}$$

K est une constante dont les valeurs sont tabulées en fonction de la valeur de la densité d_4^{20} .

Mesures expérimentales

La détermination de la densité se fait au moyen de trois méthodes :

- Méthode du pycnomètre.
- Méthode de l'aréomètre.
• Méthode du densimètre électronique.

Le plus utilisé est le densimètre électronique. Il est caractérisé par une simple manipulation et une bonne précision.

> Détermination de la densité à partir des corrélations

De nombreux auteurs ont eu recours à des artifices mathématiques afin d'estimer la densité des corps purs, des mélanges d'hydrocarbures et des fractions pétrolières, citons à titre d'exemples pour les corps purs :

• Equation de Rackett [9]

C'est l'équation la plus connue en ce qui concerne l'estimation de la densité du liquide

saturée, elle est de la forme :
$$\frac{1}{\rho_s} = (Z_c V_c)^{(1-T_r)^{\frac{2}{7}}}$$
(23)

 $\boldsymbol{\rho}_{\mathbf{s}}$: Masse volumique du liquide saturée (g/cm³).

• Corrélations de Dermoune-Chitour (1990) [9]

Ces corrélations sont valables pour les fractions pétrolières légères dont les températures d'ébullition varient entre :

- 35 et 175 °C pour les paraffines.
- 50 et 185 °C pour les naphtènes.
- 80 et 185 °C pour les aromatiques.

Elles sont basées sur la compilation des valeurs données par l'**API** projet 44 pour les différentes familles d'hydrocarbures.

$$\ln(d_P) = 7.75 \, 10^{-4} \, M + 3.835 \, 10^{-4} \, Teb + 0.5613 \tag{24}$$

$$\ln(d_A) = 1.889 \, 10^{-4} \, M + 1.005 \, 10^{-4} \, Teb + 0.8965 \tag{25}$$

$$\ln(d_N) = 1.887 \, 10^{-4} \, M + 1.044 \, 10^{-4} \, Teb + 0.7469 \tag{26}$$

• Riazi -El-Sahhaf (1995) [13]

Ces auteurs ont, quant à eux, établi des corrélations en fonction de la masse molaire des n-alcanes, n-alkylcyclohexanes et n-alkylbenzènes comme suit :

$$\boldsymbol{d^{20}} = \boldsymbol{a} - \boldsymbol{e^{(b-cMd)}} \tag{27}$$

Les constantes a, b, c et d dépendent de la famille chimique

b) La masse molaire [9]

Définition

La masse molaire d'une substance est définie comme étant la masse d'une mole de molécules de cette substance. La connaissance de la masse molaire est importante pour le calcul de la valeur moyenne de la masse molaire des corps constituants telle ou telle fraction.

Mesures expérimentales

La détermination de la masse molaire ne pose pas de problèmes pour un corps pur ou pour un mélange de corps purs. On peut utiliser plusieurs méthodes : la cryoscopie ou cryométrie, L'ébullioscopie et enfin la tonométrie. Dans la pratique analytique, on utilise des méthodes dérivées de propriétés thermodynamiques telles que la cryoscopie l'ébullioscopie, la tonométrie (abaissement de la tension de vapeur) et l'osmomètre (pression osmométrique). Néanmoins, la majorité des méthodes citées sont délicates à mettre en œuvre, nous avons donc recours à des corrélations et des abaques faisant intervenir des grandeurs physiques différentes permettant d'accéder à la masse molaire rapidement et avec une assez bonne précision.

Détermination de la masse molaire à partir des corrélations

De nombreuses équations et méthodes graphiques ont été proposées pour l'estimation de lamasse molaire des corps purs et des fractions pétrolières, ces méthodes permettent en général d'approcher cette grandeur rapidement et avec une assez bonne précision. Citons à titre d'exemple pour les corps purs :

• Méthode graphique de l'abaque du Kuop

Nous avons recours à des abaques, par exemple l'abaque du *Kuop* proposée par Watson Nelson et Murphy. Des courbes iso propriétés permettent d'estimer la masse molaire des hydrocarbures purs connaissant le *Kuop*, la densité, et la température d'ébullition.

• Equation de Huang [14]

Cette équation relie la masse molaire à trois autres propriétés ; la température d'ébullition, la densité, et l'indice de réfraction avec une erreur constatée de 4 à 5%.

$$M = 7.7776 \, 10^{-6} \, (Teb)^{2.1197} \, (I)^{-2.089} \, (d_4^{20}) \tag{28}$$

Avec

Teb: Température d'ébullition en °R (degrés Rankine).

I: Facteur de caractérisation de Huang défini par :
$$I = \frac{n^2 - 1}{n^2 + 2}$$
 (29)

Où *n* est l'indice de réfraction.

VIII.3. Les propriétés spécifiques

a) Le facteur de caractérisation Kuop [9]

Définition

Ce facteur a été proposé par les chercheurs Watson et Murphy de la société U.O.P (Universal Oil Products), afin de discriminer entre les pétroles bruts. Il s'exprime pour un corps pur comme suit :

$$Kuop = \frac{\sqrt[3]{Teb}}{SpGr_{60^{\circ}F}^{60^{\circ}F}}$$
(30)

Teb est exprimée en degrés Rankine (°R).

Pour les mélanges complexes d'hydrocarbures, tels que les fractions pétrolières **Teb** est remplacée par la température moyenne d'ébullition notée *Tmav* de la coupe.

Le *Kuop* est un indice approximatif de la nature chimique des hydrocarbures. Il permet donc de situer les tendances des pétroles bruts et des fractions pétrolières. C'est à dire que :

• *Kuop* = 13 dénote une nature paraffinique normale et iso.

• Kuop = 12 si les hydrocarbures sont mixtes où le cycle et les chaîne sont équivalentes.

• *Kuop* = 11 pour les naphtènes purs et aromatiques légèrement substitués.

• *Kuop* = 10 pour les aromatiques purs.

Estimation du facteur de caractérisation

• Abaques de Whuitier et Maxwell

Des abaques ont été établis par Wuithier- (1972) et Maxwell (1961) donnant ce paramètre en fonction de la température moyenne d'ébullition, de la densité ou encore de la masse molaire.

Correlations de Bouamara-Chitour (1990) [15]

Paraffines : $Kuop = 11.07003 + 3.335759 \, 10^{-3} \, Teb + 2.159892 \, 10^{-6} \, d$ (31)

Naphtènes : $Kuop = 3635006 + 8.0817 \, 10^{-3} \, Teb - 34.95683 \, d$ (32)

Aromatiques : $Kuop = 18.72537 + 5.731715 \ 10^{-3} \ Teb - 11.6137 \ d$ (33)

b) Le point d'aniline

Définition [9]

Le point d'aniline est la température la plus basse à laquelle des volumes égaux d'aniline et du produit à examiner sont complètement miscibles, la rupture de miscibilité se manifestant par l'apparition d'un trouble net. Le point d'aniline est en relation avec l'aromaticité du produit étudié. Il entre dans des formules de caractérisation de différentes propriétés. Pour les corps purs, les paraffines ont les points d'aniline les plus grands, les aromatiques les plus faibles et les naphtènes ont les points d'aniline intermédiaires. La mesure du point d'aniline avant et après l'élimination des aromatiques peut servir à l'étude de la composition d'une fraction pétrolière.

Mesure expérimentale

La méthode de mesure du point d'aniline des produits pétroliers est régie par des normes telles que la norme ASTM D61 164.

Le principe de mesure consiste à chauffer deux volumes de 10cm³ d'aniline et de produit dans un tube agité mécaniquement et ce jusqu'à l'obtention d'une seule phase. Le refroidissement à une vitesse constante du mélange homogène entraînera l'apparition d'un trouble net à une température donnée correspondante au point d'aniline.

Détermination du point d'aniline à partir des corrélations

Corrélation de Dermoune – Chitour

Paraffines : $PA = 3.31e^{-8}Teb^3 - 1.73 \ 10^{-4} Teb^2 + 23.45 \ 10^{-4} Teb95.30$	(34)
---	------

Naphtènes : $PA - 12.3610^{-7} Teb^3 - 1.87 10^{-3} Teb^2 - 70.82 Teb 10^{-4} 109$	(35)
--	------

Aromatiques :
$$PA = -2.03e^{-5}Teb^3 + 0.044Teb^2 - 31.35Teb + 7257.8$$
 (36)

VIII.4. Les propriétés optiques

- a) L'Indice de réfraction [9]
- > Définition

Les rayons lumineux changent de vitesse et de direction en passant d'un milieu à un autre. Ce phénomène est appelé réfraction ; le rapport entre le sinus de l'angle d'incidence et le sinus de l'angle de réfraction « r » est une constante indépendante de la valeur de l'angle d'incidence pour un milieu donné, il est donné par la relation suivante :

$$\boldsymbol{n} = \frac{\sin(r)}{\sin(i)} = \boldsymbol{cste} \tag{37}$$

Mesure expérimentale

On peut facilement mesurer l'indice de réfraction au laboratoire à l'aide d'un réfractomètre ; le plus utilisé étant le réfractomètre d'ABBE. L'indice de réfraction dépend de la température à laquelle on fait la détermination de la longueur d'onde de la lumière. En général, elle est faite par rapport à la raie jaune du sodium D = 589.3 nm à 20°C. Pour cela, l'effet de la température est pris en compte à l'aide de la formule :

$$n_d^{20} = a + b/(1 + (N/C))^d$$
(38)

Avec

N : Nombre d'atomes de carbone.

a, b, C et d : sont des constantes dépendantes de la famille d'hydrocarbures.

VIII.5. Les propriétés étudiées « propriétés thermiques »

Dans le cadre de notre étude nous nous sommes intéressés à l'étude de **deux propriétés thermiques : la pression de vapeur et la température d'ébullition.**

a) La pression de vapeur

✤ La pression de vapeur d'un corps pur [12]

Dans un récipient fermé, la pression de vapeur d'un corps pur est la force exercée, par unité de surface, par sa phase vapeur. la pression de vapeur est une propriété très importante, elle mesure la volatilité du fluide. Un composé ayant la plus grande tendance à se volatiliser aura la tension de vapeur la plus élevée. En d'autres termes, elle mesure la tendance des molécules à s'échapper d'une phase liquide pour engendrer une phase vapeur en équilibre thermodynamique Une des grandes applications de la tension de vapeur, est le calcul du facteur d'équilibre chimique.

Comportement du fluide réel; l'équilibre liquide vapeur [16]

On sait qu'un système matériel peut, à l'équilibre, se trouver séparé entre plusieurs phases homogènes; s'il s'agit d'un corps pur, ces phases sont évidemment de composition

identique, mais se distinguent par les valeurs des propriétés spécifiques au sein de chacune d'entre elles: densité ou volume molaire, etc. Par contre, la frontière qui les sépare ne s'oppose pas aux variations complémentaires de volume, au transfert de chaleur, ni au transfert de matière, les conditions d'équilibre qui en résultent doivent donc être respectées: la pression et la température seront donc les mêmes de part et d'autre de ces frontières.

Par définition, la pression pour laquelle à une température T donnée, un corps pur est en équilibre liquide-vapeur ELV, est appelée pression de vapeur (ou pression de saturation) du corps pur considéré. On la notera $P^{S}(T)$.

Pour que l'équilibre thermique soit atteint:
$$T_{vap} = T_{liq}$$
 (39)

Pour que l'équilibre dynamique soit atteint: $\mathbf{P} = \mathbf{P}^{s}(\mathbf{T}) = \mathbf{P}_{vap} = \mathbf{P}_{liq}$ (40)

Pour qu'il n'y ait pas de transfert de matière entre les deux phases, il faut que le potentiel chimique ou énergie de Gibbs soit uniforme dans tout le système:

$$Gm_{lig}(T, P^{S}) = Gm_{vap}(T, P^{S})$$

$$\tag{41}$$

Conditions thermodynamique d'équilibre liquide vapeur [17]

Equation de Clapeyron

 $Gm_{liq}(T, P^S) = Gm_{vap}(T, P^S)$ Or

$$Gm = Hm - T Sm \tag{42}$$

Par définition ; où **H** est l'enthalpie, et **S** est l'entropie.

$$Hm_{liq}(T, P^{S}) - TSm_{liq}(T, P^{S}) = Hm_{vap}(T, P^{S}) - TSm_{vap}(T, P^{S})$$
(43)

Par définition de grandeurs de vaporisation:

$$\Delta_{vap} \mathbf{G}_{m}(T) = \mathbf{G}_{m,vap}(T, \mathbf{P}^{s}(T)) - \mathbf{G}_{m,liq}(T, \mathbf{P}^{s}(T))$$
(44)

L'égalité des potentiels chimiques en systèmes diphasiques impose:

$$\Delta_{vap} G(T, P^s(T)) = 0 \tag{45}$$

$$\Delta_{vap} H(T) = T * \Delta_{vap} S(T)$$
(46)

La forme différentielle:

$$dG_{m,vap}(T) = dG_{m,liq}(T) \tag{47}$$

Avec:

$$dG_m(T) = -S_m dT + V_m dp \tag{48}$$

D'où:

$$-S_{m,liq}(T,P^{s})dT + V_{m,liq}(T,P^{s})dp^{s} = -S_{m,vap}(T,P^{s})dT + V_{m,vap}(T,P^{s})dp^{s}$$
(49)

En regroupant les variables, on retrouve:

$$\frac{dp^{S}}{dT} = \frac{\Delta_{vap}S(T)}{\Delta_{vap}V(T)} = \frac{\Delta_{vap}H(T)}{T\Delta_{vap}V(T)}$$
(50)

Cette relation montre aussi que la pression de vapeur est une fonction croissante de la température.

On introduit le facteur de compressibilité d'un corps pur Z(T), définit comme suit:

$$\boldsymbol{Z} = \frac{P \, \boldsymbol{V}_m}{RT} \tag{51}$$

Avec R: constante molaire des gaz parfaits

On retrouve la deuxième forme de l'équation de Clapeyron:

$$\frac{dp^{S}}{P^{S}} = \frac{\Delta_{vap}H(T)}{R\,\Delta_{vap}Z(T)}\,\frac{dT}{T^{2}}$$
(52)

Ou

$$\frac{dlnp^{s}}{d(1/T)} = -\frac{\Delta_{vap}H(T)}{R\Delta_{vap}Z(T)}$$
(53)

Intégration de l'équation de Clapeyron

L'équation différentielle de Clapeyron est parfaitement rigoureuse, mais la fonction

 $\Omega(T) = \frac{\Delta_{\text{pap}}H(T)}{\Delta_{\text{pap}}Z(T)} \dots (54), \text{ pause problème, c'est pourquoi son intégration ne peut se faire}$

sans approximation.

Fig. A.3: Variation de l'enthalpie de vaporisation, du facteur de compressibilité et leur rapport en fonction de la température (cas réel de l'eau).

La figure A.3 montre que $\Omega(T)$ est proche de $\Delta_{vap} H(T)$ à basses températures, ne subit pas d'importante variations avec la température, et elle tend vers une valeur finie pour $T = T_c$ après être passée par un minimum.

Une première approximation consiste à considérer $(T) = \frac{\Delta_{vap} H(T)}{\Delta_{vap} Z(T)}$, indépendante de la température, on aura donc une relation à deux paramètres de type:

$$\ln P^S = A - \frac{B}{T} \tag{55}$$

Cette équation montre que le logarithme népérien de la pression de saturation est une fonction linéaire de l'inverse de la température. En effet, ceci est valide pour toute température comprise entre le point triple et le point critique.

> Introduction du facteur acentrique

En 1955, PITZER introduit le facteur acentrique $\omega = -log \frac{P^{S}(T=0.7T_{C})}{P_{C}} - 1$ (56)

Remarquant par les expériences que ce facteur était voisin de zéro pour les molécules sphériques, il a été définit plus tard comme une caractéristique de la sphéricité de la molécule. Pour tracer donc la droite donnant $\ln(P^S) = f(T)$ il suffit de prendre les deux points (T_c, P_c) , (Teb, P_{atm}) .

$$\log \frac{P^{S}}{P_{C}} = \frac{7}{3} \left(\omega + 1 \right) \left(1 - \frac{T_{C}}{T} \right).$$
 (57)

* Estimation de la tension de vapeur

Equation d'Antoine [18]

En 1888, Antoine proposa une modification pour l'équation de Clapeyron :

$$Log P^{S} = A - \frac{B}{T + C - 273.15}$$
(58)

A, B, C sont appelés paramètres d'Antoine.

 P^{S} en bars, T en Kelvin, mais certains ouvrages donnent les valeurs du paramètre c pour des températures en °C.

Pour **(**² =0, on retrouve l'équation de Clapeyron.

Cette relation permet de calculer avec précision les pressions de saturations comprises entre 0.03 et 5 bars.

Néanmoins l'équation d'Antoine ne permet de retrouver le minimum de $\Omega(T)$, ce qui explique pourquoi elle n'est applicable que pour de basses pressions.

> Equations à plus de trois paramètres [17]

Afin que la fonction $\Omega(T)$ passe par un minimum, sa forme mathématique la plus simple est un polynôme de la forme:

$$\Omega(T) = A + BT + CT^n \tag{59}$$

C'est pourquoi plusieurs auteurs ont proposes des modèles de ce type, par exemple :

> Equation de Rankine ou de Kirchhoff [17]

En posant $\Delta_{vap} Z(T) = cste$, et $\Delta_{vap} H(T) = a + bT$, L'intégration de l'équation de Clapeyron donne:

$$\ln P^{S} = A + \frac{B}{T} C Ln (T)$$
(60)

Equation de Riedel [18]

Riedel proposa une équation de ce type:

$$LnP^{S} = A + \frac{B}{T} + C LnT + D T^{6}$$
(61)

Pour déterminer **A**, **B**, **C** et **D**; Riedel a défini un nouveau paramètre: $\alpha \equiv \frac{d \ln P^s}{d \ln T_r}$

Planck et Riedel montrèrent que: $\frac{d\alpha}{dT_R} = 0$ pour $T_r = 1$

Ce qui donna:

$$\begin{cases}
A = -35Q \\
B = -36Q \\
C = 42Q + \alpha_{c} \\
D = -Q
\end{cases} \qquad avec \begin{cases}
Q = 0.0838(3.758 - \alpha_{c}) \\
\alpha_{c} = \frac{0.315\psi_{b} + \ln F_{c}}{0.0838\psi_{b} - \ln T_{br}} \\
\psi_{b} = -35 + \frac{36}{T_{br}} + 42Ln T_{br} - T_{br}^{6}
\end{cases}$$
(62)

Avec: $T_{br} = \frac{Teb}{T_C}$

Equation de Lee- Kesler [18]

Lee et Kesler (1975) ont proposé une généralisation de l'équation de Riedel. Avec:

$$Ln \frac{P^{3}}{P_{c}} = \psi_{1}(T_{r}) + \omega \psi_{2}(T_{r})$$

$$\psi_{1} = 5.92714 - \frac{6.09648}{T_{r}} - 1.28862 \ln T_{r} + 0.169347 T_{r}^{6}$$

$$\psi_{2} = 15.2518 - \frac{15.6875}{T_{r}} - 13.4721 \ln T_{r} + 0.43577 T_{r}^{6}$$

$$(63)$$

Equation de Frost- Kalkwarf – Thodos FKT [18]

De même que Rankine, l'enthalpie est prise sous la forme Δ_{vap} H(T) = a + bT, cependant le

$$\Delta_{\text{wap}} \mathbf{Z}(\mathbf{T})$$
 est calculé à partir de l'équation de Van Der Waals.

$$LnP^{S} = A + \frac{B}{T} + C LnT + D \frac{P^{S}}{T^{2}}$$
(64)

Equation de Wagner [18]

A l'équation de Riedel, nous préférons aujourd'hui l'équation de Wagner 1973, qui est probablement la plus précise élaborée à ce jour.

$$Ln \frac{F^{S}}{F_{c}} = \frac{T}{T_{c}} \left(a\tau + b \tau^{1.5} + c \tau^{3} + d \tau^{6} \right)$$
(65)

Avec : $\tau = 1 - T_r$

Corrélation basée sur la contribution des groupes

• Méthode de HZNH (Hishino, Zhu, Nagahama, and Hirata) [20]

Cette méthode appliquée aux alkyl benzènes mono, di-, tri- et tétra- substitués, est basée sur la contribution des groupements $-CH_3$, $-CH_2$ -, >CH- et >C< des alkyls, et des groupements =CH- et =C< des cycles aromatiques.

Tension de vapeur des mélanges

Pour retrouver la tension de vapeur vraie dans le cas d'un mélange d'hydrocarbures purs connus ou de fractions complexes, il faut pondérer cette propriété par la fraction de chaque constituant, comme le fait l'équation de Raoult $(T_{VV})_{mel} = \sum (T_{VV})_i x_i$.La loi de Raoult est parfaitement applicable sans aucun terme correctif loin du point critique.

Tension de vapeur des fractions pétrolières

La tension de vapeur d'une fraction pétrolière peut se mesurer comme celle d'un corps pur. L'étude des équilibres liquide- vapeur définit la tension de vapeur d'un mélange complexe comme étant la pression de bulle de ce mélange à une température donnée.

L'équation de Lee-Kesler a été développée à partir des données expérimentales correspondantes aux corps purs. Cependant, elle peut être utilisée pour les fractions

pétrolières en remplaçant les propriétés critiques par les propriétés pseudo critiques. Le facteur acentrique dans ce cas là doit être estimé à partir des corrélations de Lee-Kesler.

Equation de Tsonopoulos

Cette équation utilisable pour les fractions liquides, est obtenue par modification de l'équation de Riedel. Sa précision dépend de celle des propriétés critiques et de facteur acentrique utilisés.

$$LnP_{r}^{S} = A - \frac{B}{T_{r}} - C \ Ln \ T_{r} + D \ T_{r}^{6}$$
(66)
Avec
$$\begin{cases} A = 5.671485 + 12.439604 \ \omega \\ C = 0.867513 + 9.654169 \ \omega \end{cases} \qquad B = 5.809839 + 12.755971 \ \omega \\ D = 0.1383536 + 0.316367 \ \omega \end{cases}$$

* Tension de vapeur du pétrole brut

La tension de vapeur du pétrole brut permet d'estimer la teneur en hydrocarbures légers. La pression de vapeur d'un pétrole brut, à la sortie du puits, peut atteindre 20 bars. Pour faciliter son transport, on amène sa pression à des valeurs plus basses (< 1bar) en séparant les constituants à forte tension de vapeur.

b) La température d'ébullition

* L'évaporation et l'ébullition

L'évaporation est un phénomène de surface, c'est quand certaines molécules ont suffisamment d'énergie cinétique pour s'échapper de la surface de la phase liquide vers la phase gaz. Si le contenant est fermé, un équilibre est atteint lorsque le même nombre de molécules de retour à la surface. La pression de cet équilibre est appelée la pression de vapeur de saturation. Lors de l'évaporation la pression de vapeur est faibles tandis que la pression à l'intérieur du liquide est égale à la pression atmosphérique plus la pression due à son niveau, compte tenu de ces conditions, les bulles ne peuvent pas se former, mais lors de l'ébullition la pression de vapeur est égale à la pression atmosphérique, et la formation de bulles est alors possible , le phénomène devient donc un phénomène de volume .

Fig. A.4 : Evaporation et ébullition

* Le point d'ébullition

Le point d'ébullition est défini comme la température à laquelle la pression de vapeur saturée d'un liquide est égale à la pression atmosphérique environnante. C'est donc le point où l'évaporation du liquide devient rapide.

* Température d'ébullition des hydrocarbures [21]

La température d'ébullition des hydrocarbures normaux augmente avec le nombre d'atomes de carbone, ceci résulte de l'augmentation des forces intermoléculaires lorsque la longueur de la chaîne augmente, l'introduction de ramification sur le squelette de la chaîne carbonée principale réduit le point d'ébullition, car la présence de chaînes latérales éloigne les chaîne principales et diminue donc les forces d'attraction entre elles, ainsi le pentane boue à 36°C, l'iso pentane à 28°C, et le néo pentane à 9.5°C. Pour ce qui est des naphtènes, les tensions du cycle engendrent un point d'ébullition supérieur à celui des paraffines pour un même nombre d'atomes de carbone. Il en est de même pour les aromatiques.

Corrélations proposées pour l'estimation de la température d'ébullition des corps purs

De nombreuses méthodes ont été proposées pour l'estimation de cette propriété dans la littérature :

Kreglewski - Zwolinsky (1961) [13]

Cette méthode est valable pour les n-parraffines de C₇-C₁₀₀.

$$\ln(1078.71 - Teb) = 6.98 - 0.114N^{2/3}$$
(67)

Teb : Température d'ébullition en Kelvin.

N : Nombre d'atomes de carbone.

Equation de Stiel-Thodos (1962)[13]

Elle est valable pour les hydrocarbures aliphatiques saturés.

$$Teb = 1269 - \frac{1163}{(1+0.0742N^{0.85})}$$
(68)

Avec : **Teb**: température d'ébullition normale (K), et **N**: nombre d'atomes de carbone dans le composé.

Joback - Reid (1984) [22]

Elle est basée sur la méthode de contribution de groupes.

$$Teb = 198 + \sum n_i \Delta Teb_i \tag{69}$$

 ΔTeb_{ij} et n_i représentent respectivement la valeur de la contribution du groupement i et le nombre de ce même groupement dans la molécule étudiée.

Constantinou - Gani (1994) [23]

Aussi basée sur la méthode de contribution de groupes.

$$\exp\left(\frac{Teb}{204.359}\right) = \sum n_{i1} \Delta Teb_{i1} + \sum n_{i2} \Delta Teb_{i2}$$
(70)

 $\Delta Teb_{i1}, n_{i1}, \Delta Teb_{i2}, n_{i2}$ représentent respectivement la valeur de la contribution du groupement i et le nombre de ce même groupement dans la molécule étudiée du premier ordre et du second ordre.

Riazi -El- Sahhaf (1995) [13]

Applicable aux familles des n-paraffines, n-alkylecyclopentanes, n-alkylecyclohexanes et nalkylebenzènes.

$$Teb = a - \exp(b - cM^d). \tag{71}$$

M: Masse moléculaire.

a, b, c et d :constantes définies pour chaque famille d'hydrocarbures.

Avaullee,-Trassy, Neau et Jaubert (1997) [13]

Ces auteurs ont proposé une méthode de contribution de groupes pour les paraffines, les aromatiques, et les naphtènes qui a donné des résultats très satisfaisants, surtout pour les hydrocarbures lourds. La AAD (Absolut Average Deviation) atteinte est de 0.9 % sur la base de 641 hydrocarbures étudiés.

Skander-Souahi -Chitour (2000) [13]

$$Teb = a + \frac{b}{1 + (N_c/c)^d}$$
(72)

 N_c : nombre de groupements -CH₂-

Les paramètres a, b, c et d sont des constantes définies pour différentes familles d'hydrocarbures.

Skander-Chitour (2002) [24]

Ils proposent une méthode de contribution de groupes qui donnent des résultats très satisfaisants. En effet, les AAD trouvées sont pour les différentes familles d'hydrocarbures les suivantes :

Famille	n-paraffines	Isoparaffines	Oléfines	Naphtènes	Aromatiques	Alcynes
AAD	0.11	0.78	0.61	0.99	0.95	0.39

Tab. A.1: AAD enregistrés par Skander-Chitour pour l'estimation de **<u>Teb</u>** (2002).

Mélanges et fractions pétrolières [13]

On ne peut définir une température d'ébullition unique pour les mélange car il bout dans un Pour les mélanges, une température d'ébullition unique ne peut pas être définie, car un mélange bout dans un intervalle de températures. Il existe cependant différentes manières de définir une température moyenne d'ébullition d'un mélange selon que l'on pondère les points d'ébullition des constituants en masses, en volumes ou en moles comme ceci :

- Volume average boiling point: $Teb_{vol} = \sum Teb_i v_i$
- Molar average boiling point: $Teb_{mal} = \sum Teb_i x_i$
- Weight average boiling point: $Teb_{mass} = \sum Teb_t m_t$

Ces différentes expressions donnent des valeurs qui restent assez proches dans le cas des mélanges contenant des hydrocarbures avec des températures d'ébullition très proches tels que les fractions pétrolières étroites.

Dans le cas des fractions pétrolières, on convient en général, de définir une température moyenne pondérée ou température *mean average Tmav* qu'on détermine à partir de la courbe de distillation ASTM ou TBP par une méthode empirique faisant intervenir la pente ainsi que quelques points particuliers de la courbe de distillation. Cette procédure ne se justifie que pour les coupes larges. En pratique, lorsque le découpage se fait en fractions étroites, le point milieu est pris comme point d'ébullition moyen de la fraction.

Enfin, il est possible également d'estimer la température d'ébullition moyenne d'une fraction pétrolière en admettant l'additivité des températures d'ébullition des hydrocarbures hypothétiques de type paraffinique, naphténique et aromatique, de même masse molaire que la fraction pétrolière. Dans ce cas, la composition globale par familles d'hydrocarbures doit être connue.

I. Introduction

A coté des méthodes expérimentales, certaines propriétés peuvent être estimées par des méthodes faisant appel à un raisonnement thermodynamique. Certaines autres font appel aux équations d'états, la loi des états correspondants et des méthodes empiriques telles que la méthode de contribution de groupes que nous présentons dans ce qui suit.

II. Méthodes de calcul des propriétés des hydrocarbures

II.1. Les équations d'état [16]

Les équations d'état représentent à l'aide d'une expression mathématique f(P,V,T,n)=0 ; le comportement des fluides réels .Leur emploi s'est longtemps heurté à un inconvénient pratique: les plus simples d'entres elles telle que l'équation de Van Der Walls , ou celle de Berthelot, ne s'adaptaient qu'imparfaitement aux données expérimentales, et la complexité des calculs auxquels on était conduit par d'autres, plus satisfaisantes, leur faisait préférer les méthodes graphiques. Malgré que ce dernier problème a été résolu par l'emploi des calculateurs numériques, les équations d'états présentent toujours des limites: la forme mathématique compliquée, le domaine d'application et la précision.

II.2. Loi des états correspondants

La loi des états correspondants peut s'énoncer comme suit: « les écarts aux lois du gaz parfait ne dépendent que des propriétés réduites ». Ou en d'autres termes, « tous les gaz qui auront la même température et pression réduites auront le même facteur de compressibilité ». Cette loi s'applique en premier lieu aux corps purs, mais elle a été étendue aux mélanges. Elle est d'une valeur inestimable, cependant, elle présente quelques limites: on ne peut l'appliquer aux composés polaires. Il faut également rappeler que l'on ne dispose pas souvent des coordonnées critiques nécessaires soit qu'elles n'aient pas été mesurées, soit qu'elles se situent dans une zone de température où la molécule se dissocie.

II.3 Méthode de contribution de groupes

a) Principe [16]

Les propriétés physiques déterminées à l'échelle macroscopique dépendent de la structure moléculaire à l'échelle microscopique. A titre d'exemple, la capacité calorifique dépend de la capacité de stockage d'énergie d'une molécule, conditionnée par sa structure moléculaire. Ainsi, chaque liaison, atome ou groupement d'atomes constitutif d'une molécule donnée, apporte sa contribution aux propriétés macroscopiques d'une substance donnée; et il y a additivité des contributions. En effet, toute propriété macroscopique d'une substance peut être calculée à partir des contributions des groupements chimiques constituant la molécule.

Les méthodes basées sur ce concept portent le nom de méthodes de contribution de groupes et ont pour objectif principal de rapporter les propriétés des corps purs à leur structure moléculaire.

Si l'on excepte les composés les plus simples, les interactions existantes dans un système sont en fait les résultantes d'interactions existant entre des groupements constitutifs de la molécule. Ainsi, dans un mélange de n alcanes, on distingue les interactions CH₃-CH₃, CH₂-CH₂, CH₂-CH₃, etc. Cette analyse est le point fort des méthodes des contributions des groupes, car le nombre de groupements rencontrés dans la chimie organique est incomparablement plus restreint que le nombre d'individus chimiques distincts.

Cependant, cette dernière présente quelques limites

- Chaque groupe devrait être défini non seulement par sa nature mais aussi par la nature de son environnement immédiat dans la molécule qui le porte, ainsi un groupement méthyle d'une paraffine n'est pas identique à un groupement méthyle d'un aromatique ou d'un alcène.
- Certaines structures, et en particulier les premiers termes de séries homologues, échappent à la décomposition en groupes.
- Pour les molécules polyfonctionnelles, il faut prendre en considération l'interaction entre deux fonctions.

b) Fondement thermodynamique [25]

Bien que les méthodes des contributions des groupes soient des méthodes empiriques, elles possèdent un fondement thermodynamique dans la statistique de Boltzmann qui est considérée comme le cas limite des statistiques de Fermi- Dirac (systèmes décrits par des fonctions d'ondes antisymétriques) et de Bose- Einstein (systèmes décrits par des fonctions d'ondes symétriques).

Supposons qu'un système donné comporte un grand nombre N des molécules dont chacune peut occuper un certain nombre d'états quantiques. L'énergie du système est alors: $E_i = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_N$ (73)

Où, \boldsymbol{s}_i est l'énergie de la molécule i.

La fonction de partition moléculaire s'exprime:

$$\mathbf{z}_{\alpha} = \sum e^{\frac{-\varepsilon_{\alpha}}{kT}}.$$
(74)

La sommation dans cette expression est prise sur toutes les valeurs de ε_{α} qui correspondent aux états quantiques de la molécule α .

K: constante de Boltzmann.

Le système de N molécules aura comme fonction de partition, en considérant que ces molécules sont indiscernables:

$$Z = \frac{z_1 z_2 \dots z_N}{N!} = \frac{z^N}{N!}$$
(75)

Car toutes les molécules sont identiques: $z_1 = z_2 = \cdots = z_N$.

Dans le cas d'un gaz parfait, les contributions à $\varepsilon \alpha$ sont d'ordre nucléaire, électronique, vibratoire, rotatoire et translatoire; ce qui donne:

$$\boldsymbol{\varepsilon}_{a} = \boldsymbol{\varepsilon}_{nuc} + \boldsymbol{\varepsilon}_{elec} + \boldsymbol{\varepsilon}_{vib} + \boldsymbol{\varepsilon}_{rot} + \boldsymbol{\varepsilon}_{trans} \tag{76}$$

$$z = z_{nuc} z_{elec} z_{vib} z_{rot} z_{trans}$$
⁽⁷⁷⁾

On donne, pour une molle de gaz parfait, de masse m et occupant un volume V:

$$z_{trans} = (2\pi m kT)^{3/2} \frac{\nu}{k^3}$$
(78)

h: Constante de Planck.

$$\boldsymbol{z_{rot}} = \frac{8\pi^2 l k T}{h^2 \sigma} \tag{79}$$

I: moment d'inertie $I = \mu r^2$, où r est la distance entre atomes dans la molécule diatomique, et

$$\mu$$
, la masse réduite dont l'expression est: $\mu = \frac{m_1 m_2}{m_1 + m_2}$ (80)

 σ : le nombre de symétrie de la molécule.

$$z_{vib} = \prod_{i=1}^{3\Lambda-5 \text{ ou } 3\Lambda-6} \frac{1}{1-e^{-x_i}}$$
(81)

Où x_i est fonction de , la fréquence fondamentale associée au mode de vibration i de la molécule.

 Λ : nombre d'atomes par molécules, le degrés de liberté de la molécule = 3Λ .

$$z_{elec} = \omega_0 \tag{82}$$

Où 🗤 est la dégénérescence à l'état fondamental

$$\mathbf{z}_{nuv} = \boldsymbol{\omega}_{n,\mathbf{0}} \tag{83}$$

Où $\omega_{n,0}$ est la dégénérescence à l'état nucléaire fondamental.

En introduisant la signification statistique de la notion de température par la relation $T = \frac{dQ}{dS}$,

appliquée à une transformation réversible, des calculs avancés donnent:

$$S = kT \left(\frac{\partial \ln Z}{\partial T}\right)_{V,N} + k \ln Z$$
(84)

$$\boldsymbol{P} = \boldsymbol{k} \boldsymbol{T} \left(\frac{\partial \ln \boldsymbol{Z}}{\partial \boldsymbol{Y}} \right)_{T,N} \tag{85}$$

$$\boldsymbol{U} = \boldsymbol{k} \boldsymbol{T}^2 \, \left(\frac{\partial \ln \boldsymbol{Z}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{V},\boldsymbol{N}} \tag{86}$$

Ainsi, toute fonction thermodynamique ou propriété physique peut être exprimée en fonction de la fonction de partition Z, et de ses dérivées.

c) Corrélations basées sur les méthodes des contributions des groupes [16]

En 1955, Lyderson a développé une des premières méthodes pour estimer les propriétés critiques, ses travaux ont été repris par Joback en 1984. C'est une méthode de premier ordre, où seuls les groupements fonctionnels importent, et non pas leur arrangements les uns par rapport aux autres. Benson (1969) a proposé des corrélations pour le calcul de la capacité calorifique et de l'entropie standard d'un gaz parfait. Gani et Constantinou (1995) ont établi des équations pour estimer les propriétés critiques et thermiques. L'extension de ce concept aux mélanges a été suggérée pour la première fois par Langmuir (1925) et depuis, plusieurs méthodes ont été développées pour l'estimation des propriétés des mélanges et plus particulièrement les grandeurs d'excès et les coefficients d'activité.

Parmi les méthodes les plus puissantes, on cite, les méthodes ASOG et UNIFAC. ASOG a été introduite par Wilson (1962) et par Derr et Deal (1969), et développée par Kojima et Tochigi (1979). La méthode UNIFAC a été proposée par Fredenslund (1975). Ces deux méthodes font intervenir dans leurs expressions la différence de taille et de forme des constituants d'un mélange par le biais d'un terme dit combinatoire et, des interactions entre groupes différents par l'intermédiaire d'un terme résiduel.

III. Application de la méthode de contribution de groupe

III.1 La régression

Imaginons une représentation graphique donnant un nuage de point de deux variables (xi, yi), il est possible de faire passer au mieux une courbe à travers ce nuage de point, et considérer cette courbe comme un modèle approximatif mais satisfaisant de la réalité. Cette courbe matérialise une fonction yi=f (xi); c'est la fonction de régression. On parle de régression linéaire ou non linéaire selon la nature de la fonction de régression. De même, on parle de régression simple ou multiple selon le nombre de variables.

Nous nous intéressons à la régression non linéaire multiple, qui permet :

- ✓ D'analyser le lien entre une variable indépendante quantitative à expliquer, et plusieurs variables quantitatives explicatives indépendantes comme on l'admet généralement.
- ✓ De déterminer les équations d'un ajustement polynomial non linéaire pour l'analyse des liens entre deux variables quantitatives.

III.2. Algorithme de Levenberg-Marquardt LM

Basé sur la méthode des moindre carrés qui consiste à minimiser la somme des résidus élevés à la puissance deux entre la valeur observée et celle extrapolée; cet algorithme permet de trouver une solution numérique au problème de minimisation d'une fonction, souvent non linéaire et dépendant de plusieurs variables. L'algorithme fut élaboré par Kenneth Levenberg, et publié plus tard par Donald Marquardt.

III.3. Présentation de Sigma Plot

Sigma plot est un logiciel graphique scientifique désigné pour fonctionner sur la plateforme Windows. Il est spécialement conçu pour la représentation graphique des valeurs expérimentales. Certaines fonctions de traitement de données sont aussi intégrées dans le logiciel comme la régression linéaire ou non linéaire.

Nous avons utilisé le sigma plot 10.0, notre travail consiste à faire introduire les données (Aexp, B exp et Cexp, Teb), et les groupements de chaque constituant, définir l'équation au logiciel, lancer la régression, et répéter l'opération jusqu'à avoir une Rsqr qui tend vers 1.

III.4. Démarche suivie

- Collecte des données : Les données ont été collectionnées à partir de la banque TRC 1994 développée par The Thermodynamic Research Center de l'université de Houston au Texas.
- 2. **Définition des groupements structuraux :** Cette étape consiste à définir les groupements structuraux de chaque famille.
- 3. Détermination des termes principaux d'interactions : La contribution de chaque groupement dépend de son environnement. C'est pourquoi, nous avons déterminé, non seulement le groupement, mais aussi son environnement. Vu que le logiciel utilisé ne prend en compte que 25 paramètres, nous avons ensuite classé ces interactions par ordre de fréquence. Nous n'avons pas aussi tenu compte des termes correctifs (MSC : Méthode Sans termes Correctifs).

Paraffines	Iso paraffines	Alcynes	Oléfines					
Groupements structuraux								
-CH ₃	-CH ₃	-CH ₃	-CH ₃					
-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -					
	-CH<	≡CH	-CH<					
	>C<	≡C-	>C<					
			=CH ₂					
			=CH-					
			=C<					
	Termes de	e position						
			cis					
			trans					
	Principaux grouper	nents d'interactio	n					
CH ₃ -CH ₂ -CH ₂ -								
-CH ₂ -CH ₂ -CH ₂ -								
	СН ₃ -СН-СН ₃	-C=C-CH ₃	-CH ₂ -CH ₂ -CH=					
	CH ₃ -CH-CH ₂ -	-C≡C-CH ₂	-CH ₂ -CH=CH ₂					
	-CH ₂ -CH ₂ -CH<		СН3-СН=СН-					
	-CH ₂ -CH-CH ₂ -		-CH ₂ -CH=CH-					
	CH ₃ -CH ₂ -CH<		CH ₃ -CH ₂ -CH=					
	CH ₃ -C-CH ₃							
	CH ₃ -C-CH ₂ -							
	CH ₃ -CH-C<-							

CH ₃ -CH ₂ -C<-	
-CH ₂ -CH ₂ -C<-	
-CH ₂ -CH-CH<	
 -CH ₂ -C-CH ₂ - 	

Tab. B.1 : Principaux groupements et termes d'interactions.

En toute rigueur, nous avons adopté une nouvelle notation plus cohérente que celle prise dans les travaux précédents concernant les termes d'interactions définis pour les aromatiques. En effet, les notations prises ne prenaient pas en considération le nuage électronique ' π ' du noyau benzénique. C'est pourquoi nous avons adopté une nouvelle notation. Notons bien que, dans les molécules à cycle ramifié, nous avons fait la différence entre les interactions de la chaîne linéaires, les interactions dans le cycle et les interactions cycle-chaine linéaire.

Naphtènes	Aromatiques						
Groupements structuraux							
-CH ₃	-CH ₃						
-CH ₂ -	-CH ₂ -						
-CH<	-CH<						
>C<	>C<						
	=CH ₂						
	=CH-						
	=C<						
Termes de	e position						
cis							
trans							
Groupements	d'interaction						
chaine l	inéaire						
CH ₃ -CH ₂ -CH ₂ -	CH ₃ -CH ₂ -CH ₂ -						
-CH ₂ -CH ₂ -CH ₂ -	-CH ₂ -CH ₂ -CH ₂ -						
Cy	cle						
-CH ₂ -CH ₂ -CH<	СН↔СН↔С						
-CH ₂ -CH ₂ -CH ₂ -	СН↔С↔СН						

-CH ₂ -CH-CH ₂	СН↔СН↔СН
-CH ₂ -CH-CH<	СН⇔С⇔С
>CH-CH ₂ -CH<	С↔СН↔С
-CH ₂ -CH ₂ -C<-	
-CH ₂ -C-CH ₂ -	
->C-CH ₂ -CH<	
->U-UH2-U<-	hoine
CH = CH CH	Lnaine
-CH ₂ r-CH-CH ₂	CH_2r - $C\leftrightarrow CH\leftrightarrow$
CH ₃ r-CH-CH ₂ -	CH₃r-C↔CH↔
-CH ₂ r-CH ₂ r-CH<	CH ₂ r-CH ₂ r-C
CH ₃ r-CH-CH<	CH_3r - $C\leftrightarrow C\leftrightarrow$
CH ₃ r-CH ₂ r-CH<	CH ₃ r-CH ₂ r-C
 CH ₃ r-C-CH ₂ -	CH ₃ r-CHr-C
 CH ₃ r-C-CH _{3r} 	CH₂r.C↔C
CH ₂ r-CH-CH<	>CHr-C↔CH↔
 CH ₂ r-C-CH ₂ -	>CHr-C↔C
>CHr-CH-CH ₂ -	-CH ₂ r-CHr-C<-
CH _{3r} -CHr-CH<	 CH ₃ r-Cr-C<-
 CH _{3r} -Cr-C<-	

Tab B.1 (suite) : Principaux groupements et termes d'interactions.

Exemple : le n-propylcyclohexane

4. Elaboration de nouvelles corrélations: A l'aide du logiciel SigmaPlot, nous avons testé les 20 équations mathématiques suivantes:

1	$\theta = b^*(\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)$
2	$Exp(\theta/p) = b^*(\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)$
3	$(1/\theta)^{p} = b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})$
4	$(M/\theta) = b^*(\Sigma n_i \Delta \theta_i + \Sigma n_j \Delta \theta_j)$
5	$(T_b/\theta) = b^*(\Sigma n_i.\Delta\theta_i + \Sigma n_j.\Delta\theta_j)$
6	$\theta = a + b^* (\Sigma \ n_i . \Delta \theta_i + \Sigma \ n_j . \Delta \theta_j)$
7	$Exp(\theta/p) = a + b^*(\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)$
8	$(1/\theta)^p = a + b^* (\Sigma n_i \Delta \theta_i + \Sigma n_j \Delta \theta_j)$
9	$(M/\theta) = a + b^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)$
10	$(T_b/\theta) = a + b^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)$
11	$\theta = a + b^* (\Sigma \ n_i . \Delta \theta_i + \Sigma \ n_j . \Delta \theta_j) + c^* (\Sigma \ n_i . \Delta \theta_i + \Sigma \ n_j . \Delta \theta_j)^m$
12	$Exp(\theta/p) = a + b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{m}$

13	$(1/\theta)^{p} = a + b^{*}(\Sigma \ n_{i}.\Delta\theta_{i} + \Sigma \ n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma \ n_{i}.\Delta\theta_{i} + \Sigma \ n_{j}.\Delta\theta_{j})^{m}$
14	$(M/\theta) = a + b^* (\Sigma n_i \Delta \theta_i + \Sigma n_j \Delta \theta_j) + c^* (\Sigma n_i \Delta \theta_i + \Sigma n_j \Delta \theta_j)^m$
15	$(T_{b}/\theta) = a + b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{m}$
16	$\theta = a + b^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j) + c^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)^m + d^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)^n$
17	$Exp(\theta/p) = a + b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{m} + d^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{n}$
18	$(1/\theta)^{p} = a + b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{m} + d^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{n}$
19	$(M/\theta) = a + b^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j) + c^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)^m + d^* (\Sigma n_i . \Delta \theta_i + \Sigma n_j . \Delta \theta_j)^n$
20	$(T_{b}/\theta) = a + b^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j}) + c^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{m} + d^{*}(\Sigma n_{i}.\Delta\theta_{i} + \Sigma n_{j}.\Delta\theta_{j})^{n}$

Tab. B.2 : Les 20 équations testées pour la régression.

 $\Delta \theta_i$ et $\Delta \theta_j$ sont les contributions des groupements structuraux et des groupements d'interactions respectivement.

a, b, c, d, m et n sont des paramètres constants.

5. Choix de la meilleure corrélation.

6. Comparaison de la corrélation choisie avec d'autres méthodes: Pour comparer, nous avons calculé la déviation absolue moyenne enregistrée par la corrélation proposée, et par d'autres corrélations établies dans la littérature.

III.5 Présentation des résultats

a) La pression de vapeur

Corps purs

Pour chaque famille, nous avons calculé l'erreur moyenne absolue enregistrée par chaque équation. Les résultats sont donnés dans les tableaux ci-dessous:

Equation	n-paraffines	Isoparaffines	oléfines	alcynes	naphtènes	Aromatiques	AAD mov(%)
	C ₂ -C ₄₀	C ₅ -C ₁₀	C ₆ -C ₁₆	C ₅ -C ₂₀	C ₅ -C ₂₇	C ₆ -C ₂₆	
1	0.7	2.5	2.1	0.2	1.0	0.8	1.3
2	0.6	0.6	0.8	0.3	1.7	0.8	0.8
3	0.6	0.5	0.8	0.2	1.7	0.8	0.8
4	2.0	4.4	3.5	1.0	1.7	0.9	2.2
5	5.9	2.3	2.1	1.4			2.9
6	0.7	0.4	0.6	0.2	1.6	0.8	0.7
7	0.6	0.4	0.7	0.3	1.6	0.8	0.7
8	0.6	0.3	0.7	0.2	1.6	0.8	0.7

> La constante A de l'équation d'Antoine

9	2.0	4.3	3.3	1.0	1.7	0.9	2.2
10	5.9	1.9	1.5	1.4	1.6		2.4
11	0.6	0.4	0.7	0.2	1.5	0.9	0.7
12	0.7	0.6	0.7	0.3	1.5	0.9	0.8
13	0.6	0.3		0.3	1.5	0.9	0.7
14	2.1	3.8	3.2	0.5	1.5	0.9	2.0
15	6.0	0.9	1.5	0.5	1.6	1.7	2.0
16	0.6	0.4	0.8	0.2	1.4	0.8	0.7
17	1.4	0.3	0.8	0.3	1.5	0.8	0.9
18	0.6	0.3	0.7	0.3	1.5	0.8	0.7
19	2.1	3.9	3.3	0.5		0.9	2.1
20	6.0	0.9	1.51	0.5		0.8	1.9

Tab. B.3 : AAD enregistrées pour la constante A d'Antoine.

> La constante B de l'équation d'Antoine

Equation	n-paraffines	Isoparaffines	oléfines	alcynes	naphtènes	Aromatiques	$\Delta \Delta D mov(\%)$
	C ₂ -C ₄₀	C ₅ -C ₁₀	C ₆ -C ₁₆	C ₅ -C ₂₀	C ₅ -C ₂₇	C ₆ -C ₂₆	
1	4.2	3.6	2.2	1.0	3.9	1.2	2.7
2	1.0	1.0	1.4	0.6	2.5	1.1	1.3
3	0.9	1.0	1.4	0.6	2.4	1.2	1.2
4	2.7	3.0	3.8	1.2	2.5	1.2	2.4
5	1.3	1.5	2.3	0.4	8.4	1.2	2.5
6	4.2	1.7	1.5	1.0	2.6	1.2	2.0
7	1.0	0.7	1.3	0.6	2.4	1.1	1.2
8	0.9	0.8	1.4	0.6	2.5	1.2	1.3
9	2.7	2.7	3.2	1.2	2.6	1.2	2.3
10	1.3	0.7	0.9	0.5	2.6	1.2	1.2
11	0.9	0.6	1.3	0.6	2.6	1.1	1.2
12	5.2	0.7	1.3	0.6	2.4	1.2	1.9
13	0.9	0.7	1.5	0.9	2.6	1.2	1.3
14	0.9	2.9	3.0	0.8	2.9	1.2	1.9
15	1.4	0.7	1.1	0.4	3.9	0.9	1.4
16	0.2	0.6	1.3	0.6	2.5	1.1	1.1
17	0.8	0.7	1.4	0.6	2.5	1.2	1.2
18	0.9	0.7	1.2	0.6	2.5	1.2	1.2
19	2.4	2.6	3.4	0.8		1.2	2.2
20	1.4	0.7	1.1	0.4		1.3	1.0

		-					
Equation	Paraffines	Iso paraffines	Oléfines	Alcynes	Naphtènes	Aromatique	AAD mov(%)
Equation	C ₂ -C ₄₀	C ₅ -C ₁₀	C ₆ -C ₁₆	C ₅ -C ₂₀	C ₅ -C ₂₇	C ₆ -C ₂₆	
1	6.0	3.5	2.4	0.4	18.7	1.8	5.5
2	6.1	6.0	1.3	0.4	14.7	1.9	5.1
3	1.6	3.5	1.2	0.4	14.8	1.4	3.8
4	2.0	3.0	4.0	0.5	13.9	3.4	7.5
5	4.8	2.18	1.9	1.3	12.7	1.8	4.0
6	6.0	1.53	0.6	0.4	11.9	1.8	3.7
7	6.1	1.72	0.6	0.4	6.2	1.8	2.8
8	1.6	1.27	0.6	0.4	11.8	1.6	2.9
9	2.0	3.01	3.9	0.5	13.6	3.1	7.3
10	4.8	2.11	1.5	1.3	11.8	1.4	3.8
11	2.6	0.73	0.6	0.2	10.7	1.1	2.7
12	2.0	5.3	0.6	0.3	14.8	3.2	4.3
13	0.8	0.64	0.6	0.4	14.8	1.1	3.1
14	2.2	2.4	3.7	0.4	12.6	1.2	3.7
15	2.3	1.25	1.4	0.4	12.1	1.1	3.1
16	5.7	0.77	0.6	0.3	14.2	1.7	3.9
17	0.9	2.67	1.1	0.2	14.5	2.8	3.7
18	6.3	0.59	0.6	0.2	11.9	1.5	3.5
19	9.2	2.41	5.0	0.4		1.2	3.6
20	2.2	1.26	1.5	0.5	12.3	1.3	3.2

Tab. B.4 : AAD enregistrées pour la constante B d'Antoine

La constante C de l'équation d'Antoine

Tab. B .5 : AAD enregistrées pour la constante C d'Antoine.

Par la suite nous avons effectué le calcul de la pression de Reid des différents hydrocarbures moyennant trois combinaisons des équations de A, B et C:

A (eq11) B (eq11) C (eq11)

A (eq8) B (eq16) C (eq8)

Les résultats obtenus étaient très peu satisfaisants surtout pour la famille des naphtènes. Ceci peut être dû à plusieurs facteurs :

• La tension de vapeur étant une notion intimement liée à la température, son calcul ne peut être effectué pour une plage vaste de composés à la même température.

• L'équation d'Antoine n'est valide que dans un intervalle de température défini pour chaque composé, en effet pour une pression généralement comprise entre 0.02 et 2 bars.

• Etant donné que la méthode de contributions des groupes est basée sur le principe QSPR; une meilleure segmentation des hydrocarbures en familles de structures semblables donnerait probablement des écarts relativement plus faibles.

• Un calcul de l'erreur sur la pression donne:

$$P = A - \frac{B}{t+C}$$
$$\frac{\Delta P}{P} = \frac{\Delta A}{A} + \frac{\Delta \left(\frac{B}{t+C}\right)}{\left(\frac{B}{t+C}\right)}$$
$$\Delta \left(\frac{B}{t+C}\right) = \frac{\Delta B}{B} + \frac{\Delta C}{(t+C)}$$
$$\frac{\Delta P}{P} = \frac{\Delta A}{A} + \frac{\Delta B}{\left(\frac{B^2}{t+C}\right)} + \frac{\Delta C}{B}$$

Cette équation montre bien que l'erreur sur la pression n'est pas proportionnelle à la moyenne des erreurs sur A, B et C. Par conséquent, l'équation donnant le AAD le plus faible sur A, B et C n'est pas forcément la meilleure pour le calcul de la pression.

Les calculs ont été alors refaits en prenant en compte tous ces facteurs.

PARAFFINES ALCYNES ALCENES HYDROCARBURE NAPHTENES ISOPARAFFINES AROMATIQUES alkylcyclohexanes 1 ramification alkylenzènes alkylcyclopentanes 2ramifications benzène disubstitué methylcyclohexane **3ramifications** m ethylcyclopen tanes

> Corrections

Fig. B .1 : Nouvelle segmentation des familles.

Les tableaux suivants illustrent les résultats:

> La constante A de l'équation d'Antoine

Equation	paraffines	alkylcyclohexanes	alkylcyclopentanes	methylcyclohexanes	methylcyclopentanes	alkyl benzènes	benzènes disubstitués	iso 1 ramification	iso 2 ramifications	iso 3 ramifications	alcènes	alcynes
1	0.2	0.2	0.1	0.5	0.2	0.0	0.1	0.2	0.2	0.2	0.4	0.3
2	0.2	0.2	0.1	0.3	0.2	0.0	0.1	0.2	0.2	0.2	0.5	0.4
3	0.2	0.2	0.2	0.3	0.2	0.0	0.1	0.2	0.2	0.2	0.4	0.3
4	0.2		0.2				0.2		0.2	0.4	1.2	0.2
5	1.6		1.0				0.4		0.7	0.7		0.8
6	0.2	0.2	0.1	0.5	0.2	0.0	0.1	0.2	0.2	0.2	0.4	0.3
7	0.2	0.2	0.1	0.3	0.2	0.0	0.1	0.2	0.3	0.3	0.5	0.4
8	0.2	0.2	0.1	1.1	0.2	0.0	0.1	0.2	0.2	0.2	0.4	0.3
9	0.1		0.2				0.1		0.3	0.4	1.2	0.2
10	1.6		1.0				0.1		0.7	0.7		0.8
11	0.2	0.2	0.1	0.5	0.2	0.0	0.1	0.2	0.2	0.3	0.4	0.3
12	0.1	0.2	0.1	0.3	0.2	0.1	0.1	0.2	0.2	0.3	0.4	0.3
13	0.2	0.2	0.1			0.0	0.1	0.2	0.2	0.2		0.3
14	0.2		0.1				0.1		0.3	0.4	0.5	0.6
15	1.6	0.5	0.1				0.1		0.6	0.4		0.6
16	0.1		0.1	0.5	0.2	0.0	0.1	0.2	0.2	0.1	0.4	0.3
17	0.1	0.2	0.1	0.3	0.2	0.0	0.1	0.2	0.2	0.2	0.4	0.3
18	0.2	0.2	0.2	0.0	0.2	0.0		0.2	0.2	0.2	0.4	0.3
19	0.2		0.1				0.2		0.3	0.6		0.7
20	1.6	0.4	0.2	0.5			0.1		0.7	0.5	0.5	0.6

Tab. B.6 : AAD corrigées de la constante A d'Antoine.

Equation	paraffines	alkylcyclohexanes	alkylcyclopentanes	methylcyclohexanes	methylcyclopentanes	alkyl benzènes	benzènes disubstitués	iso 1 ramification	iso 2 ramifications	iso 3 ramifications	alcènes	alcynes
1	1.8	1.0	1.8	1.9	0.3	0.0	0.2	0.8	0.7	0.3	2.6	1.3
2	0.2	0.1	0.1	1.2	0.2	0.0	0.2	0.3	0.4	1.0	0.7	0.7
3	0.3	0.9	1.2	1.1	0.3	0.2	0.2	0.3	0.4	0.3	0.7	0.8
4	0.5		0.1				0.4	0.3	0.4	0.3	1.7	1.5
5	1.8		0.1				0.7		0.5	0.2	1.0	0.5
6	0.2	1.0	1.1	1.1	0.3	0.0	0.2	0.8	0.7	0.5	2.6	1.3
7	0.3	0.1	1.1	0.8	0.2	0.2	0.2	0.3	0.4	0.6	0.7	1.9
8	0.5	0.9	2.0	2.0	0.3	0.0	0.2	0.3	0.7	0.4	0.8	1.1
9	0.5		0.1				0.4	0.3	0.4	0.3	1.7	1.5
10	0.2		0.1				0.3		0.5	0.2	1.0	0.5
11	1.8	0.1	1.1	0.5	0.3	0.0	0.2	0.3	0.8	1.0	0.8	0.7
12	0.2	0.1	0.1	0.0	0.2	0.4	0.2	0.3	0.5	0.6	0.7	0.7
13	0.3	0.9	1.0			0.0	0.2	0.8	0.7	0.8		
14	0.3		0.1				0.4	0.3	0.5	0.7	0.6	0.4
15	0.2						0.3		0.6	0.4	0.9	0.4
16	0.2		0.1	0.5	0.3	0.0	0.2	0.2	0.4	0.2	0.6	0.7
17	0.2	0.1	0.2	0.5	0.2	0.0	0.2	0.3	0.4	0.6	5.1	0.7
18	0.3	0.7	1.6		0.3	5.3	0.4	0.3	0.7	0.8	0.6	0.8
19	0.3		2.0				0.5	0.3	0.5	0.7	0.7	0.4
20	0.2		0.6	0.0			0.3		0.6	0.5	0.7	0.4

> La constante B de l'équation d'Antoine

Tab. B.7 : AAD corrigées de la constante B d'Antoine.

Equation	paraffines	alkylcyclohexanes	alkylcyclopentanes	methylcyclohexanes	methylcyclopentanes	alkyl benzènes	benzènes disubstitués	iso 1 ramification	iso 2 ramifications	iso 3 ramifications	alcènes	alcynes
1	0.3	0.2	0.1	1.1	0.1	0.0	0.1	0.3	0.2	0.1	2.2	0.5
2	0.7	0.2	0.1	1.0	0.1	0.0	0.1	0.5	0.2	0.3	2.3	0.5
3	0.2	0.2	0.8	1.1	0.1	0.0	0.1	0.3	0.2	0.1	0.7	0.5
4	4.0		4.1				0.4	1.0	0.7	0.2	2.7	0.6
5	0.8		1.0				0.4		0.5	0.3	2.7	0.6
6	0.3	0.2	0.1	1.1	0.1	0.0	0.1	0.3	0.2	0.2	2.2	0.5
7	0.4	0.2	0.1	1.1	0.1	0.1	0.1	0.3	0.2	0.3	2.3	0.5
8	0.2	0.2	0.0	1.1	0.1	0.0	0.1	0.3	0.2	0.1	1.0	0.5
9	4.0		3.8				0.3	1.0	0.7	0.2	2.7	0.6
10	0.8		1.6				0.2		0.5	0.3	2.7	0.6
11	0.3	0.2	0.1	1.1	0.1	0.0	0.1	0.2	0.3	0.3	1.0	0.3
12	0.3	0.2	0.3	0.5	0.1	0.0	0.1	0.2	0.2	0.3	1.2	0.4
13	0.3	0.2	0.0			0.0	0.1	0.3	0.2	0.2		
14	5.8		4.1				0.4	0.2	0.4	0.3	0.7	0.7
15	0.3	0.2	0.4				0.2		0.7	0.6	0.8	0.7
16	0.2		0.0	1.1	0.1	0.0	0.1	0.2	0.2	0.2	0.6	0.3
17	0.2	0.2	1.1	0.7	0.1	0.0	0.1	0.3	0.2	0.3	2.3	0.3
18	0.3	0.2	0.4	1.1	0.1	0.0		0.2	0.2	0.2	0.6	0.2
19	5.1		1.0				0.4	0.2	1.0	0.5	0.8	0.6
20	0.2	0.2		0.2			0.2		0.7	0.4	0.8	0.6

La constante C de l'équation d'Antoine

Tab. B.8 : AAD corrigées de la constante C d'Antoine.

Notons que quelques résultats n'ont pas été mentionnés, ceci est du à la divergence de l'algorithme pour les équations correspondantes.

Pour chaque composé, nous avons calculé la pression de vapeur dans l'intervalle [Tmin (TRC), Tmax= 0.7*Tc] par pas de 10°C moyennant différentes combinaisons, ainsi que son AAD moyen sur l'intervalle considéré; et enfin, le AAD moy de toute la famille.

Nous sommes tombés sur des cas où le AAD moyen de plusieurs équations était le même. C'est pourquoi nous avons pris comme second critère de choix **la variance**, qui illustre bien l'écart entre AAD moy, AAD max et AAD min respectivement.

> Exemples de calcul:

Famille	combinaison	AAD(%)
Oléfines	A(eq12)-B(eq18)-C(eq18)	1.8
Alcynes	A(eq18)-B-(eq18)-C(eq18)	1.8
Méthyles cyclohexane	A(eq17)-B(eq17)-C(eq17)	6.0

Tab. B.9 : Exemples de calcul de AAD par les nouvelles combinaisons.

Finalement nous avons opté pour les équations suivantes:

Famille	Equation proposée
Paraffines	
Iso paraffines une ramification	
Iso paraffines deux ramifications	
Iso paraffines trois ramifications	
Alkylcyclohexanes	Equation
Alkylcyclopentanes	16
Alkylbenzènes	
Benzènes disubstitués	
Méthylecyclohexanes	Equation
Méthylecyclopentanes	18
Oléfines	A: Equation18
Alormog	B: Equation20
Aicynes	C:Equation18

Tab. B.10 : Meilleurs corrélations sélectionnées pour l'estimation de la tension de vapeur.

Les paramètres des équations pour les différentes familles ainsi que les résultats de calcul des pressions de vapeur pour les différents composés sont donnés respectivement dans les annexes [1] et [2].

La figure B.2 montre les écarts enregistrés par les deux méthodes, les corrélations proposées et celle de L-K.

Fig. B .2 : Ecarts enregistrés par L-K ET CGAI pour la tension de vapeur.

> Commentaire:

Les écarts enregistrés sont nettement moins importants que ceux par l'équation de Lee Kesler pour toutes les familles considérées. De plus, l'équation de Lee Kesler fait appel à des propriétés qui ne sont pas toujours mesurables (facteur acentrique, température et pression critique), ce qui n'est pas le cas de la méthode de CGAI, qui ne demande que l'écriture de la formule semi développée de la molécule.

* Application aux mélanges binaires et ternaires de composition connue

Nous avons appliqué la règle d'additivité qui consiste à pondérer en pourcentages molaires la tension de vapeur des différents constituants, soit :

$$\boldsymbol{P} = \frac{\sum P i * x i}{\sum x i}$$
(87)

Vu la non disponibilité des données expérimentales donnant la pression de vapeurs des mélanges considérés, nous avons pris comme valeur de référence, la pression calculée par les paramètres d'Antoine de la TRC, en appliquant la règle de Kay.

Par la suite, nous avons calculé, pour chaque mélange, la AAD de la méthode de CGAI et de Lee-Kesler par rapport à la valeur de référence à cinq températures différentes.

Málanas	Commercition	9/ (m al)	TUZI		P[bars]		AAD	[%]
Melange	Composition	%(III0I)	I	exp	CGAI	L-K	CGAI	L-K
			280	0.2087	0.2086	0.1995	0.0	4.4
1	Pentane	50	290	0.3201	0.3199	0.3083	0.0	3.7
			300	0.4751	0.4749	0.4609	0.1	3
1			310	0.6852	0.6848	0.6689	0.1	2.4
	Hexane	50	320	0.9629	0.9623	0.9455	0.1	1.8
				AAI) moy		0.1	3.1
			340	0.0382	0.0382	0.0357	0.0	6.5
	Nonane	50	350	0.06	0.06	0.0565	0.0	5.9
2			360	0.0916	0.0916	0.0868	0.0	5.2
2			380	0.1964	0.1964	0.1888	0.0	3.9
	Decane	50	390	0.2774	0.2774	0.2684	0.0	3.2
				AAI) moy		0.0	4.9
		50	310	0.1617	0.1636	0.1581	1.2	2.2
2	Cyclohexane		330	0.3525	0.3564	0.3459	1.1	1.9
			350	0.6928	0.6999	0.6834	1.0	1.4
5		50	370	1.2512	1.2632	1.2411	1.0	0.8
	methylcyclohexane		380	1.6369	1.6521	1.6278	0.9	0.6
				AAI) moy		1.0	1.4
		50	280	0.1384	0.1385	0.1329	0.0	4.0
	cyclopentane		300	0.3285	0.3285	0.3187	0.0	3.0
4			320	0.6904	0.6905	0.6752	0.0	2.2
4		50	340	1.3165	1.3167	1.2942	0.0	1.7
	méthylcyclopentane		350	1.763	1.7632	1.7357	0.0	1.6
				AAD	moy		0.0	2.5
			320	0.2139	0.2139	0.2088	0.0	2.4
	Benzène	50	340	0.4519	0.4519	0.4424	0.0	2.1
5			360	0.8665	0.8665	0.8528	0.0	1.6
5			380	1.5346	1.5346	1.5198	0.0	1.0
	Toluène	50	390	1.9912	1.9912	1.9781	0.0	0.7
				AAI) moy		0.0	1.5
			350	0.0825	0.0827	0.0821	0.3	0.4
	o-xyléne	50	370	0.1787	0.1791	0.1782	0.2	0.3
6			400	0.4811	0.4821	0.4811	0.2	0.0
U			420	0.8498	0.8514	0.8502	0.2	0.0
	o-ethyltoluene	50	440	1.4144	1.4168	1.4134	0.2	0.1
				AAI) moy		0.2	0.2

			280	0.0701	0.0704	0.0649	0.6	7.4
	Hexane	50	300	0.18	0.181	0.1692	0.5	6
7			320	0.4023	0.4043	0.384	0.5	4.5
,			340	0.8046	0.8085	0.7789	0.5	3.2
	Cyclohexane	50	350	1.0991	1.1044	1.0707	0.5	2.6
				AA	D moy	-	0.5	4. 7
			280	0.0687	0.0687	0.0638	0.0	7.1
	Hexane	50	300	0.1782	0.1782	0.1677	0.0	5.9
8			320	0.4015	0.4016	0.3831	0.0	4.6
0	Benzène		340	0.8086	0.8088	0.7819	0.0	3.3
		50	350	1.108	1.1082	1.0777	0.0	2.7
				AA	D moy	-	0.0	4. 7
			280	0.0524	0.0527	0.0522	0.7	0.2
	Cyclohexane	50 50	300	0.1396	0.1406	0.1375	0.7	1.5
Q			320	0.3213	0.3233	0.3155	0.6	1.8
,			340	0.658	0.6618	0.6476	0.6	1.6
	Benzène		350	0.9081	0.9131	0.8955	0.6	1.4
				AA	D moy		0.6	1.3
			290	0.0406	0.0409	0.0378	0.6	6.9
	Heptane	50	310	0.1069	0.1075	0.1006	0.6	5.8
10			330	0.2444	0.2456	0.2333	0.5	4.5
	methylcyclohexane	50	350	0.5	0.5023	0.4836	0.5	3.3
			370	0.9346	0.9387	0.9137	0.4	2.2
				AA	D moy		0.5	4.5
		50	290	0.0322	0.0323	0.0296	0.1	8.2
	Heptane		310	0.0876	0.0877	0.0815	0.1	7.0
11			330	0.206	0.2061	0.1948	0.1	5.4
			350	0.431	0.4312	0.414	0.0	3.9
	methylbenzene	50	370	0.8209	0.8213	0.7992	0.0	2.6
				AA	D moy	1	0.1	5.4
			290	0.0329	0.0331	0.0316	0.7	3.8
	methylcyclohexane	50	310	0.0873	0.0879	0.0842	0.6	3.6
	methylcyclohexane	50						
12	methylcyclohexane	50	330	0.2019	0.203	0.1961	0.6	2.9
12	methylcyclohexane	50	330 350	0.2019 0.4173	0.203 0.4195	0.1961 0.4087	0.6 0.5	2.9 2.1
12	methylcyclohexane	50	330 350 370	0.2019 0.4173 0.7878	0.203 0.4195 0.7914	0.1961 0.4087 0.7777	0.6 0.5 0.5	 2.9 2.1 1.3

			310	0.0336	0.0337	0.0336	0.5	0.2
	Octane	50	330	0.086	0.0865	0.0854	0.5	0.7
13			350	0.1936	0.1945	0.1917	0.5	1.0
15			370	0.3922	0.3939	0.3884	0.4	1.0
	ethylcyclohexane	50	390	0.7289	0.7319	0.7224	0.4	0.9
				AA	D moy	-	0.5	0.8
			280	0.0369	0.0373	0.0363	1.1	1.8
	Cyclohexane	50	300	0.0999	0.1008	0.0974	1.0	2.4
14			320	0.233	0.235	0.2277	0.9	2.3
14			340	0.4836	0.4874	0.4751	0.8	1.8
	éthylcyclopentane	50	350	0.6718	0.6768	0.662	0.8	1.5
				AA	D moy		0.9	1.9
			280	0.0546	0.0547	0.0484	0.0	11.5
	Hexane	50	290	0.09	0.0901	0.0808	0.0	10.2
15			300	0.1427	0.1428	0.1299	0.0	9.0
15			310	0.2184	0.2185	0.2014	0.0	7.8
	Heptane	50	320	0.3242	0.3243	0.3024	0.0	6.7
				AA		0.0	9.0	
	Hexane	50	280	0.0695	0.0697	0.0644	0.3	7.3
	Cvclohexane		300	0.1793	0.1799	0.1686	0.3	6.0
16		30	320	0.402	0.4032	0.3836	0.3	4.6
10	Benzène	20	340	0.8062	0.8086	0.7801	0.3	3.2
			350	1.1026	1.1059	1.0735	0.3	2.6
	Denzene	40		AA	D moy		0.3	4.8
	Hexane		280	0.0664	0.0667	0.0623	0.5	6.2
	Tionune	10	300	0.1717	0.1726	0.1627	0.5	5.2
17	Cyclohexane	45	320	0.386	0.3878	0.3702	0.5	4.1
		15	340	0.7756	0.7792	0.753	0.5	2.9
	Benzène	15	350	1.0618	1.0665	1.0364	0.4	2.4
	2 01120110	10		AA	D moy	1	0.5	4.2
	Heptane	50	290	0.0373	0.0374	0.0358	0.5	4.0
	- F		310	0.0992	0.0996	0.0954	0.4	3.8
18	méthylcyclohexane	30	330	0.229	0.2298	0.222	0.3	3.0
10			350	0.4724	0.4739	0.4617	0.3	2.3
	méthylbenzène	20	370	0.8892	0.8917	0.8751	0.3	1.6
	memyibelizelle	20		AA	D moy		0.4	2.9
	Hontono	40	290	0.0382	0.0385	0.0358	0.6	6.5
----	--	----	-----	--------	--------	--------	------------	-----
	Tieptane	40	310	0.101	0.1016	0.0954	0.5	5.5
10	máthulaualahauana	45	330	0.232	0.2331	0.222	0.5	4.3
19	methylcyclonexane	43	350	0.4766	0.4786	0.4617	0.4	3.1
	máthvilhanzána	15	370	0.8939	0.8975	0.8751	0.4	2.1
	metnyibenzene	15		AA	D moy		0.5	4.3
	Octano	50	310	0.0321	0.0322	0.0312	0.4	2.8
	Octane	50	330	0.0828	0.0831	0.0803	0.4	3.0
20	áthylcyclohevane	30	350	0.1873	0.188	0.1823	0.3	2.7
20	emyleyelöhexahe	30	370	0.3814	0.3826	0.3732	0.3	2.1
	Ethylbonzòna	20	390	0.7119	0.714	0.7001	0.3	1.7
	Ethyloenzene	20		AA	D moy	-	0.3	2.5
	Octane	40	310	0.0321	0.0322	0.0321	0.5	0.0
	Octane	40	330	0.0825	0.0829	0.0818	0.5	0.9
21	ethylcyclohevene	15	350	0.1862	0.187	0.184	0.4	1.2
21		45	370	0.3781	0.3796	0.3738	0.4	1.1
	Ethylbenzene	15	390	0.7044	0.707	0.6972	0.4	1.0
	Ethyloenzene	15		AA	D moy	-	0.4	0.9
	Nonane	50	330	0.0318	0.032	0.0308	0.7	3.1
		50	350	0.0787	0.0793	0.0762	0.7	3.2
22	propylcyclohexane	30	370	0.173	0.1742	0.1681	0.7	2.8
		50	390	0.3447	0.347	0.3365	0.7	2.4
	propylbenzene	20	410	0.6335	0.6376	0.6212	0.7	1.9
	propyroenzene			AA	D moy	1	0.7	2.7
	Nonane	40	330	0.0317	0.0321	0.0314	1.1	1.0
			350	0.0783	0.0792	0.0769	1.1	1.8
23	propylcyclohexane	45	370	0.1716	0.1734	0.1682	1.0	2.0
	FF))		390	0.3413	0.3447	0.3347	1.0	1.9
	propylbenzene	15	410	0.6263	0.6323	0.6146	1.0	1.9
	F FJ /			AA	D moy		1.0	1.7
	Decane	50	350	0.0324	0.0324	0.0335	0.1	3.3
			370	0.0773	0.0772	0.0787	0.1	1.7
24	butylcyclohexane	30	390	0.1652	0.165	0.1669	0.2	1.0
	······································		410	0.3223	0.3218	0.3242	0.1	0.6
	butylbenzene	20	430	0.583	0.5815	0.5848	0.3	0.3
				AA	D moy		0.2	1.4

	Dacana	40	350	0.0322	0.0322	0.0347	0.2	7.8
	Decalle	40	370	0.0767	0.0766	0.0806	0.2	5.1
25	hutulevelohavana	45	390	0.1635	0.1632	0.169	0.2	3.3
23	butyleyelonexane	43	410	0.3184	0.3179	0.3252	0.2	2.1
	hutvlbanzana	15	430	0.5752	0.5732	0.5823	0.4	1.2
	butyibelizene	15		AA	D moy		0.2	3.9
	Pentane	30	280	0.1407	0.1407	0.1334	0.0	5.2
	Tentane	50	290	0.2181	0.218	0.2083	0.0	4.5
26	Heyane	40	300	0.327	0.3269	0.3146	0.0	3.8
20	Tiexane	40	310	0.4762	0.4761	0.4612	0.0	3.2
	Hentane	30	320	0.6757	0.6755	0.6584	0.0	2.6
	neptane	50		AA	D moy		0.0	3.8
	Octano	30	340	0.0703	0.0704	0.0656	0.1	6.7
	Octaile	30	350	0.1067	0.1068	0.1004	0.1	5.9
27	Nonana	40	360	0.1575	0.1577	0.1495	0.1	5.1
21	Nollane	40	380	0.3193	0.3196	0.3075	0.1	3.7
	Dacana	30	390	0.4402	0.4407	0.4267	0.1	3.1
	Decalle	50		AA	D moy		0.1	4.9
	Cualabayana	20	310	0.1172	0.1186	0.1158	1.2	1.2
	Cyclonexane	30	330	0.2598	0.2625	0.2569	1.1	1.1
10	mathulayalahayana	40	350	0.5183	0.5234	0.5144	1.0	0.8
20	memyrcyclonexane	40	370	0.9496	0.9583	0.9457	0.9	0.4
	athulaualahavana	20	380	1.2507	1.2618	1.2475	0.9	0.3
	euryicycionexane	30		AA	D moy		1.0	0.7
	Cyclopantana	40	280	0.1087	0.1087	0.1045	0.0	3.9
	Cyclopentalle	40	300	0.2601	0.2601	0.2523	0.0	3
20	máthuloualanantana	30	320	0.5511	0.5511	0.5388	0.0	2.2
29	methyleyelopentane	30	340	1.059	1.0591	1.0412	0.0	1.7
	athylayalanantana	20	350	1.4234	1.4236	1.4021	0.0	1.5
	employetopentalle	30		AA	D moy		0.0	2.4
	benzàna	30	320	0.1512	0.1512	0.1469	0.0	2.8
	UCHZENE	50	340	0.3251	0.3251	0.3171	0.0	2.5
30	toluéne	40	360	0.6339	0.6339	0.6219	0.0	1.9
50	toructic	70	380	1.1404	1.1404	1.1263	0.0	1.2
	ethylbenzène	30	390	1.4908	1.4908	1.4772	0.0	0.9
	curyiochizene	50		AA	D moy		0.0	1.9

Tab. B.11 : Résultats de calcul des pressions de vapeur sur les 30 mélanges binaires etternaires considérés.

* Application aux fractions pétrolières :

Nous avons choisi trois fractions différentes du pétrole algérien « El-Agreb ».

• Fraction A et B : Il s'agit de deux fractions légères; dont la composition a été définie par CPG, cette dernière est donnée en annexe. [Annexe3]. Nous avons donc appliqué la règle des mélanges ; et calculer la pression de vapeur à trois températures différentes. Ensuite, nous avons comparé avec les valeurs trouvées par Lee Kesler et les valeurs de référence.

Fraction	T[°C]		P [bars]		AAD	(%)
		exp	CGAI	L-K	CGAI	L-K
	90	64,2641	67,0515	67,6421	4,3	5,2
Fraction A	80	47,071	49,2222	49,5611	4,6	5,3
	70	33,8003	35,4238	35,5975	4,8	5,3
		AAD	moy		4,6	5,3
	50	44,6171	44,6587	42,9883	0,1	3,1
Fraction B	60	63,2513	63,3018	61,3076	0,1	2,6
Traction D	70	87,5974	87,6557	85,3605	0,1	3,7
		AAD	moy		0,1	3,1
	222	1.9764	1.9754	1.9912	0.05	0.75
Fraction C	202	1.2924	1.2917	1.2992	0.05	0.53
	242	2.9120	2.9395	2.8843	0.04	0.95
		AAD	moy		0.04	0.74

Tab. B.12 : Résultats de calcul des pressions de vapeur sur les fractions.

• Fraction C : une fraction large générée. C'est une coupe naphta, dont les caractéristiques ont été recueillies de l'un des travaux précédents [26]. Le découpage de cette dernière est présenté en annexe. [Annexe 4].

Nous l'avons générée en calculant la composition de chaque coupe par les corrélations de Riazi-Daubert qui sont aussi données en Annexe4; et ce en utilisant la règle du pseudo composé basée sur la température d'ébullition.

Rappelons que la règle du pseudo composant, consisté à assimiler la fraction comme un mélange de trois hydrocarbures paraffiniques, naphténiques et aromatiques ayant soit une masse molaire ou une température d'ébullition proche de celle de la fraction en question, puis appliquer la règle de Kay citée précédemment. Nous avons choisis celle basée sur la Teb car cette dernière est plus adaptée aux fractions pétrolières qui peuvent être considérées comme une succession de point d'ébullition. a) Température d'ébullition : La procédure d'analyse décrite précédemment a permis d'obtenir les résultats suivants :

Famille	n-paraffines	iso paraffines	oléfines	alcynes	naphtènes	aromatiques	AAD (%)
Interval	$C_2 - C_{40}$	C ₅ -C ₃₈	C ₂ . C ₃₀	C ₅ -C ₂₀	C ₅ -C ₂₇	C ₆ -C ₃₆	, í
eq1	5.7	2.3	3.3	1.2	3.5	1.1	2.9
eq2	0.3	0.8	1.4	0.4	0.7	0.1	0.6
eq3	0.7	0.8	1.1	0.4	0.9	0.1	0.6
eq4	1.2	2.9		0.8	3.8	0.3	
eq6	5.7	1.8	2.7	1.2	1.2	0.8	2.2
eq7	0.3	0.6	1.0	0.4	0.4	0.1	0.5
eq8	0.7	1.3	1.1	0.4	0.4	0.1	0.7
eq9	1.2	2.7		0.8	0.4	0.3	
eq11	0.2	0.7	1.0	0.5	0.4	0.1	0.5
eq12	0.1	0.7	0.9	0.3	0.3	0.1	0.4
eq13	0.8	0.7	1.1	0.4	0.4	0.3	0.6
eq14	0.3	2.8		0.6	0.4	0.2	
eq16	0.2	0.7	1.0	0.5	0.4	0.1	0.5
eq17	0.3	0.7		0.4	0,4	0.1	
eq18	0.7	0.7		0.5	0,4	0.1	
eq19	0.3	2.8		0.5	0.4	0.1	

* Corps purs

Tab. B.13 : Ecart enregistrés par CGAI pour la Teb.

Les résultats pour les équations, 5, 10, 15, 20 n'ont pas été mentionnés car la propriété étudiée, à savoir la température, d'ébullition est considérée comme paramètre dans ces équations .Quant aux équations 4, 9, 14, 17, 18, 19 pour la famille des oléfines, leurs résultats n'ont pas été présentés du fait de la divergence de l'algorithme.

L'analyse du reste des résultats montre que l'équation (12) est celle qui donne le plus faible écart, c'est pourquoi nous l'avons sélectionnée comme la meilleure corrélation pour l'estimation de la température d'ébullition des hydrocarbures purs. Les valeurs des paramètres et les contributions ΔT_{ebi} sont données en annexe. [Annexe 5].

Nous avons ensuite comparé les résultats de la corrélation proposée, avec celle de Constantinou et Gani, car cette dernière est considérée comme étant parmi les corrélations les plus fiables dans la littérature.

Famille	n- paraffines	Iso paraffines	oléfines	alcynes	naphtènes	aromatiques	AAD (%)
Intervalle	C ₂ -C ₄₀	C ₅ -C ₃₈	C ₂₋ C ₃₀	C ₅ -C ₂₀	C ₅ -C ₂₇	C ₆ -C ₃₆	
Corrélation proposée	0.3	0.7	0.9	0.3	0.3	0.1	0.4
Constantinou et Gani (1994)	4.9	2.0	3.0	3.7	2.0	1.8	2.9

Tab. B.14: Comparaison des AAD par CGAI et C-G pour Teb.

D'après le tableau précédent, les écarts enregistrés par la corrélation proposée sont nettement plus faibles que ceux de la corrélation de Constantinou et Gani et ce pour les différentes familles d'hydrocarbures purs.

En effet la méthode proposée présente des écarts inférieurs à 1 % pour toutes les familles, tandis que celle de C-G donne des résultats dont la AAD est de 3 fois à 20 fois plus grande. La figure B.3 explicite les résultats obtenus par les deux corrélations.

Fig. B.3 : Comparaison des résultats obtenus par C-G et CGAI pour la Température d'ébullition.

*

. Application aux mélanges

et aux fractions pétrolières

Dans cette partie nous nous sommes proposés d'appliquer la corrélation sélectionnée pour la prédiction de la température d'ébullition moyenne de 20 mélanges binaires, 20 mélanges ternaires dont la composition est parfaitement connue, et 10 fractions pétrolières étroites issues de la distillation TBP du pétrole brut « EL Agreb » dont nous avons calculées la composition par application de les corrélations de Riazi-Daubert (1987), citées en annexe 4. Les propriétés des fractions en question, sont données en annexe [Annexe 6].

Les règles de calcul utilisées, à savoir la règle de Kay pour les mélanges, et la règle du pseudo composant pour les fractions ont déjà été présentées ultérieurement.

Résultats

• Mélanges binaires

	compositon	Teb[K]							
Mélange M1	Composé	%(mol)	exp	mel exp	CGAI	mel CGAI	C-G	mel C-G	
	Hexane	44	341.9	259.5	342.7	250.0	347.2	265.1	
M1	Heptane	56	371.5	358.5	371.7	559.0	379.1	365.1	
	AA	AD (%)			0.1		1	.8	
	Benzène	45	352.8	260.8	352.7	270.0	351.3	270.4	
M2	Toluène	55	383.8	309.8	384.1	370.0	386.1	570.4	
	AA	AD (%)			0.	.0	0	.2	
M3	Hexane	46	341.9	348.4	340.2	349.9	347.2	352.4	

	Cyclohexane	54	353.9		358.1		356.8	
	AA	AD (%)			0	.4	1	.2
	Benzène	55	352.8	252.2	352.7	255 1	351.3	2527
M4	Cyclohexane	45	353.9	555.5	358.1	555.1	356.8	555.7
	AA	AD (%)			0	.5	0	.1
	Hexane	45	341.9	247.0	342.7	249.2	347.2	240.4
M5	Benzène	55	352.8	347.9	352.7	348.2	351.3	349.4
	AA	AD (%)			0	.1	0	.5
	Tridécane	48	508.7	510.1	508.9	510 4	521.8	520.1
M6	Tetradecane	52	526.7	518.1	527.2	518.4	535.9	529.1
	AA	AD (%)			0	.1	2	.1
	Pentadecane	36	543.8	422.5	544.4	422.0	549.2	440.2
M7	Heptane	64	371.5	433.5	371.7	433.9	379.1	440.3
	AA	AD (%)			0	.1	1	.6
	Heptane	44	371.5	272.0	371.7	274.0	379.1	270.4
M8	Méthylcyclohéxane	56	374.1	373.0	377.2	374.8	377.8	3/8.4
	AA	AD (%)			0	.5	1	.4
	Heptane	44	371.5	202.7	371.7	202.6	379.1	207.2
M9	Ethylbenzène	56	409.3	392.7	409.1	392.0	411.4	397.2
	AA	AD (%)			0	.0	1	.1
	Ethylbenzène	62	409.3	2027	409.1	292.0	411.4	207.0
M10	Hexane	38	341.9	363.7	342.7	383.9	347.2	387.0
	AA	AD (%)			0	.1	0	.9
	Ethylbenzène	55	409.3	202.5	409.1	394.7	411.4	396.3
M11	Méthylcyclohéxane	45	374.1	393.3	377.2		377.8	
	AA	AD (%)			0	.3	0	.7
	Méthylcyclohéxane	56	374.1	350.0	377.2	362.0	377.8	364.4
M12	Hexane	44	341.9	339.9	342.7	302.0	347.2	504.4
	AA	AD (%)			0	.6	1	.2
	Hexane	68	341.9	368.1	342.7	368 5	347.2	374.0
M13	Nonane	32	423.9		423.2	500.5	430.9	574.0
	AA	AD (%)			0	.1	1	.6
	Hexane	17	341.9	366 5	342.7	370.8	347.2	373 7
M14	Heptane	83	371.5	500.5	371.7	570.0	379.1	575.7
	AA	AD (%)	1		1	.2	2	.0
	Hexane	71	341.9	350.5	342.7	351.1	347.2	356.5
M15	Heptane	29	371.5		371.7		379.1	_
	AA	AD (%)			0	.2	1	.7
	Tétradécane	38	526.7	412.1	527.2	412.8	535.9	418.9
IVI16	Hexane	62	341.9		342.7		347.2	-
	AA	AD (%)	241.0		0	.2	1	.7
N 4 4 7	Hexane	35	341.9	410.3	342.7	410.3	347.2	415.7
IVET 7	Décane	65	447.2		446.6		452.6	2
	AA D	AD (%)	252.0		0	.0 I	251.2	.3
M4.0	Benzene	17	352.8	378.5	352.7	378.8	351.3	380.2
IN 18	Toluêne	83	383.8		384.1	1	386.1	4
	AA	ND (%)	252.0		0	.1	0	.4
1440	Benzène	80	352.8	353.0	352.7	353.8	351.3	352.4
W19	cyclohexane	20	353.9		358.1		356.8	
	AA	AD (%)	271 5		0	.2		.2
M20	Heptane	65	3/1.5	372.4	5/1.7	373.6	3/9.1	378.6
	Méthylcyclohéxane	35	374.1		377.2		377.8	

	AAD (%)	0.3	1.7
Tab. B	B.15 : Résultat de calculs de Teb des méla	nges (mélange	es binaires)

• Mélanges ternaires

Mélange	compositio	ı			Teb	[k]		
М	Composé	%(mol)	exp	Tmel exp	CGAI	mel CGAI	C-G	mel C-G
	Hexane	27.0	341.9		342.7		347.2	
M1	Heptane	32.0	371.5	385.0	371.7	385.0	379.1	391.7
IVI I	Nonane	41.0	423.9		423.2		430.9	
	A	AD(%)			0.	0.0		1.8
	Hexane	17.0	341.9		342.7		347.2	
MO	Tridécane	43.0	508.7	472.6	508.9	472.9	521.8	486.0
IVI Z	Dodécane	40.0	489.4		489.4		506.6	
	А	AD(%)			0.	1		2.8
	Heptane	32.0	371.5		371.7		379.1	
M2	Cyclohéxane	30.0	353.9	367.2	358.1	369.7	356.8	371.9
IVI S	Méthylcyclohéxane	38.0	374.1		377.2		377.8	
	A	AD(%)			0.	7		1.3
	Dodécane	37.0	489.4		489.4		506.6	
M4	Tridécane	43.0	508.7	470.6	508.9	471.6	521.8	483.1
1014	Cyclohéxane	20.0	353.9		358.1		356.8	
	AAD(%)				0.	2		2.7
	Heptane	26.0	371.5	436.3	371.7		379.1	
М5	Tridécane	52.0	508.7		508.9	436.7	521.8	446.3
NI.J	Hexane	22.0	341.9		342.7		347.2	
	А	AD(%)	-		0.	1		2.3
	Heptane	15.0	371.5		371.7		379.1	
M6	Décane	49.0	447.2	409.5	446.6	410.4	452.6	414.6
WI O	Méthylcyclohéxane	36.0	374.1		377.2		377.8	
	А	AD(%)	-		0.	2		1.2
	Décane	44.0	447.2		446.6		452.6	
М7	Cyclohéxane	27.0	353.9	400.8	358.1	402.6	356.8	405.0
1417	Méthylcyclohéxane	29.0	374.1		377.2		377.8	
	А	AD(%)			0.	4		1.1
	Cyclohéxane	34.0	353.9		358.1		356.8	
M8	Benzène	34.0	352.8	349.7	352.7	351.4	351.3	351.8
110	Hexane	32.0	341.9		342.7		347.2	
	A	AD(%)			0.	5		0.6
	Méthylcyclohéxane	27.0	374.1		377.2		377.8	
M9	Toluène	39.0	383.8	377.0	384.1	378.0	386.1	1 381.5
	Heptane	34.0	371.5		371.7		379.1	

	А	AAD(%)		0.	3		1.2	
	Benzène	20.0	352.8		352.7		351.3	
M10	Toluène	36.0	383.8	388.8	384.1	388.8	386.1	390.3
MIIO	Ethylbenzène	44.0	409.3		409.1		411.4	
	A	AD(%)			0.	0		0.4
	Benzène	15.0	352.8		352.7		351.3	
M11	Ethylbenzène	60.0	409.3	430.2	409.1	430.2	411.4	430.0
14111	Tridécane	25.0	526.7		527.2		521.8	
	А	AD(%)			0.	0		0.1
	Méthylcyclohéxane	19.0	374.1		377.2		351.3	
M12	Benzène	62.0	352.8	367.6	352.7	368.1	411.4	393.6
1112	Ethyle benzène	19.0	409.3		409.1		377.8	
	А	AD(%)	-		0.	1		7.1
	Tridécane	48.0	508.7		508.9		521.8	
M13	Cyclohéxane	24.0	353.9	427.9	358.1	429.0	356.8	434.4
	Benzène	28.0	352.8		352.7		351.3	
	А	AD(%)			0.	3		1.5
	Décane	40.0	447.2		446.6		452.6	403.0
M14	Benzène	28.0	352.8	400.5	352.7	400.3	351.3	
	Toluène	32.0	383.8		384.1		386.1	
	А	AD(%)	1 1		0.	0		0.6
	Décane	37.0	447.2		446.6		452.6	
M15	Toluène	29.0	383.8	415.9	384.1	415.7	386.1	419.3
	Ethylbenzène	34.0	409.3		409.1		411.4	
	A	AD(%)			0.	0		0.8
	Tridécane	24.0	508.7	100.1	508.9		521.8	413.9
M16	Méthylcyclohéxane	58.0	374.1	408.1	377.2	410.1	377.8	
	Toluène	18.0	383.8		384.1	<u>_</u>	386.1	1 4
	A	AD(%)	5267		0.	5	521.9	1.4
	Cuelebévere	19.0	520.7 252.0	296.0	527.2 259.1	2067	521.8 256.9	1226
M17	Bonzòno	65.0	353.9	380.0	350.1	580.7	330.8 411.4	423.0
	Δ	AD(%)	552.8		0	2	411.4	97
	Hexane	29.0	341.9		342.7	-	351.3	
	Benzène	28.0	352.8	362.9	352.7	363.3	386.1	359.3
M18	Toluène	43.0	383.8		384.1		347.2	
	A	AD(%)			0.	1		1.0
	Benzène	23.0	352.8		352.7		351.3	
	Toluène	23.0	383.8	371.4	384.1	373.1	386.1	373.6
M19	Méthylcyclohéxane	54.0	374.1		377.2		377.8	
	A	AD(%)	<u>. I</u>		0.	5		0.6

	Methylecyclohexane	60.0	374.1		377.2		377.8	
M20	Heptane	30.0	371.5	374.3	371.7	376.2	379.1	379.0
	Toluene	10.0	383.8		384.1		386.1	
	А	AD(%)			0.	5		1.3

Tab. B.15 : (suite) Résultat de calculs de Teb des mélanges (mélanges ternaires).

• Fractions pétrolières

Pour le calcul des fractions pétrolières nous nous sommes limitées à l'application de la règle du pseudo composant basée sur la masse molaire, car celle basée sur la température d'ébullition aurait eu un résultat qui va de soit.

	composition			Teb [K]		AAD	(%)
Fraction	Pseudocompoé	%(mol)	exp	CGAI	C-G	CGAI	C-G
	n-heptane	67.7					
1.0	methylecyclohexane	28.8	372.7	373.7	379.0	0.3	3.7
	Toluène	3.5					
	n-octane	55.5					
2.0	ethylecyclohexane	31.9	402.1	402.3	406.9	0.0	0.9
	ethylebenzène	12.6					
	n-nonane	58.4					
3.0	propylecyclohexane	20.3	426.9	427.1	431.6	0.0	0.9
	propylebenzène	21.4					
	n-decane	48.3					
4.0	n-butylecyclohexane	24.6	451.4	451.1	453.4	0.1	0.7
	n-butylebenzène	27.1					
	n-dodecane	39.2					
5.0	n-hexylecyclohexane	27.2	494.9	495.3	497.4	0.1	0.1
	n-hexylebenzène	33.6					
	n-tridecane	35.8					
6.0	n-heptylecyclohexane	26.8	515.4	515.1	512.9	0.1	2.9
	n-heptylebenzène	37.4					
	n-pentadecane	69.9					
7.0	n-nonylecyclohexane	22.3	547.1	547.3	545.3	0.0	2.3
	n-nonylebenzène	7.8					
	n-hexadecane	68.3					
8.0	n-decylecyclohexane	23.1	563.4	563.7	557.8	0.0	3.5
	n-decylebenzène	8.7					
9.0	n-heptadecane	66.4	578.9	579.2	569.5	0.1	6.3

	n-undecylecyclohexane	23.7					
	n-undecylebenzène	9.9					
	n-nonadecane	65.8					
10.0	n-teridecylecyclohexane	24.3	607.3	607.5	587.7	0.0	7.9
	n-tridecylebenzène	9.9					

Tab. B.16 : Résultat de calculs de Teb des 10 fractions considérées.

L'examen des différents écarts, pour les mélanges binaires, les ternaires, ainsi que les fractions pétrolières légères, moyennes et lourdes, montre que la corrélation proposée par contribution de groupes avec interaction donne de meilleurs résultats.

I.

. Conclusion

L'application de la méthode de contributions des groupes avec interactions intramoléculaires a aboutit à des résultats recevables, non seulement sur les corps purs, mais aussi sur leurs mélanges ainsi que sur les fractions pétrolières.

Tenir compte des interactions intermoléculaires pourrait éventuellement affiner les résultats concernant les mélanges et les fractions.

I. Introduction [28]

Les réseaux de neurones formels sont à l'origine une tentative de modélisation mathématique du cerveau humain. L'idée principale des réseaux de neurones "modernes" est la suivante : On se donne une unité simple, un *neurone*, qui est capable de réaliser quelques calculs élémentaires. On relie ensuite entre elles un nombre important de ces unités et on essaye de déterminer la puissance de calcul du *réseau* ainsi obtenu. Il est important de noter que ces neurones manipulent des données numériques et non pas symboliques. Deux visions s'affrontent donc, d'un côté les tenants de la modélisation biologique qui veulent respecter un certain nombre de contraintes liées à la nature du cerveau, de l'autre les tenants de la puissance de calcul qui s'intéressent au modèle en lui-même, sans aucun lien avec la réalité biologique.

II. Historique [29]-[30]

Bien que le concept des réseaux de neurones ait été introduit la première fois en 1890, par James (la mémoire associative), il a fallu attendre 1943 pour voir réaliser la première tentative de modélisation fonctionnelle du cerveau par *Mac Culloch et Pitts*.

Les problèmes d'apprentissage d'un réseau sont pour la première fois posés par Donald Hebb en 1949. Des variations sur la règle de Hebb entrainent alors différentes réalisations de réseaux monocouches dont les adaptateurs linéaires de WidrowHoff (1959) et les perceptrons de Rosenblatt(1962), Minsky et Papert (1969) sont les plus célèbres.

Après une mise en sommeil des recherche sur les réseaux de neurones pendant une dizaine d'années, de nouveaux modéles à caractéres stochastique (Hopfield 1982) ou adaptatif (Kohonen 1986) voient le jour.

III. L'origine biologique [30]

Le neurone est une entité polarisée, c'est-à-dire que l'information ne se transmet que dans un seul sens : des dendrites vers l'axone. Le neurone va donc recevoir des informations, venant d'autres neurones, grâce à ses dendrites. Il va ensuite y avoir sommation, au niveau du corps cellulaire, de toutes ces informations et via un potentiel d'action (un signal électrique) le résultat de l'analyse va transiter le long de l'axone jusqu'aux terminaisons synaptiques. A cet endroit, lors de l'arrivée du signal, des vésicules synaptiques vont venir fusionner avec la membrane cellulaire, ce qui va permettre la libération des neurotransmetteurs (médiateurs chimiques) dans la fente synaptique. Le signal électrique ne pouvant pas passer la synapse

(dans le cas d'une synapse chimique), les neurotransmetteurs permettent donc le passage des informations, d'un neurone à un autre.

Les neurotransmetteurs excitent (neurotransmetteurs excitateurs) ou inhibent (neurotransmetteurs inhibiteurs) le neurone suivant et peuvent ainsi générer ou interdire la propagation d'un nouvel influx nerveux. Les synapses possèdent une sorte de «mémoire» qui leur permet d'ajuster leur fonctionnement. En fonction de leur «histoire», c'est-à-dire de leur activation répétée ou non entre deux neurones, les connexions synaptiques vont donc se modifier.

Ainsi, la synapse va faciliter ou non le passage des influx nerveux. Cette plasticité est à l'origine des mécanismes d'apprentissage.

Fig. C.1 : le neurone biologique.

IV. Le neurone artificiel

Les réseaux de neurones formels sont à l'origine une tentative de modélisation mathématique Un neurone est une fonction algébrique non linéaire, paramétrée à valeurs bornées. Chaque neurone reçoit un nombre variable d'entrées, à chacune de ces entrées est associé un poids ou un poids synaptique (en raison de l'inspiration biologique) représentatif de la force de la connexion. A cette somme pondérée, s'ajoute un terme constant appelé "biais", on obtiendra alors le potentiel qui va passer par la fonction d'activation. On note alors trois opérations réalisées par le neurone sur ses entrées:

- ✓ Pondération: Multiplication de chaque entrée par le poids de connexion.
- ✓ Sommation: Sommation de chaque entrée pondérée affectée à son biais.

✓ Activation: Passage de cette somme dans une fonction, appelée fonction d'activation.
La valeur calculée est la sortie du neurone qui est transmise aux neurones suivants.

Fig. C.2 : Le neurone formel

V. Les modèles des réseaux de neurones artificiels [31]

On distingue deux modèles des RNA:

• Les réseaux non bouclés: un réseau de neurones non bouclés réalise une ou plusieurs fonctions de ses entrées par composition des fonctions réalisées par chacun des neurones.

• Les réseaux bouclés ou récurrents: un réseau de neurone bouclé à temps discret réalise une ou plusieurs équations aux différences non linéaires, par composition des fonctions réalisées par chacun des neurones et des retards associés à chacune des connexions.

VI.L'apprentissage [31]

On appelle "apprentissage" des réseaux de neurones la procédure qui consiste à estimer les paramètres des neurones du réseau, afin que celui-ci remplisse au mieux la tache qui lui est affectée. On distingue deux types d'apprentissage: supervisé et non supervisé.

Un apprentissage est dit supervisé lorsque l'on force le réseau à converger vers un état final précis, en même temps qu'on lui présente un motif. On peut donc affecter à un tel réseau la tâche qui consiste à réaliser une fonction algébrique non linéaire; celle-ci peut être :

- Connue analytiquement : le réseau réalise alors une tâche d'approximation de fonction.

- Inconnue analytiquement, mais pour laquelle on dispose de valeurs, en nombre fini, qui sont entachées de bruit si ces valeurs résultent de mesures effectuées sur un processus physique, chimique, économique, biologique, etc. : le réseau réalise alors une tâche de modélisation statique.

C'est essentiellement pour ce dernier type d'applications que sont mis en œuvre les réseaux de neurones à apprentissage supervisé.

À l'inverse, lors d'un apprentissage non supervisé, le réseau est laissé libre de converger vers n'importe quel état final même en lui présentant un motif.

VII. Ensemble d'apprentissage, ensemble de test [32]

Pour les deux taches, on souhaite que le réseau de neurones donne les bonnes sorties sur un ensemble d'exemples appelé ensemble de test. Pour cela, on va utiliser un ensemble d'exemples sur lequel le réseau va s'entrainer et apprendre. Cet ensemble s'appelle l'ensemble d'apprentissage. Les exemples de l'ensemble de test n'appartiennent pas à l'ensemble d'apprentissage. Avec cette méthode basée sur la distinction entre ensemble d'apprentissage et ensemble de test, on constate que le réseau doit être capable de généralisation.

VIII. Avoir toujours raison, une fausse bonne idée [33]

Il est dangereux de suivre indéfiniment la phase d'apprentissage sans contrôle: la capacité d'ajustement d'un réseau de neurones est tellement forte qu'au bout d'un certain nombre d'itérations, les poids synaptiques parviennent à prédire quasiment sans erreur les données. A ce stade, en fait, le réseau de ne se trompe plus dans ses prédictions, mais il y a un très grand risque pour que ces prédictions ne soient justes que pour les données sur lesquelles l'apprentissage s'est basé. On parle alors d'apprentissage par cœur ou de sur-apprentissage.

IX. Propriété fondamentale des réseaux de neurones formels : l'approximation parcimonieuse [34]

Les réseaux de neurones formels possèdent une propriété très remarquable qui est à l'origine de leur intérêt industriel dans plusieurs domaines, ce sont : des approximateurs universels parcimonieux.

Par approximation, on entend approcher un fonction régulière bornée avec une précision arbitraire dans un domaine fini de ses variables par un réseau de neurones comportant une couche de neurones cachées en nombre fini , possédant tous la même fonction d'activation avec un neurone de sortie linéaire. Cette propriété n'est pas spécifique aux réseaux de neurones , c'est aussi le cas des fonctions radiales et splines ; cependant la spécificité des réseaux de neurones réside dans le caractère parcimonieux de l'approximation : à précision égale, les réseaux de neurones nécessitent moins de paramètres ajustables (les poids des connexions) que les approximateurs universels couramment utilisés ; plus précisément, le nombre de poids varie linéairement avec le nombre de variables de la fonction à approcher, alors qu'il varie exponentiellement pour la plupart des autres approximateurs. En pratique, dès qu'un problème fait intervenir plus de deux variables, les réseaux de neurones sont, en général, préférables aux autres méthodes.

X. Quand utiliser les réseaux de neurones ? [31]

Comme il a été cité précédemment, l'utilisation d'un réseau de neurones à apprentissage supervisé vise à approcher de manière parcimonieuse, toute fonction de régression non linéaire. Une telle approche ne peut être utilisée que sous certaines conditions :

- Disposer d'échantillons de taille suffisamment grande et représentatifs, une condition nécessaires main non suffisante qui illustre le caractère statistique des réseaux de neurones.
- S'assurer de la nécessité d'un modèle non linéaire pour l'application considérée, puisque la mise en œuvre d'un modèle linéaire est toujours plus simple et moins couteuse en temps de calcul.
- Envisager l'utilisation d'un réseau de neurones de préférence à une autre famille de fonctions non linéaires, les polynômes par exemple

XI. Présentation du problème: Modélisation statique avec un réseau de neurones non bouclés à apprentissage supervisé

Notre travail consiste à mettre en œuvre des réseaux de neurones pour trouver par des méthodes statistiques, une relation non linéaire entre des données numériques. Pour ce faire nous avons élaboré deux programmes de calcul sous environnement « Matlab. »

Les entrés sont :-Groupements + Teb pour ce qui est de la pression de vapeur

-Groupements seulement pour ce qui est de la Teb.

Les sorties : - Les paramètres d'Antoine A, B, C.

-Les Teb expérimentales.

Chaque famille d'hydrocarbures a été divisée en deux ensembles : ensemble de test et ensemble d'apprentissage.

Fonctionnalités du script 1 :

- Création d'un réseau de neurones monocouche comportant un neurone en sortie, et 'i' neurones cachés. La fonction d'activation des neurones de sortie est « purline », celle des neurones cachés est « Tansig » ou « Logsig ».
- ➢ Variation de i .
- Entrainement de chaque réseau '(pour chaque i) selon l'algorithme de Levenberg -Marquardt
- Tracer un graphe comparant la sortie simulée à la sortie cible pour chaque réseau.
- > Donner la AAD moy, AAD max, AAD min pour chaque réseau.
- Tracer la variation de la AAD en fonction du nombre de neurones cachés.

Le script deux, effectue la simulation des données de test pour chaque réseau entrainé.

XII. Résultats obtenus

XII.1. La pression de vapeur

Lors de cette partie, nous avons calculé les constantes d'ANTOINE par couplage RNA-CGSI, pour trois familles d'hydrocarbures (alcanes saturés, aromatiques, naphtènes). Nous avons cherché le réseau optimal pour chaque famille. Pour ce faire nous avons fait varier le nombre de neurones cachés de 1 à 20 et la fonction de transfert de la couche cachée (Tansig / Logsig).

Caractéristiques	Choix
Architecture	РМС
Nombre de couches cachés	1
Nombre de neurones cachés	Optimisé de 1 à 20
Nombre de neurones de sortie	1
Algorithme d'entrainement	Levenberg - Marquardt (trainlm)
Fonction de transfert	Tansig / logsig
Fonction de sortie	Purelin
Fonction de performance	MSE

Tab. C.1 : Caractéristiques des réseaux établis.

> Famille des hydrocarbures aliphatiques saturés (n-paraffines + isoparaffines)

Entrés: -CH₃, -CH₂-, -CH<, >C<, plus la température d'ébullition.

	Fonc	tion de	transf	ert : ta	nsig	Fonction de transfert : logsig					
	AAD	moy		AAD	max	AAD	moy		AAD r	nax	
Ν	entr	test	moy	entr	test	entr	test	moy	entr	test	
1	0.44	0.47	0.46	2.67	1.36	0.45	0.49	0.47	2.71	1.38	
2	0.39	0.45	0.42	3.18	1.83	0.57	0.6	0.59	3.44	2.17	
3	0.4	0.45	0.43	2.5	1.29	0.4	0.46	0.43	2.17	1.25	
4	0.36	0.39	0.38	2.96	1.35	0.4	0.41	0.41	2.14	1.47	
5	0.3	0.41	0.36	1.95	1.46	0.34	0.39	0.37	2.13	1.11	
6	0.37	0.44	0.41	3.2	2.04	0.32	0.41	0.37	1.8	1.04	
7	0.5	0.51	0.51	4.45	1.26	0.37	0.34	0.36	3.27	1.22	
8	0.23	0.68	0.46	3.18	3.84	0.42	0.41	0.42	4.28	1.26	
9	0.29	0.36	0.33	2.41	1.22	0.33	0.36	0.35	10.6	1.56	
10	0.31	0.39	0.35	2.56	1.48	0.41	0.44	0.43	4.08	1.57	
11	0.3	0.42	0.36	2.07	2.07	0.32	0.37	0.35	2.2	1.17	
12	0.42	0.46	0.44	2.8	1.42	0.32	0.38	0.35	2.63	1.78	
13	0.48	0.54	0.51	2.63	1.33	0.32	0.33	0.33	2.53	0.95	
14	0.36	0.37	0.37	2.69	1.22	0.26	0.34	0.30	2.37	1.3	
15	0.34	0.48	0.41	2.44	2.98	0.36	0.32	0.34	10.32	1.00	
16	0.25	0.38	0.32	1.14	1.39	0.31	0.36	0.34	2.16	0.99	
17	0.26	0.3	0.28	2.19	0.93	0.3	0.34	0.32	2.78	1.08	
18	0.25	0.36	0.31	4.15	1.29	0.3	0.44	0.37	3.48	3.62	
19	0.26	0.31	0.29	2.94	1.28	0.29	0.36	0.33	2.07	1.14	
20	0.38	0.33	0.36	5.00	1.30	0.32	0.38	0.35	2.33	1.34	

• La constante A

Tab. C.2 : AADmax et AADmoy enregistrées par entrainement et simulation, constante A d'Antoine, n-paraffines+iso paraffines.

	Fonct	Fonction de transfert : tansig					Fonction de transfert : logsig					
	AAD	moy		AAD m	ax	AAD n	noy		AAD m	ax		
Ν	entr	test	moy	entr	test	entr	test	moy	entr	test		
1	1.07	1.04	1.05	6.62	4.67	21.05	22.64	21.85	138.98	55.05		
2	0.71	1.18	0.95	4.09	5.03	3.10	2.20	2.65	52.98	11.42		
3	1.09	1.00	1.04	13.35	4.28	1.02	1.22	1.12	5.93	7.31		
4	0.68	0.80	0.74	9.12	4.28	0.62	0.98	0.80	3.61	5.56		
5	1.11	1.02	1.07	11.68	4.39	0.56	1.00	0.78	2.60	4.86		
6	0.56	1.02	0.79	3.06	5.80	0.98	1.17	1.08	19.53	5.24		
7	3.12	1.34	2.23	181.73	6.65	0.69	0.93	0.81	25.55	6.67		
8	0.60	1.61	1.11	9.20	9.43	0.56	1.02	0.79	3.35	5.99		
9	0.75	1.18	0.97	23.73	6.69	0.49	0.93	0.71	3.76	6.15		
10	0.81	0.99	0.90	22.70	5.22	3.25	1.30	2.27	160.74	7.08		
11	1.12	1.30	1.21	31.55	6.59	1.12	1.83	1.47	14.36	9.90		
12	8.82	8.09	8.45	43.46	17.57	0.64	1.31	0.98	6.26	6.47		
13	0.69	1.29	0.99	21.06	6.41	0.49	0.91	0.70	3.07	6.78		
14	0.61	1.27	0.94	9.54	10.40	0.55	1.27	0.91	4.72	7.97		
15	0.95	1.50	1.23	29.37	9.63	1.92	2.09	2.01	63.89	9.37		
16	0.62	0.82	0.72	11.37	5.06	1.07	1.48	1.28	47.40	11.07		
17	0.80	1.19	0.99	3.30	6.74	0.67	1.33	1.00	25.16	11.12		
18	1.40	1.41	1.40	90.59	6.89	0.56	1.14	0.85	6.59	8.03		
19	2.53	2.97	2.75	54.51	34.30	0.59	1.17	0.88	9.23	8.67		
20	1.26	1.51	1.39	90.42	12.43	0.83	0.98	0.91	3.88	5.49		

• La constante B

Tab. C.3 : AADmax et AADmoy enregistrées par entrainement et simulation, constante B d'Antoine, n-paraffines+iso paraffines.

	Fonce	tion de	transfe	ert : tansi	g	Fonction de transfert : logsig					
	AAD	moy		AAD m	ax	AAD	moy		AAD m	ax	
Ν	entr	test	moy	entr	test	entr	test	moy	entr	test	
1	5.27	6.61	5.94	75.06	83.00	0.84	1.01	0.93	6.18	5.89	
2	1.25	2.19	1.72	29.76	32.81	5.82	8.51	7.17	108.06	118.13	
3	0.83	1.11	0.97	7.76	6.38	1.26	2.26	1.76	12.76	15.44	
4	0.95	1.32	1.14	6.32	6.80	1.26	2.28	1.77	15.82	17.88	
5	1.14	1.86	1.50	19.59	23.69	0.49	0.74	0.61	3.06	4.09	
6	0.59	0.89	0.74	3.59	3.81	0.77	1.04	0.90	9.76	8.81	
7	3.29	3.75	3.52	44.45	42.00	0.50	0.74	0.62	2.97	3.54	
8	0.88	0.76	0.82	20.10	4.44	1.98	4.26	3.12	70.88	72.00	
9	0.79	1.20	1.00	11.76	6.88	0.98	0.82	0.90	40.40	4.31	
10	1.50	1.14	1.32	55.03	4.81	1.16	0.67	0.92	33.67	2.94	
11	0.67	0.52	0.59	8.96	2.33	1.22	2.41	1.82	48.29	53.25	
12	5.51	6.40	5.95	51.59	60.13	0.67	0.78	0.73	13.91	2.92	
13	0.44	0.61	0.53	2.67	3.75	0.58	1.04	0.81	5.94	7.56	
14	0.50	1.11	0.80	2.76	14.69	0.46	0.80	0.63	2.71	3.94	
15	0.58	0.63	0.60	10.46	3.41	0.50	0.69	0.59	2.32	3.49	
16	0.55	0.84	0.70	5.21	3.16	5.22	4.27	4.74	51.76	44.65	
17	0.54	1.20	0.87	8.82	14.88	0.44	0.81	0.63	5.72	3.67	
18	2.03	4.84	3.44	118.82	127.94	0.53	0.83	0.68	2.94	3.90	
19	5.49	7.56	6.52	116.94	125.00	0.55	0.89	0.72	3.24	4.31	
20	0.80	0.85	0.82	25.29	3.67	0.58	0.75	0.66	23.80	2.78	

• La constante C

Tab. C.4: AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, n-paraffines+iso paraffines.

- ✓ Nombre de neurones: 13 neurones
- ✓ Fonction de transfert : « Tansig »

> Aromatiques

Entrés: -CH₃, -CH₂-, -CH<, >C<, =CH-, =C<, plus la température d'ébullition.

• La constante A

	Fonce	tion tra	nsfert	: tansig		Fonction transfert : logsig					
	AAD	moy	moy	AAD r	nax	AAD	moy	moy	AAD r	nax	
Ν	entr	test	шоу	entr	test	entr	test	шоу	entr	test	
1	0.79	0.94	0.86	4.54	3.08	0.66	0.95	0.81	2.85	3.28	
2	0.90	1.16	1.03	4.7	5.58	0.56	0.78	0.67	2.89	3.66	
3	0.47	0.68	0.57	4.04	4.78	0.22	0.54	0.38	3.77	3.06	
4	0.51	0.68	0.59	4.3	3.51	0.45	0.81	0.63	2.57	3.47	
5	0.75	0.89	0.82	4.49	3.44	0.58	0.71	0.64	3.56	4.30	
6	0.33	0.66	0.49	2.61	2.81	0.48	0.60	0.54	7.55	5.23	
7	0.51	0.94	0.73	2.8	3.74	0.39	0.81	0.60	3.37	3.87	
8	0.70	0.75	0.72	4.37	4.33	0.39	0.57	0.48	3.89	4.41	
9	0.31	0.77	0.54	4.51	6.58	0.49	0.59	0.54	3.80	4.57	
10	0.32	0.67	0.49	3.62	4.61	0.55	0.97	0.76	5.34	5.77	
11	0.37	0.77	0.57	4.08	4.45	0.39	0.87	0.63	2.34	3.58	
12	0.61	0.67	0.64	15.13	4.36	0.52	0.87	0.69	3.04	3.41	
13	0.16	0.88	0.52	1.49	4.93	0.37	0.59	0.48	3.89	3.12	
14	0.49	0.79	0.64	3.24	4.44	0.27	0.54	0.40	3.54	3.16	
15	0.42	0.74	0.58	7.41	5.61	0.51	0.79	0.65	11.71	4.31	
16	0.48	0.76	0.62	3.98	4.75	0.58	0.71	0.64	20.82	4.63	
17	0.38	0.50	0.44	4.03	4.57	0.42	0.57	0.50	13.45	3.74	
18	0.36	0.67	0.51	7.44	4.38	0.35	0.65	0.50	8.45	3.75	
19	0.41	0.68	0.54	3.53	4.26	0.40	0.47	0.44	3.94	4.27	
20	0.45	0.72	0.59	3.46	4.34	0.35	0.66	0.50	6.32	3.06	

Tab. C.5: AADmax et AADmoy enregistrées par entrainement et simulation, constante Ad'Antoine, aromatiques.

- ✓ Nombre de neurones: 6 neurones
- ✓ Fonction de transfert : « Tansig »

• La constante B

	Fonce	tion tra	nsfert :	tansig		Fonction transfert : logsig					
	AAD	moy	moy	AAD m	ax	AAD	moy	moy	AAD m	ax	
Ν	entr	test		entr	test	entr	test		entr	test	
1	0.74	0.81	0.77	7.86	8.45	1.45	1.64	1.55	16.03	6.75	
2	8.22	6.02	7.12	133.01	12.93	1.47	1.29	1.38	18.14	6.53	
3	1.29	1.72	1.50	11.96	8.96	5.36	4.71	5.04	33.32	14.29	
4	0.81	1.34	1.07	3.86	7.28	0.71	1.56	1.14	5.2	14.4	
5	0.52	1.39	0.95	6.09	13.93	0.82	1.02	0.92	5.73	7.32	
6	0.60	1.12	0.86	5.63	7.22	1.47	1.1	1.29	93.58	8.97	
7	0.69	1.35	1.02	5.04	11.12	0.50	0.74	0.62	6.32	8.11	
8	0.75	1.56	1.15	14.29	15.44	0.56	0.92	0.74	4.35	5.21	
9	0.91	2.54	1.72	20.13	20.56	0.59	1.19	0.89	5.16	8.59	
10	0.75	1.05	0.90	5.79	7.44	2.55	1.12	1.84	167.03	6.38	
11	0.59	1.56	1.07	13.1	16.96	3.84	6.23	5.04	82.67	82.78	
12	0.70	1.05	0.88	10.32	8.07	0.72	0.86	0.79	6.86	8.25	
13	1.19	0.75	0.97	57.72	5.61	0.38	1.06	0.72	2.94	6.76	
14	1.31	2.83	2.07	25.59	34.21	5.50	7.19	6.35	16.63	28.3	
15	0.48	1.54	1.01	5.09	15.63	2.32	3.08	2.70	46.64	20.83	
16	0.47	1.55	1.01	5.22	15.27	1.20	0.86	1.03	58.88	8.65	
17	1.64	1.40	1.52	70.46	6.01	0.45	0.95	0.70	3.23	5.61	
18	0.73	2.73	1.73	15.16	36.66	0.51	1.18	0.85	4	7.13	
19	3.50	2.18	2.84	237.92	26.41	0.47	0.83	0.65	4.34	6.29	
20	4.11	5.09	4.60	34.48	44.35	4.46	2.67	3.57	95.03	10.8	

Tab. C.6: AAD max et AAD moy enregistrées par entrainement et simulation, constante Bd'Antoine, aromatiques.

- ✓ Nombre de neurones: 8 neurones
- ✓ Fonction de transfert : « Logsig »

	Foncti	on transf	ert : tans	ig		Fonction transfert : logsig					
	AAD n	noy	moy	AAD ma	X	AAD m	оу	moy	AAD ma	X	
Ν	entr	test		entr	test	entr	test		entr	test	
1	3.67	7.15	5.41	63.83	91.49	2.06	5.09	3.58	16.52	47.31	
2	12.9	13.7	13.3	142.85	105.71	5.75	9.63	7.69	160.62	147.94	
3	2.7	3.77	3.235	64.58	25.53	135.2	193.94	164.57	2739.18	2734.49	
4	4.55	8.02	6.285	137.91	122.05	131.33	187.8	159.57	2593.08	2598.4	
5	68.15	100.87	84.51	1434.87	1433.01	3.48	4.81	4.15	48.04	29.31	
6	3.7	4.61	4.155	106.48	40.44	2.09	7.39	4.74	32.3	101.74	
7	2.12	6.12	4.12	24.32	70.47	2.02	5.71	3.87	19.03	42.05	
8	1.23	4.04	2.635	14.05	49.43	9.82	13.46	11.64	200.81	164.14	
9	48.15	71.82	59.985	930.87	993.65	2.67	5.06	3.87	20.01	44.37	
10	2.68	4.13	3.405	61.15	29.34	2.26	5.55	3.91	19.66	34.36	
11	2.24	4.98	3.61	15.36	52.11	2.81	5.07	3.94	24.78	43.46	
12	2.3	3.72	3.01	36.01	14.24	4.68	3.62	4.15	164.72	15.12	
13	6.33	11.33	8.83	97.58	155.4	1.87	4.26	3.07	19.69	29.02	
14	25.27	31.1	28.185	406.69	351.1	3.98	5.78	4.88	77.35	27.55	
15	2.46	4.63	3.545	44.21	47.25	2.32	3.25	2.79	56.48	24.04	
16	2.69	5.53	4.11	85.75	56.76	2.35	7.06	4.71	31.91	87.53	
17	1.71	2.71	2.21	20.24	26.18	3.22	3.89	3.56	57.67	30.11	
18	61.79	92.89	77.34	1301.59	1300.07	18.39	28.92	23.66	369.88	430.93	
19	2.5	6.07	4.285	23.58	63.05	3.08	4.20	3.64	48.6	22.51	
20	4.79	6.44	5.615	181.3	58.17	3.84	5.90	4.87	26.17	50.71	

• La constante C

Tab. C.7: AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, aromatiques.

- ✓ Nombre de neurones: 17 neurones
- ✓ Fonction de transfert : « Tansig »

Les naphtènes

Entrés: -CH3, -CH2- cyclique, -CH2- linéaire, -CH<, >C<, plus la température d'ébullition

• La constante A

	Fonce	tion de	transfei	rt : tans	ig	Fonction de transfert : logsig					
	AAD	moy	moy	AAD r	nax	AAD	moy	moy	AAD r	nax	
N	entr	test	шоу	entr	test	entr	test	шоу	entr	test	
1	1.34	1.15	1.245	17.49	3.92	1.36	1.22	1.29	17.57	2.93	
2	0.97	0.76	0.865	17.44	2.65	0.93	0.68	0.805	16.8	2.78	
3	0.76	0.56	0.66	16.54	2.02	0.93	0.79	0.86	16.24	2.06	
4	0.81	0.61	0.71	13.18	3.56	0.75	0.73	0.74	18.08	3.21	
5	0.97	0.56	0.765	15.22	2.05	8.09	7.64	7.865	16.01	14.21	
6	0.77	0.8	0.785	16.75	3.62	1.38	1.29	1.335	17.26	5.51	
7	0.83	0.87	0.85	17.5	3.93	0.72	0.45	0.585	14.84	1.55	
8	1.52	1.14	1.33	17.1	3.13	0.77	0.68	0.725	14.39	4.14	
9	0.62	0.59	0.605	11.75	3.07	0.84	0.77	0.805	16.73	2.82	
10	1	0.76	0.88	13.09	2.69	1.76	1.26	1.51	17.96	4.93	
11	0.55	0.31	0.43	14.8	1.11	1.09	0.73	0.91	13.77	3.21	
12	1.35	0.82	1.085	15.8	1.83	0.8	0.56	0.68	14.54	2.11	
13	0.85	0.67	0.76	16.7	2.4	0.69	0.78	0.735	17.05	4.95	
14	1.02	1.07	1.045	11.25	3.97	1.11	0.48	0.795	14.46	2.97	
15	0.81	0.7	0.755	19.15	4.17	1.38	1.15	1.265	14.44	4.75	
16	0.88	0.87	0.875	13.44	5.74	0.92	0.62	0.77	15	5.28	
17	1.11	0.79	0.95	15.37	3.96	1.18	1	1.09	13.43	4.99	
18	0.97	0.97	0.97	18.52	3.83	0.74	0.91	0.825	17.15	3.88	
19	0.86	0.91	0.885	18.82	4.02	1.44	1.3	1.37	15.68	4.32	
20	0.64	0.54	0.59	12.36	2.08	0.8	0.54	0.67	17.16	2.38	

Tab. C.8 : AADmax et AADmoy enregistrées par entrainement et simulation, constante A d'Antoine, naphtènes.

- ✓ Nombre de neurones: 11 neurones
- ✓ Fonction de transfert : « Tansig »

• La constante B

	Foncti	on de tr	ansfert :	tansig		Fonction de transfert : logsig					
	AAD r	noy	moy	AAD m	ax	AAD r	noy	moy	AAD r	nax	
Ν	entr	test	moy	entr	test	entr	test	moy	entr	test	
1	12.04	12.07	12.055	147.13	74.8	2.14	1.56	1.85	32.59	7.7	
2	1.95	1.41	1.68	31.17	9.21	2.65	2.33	2.49	34.87	7.32	
3	1.72	1.11	1.415	28.63	4.53	2.37	1.8	2.085	24.98	6.91	
4	7.92	6.45	7.185	45.28	26.48	2.08	1.6	1.84	32.31	6.47	
5	1.23	1.21	1.22	28.31	5.71	2.1	2.09	2.095	32.42	8.72	
6	1.25	1.67	1.46	29.57	12.37	1.29	1.96	1.625	17.25	9.95	
7	1.72	1.07	1.395	27.73	5.06	0.77	0.84	0.805	26.48	9.17	
8	1.64	1.55	1.595	31.93	5.23	2.19	1.81	2	26.35	8.6	
9	1.16	1.37	1.265	21.28	5.99	2.05	2.8	2.425	30.09	12.04	
10	1.42	1.84	1.63	32.7	8.31	1.96	2.58	2.27	66.41	33.29	
11	1.19	1.33	1.26	25.31	12.37	3.12	2.01	2.565	20.15	10.12	
12	1.06	1.48	1.27	30.12	8.2	1.83	1.22	1.525	22.22	5.59	
13	0.82	0.98	0.9	20.76	4.72	0.98	1.01	0.995	29.94	3.41	
14	1.53	0.99	1.26	27.17	4.38	1.66	0.93	1.295	30.98	4.32	
15	2.42	1.63	2.025	55.05	7.78	10.31	9.8	10.055	29.1	22.42	
16	1.07	0.8	0.935	25.67	8.01	1.12	1.33	1.225	19.78	5.98	
17	1.26	1.71	1.485	16.2	11.05	1.52	0.97	1.245	24.72	5.73	
18	1.44	1.09	1.265	19.48	5.52	1.57	1.58	1.575	26.2	9.12	
19	2.46	1.94	2.2	27.06	6.86	1.79	1.97	1.88	23	22.35	
20	4.39	3.44	3.915	35.41	9.34	3.45	6.32	4.885	57.28	66.02	

Tab. C.9 : AADmax et AADmoy enregistrées par entrainement et simulation, constante B d'Antoine, naphtènes.

- ✓ Nombre de neurones: 7 neurones
- ✓ Fonction de transfert : « Logsig »

• La constante C

	Foncti	on de tr	ansfert :	tansig		Fonction de transfert : logsig					
	AAD n	noy	mov	AAD m	ax	AAD r	noy	mov	AAD m	ax	
Ν	entr	test	moy	entr	test	entr	test	шоу	entr	test	
1	2.71	3.19	2.95	19.87	15.93	2.85	2.94	2.90	21.16	9.21	
2	14.58	31.96	23.27	282.33	467.01	3.05	4.53	3.79	23.38	27.91	
3	3.23	4.82	4.025	43.01	42.99	1.63	2.67	2.15	15.88	29.79	
4	4.16	8.56	6.36	64.87	131.19	2.34	3.3	2.82	17.28	30.17	
5	3.26	9.14	6.2	66.3	148.81	4.35	5.15	4.75	35.34	25	
6	6.17	8.73	7.45	57.42	65.61	17.03	36.46	26.75	327.99	542.89	
7	1.77	2.13	1.95	15.08	15.51	3.1	5.7	4.4	30.27	75.34	
8	2.36	5.61	3.985	29.89	78.43	1.48	2.57	2.03	16.18	35.01	
9	4.06	4.82	4.44	45.64	37.33	1.68	4.98	3.33	16.81	52.5	
10	1.38	1.73	1.555	16.43	13.52	2.44	4.41	3.43	32.06	43.6	
11	1.53	4.16	2.845	12.77	41.1	1.72	2.72	2.22	10.27	19.47	
12	2.74	6.72	4.73	40.5	93.23	3.6	4.53	4.07	21.72	21.83	
13	1.25	3.26	2.255	18.6	33.68	21.58	28.93	25.26	140.65	183.79	
14	8.87	11.71	10.29	77.43	91.4	1.86	3.59	2.73	14.19	29.56	
15	1.21	2.82	2.015	16.55	16.24	1.47	2.95	2.21	16.08	13.57	
16	2.2	3.32	2.76	23.63	24.12	1.43	3.53	2.48	21.8	22.04	
17	6.75	8.96	7.855	41.4	85.39	1.76	2.11	1.94	21.05	8.73	
18	1.54	3.59	2.565	24.3	38.45	3.39	2.83	3.11	60.86	13.66	
19	1.69	4.34	3.015	15.28	18.1	6.36	12.21	9.29	81.26	153.44	
20	12.84	24.47	18.655	189.11	307.61	1.82	3.41	2.62	28.45	16.79	

Tab. C.10 : AADmax et AADmoy enregistrées par entrainement et simulation, constante C d'Antoine, naphtènes.

- ✓ Nombre de neurones: 10 neurones
- ✓ Fonction de transfert : « Tansig »

Calculs des pressions: Nous calculons les pressions pour les principaux hydrocarbures constituants le pétrole, à différentes températures en utilisant les constantes d'Antoine calculées par RNA; ensuite, nous les comparons aux pressions de référence. (Même méthode utilisée en CGAI).

Alcane	intervalle de T	AAD %	
pentane	-44.44	55.633	15.18
hexane	-18.91	82.1	10.45
heptane	4.56	105.06	3.61
octane	26.27	125.031	1.56
nonane	46.42	143.14	3.54
decane	65.38	159.24	3.31
dodecane	99.74	187.59	1.5
tridecane	115.7	199.91	1.78
tetradecane	130.54	211.18	4.26
pentadecane	144.65	221.61	1.93
AAI) moy		4.71
n-alkylbenzene	interval	le en °C	AAD %
Benzène	6.494	120.362	12.15
toluéne	13.29	141.11	19.57
ethylbenzéne	33.25	306.4	27.36
propylbenzene	50.95	324.1	21.71
n-butylbenzene	70.35	343.5	8.71
n-pentylbenzene	87.85	202.01	0.39
AAI) moy		14.98
Benzenes disubstitués	interval	AAD %	
o-xyléne	39.527	168.081	0.45
m-xyléne	35.548	158.785	2.86
p-xyléne	34.645	158.211	2.4
cuméne	45.78	168.62	4.02
2-méthyl-1-ethylbenzene	56.09	179.89	3.37
3-méthyl-1-ethylbenzene	53.25	172.89	0.72
4-méthyl-1-ethylbenzene	53.41	173.59	1.95
o-diethylbenzene	70.83	187.8	2.33
m-diethylbenzene	69.36	185.49	0.55
p-diethylbenzene	70.84	188.15	2.95
2-isopropyltoluene	65.35	184.3	6.73
3-isopropyltoluene	63.05	181.15	1.96
p-isopropyltoluene	64.35	183.18	3.13
o-propyltoluene	71.65	189.34	4.17
m-propyltoluene	69.483	186.33	1.89

p-propyltoluene	69.95	187.8	3.68
AAD	2.7		
n-alkylcyclohexane	interval	le en °C	AAD %
cyclohexane	-9.61	114.3	
methylcyclohexane	3.53	127.383	2.28
ethylcyclohexane	27.95	148.53	4.10
n-propylcyclohexane	47.883	164.77	1.17
butylcyclohexane	67.35	180.73	4.63
pentylcyclohexane	85.85	195.15	10.05
n-hexylcyclohexane	103.05	208.24	9.92
n-heptylcyclohexane	119.65	220.14	10.23
octylcyclohexane	135.35	231.06	9.50
n-nonylcyclohexane	150.05	241.07	7.49
decylcyclohexane	163.64	250.24	6.88
undecylcyclohexane	176.85	258.78	0.06
dodecylcyclohexane	189.35	266.62	8.82
tridecylcyclohexane	201.15	273.9	10.64
tetradecylcyclohexane	212.85	280.69	16.13
AAD	7.28		
n-alkylcyclopentanes	interval	AAD moy	
Cyclopentane	-35	84,97	0,21
méthylcyclopentane	-18	99,803	24,69
ethylcyclopentane	6,7	125,5	32,01
n-propylcyclopentane	28	144,19	27,02
butylcyclopentane	49	161,69	19,48
pentylcyclopentane	68	177,51	13,59
n-hexylcyclopentane	87	191,72	5,49
n-heptylcyclopentane	104	204,67	
octylcyclopentane	120	216,5	1,57
n-nonylcyclopentane	125	227.20	1.0.6
n decylcyclopentane	155	227,28	4,06
n-uce yie yelopentane	150	227,28	4,06
undecylcyclopentane	150 165	227,28 237,22 246,39	4,06 5,08 0,33
undecylcyclopentane dodecylcyclopentane	133 150 165 177	227,28 237,22 246,39 254,93	4,06 5,08 0,33 3,53
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl-	133 150 165 177 190	227,28 237,22 246,39 254,93 262,77	4,06 5,08 0,33 3,53 1,82
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl-	133 150 165 177 190 202	227,28 237,22 246,39 254,93 262,77 270,05	4,06 5,08 0,33 3,53 1,82 4,54
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl- cyclopentane, tetradecyl-	133 150 165 177 190 202 213	227,28 237,22 246,39 254,93 262,77 270,05 276,84	4,06 5,08 0,33 3,53 1,82 4,54 7,28
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl- cyclopentane, tetradecyl- cyclopentane, pentadecyl-	133 150 165 177 190 202 213	227,28 237,22 246,39 254,93 262,77 270,05 276,84	4,06 5,08 0,33 3,53 1,82 4,54 7,28
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl- cyclopentane, tetradecyl- cyclopentane, pentadecyl- AAE methylcyclohexanes	133 150 165 177 190 202 213 moy	227,28 237,22 246,39 254,93 262,77 270,05 276,84	4,06 5,08 0,33 3,53 1,82 4,54 7,28 10,05 AAD %
undecylcyclopentane dodecylcyclopentane cyclopentane, tridecyl- cyclopentane, tetradecyl- cyclopentane, pentadecyl- AAE methylcyclohexanes 1,1dimethcychexane	133 150 165 177 190 202 213 0 moy interval 17.23	227,28 237,22 246,39 254,93 262,77 270,05 276,84 le en °C 136.91	4,06 5,08 0,33 3,53 1,82 4,54 7,28 10,05 AAD % 11.59

c,1,3dimethycychexa	21.95	137.47	7.67
t,12diméthycychexa	20.21	140.97	0.57
1,2,4triméthycychexa	31.85	175.85	0.80
r1,t2,c3,triméthcychexa	31.45	175.45	0.24
1,c3,t5,trimethcychexa	27.85	169.95	8.65
1,c3,c5,trimethcychexa	30.76	166.07	6.71
1,1,3-trimethylcyclohexane	30.52	165.01	18.59
1,1,4-trimethylcyclohexane	27.85	163.85	13.28
1.2.3triméthycychexa	35.75	180.85	9.92
AAI) moy		7.35
Methylcyclopentanes	intervalle de t	empérature °C	AAD %
t-1,2dimethcycpenta	-2,41	113,95	4,58
c-1,2dimethcycpenta	3,45	122,35	4,91
1,1dimehcycpenta	-5,85	109,75	0,06
t-1,3dimethcycpenta	-3,41	113,95	21,34
c-1,3dimethcycpenta	-2,63	112,55	29,38
1,c2,c3,triméthycycpenta	20,85	149,85	10,23
1,c2,c4,triméthycycpenta	16,85	144,85	1,68
1,1,2triméthylcyclopentane	13,4	140,65	0,16
1,1,3trimétyhcycpent	6,65	131,35	1,32
1,c2,t4,triméthycycpenta	15,95	143,65	0,15
1,2,3,c12,t1,3trimethycycpent	16,85	143,85	1,53
AAI) moy		6,85
isoparaffines 1 ramifications	interval	le en °C	AAD %
2-methylbutane	-51,43	49,123	34,4
2-methylpentane	-26,25	75,1	23
2,methylhexane	-2,6	97,92	6,06
3-methylhexane	-1,25	101,49	1,54
3-ethylpentane	-0,25	105,2	0,59
4-methylheptane	19,35	120,04	2,38
3-methylheptane	33,17	121,37	4,12
2-methylheptane	26,66	118,57	4,01
3-ethylhexane	19,75	122,63	0,87
3-methyloctane	40,85	140,34	4,65
4-methyloctane	38,85	138,52	0,67
2-methyloctane	39,85	137,75	2,58
4 ethyl heptane	37,85	138,73	2,16
3-ethylheptane	39,85	140,55	2,18
3-ethyloctane	57,85	156,79	2,68
4propylheptane	51,85	147,97	14,45
3-methylnonane	59.85	156.79	7.21

5-methylnonane	56,85	154,13	0,58
4 ethyloctane	54,85	153,99	4,41
4 methylnonane	57,85	154,62	1,87
AAD	6,02		
Isoparaffines 2 ramifications	intervalle de t	empérature °C	AAD %
2,2-dimethylpropane	-13,816	30,475	9,3
2,2-dimethylbutane	-35,75	68,94	8,09
2,3-dimethylbutane	-28,95	76,78	5,4
2,4-dimethylpentane	-10,75	90,64	10,29
3,3-dimethylpentane	-7,95	102,26	13,52
2,2-dimethylpentane	-12,25	91,13	17,19
2,3-dimethylpentane	8,41	102,96	5,56
3,3-dimethylhexane	12,95	120,25	7,19
2,2-dimethylhexane	9,85	111,71	3,07
2,5-dimethylhexane	12,05	111,85	19,64
2-methyl-3-ethylpentane	16,35	123,75	13,47
3-ethyl-3-methylpentane	16,95	130,4	38,41
3,4-dimethylhexane	18,25	124,87	7,56
2,3-dimethylhexane	16,85	121,23	16,65
2,4-dimethylhexane	12,05	114,3	16,7
3,3-diethylpentane	38,25	153,99	10,06
2,2-dimethylheptane	29,85	131,31	2,65
2,6-dimethylheptane	32,85	132,43	6,9
2,3-dimethylheptane	36,85	139,01	4,92
3,4-dimethylheptane	36,85	140,62	4,63
3,5-dimethylheptane	32,85	136,07	5,81
4,4-dimethylheptane	31,85	136,77	0,95
2,4-dimethylheptane	30,85	131,45	11,01
2,5-dimethylheptane	32,85	134,6	5,3
4-ethyl-2-methylhexane	31,85	133,83	10,01
3-ethyl-3-methylhexane	35,85	145,17	6,13
3-ethyl-4-methylhexane	36,85	141,88	2,67
3,3-dimethylheptane	32,85	138,52	2,16
3-ethyl-2-methylhexane	34,85	138,03	1,11
octane, 2,7-dimethyl-	52,85	149,93	5,24
2,6-dimethyloctane	52,85	151,75	5,65
2,4-dimethyloctane	49,85	147,41	4,97
3,3-dimethyloctane	52,85	155,25	0,53
2,3-dimethyloctane	55,85	155,67	14,47
5-ethyl-2-methyl-heptane	51,85	152,38	1,78
2,2-dimethyloctane	50,85	148,46	2,55

2,5-dimethyloctane	51,85	149,86	0,47
3,4-dimethyloctane	54,85	156,02	11,21
3,5-dimethyloctane	51,85	152,1	1,24
3,6-dimethyloctane	52,85	153,57	5,99
4,5-dimethyloctane	53,85	154,83	7,21
3-ethyl-3-methylheptane	53,85	154,83	1,94
3,3-diethylhexane	54,85	166,17	3,68
3,4-diethylhexane	53,85	159,31	9,38
4-ethyl-2-methylheptane	48,85	149,02	6,6
4-ethyl-3-methylheptane	48,85	149,02	6,11
3-ethyl-5-methylheptane	50,85	152,38	1,24
3-ethyl-4-methylheptane	53,85	157,14	8,47
AAD) moy		7,61
Isoparaffines 3 ramifications	intervalle de	température	AAD %
2,2,3-trimethylbutane	-12,25	98,62	0,5
2,2,4-trimethylpentane	2,35	107,58	1,69
2,3,3-trimethylpentane	13,85	128,3	4,11
2,2,3-trimethylpentane	10,75	121,23	9,94
2,3,4-trimethylpentane	13,95	123,26	23,03
2,3,5-trimethylhexane	28,85	132,43	3,99
2,2,5-trimethylhexane	23,05	125,22	2,31
2,2,4-trimethylhexane	23,85	129,14	2,89
2,3,3-trimethylhexane	31,85	143,35	2,17
2,4,4-trimethylhexane	27,05	134,74	1,24
3,3,4-trimethylhexane	40,85	147,76	9,38
2,3,4-trimethylhexane	33,85	141,67	14,05
2,2,3-trimethylhexane	28,85	137,75	0,47
2,5,5-trimethylheptane	45,85	146,78	1,16
2,2,6-trimethylheptane	43,85	142,93	1,74
2,4,6-trimethylheptane	43,85	141,6	17,84
2,4,4-trimethylheptane	43,85	147,76	3,66
2,3,6-trimethylheptane	48,85	149,86	7,18
3,3,5-trimethylheptane	46,85	153,57	1,27
2,2,4-trimethylheptane	42,85	143,7	4,14
2,4,5-trimethylheptane	48,85	151,68	7,78
2,3,5-trimethylheptane	50,85	155,88	2,78
3,3,4-trimethylheptane	51,85	161,55	3,92
3,4,4-trimethylheptane	50,85	160,64	2,85
3,4,5-trimethylheptane	52,85	159,1	0,83
2,2,5-trimethylheptane	44,85	146,08	2,39
2,2,3-trimethylheptane	48,85	154,27	1,66

2,3,3-trimethylheptane	50,85	158,33	2,91
2,3,4-trimethylheptane	50,85	155,11	2,75
AAD	4,85		

Tab. C.11 : Résultats de calcul des pressions RNA sur les trois familles.

Les résultats d'entrainement et de simulation du réseau optimale pour les trois familles sont présentés en annexe, [Annexe7].

> Commentaire et comparaison des trois méthodes: RNA-CGSI, CGAI, et L-K

Fig. C.3 Ecarts enregistrés pour l'estimation de la tension devapeur par : CGAI, RNA-CGSI, et L-K.

La méthode RNA-CGSI a aboutit à des erreurs plus faibles que celle de Lee Kesler pour la famille des n-alkylcyclohexanes, et des isoparaffines à trois ramifications; cependant les AAD enregistrés sur chaque constante ont mené en moyenne à des erreurs de pressions relativement élevées, pour les autres familles. Ceci peut être expliqué par différents facteurs:

• Le calcul par RNA demande une base de données assez riche, c'est-à-dire un nombre important de composés, cela ne pausera pas de problèmes avec la majorité des propriétés physiques. Mais ce n'est pas le cas pour la pression, car cela mènera à calculer les pressions des solides et des liquides au même temps, ce qui peut induire en erreur.

• La théorie des contributions des groupes demande une bonne segmentation des familles des hydrocarbures, nous allons donc avoir beaucoup de familles mais avec un nombre restreint de composés. La méthode des RNA, quant à elle, demande un grand nombre de données; ce qui compliquera le couplage RNA-CGSI.

• Pour différencier entre les isomères cis et trans des naphtènes, nous n'avons pris que la température d'ébullition, il se peut que ça aurait été mieux de considérer d'autres facteurs.

XII.2. La température d'ébullition

Quant à la température d'ébullition, nous avons segmenté les différents composés en deux grandes familles :

- ✓ Les hydrocarbures cycliques : (ring groups) Naphtènes+Aromatiques.
- ✓ Les hydrocarbures non cycliques (non ring groups) n-paraffines+iso paraffines.

Ring group (Naphtènes+aromatiques)

Entrées : -CH₃, =CH- , =C<, -CH₂-,-CH<

			Tans	ig		Logsig				
Ν	AAD	moy		AA	D max	AAD	moy		AAD max	
	entr	sim	шоу	entr	sim	entr	sim	шоу	entr	sim
3	0.13	0.45	0.29	2.47	1.55	2.37	1.24	1.81	189.77	7.31
4	0	0.36	0.18	0.01	1.17	1.98	1.23	1.61	207.85	7.69
5	0.06	5.7	2.88	0.72	72.26	2.11	1.09	1.6	207.01	7.18
6	0.01	0.8	0.41	0.07	7.04	4.96	3.4	4.18	176.09	16.12
7	0.03	3.4	1.72	0.16	16.27	2.7	1.66	2.18	185.84	5.84
8	0.01	1	0.51	0.02	2.12	2.46	0.99	1.73	207.84	7.28
9	0.06	6	3.03	0.44	44.27	2.41	1.39	1.9	161.83	2.93
10	0.01	1	0.51	0.14	13.7	1.71	27	14.36	35.25	274.07
11	0.01	1	0.51	0.09	9.15	2.53	1.68	2.11	165.68	7.68
12	0	0.4	0.2	0.02	2.01	2.92	2.66	2.79	144.37	9.09
13	0	0.07	0.04	0	0.23	2.65	0.74	1.7	204.78	4.25
14	0	0.4	0.2	0.01	1.24	3.38	1.59	2.49	201.52	8.94
15	0.06	6.3	3.18	1.19	119.03	2.12	4.6	3.36	106.95	24.61
16	0	0.1	0.05	0.01	0.24	1.9	1.12	1.51	204.62	9.43
17	0	0.3	0.15	0.04	4.11	2.59	2.09	2.34	147.12	4.37
18	0.04	3.6	1.82	0.67	66.55	2.98	2.79	2.89	300.11	15.83
19	0	0.5	0.25	0.07	6.56	2.13	1.14	1.64	205.45	9.53
20	0.1	9.7	4.9	0.66	65.67	2.95	1.89	2.42	145.78	7.07

Tab.C.12: AADmax et AADmoy enregistrées par entrainement et simulation, de la Teb des

ring group

- ✓ Nombre de neurones: 13 neurones
- ✓ Fonction de transfert : « Tansig »

				Logsig						
Ν	AAD moy			AAD max		AAD moy			AAD max	
	entr	sim	moy	entr	sim	entr	sim	moy	entr	sim
1	1.06	4.17	2.615	5.21	42.01	1.7	4.38	3.04	67.34	43.88
2	0.72	2.34	1.53	6.15	27.24	0.73	2.32	1.525	6.2	28.96
3	0.7	3.48	2.09	5.33	47.54	1.47	16.48	8.975	81.08	345.23
4	0.7	11.06	5.88	5.9	210.48	0.75	3.82	2.285	4.63	47.57
5	0.66	2.93	1.795	4.89	36.32	0.71	2.4	1.555	4.73	28.91
6	0.74	6.12	3.43	6.21	85.7	2.39	10.88	6.635	35.1	101.34
7	0.71	2.88	1.795	10.27	42.81	0.66	2.09	1.375	4.24	24.85
8	0.61	3.38	1.995	4.59	41.71	0.71	4.64	2.675	4.82	41.45
9	1.76	9.8	5.78	18.17	89.15	2.64	11.66	7.15	57.19	101.23
10	0.61	2.08	1.345	5.25	24.51	0.64	2.18	1.41	5.82	22.27
11	0.97	3.51	2.24	76.07	32.25	0.61	1.58	1.095	5.96	16.19
12	0.59	1.79	1.19	4.46	18.62	1.05	2.26	1.655	33.11	23.3
13	0.59	4.03	2.31	5.26	53.77	0.65	4.32	2.485	8.68	44.99
14	0.62	2.12	1.37	7.13	22.27	0.64	3.85	2.245	6.58	38.34
15	0.69	3.87	2.28	16.39	53.7	0.9	4.37	2.635	15.72	53.35
16	0.59	2.77	1.68	4.55	22.57	0.8	2.11	1.455	39.99	16.87
17	0.84	3.94	2.39	48.74	34.53	0.59	2	1.295	7.94	19.12
18	0.65	2.57	1.61	4.05	23.68	1.04	2.36	1.7	47.91	17.83
19	0.7	3.45	2.075	6.07	35.16	0.61	2.79	1.7	6.04	35.87
20	3.55	3.87	3.71	39.29	10.73	0.64	3.21	1.925	4.31	32.13

Entrées: -CH	[3, -CH ₂ -	, -CH<,	>C<
--------------	------------------------	---------	-----

Tab. C.13: AADmax et AADmoy enregistrées par entrainement et simulation, de la Tebdes non ring group

Architecture du réseau optimal:

- ✓ Nombre de neurones: 11 neurones
- ✓ Fonction de transfert : « Logsig »

Les résultats de calcul sur les bases d'apprentissage et de test pour chacune des familles sont donnés en Annexe8.

> Commentaire
Nous constatons que pour les échantillons étudiés dans la but de l'estimation de la température d'ébullition, les réseaux établis permettent d'avoir des résultats très recevables et ce pour les deux groupes d'hydrocarbures considérés.

XII.3 Application aux fractions pétrolières

Nous avons appliqué les résultats obtenus par RNA à quelques fractions pétrolières citées précédemment dans la partie B, et ce en utilisant la même méthode de calcul que pour CGAI.

a) Pression de vapeur

La fraction considérée est fraction naphta C.

TI°Cl	P [bars]		AAD(%)
1[0]	exp	RNA	(10)
222	1.9764	2.0506	3.75
202	1.2924	1.3450	4.07
242	2.9120	3.0138	3.5

Tab. C.14 : pression de vapeur de la coupe naphta par RNA

> Commentaire

Le calcul sur la fraction C conduit à l'obtention d'écarts qui sont dans les normes ,cependant on ne peut généraliser car l'application sur des fractions légères par exemple aurait probablement donné des écarts élevés ,car pour les principaux composés présents dans le pétrole brut à savoir, la pentane, l'Hexane, le cyclohexane et le benzène les écarts sont très grands.

Eus etter	Composition		Teb [K]				
Fraction	Pseudocomposés	%(mol)	exp	RNA	frac exp	frac RNA	AAD (%)
	n-heptane	67.67	371.53	372.62			
1	methylecyclohexane	28.84	374.09	374.09	372.70	373.43	0.20
	Toluène	3.49	383.76	383.76			
	n-octane	55.52	398.78	399.02			
2	ethylecyclohexane	31.88	404.97	404.97	402.12	402.26	0.03
	ethylebenzène	12.61	409.32	409.32			
	n-nonane	58.37	423.88	423.83			
3	propylecyclohexane	20.26	429.87	429.87	426.90	426.87	0.01
	propylebenzène	21.37	432.35	432.35			
	n-decane	48.27	447.23	447.12			
4	n-butylecyclohexane	24.62	454.09	454.09	451.41	451.36	0.01
	n-butylebenzène	27.11	456.42	456.42			
	n-dodecane	39.21	489.44	489.54			
5	n-hexylecyclohexane	27.20	497.80	497.80	494.93	494.96	0.01
	n-hexylebenzène	33.59	499.00	499.00			
6	n-tridecane	35.82	508.66	508.85	515.40	515.47	0.01

b) La température d'ébullition

	n-heptylecyclohexane	26.82	518.00	518.00			
	n-heptylebenzène	37.36	520.00	520.00			
	n-pentadecane	69.87	543.78	544.12			
7	n-nonylecyclohexane	22.32	554.70	554.70	547.09	547.33	0.04
	n-nonylebenzène	7.81	555.00	555.00			
	n-hexadecane	68.28	559.97	560.25			
8	n-decylecyclohexane	23.07	570.77	570.77	563.42	563.61	0.03
	n-decylebenzène	8.65	571.00	571.00			
	n-heptadecane	66.41	575.24	575.49			
9	n-undecylecyclohexane	23.73	586.20	586.20	578.90	579.07	0.03
	n-undecylebenzène	9.86	586.00	586.00			
	n-nonadecane	65.77	603.62	603.57			
10	n-teridecylecyclohexane	24.31	614.70	614.70	607.34	607.31	0.01
	n-tridecylebenzène	9.93	614.00	614.00			

Tab. C.15 : Teb par RNA de 10 fractions étroites.

> Commentaire

Contrairement à la tension de vapeur, Les réseaux établis pour l'estimation de la température d'ébullition donnent des écarts faibles, autant pour les corps purs que pour les fractions pétrolières.

XIII. Perspectives

- Utiliser une bonne méthodologie de modélisation qui consiste à appliquer:
 - ✓ Les techniques de prétraitement des données.
 - ✓ Les techniques de réduction de variables d'entré, fondées sur l'analyse en composantes principales et composantes curvilignes.
 - ✓ Une bonne estimation de l'erreur de généralisation en appliquant de nouvelles méthode telles que « leave, one , out » ,« early-stooping ».
- L'application des RNA pour établir des modèles Quantitative Structure Activity Relationship (QSPR) peut être mise en œuvre à profit. Cependant, il faut bien choisir pour chaque propriété à prédire, un bon ensemble de descripteurs.
- Pour contourner la règle de Kay, concernant les mélanges et les fractions, nous proposons d'utiliser d'autres propriétés plus déterminantes : Kuop, densité, point d'aniline...etc.

CONCLUSION GENERALE

Notre étude a comporté deux approches :

Dans la première nous avons proposé de nouvelles corrélations basées sur le principe de contribution de groupes pour la prédiction de la tension de vapeur et la température d'ébullition de six familles d'hydrocarbures purs : n-paraffines, isoparaffines, oléfines, naphtènes, aromatiques et alcynes .Les écarts obtenus par ces corrélations sont relativement faibles para rapport aux données expérimentales, et à d'autres corrélations de la littérature, pour les deux propriétés étudiées.

L'intérêt principal d'une telle approche est le fait qu'elle ne nécessite pas la connaissance des propriétés des hydrocarbures. Seule la structure chimique doit être connue .En effet, pour quelques hydrocarbures tels que les isomères, beaucoup de propriétés ne sont pas disponibles. Les corrélations proposées pour l'estimation de la tension de vapeur sont valides sur un large intervalle de température ; leur application sur les mélanges et les fractions pétrolières, aboutit à des résultats très recevables.

Il est à noter que la forme des équations proposées pour les trois paramètres d'Antoine était la même pour plusieurs familles ; notamment les n-paraffines, les isoparaffines, les n-alkylcyclohexanes, les n-alkylcyclopentanes, et les aromatiques. De plus, nous avons adopté une nouvelle notation définissant les interactions dans le cycle benzénique, ce qui a réduit le nombre des termes d'interaction.

La seconde approche avait pour but la prédiction des deux propriétés en question par un couplage réseaux de neurones artificiels à la méthode des contributions de groupes sans interaction. Les résultats obtenus sont très satisfaisants pour la température d'ébullition.

Par contre le calcul des pressions de vapeur par le biais des A, B, C d'Antoine donne de moins bons résultats sur beaucoup de composés.

C'est pourquoi nous proposons qu'un travail pourrait être effectué sur la tension de vapeur en tenant compte d'autres descripteurs.

Nous proposons aussi de contourner la règle de Kay, et d'appliquer les réseaux de neurones sur les fractions pétrolières en utilisant des propriétés bien déterminantes de ces dernières.

Paramètres et contributions des corrélations sélectionnées pour l'estimation de la tension de vapeur

Equation 16	n-Paraffines			
Equation 10	А	В	С	
a	0.2270	0.0000	65.6895	
b	-0.3026	-35.9558	-10.1711	
с	2.3943	76.1176	10.7295	
m	0.1762	0.7761	1.4352	
d	1.5766	79.3836	3.6244	
n	0.2134	0.7734	1.0476	
-CH ₂ -	0.5629	11.6345	4.1728	
-CH ₂ -CH ₂ -CH ₂ -	-0.4858	-6.1465	-4.4114	

Equation 16	Iso paraffines une ramification				
Equation 10	А	В	С		
a	-11.7222	-189.1065	9.8064		
b	8.0325	-40.0395	-1.5185		
с	5.2829	913.9537	97.8897		
m	0.2708	0.4246	0.3947		
d	-2.4586	-6119560.8	249.7054		
n	1.6722	-14.3818	-1.6968		
-CH ₃	0.6123	0.5771	0.8482		
-CH ₂ -	0.0844	0.5542	0.488		
-CH<	-0.7541	-0.8587	-0.0433		
CH ₃ -CH-CH ₃	0.5465	0.2987	2.5451		
CH ₃ -CH ₂ -CH ₂ -	-0.0152	-0.058	-0.2983		
CH ₃ -CH-CH ₂ -	0.4076	0.3103	1.1918		
-CH ₂ -CH ₂ -CH<	0.1624	0.132	-0.109		
-CH ₂ -CH-CH ₂ -	0.3348	0.3225	0.1486		
CH ₃ -CH ₂ -CH<	0.1567	0.0655	0.8929		
-CH ₂ -CH ₂ -CH ₂ -	-0.0244	0.0736	-1.4392		

Equation 16	Iso paraffines deux ramifications				
Equation 16	Ā	В	С		
a	-11.5265	-212.7147	135.9713		
b	4.5271	-1.553	6.4657		
С	171579.214	-20466.424	37.2497		
m	-15196783	-1.0477	0.1151		
d	-323.7671	95.3992	706.0452		
n	-59.166	0.5284	-146.2897		
-CH ₃	0.849	53.7419	2.2295		
-CH ₂ -	0.0137	57.8943	-0.885		
-CH<	0.00657	22.0826	-1.2848		
>C<	0.00649	19.1398	0.0838		
CH ₃ -CH-CH ₃	0.0000443	-9.412	0.1881		
CH ₃ -C-CH ₃	-0.000883	-8.391	-0.1711		
CH ₃ -CH ₂ -CH ₂ -	-0.0103	-26.6188	0.0989		
CH ₃ -CH-CH ₂ -	-0.000702	-1.9488	0.0743		
-CH ₂ -CH ₂ -CH<	-0.00429	-4.2998	-0.0444		
-CH ₂ -CH-CH ₂ -	-0.00272	2.6411	0.0805		
CH ₃ -CH ₂ -CH<	-0.00422	-16.7614	0.0976		
-CH ₂ -CH ₂ -CH ₂ -	-0.00742	-8.2661	-0.0605		
CH ₃ -¢-CH ₂ -	-0.00093	-4.6273	-0.212		
CH ₃ -CH-CH<	0.00269	5.1965	0.0828		
CH ₃ -CH ₂ -C<-	0.000336	-11.0681	0.3392		
CH ₃ -¢-CH<	0.9217	0.9217	0.9217		
-CH ₂ -CH ₂ -C<-	-0.00336	-5.0763	0		
-CH ₂ -¢H-CH<	-0.00236	7.2363	0.1221		
-CH ₂ -¢-CH ₂ -	-0.00515	3.5267	-0.3074		

Equation 16	Iso paraffines trois ramifications				
Equation 10	А	В	С		
а	-422.5209	-37460.4321	-322.9087		
b	-80.3680	-12356.2122	-73.0656		
с	422.5991	37845.6650	433.1991		
m	0.3694	0.5610	0.3900		
d	86.6590	13351.7895	186.2158		
n	-1.0729	-0.7824	-0.3257		
-CH ₃	-0.0558	0.0244	0.1942		
-CH ₂ -	0.0144	0.2427	-0.2177		
-CH<	0.4405	0.4958	-0.1873		
>C<	1.0605	0.6837	0.1424		
CH ₃ -CH-CH ₃	0.1405	-0.0711	0.1001		
CH ₃ -C-CH ₃	0.0666	-0.0288	-0.0208		
CH ₃ -CH ₂ -CH ₂ -	0.1826	0.0465	0.0750		
CH ₃ -CH-CH ₂ -	0.0614	0.0225	0.0366		
-CH ₂ -CH ₂ -CH<	-0.0132	-0.0699	0.0364		
-CH ₂ -CH-CH ₂ -	-0.0225	-0.0965	0.0144		
CH ₃ -CH ₂ -CH<	0.1312	0.0079	0.0860		
-CH ₂ -CH ₂ -CH ₂ -	0.0833	0.0715	0.0349		
CH ₃ -¢-CH ₂ -	-0.0281	0.0256	0.0281		
CH ₃ -CH-CH<	0.0535	0.0369	0.0406		
CH ₃ -CH ₂ -C<-	0.2739	0.1991	0.0370		
CH ₃ -CH-CH<	-0.0419	0.0257	0.0283		
-CH ₂ -CH ₂ -C<-	0.0813	0.0399	-0.0461		
-CH ₂ -CH-CH<	0.0078	-0.0353	0.0712		
-CH ₂ -¢-CH ₂ -	-0.0993	-0.1974	-0.0396		

Equation 16	Alkyl cyclohexanes				
	А	В	С		
a	5.928	526.0461	-1020.8559		
b	-0.463	-3.0626	63.8345		
с	-0.4827	15.7668	-81.1661		
m	-0.786	0.7276	-23.3618		
d	-0.7574	15.6776	-57.5314		
n	-0.177	0.725	-16.3033		
-CH ₂ -	0.2886	42.5802	-0.0984		
-CH ₃	-0.5017	0.4898	1.9484		
-CH<	-0.5017	0.5723	1.9484		
-CH ₂ -CH ₂ -CH<	0.2492	0.7139	1.4742		
-CH ₂ - CH ₂ - CH ₂ -	-0.2151	-22.3122	3.3398		
-CH ₂ -CH- CH ₂ -	-0.5017	0.9255	1.0484		
-CH ₂ r-CH- CH ₂ -	0.1948	-0.3094	1.0078		
-CH ₃ r-CH- CH ₂ -	0.3438	5.2025	1.0377		
-CH ₂ r-CH ₂ r-CH<	-0.2004	-1.4639	0.00945		
$CH_3r - CH_2r - CH_2r -$	-0.0495	0	0		
-CH ₂ r- CH ₂ r- CH ₂ r-	-0.2655	0	-0.00601		

Equation 16	Alkyl cyclopentanes				
Equation 10	А	В	С		
a	0.0704	0	0		
b	0.5398	-1.0255	0.965		
С	1.3073	8.4963	2.9287		
m	-0.4058	0.7192	0.4662		
d	0.7267	8.1093	121.2819		
n	-0.3033	0.7112	-0.3169		
-CH2-	-4.59E-03	-6.5403	-0.0802		
-CH ₃	0.2259	138.4953	19.199		
-CH<	0.2257	138.4952	19.199		
-CH ₂ -CH ₂ -CH<	0.6128	69.7476	10.0995		
-CH ₂ - CH ₂ - CH ₂ -	1.0792	164.2437	36.9631		
-CH ₂ -CH- CH ₂ -	0.2255	138.4952	19.199		
-CH ₂ r-CH-CH ₂ -	0.5987	70.42	9.4162		
-CH ₃ r-CH-CH ₂ -	0.7957	68.5784	18.4284		
-CH ₂ r-CH ₂ r-CH<	0.0611	150.3818	-6.8694		
CH ₃ r - CH ₂ r- CH ₂ r-	0	0	0		
-CH ₂ r- CH ₂ r- CH ₂ r-	0.0355	157.1354	-7.0242		

Equation 19	Méthyle cyclohexanes				
Equation 18	Α	B	С		
р	-1.6812	-0.9818	-1.0015		
a	67.31	139.881	98.2448		
b	3.7569	12.0414	9.84		
с	-21.5126	33.2	8.1518		
m	-0.1595	0.8642	-0.0414		
d	-39.1385	39	-1.6572		
n	0.2548	0.1194	0		
-CH ₂ -	0.205	1.6237	0.9047		
-CH ₃	-0.0282	2.2705	1.0277		
-CH<	0.1049	2.4927	1.0676		
>C<	-0.2678	3.0099	0.0192		
-CH ₂ - CH ₂ -CH<	0.0586	1.238	0.3558		
-CH ₂ - CH ₂ - CH ₂ -	-0.0176	2.7611	0.9259		
-CH ₂ -CH- CH ₂ -	0.1486	2.1582	0.82		
-CH ₂ - CH ₂ - CH ₂ -	0.1977	2.1772	0.5364		
>CH-CH ₂ -CH<	-0.2352	2.7654	0.9992		
-CH ₂ -CH ₂ -C<-	-0.0773	0.393	0.7291		
-CH ₂ -¢-CH ₂ -	0.0769	-1.3974	-0.3633		
>СН-СН-СН<	-0.8682	3.612	1.0854		
CH ₃ r -CHc-CH ₂ c	-0.0955	1.0463	0.2007		
CH ₃ r -CHc-CHc	-0.0672	1.4716	0.5609		
CH ₃ r -Cc-CH2c	-0.0734	0.5526	0.211		
CH ₃ r -Cc- CH ₃ r	-0.2678	3.1049	0.1142		
cis	0.0021	0.4479	-0.1698		
trans	-0.00215	-2.5953	-0.586		

Equation 19	Méthyle cyclopentanes				
Equation 18	А	В	С		
р	-1.4406	-0.9844	-1.0013		
а	61.9233	133.8496	98.6182		
b	10.411	11.9347	9.8392		
С	0.8016	29.4514	8.634		
m	0	0.7587	-0.0559		
d	0.8016	25.981	8.8633		
n	0	0.703	0.0459		
-CH ₂ -	-0.4188	1.8407	0.9866		
-CH ₃	-0.5954	2.0112	0.9294		
-CH<	-0.2555	1.8765	0.862		
>C<	-0.5743	4.7451	0.5821		
-CH ₂ - CH ₂ -CH<	-0.3521	2.4023	0.8635		
-CH ₂ - CH ₂ - CH ₂ -	-0.7617	3.3286	1.5244		
-CH ₂ -CH- CH ₂ -	-0.3548	1.7213	0.6728		
-CH ₂ - CH ₂ - CH ₂ -	-0.123	1.4007	0.3357		
>CH-CH ₂ -CH<	-0.0543	1.7412	0.6078		
-CH ₂ -CH ₂ -C<-	-0.0117	0	0		
-CH ₂ -¢-CH ₂ -	0	-0.9054	0.6863		
>СН-СН-СН<	0	1.3093	0.441		
CH ₃ r -CHc-CH ₂ c	-0.2015	0.9424	0.1837		
CH ₃ r -CHc-CHc	-0.0811	0.5735	-0.0317		
CH ₃ r -Cc-CH2c	-0.1043	0.2651	0.0595		
CH ₃ r -Cc- CH ₃ r	0	4.8518	0.6889		
cis	-0.1658	1.5256	0.0208		
trans	-0.1695	0.9006	0.00937		

Equation 16	alkyl benzènes				
Equation 10	А	В	С		
а	-12.0035	167.4723	13.6312		
b	6.152	9.7376	7.4382		
С	-4.7791	4.6257	2.5798		
m	0.5132	1.0821	0.9479		
d	-2.5974	4.1063	2.2258		
n	0.7064	1.1128	0.9353		
-CH ₃	0.0897	5.4225	1.3011		
=CH-	0.6309	3.0385	1.332		
=C<	0.0897	5.4225	1.3011		
-CH ₂ -	0.1633	2.8044	-0.631		
СН↔СН↔С	0.5448	3.2112	1.1506		
СН↔С↔СН	0.0897	5.4225	1.3011		
СН↔СН↔СН	0.3802	4.5337	1.6212		
-CH ₂ -C↔CH	0.1351	0.4474	0.0793		
-CH ₂ -CH ₂ -Car	-5.28E-03	-0.6825	-0.095		
CH ₃ -CH ₂ -Car	0	0	0		
$CH_3-C\leftrightarrow CH$	0.2145	0	0		
CH ₃ -CH ₂ -CH ₂ -	-0.156	1.0572	0.2783		
-CH ₂ -CH ₂ -CH ₂ -	-0.162	0	0		

Emerting 10	Benzènes disubstitués			
Equation 16	А	В	С	
a	-0.2511	170.844	35.7357	
b	3.6152	0.4674	0.2696	
С	0.6602	2.8087	2.0038	
m	-6.3095	0.8079	0.7422	
d	0	1.1225	0.6546	
n	0.6	0.9122	0.7356	
-CH ₃	0.2403	64.6759	-8.7619	
=CH-	0.3338	36.6036	12.7573	
=C<	-0.1261	59.4796	29.7168	
-CH ₂ -	0.0124	43.7608	-5.8337	
-CH<	-0.0783	0	0	
СН↔СН↔С	-0.1569	60.4964	20.7653	
CH↔C↔CH	0.0488	0.0529	-0.4771	
СН↔СН↔СН	-0.1427	62.2621	20.7849	
$CH \leftrightarrow C \leftrightarrow C$	0.0441	0	0	
C↔CH↔C	-0.1571	62.5332	21.375	
-CH ₂ -C↔CH	-0.1033	3.394	1.0575	
-CH ₂ -CH ₂ -Car	0.1117	0	0	
CH ₃ -CH ₂ -Car	0.2365	6.1749	1.6202	
CH ₃ -C↔CH	0.021	10.0345	3.3871	
CH ₃ -C↔C	0.0159	14.4519	2.2767	
CH ₃ -CH-Car	-0.0442	0	0	
$-CH_2-C\leftrightarrow C$	-0.1136	0	0	
$-CH_3-CH_2-CH_2-$	0.1117	0	0	
CH ₃ -CH-CH ₃	-0.0783	0	0	

Résultats du calcul des pressions de vapeur des différents composés étudiés.

composé	AAD CGAI	AAD L-K	intervalle	e de T K
pentane	0.1	2.7	228.71	328.783
hexane	0.0	8.5	254.24	355.25
heptane	0.1	7.2	277.71	378.21
octane	0.2	6.4	299.42	398.181
nonane	0.1	5.1	319.57	416.29
decane	0.1	3.5	338.53	432.39
dodecane	0.6	0.7	372.89	460.74
tridecane	0.4	2.0	388.85	473.06
tetradecane	1.6	4.2	403.69	484.33
pentadecane	0.7	0.9	417.8	494.76
AADmoy	0.4	4.1		
benzene	0.0	1.3	279.644	393.512
methylbenzene	0.0	2.5	286.44	414.26
ethylbenzene	0.0	3.8	306.4	579.55
propylbenzene	0.0	3.4	324.1	597.25
n-butylbenzene	0.0	3.7	343.5	616.65
n-pentylbenzene	0.0	3.2	361	475.16
AADmoy	0.0	3.0		
o-xylene	0.3	3.0	312.677	441.231
m-xylene	1.8	3.5	308.698	431.935
p-xylene	4.1	3.5	307.795	431.361
cumene	0.0	1.4	318.93	441.77
2-methyl-1-ethylbenzene	0.0	4.8	329.24	453.04
3-methyl-1-ethylbenzene	2.9	10.0	326.4	446.04
4-methyl-1-ethylbenzene	1.1	6.3	326.56	446.74
o-diethylbenzene	0.4	1.8	343.98	460.95
m-diethylbenzene	3.0	0.7	342.51	458.64
p-diethylbenzene	0.7	7.1	343.99	461.3
2-isopropyltoluene	0.0		338.5	457.45
3-isopropyltoluene	2.2		336.2	454.3
p-isopropyltoluene	2.3		337.5	456.33
o-propyltoluene	0.7	4.3	344.8	462.49
m-propyltoluene	0.7	1.9	342.633	459.48
p-propyltoluene	0.0	4.5	343.1	460.95
AADmoy	1.3	4.1		
cyclohexane	1.2	1.2	263.54	460.95
methylcyclohexane	0.9	2.0	276.68	460.95
ethylcyclohexane	0.7	4.0	301.1	460.95

n-propylcyclohexane	2.4	3.1	321.033	460.95
butylcyclohexane	0.3	11.6	340.5	460.95
pentylcyclohexane	2.0	3.7	359	460.95
n-hexylcyclohexane	1.3	10.4	376.2	460.95
n-heptylcyclohexane	0.2	3.5	392.8	460.95
octylcyclohexane	1.0	5.8	408.5	460.95
n-nonylcyclohexane	1.7	6.8	423.2	460.95
decylcyclohexane	1.0	26.3	436.79	460.95
undecylcyclohexane	0.7	10.1	450	460.95
dodecylcyclohexane	3.1	3.2	462.5	460.95
tridecylcyclohexane	1.3	23.0	474.3	460.95
tetradecylcyclohexane	2.6	30.8	486	460.95
AADmoy	1.4	9.7		
Cyclopentane	0.0	2.5	238.5	358.12
méthylcyclopentane	0.0	4.2	255.06	372.953
ethylcyclopentane	0.0	2.6	279.88	398.65
n-propylcyclopentane	2.5	6.5	301.6	417.34
butylcyclopentane	0.7	3.5	322	434.84
pentylcyclopentane	0.6	5.5	341	450.66
n-hexylcyclopentane	0.8	6.0	360	464.87
n-heptylcyclopentane	0.5	5.0	377	477.82
octylcyclopentane	0.4	2.9	393	489.65
n-nonylcyclopentane	0.8	1.6	408	500.43
n-decylcyclopentane	1.2	5.2	423	510.37
undecylcyclopentane	3.4	19.5	438	519.54
dodecylcyclopentane	0.7	9.0	450	528.08
cyclopentane, tridecyl-	0.0	22.8	463	535.92
cyclopentane, tetradecyl-	0.2	2.5	475	543.2
cyclopentane, pentadecyl-	0.5	20.8	486	549.99
AADmoy	0.8	7.5		
1,1dimethylcyclohexane	11.6	1.4	290.38	410.06
1,c,4dimethylcyclohexane	2.8	3.5	294.86	415.1
c,1,3dimethylcyclohexane	7.7	24.1	295.1	410.62
t,12dimethylcyclohexane	4.7	1.2	293.36	414.12
1,2,4trimethylcyclohexane	5.0		305	449
r1,t2,c3,trimethylcyclohexane	5.6		304.6	448.6
1,c3,t5,trimethylcyclohexane	0.8	14.8	301	443.1
1,c3,c5,trimethylcyclohexane	4.7	1.3	303.91	439.22
1,1,3-trimethylcyclohexane	0.0		303.67	438.16
1,1,2-trimethylcyclohexane	0.1		309	449
1,1,4-trimethylcyclohexane	1.7		301	437
1,2,3triméthycychexa	5.2		308.9	454
AADmoy	4.2	7.7		

t-1,2dimethylcyclopentane	4.6	5.2	270.74	387.1
c-1,2dimethylcyclopentane	4.9	4.1	276.6	395.5
1,1dimethylcyclopentane	0.1	5.1	267.3	382.9
t-1,3dimethylcyclopentane	5.2	8.6	269.74	387.1
c-1,3dimethylcyclopentane	5.0	3.0	270.52	385.7
1,c2,c3,trimethylcyclopentane	2.8		294	423
1,c2,c4,triméthycycpenta	4.2		290	418
1,1,2trimethylcyclopentane	0.0	1.1	286.55	413.8
1,1,3trimethylcyclopentane	0.0	7.9	279.8	404.5
1,c2,t4,trimethylcyclopentane	4.4		289.1	416.8
1,2,3,c12,t1,3trimethylcyclopentane	2.8		290	417
AADmoy	3.1	5.0		
2-methylbutane	2.0	2.3	221.72	460.95
2-methylpentane	1.0	1.5	246.9	461.95
2,methylhexane	2.2	1.4	270.55	462.95
3-methylhexane	3.4	21.1	271.9	463.95
3-ethylpentane	2.1	0.6	272.9	464.95
4-methylheptane	5.0	4.2	292.5	465.95
3-methylheptane	3.5	3.9	306.32	466.95
2-methylheptane	1.7	4.6	299.81	467.95
3-ethylhexane	3.6	3.7	292.9	468.95
3-methyloctane	2.3	1.5	314	469.95
4-methyloctane	2.7	2.3	312	470.95
2-methyloctane	0.5	1.7	313	471.95
4 ethyl heptane	5.9	0.9	311	472.95
3-ethylheptane	1.7	0.8	313	473.95
3-ethyloctane	0.4	1.2	331	474.95
2methylnonane	2.9	1.8	332	475.95
4propylheptane	9.4	0.9	325	476.95
3-methylnonane	0.9	1.0	333	477.95
5-methylnonane	0.3	0.7	330	478.95
4 ethyloctane	1.1	1.6	328	479.95
4 methylnonane	2.1	0.5	331	480.95
AADmoy	2.6	2.8		
2,2-dimethylpropane	4.4	2.3	259.334	303.625
2,2-dimethylbutane	0.7	2.6	237.4	342.09
2,3-dimethylbutane	2.3	2.8	244.2	349.93
2,4-dimethylpentane	0.8	0.6	262.4	363.79
3,3-dimethylpentane	2.1	1.6	265.2	375.41
2,2-dimethylpentane	2.2	0.8	260.9	364.28
2,3-dimethylpentane	1.1	0.8	281.56	376.11
3,3-dimethylhexane	5.5	1.0	286.1	393.4
2,2-dimethylhexane	0.9	2.2	283	384.86
2,5-dimethylhexane	2.5	3.1	285.2	385
2-methyl-3-ethylpentane	0.8	14.3	289.5	396.9

3-ethyl-3-methylpentane	0.8	2.6	290.1	403.55
3,4-dimethylhexane	1.9	2.2	291.4	398.02
2,3-dimethylhexane	2.9	2.5	290	394.38
2,4-dimethylhexane	3.7	2.4	285.2	387.45
3,3-diethylpentane	1.8	1.3	311.4	427.14
2,2-dimethylheptane	4.4	3.4	303	404.46
2,6-dimethylheptane	1.8	1.7	306	405.58
2,3-dimethylheptane	0.9	1.5	310	412.16
3,4-dimethylheptane	1.0	2.4	310	413.77
3,5-dimethylheptane	3.5	2.4	306	409.22
4,4-dimethylheptane	0.3	4.0	305	409.92
2,4-dimethylheptane	4.4	0.7	304	404.6
2,5-dimethylheptane	1.9	2.0	306	407.75
4-ethyl-2-methylhexane	4.2	1.8	305	406.98
3-ethyl-3-methylhexane	2.7	2.7	309	418.32
3-ethyl-4-methylhexane	0.0	1.9	310	415.03
3,3-dimethylheptane	2.8	8.5	306	411.67
3-ethyl-2-methylhexane	5.8	1.6	308	411.18
octane, 2,7-dimethyl-	3.1	6.2	326	423.08
2,6-dimethyloctane	3.0	5.9	326	424.9
2,4-dimethyloctane	4.4	1.8	323	420.56
3,3-dimethyloctane	5.9	0.6	326	428.4
2,3-dimethyloctane	21.3	0.6	329	428.82
5-ethyl-2-methyl-heptane	2.2	0.8	325	425.53
2,2-dimethyloctane	3.5	4.3	324	421.61
2,5-dimethyloctane	0.2	0.4	325	423.01
3,4-dimethyloctane	0.7	0.9	328	429.17
3,5-dimethyloctane	1.5	0.7	325	425.25
3,6-dimethyloctane	1.9	0.7	326	426.72
4,5-dimethyloctane	1.7	1.6	327	427.98
3-ethyl-3-methylheptane	1.8	2.2	327	427.98
3,3-diethylhexane	0.6	3.5	328	439.32
3,4-diethylhexane	2.3	3.4	327	432.46
4-ethyl-2-methylheptane	3.7	1.0	322	422.17
4-ethyl-3-methylheptane	2.4	2.5	322	422.17
3-ethyl-5-methylheptane	2.1	0.3	324	425.53
3-ethyl-4-methylheptane	3.7	1.9	327	430.29
AADmoy	2.8	2.4		
2,2,3-trimethylbutane	0.8	2.2	260.9	480.95
2,2,4-trimethylpentane	2.4	0.9	275.5	481.95
2,3,3-trimethylpentane	0.0	1.4	287	482.95
2,2,3-trimethylpentane	0.0	0.7	283.9	483.95
2,3,4-trimethylpentane	6.0	0.8	287.1	484.95
2,3,5-trimethylhexane	2.4	2.2	302	485.95
2,2,5-trimethylhexane	2.1	3.4	296.2	486.95
2,2,4-trimethylhexane	3.2	0.8	297	487.95
2,3,3-trimethylhexane	2.2	3.6	305	488.95

2,4,4-trimethylhexane	1.0	2.5	300.2	489.95
3,3,4-trimethylhexane	1.1	27.7	314	490.95
2,3,4-trimethylhexane	8.2	6.5	307	491.95
2,2,3-trimethylhexane	2.7	0.7	302	492.95
2,5,5-trimethylheptane	3.7	1.2	319	493.95
2,2,6-trimethylheptane	0.6	3.5	317	494.95
2,4,6-trimethylheptane	11.3	2.9	317	495.95
2,4,4-trimethylheptane	4.4	0.4	317	496.95
2,3,6-trimethylheptane	11.1	1.1	322	497.95
3,3,5-trimethylheptane	2.4	2.6	320	498.95
2,2,4-trimethylheptane	1.5	1.4	316	499.95
2,4,5-trimethylheptane	0.0	0.7	322	500.95
2,3,5-trimethylheptane	1.9	40.1	324	501.95
3,3,4-trimethylheptane	6.1	39.7	325	502.95
3,4,4-trimethylheptane	3.8	39.3	324	503.95
3,4,5-trimethylheptane	6.7	38.0	326	504.95
2,2,5-trimethylheptane	6.0	47.3	318	505.95
2,2,3-trimethylheptane	2.8	41.5	322	506.95
2,3,3-trimethylheptane	2.0	46.3	324	507.95
2,3,4-trimethylheptane	4.6	40.7	324	508.95
AADmoy	3.5	13.8		
1-pentene	0.9		223.89	508.95
cis-2-pentene	0.7		230.17	509.95
trans-2-pentene	0.2		229.4	510.95
1-hexene	0.3	2.6	249.98	511.95
trans-2-hexene	2.0	6.7	253.8	512.95
cis-3-hexene	0.2	6.1	252.5	513.95
cis-2-hexene	1.5	14.4	254	514.95
trans-3-hexene	1.3	3.3	253.4	515.95
1-heptene	1.1	10.2	273.619	516.95
cis-2-heptene	2.2	4.6	276	517.95
cis-3-heptene	0.5	4.0	274	518.95
trans-2-heptene	1.0		276	519.95
trans-3-heptene	0.7		274	520.95
1-octene	1.5	2.4	295.471	521.95
cis-2-octene	3.5		297	522.95
cis-4-octene	0.8		295	523.95
cis-3-octene	1.5		295	524.95
trans-4-octene	0.9	5.0	295	525.95
trans-3-octene	1.6	5.4	295	526.95
1-nonene	1.2	2.5	316.016	527.95
1-decene	0.7	6.5	335.31	528.95
1-undecene	0.4	7.4	353.23	529.95
1-dodecene	0.1	1.6	370.2	530.95
1-tridecene	0.5	2.4	386.23	531.95
1-tetradecene	0.8		401.24	532.95
1-pentadecene	1.2	1.1	415.71	533.95

1-hexadecene	1.5	7.4	429.46	534.95
1-heptadecene	1.8	14.9	441.08	535.95
1-octadecene	0.3	9.1	454.12	536.95
1-nonadecene	2.2	27.3	466.77	537.95
1-eicosene	2.1	7.7	478.09	538.95
1-heneicosene	1.7		392	539.95
1-docosene	1.7		401	540.95
1-tricosene	1.4		409.5	541.95
1-tetracosene	0.7		409.5	542.95
1-pentacosene	0.2		426	543.95
1-hexacosene	0.4		433.6	544.95
1-heptacosene	1.0		441	545.95
1-octacosene	1.3		448	546.95
1-nonacosene	3.6		455	547.95
1-triacontene	3.1		462	548.95
AADmoy	1.2	6.9		
1-pentyne	7.6	19.4	233	548.95
2-pentyne	1.1	45.5	245	549.95
1-hexyne	3.0	32.0	257	550.95
2-hexyne	5.4		267	551.95
3-hexyne	0.4		264	552.95
1-heptyne	3.3	1.1	279	553.95
2-heptyne	3.9		288	554.95
3-heptyne	2.6		284	555.95
1-octyne	0.9	1.6	300.83	556.95
2-octyne	2.4		310.23	557.95
3-octyne	3.7		306.9	558.95
1-nonyne	11.7	55.9	301	559.95
2-nonyne	0.5		327	560.95
3-nonyne	0.6		323	561.95
1-decyne	0.8	29.9	337	562.95
2-decyne	0.3		344	563.95
3-decyne	1.8		340	564.95
1-undecyne	1.6	1.2	353	565.95
2-undecyne	1.7		361	566.95
3-undecyne	1.6		357	567.95
1-dodecyne	1.7	1.7	369	568.95
2-dodecyne	1.8		377	569.95
3-dodecyne	1.4		372	570.95
1-tridecyne	1.7	1.9	385	571.95
2-tridecyne	2.3		392	572.95
3-tridecyne	1.4		387	573.95
1-tetradecyne	1.8	3.0	399	574.95
2-tetradecyne	1.7		407	575.95
3-tetradecyne	0.6		401	576.95
1-pentadecyne	0.8	6.4	413	577.95
2-pentadecyne	1.0		421	578.95

3-pentadecyne	0.2		414	579.95
1-hexadecyne	0.4	7.5	426	580.95
2-hexadecyne	0.7		434	581.95
3-hexadecyne	1.1		426	582.95
1-heptadecyne	0.5	9.4	438	583.95
2-heptadecyne	0.2		446	584.95
3-heptadecyne	2.0		438	585.95
1-octadecyne	0.5	15.2	450	586.95
2-octadecyne	0.2		458	587.95
3-octadecyne	2.4		449	588.95
1-nonadecyne	0.9	18.2	462	589.95
2-nonadecyne	0.5		469	590.95
3-nonadecyne	1.8		460	591.95
1-eicosyne	1.3	21.8	473	592.95
2-eicosyne	1.3		480	593.95
3-eicosyne	1.3		470	594.95
AADmoy	1.8	16.0		

Pour appliquer l'équation de Lee- Kesler, les valeurs des constantes ont été tiré de Techniques de l'Ingénieur « k693 ».

Composition des fractions légères A et B.

➤ Fraction A :

iso butane	
	0,01
n-butane	0,18
iso pentane	0,13
n- pentane	0,02
2,2-dimethylbutane	0,06
2,3-dimethylbutane	0,39
2-methylpentane	0,38
3-methylpentane	1,64
n-hexane	0,81
methylcyclopentane	0,68
2,2-dimethyl pentane	0,78
benzene	0,32
3,3-dimethylpentane	1,80
cyclohexane	5,43
2-methyl hexane	1,80
2,3-dimethylpentane	5,60
3-methylhexane	0,40
1-cis-3-dimethylcyclopentane	0,68
1-trans-3-dimethylcyclopentane	0,85
3-ethylpentane	10,75
n-heptane	0.66
	0,00
methylcyclohexane	6,71
methylcyclohexane 2,2-dimethylhexane	6,71 1,23
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane	6,71 1,23 1,75
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane	0,00 6,71 1,23 1,75 0,05
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane 2,4-dimethylhexane	0,00 6,71 1,23 1,75 0,05 0,30
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane 2,4-dimethylhexane 2,2,3-trimethylpentane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ \end{array}$
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane 2,4-dimethylhexane 2,2,3-trimethylpentane 1,1,2trimethylcyclopentane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ \end{array}$
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane 2,4-dimethylhexane 2,2,3-trimethylpentane 1,1,2trimethylcyclopentane toluene	0,00 6,71 1,23 1,75 0,05 0,30 0,47 0,22 3,46
methylcyclohexane2,2-dimethylhexane2,5-dimethylhexaneethylcyclopentane2,4-dimethylhexane2,2,3-trimethylpentane1,1,2trimethylcyclopentanetoluene2,3,3-trimethylpentane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ \end{array}$
methylcyclohexane 2,2-dimethylhexane 2,5-dimethylhexane ethylcyclopentane 2,4-dimethylhexane 2,2,3-trimethylpentane 1,1,2trimethylcyclopentane toluene 2,3,3-trimethylpentane 2,3-dimethylhexane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ 1,08\\ \end{array}$
methylcyclohexane2,2-dimethylhexane2,5-dimethylhexaneethylcyclopentane2,4-dimethylhexane2,2,3-trimethylpentane1,1,2trimethylcyclopentanetoluene2,3,3-trimethylpentane2,3,dimethylhexane2,3-dimethylhexane2,-methylheptane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ 1,08\\ 5,26\\ \end{array}$
methylcyclohexane2,2-dimethylhexane2,5-dimethylhexaneethylcyclopentane2,4-dimethylhexane2,2,3-trimethylpentane1,1,2trimethylcyclopentanetoluene2,3,3-trimethylpentane2,3,3-trimethylpentane2,3-dimethylhexane2,-methylheptane4-methylheptane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ 1,08\\ 5,26\\ 1,92\\ \end{array}$
methylcyclohexane2,2-dimethylhexane2,5-dimethylhexaneethylcyclopentane2,4-dimethylhexane2,2,3-trimethylpentane1,1,2trimethylcyclopentanetoluene2,3,3-trimethylpentane2,3-dimethylhexane2-methylheptane4-methylheptane3,4-dimethylhexane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ 1,08\\ 5,26\\ 1,92\\ 0,36\\ \end{array}$
methylcyclohexane2,2-dimethylhexane2,5-dimethylhexaneethylcyclopentane2,4-dimethylhexane2,2,3-trimethylpentane1,1,2trimethylcyclopentanetoluene2,3,3-trimethylpentane2,3,3-trimethylpentane2,3-dimethylhexane2,3-dimethylhexane3,4-dimethylhexane3- methylheptane	$\begin{array}{c} 0,00\\ 6,71\\ 1,23\\ 1,75\\ 0,05\\ 0,30\\ 0,47\\ 0,22\\ 3,46\\ 0,05\\ 1,08\\ 5,26\\ 1,92\\ 0,36\\ 5,45\\ \end{array}$

1,1- dimethylcyclohexane	3.00
1-cis-3- dimethyl cyclo hexane	0,19
2,2,4-trimethylhexane	0,07
n-octane	9,93
1-trans-2dimethylecyclohexane	0,41
2,4,4-trimethylhexane	0,15
2,3,5-trimethylhexane	0,51
2,2-dimethylheptane	0,82
2,4-dimethylheptane	0,20
2,6-dimethylheptane	1,31
ethylbenzene	2,48
3,3-dimethyl heptane	0,25
2,3,3-trimethyl hexane	1,35
1-cis-3-cis-5-trimethylcyclohexane	0,25
p-xylene	0,83
m-xylene	2,23
2,3-dimethylheptane	0,62
4-methyloctane	1,62
2-methyloctane	2,07
3- ethylheptane	0,26
3-methyloctane	2,04
O-xylene	1,11
2,2,4-trimethylheptane	0,20
2,2,5-trimethylheptane	0,11
2,2,6-trimethylheptane	0,50
2,5,5-trimethylheptane	0,29
2,4,4-trimethylheptane	0,08
n-nonane	3,93
2,5-dimethyloctane	1,26

> Fraction B :

n-Butane	0,03
i-Pentane	0,15
n-Pentane	0,71
2,2-Diméthylbutane	0,03
2,3-Diméthylbutane	0,70
2-Méthylpentane	5,43
3-Méthylpentane	4,80
n-Hexane	30,46
2,2-Diméthylpentane	0,50
Méthylcyclopentane	8,51
2,4-Diméthylpentane	1,96
2,2,3-Triméthylbutane	0,19
Benzène	7,39
3,3-Diméthylpentane	0,38
Cyclohexane	12,49
2-Méthylhexane	6,91
2,3-Diméthylpentane	1,80
1,1-Diméthylcyclopentane	1,42
3-Méthylhexane	6,39
1-trans-3-Diméthylcyclopentane	1,46
1-cis-3-Diméthylcyclopentane	1,36
1-trans-2-Diméthylcyclopentane	2,23
n-Heptane	3,61
Méthylcyclohexane	0,80
2,2-Diméthylhexane	0,08
Ethylcyclopentane	0,04
Toluène	0,13
2,3-Diméthylhexane	0,06

Caractéristiques de la coupe naphta.

Pseudo -composé	%mol	Teb (K)	SpGr	Tc (K)	Pc (bar)	ω
Coupe C9	11.51	434.3	0.789	620.1	26.52	0.345
Coupe C10	16.12	459.3	0.795	642.8	23.8	0.419
Coupe C11	17.43	478.7	0.799	659.9	21.88	0.478
Coupe C12	16.78	498.7	0.803	677.0	20.05	0.539
Coupe C13	14.15	518.0	0.806	693.1	18.42	0.598
Coupe C14	12.5	534.8	0.809	706.8	17.11	0.649
Coupe C15	11.51	554.8	0.812	722.8	15.66	0.710

Composition PNA des fractions pétrolières (Riazi et Daubert 1987)

• *Pour MM < 200 g/mol :*

 $R_{I} = 0.02266 \exp (3.905*10^{-4}Teb + 2.468 SpGr - 5.704*10^{-4} Teb SpGr) Teb^{0.05721} SpGr^{0.7}$ $C/H = 17.22 \exp (8.25*10^{-3}Teb + 16.94 SpGr - 6.94*10^{-3} Teb SpGr) Teb^{-2.725} SpGr^{-6.798}$

 $X_{P}=257 - 287.70 SpGr + 2.876 C/H$

 $X_N = 52.641 - 0.7494 SpGr + 2.1811 m_{RD}$

• *Pour M > 200 g/ mol*

$$\begin{split} R_{I} &= 2.341 \ 10^{-2} \ exp \ (6.464 \ Teb + 5.144 \ SpGr - 3.289*10^{-4} \ Teb \ SpGr) \ Teb^{-0.407} \ SpGr^{3.333} \\ C/H &= 3.408 \ 10^{-22} \ exp \ (4.68*10^{-3} Teb + 103.12 \ R_{I} - 0.0152 \ Teb \ R_{I} \) \ Teb^{-0.789} \ SpGr^{--21.567} \\ X_{P} &= 198.42 \ +0.74855 \ R_{I} - 19.966 \ C/H \\ X_{N} &= 59.77 \ -76.1745 \ R_{I} \ + \ 6.8048 \ C/H \\ X_{N} &= 100 \ - \ (X_{P} + X_{A}) \\ m_{RD} &= \ (n_{R} - 1.4750) \ M \\ n_{R} &= \sqrt{(1+2 \ R_{I}) / (1- \ R_{I})} \end{split}$$

\triangleright	Composition	de la	fraction	C générée à	partir de la	coupe naphta.
	1			0	1	1 I

n_pentadecane	5.83
n-pentadecane	5,05
n-tetradecane	6,61
n-tridecane	7,66
n-dodecane	7,41
Decane	17,76
n-nonane	8,19
n-nonylecyclohexane	3,12
n-octylecyclohexane	3,31
n-heptylecyclohexane	3,51
n-hexylecyclohexane	2,00
Pentylecyclohexane	2,15
Butyle cyclohexane	1,57
n-propylecyclohexane	1,23
n-heptylecyclopentane	1,91
Hexylecyclopentane	1,05
Pentylcyclopentane	5,62
butylecyclopentane	0,75
Pentylebenzene	8,48
Butylbenzene	8,12
n-propylebenzene	3,71

Paramètres et contributions des corrélations sélectionnées pour la température d'ebullition.

		р	72,3646
		a	12,7772
	paramètres	b	39,0724
n-paraffines		С	1,221
		m	3,1635
	groupements	-CH ₂ -	0,3031
	Interactions	-CH ₂ -CH ₂ -CH ₂ -	0,4977
		р	210
		a	184
	paramètres	b	0,5312
		с	3,6516
		m	13 645
iso paraffines		-CH ₃	0,1139
	anounamenta	-CH ₂ -	0,1421
	groupements	-CH<	0,1534
		>C<	0,2224
		CH ₃ -CH-CH ₃	-0,0019
		CH ₃ -C-CH ₃	-0,0136
		CH ₃₋ -CH ₂ - CH ₂ -	0,0093
		CH ₃ -CH-CH ₂	-0,0033
	Interactions	-CH ₂ -CH ₂ - CH<	-0,0025
		CH ₂ -CH-CH ₂	-0,0097
		-CH ₃ -CH ₂ - CH<	0,0136
		-CH ₂ -CH ₂ -CH ₂ -	0,0044
		CH ₃ -C-CH ₂	-0,0122
		CH ₃ -CH-CH <	0,0023

		-CH ₃ -CH ₂ - C<-	0,0135
		CH ₃ -C-CH ₂	-0,0097
		-CH2-CH2- C<-	-0,0156
		CH ₂ -CH-CH<	-0,0072
		CH ₂ -C-CH ₂	-0,0151
		CH ₃ -CH-C<-	0,01106
		р	172,8163
		a	-0,6277
	paramètres	b	-3,7293
		С	2,8615
		m	1,6316
		-CH ₃	0,4264
		=CH-	0,4993
	groupements	=C<	0,3946
		-CH ₂ -	0,2304
		-CH<	-0,5274
		СН↔СН↔С	0,0775
		СН↔С↔СН	0.00161
		СН↔СН↔СН	0,0655
		CH2-C↔CH	-0.00687
Aromatiques		СН3-С↔СН	-0,0243
		-CH ₃ -CH ₂ -CH ₂ -	-0,085
		$-CH_2-CH_2-C(ar)$	-0.00105
		-CH ₂ -CH ₂ -CH ₂ -	0.00869
	Interactions	$\underbrace{CH\leftrightarrow C\leftrightarrow C}_{\widetilde{A}}$	0.00548
	Interactions	$C \leftrightarrow CH \leftrightarrow C$	0,0855
		CH3-C↔C	8,57E-03
		CH3-CH2-Car	-0,0596
		$C \leftrightarrow C \leftrightarrow C$	0,0224
		CH ₃ -CH-CH ₃	-0,3432
		CH ₃ -CH-C(ar)	0,3718
		р	181,8929
		a	3,1799
	paramètres	b	-3,0714
Naphtènes		С	3,1029
		m	1,281
	groupements	CH ₂	0,0934
	Broupements	-CH ₃	0,7448

		-CH<	0,9146
		>C<	-0,4769
		-CH ₂ -CH ₂ -CH<	-0,5374
		(-CH ₂ -CH ₂ -CH ₂ -)c	0,4429
		-CH ₂ -CH-CH ₂ -	0,4109
		CH ₂ r-CHc-CH ₂ c	0,7537
		CH ₃ r-CHc-CH ₂ c	0,37
		-CH ₂ r-CH ₂ r-CHc	0.00112
		-CH ₃ -CH ₂ -CH ₂ -	0.00112
		-CH ₂ -CH ₂ -CH ₂ -	0,4024
	Interactions	-CH ₂ -CH-CH<	0,2189
		CH ₃ r-CHc-CHc	-0,3632
		>CH-CH ₂ -CH<	-1,5041
		CH ₃ r-CH ₂ r-CHc	-0,3481
		-CH ₂ -CH ₂ - C<-	0,9896
		CH ₃ r-Cc-CH ₂ c	-0,25
	Termes de position	trans	-0,0544
		cis	0.00922
		cis p	0.00922 1 197 496
		cis p a	0.00922 1 197 496 40 287
	paramètres	cis p a b	0.00922 1 197 496 40 287 112 798
	paramètres	cis p a b c	0.00922 1 197 496 40 287 112 798 76 590
	paramètres	cis p a b c m	0.00922 1 197 496 40 287 112 798 76 590 22 630
	paramètres	cis p a b c m -CH ₃	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741
	paramètres	cis p a b c m -CH ₃ -CH ₂ -	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657
	paramètres	cis p a b c m -CH3 -CH2- -CH<	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526
	groupements	cis p a b c m -CH3 -CH2- -CH >C	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417
	paramètres	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH \\ \hline \hline -CH \\ \hline -CH \\ \hline -CH \\ \hline \hline \hline \hline -CH \\ \hline \hline \hline \hline -CH \\ \hline \hline \hline \hline \hline -CH \\ \hline $	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010
Oléfines	paramètres	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ \hline \\ c \\ \hline \\ c \\ -CH_3 \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH \\ < \\ -CH \\ -CH$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0526
Oléfines	paramètres groupements	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ \hline m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ \hline -CH \\ < \\ >C \\ \hline =CH_2 \\ $	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0552 0,0255
Oléfines	paramètres groupements	$\begin{array}{c} \text{cis} \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH \\ \hline -CH \\ -CH \\ \hline -CH_2 \\ -CH_2 \\ \hline -CH_2 \\ \hline =CH_2 \\ \hline CH_2 -CH_2 -CH_2 -CH_2 \\ \hline CH_2 -CH_2 -CH_2 \\ \hline CH_2 \\ \hline CH$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0552 0,0275
Oléfines	groupements	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH \\ < \\ SC \\ = CH_2 \\ -CH_2 - CH_2 - CH_$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0552 0,0275 -0,0097 0,0254
Oléfines	groupements	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH< \\ SC< \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ -CH_2 -CH_2 -CH_2 - \\ CH_3 -CH_2 -CH_2 - \\ -CH_2 -CH_2 -CH_2 -CH_2 -CH_2 - \\ -CH_2 -CH_2 -CH_2 -CH_2 - \\ -CH_2 -CH_2 -CH_2 -CH_2 - \\ -CH_2 -CH_2 -CH_2 -CH_2 -CH_2 - \\ -CH_2 -$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0552 0,0275 -0,0097 -0,0054 0,0200
Oléfines	paramètres groupements	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH \\ < \\ >C \\ \end{array}$ $\begin{array}{c} = CH_2 \\ = CH_2 \\ = CH_2 \\ = CH_2 \\ -CH_2 - CH_2 - CH_2 \\ -CH_2 - CH_2 - CH_2 - CH_2 \\ -CH_2 \\ -CH_$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0252 0,0275 -0,0097 -0,0054 0,0200 0,0244
Oléfines	paramètres groupements Interactions	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH< \\ >C< \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ -CH_2 -CH_2 -CH_2 \\ -CH_2 -CH_2 -CH_2 - \\ CH_3 -CH_2 -CH_2 \\ -CH_2 -CH_2 \\ -CH_2 \\ -CH_2 -CH_2 \\ -CH_2 \\$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1417 0,0010 0,0526 0,0552 0,0275 -0,0097 -0,0054 0,0200 -0,0344 0,0221
Oléfines	paramètres groupements Interactions	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH_2 \\ -CH< \\ >C< \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ =CH_2 \\ -CH_2 -CH_2 \\ -CH_2 -CH_2 -CH_2 \\ -CH_3 -CH_2 -CH_2 - CH_2 \\ -CH_2 -CH_2 -CH_2 \\ -CH_2 \\ -CH_2 -CH_2 \\ -CH_2 -CH_2 \\ -CH_2$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,01526 0,0552 0,0275 -0,0097 -0,0054 0,0200 -0,0344 0,0231 0,0322
Oléfines	paramètres groupements Interactions	$\begin{array}{c} cis \\ p \\ a \\ b \\ c \\ m \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH< \\ >C< \\ =CH< \\ -CH< \\ -CH< \\ -CH_2 -CH_2 \\ -CH_2 \\ -CH_2 -CH_2 \\ -CH_2$	0.00922 1 197 496 40 287 112 798 76 590 22 630 0,1741 0,1657 0,1526 0,1526 0,1417 0,0010 0,0526 0,0275 -0,0097 -0,0054 0,0200 -0,0344 0,0231 -0,0323

		СН3-С=СН-	0,0145
		CH ₃ -C-CH ₃	-0,0214
		CH ₃ -CH=CH-	-0,0267
	Tormos de position	cis	0,0226
	Termes de position	trans	0,0201
		р	1 468 728
		а	89 849
	paramètres	b	-53 020
		С	27 983
		m	14 635
		(=-)C-	-0,1848
		-CH ₃	0,4929
		-CH ₂ -	0,6499
	groupements	(=-)CH	0.7688
		-CH<	0.8239
		>C<	17 639
		-CH2-CH2-C=-	0.1315
		CH ₃ -CH ₂ -CH ₂ -	0.8503
		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	0.0079
		-C=-C- CH ₂ -	0.3834
		$-C = -C - CH_2$	15 751
		$\frac{CH=-C-CH_2}{CH=-C-CH_2}$	0.4259
Alcynes		$\frac{CH_2 - CH_2 - CH_2}{CH_2 - CH_2 - CH_2 - CH_2}$	0.9894
			0,7071
		CH ₃ -CH-CH ₂	0,0139
	Interactions	CH ₃ -CH-CH ₃	0,7227
		-СН3-СН-С=-	0,1787
		>CH-CH ₂ -CH ₃ -	0,8338
		CH=-C- CH <	0,0967
		CH ₃ -C-CH ₃	-0,0959
		$=-C-C-C-CH_3$	0,0432

Caractéristiques de 10 fractions pétrolières issues de la distillation TBP du pétrole brut « El-Agreb ».

FP	Intervalle	SpGr	n ²⁰	Mexp	C/H
1	90-95	0.7116	1.4049	96.53	5.51
2	135-140	0.7508	1.4272	118.93	5.82
3	160-165	0.7719	1.4378	129.59	5.97
4	175-180	0.7813	1.4432	141.03	6.03
5	220-230	0.8081	1.4562	170.36	6.2
6	250-260	0.8211	1.4650	190.01	6.25
7	280-290	0.8361	1.4742	210.49	6.34
8	300-310	0.8504	1.4807	224.56	6.45
9	330-340	0.8703	1.4924	245.80	6.56
10	360-370	0.8858	1.4968	270.43	6.61

ANNEXE7

RESULTAT SIMULATION PARAMETRES D'ANTOINE

1. Résultats base entrainement: constante A des aliphatiques saturés

Composé	A RNA	AAD %	Composé	A RNA	AAD %
2,methylhexane	4.0109	0.14	2,2,6-trimethylheptane	3.9839	0.88
3-methylhexane	4.0091	0.46	2,4,6-trimethylheptane	4.0111	0.5
4-methylheptane	4.0246	0.03	2,4,4-trimethylheptane	3.9868	0.05
3-methylheptane	4.0250	0.18	2,3,6-trimethylheptane	4.0070	0.18
2-methylheptane	4.0243	0.11	3,3,5-trimethylheptane	3.9936	0.43
3-methyloctane	4.0391	0.05	2,2,4-trimethylheptane	3.9831	0.19
4-methyloctane	4.0396	0.03	3,3,4-trimethylheptane	4.0027	0.27
2-methyloctane	4.0394	0.12	3,4,4-trimethylheptane	4.0015	0.3
3-ethylheptane	4.0394	0.14	3,4,5-trimethylheptane	4.0037	0.13
3-ethyloctane	4.0534	0.02	2,2,5-trimethylheptane	3.9867	0.48
4propylheptane	4.0568	0.09	2,3,3-trimethylheptane	4.0005	0.13
3-methylnonane	4.0528	0.10	2,3,4-trimethylheptane	4.0050	0.27
4 ethyloctane	4.0544	0.04	2,4,5-trimethylheptane	4.0067	0.15
5-methylnonane	4.0539	0.08	Ethane	3.9458	0.21
3,6-dimethyloctane	4.0256	0.30	Propane	3.9385	0.26
4,5-dimethyloctane	4.0256	0.20	Butane	3.9472	0.37
3-ethyl-3-methylheptane	4.0211	0.39	Pentane	3.9652	0.32
3,3-diethylhexane	4.0265	0.45	Hexane	3.9883	0.33
3,4-diethylhexane	4.0257	0.43	Heptane	4.0139	0.16
4-ethyl-2-methylheptane	4.0254	0.21	Octane	4.0404	0.25
4-ethyl-3-methylheptane	4.0256	0.35	Decane	4.0901	0.53
3-ethyl-4-methylheptane	4.0257	0.31	Dodecane	4.1267	0.09
2,2-dimethylpropane	3.8781	1.01	Tridecane	4.1370	0.11
2,3-dimethylbutane	3.9383	0.09	Tetradecane	4.1413	0.08
2,4-dimethylpentane	3.9628	0.21	Pentadecane	4.1400	0.2
2,2-dimethylpentane	3.9414	0.06	Hexadecane	4.1360	0.42
2,3-dimethylpentane	3.9673	0.34	Heptadecane	4.1351	0.1
2,2-dimethylhexane	3.9555	0.05	Octadecane	4.1454	0.44
2-methyl-3-ethylpentane	3.9867	0.01	Nonadecane	4.1741	0.82
3,4-dimethylhexane	3.9897	0.34	n-heneicosane	4.2832	1.09
2,3-dimethylhexane	3.9865	0.15	n-docosane	4.3419	0.2
2,4-dimethylhexane	3.9891	0.38	n-tricosane	4.3886	0.41
3,3-diethylpentane	4.0031	0.51	n-tetracosane	4.4201	0.7
2,6-dimethylheptane	4.0079	0.20	n-hexacosane	4.4508	0.57
2,3-dimethylheptane	4.0087	0.42	n-heptacosane	4.4591	0.38
3,4-dimethylheptane	4.0087	0.42	n-octacosane	4.4666	0.19
4,4-dimethylheptane	3.9842	0.58	n-nonacosane	4.4755	0.04

2,4-dimethylheptane	4.0076	0.11	n-hentriacontane	4.4956	0.14
2,5-dimethylheptane	4.0081	0.24	Dotriacontane	4.5068	0.19
4-ethyl-2-methylhexane	4.0077	0.43	tritriacontane	4.5197	0.17
3-ethyl-3-methylhexane	3.9929	0.30	tetratriacontane	4.5325	0.15
3-ethyl-4-methylhexane	4.0373	0.01	hexatriacontane	4.5570	0.08
3-ethyl-2-methylhexane	4.0084	0.60	heptatricontane	4.5694	0.03
octane, 2,7-dimethyl-	4.0256	0.31	octatriacontane	4.5798	0
2,6-dimethyloctane	4.0256	0.29	nonatriacontane	4.5902	0.04
2,4-dimethyloctane	4.0254	0.52	hentetracontane	4.6019	0.04
3,3-dimethyloctane	4.0160	0.05	dotetracontane	4.6094	0.02
2,3-dimethyloctane	4.0257	0.16	tritetracontane	4.6159	0.02
5-ethyl-2-methyl-heptane	4.0255	0.16	tetratetracontane	4.6224	0
2,5-dimethyloctane	4.0255	0.05	hexatetracontane	4.6319	0.01
3,4-dimethyloctane	4.0257	0.04	heptatetracontane	4.6359	0.01
3,5-dimethyloctane	4.0255	0.08	octatetracontane	4.6392	0.02
2,2,3-trimethylbutane	3.9141	0.03	nonatetracontane	4.6427	0.02
2,2,4-trimethylpentane	3.9290	0.02	triheptacontane	4.6245	0.05
2,2,3-trimethylpentane	3.9033	1.14	tetraheptacontane	4.6214	0.04
2,3,4-trimethylpentane	3.9932	0.15	pentaheptacontane	4.6182	0.04
2,3,5-trimethylhexane	4.0016	0.23	hexaheptacontane	4.6151	0.02
2,2,5-trimethylhexane	3.9542	0.64	octaheptacontane	4.6082	0
2,2,4-trimethylhexane	3.9573	0.88	nonaheptacontane	4.6045	0.01
2,4,4-trimethylhexane	3.9625	0.60	octacontane	4.6009	0.02
3,3,4-trimethylhexane	3.9880	0.03	henoctacontane	4.6024	0.15
2,3,4-trimethylhexane	4.0001	0.04	AAD moy		0.25
2,2,3-trimethylhexane	3.9663	0.82	AAD max		1.14

2. Résultats base entrainement: constante B des aliphatiques saturés

Composé	B RNA	AAD %	Composé	B RNA	AAD %
2,methylhexane	1231.75	0.78	2,2,6-trimethylheptane	1408.82	0.32
3-methylhexane	1247.54	0.31	2,4,6-trimethylheptane	1427.79	0.04
4-methylheptane	1328.63	0.57	2,4,4-trimethylheptane	1417.42	0.24
3-methylheptane	1325.74	0.28	2,3,6-trimethylheptane	1447.72	1.87
2-methylheptane	1330.39	0.22	3,3,5-trimethylheptane	1437.8	0.05
3-methyloctane	1405.39	0.06	2,2,4-trimethylheptane	1406.3	0.1
4-methyloctane	1403.18	0.33	3,3,4-trimethylheptane	1464.67	0.14
2-methyloctane	1404.22	0.01	3,4,4-trimethylheptane	1461.17	0.13
3-ethylheptane	1404.06	0.28	3,4,5-trimethylheptane	1462.39	0.11
3-ethyloctane	1473.22	0.27	2,2,5-trimethylheptane	1416.99	0.63
4propylheptane	1463.37	0.01	2,3,3-trimethylheptane	1458.11	0.14
3-methylnonane	1474.7	0.06	2,3,4-trimethylheptane	1456.62	0.12
4 ethyloctane	1470.22	0.01	2,4,5-trimethylheptane	1448.88	0.8
5-methylnonane	1471.73	0.21	Ethane	664.19	0.07

4,5-dimethyloctane14530.51Butane939.640.413-ethyl-3-methylheptane1477.060.28Pentane1059.610.493,3-diethylhexane1489.680.08Hexane1167.30.313,4-diethylhexane1454.981.24Heptane1266.950.244-ethyl-2-methylheptane1445.730.52Octane1359.080.24-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1233.220.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane220.970.473,3-diethylhexane135.452.3n-tricosane220.970.473,3-diethylheptane1391.040.71n-heptacosane233.0.60.292,3-dimethylheptane1390.890.69n-octacosane240.7920.294,4 dimethylheptane1390.890.69n-octacosane240.7920.29 </th <th>3,6-dimethyloctane</th> <th>1451.5</th> <th>0.37</th> <th>Propane</th> <th>803.2</th> <th>0.1</th>	3,6-dimethyloctane	1451.5	0.37	Propane	803.2	0.1
3-ethyl-3-methylheptane1477.060.28Pentane1059.610.493,3-diethylhexane1489.680.08Hexane1167.30.313,4-diethylhexane1454.981.24Heptane1266.950.244-ethyl-2-methylheptane1445.730.52Octane1359.080.24-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpopane973.483.76Tridecane1688.80.112,3-dimethylputane1121.940.48Tetradecane1775.340.322,4-dimethylpentane123.320.46Heptadecane1824.670.322,3-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane220.970.473,3-diethylhexane1315.452.3n-tricosane220.970.473,3-diethylheptane1382.920.47n-hexacosane236.060.292,3-dimethylheptane139.040.71n-hexacosane2373.370.323,4-dimethylheptane139.040.71n-hexacosane2407.920.294,4 dimethylheptane1390.890.69n-octacosane2407.920.29 </td <td>4,5-dimethyloctane</td> <td>1453</td> <td>0.51</td> <td>Butane</td> <td>939.64</td> <td>0.41</td>	4,5-dimethyloctane	1453	0.51	Butane	939.64	0.41
3,3-diethylhexane1489.680.08Hexane1167.30.313,4-diethylhexane1454.981.24Heptane1266.950.244-ethyl-2-methylheptane1445.730.52Octane1359.080.24-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpopane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1775.340.322,4-dimethylpentane1208.061.21Pentadecane1824.670.322,3-dimethylpentane123.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1352.920.47n-hexacosane236.060.292,3-dimethylhexane1315.452.3n-tricosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane236.060.292,3-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1390.890.69n-octacosane2407.920.29 <td>3-ethyl-3-methylheptane</td> <td>1477.06</td> <td>0.28</td> <td>Pentane</td> <td>1059.61</td> <td>0.49</td>	3-ethyl-3-methylheptane	1477.06	0.28	Pentane	1059.61	0.49
3,4-diethylhexane1454.981.24Heptane1266.950.244-ethyl-2-methylheptane1445.730.52Octane1359.080.24-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1297.221.3n-docosane2090.441.632,3-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane220.970.473,3-diethylpentane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-hexacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4nnoraccorane2407.920.29	3,3-diethylhexane	1489.68	0.08	Hexane	1167.3	0.31
4-ethyl-2-methylheptane1445.730.52Octane1359.080.24-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1824.670.322,3-dimethylpentane123.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-hexacosane236.060.292,3-dimethylheptane1390.890.69n-octacosane2407.920.23	3,4-diethylhexane	1454.98	1.24	Heptane	1266.95	0.24
4-ethyl-3-methylheptane1453.030.76Decane1516.41.423-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1315.452.3n-tricosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2336.060.292,3-dimethylheptane1390.890.69n-octacosane2407.920.29	4-ethyl-2-methylheptane	1445.73	0.52	Octane	1359.08	0.2
3-ethyl-4-methylheptane1453.950.88Dodecane1638.110.072,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane135.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1391.040.71n-heptacosane233.000.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porececane2407.920.29	4-ethyl-3-methylheptane	1453.03	0.76	Decane	1516.4	1.42
2,2-dimethylpropane973.483.76Tridecane1688.80.112,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylpentane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1391.040.71n-heptacosane236.060.292,3-dimethylheptane1390.890.69n-octacosane2407.920.29	3-ethyl-4-methylheptane	1453.95	0.88	Dodecane	1638.11	0.07
2,3-dimethylbutane1121.940.48Tetradecane1735.340.322,4-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylpentane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2336.060.292,3-dimethylheptane1391.040.71n-hexacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n popagespace2440.580.22	2,2-dimethylpropane	973.48	3.76	Tridecane	1688.8	0.11
2,4-dimethylpentane1208.061.21Pentadecane1779.910.562,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylhexane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane236.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n popeaceana2440.580.23	2,3-dimethylbutane	1121.94	0.48	Tetradecane	1735.34	0.32
2,2-dimethylpentane1213.261.79Hexadecane1824.670.322,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylhexane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane236.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n popagogana2440.580.23	2,4-dimethylpentane	1208.06	1.21	Pentadecane	1779.91	0.56
2,3-dimethylpentane1233.320.46Heptadecane1871.430.342,2-dimethylhexane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessane2440.580.23	2,2-dimethylpentane	1213.26	1.79	Hexadecane	1824.67	0.32
2,2-dimethylhexane1272.70.12Octadecane1921.621.442-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessana2440.580.23	2,3-dimethylpentane	1233.32	0.46	Heptadecane	1871.43	0.34
2-methyl-3-ethylpentane1298.331.42Nonadecane1975.512.213,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessane2440.580.23	2,2-dimethylhexane	1272.7	0.12	Octadecane	1921.62	1.44
3,4-dimethylhexane1319.170.77n-heneicosane2090.441.632,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessana2440.580.23	2-methyl-3-ethylpentane	1298.33	1.42	Nonadecane	1975.51	2.21
2,3-dimethylhexane1297.221.3n-docosane2147.261.012,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessane2440.580.23	3,4-dimethylhexane	1319.17	0.77	n-heneicosane	2090.44	1.63
2,4-dimethylhexane1315.452.3n-tricosane2200.970.473,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessana2440.580.22	2,3-dimethylhexane	1297.22	1.3	n-docosane	2147.26	1.01
3,3-diethylpentane1409.513.18n-tetracosane2250.390.082,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n popacosana2440.580.23	2,4-dimethylhexane	1315.45	2.3	n-tricosane	2200.97	0.47
2,6-dimethylheptane1382.920.47n-hexacosane2336.060.292,3-dimethylheptane1391.040.71n-heptacosane2373.370.323,4-dimethylheptane1390.890.69n-octacosane2407.920.294.4 dimethylheptane1365.580.4n porcessane2440.580.22	3,3-diethylpentane	1409.51	3.18	n-tetracosane	2250.39	0.08
2,3-dimethylheptane 1391.04 0.71 n-heptacosane 2373.37 0.32 3,4-dimethylheptane 1390.89 0.69 n-octacosane 2407.92 0.29 4.4 dimethylheptane 1365.58 0.4 n popscosana 2440.58 0.22	2,6-dimethylheptane	1382.92	0.47	n-hexacosane	2336.06	0.29
3,4-dimethylheptane 1390.89 0.69 n-octacosane 2407.92 0.29 4.4 dimethylheptane 1365.58 0.4 n porecessare 2440.58 0.22	2,3-dimethylheptane	1391.04	0.71	n-heptacosane	2373.37	0.32
4.4 dimethylheptane 1365.58 0.4 n noncocorne 2440.58 0.22	3,4-dimethylheptane	1390.89	0.69	n-octacosane	2407.92	0.29
4,4-uniterryineptatic 1505.56 0.4 ii-iiofiacosalle 2440.56 0.25	4,4-dimethylheptane	1365.58	0.4	n-nonacosane	2440.58	0.23
2,4-dimethylheptane 1379.59 0.92 n-hentriacontane 2501.1 0.08	2,4-dimethylheptane	1379.59	0.92	n-hentriacontane	2501.1	0.08
2,5-dimethylheptane 1384.08 0.3 Dotriacontane 2529.55 0.01	2,5-dimethylheptane	1384.08	0.3	Dotriacontane	2529.55	0.01
4-ethyl-2-methylhexane 1380.72 0.21 tritriacontane 2557.71 0.04	4-ethyl-2-methylhexane	1380.72	0.21	tritriacontane	2557.71	0.04
3-ethyl-3-methylhexane 1385.84 0.28 tetratriacontane 2585 0.07	3-ethyl-3-methylhexane	1385.84	0.28	tetratriacontane	2585	0.07
3-ethyl-4-methylhexane 1408.7 0.01 hexatriacontane 2637.36 0.11	3-ethyl-4-methylhexane	1408.7	0.01	hexatriacontane	2637.36	0.11
3-ethyl-2-methylhexane 1387.22 0.73 heptatricontane 2663.09 0.09	3-ethyl-2-methylhexane	1387.22	0.73	heptatricontane	2663.09	0.09
octane, 2,7-dimethyl- 1450.33 0.42 octatriacontane 2687.42 0.09	octane, 2,7-dimethyl-	1450.33	0.42	octatriacontane	2687.42	0.09
2,6-dimethyloctane 1450.94 0.03 nonatriacontane 2711.6 0.06	2,6-dimethyloctane	1450.94	0.03	nonatriacontane	2711.6	0.06
2,4-dimethyloctane 1445.35 0.39 hentetracontane 2753.49 0.15	2,4-dimethyloctane	1445.35	0.39	hentetracontane	2753.49	0.15
3,3-dimethyloctane 1465.47 0.54 dotetracontane 2775.28 0.11	3,3-dimethyloctane	1465.47	0.54	dotetracontane	2775.28	0.11
2,3-dimethyloctane 1455.51 0.46 tritetracontane 2796.23 0.08	2,3-dimethyloctane	1455.51	0.46	tritetracontane	2796.23	0.08
5-ethyl-2-methyl-heptane 1450.06 0.09 tetratetracontane 2816.95 0.03	5-ethyl-2-methyl-heptane	1450.06	0.09	tetratetracontane	2816.95	0.03
2,5-dimethyloctane 1448.6 0.42 hexatetracontane 2855.15 0.03	2,5-dimethyloctane	1448.6	0.42	hexatetracontane	2855.15	0.03
3,4-dimethyloctane 1454.41 0.78 heptatetracontane 2873.24 0.07	3,4-dimethyloctane	1454.41	0.78	heptatetracontane	2873.24	0.07
3,5-dimethyloctane 1449.7 0.06 octatetracontane 2890.46 0.09	3,5-dimethyloctane	1449.7	0.06	octatetracontane	2890.46	0.09
2,2,3-trimethylbutane 1202.61 0.22 nonatetracontane 2907.33 0.12	2,2,3-trimethylbutane	1202.61	0.22	nonatetracontane	2907.33	0.12
2,2,4-unneurypentane 1249.65 0.24 trineptacontane 5124.69 0.34	2,2,4-urimeunyipentane	1249.85	0.24	totrohontocontane	3124.09	0.34
2,2,3-uninemyipentane 1294.00 0.01 tetraneptacontane 5150.2 0.52	2,2,3-u intentity ipentane	1294.00	0.01	nontahortacontara	3130.2	0.32
2,3, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,3,4-unituryipentalle	1312.0	0.12	bevahentacontana	31/1 67	0.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3,5-unitethyllevane	1375.10	0.12	octahentacontane	3154.27	0.23

2,2,4-trimethylhexane	1335.85	1.04	nonaheptacontane	3161.3	0.01
2,4,4-trimethylhexane	1352.53	1.33	octacontane	3168.71	0.12
3,3,4-trimethylhexane	1430.18	1	henoctacontane	3165.65	0.07
2,3,4-trimethylhexane	1383.54	2.04	AAD moy		0.49
2,2,3-trimethylhexane	1364.42	1.2	AAD max		3.76

3. Résultats base entrainement: constante C des aliphatiques saturés

Composé	C RNA	AAD %	Composé	C RNA	AAD %
2,methylhexane	219.38	0.17	2,2,6-trimethylheptane	203.85	0.3
3-methylhexane	219.46	0.11	2,4,6-trimethylheptane	202.24	0.31
4-methylheptane	212.21	0.17	2,4,4-trimethylheptane	204.11	0.65
3-methylheptane	212.21	0.37	2,3,6-trimethylheptane	203.07	0.52
2-methylheptane	212.21	0.12	3,3,5-trimethylheptane	204.81	0.45
3-methyloctane	205.39	0.75	2,2,4-trimethylheptane	203.78	0.26
4-methyloctane	205.41	0.24	3,3,4-trimethylheptane	205.94	0.15
2-methyloctane	205.4	0.52	3,4,4-trimethylheptane	205.77	0.35
3-ethylheptane	205.4	0.17	3,4,5-trimethylheptane	203.73	0.77
3-ethyloctane	198.64	0.1	2,2,5-trimethylheptane	204.09	0.41
4propylheptane	198.95	0.87	2,3,3-trimethylheptane	205.64	0.07
3-methylnonane	198.58	0.62	2,3,4-trimethylheptane	203.47	0.09
4 ethyloctane	198.75	0.5	2,4,5-trimethylheptane	203.12	0.09
5-methylnonane	198.7	0.26	Ethane	256.73	0.02
3,6-dimethyloctane	201.69	0.6	Propane	246.95	0.04
4,5-dimethyloctane	201.74	0.08	Butane	236.3	1.04
3-ethyl-3-methylheptane	204.9	0.19	Pentane	227.88	1.78
3,3-diethylhexane	205.8	0.2	Hexane	221.69	1.17
3,4-diethylhexane	201.81	1.17	Heptane	216.53	0.04
4-ethyl-2-methylheptane	201.48	0.4	Octane	211.16	0.73
4-ethyl-3-methylheptane	201.75	0.76	Decane	197.66	1.96
3-ethyl-4-methylheptane	201.78	0.6	Dodecane	181.77	0.04
2,2-dimethylpropane	239.17	1.67	Tridecane	174.06	0.09
2,3-dimethylbutane	228.84	0.05	Tetradecane	166.96	0.07
2,4-dimethylpentane	221.8	0	Pentadecane	160.56	0.51
2,2-dimethylpentane	223.5	0	Hexadecane	154.88	0.28
2,3-dimethylpentane	222.88	0.42	Heptadecane	149.8	0.4
2,2-dimethylhexane	214.48	0.16	Octadecane	145.23	1.35
2-methyl-3-ethylpentane	214.74	0.23	Nonadecane	141	2.47
3,4-dimethylhexane	215.38	0.25	n-heneicosane	133.27	1.21
2,3-dimethylhexane	214.7	0.3	n-docosane	129.59	0.78
2,4-dimethylhexane	215.28	0.32	n-tricosane	125.99	0.4
3,3-diethylpentane	210.37	2.66	n-tetracosane	122.43	0.06
2,6-dimethylheptane	207.98	0.01	n-hexacosane	115.43	0.38
2,3-dimethylheptane	208.22	0.1	n-heptacosane	111.96	0.5

3,4-dimethylheptane	208.21	0.1	n-octacosane 108.55		0.6
4,4-dimethylheptane	207.96	0.02	n-nonacosane	105.1	0.48
2,4-dimethylheptane	207.87	0.06	n-hentriacontane	98.59	0.4
2,5-dimethylheptane	208.01	0.01	Dotriacontane	95.5	0.32
4-ethyl-2-methylhexane	207.91	0.52	tritriacontane	92.38	0.2
3-ethyl-3-methylhexane	209.04	0.02	tetratriacontane	89.41	0.01
3-ethyl-4-methylhexane	208.32	0.33	hexatriacontane	83.81	0.23
3-ethyl-2-methylhexane	208.11	0.43	heptatricontane	81.1	0.37
octane, 2,7-dimethyl-	201.65	1.71	octatriacontane	78.58	0.4
2,6-dimethyloctane	201.67	1.14	nonatriacontane	76.11	0.51
2,4-dimethyloctane	201.47	0.53	hentetracontane	71.72	0.12
3,3-dimethyloctane	204.09	0.78	dotetracontane	69.48	0.18
2,3-dimethyloctane	201.83	0.91	tritetracontane	67.32	0.12
5-ethyl-2-methyl-heptane	201.64	0.17	tetratetracontane	65.23	0.26
2,5-dimethyloctane	201.59	0.69	hexatetracontane	61.28	0.19
3,4-dimethyloctane	201.79	0.19	heptatetracontane	59.41	0.01
3,5-dimethyloctane	201.63	0.16	octatetracontane	57.59	0.02
2,2,3-trimethylbutane	226.58	0.33	nonatetracontane	55.86	0.29
2,2,4-trimethylpentane	219.05	0.76	triheptacontane	24.03	0.15
2,2,3-trimethylpentane	218.35	0	tetraheptacontane	22.97	0.12
2,3,4-trimethylpentane	221.58	1.62	pentaheptacontane	21.93	0.32
2,3,5-trimethylhexane	211.59	0.11	hexaheptacontane	20.94	0.27
2,2,5-trimethylhexane	210.92	0.47	octaheptacontane	18.97	0.15
2,2,4-trimethylhexane	210.98	0.45	nonaheptacontane	17.99	0.05
2,4,4-trimethylhexane	211.15	1.4	octacontane	17.05	0.32
3,3,4-trimethylhexane	212.98	0.34	henoctacontane	17.02	0.12
2,3,4-trimethylhexane	211.81	0.11	AAD moy		0.44
2,2,3-trimethylhexane	211.31	0.38	AAD max		2.66

4. Résultats base test: constante A, B, et C des aliphatiques saturés

Composé	A RNA	AAD %	B RNA	AAD %	C RNA	AAD %
2-methylbutane	3.9799	1.39	1085.93	6.15	234.84	0.49
2-methylpentane	3.9927	0.46	1173.91	2.73	227.35	0.01
3-ethylpentane	4.0085	0.19	1252.69	0.21	219.47	0.28
3-ethylhexane	4.0244	0.14	1329.47	0.16	212.21	0.58
4 ethyl heptane	4.04	0.19	1401.57	0.08	205.43	0.69
4 methylnonane	4.0537	0.07	1472.37	0.25	198.67	0.25
3-ethyl-5-methylheptane	4.0255	0.38	1448.23	0.48	201.58	0.41
2,2-dimethylbutane	3.9049	0.23	1088.41	0.16	231.46	0.41
3,3-dimethylpentane	3.9361	0.33	1199.75	2.22	223.15	0.88
3,3-dimethylhexane	3.9595	0.37	1282.53	1.87	214.83	1.17
2,5-dimethylhexane	3.9897	0.22	1319.28	2.63	215.38	0.53

3-ethyl-3-methylpentane	3.955	0.87	1271.44	5.53	214.43	2.35
2,2-dimethylheptane	3.9788	0.59	1352.91	0.51	207.31	0.33
3,5-dimethylheptane	4.008	0.22	1383.61	0.36	208	0
3,3-dimethylheptane	3.9863	0.58	1370.5	0.37	208.22	0.1
2,2-dimethyloctane	4.0075	0.58	1445.72	0.42	202.73	1.01
2,3,3-trimethylpentane	3.9464	0.45	1309.76	1.21	218.89	0.58
2,3,3-trimethylhexane	3.9718	0.56	1381.26	0.27	211.61	0.42
2,5,5-trimethylheptane	3.9894	0.21	1425.37	0.35	204.36	0.1
2,3,5-trimethylheptane	4.0046	0.92	1458.41	1.47	203.55	0.39
2,2,3-trimethylheptane	3.9965	0.1	1446.34	0.1	205.14	0.64
nonane	4.0662	0.18	1442.4	0.3	204.9	1.09
n-eicosane	4.2228	1.27	2032.43	0.01	137.05	3.75
n-pentacosane	4.4392	0.71	2295.31	0.17	118.91	0.18
n-triacontane	4.4851	0.07	2471.53	0.16	101.79	0.48
pentatriacontane	4.545	0.12	2611.57	0.1	86.55	0.06
tetracontane	4.5998	0.08	2735.05	0.03	73.74	0.48
pentatetracontane	4.6281	0.01	2836.79	0.02	63.23	0.12
pentacontane	4.6448	0.04	2922.83	0.13	54.14	0.27
heptaheptacontane	4.6116	0.01	3147.84	0.19	19.93	0.34
doctacontane	4.5975	0.14	3172.33	0.01	15.9	0.61
AAD moy		0.38		0.92		0.61
AAD max		1.39		6.15		3.75

5. Résultats base entrainement: constante A des aromatiques

Composé	A RNA	AAD %	Composé	A RNA	AAD %
benzene	4.089	2.61	tricosylbenzene	4.4086	0.15
toluéne	4.0967	1.14	pentacosylbenzene	4.4258	0.04
m-xyléne	4.1236	0.35	hexacosylbenzene	4.4352	0.1
p-xyléne	4.1235	0.29	heptacosylbenzene	4.4442	0.15
ethylbenzéne	4.0967	0.69	nonacosylbenzene	4.465	0.15
cuméne	4.0828	0.42	triacontylbenzene	4.4751	0.14
3-méthyl-1-ethylbenzene	4.1232	0.98	benzene, hentriacontyl	4.4854	0.11
4-méthyl-1-ethylbenzene	4.1232	0.2	benzene, tritriacontyl	4.5041	0.07
1,2,3-triméthylbenzéne	4.1598	0.47	benzene, tetratriacontyl	4.5124	0.05
1,2,4-triméthylbenzéne	4.1595	0.59	benzene, pentatriacontyl	4.5202	0.03
n-butylbenzene	4.0966	0.17	benzene, hexatriacontyl	4.5264	0.04
o-diethylbenzene	4.1228	0.24	benzene, octatriacontyl	4.5387	0.03
p-diethylbenzene	4.1228	0.01	benzene, nonatriacontyl	4.5445	0.01
tert-butylbenzene	4.1274	2.08	benzene, tetracontyl	4.5489	0.02
3-ethyl-o-xylene	4.1573	0.27	benzene, hentetracontyl	4.5528	0.03
4-ethyl-m-xylene	4.157	0.42	benzene, dotetracontyl	4.5555	0.06
2-ethyl-p-xylene	4.1569	0.02	benzene, tritetracontyl	4.5585	0.07

2-isopropyltoluene	4.0637	0.04	benzene, tetratetracontyl	4.5611	0.08
3-isopropyltoluene	4.0638	0.04	benzene, nonahexacontyl	4.5405	0.21
p-isopropyltoluene	4.0638	0.37	benzene, heptacontyl	4.5379	0.2
sec-butylbenzene	4.0815	0.19	benzene, henheptacontyl	4.5352	0.19
o-propyltoluene	4.1229	0.05	benzene, doheptacontyl	4.5324	0.18
m-propyltoluene	4.1227	0.38	benzene, triheptacontyl	4.5296	0.16
p-propyltoluene	4.1228	0.19	benzene, tetraheptacontyl	4.5266	0.15
1,2,3,4-tetramethylbenzene	4.1132	1.7	benzene, pentaheptacontyl	4.5235	0.14
1,2,3,5-tetramethylbenzene	4.1141	2.27	benzene, heptaheptacontyl	4.5171	0.11
5-ethyl-m-xylene	4.1568	0.36	benzene, octaheptacontyl	4.5137	0.1
1-ethyl-2,6-dimethylbenzene	4.1571	0.31	benzene, nonaheptacontyl	4.5102	0.09
n-pentylbenzene	4.0965	0.22	benzene, octacontyl	4.5067	0.07
hexylbenzene	4.0965	0.28	benzene, dooctacontyl	4.4993	0.05
heptylbenzene	4.0965	0.12	benzene, trioctacontyl	4.4954	0.04
nonylbenzene	4.0965	0.36	benzene, pentaoctacontyl	4.4874	0.03
decylbenzene	4.0967	1.23	benzene, hexaoctacontyl	4.4832	0.02
undecylbenzene	4.097	0.18	benzene, heptaoctacontyl	4.4788	0.02
tridecylbenzene	4.0995	0.19	benzene, octaoctacontyl	4.4745	0.01
tetradecylbenzene	4.1053	0.56	benzene, nonacontyl	4.4653	0.01
pentadecylbenzene	4.1242	1.28	benzene, hennonacontyl	4.4606	0.01
heptadecylbenzene	4.2819	0.71	benzene, dononacontyl	4.4559	0.01
octadecylbenzene	4.3474	0.43	benzene, trianonacontyl	4.451	0.02
nonadecylbenzene	4.3743	0.68	benzene, tetranonacontyl	4.446	0.02
eicosylbenzene	4.3861	0.6	benzene, pentanonacontyl	4.4408	0.03
heneicosylbenzene	4.3937	0.44	AAD moy		0.33
1-phenyldocosane	4.401	0.28	AAD max		2.61

6. Résultats base entrainement: constante B des aromatiques

Composé	B RNA	AAD %	Composé	B RNA	AAD %
benzene	1198.14	1.17	tricosylbenzene	2442.94	0.31
toluéne	1313.84	1.04	pentacosylbenzene	2509.43	0.57
m-xyléne	1456.07	0.64	hexacosylbenzene	2538.53	0.60
p-xyléne	1452.81	0.10	heptacosylbenzene	2561.98	0.45
ethylbenzéne	1392.32	1.66	nonacosylbenzene	2612.17	0.38
cuméne	1464.41	0.02	triacontylbenzene	2634.44	0.29
3-méthyl-1-ethylbenzene	1525.58	1.30	benzene, hentriacontyl	2656.53	0.23
4-méthyl-1-ethylbenzene	1528.77	0.43	benzene, tritriacontyl	2696.79	0.06
1,2,3-triméthylbenzéne	1633.1	1.80	benzene, tetratriacontyl	2715.37	0.03
1,2,4-triméthylbenzéne	1603.01	1.16	benzene, pentatriacontyl	2734.39	0.08
n-butylbenzene	1561.88	0.86	benzene, hexatriacontyl	2750.13	0.22
o-diethylbenzene	1591.27	0.91	benzene, octatriacontyl	2787.19	0.23
p-diethylbenzene	1592.85	0.29	benzene, nonatriacontyl	2808.43	0.09
tert-butylbenzene	1503.51	0.01	benzene, tetracontyl	2826.42	0.06
3-ethyl-o-xylene	1659.12	1.76	benzene, hentetracontyl	2844.79	0.02
4-ethyl-m-xylene	1633.62	0.84	benzene, dotetracontyl	2859.76	0.01
2-ethyl-p-xylene	1627.61	0.26	benzene, tritetracontyl	2878.52	0.12

2-isopropyltoluene	1542.33	0.37	benzene, tetratetracontyl	2897.2	0.26
3-isopropyltoluene	1541.5	0.16	benzene, nonahexacontyl	3111.67	0.07
p-isopropyltoluene	1542.05	0.32	benzene, heptacontyl	3116.61	0.08
sec-butylbenzene	1472.29	4.35	benzene, henheptacontyl	3119.83	0.05
o-propyltoluene	1598.51	0.34	benzene, doheptacontyl	3122.99	0.02
m-propyltoluene	1584.39	0.35	benzene, triheptacontyl	3126.11	0.00
p-propyltoluene	1591.07	0.19	benzene, tetraheptacontyl	3129.17	0.02
1,2,3,4-tetramethylbenzene	1695.18	0.27	benzene, pentaheptacontyl	3133.77	0.01
1,2,3,5-tetramethylbenzene	1661.11	0.85	benzene, heptaheptacontyl	3138.01	0.06
5-ethyl-m-xylene	1613.51	0.18	benzene, octaheptacontyl	3140.83	0.04
1-ethyl-2,6-dimethylbenzene	1641.63	0.50	benzene, nonaheptacontyl	3145.15	0.00
n-pentylbenzene	1638.75	0.75	benzene, octacontyl	3147.83	0.01
hexylbenzene	1705.15	0.38	benzene, dooctacontyl	3151.43	0.02
heptylbenzene	1760.94	0.74	benzene, trioctacontyl	3153.91	0.00
nonylbenzene	1816.45	1.47	benzene, pentaoctacontyl	3157.07	0.03
decylbenzene	1839.36	2.81	benzene, hexaoctacontyl	3159.33	0.01
undecylbenzene	1866.17	1.46	benzene, heptaoctacontyl	3161.51	0.02
tridecylbenzene	1943.91	0.48	benzene, octaoctacontyl	3162.05	0.00
tetradecylbenzene	1992.78	1.20	benzene, nonacontyl	3166.06	0.03
pentadecylbenzene	2042.5	3.14	benzene, hennonacontyl	3167.95	0.06
heptadecylbenzene	2165.3	2.85	benzene, dononacontyl	3166.63	0.02
octadecylbenzene	2220.47	2.03	benzene, trianonacontyl	3168.4	0.04
nonadecylbenzene	2271.14	1.37	benzene, tetranonacontyl	3168.51	0.02
eicosylbenzene	2318.85	0.81	benzene, pentanonacontyl	3170.15	0.07
heneicosylbenzene	2362.52	0.38	AAD moy		0.56
1-phenyldocosane	2405.17	0.04	AAD max		4.35

7. Résultats base entrainement: constante C des aromatiques

Composé	C RNA	AAD %	Composé	C RNA	AAD %
benzene	217.31	0.1	tricosylbenzene	103.34	0.06
toluéne	216.61	0.47	pentacosylbenzene	97.24	0.56
m-xyléne	215.27	0.11	hexacosylbenzene	94.25	0.8
p-xyléne	215.33	0.08	heptacosylbenzene	91.34	0.81
ethylbenzéne	213.37	0.5	nonacosylbenzene	85.56	1.01
cuméne	208.27	0.03	triacontylbenzene	82.75	1.04
3-méthyl-1-ethylbenzene	208.73	0.78	benzene, hentriacontyl	79.99	1
4-méthyl-1-ethylbenzene	208.66	0.12	benzene, tritriacontyl	74.68	0.65
1,2,3-triméthylbenzéne	207.63	0.31	benzene, tetratriacontyl	72.15	0.63
1,2,4-triméthylbenzéne	208.91	0.45	benzene, pentatriacontyl	69.68	0.4
n-butylbenzene	202	0.4	benzene, hexatriacontyl	67.36	0.38
o-diethylbenzene	202.08	0.78	benzene, octatriacontyl	62.8	0
p-diethylbenzene	202.04	0.04	benzene, nonatriacontyl	60.55	0.25
tert-butylbenzene	162.13	20.24	benzene, tetracontyl	58.46	0.41
3-ethyl-o-xylene	201.61	0.79	benzene, hentetracontyl	56.43	0.48
4-ethyl-m-xylene	202.83	0.81	benzene, dotetracontyl	54.57	0.41

2-ethyl-p-xylene	203.11	0.54	benzene, tritetracontyl	52.65	0.67
2-isopropyltoluene	203.95	0.39	benzene, tetratetracontyl	50.76	0.86
3-isopropyltoluene	203.97	0.02	benzene, nonahexacontyl	19.25	1.3
p-isopropyltoluene	203.96	0.45	benzene, heptacontyl	18.19	1.07
sec-butylbenzene	204.94	0.06	benzene, henheptacontyl	17.39	2.3
o-propyltoluene	201.91	0	benzene, doheptacontyl	16.6	2.38
m-propyltoluene	202.25	0.32	benzene, triheptacontyl	15.81	1.2
p-propyltoluene	202.09	0.5	benzene, tetraheptacontyl	15.03	0.18
1,2,3,4-tetramethylbenzene	199.26	0.11	benzene, pentaheptacontyl	13.98	0.11
1,2,3,5-tetramethylbenzene	203.25	1.05	benzene, heptaheptacontyl	12.72	2.18
5-ethyl-m-xylene	203.77	0.21	benzene, octaheptacontyl	11.95	0.38
1-ethyl-2,6-dimethylbenzene	202.45	0.12	benzene, nonaheptacontyl	10.91	0.78
n-pentylbenzene	194.83	0.95	benzene, octacontyl	10.16	1.56
hexylbenzene	187.15	0.45	benzene, dooctacontyl	8.94	0.61
heptylbenzene	179.19	0.45	benzene, trioctacontyl	8.2	2.49
nonylbenzene	164.49	1.5	benzene, pentaoctacontyl	7.02	0.3
decylbenzene	157.78	0.77	benzene, hexaoctacontyl	6.29	4.77
undecylbenzene	151.56	0.37	benzene, heptaoctacontyl	5.55	7.44
tridecylbenzene	140.56	2.6	benzene, octaoctacontyl	5.14	2.75
tetradecylbenzene	135.73	5.22	benzene, nonacontyl	3.69	7.79
pentadecylbenzene	131.31	8.52	benzene, hennonacontyl	2.97	1.12
heptadecylbenzene	123.26	2.64	benzene, dononacontyl	2.9	3.34
octadecylbenzene	119.63	2.18	benzene, trianonacontyl	2.19	9.41
nonadecylbenzene	116.18	1.71	benzene, tetranonacontyl	1.81	9.52
eicosylbenzene	112.85	1.27	benzene, pentanonacontyl	1.11	10.51
heneicosylbenzene	109.62	0.8	AAD moy		1.70
1-phenyldocosane	106.45	0.42	AAD max		20.24

8. Résultats base test: constante A,B et C des aromatiques

Composé	A RNA	AAD %	B RNA	AAD %	C RNA	AAD %
o-xyléne	4.1239	0.16	1479.36	0.03	214.79	0.22
2-méthyl-1-ethylbenzene	4.1235	0.72	1543.63	0.62	208.33	0.48
propylbenzene	4.0966	0.49	1471.64	1.35	208.35	0.53
1,3,5-triméthylbenzéne	4.1593	1.21	1582.84	0.32	209.76	0.37
m-diethylbenzene	4.1226	0.14	1580.22	0.31	202.34	0.69
4-ethyl-o-xylene	4.1571	0.43	1639.27	0.3	202.56	0.17
isobutylbenzene	4.0989	1.13	1568.82	2.84	205.52	0.68
1,2,4,5-tetramethylbenzene	4.1142	2.16	1655.53	1.01	203.92	1.23
octylbenzene	4.0964	0.34	1787.41	0.67	171.82	1.26
dodecylbenzene	4.0977	2.8	1901.52	4.49	145.82	0.15
hexadecylbenzene	4.1749	2.81	2090.47	5.21	127.22	12.59
tetracosylbenzene	4.4162	0.02	2473.93	0.33	100.29	0.29
octacosylbenzene	4.455	0.15	2589.64	0.49	88.4	1.03
--------------------------	--------	-------	---------	------	-------	-------
benzene, dotriacontyl	4.4942	0.11	2674.56	0.05	77.35	0.85
benzene, heptatriacontyl	4.5334	0.02	2770.26	0.18	65	0.15
benzene, octahexacontyl	4.543	0.22	3108.34	0.12	20.06	0.32
benzene, hexaheptacontyl	4.5203	0.13	3136.71	0.01	13.21	1.61
benzene, tetraoctacontyl	4.4914	0.03	3154.74	0.04	7.76	3.03
benzene, nonaoctacontyl	4.4699	0.01	3165.65	0.05	4.09	2.33
benzene, hexanonacontyl	4.4356	0.04	3170.13	0.04	0.74	26.18
AAD moy		0.656		0.92		2.708
AAD max		2.81		5.21		26.18

9. Résultats base entrainement: constante A des naphtènes

Composé	A RNA	AAD %	Composé	A RNA	AAD %
Cyclopentane	4.0676	0.01	undecylcyclohexane	4.1378	0.39
méthylcyclopentane	4.0448	3.46	dodecylcyclohexane	4.1526	0.2
cyclohexane	3.9314	0.03	cyclopentane, tetradecyl-	4.1959	0.19
methylcyclohexane	3.9778	0.11	tridecylcyclohexane	4.1703	0.04
cycloheptane	3.9709	0.19	tetradecylcyclohexane	4.1901	0.1
c-1,2dimethcycpenta	3.9859	0.25	cyclopentane, pentadecyl-	4.2239	0.38
1,1dimehcycpenta	4.0803	2.99	pentadecylcyclohexane	4.2141	0.41
ethylcyclopentane	4.0581	1.35	hexadecylcyclohexane	4.2398	0.97
t-1,3dimethcycpenta	3.9789	0.66	heptadecylcyclohexane	4.2677	1.18
c-1,3dimethcycpenta	3.978	0.65	cyclohexane, eicosyl-	4.3497	0.49
cyclooctane	3.9805	0.02	heneicosane, 1-cyclohexyl-	4.3744	0.29
1,1dimethcychexane	3.9155	0.07	cyclohexane, docosyl-	4.3958	0.16
c,1,3dimethycychexa	3.9637	5.8	cyclohexane, tricosyl-	4.4154	0.05
1éthy,c2,méthycycpenta	4.0222	0.21	cyclohexane, pentacosyl-	4.4478	0.06
1eth,t2,méthycycpenta	4.0137	0.11	cyclohexane, hexacosyl-	4.461	0.07
n-propylcyclopentane	4.0675	0.96	cyclohexane, heptacosyl-	4.4729	0.07
1,c,2diméthycychexa	3.9773	0.27	cyclohexane, octacosyl-	4.4832	0.04
1,t,3diméthycychexa	3.9591	14.8	cyclohexane, nonacosyl-	4.4928	0.02
t,1,éthy3,méthycycpenta	4.0134	0.35	cyclohexane, hentriacontyl-	4.5103	0.03
c,1,éthy3méthycycpenta	4.014	0.13	cyclohexane, dotriacontyl	4.5185	0.05
1,c2,c3,triméthycycpenta	3.9818	0.21	cyclohexane, tritriacontyl	4.5263	0.07
1,c2,c4,triméthycycpenta	3.9793	0.31	cyclohexane, tetratriacontyl	4.534	0.07
1,1,2triméthylcyclopentane	3.9467	0.01	cyclohexane, heptatriacontyl-	4.5556	0.04
1,c2,t4,triméthycycpenta	3.9787	0.02	cyclohexane, octatriacontyl	4.5622	0.02
t,12diméthycychexa	3.9635	0.29	cyclohexane, nonatriacontyl	4.5686	0
1,2,3,c12,t1,3trimethycycpent	3.9791	0.16	cyclohexane, tetracontyl	4.5746	0.03
1-ethyl-1-methylcyclopentane	3.9935	0.07	hentetracontylcyclohexane	4.5802	0.05
1,2,4triméthycychexa	4.217	0.07	cyclohexane, dotetracontyl	4.5852	0.08
r1,t2,c3,triméthcychexa	4.2167	0.07	cyclohexane, tritetracontyl	4.5896	0.1

1,c3,t5,trimethcychexa	4.2085	0.05	cyclohexane, heptahexacontyl	4.5804	0.1
1,c3,c5,trimethcychexa	4.2051	5.16	cyclohexane, octahexacontyl	4.5762	0.07
butylcyclopentane	4.0747	1.25	cyclohexane, nonahexacontyl	4.5736	0.09
1,1,3-trimethylcyclohexane	3.9732	0.04	cyclohexane, heptacontyl	4.569	0.06
cyclohexane, 1-ethyl-2-methyl-, cis-	4.0524	0.35	cyclohexane, henheptacontyl	4.5661	0.07
t,1etyh,3methycychexa	4.0415	0.44	cyclohexane, doheptacontyl	4.563	0.08
c,1,ehty,4methycychexa	4.0469	0.4	cyclohexane, triheptacontyl	4.5579	0.05
1,ethy,1methycychexa	3.8614	0.06	cyclohexane, pentaheptacontyl	4.5509	0.07
t,1ethy,4methy,cychexa	4.0182	0.61	cyclohexane, hexaheptacontyl	4.5471	0.07
1,1,2-trimethylcyclohexane	3.9593	2.23	cyclohexane, heptaheptacontyl	4.5433	0.08
1,1,4-trimethylcyclohexane	3.9758	3.08	cyclohexane, nonaheptacontyl	4.535	0.08
c,1ethy,3methycychexa	4.0338	0.59	cyclohexane, octacontyl	4.5306	0.08
butylcyclohexane	4.0584	0.49	cyclohexane, henoctacontyl	4.5261	0.08
pentylcyclopentane	4.0808	0.36	cyclohexane, dooctacontyl	4.5214	0.07
pentylcyclohexane	4.0678	0.09	cyclohexane, trioctacontyl	4.5166	0.07
n-hexylcyclopentane	4.0865	0.17	cyclohexane, pentaoctacontyl	4.5085	0.09
n-hexylcyclohexane	4.0855	0.13	cyclohexane, hexaoctacontyl	4.5032	0.08
octylcyclopentane	4.0991	0.38	cyclohexane, heptaoctacontyl	4.4999	0.11
n-heptylcyclohexane	4.0958	0.08	cyclohexane, octaoctacontyl	4.4943	0.09
octylcyclohexane	4.1053	0.17	cyclohexane, hennonacontyl	4.4786	0.06
n-nonylcyclopentane	4.1076	0.32	cyclohexane, dononacontyl	4.4745	0.08
n-decylcyclopentane	4.1185	0.24	cyclohexane, trianonacontyl	4.4681	0.05
n-nonylcyclohexane	4.1149	0.26	cyclohexane, pentanonacontyl	4.4571	0.02
undecylcyclopentane	4.1325	0.13	AAD moy		0.55
dodecylcyclopentane	4.1509	0.14	AAD max		14.8

10. Résultats base entrainement: constante B des naphtènes

Composé	B RNA	AAD %	Composé	B RNA	AAD %
Cyclopentane	1152.37	0.02	undecylcyclohexane	1929.39	0.53
méthylcyclopentane	1200.83	7.31	dodecylcyclohexane	1967.4	0.47
cyclohexane	1159.52	1.97	cyclopentane, tetradecyl-	1981.26	0.04
methylcyclohexane	1287.3	0.28	tridecylcyclohexane	2005.57	0.33
cycloheptane	1324.37	0.16	tetradecylcyclohexane	2044.76	0.06
c-1,2dimethcycpenta	1246.87	1.8	cyclopentane, pentadecyl-	2019.87	0.19
1,1dimehcycpenta	1232.05	0.12	pentadecylcyclohexane	2090.33	0.59

ethylcyclopentane	1295.28	0.12	hexadecylcyclohexane	1.96	
t-1,3dimethcycpenta	1224.45	0.63	heptadecylcyclohexane	2195.41	2.05
c-1,3dimethcycpenta	1221.65	3.03	cyclohexane, eicosyl-	2354.78	0.03
cyclooctane	1432.97	0.12	heneicosane, 1-cyclohexyl-	2398.01	0.31
1,1dimethcychexane	1328.34	0.65	cyclohexane, docosyl-	2433.03	0.36
c,1,3dimethycychexa	1349.96	8.74	cyclohexane, tricosyl-	2464.47	0.3
léthy,c2,méthycycpenta	1381.51	0.49	cyclohexane, pentacosyl-	2519	0.01
1eth,t2,méthycycpenta	1360.82	0.36	cyclohexane, hexacosyl-	2544.55	0.14
n-propylcyclopentane	1381.69	0.19	cyclohexane, heptacosyl-	2571.06	0.2
1,c,2diméthycychexa	1362.97	0.51	cyclohexane, octacosyl-	2595.69	0.29
1,t,3diméthycychexa	1345.45	26.48	cyclohexane, nonacosyl-	2621.5	0.29
t,1,éthy3,méthycycpenta	1359.92	0.66	cyclohexane, hentriacontyl-	2675.96	0.09
c,1,éthy3méthycycpenta	1361.42	0.47	cyclohexane, dotriacontyl	2703.74	0.07
1,c2,c3,triméthycycpenta	1343.6	0.4	cyclohexane, tritriacontyl	2727.49	0.12
1,c2,c4,triméthycycpenta	1336.75	0.13	cyclohexane, tetratriacontyl	2750.53	0.17
1,1,2triméthylcyclopentane	1309.44	0.01	cyclohexane, heptatriacontyl-	2809.86	0.15
1,c2,t4,triméthycycpenta	1335.25	0.1	cyclohexane, octatriacontyl	2828.11	0.14
t,12diméthycychexa	1349.75	0.04	cyclohexane, nonatriacontyl	2842.59	0.02
1,2,3,c12,t1,3trimethycycpent	1336.21	0.39	cyclohexane, tetracontyl	2856.28	0.09
1-ethyl-1-methylcyclopentane	1353.88	0.1	hentetracontylcyclohexane	2869.3	0.21
1,2,4triméthycychexa	1664.77	0.1	cyclohexane, dotetracontyl	2881.79	0.33
r1,t2,c3,triméthcychexa	1664.43	0.01	cyclohexane, tritetracontyl	2893.89	0.43
1,c3,t5,trimethcychexa	1655.54	0.82	cyclohexane, heptahexacontyl	3123.79	0.11
1,c3,c5,trimethcychexa	1652.02	3.66	cyclohexane, octahexacontyl	3130.17	0.06
butylcyclopentane	1462.55	0.38	cyclohexane, nonahexacontyl	3135.12	0.04
1,1,3-trimethylcyclohexane	1373.73	1.98	cyclohexane, heptacontyl	3140.69	0
cyclohexane, 1-ethyl-2-methyl-, cis-	1474.56	0.82	cyclohexane, henheptacontyl	3144.98	0.01
t,1etyh,3methycychexa	1464.82	0.06	cyclohexane, doheptacontyl	3148.99	0.01
c,1,ehty,4methycychexa	1469.67	0.49	cyclohexane, triheptacontyl	3153.46	0.04
1,ethy,1methycychexa	1396.85	0.02	cyclohexane, pentaheptacontyl	3160.04	0.04
t,1ethy,4methy,cychexa	1443.59	1.58	cyclohexane, hexaheptacontyl	3162.96	0.04
1,1,2-trimethylcyclohexane	1396.05	0.01	cyclohexane, heptaheptacontyl	3165.66	0.02
1,1,4-trimethylcyclohexane	1368.72	1.55	cyclohexane, nonaheptacontyl	3170.44	0.01
c,1ethy,3methycychexa	1457.85	1.12	cyclohexane, octacontyl	3172.55	0.02
butylcyclohexane	1549.85	0.59	cyclohexane, henoctacontyl	3174.48	0.02
pentylcyclopentane	1537.58	0.2	cyclohexane, dooctacontyl	3176.25	0.01
pentylcyclohexane	1607.86	0.69	cyclohexane, trioctacontyl	3177.87	0
n-hexylcyclopentane	1607.34	0.04	cyclohexane, pentaoctacontyl	3180.44	0.02
n-hexylcyclohexane	1687.21	0.37	cyclohexane, hexaoctacontyl	3181.7	0.01
octylcyclopentane	1725.84	0.23	cyclohexane, heptaoctacontyl	3182.63	0.01
n-heptylcyclohexane	1746.38	0.19	cyclohexane, octaoctacontyl 318		0.01
octylcyclohexane	1799.4	0.01	cyclohexane, hennonacontyl 3186.21		0.02
n-nonylcyclopentane	1777.26	0.1	cyclohexane, dononacontyl	3186.81	0.01
n-decylcyclopentane	1823.92	0.1	cyclohexane, trianonacontyl	3187.51	0.02
n-nonylcyclohexane	1847.07	0.17	cyclohexane, pentanonacontyl	3188.6	0.01
undecylcyclopentane	1866.55	0.14	AAD moy		0.77
dodecylcyclopentane	1907.25	0.1	AAD max		26.48

11. Résultats base entrainement: constante C des naphtènes

Composé	B RNA	AAD %	Composé	B RNA	AAD %
Cyclopentane	234.53	0.01	undecylcyclohexane	153.67	0.54
méthylcyclopentane	232.29	2.56	dodecylcyclohexane	148.42	0.96
cyclohexane	226.19	2.53	cyclopentane, tetradecyl-	135.65	0.48
methylcyclohexane	223.79	0.04	tridecylcyclohexane	143.48	1.4
cycloheptane	215.57	0.13	tetradecylcyclohexane	138.99	2.95
c-1,2dimethcycpenta	221.41	0.51	cyclopentane, pentadecyl-	129.69	1.32
1,1dimehcycpenta	226.72	1.57	pentadecylcyclohexane	134.41	4.2
ethylcyclopentane	224.52	2	hexadecylcyclohexane	130.19	6.71
t-1,3dimethcycpenta	223.12	0.77	heptadecylcyclohexane	126.07	2.05
c-1,3dimethcycpenta	223.34	0.09	cyclohexane, eicosyl-	114.87	1.65
cyclooctane	202.45	3.46	heneicosane, 1-cyclohexyl-	111.36	1.45
1,1dimethcychexane	217.68	0.02	cyclohexane, docosyl-	108.16	1.23
c,1,3dimethycychexa	217.91	4.62	cyclohexane, tricosyl-	104.95	0.99
1éthy,c2,méthycycpenta	213.94	1.35	cyclohexane, pentacosyl-	98.81	0.59
1eth,t2,méthycycpenta	215.59	0.88	cyclohexane, hexacosyl-	95.89	0.43
n-propylcyclopentane	216.83	1.72	cyclohexane, heptacosyl-	92.95	0.38
1,c,2diméthycychexa	216.49	0.16	cyclohexane, octacosyl-	90.32	0.09
1,t,3diméthycychexa	218.4	16.43	cyclohexane, nonacosyl-	87.68	0.09
t,1,éthy3,méthycycpenta	215.66	0.84	cyclohexane, hentriacontyl-	82.37	0.21
c,1,éthy3méthycycpenta	215.54	0.72	cyclohexane, dotriacontyl	79.71	0.13
1,c2,c3,triméthycycpenta	218.04	0.48	cyclohexane, tritriacontyl	77.37	0.35
1,c2,c4,triméthycycpenta	219.06	0.03	cyclohexane, tetratriacontyl	75.03	0.44
1,1,2triméthylcyclopentane	218.58	0.01	cyclohexane, heptatriacontyl-	68.36	0.68
1,c2,t4,triméthycycpenta	219.28	0.15	cyclohexane, octatriacontyl	66.03	0.36
t,12diméthycychexa	217.93	0.37	cyclohexane, nonatriacontyl	64.05	0.55
1,2,3,c12,t1,3trimethycycpent	219.14	0.52	cyclohexane, tetracontyl	62.07	0.6
1-ethyl-1-methylcyclopentane	226.08	3.66	hentetracontylcyclohexane	60.1	0.5
1,2,4triméthycychexa	249.68	0.13	cyclohexane, dotetracontyl	58.14	0.41
r1,t2,c3,triméthcychexa	249.7	0.12	cyclohexane, tritetracontyl	56.19	0.34
1,c3,t5,trimethcychexa	250.17	0.07	cyclohexane, heptahexacontyl	23.9	0.42
1,c3,c5,trimethcychexa	250.36	0.6	cyclohexane, octahexacontyl	22.77	1.02
butylcyclopentane	208.9	1.41	cyclohexane, nonahexacontyl	21.89	0.52
1,1,3-trimethylcyclohexane	215.38	0.52	cyclohexane, heptacontyl	20.77	1.09
cyclohexane, 1-ethyl-2-methyl-, cis-	209.42	0.27	cyclohexane, henheptacontyl	19.91	0.46
t,1etyh,3methycychexa	210.49	0.23	cyclohexane, doheptacontyl	19.05	0.29
c,1,ehty,4methycychexa	209.96	0.02	cyclohexane, triheptacontyl	17.97	0.14
1,ethy,1methycychexa	218.47	4.03	cyclohexane, pentaheptacontyl	16.32	2
t,1ethy,4methy,cychexa	212.82	1.34	cyclohexane, hexaheptacontyl	15.51	3.07
1,1,2-trimethylcyclohexane	216.03	0.48	cyclohexane, heptaheptacontyl	14.71	1.93
1,1,4-trimethylcyclohexane	215.26	0.12	cyclohexane, nonaheptacontyl	13.14	1.11
c,1ethy,3methycychexa	211.25	0.14	cyclohexane, octacontyl	12.38	4.78
butylcyclohexane	200.2	0.44	cyclohexane, henoctacontyl	11.62	3.13
pentylcyclopentane	200.83	1.02	cyclohexane, dooctacontyl	10.88	1.08
pentylcyclohexane	195.86	0.44	cyclohexane, trioctacontyl	10.15	1.49

n-hexylcyclopentane	192.54	0.49	cyclohexane, pentaoctacontyl	8.91	0.96
n-hexylcyclohexane	185.37	1.29	cyclohexane, hexaoctacontyl	8.21	2.58
octylcyclopentane	177.09	0.12	cyclohexane, heptaoctacontyl	7.7	3.78
n-heptylcyclohexane	178.26	1.46	cyclohexane, octaoctacontyl	7	0.02
octylcyclohexane	171.51	1.6	cyclohexane, hennonacontyl	5.13	2.57
n-nonylcyclopentane	169.54	0.39	cyclohexane, dononacontyl	4.62	7.58
n-decylcyclopentane	162.23	0.76	cyclohexane, trianonacontyl	3.95	1.24
n-nonylcyclohexane	165.11	1.49	cyclohexane, pentanonacontyl	2.78	7.34
undecylcyclopentane	155.19	0.52	AAD moy		1.38
dodecylcyclopentane	148	0.67	AAD max		16.43

12. Résultats base test: constante A,B et C des naphtènes

Composé	A RNA	AAD %	B RNA	AAD %	C RNA	AAD %
t-1,2dimethcycpenta	3.979	0.54	1224.76	0.9	223.1	0.95
1,c,4dimethycychexane	3.9655	0.15	1351.63	0.35	217.73	0.66
ethylcyclohexane	4.0143	1.11	1385.73	1.19	215.39	0.84
1,t,4diméthycychexa	3.9548	0.25	1341.31	0.71	218.85	0.05
1,1,3trimétyhcycpent	3.9556	0.54	1274.47	0.12	218.49	0.64
n-propylcyclohexane	4.0389	0.56	1470.56	0.49	207.91	0.12
t,1ehy,2methycychexa	4.0415	0.44	1464.82	0.09	210.49	0.23
1,2,3triméthycychexa	4.2244	0.17	1673.27	0.91	249.24	0.31
n-heptylcyclopentane	4.0854	0.34	1518.83	9.17	183.83	0.31
decylcyclohexane	4.1262	0.72	1891.07	0.98	158.84	2.25
cyclopentane, tridecyl-	4.1709	0.03	1943.8	0.16	141.93	0.02
cyclohexane, octadecyl-	4.2955	0.95	2251.13	1.31	122.21	1.92
cyclohexane, tetracosyl-	4.433	0.03	2493.59	0.2	101.73	0.94
cyclohexane, triacontyl-	4.5018	0.01	2648.38	0.22	85.03	0.27
cyclohexane, hexatriacontyl	4.5486	0.06	2793.33	0.24	70.36	0.37
cyclohexane, tetratetracontyl	4.594	0.13	2903.94	0.58	54.57	0.68
cyclohexane, tetraheptacontyl	4.5545	0.06	3156.87	0.04	17.14	0.84
cyclohexane, octaheptacontyl	4.5392	0.08	3168.15	0.04	13.92	0.56
cyclohexane, tetraoctacontyl	4.5137	0.1	3179.06	0	9.63	3.69
cyclohexane, nonaoctacontyl	4.4907	0.11	3184.48	0.02	6.49	7.23
cyclohexane, hexanonacontyl	4.4525	0.03	3189.03	0	2.27	13.52
AAD moy		0.31		0.84		1.73
AAD max		1.11		9.17		13.52

Annexe 8

Température d'ébullition

Résultats sur la base d'apprentissage des aromatiques + naphtènes

Tebexp	TebRNA	AAD(%)
352.779	352.779	0.000
383.762	383.762	0.000
417.579	417.579	0.000
412.270	412.270	0.000
411.509	411.509	0.000
409.320	409.320	0.000
425.561	425.561	0.000
438.330	438.330	0.000
434.480	434.480	0.000
435.166	435.166	0.000
432.350	432.350	0.000
449.267	449.267	0.000
442.528	442.528	0.000
437.893	437.893	0.000
456.420	456.420	0.000
456.573	456.573	0.000
454.252	454.252	0.000
456.902	456.902	0.000
467.060	467.060	0.000
462.630	462.630	0.000
461.350	461.350	0.000
459.980	459.980	0.000
451.300	451.300	0.000
448.200	448.200	0.000
450.250	450.250	0.000
446.455	446.455	0.000
445.909	445.909	0.000
458.080	458.080	0.000
455.130	455.130	0.000
456.530	456.530	0.000
456.730	456.730	0.000
463.160	463.160	0.000
478.000	478.000	0.000
499.000	499.000	0.000
520.000	520.000	0.000
537.000	537.000	0.000
555.000	555.000	0.000
	Tebexp 352.779 383.762 417.579 412.270 412.270 412.270 409.320 425.561 438.330 434.480 435.166 432.350 449.267 442.528 437.893 456.420 456.573 456.902 467.060 462.630 459.980 451.300 445.9.091 458.080 455.130 456.730 456.730 456.730 457.909 458.080 455.130 456.730 456.730 456.730 456.730 456.730 456.730 456.730 456.730 456.730 456.730 456.730 456.730 457.900 520.000 537.000 555.000 <td>TebexpTebRNA352.779352.779383.762383.762417.579417.579412.270412.270411.509411.509409.320409.320425.561425.561438.330438.330434.480434.480435.166432.350449.267449.267442.528442.528437.893437.893456.420456.733456.573456.573456.573456.573456.902456.902467.060467.060462.630462.630459.980459.980451.300459.980458.080459.980455.130456.730456.530456.730456.530456.730456.730456.730456.730520.000520.000520.000537.000537.000555.000555.000</td>	TebexpTebRNA352.779352.779383.762383.762417.579417.579412.270412.270411.509411.509409.320409.320425.561425.561438.330438.330434.480434.480435.166432.350449.267449.267442.528442.528437.893437.893456.420456.733456.573456.573456.573456.573456.902456.902467.060467.060462.630462.630459.980459.980451.300459.980458.080459.980455.130456.730456.530456.730456.530456.730456.730456.730456.730520.000520.000520.000537.000537.000555.000555.000

decylbenzene	571.000	571.000	0.000
undecylbenzene	586.000	586.000	0.000
dodecylbenzene	600.400	600.400	0.000
nonadecylbenzene	685.700	685.700	0.000
eicosylbenzene	695.800	695.800	0.000
heneicosylbenzene	705.400	705.400	0.000
1-phenyldocosane	715.000	715.000	0.000
tricosylbenzene	724.000	724.000	0.000
tetracosylbenzene	732.000	732.000	0.000
pentacosylbenzene	741.000	741.000	0.000
hexacosylbenzene	749.000	749.000	0.000
heptacosylbenzene	756.000	756.000	0.000
octacosylbenzene	764.000	764.000	0.000
nonacosylbenzene	771.000	771.000	0.000
triacontylbenzene	778.000	778.000	0.000
benzene, hentriacontyl	785.000	785.000	0.000
benzene, dotriacontyl-	791.000	791.000	0.000
benzene, tritriacontyl-	798.000	798.000	0.000
benzene, tetratriacontyl-	804.000	804.000	0.000
benzene, pentatriacontyl-	810.000	810.000	0.000
benzene, hexatriacontyl	815.000	815.000	0.000
benzene, heptatriacontyl-	821.000	821.000	0.000
benzene, octatriacontyl-	826.000	826.000	0.000
benzene, nonatriacontyl	832.000	832.000	0.000
benzene, tetracontyl-	837.000	837.000	0.000
benzene, hentetracontyl-	842.000	842.000	0.000
benzene, dotetracontyl-	846.000	846.000	0.000
benzene, tritetracontyl-	851.000	851.000	0.000
benzene, tetratetracontyl-	856.000	856.000	0.000
benzene, octahexacontyl-	936.000	936.000	0.000
benzene, nonahexacontyl	938.000	938.000	0.000
benzene, heptacontyl-	941.000	941.000	0.000
benzene, henheptacontyl-	943.000	943.000	0.000
benzene, tetraheptacontyl-	949.000	949.000	0.000
benzene, pentaheptacontyl-	952.000	952.000	0.000
benzene, hexaheptacontyl-	954.000	954.000	0.000
benzene, heptaheptacontyl-	955.000	955.000	0.000
benzene, octaheptacontyl-	957.000	957.000	0.000
benzene, nonaheptacontyl-	960.000	960.000	0.000
benzene, octacontyl-	962.000	962.000	0.000
benzene, dooctacontyl-	965.000	965.000	0.000
benzene, trioctacontyl-	967.000	967.000	0.000
benzene, tetraoctacontyl-	968.000	968.000	0.000
benzene, pentaoctacontyl-	970.000	970.000	0.000
benzene, hexaoctacontyl-	972.000	972.000	0.000

benzene, heptaoctacontyl-	974.000	974.000	0.000
benzene, octaoctacontyl-	975.000	975.000	0.000
benzene, nonaoctacontyl-	978.000	978.000	0.000
benzene, nonacontyl-	979.000	979.000	0.000
benzene, hennonacontyl	981.000	981.000	0.000
benzene, dononacontyl	981.000	981.000	0.000
benzene, trianonacontyl-	983.000	983.000	0.000
benzene, tetranonacontyl	984.000	984.000	0.000
benzene, pentanonacontyl	986.000	986.000	0.000
benzene, hexanonacontyl-	987.000	987.000	0.000
Cyclopentane	322.370	322.370	0.000
méthylcyclopentane	344.980	344.980	0.000
cyclohexane	353.929	353.929	0.000
methylcyclohexane	374.090	374.090	0.000
cycloheptane	391.951	391.951	0.000
t-1,2dimethcycpenta	364.990	364.990	0.000
c-1,2dimethcycpenta	372.650	372.650	0.000
1,1dimehcycpenta	360.960	360.960	0.000
ethylcyclopentane	376.590	376.590	0.000
t-1,3dimethcycpenta	363.900	363.900	0.000
c-1,3dimethcycpenta	364.700	364.700	0.000
cyclooctane	424.313	424.313	0.000
1,1dimethcychexane	392.740	392.740	0.000
1,c,4dimethycychexane	397.480	397.480	0.000
c,1,3dimethycychexa	396.680	396.680	0.000
1éthy,c2,méthycycpenta	401.201	401.201	0.000
1eth,t2,méthycycpenta	394.300	394.300	0.000
ethylcyclohexane	404.970	404.970	0.000
n-propylcyclopentane	404.100	404.100	0.000
1,c,2diméthycychexa	402.890	402.890	0.000
1,t,3diméthycychexa	394.510	394.510	0.000
1,t,4diméthycychexa	392.510	392.510	0.000
t,1,éthy3,méthycycpenta	394.000	394.000	0.000
c,1,éthy3méthycycpenta	394.500	394.500	0.000
1,c2,c3,triméthycycpenta	396.100	396.100	0.000
1,c2,c4,triméthycycpenta	391.000	391.000	0.000
isopropylcyclopentane	399.570	399.570	0.000
1,1,2triméthylcyclopentane	386.879	386.879	0.000
1,1,3trimétyhcycpent	378.044	378.044	0.000
1,c2,t4,triméthycycpenta	389.882	389.882	0.000
isopropylcyclohexane	396.580	396.580	0.000
1,2,4triméthycychexa	419.000	419.000	0.000
r1,t2,c3,triméthcychexa	418.800	418.800	0.000

n-propylcyclohexane	429.865	429.865	0.000
1,c3,t5,trimethcychexa	413.600	413.600	0.000
1,c3,c5,trimethcychexa	411.550	411.550	0.000
butylcyclopentane	429.750	429.750	0.000
1,1,3-trimethylcyclohexane	409.774	409.774	0.000
cyclohexane, 1-ethyl-2-methyl-, cis-	429.200	429.200	0.000
t,1ehy,2methycychexa	424.800	424.800	0.000
t,1etyh,3methycychexa	424.800	424.800	0.000
c,1,ehty,4methycychexa	427.000	427.000	0.000
1,ethy,1methycychexa	425.310	425.310	0.000
t,1ethy,4methy,cychexa	415.000	415.000	0.000
1,1,2-trimethylcyclohexane	419.000	419.000	0.000
1,1,4-trimethylcyclohexane	408.000	408.000	0.000
1,2,3triméthycychexa	424.000	424.000	0.000
c,1ethy,3methycychexa	421.614	421.614	0.000
butylcyclohexane	454.090	454.090	0.000
pentylcyclopentane	453.800	453.800	0.000
pentylcyclohexane	465.860	465.860	0.000
n-hexylcyclopentane	477.000	477.000	0.000
n-hexylcyclohexane	497.800	497.800	0.000
n-heptylcyclopentane	497.200	497.200	0.000
octylcyclopentane	516.800	516.800	0.000
n-heptylcyclohexane	518.000	518.000	0.000
octylcyclohexane	536.900	536.900	0.000
n-nonylcyclopentane	535.200	535.200	0.000
n-decylcyclopentane	552.526	552.526	0.000
n-nonylcyclohexane	554.700	554.700	0.000
decylcyclohexane	570.770	570.770	0.000
undecylcyclopentane	570.800	570.800	0.000
dodecylcyclopentane	584.000	584.000	0.000
undecylcyclohexane	586.200	586.200	0.000
dodecylcyclohexane	600.800	600.800	0.000
cyclopentane, tridecyl-	598.500	598.500	0.000
cyclopentane, tetradecyl-	612.000	612.000	0.000
tridecylcyclohexane	614.700	614.700	0.000
tetradecylcyclohexane	627.000	627.000	0.000
cyclopentane, pentadecyl-	625.000	625.000	0.000
cyclopentane, hexadecyl	637.000	637.000	0.000
cyclopentane, heptadecyl-	650.000	650.000	0.000
octadecylcyclopentane	662.000	662.000	0.000
n-nonadecylcyclopentane	673.000	673.000	0.000
eicosane, 1-cyclopentyl-	673.900	673.900	0.000
1-cyclopentylhenicosane	693.000	693.000	0.000

cyclopentane, docosyl-	703.000	703.000	0.000
pentadecylcyclohexane	640.000	640.000	0.000
hexadecylcyclohexane	652.000	652.000	0.000
heptadecylcyclohexane	664.000	664.000	0.000
cyclohexane, octadecyl-	675 000	675.000	0.000
cyclohexane, eicosyl-	696 000	696,000	0.000
heneicosane, 1-cyclohexyl-	706.000	706.000	0.000
cvclohexane, docosyl	715,000	715,000	0.000
n-tricosylcyclopentane	712,000	712.000	0.000
cvclohexane, tricosyl-	724.000	724.000	0.000
cvclopentane, tetracosvl	720,000	720.000	0.000
cyclohexane, tetracosyl-	733.000	733.000	0.000
n-pentacosylcyclopentane	729.000	729.000	0.000
cyclohexane, pentacosyl	741.000	741.000	0.000
hexacosylcyclopentane	737.000	737.000	0.000
cyclopentane, heptacosyl-	745.000	745.000	0.000
cyclohexane, hexacosyl-	749.000	749.000	0.000
cyclohexane, heptacosyl-	753.000	753.000	0.000
n-octacosylcyclopentane	757.000	757.000	0.000
cyclopentane, nonacosyl-	760.000	760.000	0.000
cyclohexane, octacosyl-	764.000	764.000	0.000
n-triacontylcyclopentane	767.000	767.000	0.000
cyclohexane, nonacosyl-	771.000	771.000	0.000
hentriacontylcyclopentane	774.000	774.000	0.000
cyclohexane, triacontyl-	778.000	778.000	0.000
cyclopentane, dotriacontyl-	780.000	780.000	0.000
cyclohexane, hentriacontyl	785.000	785.000	0.000
cyclopentane, tritriacontyl-	787.000	787.000	0.000
cyclohexane, dotriacontyl	792.000	792.000	0.000
cyclopentane, tetratriacontyl-	793.000	793.000	0.000
cyclohexane, tritriacontyl-	798.000	798.000	0.000
cyclopentane, pentatriacontyl-	799.000	799.000	0.000
cyclohexane, tetratriacontyl-	804.000	804.000	0.000
cyclohexane, pentatriacontyl-	810.000	810.000	0.000
cyclohexane, hexatriacontyl-	816.000	816.000	0.000
cyclohexane, heptatriacontyl-	821.000	821.000	0.000
cyclohexane, octatriacontyl	827.000	827.000	0.000
cyclohexane, nonatriacontyl	832.000	832.000	0.000
cyclohexane, tetracontyl	837.000	837.000	0.000
cyclohexane, tetratetracontyl-	842.000	842.000	0.000
cyclohexane, heptahexacontyl	933.000	933.000	0.000
cyclohexane, octahexacontyl-	936.000	936.000	0.000
cyclohexane, nonahexacontyl-	938.000	938.000	0.000
cyclohexane, heptacontyl-	941.000	941.000	0.000

cyclohexane, henheptacontyl-	943.000	943.000	0.000
cyclohexane, doheptacontyl-	945.000	945.000	0.000
cyclohexane, triheptacontyl-	948.000	948.000	0.000
cyclohexane, tetraheptacontyl-	950.000	950.000	0.000
cyclohexane, pentaheptacontyl-	952.000	952.000	0.000
cyclohexane, hexaheptacontyl-	954.000	954.000	0.000
cyclohexane, heptaheptacontyl	956.000	956.000	0.000
cyclohexane, octaheptacontyl	958.000	958.000	0.000
cyclohexane, nonaheptacontyl	960.000	960.000	0.000
cyclohexane, octacontyl-	962.000	962.000	0.000
cyclohexane, henoctacontyl-	964.000	964.000	0.000
cyclohexane, dooctacontyl-	966.000	966.000	0.000
cyclohexane, trioctacontyl-	968.000	968.000	0.000
cyclohexane, tetraoctacontyl	969.000	969.000	0.000
cyclohexane, pentaoctacontyl-	971.000	971.000	0.000
cyclohexane, hexaoctacontyl-	973.000	973.000	0.000
cyclohexane, heptaoctacontyl	974.000	974.000	0.000
cyclohexane, octaoctacontyl	976.000	976.000	0.000
cyclohexanenonaoctacontyle	977.000	977.000	0.000

Résultats sur la base de test des aromatiques + naphtènes

tridecylbenzene	Tebexp	TebRNA	AAD
tetradecylbenzene	614.000	613.950	0.008
pentadecylbenzene	627.000	626.680	0.051
hexadecylbenzene	639.000	639.210	0.033
heptadecylbenzene	650.000	651.530	0.235
octadecylbenzene	664.000	663.610	0.059
benzene, doheptacontyl-	675.200	675.430	0.034
benzene, triheptacontyl-	945.000	945.000	0.000
t,12diméthycychexa	947.000	946.830	0.018
1,2,3,c12,t1,3trimethycycpent	390.600	390.620	0.005
1-ethyl-1-methylcyclopentane	394.672	394.640	0.008
cyclohexane, hentetracontyl-	427.714	427.630	0.020
cyclohexane, dotetracontyl-	847.000	848.580	0.187
cyclohexane, tritetracontyl	852.000	852.310	0.036
cyclohexane, nonaoctacontyl-	856.000	856.000	0.000
cyclohexane, hennonacontyl-	984.000	979.330	0.475
cyclohexane, dononacontyl-	982.000	982.580	0.059
cyclohexane, trianonacontyl-	984.000	984.140	0.014
cyclohexane, pentanonacontyl-	987.000	985.670	0.135
cyclohexane, hexanonacontyl-	988.000	988.620	0.063

Résultats sur la base d'apprentissage des

Composé	Teb exp	Teb RNA	AAD RNA
2,3-dimethylpentane	364.998	360.100	1.400
3-ethylpentane	366.625	365.100	0.430
n-heptane	371.530	372.600	0.290
2,2,4-trimethylpentane	372.826	382.800	2.700
2,3-dimethylhexane	379.440	386.200	1.800
2-methyl-3-ethylpentane	379.994	386.200	1.600
3-ethyl-3-methylpentane	382.258	384.200	0.510
2,2-dimethylhexane	382.583	384.200	0.420
2,2,3-trimethylpentane	382.994	383.300	0.090
3,3-dimethylhexane	385.123	384.200	0.240
2,3,4-trimethylpentane	386.622	381.800	1.300
2,3,3-trimethylpentane	387.917	382.800	1.300
3-methylheptane	388.764	391.300	0.660
2,4-dimethylhexane	388.806	386.200	0.670
3,4-dimethylhexane	390.804	386.200	1.200
4-methylheptane	390.822	391.300	0.130
2,2,4-trimethylhexane	399.690	407.500	1.900
2,4,4-trimethylhexane	403.810	407.500	0.910
2,3,5-trimethylhexane	404.510	407.200	0.670
2,2-dimethylheptane	405.970	408.800	0.700
2,2,3,4-tetramethylpentane	406.180	408.000	0.460
2,4-dimethylheptane	406.300	410.900	1.100
2,2,3-trimethylhexane	406.730	407.500	0.180
2,2-dimethyl-3-ethylpentane	406.990	407.500	0.120
4-ethyl-2-methylhexane	407.000	410.900	0.950
2,3,4-trimethylhexane	407.600	407.200	0.091
2,6-dimethylheptane	408.370	410.900	0.610
2,2,5,5-tetramethylhexane	410.610	435.100	6.000
2,3,3-trimethylhexane	410.840	407.500	0.820
3-ethyl-2-methylhexane	411.100	410.900	0.057
2,2,3,3-tetramethylpentane	413.440	412.100	0.330
3,4-dimethylheptane	413.500	410.900	0.640
3-ethyl-4-methylhexane	413.500	413.400	0.035
2,3-dimethylheptane	413.600	410.900	0.660
3-ethyl-3-methylhexane	413.800	408.800	1.200
4-ethylheptane	414.300	416.100	0.420
2,3,3,4-tetramethylpentane	414.710	408.000	1.600
4-methyloctane	415.590	416.100	0.110
3-ethylheptane	416.300	416.100	0.058

n-paraffines+iso paraffines

2-methyloctane	416.430	416.100	0.089
3-methyloctane	417.380	416.100	0.320
3-ethyl-2,3-dimethylpentane	417.800	407.500	2.500
3,3-diethylpentane	419.336	408.800	2.500
2,2,4,4-tetramethylpentane	419.336	412.100	1.700
4-ethyl-2,2-dimethylhexane	420.000	430.700	2.500
2,4,6-trimethylheptane	420.800	431.300	2.500
2,2,4,5-tetramethylhexane	421.030	431.500	2.500
2,2,4-trimethylheptane	421.500	430.700	2.200
hexane, 2,2,3,5-tetramethyl-	421.600	431.500	2.400
2,2,6-trimethylheptane	422.090	430.700	2.000
3,3,4-trimethylhexane	422.600	407.500	3.600
n-nonane	423.880	423.800	0.013
2,2,5-trimethylheptane	424.000	430.700	1.600
2,4,4-trimethylheptane	424.100	430.700	1.600
2,5,5-trimethylheptane	425.950	430.700	1.100
hexane, 2,3,3,5-tetramethyl-	426.200	431.500	1.200
2,2,4,4-tetramethylhexane	427.000	435.100	1.900
hexane, 3-ethyl-2,5-dimethyl-	427.200	431.300	0.950
3-ethyl-2,2,4-trimethylpentane	428.500	431.500	0.700
3,3,5-trimethylheptane	428.830	430.700	0.430
2,4-dimethyloctane	429.000	434.100	1.200
2,3,6-trimethylheptane	429.100	431.300	0.500
3-ethyl-2,2-dimethylhexane	429.100	430.700	0.370
3-ethyl-5-methylheptane	431.300	434.100	0.650
2,5-dimethyloctane	431.600	434.100	0.580
hexane, 2,2,3,4-tetramethyl-	432.000	431.500	0.110
4-isopropylheptane	432.000	434.100	0.480
pentane, 2,2,3,4,4-pentamethyl-	432.440	432.600	0.039
3,5-dimethyloctane	432.500	434.100	0.370
5-ethyl-2-methyl-heptane	432.800	434.100	0.300
2,3,4-trimethylheptane	433.000	431.300	0.400
octane, 2,7-dimethyl-	433.020	434.100	0.250
3-ethyl-2,4-dimethylhexane	433.200	431.300	0.450
hexane, 2,2,3,3-tetramethyl-	433.460	435.100	0.370
2,3,3-trimethylheptane	433.500	430.700	0.650
2,6-dimethyloctane	433.530	434.100	0.130
2,3,5-trimethylheptane	433.800	431.300	0.590
3,6-dimethyloctane	434.000	434.100	0.021
4-ethyl-4methylheptane	434.000	432.000	0.450
hexane, 4-ethyl-2,3-dimethyl-	434.100	431.300	0.660
hexane, 4-ethyl-2,4-dimethyl-	434.200	430.700	0.810
3,4,4-trimethylheptane	434.200	430.700	0.810
3-ethyl-2-methylheptane	434.300	434.100	0.048
3,3-dimethyloctane	434.300	432.000	0.520

hexane, 2,3,4,4-tetramethyl-	434.800	431.500	0.750
3,3,4-trimethylheptane	435.000	430.700	0.990
hexane, 3-ethyl-3,4-dimethyl-	435.200	430.700	1.000
4,5-dimethyloctane	435.280	434.100	0.270
4-ethyl-3-methylheptane	435.300	434.100	0.280
3,4,5-trimethylheptane	435.600	431.300	1.000
hexane, 4-ethyl-3,3-dimethyl-	436.000	430.700	1.200
3-ethyl-4-methylheptane	436.100	434.100	0.460
3,4-dimethyloctane	436.500	434.100	0.550
4-ethyloctane	436.790	439.300	0.580
3-ethyl-3-methylheptane	436.800	432.000	1.100
hexane, 3-ethyl-2,3-dimethyl-	436.800	430.700	1.400
3,4-diethylhexane	437.000	434.100	0.670
2,3-dimethyloctane	437.460	434.100	0.770
hexane, 2,3,3,4-tetramethyl-	437.740	431.500	1.400
5-methylnonane	438.200	439.300	0.260
nonane, 4-methyl-	438.800	439.300	0.120
pentane, 2,2,3,3,4-pentamethyl-	439.200	432.600	1.500
3,3-diethylhexane	439.500	432.000	1.700
3-ethyloctane	439.600	439.300	0.062
2-methylnonane	440.150	439.300	0.190
3-methylnonane	441.000	439.300	0.380
3-ethyl-2,3,4-trimethylpentane	442.600	431.500	2.500
pentane, 3-ethyl-2,2,3-trimethyl-	442.600	435.100	1.700
3,3,4,4-tetramethylhexane	443.100	435.100	1.800
n-decane	447.230	447.100	0.025
n-dodecane	489.440	489.500	0.021
n-tridecane	508.660	508.900	0.038
n-tetradecane	526.740	527.000	0.052
n-pentadecane	543.780	544.100	0.062
n-hexadecane	559.970	560.300	0.050
n-heptadecane	575.240	575.500	0.043
n-octadecane	589.840	589.900	0.011
n-nonadecane	603.620	603.600	0.009
2-methyleicosane	624.200	624.200	0.006
n-eicosane	616.800	616.600	0.041
2-methylheneicosane	636.400	636.600	0.024
n-heneicosane	629.320	628.900	0.066
2-methyldocosane	648.200	648.400	0.025
n-docosane	641.230	640.700	0.085
2-methyltricosane	659.300	659.700	0.062
n-tricosane	652.630	652.000	0.100
2-methyltetracosane	670.200	670.600	0.063
n-tetracosane	663.510	662.700	0.120
2-methylpentacosane	680.400	681.100	0.110

n-pentacosane	673.940	673.100	0.130
2-methylhexacosane	690.300	691.300	0.140
n-hexacosane	683.950	683.000	0.140
2-methyltriacontane	726.000	728.400	0.330
n-triacontane	719.400	719.400	0.000
n-hentriacontane	727.690	727.800	0.011
2-methylhentriacontane	743.000	736.900	0.830
n-dotriacontane	735.870	735.900	0.001
2-methyldotriacontane	750.000	745.100	0.660
n-tritriacontane	743.060	743.800	0.094
n-tatratriacontane	750.240	751.400	0.160
2-methyltritriacontane	758.000	753.000	0.660
2-methyltetratriacontane	758.000	760.600	0.340
n-pentatriacontane	757.290	758.800	0.200
2-methylpentatriacontane	765.000	768.000	0.390
n-hexatriacontane	764.310	766.100	0.230
2-methylehexatriacontane	772.000	775.100	0.400
n-heptatriacontane	770.350	773.100	0.360
2-methylheptatriacontane	779.000	781.900	0.370
n-octatriacontane	777.220	779.900	0.350
octatriacontane, 2-methyl-	785.000	801.000	2.000
n-nonatriacontane	783.210	786.600	0.430
n-tetracontane	789.060	793.100	0.510
nonatriacontane, 2-methyl-	795.000	794.900	0.019
tetracontane, 2-methyl-	797.000	801.000	0.500
n-henetetracontane	801.000	799.400	0.200
n-dotetracontane	807.000	805.500	0.190
hentetracontane, 2-methyl-	807.000	806.800	0.023
dotetracontane, 2-methyl-	809.000	812.400	0.430
n-tritetradontane	813.000	811.400	0.200
tritetracontane, 2-methyl-	818.000	817.900	0.018
n-tetratetradontane	818.000	817.200	0.100
tetratetracontane, 2-methyl	820.000	823.000	0.370
n-pentatetradontane	823.000	822.800	0.028
pentatetracontane, 2-methyl	826.000	828.000	0.250
n-hexatetradontane	829.000	828.200	0.097
hexatetracontane, 2-methyl-	831.000	832.800	0.220
n-heptatetradontane	834.000	833.400	0.067
heptatetracontane, 2-methyl-	836.000	837.400	0.170
n-octatetradonta	839.000	838.500	0.056
octatetracontane, 2-methyl-	840.000	841.800	0.220
n-nonatetradonta	843.000	843.500	0.053
nonatetracontane, 2-methyl-	845.000	854.100	1.100
n-pentacontane	848.000	848.200	0.024
pentacontane, 2-methyl-	850.000	823.000	3.200

n-henpentacontane	852.000	852.800	0.094
n-triheptacontane	927.000	926.600	0.046
doheptacontane, 2-methyl-	927.000	922.900	0.450
triheptacontane, 2-methyl-	928.000	926.000	0.220
n-tetraheptacontane	930.000	929.500	0.057
tetraheptacontane, 2-methyl-	931.000	929.100	0.210
pentaheptacontane, 2-methyl	933.000	932.100	0.098
n-pentaheptacontane	933.000	932.400	0.067
n-hexaheptacontane	935.000	935.300	0.030
hexaheptacontane, 2-methyl-	936.000	935.000	0.100
n-heptaheptacontane	938.000	938.200	0.020
hexaheptacontane, 2-methyl-	939.000	937.900	0.120
octaheptacontane, 2-methyl-	940.000	940.600	0.068
n-octaheptacontane	940.000	941.100	0.120
nonaheptacontane, 2-methyl-	943.000	943.300	0.030
n-nonaheptacontane	943.000	944.000	0.100
octacontane, 2-methyl-	945.000	945.800	0.086
n-octacontane	945.000	946.800	0.190
henoctacontane, 2-methyl-	947.000	948.200	0.130
dooctacontane, 2-methyl-	949.000	950.500	0.160
trioctacontane, 2-methyl-	951.000	952.600	0.170
tetraoctacontane, 2-methyl-	953.000	954.600	0.170
pentaoctacontane, 2-methyl-	956.000	956.500	0.048
hexaoctacontane, 2-methyl-	957.000	958.200	0.120
heptaoctacontane, 2-methyl-	959.000	959.800	0.082
octaoctacontane, 2-methyl-	962.000	961.300	0.077
nonaoctacontane, 2-methyl-	963.000	962.600	0.039
nonacontane, 2-methyl-	965.000	963.900	0.120

Résultats sur la base de test des

n-paraffines+isoparaffines

composé	Teb exp	Teb RNA	AAD RNA
n-ethane	184.570	214.450	16.200
n-propane	231.080	249.720	8.060
n-butane	261.340	283.140	8.340
2,2-dimethylpropane	282.810	300.940	6.410
2-methylbutane	300.995	307.550	2.180
n-pentane	309.200	314.740	1.790
2,2-dimethylbutane	322.868	330.340	2.310
2,3-dimethylbutane	331.116	332.290	0.354
2-methylpentane	339.969	337.150	0.829
n-hexane	341.850	344.550	0.791
2,methylhexane	352.318	365.050	3.620
2,4-dimethylpentane	353.622	360.050	1.820
2,2,3-trimethylbutane	354.006	356.670	0.752
3,3-dimethylpentane	359.187	358.070	0.310
2,2-dimethylpentane	362.906	358.070	1.330
3-methylhexane	363.117	365.050	0.533
2,5-dimethylhexane	390.863	386.210	1.190
3-ethylhexane	391.416	391.330	0.022
2,2,3,3-tetramethylbutane	391.692	387.650	1.030
2-methylheptane	392.077	391.330	0.191
2,2,5-trimethylhexane	397.240	407.470	2.580
n-octane	398.780	399.020	0.061
3,5-dimethylheptane	408.800	410.860	0.505
2,5-dimethylheptane	409.100	410.860	0.431
3-ethyl-2,4-dimethylpentane	409.880	407.230	0.647
4,4-dimethylheptane	409.900	408.830	0.261
3,3-dimethylheptane	410.170	408.830	0.326
hexane, 2,3,4,5-tetramethyl	429.300	441.480	2.840
4-ethyl-2-methylheptane	429.300	434.090	1.120
2,4,5-trimethylheptane	429.600	431.250	0.384
2,2-dimethyloctane	430.000	432.030	0.473
pentane, 2,4-dimethyl-3-(1-methylethyl)-	430.190	441.480	2.630
octane, 4,4-dimethyl-	430.600	432.030	0.333
4-propylheptane	430.600	439.330	2.030
2,2,3-trimethylheptane	430.800	430.690	0.025
2-methylheptacosane	700.000	701.040	0.148
n-heptadocosane	693.430	692.600	0.120
2-methyloctacosane	709.000	710.470	0.207
n-octadocosane	702.610	701.840	0.110
2-methylnonacosane	718.000	719.570	0.219

n-nonadocosane	711.030	710.760	0.037
hennonacontane, 2-methyl-	966.000	965.010	0.102
dononacontane, 2-methyl-	968.000	966.060	0.201
trinonacontane, 2-methyl-	971.000	967.010	0.411
tetranonacontane, 2-methyl-	972.000	967.880	0.424
hexanonacontane, 2-methyl-	975.000	969.390	0.575
heptanonacontane, 2-methyl	977.000	970.040	0.712
octanonacontane, 2-methyl-	978.000	970.640	0.753
nonanonacontane, 2-methyl-	980.000	971.170	0.901

Bibliographie

[1]	Nina Quelenis
	« genèse du pétrole », mars 2007, sur : www.champagne-ardenne.cci.fr
[2]	« Le pétrole », sur : www.webencyclo.com.
[3]	« Petroleum » sur : www.oilwatch.org
[4]	X.Normand - A.Treil
	« L'industrie du raffinage du pétrole », Tom 1, Ed. Technip ,[1987]
[5]	J.G.Speight
	« The chemestry and technology of petroleum », Ed. CRC Press, [2006].
[6]	C.Sallé-J.Debyser-C.Bois
	« Formation des gisements de pétrole, étude des phénomènes géologiques
	fondamentaux », Ed. Technip, [1976].
[7]	J-P.Favennec :
	« Recherche et production du pétrole, et de gaz réserves et couts »Ed. Technip [2001],
	sur : www.ifp.fr .
[8]	J-P.Wauquier
	«Petroleum refining, Crude Oil, Petroleum products, process flowsheets » Ed.
	Technip [1998].
[9]	C.E.Chitour
	« Raffinage, les propriétés physiques des hydrocarbures et des fractions pétrolières »
	Tome 1. OPU [1998].
[10]	A.Djafer

« Etablissement d'une nouvelle corrélation de contribution de groupes sans et avec interaction pour l'estimation de la viscosité des corps purs et son application aux mélanges et aux fractions pétrolières. », Projet de Fin d'étude , dirigé par Pr C.E.Chitour , Laboratoire de valorisation des énérgies fossiles ,Ecole Nationale Polytechnique , Alger [2006]

[11] O.Rebas

« Etablissement de nouvelles corrélations de contribution de groupes avec interaction pour l'estimation des propriétés physiques des hydrocarbures et leurs mélanges », Thèse de magister, génie chimique., Dirigée par : Pr.C.E. Chitour. Laboratoire de valorisation des énergies fossiles. Ecole Nationale Polytechnique, Alger [2006].

[12] P.Wuitier :

« Le pétrole : raffinage et génie chimique ». Tome 1. Ed. Technip [1972].

- [13] N. Skander: « Evaluation des propriétés des pétroles bruts et des fractions pétrolières par méthodes d'analyse et par corrélations »»Thèse doctorat, génie chimique, Dirigée par : Pr.C.E.Chitour. Laboratoire de valorisation des énergies fossiles. Ecole Nationale Polytechnique, Alger. [2004]
- [14] P.K.Huang

"Characterization and thermodynamic correlation for undefined hydrocarbon mixtures", thèse de doctorat (PhD), directeur de thèse: T.E.daubert.the Pennsylvania state, University. [1977]

[15] F.Bouamra.

« Contribution à la détermination des propriétés physiques des fractions pétrolières lourdes ». Thèse de Magister génie chimique.Dirigé par : C.E Chitour. Laboratoire de valorisation des énergies fossiles. Ecole nationale Polytechnique Alger [1991].

[16] J.Vidal

« Thermodynamique application au génie chimique et à l'industrie pétrolière ».Ed.Technip, Paris, [1997]

- [17] J-N.Jaubert ,L-Schuffenecker
 « pression de vapeur saturante des composés organiques », techniques-ingenieurs k670
- [18] R.C.Reid, J.M. Prausnitz et T.K Sherwood,« The properties of gases and liquids » ,Ed .Mac Graw Hill, [1977].
- [19] J-Gausse
 « constantes thermodynamiques, données thermodynamiques des fluides »,
 techniques-ingénieurs k535.
 [20] M-Reinhard, Axel-Drefahl
- « Handbook of estimating physicochemical properties of organic compounds », [cd-Rom], Ed. Wiley-Interscience [1998].
- [21] G Lefebvre « Chimie des hydrocarbures ». Ed. Technip [1965].
- [22] Joback and Reid

« Estimation of pure components proprieties from group contribution », Chem engineering journal [1984].

[23] Canstantinou et Gani

"New group contribution method of estimating proprieties of pure components", Aiche Journal [1994]

- [24] N.Skander ,C.E.Chitour "Anew group contribution method for the estimation of physical proprieties of hydrocarbons", Oil & Gas Science and Technology - Rev. IFP 57 4, Ed.technip [2002].
- [25] C.R.Metz« Chimie physique 1, cours et problèmes », Mc Graw Hill [1986].
- [26] S.A.Albane, F.K.Kies
 « Contribution à l'étude des équations d'état et application aux fractions pétrolières » , Projet de fin d'étude génie chimique ,dirigé par : Pr .C.E.Chitour et S.Sator.
 Laboratoire de valorisation des énergies fossiles, Ecole Nationale Polytechnique, Alger [1997].
- [27] J.Vidal

« Thermodynamique : Méthodes appliquées au raffinage et au génie chimique », Ed. Technip [1974].

- [28] « Introduction aux réseaux de neurones » sur : www.chimique.usherbrooke.ca
- [29] D.Parocchia

« Histoire et philosophie du concept de réseaux de neurones », colloque : « Le neuromimetisme », Ed .Hermes. Juin [1994]

[30] Rachid Ladjadj

Cours de Réseaux de Neurones par www-igm.univ-mlv.fr

[31] G.Dreyfus

« Réseaux de neurones , Méthodologie et application » ,Ed. Eyrolles [2002]

[**32**] B.Bouzy

« Réseaux de neurones » sur : www.math-info.univ-paris5.fr .

[33] O.Decourt

« Les réseaux de neurones expliqués a ma fille »sur :www.od-datamining.com

[34] G.Dreyfus « Les réseaux de neurones», septembre [1998] sur : www.neurones.espci.fr