REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE POLYTECHNIQUE DEPARTEMENT DE GENIE CHIMIQUE Laboratoire de Valorisation des Energies Fossiles

PROJET DE FIN D'ETUDES

Diplôme : ingénieur d'état en génie chimique

Dirigé par : Pr.C.E. CHITOUR

Présenté par : S.GHANI

THEME

PREDICTION DES PROPRIETES PHYSIQUES DES HYDROCARBURES PAR RESEAUX DE NEURONES ARTIFICIELS

Membres de jury :

President: Mr E.H.BENYOUCEF Professeur (ENP)
Examinateurs: Mr T.AHMED ZAID Professeur (ENP)
Mr D.BOUKHETALA Professeur (ENP)
Raporteurs: Mr C.E.CHITOUR Professeur (ENP)

Mr S.FEKRACHE Magister (ENP)

PROMOTION JUIN 2008 ENP, 10 avenue HASSEN BADI EL HARRACH, ALGER

ملخص: تقييم الخواص الفيزيانية للهيدر وكربونات بطريقة الشبكات العصبية الاصطناعية

تقييم الخواص الفيزيائية للأجزاء البترولية باستعمال مختلف العلاقات و المعدلات المقترحة أصبح أمرا ضروريا لهذا النوع من الخلائط المعقدة.

في هذا الإطار نقر حطريقة جديدة تتوقف على استعمال السبكات العصبية الاصطناعية لتقدير هذه الخصائص. إضافة إلى سهولة استعمال هذه الطريقة الجديدة ، لوحظ تحسن حساس في النتائج المتحصل عليها إذ أنها بصفة عاملة تتشابه مع غيرها المتحصل عليها بالتجربة.

الخواص التي تطرقنا إليها في هذه الدراسة هي القدرة الحرارية ، حرارة التبخر ، و معامل المعادلة . الكلمات الجوهرية: جسم نقي ، الخلائط ، الأجزاء البترولية، القدرة الحرارية، حرارة التبخر ، معامل المعادلة، الشبكات العصبية الاصطناعية. **Abstract:** Prediction of physical proprieties of hydrocarbons by artificial neuronal network.

The empirical way of estimating properties will always impose itself and remain unavoidable when dealing with characterization of oil fractions which are complex mixtures. In such a context, we propose a new technique based on the artificial neuronal networks which quickly give access to these products and pure substances characteristics. A noticeable improvement in the results was obtained by this recent means of computation.

The studies variables are the specific heat, the latent heat of vaporization, and the index of correlation.

Key words: pure substances, oil fraction, artificial neuronal network, specific heat, heat of vaporization, index of correlation.

Résumé: Prédiction des propriétés physiques des hydrocarbures par réseaux de neurones artificiels.

L'estimation empirique des propriétés s'imposera toujours et demeurera incontournable pour caractériser les fractions pétrolières qui sont des mélanges complexes. Dans un tel contexte, nous proposons une nouvelle technique basée sur les réseaux de neurones artificiels qui permet d'accéder rapidement aux caractéristiques de ces produits ainsi que celles des corps pur et de leur mélange. Une amélioration sensible des résultats a été obtenue par ce récent moyen de calcul.

Les grandeurs étudiées sont la chaleur spécifique, la chaleur de vaporisation et l'indice de corrélation

Mots clés : corps purs, mélange de corps purs, fraction pétrolière, réseau de neurone artificiel, chaleur spécifique, chaleur de vaporisation, indice de corrélation

Remerciements

Ce travail a été effectué au département génie chimique de l'Ecole Nationale Polytechnique d'Alger, au sein de son laboratoire de valorisation des énergies fossiles.

En premier lieu je tiens à remercier Monsieur le professeur Chems Eddine CHITOUR, directeur de cette thèse pour avoir bien voulu accepter d'être mon encadreur et directeur de thèse et pour ses encouragements.

J'adresse mes remerciements particuliers et sincères a Monsieur T.AHMED ZAID, professeur à l'école nationale polytechnique, de m'avoir consacré de son temps, son aide et ses précieux conseils et encouragements.

Je remercie Mr E.H.BENYOUSSEF, professeur à l'école nationale polytechnique, de m'avoir fait l'honneur de présider mon jury. Je souhaite exprimer ma gratitude à Monsieur D.BOUKHETALA, professeur à l'école nationale polytechnique, pour l'attention et la considération qu'il a accordées à mon travail.

J'exprime toute ma gratitude à Mr S. FEKRACHE, qui n'a pas hésité, un seul instant, à mettre à ma disposition toutes ses connaissances.

Je tiens aussi à remercier tout particulièrement ma petite famille, mes deux grandes familles et l'ensemble de mes amis de m'avoir soutenu tout le temps.

Que tous les enseignants du département du Génie Chimique de l'Ecole Nationale Polytechnique trouvent ici l'expression de mes gratitudes pour les efforts qu'ils n'ont cessé de prodiguer pour ma bonne formation.

Enfín, ma profonde sympathíe va à toutes les personnes quí ont contribué, de prés ou de loin, à la réalisation de ce travail.

Dédicaces

Je dédie ce travail

A mes merveilleux parents,

A mon cher époux Sofiane,

A mon adorable petite fille Lina Tinhinène,

A mes chers beaux parents,

A mes frères et sœurs,

A monsieur L.IHADDADENE directeur des achats à CEVITAL

Algerie,

A tous mes amís.

Samira

Sommaire

Table de matière

Introduction générale

Chapitre I : généralités sur le pétrole

- I.1 Introduction.
- I.2 Composition.
- I.3 Etat physique.
- I.4 La formation du pétrole.
- I.5 La problématique des réserves.
- I.6 Qualité du pétrole brut.
- I.7 Qualité des produits du pétrole.
- I.8 Secteurs d'utilisation.
- I.9 Prospection.
- I.10 Extraction.
- I.11 Transport.
- I.12 Raffinage.

Chapitre II : Les propriétés physiques et thermodynamiques des hydrocarbures

- II.1 Introduction
- II.2 Les méthodes de prédiction des propriétés importantes.
 - II.2.1 La température d'ébullition
 - II.2.2 La densité
- II.3 les méthodes de prédiction des propriétés de base.
 - II.4.1 les propriétés critiques.
 - II.4.2 l'indice de réfraction.
- II.4 Les méthodes de prédiction des propriétés thermiques
 - II.5.1 La chaleur spécifique
 - II.5.2 La chaleur de vaporisation
- II.5 Les méthodes de prédiction des propriétés optiques
 - II.6.1 L'indice de corrélation
- II.6 Les méthodes de caractérisation de propriétés des hydrocarbures
 - II.3.1 Les équations d'état

- II.3.2 La loi des états correspondants
- II.3.3 Les méthodes empiriques

Chapitre III : Les réseaux de neurones

- III 1 Introduction
- III.2 Définition.
- III.3 Historique.
- III.4 Du Neurone Biologique au Neurone Formel.
- III.5 Structure d'interconnexion.
 - III.5.1 Réseau multicouche (au singulier).
 - III.5.2 Réseau à connexions locales.
 - III.5.3 Réseau à connexions récurrentes.
 - III.5.4 Réseau à connexion complète.
- III.6 Caractéristiques des réseaux de neurones artificiels.
 - III.6.1 Poids (w) et biais (b) d'un neurone.
 - III.6.2 La fonction de sommation.
 - III.6.3 La fonction de transfert.
- III.7 L'apprentissage.
 - III.7.1 Définition.
 - III.7.2 Apprentissage supervisé / non supervisé.
 - III.7.3 Surapprentissage.
- III.8 Calcul des poids synaptique.
- III.9 Quelques réseaux célèbres.
 - III.9.1 Le Perceptron.
 - III.9.2 Les perceptrons multicouches (PMC).
 - III.9.3 Les réseaux de Hopfield.
 - III.9.4 Les réseaux de Kohonen.
- III.10 Conclusion.

Chapitre IV : Calculs et résultats

- IV.1 Présentation du logiciel.
 - IV.1.1 Création des données.
 - IV.1.2 Création du réseau.

- IV.1.3 Mise en œuvre du réseau.
- IV.2 Présentation des résultats de simulation.
 - IV. 2.1 Application aux corps purs.
 - IV.2.1.1 Les hydrocarbures linéaires saturés (iparaffines).
 - IV.2.1.1.1 La chaleur spécifique.
 - IV.2.1.1.2 La chaleur de vaporisation.
 - IV.2.1.1.3 L'indice de corrélation.
 - IV.2.1.2 Les hydrocarbures linéaires insaturés (oléfines + alcènes).
 - IV.2.1.2.1 La chaleur spécifique.
 - IV.1.1.2.2 La chaleur de vaporisation.
 - IV.1.1.2.3 L'indice de corrélation.
 - IV.2.1.3 Les hydrocarbures cycliques (aromatiques + naphtènes).
 - IV.2.1.3.1 La chaleur spécifique.
 - IV.2.1.3.2 La chaleur de vaporisation.
 - IV.2.1.3.3 L'indice de corrélation.
 - IV. 2.2 Application aux mélanges.
 - IV.2.2.1 La chaleur spécifique.
 - IV.2.2.2 La chaleur de vaporisation.
 - IV.2.2.3 L'indice de corrélation.
 - IV. 2.3 Application aux fractions pétrolières.
 - IV.2.3.1 La chaleur spécifique.
 - IV.2.3.2 L'indice de corrélation.
- IV.3 Conclusion.

Conclusion générale.

Annexe:

Comportement des réseaux de neurones par rapport à la base d'entraînement.

Bibliographie.

Notations

RNA: réseau de neurones artificiels.

PMC: perceptron multicouches.

AD: déviation moyenne.

 Δ **Hv** : chaleur latente de vaporisation.

 $\Delta \mathbf{H}_{V}\mathbf{m}$: l'enthalpie de vaporisation du mélange.

 $\Delta \mathbf{H}_{V} \mathbf{f} \mathbf{p}$: l'enthalpie de vaporisation de la fraction pétrolière.

 $\Delta \mathbf{H}_{\nu} \mathbf{i}$: l'enthalpie de vaporisation du constituant i.

Xi: la fraction molaire du constituant i.

SSE: sum square error.

Tc: température critique.

Tcm : température critique du mélange.

Tpc: température pseudo critique.

P: pression.

Pc: pression critique.

Pcm: pression critique du mélange.

Ppc: pression pseudo critique.

Pvap: pression de vaporisation.

Teb: température d'ébullition.

R: la constants des gaz parfaits.

Kuop : facteur de caractérisation de Watson.

d20 :densite a 20 °C.

n20: indice de refraction a 20 °C.

I : indice de corrélation.

MM: masse molaire.

SpGr: specific-gravity.

Cp : capacité calorifique a pression constante.

Lettres grecques:

 ρ : masse volumique.

ω: facteur acentrique.

Indices:

 \boldsymbol{A} : aromatique.

 ${\bf N}$: naphtène.

P: paraffine.

eb : ébullition.

c : critique.

 ${f i}$: un constituant dans le mélange.

mav : mean average.

mass: masse.

mel: mélange.

mol: molaire.

INTRODUCTION

GENERALE

Introduction générale

A la sortie des gisements, le pétrole est pratiquement inutilisable. Il faut donc le traiter par un procédé qu'on appelle le raffinage. Ce dernier a pour fonction de transformer des pétroles bruts d'origines diverses en un ensemble de produits pétroliers répondant à des spécifications précises, dans des proportions correspondantes aussi bien que possible à la demande du marché. Ainsi, une identification la plus complète et la plus fine des pétroles bruts et des fractions qui en sont issues, pour mieux les valoriser industriellement, est devenue depuis la crise du pétrole un des objectifs prioritaires pour toute industrie pétrolière. La mise au point des méthodes d'analyse on fait l'objet de nombreuses recherches et ont abouti à des résultats pratiques, mais au prix de l'installation d'un appareillage très lourd qui fait appel à un personnel compétant et à un temps de travail généralement long.

Devant cet intérêt de disposer d'informations utiles pour caractériser, analyser, évaluer les pétroles bruts de différentes origines ainsi que les coupes qui en découlent, cette étude contribue à l'acquisition de connaissances nécessaires à la conduite de l'unité industrielle. Nous proposons une nouvelle technique qui fait appel aux réseaux de neurone artificiel. nous cherchons à nous inspirer du traitement de l'information effectué par le cerveau humain où le neurone est l'unité fonctionnelle de base du système nerveux. Il est constitué principalement de trois parties qui ont un rôle bien défini, les dendrites collectent les signaux en provenance d'autres neurones et les font converger vers le soma, ce dernier recueille et traite l'information et l'axone qui transporte le signal traité vers l'extérieur.

Le succès de ce récent et précieux outil de travail dans des domaines très diverses ne doit en rien à la métaphore biologique. Il est uniquement dû à une meilleure compréhension des propriétés mathématiques spécifique de ces réseaux. Cette représentation scientifique du neurone biologique comprend les notions de mémorisation, d'apprentissage et de généralisation.

CHAPITRE I

Généralités sur le pétrole

Dieu a dit à NOë

« Tu prends une embarcation tu l'enduiras de bitumes par dedans et par dehors » Génèse.

I.1 Introduction

Le pétrole, Énergie fossile "redécouverte" au XIXe siècle, le pétrole est en fait présent dans la nature depuis toujours. Déjà les textes bibliques en parlent sous le nom de "bitume". Il sert longtemps à rendre étanche la coque des bateaux.

Depuis l'Antiquité, le pétrole est repéré au Moyen-Orient et dans d'autres parties du monde quand il suinte à la surface du sol. Mais personne ne se doute, jusqu'en 1859, qu'il deviendra une source d'énergie capable d'engendrer une véritable révolution industrielle et de faire entrer l'humanité dans les temps modernes.

I.2 Composition

Le pétrole est un produit constitué d'une multitude de molécules composées d'atomes de carbone et d'hydrogène uniquement, on parle d'hydrocarbures.

Ces différentes molécules sont caractérisées par le nombre et la structure des atomes de carbone. La chimie minérale distingue quatre grands types d'hydrocarbures en fonction de la nature des liaisons atomiques entre atomes de carbone :

- Les alcanes

a) les paraffines

Ce sont les molécules dont la chaîne d'atomes de carbone est composée de liaisons simples, c'est une chaîne aliphatique saturée. Le nombre de carbone varie le plus souvent entre 1 et 20. Autrefois, les alcanes étaient appelés paraffines. Exemple: le méthane, le butane, l'hexane. Formule brute : CnH2n+2.

b) Les naphtènes

Un groupe d'alcanes est particulier, ce sont les cycloalcanes dont la chaîne d'atomes de carbone contient au moins un cycle hexane ou pentane. Exemples : le cyclohexane, le méthyl cyclopentane. Formule brute : Cn H2n.

On peut trouver des structures mixtes qui sont les cycloalcanes substitués.

- Les diènes ou alcynes :

Ce sont les molécules qui contiennent plus d'une double liaison dans la chaîne aliphatique. Exemples : l'acétylène, les butadiènes. Formule brute : Cn H2n-2

- Les chaînes aromatiques :

ce sont les molécules dont la chaîne d'atomes de carbone contient au moins un cycle benzénique. Le nombre de carbone est au minimum de 6. Exemples : le benzène, le naphtalène. Formule brute : C6H5-Y (où Y représente une molécule attachée au cycle benzénique).

I.3 Etat physique

L'état physique des composés du pétrole dans les conditions normales varie suivant la longueur de la chaîne aliphatique. En effet, plus la chaîne est longue, plus la masse volumique du composé est grande et plus le composé est visqueux. A titre d'exemple, les composés du méthane au butane (C1 à C4) sont gazeux à température ambiante ; à partir de cinq atomes de carbone les composés sont liquides et au delà d'une quinzaine d'atomes de carbone, ils sont solides. Comme pour toute molécule, l'état physique des composés varie en fonction de la température et de la pression. Ces propriétés sont utilisées en vue de séparer les chaînes de différentes longueurs : la distillation est un exemple de séparation des molécules par la chaleur.

I.4 La formation du pétrole

Le pétrole (littéralement olium qui veut dire huile et petra qui veut dire pierre) est issu de la décomposition de matières organiques végétales et animales. Ces particules se déposent en même temps qu'une sorte de boue. Le milieu d'accumulation est confiné : lac, lagunes, deltas ou lagons. Ce milieu étant peu oxygéné, des réactions réductrices transforment la matière organique en kérogène. Au fur et à mesure du recouvrement de cet ensemble boue - kérogène, la transformation en hydrocarbures commence. Elle débute vers 60°C, ce qui correspond à un enfouissement d'environ 1500 à 2000 mètres. La vitesse de transformation augmente jusqu'à 100°C (3000m) puis, au-delà de cette limite, diminue lorsque la température augmente. Si l'enfouissement est supérieur à 4000m (soit plus de 150°C), il ne se forme plus que du méthane. En tout état de cause, ces transformations sont très lentes et nécessitent plusieurs millions d'années.

La matière organique en décomposition est en quelque sorte coincée dans la roche qui s'est formée au moment de son enfouissement. On parle de roche mère. Le pétrole en formation est moins dense que la roche qui l'entoure, il peut donc migrer vers la surface à condition qu'il ne

soit pas arrêté dans sa progression par des roches imperméables par exemple. Si tel est le cas, le pétrole est alors stoppé dans sa remontée et se concentre pour former des poches. Ces pièges sont à l'origine des réservoirs actuels de pétroles.

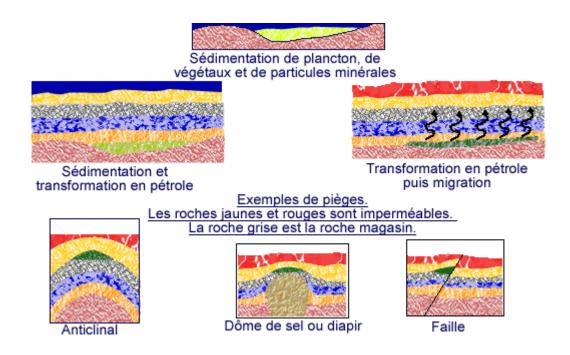


Figure 1 : étapes de la formation du pétrole et quelques exemples de pièges

<u>Source</u>: Pomerol C. et Renard M., Eléments de Géologie, Masson, Paris et Sheppard S. Directeur de recherche, Ecole Normale Supérieure de Lyon (1999).

I.5 La problématique des réserves

Evaluer les réserves de pétrole est une question importante afin de gérer au mieux cette ressource non renouvelable. En effet, une fois l'ensemble des ressources pétrolifères épuisées, cette source d'énergie sera définitivement tarie. Cependant les réserves évoluent sans cesse, et contrairement à ce qu'on pourrait penser les réserves identifiées (ou prouvées) n'ont jamais été aussi importantes qu'à l'heure actuelle : les estimations 1999 varient entre 140 Gt (giga tonnes ou milliards de tonnes, équivalent à 1050 Gb ou giga barils) d'après le Oil and Gas Journal (OGJ) et 160 Gt (1200 Gb) d'après l'US Geological Survey (USGS). En se basant sur la consommation actuelle de pétrole, ces chiffres nous mèneraient entre 53 et 63 ans de production (suivant les ressources). Le tableau ci-dessous indique la répartition des réserves de pétrole prouvées en fonction des différentes zones géographiques de production.

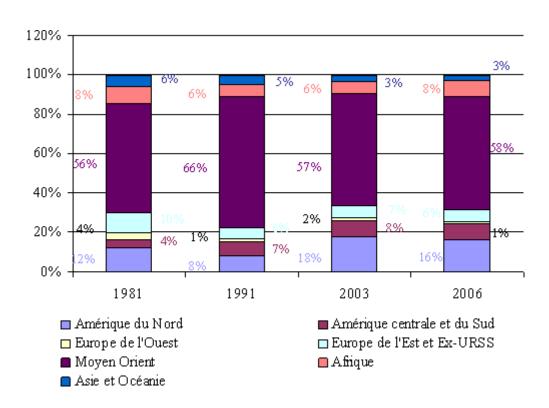


Figure 2 : Part des régions dans les réserves mondiales prouvées de pétrole brut en pourcentage

Source : CNUCED d'après des données du Department of Energy, US Government

Le fait marquant est une disproportion énorme entre les réserves du Moyen Orient et celles du reste du monde. De plus, en distinguant une répartition non par région mais par pays de l'OPEP* et hors OPEP, celle-ci montre que les premiers détiennent 78% des réserves mondiales de pétrole brut prouvées.

La consommation totale cumulée de pétrole jusqu'au début de ce millénaire atteint 110 Gt (825 Gb), soit moins que les réserves prouvées. Cette constatation amène certains géologues à prédire l'apparition de tensions dans le secteur du pétrole en se basant sur la méthode de King Hubert, géologue américain qui prédit, en 1956, le déclin de la production américaine pour 1970, soit l'année à partir de laquelle la moitié des réserves de pétrole eurent été exploitées, prédiction qui se confirma. Si ce modèle s'applique non plus seulement aux Etats-Unis mais à l'ensemble de la planète, une crise de la production pétrolière pourrait survenir dans un futur proche.

Cependant, un certain nombre de voix s'élèvent contre cette prédiction avançant plusieurs arguments. Bien qu'une grande majorité du sous-sol terrestre ait été exploré, il est encore

aujourd'hui très difficile de savoir s'il reste beaucoup de pétrole à découvrir ou pas. En effet, les zones dites "d'off shore" profond ont été encore peu explorées (2,3 millions de km carrés pour une surface totale de 55 millions de km carrés). De plus, les gisements aujourd'hui à maturité contiennent potentiellement beaucoup de pétrole qu'on ne sait pas encore extraire. En effet les taux d'extraction actuels sont d'environ 30%, et chaque point gagné au-delà est équivalent à environ trois ans de production, en considérant un stock mondial récupérable de 266Gt (1995,5 Gb). Ceci amène à des différences considérables dans les évaluations des réserves à découvrir : 20 Gt d'après Campbell et Laherrère, 63 Gt d'après l'USGS et 140 Gt d'après Edwards de l'Université du Colorado.

Un important facteur est à prendre en compte afin d'avoir une image aussi complète que possible de l'évaluation du futur du pétrole : les progrès technologiques. En terme de réserves, une distinction est faite entre le pétrole conventionnel (celui exploité actuellement) et le pétrole non-conventionnel (un pétrole qui pourrait être exploité dans le futur sous réserve de posséder les technologies adéquates et sous réserve d'un coût de production rentable).

En 2002 les coûts de développement des bruts conventionnels se situent entre 2 et 15 dollars américains le baril et ces coûts diminuent en moyenne de 1 dollar américain par an. Ce faisant, certains bruts non-conventionnels deviennent exploitables. Ainsi, dans le passé, l'exploitation "off shore" était au début considérée comme beaucoup trop chère et presque impossible, alors qu'aujourd'hui plus personne ne remet en cause la rentabilité de ces explorations et pour autant le prix du brut en terme réel ne s'est pas envolé.

Les bruts non-conventionnels regroupent les nappes difficiles d'accès comme les nappes sous couche de sel, "l'off shore" profond et très profond (la couche d'eau étant de plus de 1000 mètres voire de plus de 2000 mètres), les huiles extra lourdes, les sables asphaltiques et les schistes

Concernant "l'off shore" profond et très profond, des forages existent déjà qui permettent d'exploiter des gisements à plus de 1000 mètres de profondeur sous la surface de la mer. C'est le cas au Congo-Brazaville et en Angola (dont un gisement en mer profonde est le plus grand d'Afrique), mais aussi au Gabon avec un forage à plus de 2500 mètres.

La frontière entre brut non-conventionnel et brut conventionnel est sans cesse repoussé par les avancées technologiques. Ainsi les huiles extra-lourdes de l'Orénoque au Vénézuela, n'étaient autrefois exploitables que pour un prix du baril supérieur à 30 dollars américains. La diminution du coût de développement rend aujourd'hui possible cette exploitation pour un prix du baril à 15 dollars américains.

De même la région de l'Athabasca (région au Nord de la province d'Alberta au Canada) était autrefois un océan qui a laissé place, en s'asséchant, à des sables asphaltiques. Ces sables constitueraient le plus grand gisement mondial de pétrole potentiellement exploitable avec une estimation à 40 Gt (300 Gb). Actuellement ces sables sont en partie exploités et représentent 34% de la production totale de pétrole au Canada. D'après l'entreprise <u>Suncor</u> qui exploite un gisement, le coût du baril de pétrole revient à 12,5 dollars américains.

La quantité actuelle de réserves prouvées exploitables pourrait être sujette à modification non pas grâce à la découverte de nouveaux gisements mais grâce à l'amélioration du rendement d'extraction. Actuellement ce rendement se situe autour de 30%, chiffre qui, selon certains, pourrait atteindre 50 à 60% du fait des progrès technologiques ; ce qui entrainerait la réouverture de gisements considérés aujourd'hui comme épuisés.

Outre ces considérations sur les réserves de pétrole, en terme de longévité de la ressource pétrole, les progrès technologiques permettent de substituer le pétrole par d'autres produits notamment dans la fabrication de carburants liquides. A titre d'illustration, le procédé de Fischer Tropsh permet de fabriquer un carburant liquide pour véhicule à partir de gaz naturel ou même de pétroles non-conventionnels difficilement exploitables tels quels. Un autre procédé propose la liquéfaction du charbon afin d'obtenir également des carburants liquides.

L'Agence Internationale de l'Energie (AIE) considère que la production de pétrole n'atteindra pas un maximum pour ensuite décroître dans les vingt prochaines années. Ces prévisions sont fonction de l'investissement de l'industrie pétrolière dans la recherche technologique. Toujours selon l'AIE, il serait nécessaire d'injecter 1000 milliards de dollars entre 2000 et 2010 afin de maintenir la production de pétrole au èair avec la croissance de la consommation.

L'épuisement des réserves de pétrole est donc un sujet ouvert qu'il est très difficile, voire impossible, de prédire aujourd'hui.

L'augmentation rapide des prix du pétrole (75\$ en 2007 en moyenne), plus de 130\$ en juin 2008, rend les coûts d'exploitation abordable. Malgré cela le spectre de la penurie plane. Certain annalistes pensent que nous avons atteint le « pic de Hubbert ».

I.6 Qualité du pétrole brut

Il existe autant de qualités de pétrole qu'il y a de puits de pétrole dans le monde. En effet, chaque poche de pétrole a des caractéristiques qui lui sont propres et qui sont dues à l'histoire géologique de la formation du pétrole de cette poche en particulier.

Néanmoins, le pétrole est classifié suivant ses composants majoritaires et la mesure de sa viscosité par la gravité API (du nom de "American Petroleum Institute"). Ainsi un pétrole est

léger ("light") si le degré API est supérieure à 31.1, moyen ("medium") s'il est compris entre 22.3 et 31.1, lourd ("heavy") s'il est compris entre 10 et 22.3 et extra lourd ("extra heavy") s'il est inférieur à 10. L'échelle API rend compte de la viscosité et donc de la longueur des chaînes carbonées des composés. Plus les chaînes sont longues, plus le pétrole est lourd. Cidessous quelques caractéristiques des principaux pétroles.

Nom du pétrole	Gravité API	Teneur en soufre (% du poids total)	Appellation
Brent	38	0,4	léger doux
West Texas Intermediate (WTI)	36,4	0,48	léger doux
Dubai	31	2,00	moyen sulfuré
West Texas Sour (WTS)	30,2	1,5	moyen sulfuré
Alaska North Slope (ANS)	24,8	1,04	moyen sulfuré
Sahara Blend	44	0.2	léger

Tableau 1 : caractéristiques des principaux pétroles

Source : Secrétariat de la CNUCED

Une autre caractéristique essentielle est la teneur en soufre du pétrole. Les pétroles avec une faible teneur (inférieure à 0.5% en poids) sont qualifiés de doux ("sweet"), au-delà, les pétroles sont qualifiés de sulfurés.

Les pétroles les plus facilement raffinables sont légers avec une faible teneur en soufre, car les produits raffinés les plus utilisés sont légers. De plus, du fait de normes environnementales appliquées dans les pays consommateurs, les teneurs en soufre des produits raffinés doivent être très faibles, ce qui oblige à des processus de raffinage supplémentaires pour réduire la teneur en soufre du pétrole. Actuellement 60% des pétroles bruts dans le monde sont de type sulfuré, et ce pourcentage s'élève à 80% en considérant les réserves non encore exploitées.

Les pétroles "Brent" et "WTI" servent de référence pour les échanges commerciaux pour la catégorie des légers et doux. Pour les pétroles plus lourds et plus riches en soufre, les références sont "Dubaï", "WTS" et "ANS" en combinaison avec le "Brent et le "WTI".

Le site Centre de technologie environnementale fournit une liste (format pdf) très complète des différents pétroles classés par pays, continent et pays d'origine, ainsi qu'une base de données de leurs caractéristiques.

Une dernière classification des pétroles consiste à nommer le type géologique de pétrole en s'appuyant notamment sur la roche réservoir. Cette description se rencontre pour les sources

de pétrole potentiellement exploitable dans l'avenir. Ce sont les schistes bitumineux et les sables asphaltiques.

I.7 Qualité des produits du pétrole

La qualité des produits du pétrole résulte des processus de raffinage et donc des technologies utilisées. Les produits du pétrole sont soumis à des réglementations de plus en plus contraignantes, notamment concernant les carburants (qui sont les dérivés les plus importants du pétrole).

A titre d'exemple, la Commission européenne avait mandaté deux études afin d'évaluer les conséquences possibles d'une réglementation limitative quant aux émissions polluantes des carburants : Auto Oil I et Auto Oil II. Auto Oil I aboutit à la directive 98/70/CE sur la qualité des carburants applicable en partie au 1er janvier 2000 et reprise dans le tableau ci-dessous. Auto Oil II doit proposer des limites maximales pour certains composés à partir de 2005.

La directive 98/69/CE qui est également basée sur les conclusions du rapport Auto Oil I, fixe les émissions des véhicules particuliers et des utilitaires légers.

Ces limites sont basées sur les caractéristiques d'une nouvelle essence (à partir de 1995) par rapport à l'essence de base en usage jusqu'alors.

Spécifications		
Essence de base	Essence reformulée	
Soufre ppm en masse max	339	
Benzène % en volume max	1.53%	1%
Aromatiques % en volume max	32.0%	25%
Oléfines % en volume max	9.2%	6%
Plomb et métaux lourds max	-	absence
Composés organiques volatils max	-	- 25% en masse
Toxiques max		par rapport à la
	-	base
Oxygène min		- 25 % en masse
	-	par rapport à la
		base
		Minimum 2% en
		poids

Tableau 3 : Spécifications des essences

La vente de l'essence de base n'est pas interdite dans les zones peu polluées de même que pour les voitures dont les moteurs (antérieurs à 1990) n'acceptent pas l'essence reformulée. D'autre part, l'essence reformulée est d'usage obligatoire pour certaines régions et pendant les

périodes désignées par l'administration (ces périodes correspondent en général à l'été, pendant lequel les concentrations en ozone sont les plus fortes).

L'indice d'octane : Indice déterminé en laboratoire qui mesure la résistance à l'auto-inflammation d'un carburant dans un moteur à allumage commandé ("moteur essence"), et en particulier sa résistance au cliquetis (le cliquetis étant une des façons d'appréhender l'indice d'octane). Plus l'indice est élevé, plus la résistance est grande. On distingue l'indice d'octane recherche (RON) qui représente le comportement d'un carburant à bas régime et en accélération, de l'indice d'octane moteur (MON) qui représente le comportement du carburant à haut régime et à forte charge.

L'indice de cétane : Indice déterminé en laboratoire qui mesure l'aptitude d'un gazole à l'autoinflammation dans un moteur diesel (moteur à allumage par compression). Plus l'indice est élevé, plus le délai d'inflammation du carburant est court.

Ces indices mesurent une qualité du carburant pour un moteur donné. Ainsi, les moteurs récents nécessitent des essences dont l'indice d'octane est élevé (95 ou 98).

La gravité API (mesurée en degrés) : La mesure de la gravité API est une approche de la densité du pétrole à une température de 15°C qui s'obtient d'après le calcul suivant:

où la densité relative est le rapport de la densité du pétrole sur la densité de l'eau.

Plus la densité d'un pétrole est faible, plus sa gravité API est élevée.

I.8 Secteurs d'utilisation

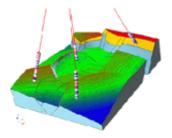
Le pétrole est un produit stratégique utilisé dans un grand nombre de secteurs différents, ce qui en fait une denrée vitale et centrale dans l'économie mondiale. Un baril de pétrole contient 42 gallons US, soit 158,97 litres (1 gallonUS = 3,785 litres, 1 gallonUK = 4,546 litres).

A titre d'exemple, en moyenne à la sortie d'une raffinerie aux Etats-Unis, un baril de pétrole génère les quantités suivantes de produits raffinés :

Produit	Litres
carburants	73,8
gazole et mazout léger (fioul domestique)	34,8
kérosène (carburéacteur pour l'aviation)	15.2
mazout lourd (fret maritime, centrales thermiques,	8.7
industries)	
gaz de pétrole du raffinage	7.2
autres gaz (éthane, propane, butane)	7.2
coke	6.8
asphalte	4.9
bases pour la pétrochimie	4.5
lubrifiants	1.9
kérosène (ou pétrole lampant)	0.7
autres (cires, graisses)	1.1

Tableau 4 : produits issue du raffinage d'un baril de pétrole

Ces chiffres varient d'un type de pétrole à un autre mais aussi d'une raffinerie à une autre et d'une époque à une autre. En effet, il est possible à partir du même brut de raffiner plus d'essence (en augmentant la capacité de craquage catalytique) ou plus de fioul en modifiant les procédés utilisés.


Ci-dessous, un éventail non-exhaustif des différents secteurs par produit.

Les carburants (GPL, essence, gazole, carburéacteur)	Industrie automobile, aviation
Les combustibles (fioul domestique, fioul lourd)	Chauffage domestique, chauffage urbain, transport maritime, locomotives, fours industriels. Dans l'industrie : cimenteries, tuileries, papeteries, verrerie et usines thermiques (production d'électricité).
Les lubrifiants	Huiles pour moteur, huiles pour transmission automatique ou hydraulique. Huiles de procédés : utilisées dans les encres, les insecticides, le caoutchouc Huiles blanches pharmaceutiques. Graisses : essentiellement dans les roulements à bille. Les cires : encaustiques, enduction de tissu, protection des métaux. Les paraffines : emballages, produits d'entretien, produits pharmaceutiques,

	explosifs, imperméabilisation du bois.	
Les bitumes	Revêtement routier, étanchéité des bâtiments, isolation, anticorrosion	
Les gaz	Usage domestique	
Les bases pétrochimiques	Polymères : plastiques, isolants. Fibres synthétiques : nylon. Caoutchoucs synthétiques. Solvants : encres d'imprimerie, peinture, colles, teintureries. Détergents. Agronomie : pesticides.	

Tableau 5 : les secteurs d'utilisation des produits pétroliers

I.9 Prospection

La prospection est la première étape de la filière du pétrole.

I.10 Extraction

La phase d'extraction est réalisée par des compagnies pétrolières.

I.11 Transport

Le transport du pétrole brut se fait pour la grande majorité de deux manières : sur terre par oléoduc et sur mer par cargo. Le transport sur terre peut également se faire par chemin de fer ou par camions mais le coût est généralement élevé par rapport à l'oléoduc.

I.12 Raffinage

La capacité de l'industrie de raffinage est aujourd'hui suffisante pour assurer la transformation du pétrole en produit pétrolier. Cependant cette capacité n'est pas également répartie selon les régions du monde, tant en terme de nombres de raffineries qu'en terme de technologie utilisée par ces raffineries.

La plus importante concentration de raffineries se trouve en Extrême Orient et plus particulièrement en Chine. Les pays développés comme l'Europe de l'Ouest et l'Amérique du Nord comptent à eux seuls pour environ 40 % du nombre total de raffineries dans le monde. Il est à noter que ces pays consomment environ 40% de la production mondiale de pétrole.

Chapitre II

Les propriétés physiques et thermodynamiques des hydrocarbures

II.1 introduction

La détermination des propriétés physiques des hydrocarbures et leurs mélanges, fait appel à des techniques expérimentales. Cependant, la plupart de ces mesures exigent un temps de manipulation plus ou moins long et surtout un coût onéreux des équipements requis.

A cet effet ces techniques sont souvent remplacées par des méthodes prédictives (corrélations et approches graphiques) pour estimer rapidement ces paramètres et au moindre coût. Par conséquent, cette partie de notre étude est engagée dans cette voie et ce afin de mieux caractériser les pétroles bruts et leurs produits.

II.2 Les méthodes de prédiction des propriétés importantes

II.2.1 La température d'ébullition.

a) Définition

L'ébullition ou la vaporisation est le passage de l'état vapeur à une température et une pression données constante. Elle se produit au sein du même liquide à une température bien déterminée appelée température d'ébullition, sous une pression constante. La température d'ébullition d'un corps pur de ce fait, constante durant toute la durée de l'ébullition. Contrairement aux corps purs, la température d'ébullition d'un mélange n'a pas de signification physique, nous parlons plutôt de température moyenne d'ébullition. Celle-ci est déterminée à partir des courbes de distillation, sur la base d'hypothèses d'additivité, ou de corrélations.

b) Distillation

La distillation fractionnée permet de séparer les constituants d'un mélange d'hydrocarbures de propriétés suffisamment voisines. C'est un procédé de séparation qui utilise la différence des points d'ébullition entre des produits qui se trouvent mélangés. La distillation peut être réalisée à pression atmosphérique, ou sous vide (quelques dizaines de millimètres de mercure), pour séparer des hydrocarbures lourds entre eux.

A tout moment les vapeurs qui s'échappent sont des mélanges de produits, les premières fractions ont une concentration plus importante en produits volatils que le mélange de départ, les dernières fractions auront une concentration en produits lourds plus grande que le mélange initial. Selon la précision de la composition et des propriétés exigées, nous distinguons différents types de distillations, utilisées dans la science et la technologie du pétrole.

La température d'ébullition des hydrocarbures est mesurée au laboratoire par deux types d'appareils, nous distinguons les thermomètres et les couples thermoélectriques.

b-1) Distillation ASTM

C'est une distillation dont le protocole correspond à des normes d'analyses différentes selon les pays.

- La norme française AFNOR NF M 07 002 relative aux produits légers (essence, kerozène, pétrole lampant) et la norme NF M 07 009 est relative aux produits lourds (gas-oil, fuel-oil)
- La norme américaine D 86, D216 sont relatives à différents norme afnor est décrite par l'association Française de Normalisation.

La distillation ASTM est utilisée pour fournir les spécifications de distillation des produits pétroliers. En effet la courbe de distillation ASTM fournit à l'utilisateur de précieux renseignement sur la composition du pétrole brut. Son principal avantage est le temps court qu'elle nécessite. Son mode d'utilisation est simple.

Principe

L'appareillage utilisé dans cette technique de distillation dite ASTM comporte un ballon de distillation pouvant contenir 100 ou 200 ml de produit que nous chauffons et distillons à une vitesse déterminée. Les vapeurs formées sont condensées dans un tube en cuivre baignant dans un mélange d'eau et de place pilée; puis recueillis dans une éprouvette graduée. Lorsque la première goutte de condensat apparaît à la sortie du tube, nous notons la température dans le ballon; c'est le point initial de la distillation. Ensuite, la température est relevée régulièrement lorsque 5, 10, 20,,90, 95% du produit sont distillés et recueillis dans l'éprouvette. Enfin de distillation, la température décroît par suite de l'altération thermique des dernières traces liquides dans le ballon. Le maximum de température est le point final de distillation. La courbe de température en fonction du pourcentage distillé est appelé courbe de distillation ASTM. La distillation ASTM est beaucoup moins sélective que la distillation appelée TBP.

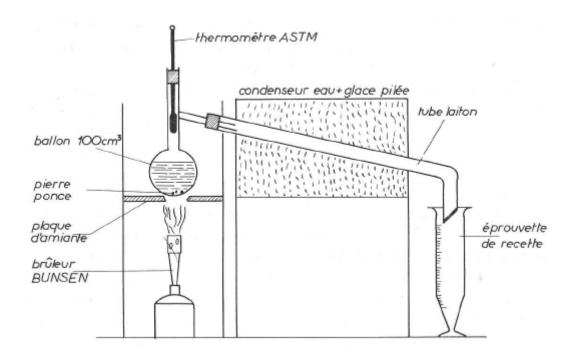


Figure 3 : schéma de principe de la distillation ASTM

b-2) Distillation TBP

Cette technique est envisagée lorsque nous devons avoir des informations plus précises sur le brut à analyser.

La distillation TBP est réalisée dans un appareillage présentant un nombre important de plateaux théoriques, c'est-à-dire un dispositif à très bonne sélectivité. La courbe de distillation TBP est obtenue en portant la température de la vapeur en fonction du pourcentage volumique de brut distillé relevé dans des intervalles réguliers de températures.

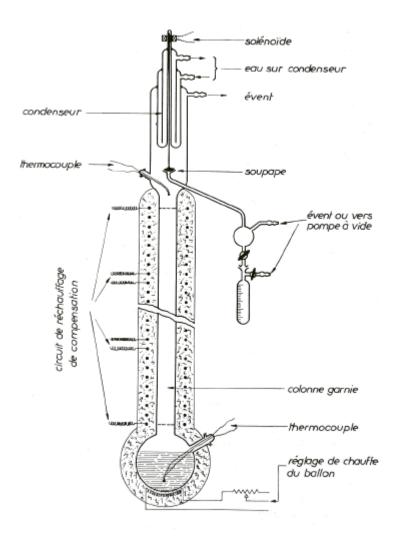


Figure 4 : schéma d'un appareil de distillation de type TBP

c) Corrélations utilisées pour la prédiction de la température d'ébullition des corps purs

Les valeurs des températures d'ébullition des hydrocarbures purs sont tabulées dans le « Handbook », (API projet, 44 et DIPPR). Il est possible alors de déduire les propriétés d'un hydrocarbure appartenant à une famille donnée sur la base de la connaissance d'une propriété (la température d'ébullition).

➤ Equation de Sudgen[1]

$$T_b = [637(R_d) + B] / [p]$$
(1)

Elle est basée sur les contributions de groupe, la température d'ébullition T_b est en degré Kelvin.

R_d et [p] sont des contributions de groupes respectivement de la réfraction molaire et du parachor.

L'erreur est de 5% entre les valeurs expérimentales et empiriques.

> Equation de Stiel et Thodos[1]

Elle est valable pour les hydrocarbures aliphatiques saturés.

$$T_b = 1209 - [1163 / (1 + 0.0742 N^{0.85})]$$
(2)

T_b: température d'ébullition normale (K)

N : nombre d'atome de carbone dans le composé.

> Equation de Kreglewski-Zwolinski[1]

Cette équation est valable pour la famille des alcanes.

Ln
$$(1071.28 - T_b) = 6.97596 - 0.116307 N^{2/3}$$
(3)

 T_b : température d'ébullition normale.

N: nombre d'atomes de carbone.

Le maximum de déviation atteint est de 0.1%.

Corrélation de Zidelkheir- Chitour[1]

Ces auteurs ont proposé deux types de corrélations basées sur la contribution de groupement CH2 à pression atmosphérique.

Corrélation de type 1

$$Tb = (Tb)_6 + P[1-K^{(N-6)}]....(4)$$

Avec:

Tb: température d'ébullition en °C

N : nombre d'atome de carbone N>6.

P, K: constantes dépendantes de la famille d'hydrocarbures

Les valeurs de P et K sont données dans le tableau suivant :

Famille	Paraffines	Naphtènes	Oléfines	aromatique
K	0,9489519	0,945127	0,947521	0,9462879
P	535,3766	523,1084	533,0441	508,363

Corrélation de type II :

C'est une corrélation polynomiale dont la variable est le nombre d'atome de carbone.

$$T_b = A + B.N + C.N^2 + D.N^3 + E.N^4$$
 (5)

Avec:

Tb: température d'ébullition en °C

N : nombre d'atomes de carbone N>6.

A, B, C, D, E: constantes données dans tableau suivant:

Famille	Paraffines	Naphtènes	Oléfines	aromatique
A	1158,708	-159,169	-168,96	-129,48
В	47,0	47,219	48,2139	41,8418
C	-1,74186	-1,60583	-1,80486	-1,25282
D	0,0400437	0,0302061	0,0419172	0,0217178
Е	-0,000392	-0,000200	-0,000415	-0,0001609

d) Corrélations utilisées pour le calcul de la température d'ébullition des mélanges d'hydrocarbures

Un mélange d'hydrocarbures commence à bouillir quand le corps le plus léger passe à l'état vapeur c'est la température finale. Entre la température initiale et finale l'écart peut être grand. La température d'ébullition moyenne du mélange est considérée comme une propriété additive pour un mélange de composition connue, nous pouvons appliquer en première approximation la formule suivante concernant les règles d'additivité :

$$T_{bm} = \sum X_i. T_{bi} \qquad \dots \qquad (6)$$

T_{bi} température d'ébullition du constituant i.

T_{bm} température d'ébullition du mélange.

X_i fraction molaire du constituant i.

Cette règle est d'autant plus valable que les hydrocarbures appartiennent à une même famille, et que les points d'ébullition ne sont très éloignés.

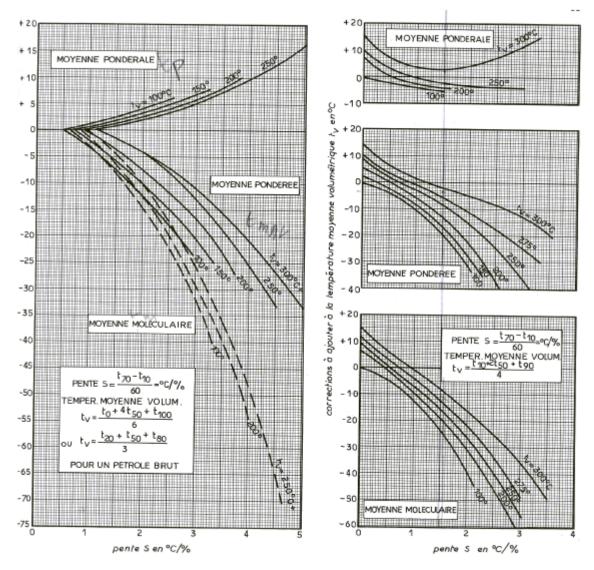
Nous pouvons aussi déterminer la température « moyenne » d'ébullition en considérant d'abord le mélange équivalent à un corps pur paraffinique ou naphtenique ou aromatique, les trois températures déterminées permettront connaissant la composition X_{P} , X_{N} et X_{A} en paraffine, naphtènes et aromatique respectivement d'écrire :

$$T_{bm} = X_P.T_{bp} + X_A.T_{bA} + X_N.T_{Bn}$$
 (7)

e) Corrélations utilisées pour la prédiction de la température d'ébullition des fractions pétrolières

Comme il a été déjà écrit auparavant, la température d'ébullition n'a pas de sens pour un mélange, puisque celle-ci passe de l'état liquide à l'état vapeur dans un intervalle de températures plus ou moins large, selon la température d'ébullition des constituants. Pour une détermination rapide de la composition,on réalise,au laboratoire,une distillation ASTM ,pour une connaissance plus précise, c,est la distillation TBP qui est mise en forme .Les résultats de distillation sont habituellement traduits graphiquement sous forme de courbes de températures

(en tête de colonne) en fonction du pourcentage volumétrique recueilli .Selon les différents pourcentages,nous obtenons trois températures moyennes d'ébullition,correspondant au point 50% volumétrique(T_V),pondérale(T_P),et molaire(T_m).La valeur moyenne pondérée des trois valeurs définies précédemment est la température moyenne pondérée ou température mean-average(T_{mav}) .La température mean-average est déterminée par des abaques (figure5) . Pour déterminer cette température (T_{mav}) il est nécessaire de connaître le parcours de la courbe de distillation, c'est- à –dire T (10%), T (50%), T (70%), T (90%) et T (100%).La température volumétrique pour un pétrole brut s'écrit, à partir de la TBP.


$$T_V = [T (10\%) + 4T (50\%) + T (100\%)]/4$$
 (8)
La pente S s'écrit $S = [T (70\%) - T (10\%)]/60$ (9)

A partir de la courbe ASTM nous déduisons la température volumétrique pour les fractions pétrolières.

Il est nécessaire de définir alors les incréments nécessaire pour atteindre les autres températures, la température moléculaire T_m , la température pondérale T_P et enfin la température pondérée T_{mav} .

$$T_{v} = T_{p} + \beta$$
 (12)
 $T_{v} = T_{m} + \gamma$ (13)
 $T_{v} = T_{mav} + \alpha$ (14)

 α , β et γ sont des incréments lus sur des abaques, on porte l'incrément en fonction de la pente, pour les températures volumétriques considérées.

Figure 5 : détermination des températures moyennes températures d'ébullition à partir de la TBP l'ASTM.

Figure 6: détermination des moyennes d'ébullition à partir de

II.2.2 La densité

La densité est le rapport du poids d'un certain volume d'échantillonnage de l'hydrocarbure pris à une température donnée sur le poids du même volume d'eau prise à 4°C dans le cas des liquides. La densité standard est donnée par la relation suivante :

$$d_4^{20} = \frac{\text{poids d'un volume de produitpris à } 20^{\circ}\text{C}}{\text{poid du même volume d'eau pris à } 4^{\circ}\text{C}} \qquad \dots (15)$$

Pour les gaz, nous faisons appel soit à la masse volumique exprimée en Kg/m³ ou à la densité par rapport à l'air.

La terminologie anglo-saxonne utilise density pour la masse volumique et Specific Gravity pour la densité; définie pour une même température standard, soit 60°F (Sg 60/60°F), c'est-à-dire environ la densité prise à 15°C.

Un autre concept est utilisé également pour la mesure de la densité : degré API, définit par l'American Petroleum Institut comme étant une fonction hyperbolique de la specific gravity donnée par la relation :

$$^{\circ}$$
API = 141,5/SpGr (60/60 $^{\circ}$ F) – 131.5(16)

Excepté pour les calculs nécessitant une très grande précision, nous pourrons toujours confondre la specific gravity 60/60°F et la densité à 15°C.

Expérimentalement, la densité est une propriété physique dont la mesure est simple et rapide. Les dispositifs utilisés à cet effet, sont à titre d'exemples, le pycnomètre et l'aréomètre.

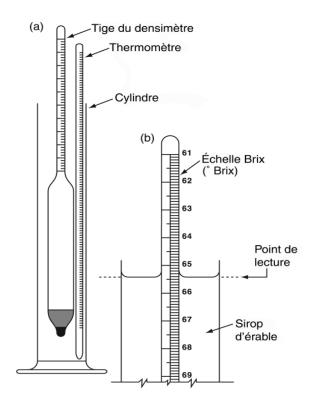


Figure 7 : principe de mesure de la densité à l'aide d'un aéromètre

II.2.2 .1 Corrélations utilisées pour la prédiction de la densité

➤ Méthode de Gunn et Yamada[5]

Cette méthode des états correspondants a été choisie à cause de son applicabilité générale, sa haute précision et le large domaine de température qu'elle couvre.

Erreurs attendues

L'erreur moyenne reportée par Gunn et Yamada sur 32 composés différents est inférieure à 0.5% avec une déviation maximale < 2.2%. Dans l'intervalle de température inférieure à TR=0.8 les déviations maximales étaient < 0.5%.

➤ Méthode de Rackett[6]

Cette corrélation, très simple, se base sur les propriétés critiques Tc, Pc et Vc et donne de bons résultats.

$$1/\rho = R T_C/P_C ZRA^{(1+(1-Tr)2/7)}$$
 (22)
 $ZRA = PcVc / (RTc)$ (23)

Erreurs attendues

L'erreur moyenne est inférieure à 0.5% pour toutes les catégories excepté les acides organiques et les alcools où l'erreur variait entre 1% et 1.5%.

Corrélation de Holder[5]

$$SpGr = a^{*}(T^{*})^{4} + b^{*}(T^{*})^{2} + c^{*}(T^{*}) + d / T^{*} + e / T^{*} + \dots$$
(24)

Avec:

$$T^* = (\text{Teb } / 555,6)$$
(25)

Teb: Température d'ébullition en K.

$$\triangleright$$
 Quand $322 < \text{Teb} < 476,7K$ $a = -34,13500$ $b = 177,53590$ $c = -251,30503.$ $d = -24,67120$ $e = 0$ $f = 133,14142.$ \triangleright Quand $476.7 < \text{Teb} < 794K$ $a = 0$ $b = 0$ $c = -0,572794.$ $d = -4,48665$ $e = 1,759976$ $f = 4,293929.$

➤ Corrélation de Riazi – Daubert [2]

$$d_4^{20} = 0.982554 * Teb^{0.002016} * SpGr^{-1.0055}$$
 (26)

Avec:

Teb: Température d'ébullition en K.

M = 70 - 300 g/mole.

II.4 Méthodes de prédiction des propriétés de base

II.4.1 Description des méthodes de prédiction des propriétés critiques

II.4.1.1 Définition

Les propriétés critiques sont des caractéristiques physiques des corps purs. La température et la pression critiques définissent le point limite supérieur de la courbe de tension de vapeur, au-delà duquel le changement de phase n'est plus observé. En ce point, la densité et la composition des deux phases liquide et vapeur sont identiques; la séparation d'un tel mélange et donc impossible en ce point. La connaissance du point critique permet de prévoir le comportement des substances dans un large domaine de températures et de pressions par le biais de la loi des états correspondants ou des équations d'état.

Dans un domaine de coordonnées pression - température, les équilibres de sublimation, de fusion et de vaporisation d'un corps pur sont représentés par trois courbes qui convergent au point triple et délimitent les domaines relatifs aux états liquide, solide et gaz. Dans le cas d'un mélange, la courbe d'équilibre de vaporisation se décompose en deux courbes :

- -Courbe de bulle.
- -Courbe de rosée.

Cependant, malgré ces différences entre les courbes P-V-T des corps purs et des mélanges de corps purs, dans les deux cas, l'équilibre entre la phase liquide et la phase gazeuse est impossible au-delà d'un point "C" appelé point critique. Ce point, qui a pour coordonnées Tc, Pc, Vc (température, pression et volume critiques), constitue la limite au dessus de laquelle la coexistence des deux phases liquide et vapeur n'est plus possible, il correspond à l'identité parfaite des propriétés du liquide et de la vapeur : densité, indice de réfraction, etc., en particulier la chaleur de vaporisation devient nulle.

L'isotherme passant par le point critique "C" présente un point d'inflexion, souvenir d'un palier de liquéfaction évanescent. Cette caractéristique de l'isotherme critique se traduit alors par les deux expressions algébriques suivantes :

$$\left(\frac{\delta P}{\delta V}\right)_{T_C} = 0$$

$$\left(\frac{\delta^2 P}{\delta V^2}\right)_{T_C} = 0$$
(28)

Ces deux équations constituent le critère de stabilité thermodynamique auquel doivent obéir toutes les équations d'état.

II.4.1.2 Mesures expérimentales

Deux techniques sont généralement utilisées pour la mesure des propriétés critiques, à savoir : la méthode de l'écoulement et la méthode de l'ampoule. Ces deux méthodes sont basées sur le principe de l'opalescence critique, qui consiste à évaluer la température, la pression et le volume critiques d'une substance lorsque le ménisque séparant les phases liquide et vapeur disparaît, laissant place à une bande d'un brouillard opalescent.

Pour les deux méthodes, une vidéo permet de visualiser l'image de la cellule et un ordinateur enregistre la propriété critique mesurée. Pour les substances instables thermiquement, il faut effectuer les mesures de température et de pression lorsque le temps de séjour dans la cellule est très faible et ceci afin de limiter les réactions de décomposition.

Comme la détermination expérimentale de ces propriétés nécessite un appareillage coûteux et sophistiqué ainsi qu'une manipulation longue et délicate, il est souvent nécessaire de faire appel à des corrélations pour les estimer.

II.4.1.3Méthodes de prédiction des propriétés critiques pour les corps pur

La température et pression critiques sont des caractéristiques physiques des hydrocarbures. Ces deux paramètres définissent le point limite supérieur de la courbe de tension de vapeur, au-delà duquel le changement de phase n'est plus observé; ce point critique correspond à l'identité parfaite des propriétés du liquide et de la vapeur : densité, indice de réfraction, etc. en particulier, en ce point, la chaleur de vaporisation devient nulle. Pour chaque famille d'hydrocarbures les points critiques sont régulièrement distribués sur des courbes dans le diagramme : tension de vapeur température, comme le montre la figure 8 pour les hydrocarbures paraffiniques. Les propriétés critiques des hydrocarbures courants sont données aux figures 9 et 10.

Les variations d'un certain nombre de propriétés physiques, en fonction de la pression et de la température, sont quelques fois mieux représentées dans un système à coordonnées réduites :

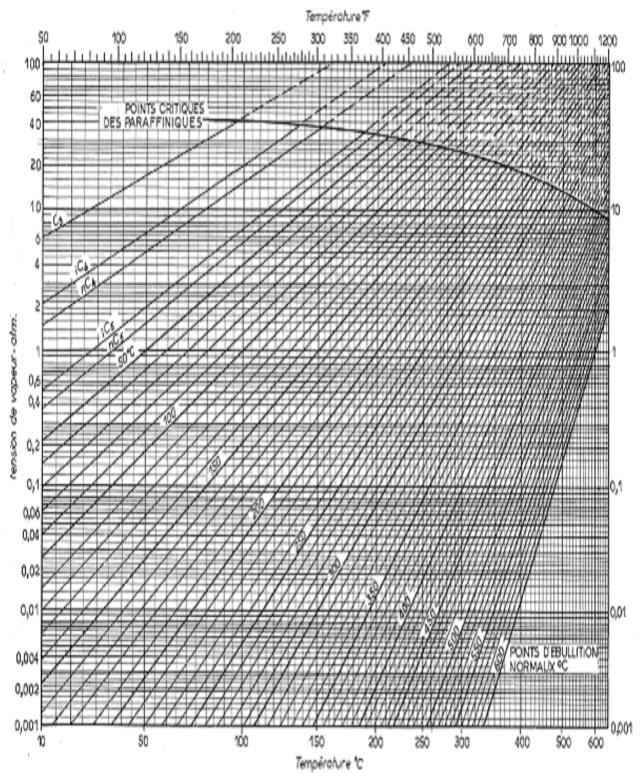



Figure 8: courbes de tension de vapeur des hydrocarbures paraffiniques(cox chart)

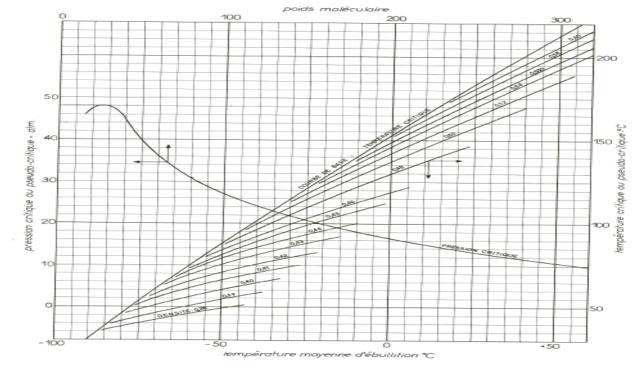


Figure 10 : pression critique des hydrocarbures paraffiniques et température critique (ou pseudo-critique) des hydrocarbures et fractions légères.

II.4.1.3.1 Fractions pétrolières

L'étude des équilibres liquide-vapeur montre qu'un mélange d'hydrocarbures admet également un point critique vrai, correspondant à l'impossibilité d'un changement de phase. Ce point critique C correspond à la jonction de la courbe de bulle et de la courbe de rosée du mélange, représenté à la figure 10, au dessus du lieu des points critiques des hydrocarbures paraffiniques. Nous avons déjà été amenés à établir une équivalence entre une fraction complexe et un hydrocarbure pur fictif par la définition de la température moyenne pondérée. Ici également, nous pouvons rechercher cette équivalence en considérant un hydrocarbure fictif ayant une courbe de tension de vapeur moyenne comprise entre la courbe de bulle et de rosée. Cet hydrocarbure aurait un point critique vrai C', situé sur le lieu précédent, que l'on appellera le point pseudo-critique de la fraction. Ses cordonnées pseudo-critiques $T_{\rm pc}$ et $P_{\rm pc}$ seront utilisées dans le calcul des conditions réduites $T_{\rm r}$ et $P_{\rm r}$, ce qui permettra d'obtenir les corrélations exactes des propriétés physiques de la fraction dans le système réduit, au même titre que pour les hydrocarbures purs.

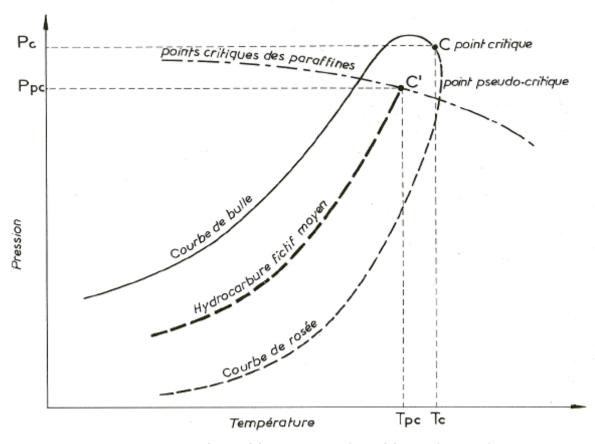


Figure 11 : points critiques et pseudo- critiques d'un mélange.

La détermination de ces coordonnés pseudocritiques s'opère :

Pour les mélanges à nombre fini de constituants, en pondérant moléculairement les températures et pressions critiques des hydrocarbures purs composant le mélange, selon la méthode W.B.Key;

Pour une fraction complexe, en utilisant des corrélations empiriques faisant intervenir la température d'ébullition moyenne, la densité et le facteur de caractérisation Kuop de la fraction. Parmi ces corrélations, citons celles de Hougen et Watson. Ces dernières étant présentées aux figures 12,13.

Par ailleurs, les figures 10, 12,13 permettent l'estimation des points critiques vrais des fractions.

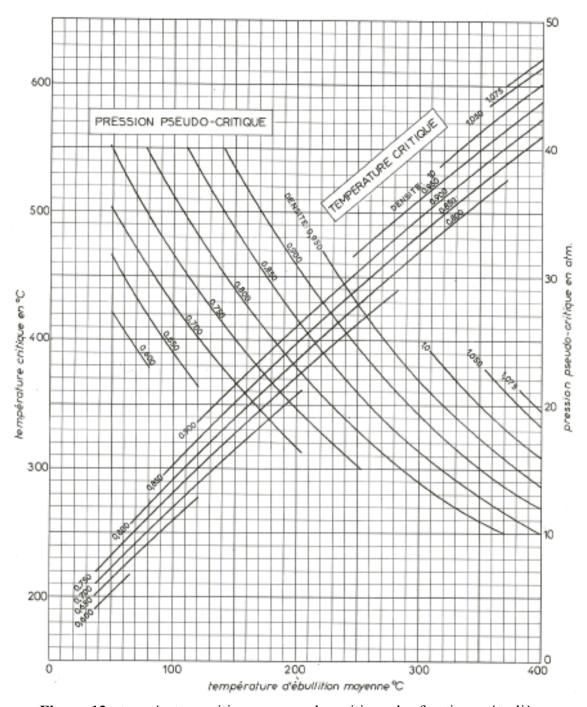
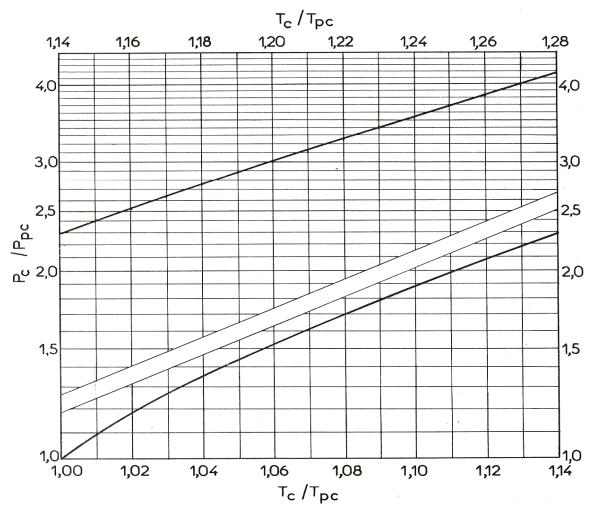



Figure 12 : température critique ou pseudo- critique des fractions pétrolières.

```
Note:
Choix des températures d'ébullition moyennes:
— température critique vraie : moyenne pondérale;
— température pseudo-critique : moyenne molaire;
— pression pseudo-critique : moyenne pondérée.
```


Figure 13 : pression critique vrai des fractions pétrolières, définie par P_c/P_{pc} En fonction de T_c/T_{pc}

II.4.1.3.1.1 Corrélations utilisées pour la prédiction des propriétés critiques.

• Température critique

➤ Méthode de Lydersen (1955)[6]

Cet auteur a proposé une méthode de contribution de groupe basée d'une part sur une grandeur mesurable, la température d'ébullition et d'autre part sur la structure chimique.

$$T_c = T_b[0.567 + \Sigma \sigma T - (\Sigma \sigma T)^2]....(31)$$

Avec:

Tc: température critique (°K)

Tb: température d'ébullition (°K)

ΣσT: incrément évalué par sommation des contributions de groupe d'atome.

> Corrélation de Zidelkhier Chitour [3]

Ces auteurs ont proposé deux corrélations en fonction du nombre de carbone :

Pour les corps pur appartenant aux familles d'hydrocarbures, des paraffines, des naphtènes, et des oléfines :

$$P_c = P_c(6) - P (1-K (N-6))...(32)$$

Avec:

Pc(6) : la pression critique de l'hydrocarbure à 6 atomes de carbone.

K et P : deux constantes caractéristiques de la substance étudiée données dans le tableau suivant :

	Paraffines	Naphtènes	Oléfines
P	28,61492	34,41173	29,47909
K	0,917284	0,8391886	0,901927

Pour les corps appartenant à la famille des aromatiques :

$$P_c = P_c(7) - P(1-K(N-1))...(33)$$

Avec:

Pc: pression critique (atm)

Pc(7): pression critique de l'hydrocarbure à 7 atomes de carbone

K : constante caractéristique égale à 0,8858486

P: constante caractéristique égale à 33,73745

N: nombre d'atomes de carbone

• Le volume critique :

Méthode de Lydersen (1955) [6]

Lydersen propose une relation basée sur les contributions de groupes.

$$V_c = 40 + \Sigma \delta Vi....(34)$$

Avec:

Vc : volume critique du mélange (l/mol).

 $\Sigma \delta Vi$: contribution du groupe i.

➤ Méthode de Zidelkhier Chitour (1993)[3]

Ces deux auteurs proposent une corrélation de la forme :

$$V_c = V_c(6) + K (N-6)...(35)$$

Avec:

Vc : volume critique du mélange (l/mol)

Vc(6) : volume critique de l'hydrocarbure à 6 atomes de carbone

K : constante caractéristique de la famille de l'hydrocarbure considéré (voir tableau

précédent).

II.4.2 Description des méthodes de prédiction de l'indice de réfraction

II.4.2 .1 Définition

Les rayons lumineux changent de vitesse et de direction en passant d'un milieu à un autre. Ce phénomène est appelé réfraction, le rapport entre le sinus de l'angle d'incidence et le sinus de l'angle de réfraction "r" est une constante indépendante de la valeur de l'angle d'incidence pour un milieu donné.

Avec:

n : indice de réfraction.

II.4.2 .2 Mesure expérimentale

On peut facilement mesurer l'indice de réfraction au laboratoire à l'aide d'un réfractomètre, le plus utilisé étant le réfractomètre d'ABBE. L'indice de réfraction dépend de la température à laquelle on fait la détermination de la longueur d'onde de la lumière. En général, elle est faite par rapport à la raie jaune du sodium D= 589.3 nm à 20°C. Pour cela, l'effet de la température est pris en compte à l'aide de la formule :

$$n_d^{\text{to}} = n_d^{\text{t}} - 4.10^{-04} .(\text{t-t}^{\circ})....(37)$$

Avec:

T°: 20°C.

T : température de mesure.

II.4.2 .3 Corrélations pour la prédiction de l'indice de réfraction

> Riazi- Daubert (1980) [2]

A partir de la connaissance de l'indice de corrélation, Riazi et Daubert ont proposé la corrélation suivante:

$$n_D^{20} = \left[\frac{2. I + 1}{1 - I}\right]^{1/2}$$
(38)

Corrélation de Lipkin – Martin[5]

$$n_D^{20} = (69,878* d_4^{20} - 0.4044* d_4^{20 A} + 136,566) / (5,543* d420 - 0.746*A + 126.683)(39)$$

$$A = 55.3 + [3516 / (M + 12)](40)$$

Corrélation de Skander – Chitour [5]

Ces auteurs proposent une équation générale de la forme :

$$n_D^{20} = a + \frac{b}{- \frac{N}{c}}$$

$$1 + \left[\frac{N}{c} \right]^d$$
(41)

Avec:N: nombre d'atomes de carbone

a, b et C : sont des constantes dépendant de la famille d'hydrocarbure.

Famille	a	Ъ	С	d
Paraffines	1,0383849	0,43547681	1,9777596	-1,1058713
Naphtènes	1,4044036	0,063993849	8,998799	-2,1008282
Aromatique	1,4795363	0,032544169	7,6142466	2,7867861

II.5 Les méthodes de prédiction des propriétés thermiques

II.5.1 Capacité Calorifique

La capacité calorifique d'une substance est la quantité de chaleur qu'il faut fournir à l'unité de poids de cette substance pour augmenter sa température de un degré. Elle s'exprime en kJ/ (kg.K) dans le système S.I. Elle est définie soit à pression constante C_P , soit à volume constant C_V :

$$Cp = (\delta H/\delta T) P$$
 (42) et $Cv = (\delta U/\delta T) V$ (43)

La capacité calorifique à pression constante Cp est la plus fréquemment utilisée, notamment à la température standard de 298 K. Les valeurs de cette dernière ont été tabulées pour un grand nombre de composés pris à l'état de gaz parfaits. Les variations de cette propriété avec la température ont été souvent exprimées sous la forme d'un polynôme de type :

$$Cp = A + B.T + C.T^2 + D.T^3$$
 (44)

A, B, C et D sont des constantes propres à chaque substance dont les valeurs sont données dans les tables.

II.5.1.1 Corrélations pour la prédiction de la capacité calorifique

➤ Corrélation de Skander, Souahi et Chitour[5]

$$Cp^{\circ}298K (J/mol.K) = a + b N + c N^{2} + d N^{3} (45)$$

Où a, b, c et d : constantes pour différentes familles sont données dans le tableau suivant :

Valeurs des constantes a, b, c et d										
Familles	a	b	С	d	R ²					
n- Paraffines	4.832523849	23.08950711	-0.012045986	19.8196.10 ⁻⁵	0.999996					
i-Paraffines	7.891028	22.520998	1.859598.10 ⁻²	-3.099334.10 ⁻⁴	0.9999996					
I-Olefines	-4.896526	22.875256	-3.486397.10 ⁻⁴	6.125165.10 ⁻⁶	0.999999997					
Naphtènes	-44.216611	26.658451	-0.1970655	3.230304.10 ⁻³	0.99996					
Aromatiques	-60.807854	24.050279	-6.025028.10 ⁻²	9.746174.10 ⁻⁴	0.999995					

Chaleur spécifique des liquides

➤ Corrélation de Bondi & Rowlinson[7]

$$C_{PL} - C_{P}^{\bullet} = R \left(2.56 + \frac{0.436}{1 - T_{R}} + \omega \left[2.91 + \frac{4.28(1 - T_{R})^{1/3}}{T_{R}} + \frac{0.296}{(1 - T_{R})} \right] \right)$$
 (46)

L'erreur estimée est de 5 à 10 %, cette équation ne peut être utilisée pour les composés polaires.

➤ Correlation de Yuan & Stiel[6]

Pour les composés apolaires:

$$C_{\sigma L} - C_{P}^{*} = C^{(0)} + \omega C^{(1)}$$
(47)

Où, C(0) and C(1) sont donnés dans le tableau suivant:

Yuan & Stiel Liquid Heat Capacity Parameters								
T _R	C ⁽⁰⁾	C ⁽¹⁾	C ^(up)	C ^(1p)	C ^(2p)	C _(3p)	C ^(4p)	C _(ab)
0.96	14.87	37						
0.94	12.27	29.2	12.3	29.2	-126			
0.92	10.6	27.2	10.68	27.4	-123			
0.9	9.46	26.1	9.54	25.9	-121			
0.88	8.61	25.4	8.67	24.9	-117.5			
0.86	7.93	24.8	8	24.2	-115			
0.84	7.45	24.2	7.6	23.5	-112.5			
0.82	7.1	23.7	7.26	23	-110			
0.8	6.81	23.3	7.07	22.6	-108			
0.78	6.57	22.8	6.8	22.2	-107			
0.76	6.38	22.5	6.62	21.9	-106			
0.74	6.23	22.2	6.41	22.5	-105	-69	-4.22	-29.5
0.72	6.11	21.9	6.08	23.6	-107	15	-7.2	-30
0.7	6.01	21.7	6.01	24.5	-110	131	-10.9	-29.1
0.68	5.91	21.6	5.94	25.7	-113	236	-15.2	-22.8
0.66	5.83	21.8	5.79	27.2	-118	306	-20	-7.94
0.64	5.74	22.2	5.57	29.3	-124	324	-25.1	14.8
0.62	5.64	22.8	5.33	31.8	-132	287	-30.5	43
0.6	5.54	23.5	5.12	34.5	-141	194	-36.3	73.1
0.58	5.42	24.5	4.92	37.6	-151	50.5	-42.5	102
0.56	5.3	25.6	4.69	41.1	-161	-137	-49.2	128
0.54	5.17	26.9	4.33	45.5	-172	-358	-56.3	149
0.52	5.03	28.4	3.74	50.9	-184	-602	-64	165
0.5	4.88	30	2.87	57.5	-198	-856	-72.1	179
0.48	4.73	31.7	1.76	65	-213	-1110	-80.6	192
0.46	4.58	33.5	0.68	72.6	-229	-1330	-89.4	206
0.44	4.42	35.4	0.19	78.5	-244	-1500	-98.2	221
0.42	4.26	37.4			•			
0.4	4.08	39.4						

Pour les composés polaires

$$C_{\sigma L} - C_{P}^{\bullet} = C^{(0P)} + \omega C^{(1P)} + x C^{(2P)} + x^{2}C^{(3P)} + \omega^{2}C^{(4P)} + x \omega C^{(5P)} \qquad (48)$$

Où, C(0P), C(1P), C(2P), C(3P), C(4P) et C(5P) sont données dans le tableau précédent. L'erreur est moins de 5%.

Nous allons citer ici quelques corrélations pour l'estimation de la capacité calorifique d'un corps pur pris à l'état de gaz parfait (idéal).

> Corrélation de Benson[6]

La méthode de Benson et col estime la capacité calorifique à des températures données : 300, 400, 500, 600, 800 et 1000 K. l'équation fondamentale utilisée par la méthode de Benson est :

$$C_{P}^{\circ}(K) = \Sigma \Delta_{CB}(T) / 4.1868$$
(49)

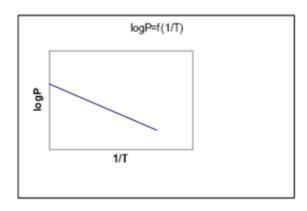
Où, ΔCB les contributions de groupes à des températures spécifiques données dans le tableau suivant :

Tableau 10A Benson Gas-Heat Capacity Hydrocarbon Group Contributions									
Hydrocarbons Groups	Δ _{CB} 300	∆cs 400	∆ _{C8} 500	Δ _{CS} 600	Δ _{CB} 800	Δ _{CB} 1000			
C-(C)(H)3	25.92	32.82	39.36	45.18	54.51	61.84			
C-(C)2(H)2	23.03	29.1	34.54	39.15	46.35	51.67			
C-(C)3(H)	19.01	25.12	30.02	33.7	38.98	42.08			
C-(C)4	18.3	25.67	30.81	34	36.72	36.68			
C=-(H)2	21.35	26.63	31.44	35.59	42.16	47.19			
C=-(C)(H)	17.42	21.06	24.33	27.21	32.03	35.38			
C=-(C)2	17.17	19.3	20.89	22.02	24.28	25.46			
C=-(C=)(H)	18.67	24.24	28.26	31.07	34.96	37.64			
C=-(C=)(C)	18.42	22.48	24.83	25.87	27.21	27.72			
C=-(CΦ)(H)	18.67	24.24	28.26	31.07	34.96	37.64			
C=-(CΦ)(C)	18.42	22.48	24.83	25.87	27.21	27.72			
C=-(C≡)(H)	18.67	24.24	28.26	31.07	34.96	37.64			
C=-(C≡)(C)	18.42	22.48	24.83	25.87	27.21	27.72			
C-(C=)(H)3	25.92	32.82	39.36	45.18	54.51	61.84			
C-(C=)2(H)2	19.68	28.47	35.17	40.14	47.31	52.75			
C-(C=)2(C)2	14.95	25.04	31.44	35.04	37.68	37.76			
C-(C=)(C)3	16.71	25.29	31.11	34.58	37.35	37.51			
C-(C=)(C)(H)2	22.69	28.72	34.83	39.73	46.98	52.25			
C-(C=)(C)2(H)	17.42	24.74	30.73	34.29	39.61	42.66			
C-(C=)2(C)(H)	15.66	24.49	30.65	34.75	39.94	43.17			
C-(C≡)(H)3	25.92	32.82	39.36	45.18	54.51	61.84			
C-(C≡)(C)(H)2	20.72	27.47	33.2	38.02	45.47	51.04			
C-(C≡)(C)2(H)	16.71	23.49	28.68	32.57	38.1	41.45			
C-(CΦ)(H)3	25.92	32.82	39.36	45.18	54.51	61.84			
C-(Cf)(C)(H)2	24.45	31.86	37.6	41.91	48.11	52.5			
C-(CΦ)(C)2(H)	20.43	27.88	33.08	36.63	40.74	42.91			
C-(CΦ)(C)3	18.3	28.43	33.87	36.76	38.48	37.51			
C-(CΦ)2(C)(H)	15.66	24.49	30.65	34.75	39.94	43.17			
C-(CΦ)2(C)2	14.95	25.04	31.44	35.04	37.68	37.76			
C-(CΦ)(C _E)(H)2	19.68	28.47	35.17	40.19	47.31	52.75			
C≡-(H)	22.06	25.08	27.17	28.76	31.28	33.33			
C≘-(C)	13.1	14.57	15.95	17.12	19.26	20.6			
C=-(C=)	10.76	14.82	14.65	20.6	22.36	23.03			
C≡-(Cl)	10.76	14.82	14.65	20.6	22.36	23.03			
CΦ-(H)	13.57	18.59	22.86	26.38	31.57	35.21			
CΦ-(C)	11.18	13.15	15.41	17.38	20.77	22.78			
CΦ-(C=)	15.03	16.62	18.34	19.76	22.11	23.49			
CΦ-(C ₌)	15.03	16.62	18.34	19.76	22.11	23.49			
CΦ-(CΦ)	13.94	17.67	20.47	22.06	24.12	24.91			
Ca	16.33	18.42	19.68	20.93	22.19	23.03			
COf-(CO)2(COf)	12.52	15.32	17.67	19.43	21.9	23.24			
C0f-(C0)(C0f)2	12.52	15.32	17.67	19.43	21.9	23.24			
COF-(COF)3	8.71	11.93	14.65	16.87	19.89	21.52			

Cette méthode présente une erreur moyenne de 1.1%.

II.5.2 Chaleur latente de vaporisation

En thermodynamique, on appelle *phase* chacune des parties homogènes d'un système. Une même substance homogène peut se trouver, suivant les conditions de pression et de température, dans une des trois phases (appelée aussi *état*) solide, liquide ou gazeuse. Dans certaines conditions, deux ou trois phases peuvent coexister en équilibre. On considère généralement les trois *changements de phase* (ou *transitions*) suivants : fusion, vaporisation, sublimation (et leur inverse). Au cours d'une transition de phase effectuée à pression constante, l'ancienne et la nouvelle phase coexistent en équilibre; la température, appelée *température de transition*, demeure constante. Cependant le volume et la proportion de substance se trouvant dans chaque phase varient. Par exemple, la *vaporisation*, changement de phase liquide-gaz (ou vapeur), s'effectue, pour une substance donnée, à une température bien déterminée dépendant de la pression à laquelle s'effectue la transformation. Pour qu'une transition s'effectue, la substance doit échanger une certaine quantité de chaleur Q dépendant de sa masse m et de la température de transition T. On appelle *chaleur latente de vaporisation* LV la chaleur qu'il faut fournir à l'unité de masse de liquide pour le transformer en vapeur aux conditions d'équilibre à la température considérée :


$$L_{V}(T) = \frac{1}{M} \mathbb{Q}$$
(50)

II.5.2 .1 Mesure expérimentale

La chaleur latente de vaporisation se mesure indirectement par le biais de la mesure de la pression de vapeur. En effet, elle est déduite en mesurant la pente de la droite représentant les variations du logarithme de la pression de vapeur en fonction de l'inverse de la température. (Equation de Clausius Clapeyron).

Pente = $\Delta H vap / (2.3R)$

L'équation est valable pour T<0.7Tc

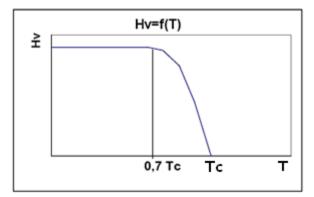


Figure 14 : mesure de la chaleur de vaporisation.

II.5.2 .2 Chaleur latente de vaporisation des corps purs

Dans le cas des hydrocarbures purs, la transformation du liquide en vapeur s'effectue à pression et à température constante alors que pour les mélanges, elle peut se réaliser de deux façons :

Soit à pression constante et à température variable.

Soit à température constante et pression variable.

A partir de l'équilibre liquide vapeur, il est possible de déduire l'enthalpie de vaporisation à une température donnée et à pression constante, comme étant la différence entre l'enthalpie de la vapeur et l'enthalpie du liquide à cette même température, comme indiqué sur la figure 15. De plus l'enthalpie de vaporisation diminue avec l'élévation de la température et s'annule au point critique, comme le montre à titre d'exemple la figure 14.

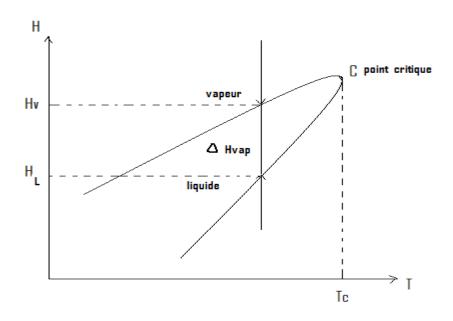


Figure 15 : détermination de la chaleur de vaporisation

La chaleur latente de vaporisation d'un corps pur peut être obtenue à l'aide de la relation de Clapeyron ci-dessous.

$$\Delta H_V = RT (-LnP_V) + Cst \dots (51)$$

L'équation de Clapeyron peut s'écrire :

$$Ln P_v = A - \Delta H_V / RT \Delta Z_V ...$$
 (52)
 $\Delta Z_V = Z_{sv} - Z_{sl} = P/RT (V_{sv} - V_{sl}) ...$ (53)

On prend généralement $\Delta Z_V = 1$, Haggenmacher donne une valeur plus correcte et propose :

$$\Delta Z_{V} = (1 - P_{r}/T_{r}^{3})^{\frac{1}{2}}$$
.....(54)

Avec une température assez loin du point critique.

b.1) Corrélations pour la prédiction de la chaleur de vaporisation des corps purs

Equation de Kistiakowsky[1]

Kistiakowsky propose une équation de la forme :

$$\Delta H_{Veb}/T_{eb} = \Delta S_{veb} = 8.75 + R Ln T_{eb}(55)$$

 T_{eb} en °K, ΔS_{veb} en cal/g.mol. °K, R = 1.98 cal/g mole et ΔH en cal/g mole.

Elle permet de même de calculer l'entropie de vaporisation.

Vetere a modifié l'équation de Kistiakowsky et propose pour les hydrocarbures une équation de la forme :

$$\Delta H_{veb}/T_{eb} = 58.2 + 13.7 \log M + 6.49(T_{eb} - (263M)^{0.581})^{1.037}/M$$
(56)

ΔH_{veb} est donnée à la température d'ébullition (en °K) en j/mol.K.

Corrélation de Pitzer

Cette corrélation fait intervenir le facteur acentrique et la température réduite T_r.

Le facteur acentrique ω est supposé représenter l'acentricité ou la non sphéricité de la molécule. L'application de la loi des états correspondants permet d'écrire :

$$dlnP_{vap} = \frac{\triangle Hv}{RTc \triangle Zv} d(1/Tr) \dots (67)$$

L'enthalpie de vaporisation réduite $\Delta H_v/RT_c$ en fonction de $dlnP_v/d(1/T_r)$ et ΔZ_v , ces paramètres sont fonction de T_r et P_v et d'un troisième paramètre ω ou Z_c .

Pitzer donne la corrélation suivante :

$$\Delta H_v/RT_c = 7.08 (1 - T_r)^{0.354} + 10.95 (1 - T_r)^{0.456}$$
....(58)

> Equation de Lee-Kesler[1]

Pour un composé pur, la chaleur de vaporisation est la différence entre l'enthalpie de la vapeur saturée et du liquide saturé à une température donnée.

$$\Delta H_{v} = [(H^{\circ}/M) - (RT_{C}/M)[(H^{\circ}-H)/RT_{c}]]_{vap.sat} - [H^{\circ}/M - RT_{C}/M[(H^{\circ}-H)/RT_{C}]]_{liq.sat}$$
(59)

 ΔH_v : chaleur de vaporisation en BTU/Lb.

 H° : enthalpie molaire du gaz parfait à une température T(R) en BTU/Lb.

(H° - H)/RT_c : facteur adimensionnel donnant l'effet de la pression sur l'enthalpie.

Sur l'abaque de la figure des hydrocarbures purs, nous pouvons lire la valeur de λM/RT_c.

Connaissant le facteur acentrique ω ainsi que la température réduite T_r , nous pouvons déduire ensuite la chaleur de vaporisation en (BTU/Lb), connaissant la masse moléculaire M et la température critique T_c .

Remarque

Cette méthode graphique de détermination de la chaleur latente de vaporisation des hydrocarbures n'est pas adéquate pour les substances polaires.

Corrélations basées sur la règle de Maxwell (loi des états correspondants)

Une autre méthode consiste à dire que la chaleur de vaporisation d'une fraction pétrolière est égale à la chaleur de vaporisation d'un hydrocarbure pur de même poids moléculaire ou de même T_{mav} à une température pour laquelle cet hydrocarbure a une tension de vapeur égale à la pression considérée pour la fraction (application de la loi des états correspondants).

Maxwell donne les chaleurs latentes de vaporisation des hydrocarbures légers jusqu'à l'octane ainsi que celles des hydrocarbures légers paraffiniques plus lourds, repérés par leurs températures d'ébullition normale. C'est une autre façon de représenter graphiquement les valeurs données par les tables.

Lorsqu'on a affaire à un hydrocarbure non paraffiniques, Maxwell propose des règles basées sur la loi des états correspondants :

Pour les hydrocarbures non paraffiniques, Maxwell propose une règle basée sur l'équivalence des chaleurs latentes molaires.

La chaleur latente de vaporisation est calculée en utilisant la proportionnalité entre les chaleurs latentes de vaporisation de deux hydrocarbures quelconques à la même pression réduite.

Pour des composées à bas point d'ébullition, on prend comme référence des composés tels que l'éthane, le propane.

La chaleur latente de vaporisation des autres hydrocarbures est calculée à partir réseau des courbes des normales paraffines.

Un composé inconnu aura la même chaleur molaire de vaporisation qu'une paraffine a la même température d'ébullition et à la même pression réduite. Cette méthode consiste à prendre la paraffine normale ayant la même température d'ébullition que le compose inconnu, relever son poids moléculaire (figure 16) et sa pression critique (figure 17) puis calculer sa tension de vapeur à la température considérée et ensuite lire sa chaleur molaire de vaporisation (figure 18).

La même méthode peut être appliquée aux fractions pétrolières ayant un k*uop* différent de12 (non paraffinique) en prenant la température moyenne d'ébullition T *mav* comme point d'ébullition normal et la pression pseudo-reduite, comme pression réduite.

Corrélation de Pitzer[1]

$$\Delta Hv/RTc = 7.08 (1-Tr) 0.354+10.95\omega (1-Tr) 0.456...$$
 (60)

Avec

Tc: la température critique (K)

Tr: la température réduite (K)

ω: le facteur acentrique

R: la constante des gaz parfaits.

Corrélation de Dermoune – Chitour [1]

Une corrélation a été proposée par les auteurs, sur la base de la compilation des données expérimentales données par l'API Projet 44, et le DIPPR.

Pour les hydrocarbures légers (Tb < 200°C). Elles sont données en fonction de la température d'ébullition en °C, et la masse molaire:

Paraffines:
$$\Delta Hv = -0.1459 \text{ MM} - 0.0704 \text{ Teb} + 97.1884...$$
 (61)

Naphtènes:
$$\Delta Hv = -0.1994 \text{ MM} - 0.1104 \text{ Teb} + 110.7674...$$
 (62)

Aromatiques:
$$\Delta Hv = -0.2154 \text{ MM} - 0.1145 \text{ Teb} + 120.1306...$$
 (63)

ΔHv est donnée en cal/gr, l'erreur est inférieure à 1% pour les corps purs; et 3 % pour les mélanges et les fractions pétrolières.

Corrélation de Zidelkhier et Chitour [1]

Se basant sur les données de la littérature (API Technical Data Book et DIPPR), les auteurs ont proposé deux corrélations, basées sur les contributions de groupe du groupement CH2, le corps de référence de départ contenant 6 atomes de carbone. Nous présentons la corrélation sous forme polynomiale en fonction de N le nombre d'atomes de carbone.

$$\Delta H_V = A + B.N + C.N + 2 + D.N +$$

A, B, C. D, E: sont des constantes données par le suivant:

Tableau: Valeurs des différents paramètres A, B, C, D

Famille	Р	N	0	A
Α	1.89756	4.17028	53.9222	9.85228
В	0,982993	0,281567	-5,68698	-1,31016
С	0	0,0499028	324659	0,210676
D	0,000385756	-0,00328003	-0,00967871	-0,0102073
E	0	6,52737.10 -5	0.000113316	0.000171311

Cette corrélation permet de déduire la chaleur de vaporisation concernant l'hydrocarbure considéré, elle est d'ailleurs mise sous forme nomographique avec d'autres propriétés. Elle peut aussi être utilisée pour déterminer les équivalents carbone number (ECN) d'un mélange d'hydrocarbures ou d'une fraction pétrolière, comparativement aux différentes familles.

Règle de Trouton, équation de Smith et Van Ness

Trouton propose une relation empirique donnant la chaleur de vaporisation molaire a la température d'ébullition.

$$\Delta H \text{vap} / \text{Tb} = 21....$$
 (65)

ΔHvap en cal/mol

Tb en k.

Cette méthode est approximative (5 a 10 % d'erreur) car la constante varie selon les liquides, de 15 a 26 pour les liquides les plus usuels. Pour l'eau, du fait des liaisons hydrogène, la chaleur de vaporisation est beaucoup plus élevée que celles calculées, une autre équation proposée par Smith et Van Ness permet de calculer la chaleur de vaporisation molaire à la température d'ébullition.

$$\Delta Hvap / Tb = 13.1761nTb + 2.931...$$
 (66).

➤ L'equation de Riedel [1]

$$\Delta$$
Hvap, Tb = 1,095 RTc (Tbr (ln pc- 1)/ (0,930 - Tbr))..... (67)

Avec

Tbr = Tb/Tc

pc en Pa.

➤ L'équation de Theisen Watson [1]

$$\Delta Hv2 = \Delta Hv2 [(1-Tr2)/(1-Tr1)] n$$
(68)

En générale en prend n=0.38.

➤ Relation de Guermouche – Vergnaud et Chitour – Vergnaud [5]

Certains auteurs ont fait varier n en fonction de la température sous la forme d'un polynôme:

$$n = A + B Tr + CTr^{2}$$
 (69)

Guermouche – Vergnaud et Chitour - Vergnaud ont déterminé les coefficients A, B, C pour les différentes familiers d'hydrocarbures.

$$\Delta Hv2 = \Delta Hv1 [(1-Tr 2)/(1-Tr1)]^{A+BTr+CTr^2}$$
....(70)

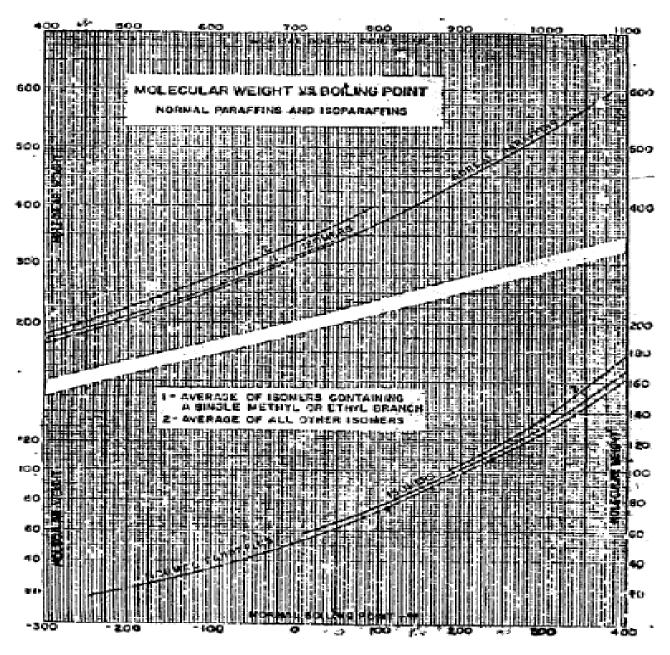
➤ L'équation de Chen[1]

$$\Delta Hv$$
, Tb = RTc Tbr [(3,978Tbr — 3.978 + 1,555In pc)/(1,07 – Tbr)](71)

> Equation de Lee –Kesler [1]

Pour un composé pur, la chaleur de vaporisation est la différence entre l'enthalpie de la vapeur saturée et du liquide saturé à une température donnée.

$$\Delta H vap = [H^{\circ}/M - (RTc/M).(H^{\circ} - H/RTc)] vap.sat - [H^{\circ}/M - (RTc/M).(H^{\circ} - H/RTc)] liq.sat...$$
.....(72)


ΔHvap: chaleur de vaporisation en BTU/Lb.

H°: Enthalpie molaire du gaz parfait à une température T(R) en Btu/Lb.

(H° - H)/RTc: facteur adimensionnel donnant l'effet de la pression sur L'enthalpie

Sur l'abaque (figure 16), nous pouvons lire la valeur de $\lambda M/RTc$

Connaissant le facteur acentrique ω ainsi que la température réduite Tr, nous pouvons déduire ensuite la chaleur de vaporisation en (Btu/lb).connaissant la masse moléculaire M et la Température critique Tc.

Figure 16 : Variation de la masse molaire en fonction de la Tb pour les n-paraffines d'après Maxwell

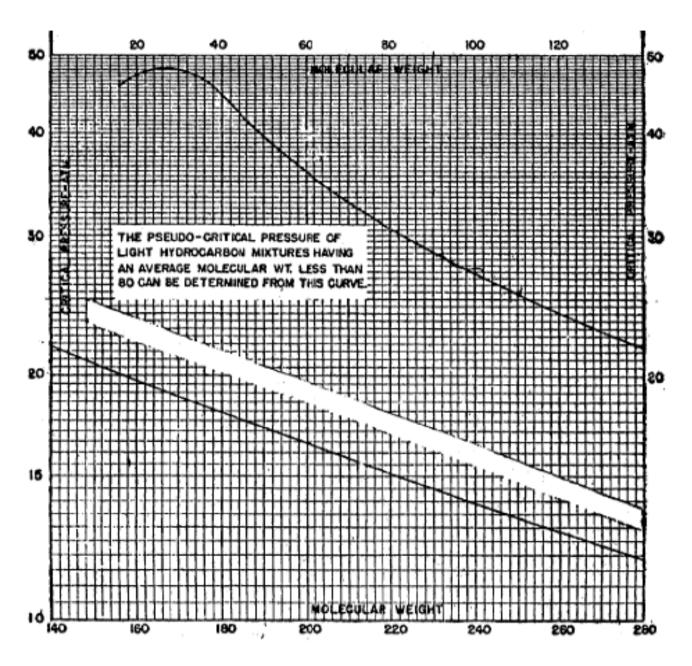


Figure 17 : Variation de la pression critique en fonction de la masse molaire pour les nparaffines d'après Maxwell

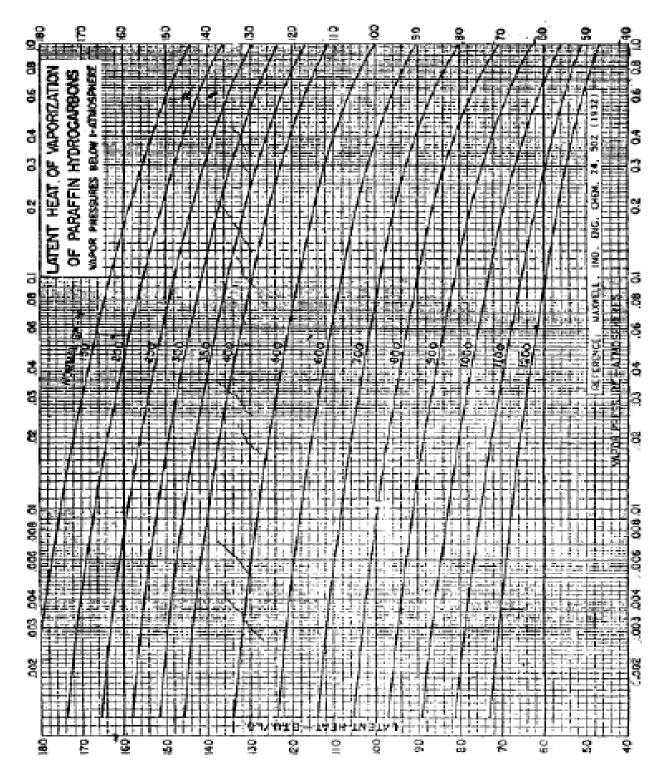


Figure 18 : Variation de la chaleur de vaporisation en fonction de la pression pour les nparaffines, d'après Maxwell

b.2) Chaleur latente de vaporisation des mélanges d'hydrocarbures purs

En ce qui concerne les mélanges de compositions qualitativement et quantitativement connues, il est possible de connaître la chaleur de vaporisation des constituants. En faisant appel à l'additivité des propriétés.

Les règles d'additivité admises pour les enthalpies sont les suivantes :

En phase liquide

L'enthalpie molaire est égale à la somme des produits des enthalpies molaires des constituants par leur fraction molaire. Cette loi est valable jusqu'au voisinage du point critique, tant que le mélange reste idéal c'est-à-dire qu'il n'existe pas de chaleur de mixition. Toutefois, les déviations par rapport à l'idéalité, même au-delà du point critique restent faibles en général, notamment dans le cas de mélange d'hydrocarbures de la même famille.

En phase vapeur

Sous basse pression (0-1 atm), les enthalpies sont également additives comme en phase liquide. A température constante, la variation d'enthalpie d'un mélange avec la pression est la même que celle d'un hydrocarbure pur ayant le même poids moléculaire.

Chaleur latente de vaporisation d'un mélange de composition connue

L'enthalpie de vaporisation molaire d'un mélange liquide est égale à la somme des produits des enthalpies de vaporisation des constituants par leurs fractions molaires.

$$(\Delta H_{v})_{m} = \sum X_{i} (\Delta H_{v})_{i} \dots (73)$$

(ΔH_v)_m est l'enthalpie de vaporisation molaire du mélange.

X_i est la fraction molaire.

 $(\Delta H_{\rm v})_{\rm i}$ est l'enthalpie de vaporisation du constituent I.

Toutes les corrélations données dans le cas des corps purs peuvent donc s'appliquer à des mélanges dont nous connaissons la composition qualitative et quantitative.

Chaleur latente azéotropique de vaporisation pour les mélanges azéotropiques

Deux corrélations pour les mélanges azéotropiques ont été établies par Tamir;

Cette première corrélation est valable pour : $0.5 < T_r < 0.85$ avec une déviation moyenne relative moyenne qui atteint 3.5%.

$$\Delta H_v = 8.345.10^{-3} T_c \left[(11.944 - 11.476 T_r + 11.459 T_r^2) + \omega \left(-1.9778 + 15.456 T_r - 21.057 T_r^7 \right) \right]$$
.....(74)

La deuxième corrélation est valable pour $0.5 < T_r < 1$ avec une déviation relative moyenne qui atteint 4.7%. Elles sont recommandées pour la prédiction de la chaleur latente de vaporisation pour les mélanges binaires azéotropiques c'est-à-dire quand $X_i = Y_i$ avec i = 1, 2... n;

$$\Delta H_v = 8.345.10^{-3} T_c \left[(-0.52277 (T_r - 1) - 5.600 (T_{r-1}) + \omega (9.1047 (T_r - 1) - 10.101 (T_r^7 - 1)) \right]$$
.....(75)

ΔH_v est donnée en j/Kg mol et T_c en °K (température critique du mélange azéotropique).

Chaleur latente de vaporisation différentielle des mélanges d'hydrocarbures

Trois différents types d'enthalpies de vaporisation peuvent être calculées. La chaleur de vaporisation intégrale isobare, la chaleur intégrale isotherme et la chaleur de vaporisation intégrale.

La chaleur de vaporisation différentielle notée L implique l'existence d'un équilibre de deux phases. Elle peut être calculée par l'équation suivante :

$$\Delta H_{\text{diff}} = M_f / MV \left[(M_L H_L L + M_V H_V V) / M_f - H_f \right] \dots (76)$$

ΔH_{diff} est la chaleur différentielle de vaporisation en BTU/Lb vaporisé.

M est la masse molaire moyenne du mélange.

H est l'enthalpie de mélange en BTU/Lb.

Les indices F, V, L représentent respectivement l'alimentation, la vapeur et le liquide.

b.3) Chaleur de vaporisation des fractions pétrolières

Pour les fractions pétrolières, mélanges de plusieurs centaines d'hydrocarbures inconnus, il est impossible d'avoir des valeurs réelles par les méthodes qu'on utilise pour les corps purs. Nous avons alors recours à des abaques construites à partir de corrélations.

Pour une fraction pétrolière, le changement de phase ne s'effectue à une température, mais dans un intervalle de température (T_{eb} - T_p). si l'on peut calculer ces températures T_{eb} et T_p , la chaleur de vaporisation est égale à ($H_v - H_L$). Les diagrammes enthalpiques permettent de déduire en fonction du Kuop et de la T_{mav} , ou la densité et la T_{mav} , la variation $H_v - H_L$, il est possible d'interpoler pour les valeurs intermédiaires.

Corrélation de Riazi-Daubert [1]

Une corrélation a été proposée par les auteurs pour la prédiction des propriétés des hydrocarbures purs et des fractions pétrolières. Elle est de la forme :

$$q = a.q_1^b.q_2^c$$
(77)

a, b, c : sont des constantes données dans le tableau suivant :

N	q1	q2	a	Ъ	С	%erreur
$\Delta Hv1$	T_b	SpGr	8.20613	1.14086	9.77.10 -3	1.6
ΔHv2	T_b	I	8.7718	1.129	0.024139	1.6
ΔHv3	T _b	C/H	8.19521	1.1355	0.01788	2.7
ΔHv4	MM	I	2252.1	0.5379	0.48021	2.6
ΔHv5	MM	C/H	344.44	0.72511	0.15676	2.7

 q_1 , q_2 : sont des couples de paramètres caractérisant les forces et la taille moléculaires d'un composé. Dans le cas de l'enthalpie de vaporisation, les paires de paramètres sont :

(T_{eb}, SpGr), (T_{eb}, I), (T_{eb}, C/H), (MM,I), (MM,C/H).

T_{eb} est la température d'ébullition normale en °R.

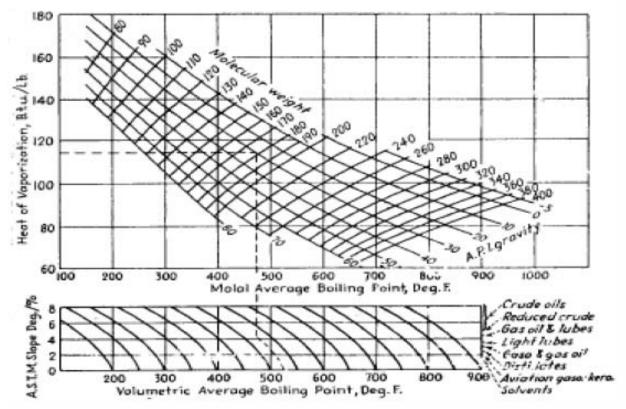
SpGr est la specific gravity à 60/60°F.

C/H rapport massique entre le carbone et l'hydrogène.

MM : la masse moléculaire.

L'indice de corrélation = $(n^2-1)/(n^2+2)$

n:est l'indice de réfraction (20°C, 1 atm).


Avec les conditions suivantes : 70<MM<300 et 80<T_{eb}<650°F.

> Abaque de Watson et Hougen [1]

Watson et Hougen donnent une abaque donnant la chaleur de vaporisation en Btu/Lb en fonction de la température d'ébullition molaire et de la masse molaire et de la densité; la pente de la courbe de distillation peut aussi être utilisée avec la masse molaire et permet d atteindre la chaleur de vaporisation (figure 19)

Généralement, les pentes ASTM dont les suivantes :

	solvant	kérosène	essence et diesel	gas-oil	pétrole
pente	1	2	3	4	7

Figure 19: Abaque de WASTON et HOUGEN pour la détermination de l'enthalpie de vaporisation des fractions pétrolières

II.6 Description des méthodes de prédiction des propriétés spécifiques

II.6.1 L'indice de corrélation

II.6.1.1 Définition

L'indice de corrélation est défini par l'équation suivante:

$$I = \frac{n^2 - 1}{n^2 + 2} \dots (78)$$

Il permet de situer les différentes familles de fractions pétrolières, mais moins biens que le Kuop:

• Paraffines : 0.267< I < 0.273

• Naphtènes: 0.278< I < 0.308

• Aromatiques: 0.298< I < 0.362

II.6.1.2 Corrélations pour la prédiction de l'indice de corrélation

Les indices de corrélation des fractions pétrolières peuvent être obtenus à partir de la définition, si les indices de réfraction sont disponibles. D'autres corrélations ont été proposées, dont les plus connues sont données ci-après:

> Corrélation de Huang (1977) [2]

Pour M<200:

$$I = 3.58 \times 10^{-3} \times T_b^{1.0147} \times \left(\frac{M}{d_4^{20}}\right) - 0.4787$$
(79)

Pour M>200:

$$I = 1.4 \times 10^{-3} \times T_b^{1.09} \times \left(\frac{M}{d_4^{20}}\right) - 0.3984$$
(80)

Corrélation de Riazi et Daubert (1980) [2]

$$I = a \times \exp(b\theta_1 + c\theta_2 + d\theta_1\theta_2)\theta_1^e\theta_2^f \quad \dots$$
 (81)

Avec:

 θ 1 et θ 2 : deux propriété physiques

a, b, c, d, e, f : constantes qui dépendent de θ 1 et θ 2

	θ_1	θ_2	a	В	C	D	e	f
I_1	Teb	SpGr	0.023	3.91*10 ⁻⁴	2.47	-5.70*10 ⁻⁴	5.72*10 ⁻²	-0.72
I_2	M	SpGr	0.42238	3.189*10 ⁻⁴	-0.201	-4,26*10 ⁻⁴	-8.43*10 ⁻³	1.118

Avec:

Teb: Température d'ébullition en °R.

II.7 Les méthodes de caractérisation de propriétés des hydrocarbures

II.7.1 Les équations d'état

L'intérêt d'une équation d'état est de permettre de prévoir avec une assez bonne précision le comportement volumétrique des fluides, l'évolution des fonctions thermodynamiques avec la température et la pression ainsi que les équilibres de phases.

Une équation d'état est une relation entre les variables de pression, volume, température et composition, de forme générale :

$$f(P, V, T, Xi,...) = 0$$
(82)

La plus simple des équations d'état est représentée par l'équation des gaz parfaits

P V = n R T, cette équation représente une approximation d'autant meilleure que la pression est faible. Dans le cas des fluides réels, de nombreuses équations d'état ont été proposées visant à améliorer la représentation de ces fluides pour lesquels les forces d'interaction entre molécules ne sont plus négligeables. Parmi les équations d'état qui existent, les équations d'état cubiques sont très largement utilisées dans les modèles de simulation, en production et dans le traitement des hydrocarbures de gisements.

Les équations d'état cubiques se présentent sous la forme d'une série en volume de puissance un, deux et trois. Parmi ce type d'équations, les plus connues sont celles de Van Der Waals V.D.W (1873), Redlich-Kwong R.K (1949), Soave-Redlich-Kwong S.R.K (1972) et Peng-Robinson P.R (1976). Les deux dernières équations ont connu cependant le plus grand succès. Ce type d'équations a pour forme générale l'expression suivante:

$$p = \frac{RT}{V - b} - \frac{a}{V^2 + ubV + wb^2}$$
 (83)

u et w sont des constantes qui dépendent de l'équation d'état. Les paramètres a et b s'expriment en fonction des coordonnées critiques. Des équations plus complexes que les équations précédentes, faisant intervenir un nombre plus important de paramètres, ont été proposées pour des situations particulières. Ces équations dites équations d'état non cubiques présentent l'inconvénient d'être en général d'ordre supérieur à trois et de conduire, de ce fait, à des calculs plus fastidieux. Parmi elles, nous pouvons citer les équations d'état du Viriel, Benedict, Webb et Rubin BWR 1951) ou encore de Beattie-Bridgeman (1928) etc. es équations d'état présentées précédemment peuvent être étendues aux mélanges en utilisant des règles de mélanges permettant de relier les paramètres des équations d'état appliquées aux mélanges à ceux des corps purs. Dans le cas des équations d'état cubiques, les règles de mélanges usuelles sont les suivantes lorsque la composition est définie en fractions molaires xi:

$$b = \sum b \ i \ x \ i \ \dots (84)$$
 $a = \sum \sum x \ i \ x \ j \ ai \ aj \ (1 - kij) \ \dots (85)$

Les termes kij sont des termes correctifs appelés coefficients d'interaction, caractéristiques du binaire ij considéré. L'introduction de ce terme est nécessaire lorsque les constituants i et j sont formés par des molécules très dissemblables, soit par leur volume molaire, soit par leur

nature chimique. Une autre façon d'étendre les équations d'état aux mélanges, consiste à considérer les paramètres pseudo-critiques. Cette procédure est généralement appliquée dans le cas des mélanges complexes dont la composition n'est pas connue, tels que les fractions pétrolières.

A partir des équations d'état, il est possible de calculer les fonctions thermodynamiques telles que l'enthalpie, l'entropie ou l'énergie libre pour des conditions de température et de pression fixées, en se référant aux conditions du gaz parfait.

L'application des équations d'état aux hydrocarbures lourds est une opération délicate, due principalement aux propriétés critiques et au facteur acentrique de ces hydrocarbures qui sont difficilement accessibles expérimentalement. Pour résoudre ce problème, certains auteurs se sont proposés de modifier les équations d'état en appliquant les méthodes de contributions de groupes pour la détermination de leurs paramètres et éviter ainsi l'utilisation des paramètres critiques.

Parmi ces auteurs, nous citons Bondi (1964) qui a proposé une méthode de contributions de groupes pour la détermination du paramètre b de l'équation d'état de Van Der Waals. Carrier et coll. (1988) ont proposé quant à eux une modification de l'équation de Peng-Robinson dans laquelle le paramètre b et le facteur acentrique sont exprimés en terme de contributions. Coniglio et coll.(1993) ont amélioré la méthode de Carrier en appliquant des contributions de type Boundi aux deux paramètres a et b. Enfin, plus récemment, Soave et coll.(1995) ont proposé une méthode de contributions de groupes pour la détermination du covolume de l'équation d'état de Redlich-Kwong.

II.7.2 Loi des états correspondants

La loi des états correspondants constitue un élément de simplification dans la prévision des propriétés thermodynamiques des fluides réels. Cette loi affirme que les propriétés dépendantes des forces intermoléculaires sont reliées aux paramètres critiques de la même manière pour tous les composés; autrement dit, la fonction reliant les propriétés réduites est indépendante de la nature de la substance, soit:

$$f(Tr, Pr, Vr) = 0$$
(86)

Les termes Tr, Pr et Vr représentent respectivement les température, pression et volume réduits. Sur la base de cette loi, de nombreuses corrélations ont été développées pour l'estimation des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs. La première application de la loi des états correspondants consiste dans la corrélation des données P-V-T, en exprimant le facteur de compressibilité Z comme

fonction des paramètres réduits Pr et Tr. Cette corrélation a été traduite sous forme de diagrammes généralisés. Cependant, il a été démontré que cette loi à deux paramètres ne s'applique que pour les molécules non polaires; c'est le cas par exemple des molécules sphériques telles que le méthane, l'azote, l'argon, etc. C'est ainsi, qu'il a été proposé d'introduire un troisième paramètre pour représenter l'ensemble des fluides, en plus de la pression et de la température réduite. Parmi les corrélations à 3 paramètres, les plus connues sont celles utilisant, soit le facteur de compressibilité critique, soit le facteur acentrique comme troisième paramètre.

II.7.2.1 Corrélations fondées sur le facteur de compressibilité critique

Le facteur de compressibilité critique est défini par :

$$Zc = Pc \ Vc/(R \ Tc) \ \dots (87)$$

Le choix de ce facteur comme troisième paramètre pour développer des corrélations des états correspondants, repose sur l'examen des divergences entre le comportement des fluides réels et la loi des états correspondants à deux paramètres. En effet, cette dernière prévoit qu'au point critique, le facteur de compressibilité critique a la même valeur pour tous les corps, soit Zc=Z(1,1)=0.27. Or, il n'en est rien, puisque celui-ci varie de 0.232 pour l'eau à 0.3 pour l'hydrogène, tout en restant néanmoins voisin de 0.27. L'application de cette loi à 3 paramètres aux données P-V-T des fluides réels implique l'existence d'une fonction unique Z=f(Tr, Pr, Zc) pour représenter chaque classe de composés ayant même facteur de compressibilité critique. Lydersen Greenkom et Hougen (1955) ont développé des tables donnant les valeurs de Z en fonction de Z en fonct

II.7.2.2 Corrélations fondées sur le facteur acentrique

Le second paramètre utilisé dans la nouvelle formulation de la loi des états correspondants est le facteur acentrique ω , défini par Pitzer (1955) pour exprimer la non sphéricité des molécules :

$$\omega = -\log P_r^s - 1 \text{ à Tr} = 0.7 \dots (88)$$

P_r^s est la pression de saturation réduite et Tr la température réduite.

Appliquée au facteur de compressibilité Z, la loi des états correspondants exprime Z comme une fonction linéaire du facteur acentrique :

$$Z=Z(o) + \omega Z(1)$$
(89)

Z(0) est un terme relatif au fluide simple obéissant à la loi des états correspondants à deux paramètres et Z(1) un terme correctif tenant compte des déviations par rapport à cette dernière loi, dues à la forme et à la dimension des molécules.

Les applications fructueuses de cette loi aux propriétés P-V-T des fluides réels a encouragé le développement de corrélations similaires pour d'autres propriétés qui dépendent des forces intermoléculaires. Ainsi, Curl et Pitzer (1958) ont développé des corrélations sous la forme :

$$L=L(0)+\omega L(1)$$
(90)

L est une propriété thermodynamique donnée, tels que l'enthalpie résiduelle et l'entropie résiduelle ou encore le coefficient de fugacité. Sur la base de cette corrélation, Lee et Kesler (1975) ont traduit les valeurs des termes L(0) et L(1) sous forme tabulée et sous forme graphique pour différentes valeurs de la température et pression réduites. Ces tables et diagrammes de maniement aisé, concernent différentes propriétés.

Ces auteurs ont proposé une nouvelle formulation de l'équation de Pitzer qui consiste à calculer la valeur L d'une propriété thermodynamique exprimée en fonction des coordonnées réduites, pour un fluide dont le facteur acentrique est ω , à partir des valeurs respectives L(0) et L(1) de cette propriété pour un fluide simple tel que ω =0 et pour un fluide de référence (noctane) tel que ω = ω (r) en posant:

$$L = L^{(0)} + \omega/\omega^{(r)} (L^{(r)} - L^{(0)}) \qquad (91)$$

Dans le cas du facteur de compressibilité Z, l'équation précédente prend la forme suivante :

$$Z = Z^{(0)} + \omega/\omega^{(r)} (Z^{(r)} - Z^{(0)})$$
(92)

Les termes Z(0) et Z(1) s'expriment en fonction des coordonnées réduites en choisissant une équation d'état.

II. 7.3 Méthodes empiriques

Ce sont des méthodes basées essentiellement sur l'expérience où l'on essaie de caractériser les hydrocarbures à partir de propriétés facilement accessibles par expériences. Parmi elles, il y a la méthode de contribution de groupes.

II. 7.3.1 Les méthodes de contribution de groupe

II.7.3.1.1 Principe

Toute propriété macroscopique est fonction de la structure moléculaire qui régit les forces intermoléculaires et leur magnitude. A titre d'exemple, la structure moléculaire conditionne la capacité de stockage d'énergie d'une molécule et par conséquent, sa capacité calorifique. Cette correspondance étant établie, il découle que chaque liaison, atome ou groupement d'atomes constitutif d'une molécule donnée, apporte sa contribution aux propriétés

macroscopiques de la substance étudiée. Ceci suggère que toute propriété macroscopique d'une substance peut être calculée à partir des contributions des groupements chimiques constituant la molécule.

Les méthodes basées sur ce concept portent le nom de méthodes de contributions de groupes et ont pour objectif principal de rapporter les propriétés des corps purs à leur structure moléculaire. Le développement de ce type de corrélations possède, dans la plupart des cas, un caractère purement empirique. Toutefois, le concept en lui-même possède un fondement théorique basé sur la thermodynamique statistique.

II. 7.3.2 La méthode de réseau de neurones artificiels

Cette méthode est basée sur l'utilisation de techniques informatiques se basant sur l'intelligence artificielle. Cette méthode permet la prédiction des propriétés des hydrocarbures connaissant quelques propriétés facilement accessibles, et disposant de quelques données expérimentales servant de base d'apprentissage.

Conclusion

Dans ce chapitre nous avons présenté les méthodes de mesure et de prédiction des propriétés physiques et thermodynamiques importantes telles que la température d'ébullition et la densité qui servent par la suite d'entrées pour notre réseau, et des propriétés étudiées telles que la capacité calorifique, la chaleur de vaporisation et l'indice de corrélation qui doivent être atteinte par le réseau, aussi nous avons étudié des propriétés de bases tels que les propriétés critiques et l'indice de réfraction.

Chapitre III

LES RESEAUX

DE

NEURONES

III.1 Introduction

La reconnaissance du fait que le cerveau fonctionne de manière entièrement différente de celle d'un ordinateur conventionnel a joué un rôle très important dans le développement des réseaux de neurones artificiels. Les travaux effectués pour essayer de comprendre le comportement du cerveau humain ont menés à représenter celui-ci par un ensemble de composants structurels appelés neurones, massivement interconnectés entre eux. Le cerveau humain en contiendrait plusieurs centaines de milliards, et chacun de ceux-ci serait, en moyenne, connecté à dix mille autres. Le cerveau est capable d'organiser ces neurones, selon un assemblage complexe, non-linéaire et extrêmement parallèle, de manière à pouvoir accomplir des tâches très élaborées.

III.2 Définition

Les réseaux de neurones artificiels sont des réseaux fortement connectés de processeurs élémentaires fonctionnant en parallèle. Chaque processeur élémentaire calcule une sortie unique sur la base des informations qu'il reçoit. Toute structure hiérarchique de réseaux est évidemment un réseau

Haykin en propose la définition suivante :

- « Un réseau de neurones est un processus distribué de manière massivement parallèle, qui a une propension naturelle à mémoriser des connaissances de façon expérimentale et de les rendre disponibles pour utilisation. Il ressemble au cerveau en deux points:
- 1. la connaissance est acquise au travers d'un processus d'apprentissage;
- 2. les poids des connections entre les neurones sont utilisés pour mémoriser la connaissance.»

C'est sur base de cette définition que repose l'élaboration des réseaux de neurones artificiels.

III.3Historique

- **1890** : W. James, célèbre psychologue américain introduit le concept de mémoire associative, et propose ce qui deviendra une loi de fonctionnement pour l'apprentissage sur les réseaux de neurones connue plus tard sous le nom de loi de Hebb.

- 1943 : J. Mc Culloch et W. Pitts laissent leurs noms à une modélisation du neurone biologique (un neurone au comportement binaire). Ceux sont les premiers à montrer que des réseaux de neurones formels simples peuvent réaliser des fonctions logiques, arithmétiques et symboliques complexes (tout au moins au niveau théorique).
- 1949 : D. Hebb, physiologiste américain explique le conditionnement chez l'animal par les propriétés des neurones eux-mêmes. Ainsi, un conditionnement de type pavlovien tel que, nourrir tous les jours à la même heure un chien, entraîne chez cet animal la sécrétion de salive à cette heure précise même en l'absence de nourriture. La loi de modification des propriétés des connexions entre neurones qu'il propose explique en partie ce type de résultats expérimentaux.

Les premiers succès

- 1957 : F. Rosenblatt développe le modèle du Perceptron. Il construit le premier neuroordinateur basé sur ce modèle et l'applique au domaine de la reconnaissance de formes. Notons qu'à cette époque les moyens à sa disposition sont limités et c'est une prouesse technologique que de réussir à faire fonctionner correctement cette machine plus de quelques minutes.
- 1960 : B. Widrow, un automaticien, développe le modèle Adaline (Adaptative Linear Element). Dans sa structure, le modèle ressemble au Perceptron, cependant la loi d'apprentissage est différente. Celle-ci est à l'origine de l'algorithme de rétropropagation de gradient très utilisé aujourd'hui avec les Perceptrons m
- ulticouches. Les réseaux de type Adaline restent utilisés de nos jours pour certaines applications particulières. B. Widrow a créé dès cette époque une des premières firmes proposant des neuro-ordinateurs et neuro-composants, la "Memistor Corporation". Il est aujourd'hui le président de l'International Neural Network Society (INNS).
- 1969 : M. Minsky et S. Papert publient un ouvrage qui met en exergue les limitations théoriques du perceptron. Limitations alors connues, notamment concernant l'impossibilité de traiter par ce modèle des problèmes non linéaires. Ils étendent implicitement ces limitations à tous modèles de réseaux de neurones artificiels. Leur objectif est atteint, il y a abandon financier des recherches dans le domaine (surtout aux U.S.A.), les chercheurs se tournent principalement vers l'IA et les systèmes à bases de règles.

L'ombre

- 1967-1982 : Toutes les recherches ne sont, bien sûr, pas interrompues. Elles se poursuivent, mais déguisées, sous le couvert de divers domaines comme : le traitement adaptatif du signal,

la reconnaissance de formes, la modélisation en neurobiologie, etc. De grands noms travaillent durant cette période telle : S. Grossberg, T. Kohonen, ...

Le renouveau

- 1982 : J. J. Hopfield est un physicien reconnu à qui l'on doit le renouveau d'intérêt pour les réseaux de neurones artificiels. A cela plusieurs raisons :

Au travers d'un article court, clair et bien écrit, il présente une théorie du fonctionnement et des possibilités des réseaux de neurones. Il faut remarquer la présentation anticonformiste de son article. Alors que les auteurs s'acharnent jusqu'alors à proposer une structure et une loi d'apprentissage, puis à étudier les propriétés émergentes ; J. J. Hopfield fixe préalablement le comportement à atteindre pour son modèle et construit à partir de là, la structure et la loi d'apprentissage correspondant au résultat escompté. Ce modèle est aujourd'hui encore très utilisé pour des problèmes d'optimisation.

D'autre part, entre les mains de ce physicien distingué, la théorie des réseaux de neurones devient respectable. Elle n'est plus l'apanage d'un certain nombre de psychologues et neurobiologistes hors du coup.

Enfin, une petite phrase, placée en commentaire dans son article initial, met en avant l'isomorphisme de son modèle avec le modèle d'Ising (modèle des verres de spins). Cette idée va drainer un flot de physiciens vers les réseaux de neurones artificiels.

Notons qu'à cette date, l'IA est l'objet d'une certaine désillusion, elle n'a pas répondue à toutes les attentes et s'est même heurtée à de sérieuses limitations. Aussi, bien que les limitations du Perceptron mise en avant par M. Minsky ne soient pas levées par le modèle d'Hopfield, les recherches sont relancées.

La levée des limitations

- 1983 : La Machine de Boltzmann est le premier modèle connu apte à traiter de manière satisfaisante les limitations recensées dans le cas du perceptron. Mais l'utilisation pratique s'avère difficile, la convergence de l'algorithme étant extrêmement longue (les temps de calcul sont considérables).
- 1985 : La rétropropagation de gradient apparaît. C'est un algorithme d'apprentissage adapté aux réseaux de neurones multicouches (aussi appelés Perceptrons multicouches). Sa découverte réalisée par trois groupes de chercheurs indépendants indique que "la chose était dans l'air". Dès cette découverte, nous avons la possibilité de réaliser une fonction non linéaire d'entrée/sortie sur un réseau en décomposant cette fonction en une suite d'étapes linéairement séparables. De nos jours, les réseaux multicouches et la rétropropagation de gradient reste le modèle le plus étudié et le plus productif au niveau des applications.

III.4 Du Neurone Biologique au Neurone Formel

Le neurone biologique est composé de quatre parties distinctes

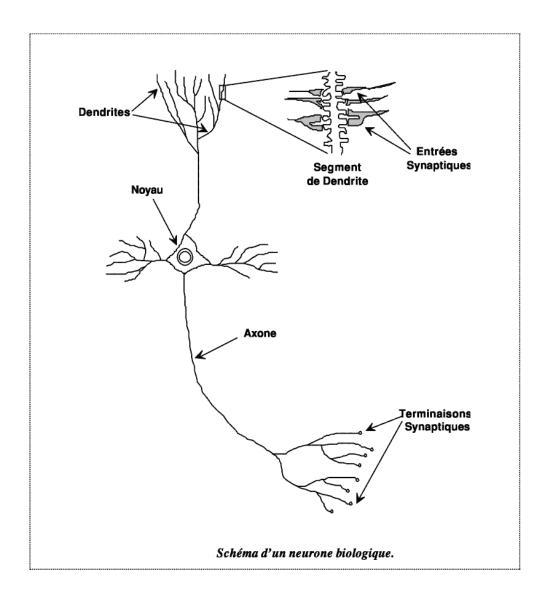


Figure 1 : schéma d'un neurone biologique

Le corps cellulaire, qui contient le noyau de la cellule nerveuse; c'est en cet endroit que prend naissance l'influx nerveux, qui représente l'état d'activité du neurone;

Les dendrites, ramifications tubulaires courtes formant une espèce d'arborescence autour du corps cellulaire; ce sont les entrées principales du neurone, qui captent l'information venant d'autres neurones;

L'axone, longue fibre nerveuse qui se ramifie à son extrémité; c'est la sortie du neurone et le support de l'information vers les autres neurones;

La synapse, qui communique l'information, en la pondérant par un *poids synaptique*, à un autre neurone; elle est essentielle dans le fonctionnement du système nerveux.

Chaque neurone réalise une opération très simple, qui est en fait une somme pondérée de ses entrées. Le résultat est comparé à un seuil et le neurone devient excité si ce seuil est dépassé.

L'information contenue dans le cerveau est représentée par les poids donnés aux entrées de chaque neurone. Du fait du grand nombre de neurones et de leurs interconnections, ce système possède une propriété de tolérance aux fautes. Ainsi, la défectuosité d'un élément mémoire (neurone) n'entraînera aucune perte réelle d'information, mais seulement une faible dégradation en qualité de toute l'information contenue dans le système. C'est pourquoi nous pouvons reconnaître le visage d'une personne, même si celle-ci a vieilli, par exemple.

La première étude systématique du neurone artificiel est due au neuropsychiatre McCulloch et au logicien Pitts qui, s'inspirant de leurs travaux sur les neurones biologiques, proposèrent en 1943 le modèle suivant:

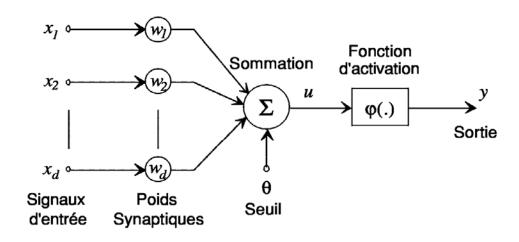


Figure 2 : le model de neurone formel

Ce neurone artificiel est un processeur élémentaire. Il reçoit un nombre variable d'entrées en provenance de neurones amont. A chacune de ces entrées est associée un poids w abréviation de weight (poids en anglais) représentatif de la force de la connexion. Chaque processeur élémentaire est doté d'une sortie unique, qui se ramifie ensuite pour alimenter un nombre variable de neurones avals.

III.5 Structures d'interconnexion

Les connexions entre les neurones qui composent le réseau décrivent la topologie du modèle. Elle peut être quelconque, mais le plus souvent il est possible de distinguer une certaine régularité.

III.5.1 Réseau multicouche (au singulier)

Les neurones sont arrangés par couche. Il n'y a pas de connexion entre neurones d'une même couche et les connexions ne se font qu'avec les neurones des couches avales (fig 3). Habituellement, chaque neurone d'une couche est connecté à tous les neurones de la couche suivante et celle-ci seulement. Ceci nous permet d'introduire la notion de sens de parcours de l'information (de l'activation) au sein d'un réseau et donc définir les concepts de neurone d'entrée, neurone de sortie. Par extension, on appelle couche d'entrée l'ensemble des neurones d'entrée, couche de sortie l'ensemble des neurones de sortie. Les couches intermédiaires n'ayant aucun contact avec l'extérieur sont appelés couches cachées.

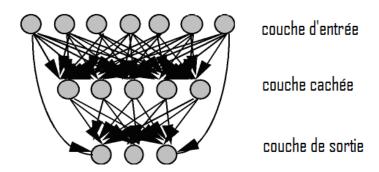


Figure 3 : Définition des couches d'un réseau multicouche.

III.5.2 Réseau à connexions locales

Il s'agit d'une structure multicouche, mais qui à l'image de la rétine, conserve une certaine topologie. Chaque neurone entretien des relations avec un nombre réduit et localisé de neurones de la couche avale (fig4). Les connexions sont donc moins nombreuses que dans le cas d'un réseau multicouche classique.

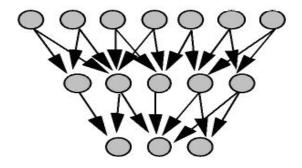
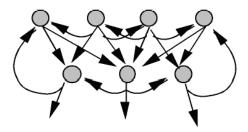



Figure 4: Réseau à connexions locales

III.5.3 Réseau à connexions récurrentes

Les connexions récurrentes ramènent l'information en arrière par rapport au sens de propagation défini dans un réseau multicouche. Ces connexions sont le plus souvent locales

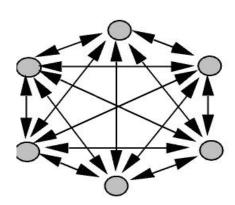
Réseau à connexions récurrentes

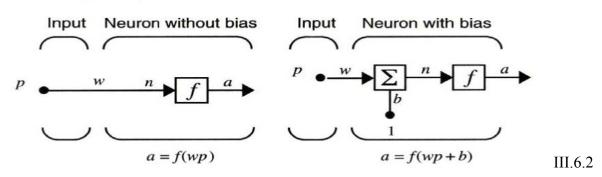
Figure 5 : réseaux à connexion récurrente

III.5.4 Réseau à connexion complète

C'est la structure d'interconnexion la plus générale (fig6).

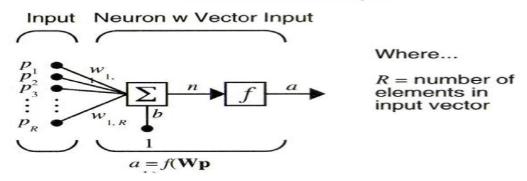
Chaque neurone est connecté à tous les neurones du réseau (et à lui-même).




Figure 6 : Réseau à connexions complète

Il existe de nombreuses autres topologies possibles, mais elles n'ont pas eu à ce jour la notoriété des quelques unes que nous avons décrites ici.

III.6 Caractéristiques des réseaux de neurones artificiels


II.6.1 Poids (w) et biais (b) d'un neurone

Simple Neuron

II.6.2 La fonction de sommation

Neuron With Vector Input

Net Input

$$n = w_{1,1}p_1 + w_{1,2}p_2 + \dots + w_{1,R}p_R + b$$

L'entrée d'un neurone contient le biais et la somme des ses poids. La sortie d'un neurone dépend de l'entrée du neurone et de sa fonction d'activation f.

III.6.3 La fonction d'activation

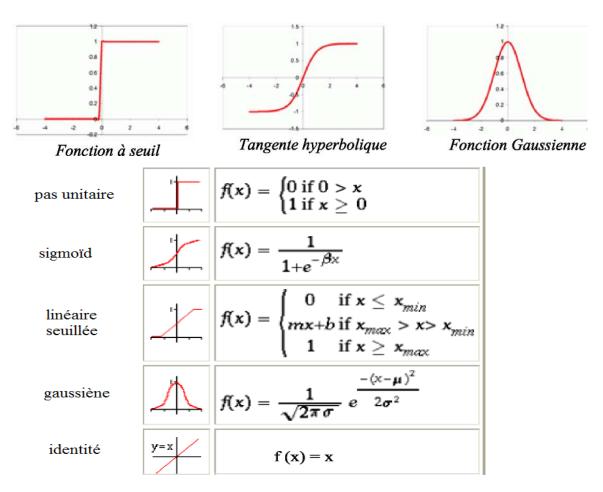


Figure 7 : Réseaux statiques (Apprentissage par « paquet ») et Réseaux dynamiques (Apprentissage « séquentiel »)

Le format des données d'entrée va affecter l'évolution des poids et biais des réseaux de neurones lors de leur apprentissage. Un réseau dit statique est un réseau qui ne contient pas de connexion arrière (feedback or delay). Par conséquent, on peut lui présenter les données en entrée dans n'importe quel ordre, cela n'influencera pas l'évolution de ses poids lors de la phase d'apprentissage. Il est alors préférable de lui donner tout le jeu de donnée en un seul coup lors de la phase d'apprentissage. On parle alors d'apprentissage par paquet (« batch training »). Les réseaux « feedforward » ne peuvent pas simuler des processus dépendant du temps.

Par contre, si l'on veut simuler un processus qui dépend du temps, alors on pourra utiliser un réseau de neurones contenant des connections arrières. L'ordre de présentation du jeu de données au réseau de neurone sera alors primordial. On parle alors d'apprentissage séquentiel.

III.7 L'apprentissage

L'apprentissage est vraisemblablement la propriété la plus intéressante des réseaux neuronaux. Elle ne concerne cependant pas tous les modèles, mais les plus utilisés.

III.7.1 Définition

L'apprentissage est une phase du développement d'un réseau de neurones durant laquelle le comportement du réseau est modifié jusqu'à l'obtention du comportement désiré. L'apprentissage neuronal fait appel à des exemples de comportement. Dans le cas des réseaux de neurones artificiels, on ajoute souvent à la description du modèle l'algorithme d'apprentissage. Le modèle sans apprentissage présente en effet peu d'intérêt. Dans la majorité des algorithmes actuels, les variables modifiées pendant l'apprentissage sont les poids des connexions. L'apprentissage est la modification des poids du réseau dans l'optique d'accorder la réponse du réseau aux exemples et à l'expérience. Il est souvent impossible de décider à priori des valeurs des poids des connexions d'un réseau pour une application donnée. A l'issu de l'apprentissage, les poids sont fixés : c'est alors la phase d'utilisation. Certains modèles de réseaux sont improprement dénommés à apprentissage permanent. Dans ce cas il est vrai que l'apprentissage ne s'arrête jamais, cependant on peut toujours distinguer une phase d'apprentissage (en fait de remise à jour du comportement) et une phase d'utilisation. Cette technique permet de conserver au réseau un comportement adapté malgré les fluctuations dans les données d'entrées.

III.7.2 Apprentissage supervisé / non supervisé

Les réseaux de neurones se divisent en deux principales classes, les réseaux à apprentissage supervisés (supervised learning) et les réseaux à apprentissage non supervisés (unsupervised learning). Pour les réseaux à apprentissage supervisés (Perceptron, Adaline, etc.), on présente au réseau des entrées, et au même temps les sorties que l'on désirerait pour cette entrée. Le réseau doit alors se reconfigurer, c'est-à-dire calculer ses poids afin que la sortie qu'il donne corresponde bien à la sortie désirée. Pour les réseaux à apprentissage non supervisé (Hopfield, Kohonen, etc.), on présente une entrée au réseau et on le laisse évoluer librement jusqu'à ce qu'il se stabilise. Il existe aussi des réseaux à apprentissage dit semi-supervisés (reinforcement learning) qui ne tiennent compte que d'une évaluation partielle ou qualitative des sorties.

III.7.3 Surapprentissage

Il arrive souvent que les exemples de la base d'apprentissage comportent des valeurs approximatives ou bruitées. Si on oblige le réseau à répondre de façon quasi parfaite relativement à ces exemples, on peut obtenir un réseau qui est biaisé par des valeurs erronées. Par exemple, imaginons qu'on présente au réseau des couples (xi,f(xi)) situés sur une droite d'équation y=ax+b, mais bruités de sorte que les points ne soient pas exactement sur la droite. S'il y a un bon apprentissage, le réseau répond ax+b pour toute valeur de x présentée. S'il y a surapprentissage, le réseau répond un peu plus que ax+b ou un peu moins, car chaque couple (xi, f(xi)) positionné en dehors de la droite va influencer la décision. Pour éviter le surapprentissage, il existe une méthode simple : il suffit de partager la base d'exemples en 2 sous-ensembles. Le premier sert à l'apprentissage et le 2e sert à l'évaluation de l'apprentissage. Tant que l'erreur obtenue sur le 2e ensemble diminue, on peut continuer l'apprentissage, sinon on arrête.

III.8 Calcul des poids synaptique

La rétropropagation (backpropagation) est une méthode de calcul des poids pour un réseau à apprentissage supervisé qui consiste à minimiser l'erreur quadratique de sortie (somme des carrés de l'erreur de chaque composante entre la sortie réelle et la sortie désirée). D'autres méthodes de modification des poids sont plus "locales", chaque neurone modifie ses poids en fonction de l'activation ou non des neurones proches. C'est le cas des réseaux suivant la règle de Hebb (Hebbian rule) ou les réseaux de Kohonen.

III.9 Quelques réseaux célèbres

III.9.1 Le Perceptron

C'est un des premiers réseaux de neurones, conçus en 1958 par Rosenblatt. Il est linéaire et monocouche. Il est inspiré du système visuel. La première couche (d'entrée) représente la rétine. Les neurones de la couche suivante sont les cellules d'association, et la couche finale les cellules de décision. Les sorties des neurones ne peuvent prendre que deux états (-1 et 1 ou 0 et 1). Seuls les poids des liaisons entre la couche d'association et la couche finale peuvent être modifiés. La règle de modification des poids utilisée est la règle de Widrow-Hoff : si la sortie (celle d'une cellule de décision donc) est égale à la sortie désirée, le poids de la connexion entre ce neurone et le neurone d'association qui lui est connecté n'est pas modifié. Dans le cas contraire le poids est modifié en fonction de l'entrée :

 $w i \le w i + k (d - s)$ avec k: constante positive

s : sortie et d : sortie désirée

En 1969, Papert et Minsky (un des pères des systèmes experts) démontrent les limites du perceptron classique, incapable, par exemple de simuler la fonction ou exclusif (xor).

III.9.2 Les perceptrons multicouches (PMC)

Ils sont une amélioration du perceptron comprenant une ou plusieurs couches intermédiaires dites couches cachées. Ils utilisent, pour modifier leurs poids, un algorithme de rétropropagation du gradient, qui est une généralisation de la règle de Widrow-Hoff. Il s'agit toujours de minimiser l'erreur quadratique, ce qui est assez simple quand on utilise une fonction f dérivable (la sigmoïde par exemple). On propage la modification des poids de la couche de sortie jusqu'à la couche d'entrée. Les PMC agissent comme un séparateur non linéaire et peuvent être utilisés pour la classification, le traitement de l'image ou l'aide à la décision.

III.9.3 Les réseaux de Hopfield

Un réseau de Hopfield réalise une mémoire adressable par son contenu. Il s'agit d'un réseau constitué de neurones de McCulloch et Pitts (à deux états,-1 et 1 ou 0 et 1), dont la loi d'apprentissage est la règle de Hebb (1949), qui veut qu'une synapse améliore son activité si et seulement si l'activité de ses deux neurones est corellée (C'est a dire que le poids w ij d'une connexion entre un neurone i et un neurone j augmente quand les deux neurones sont activés au même temps).

III.9.4 Les réseaux de Kohonen

Contrairement aux réseaux de Hopfield où les neurones sont modélisés de la façon la plus simple possible, on recherche ici un modèle de neurone plus proche de la réalité. Ces réseaux sont inspirés des observations biologiques du fonctionnement des systèmes nerveux de perception des mammifères. Une loi de Hebb modifiée (tenant compte de l'oubli) est utilisée pour l'apprentissage. La connexion est renforcée dans le cas ou les neurones reliés ont une activité simultanée, et diminuée dans le cas contraire.

d w i / dt = k S e i - B(S) w i avec B(S) la fonction d'oubli

S: sortie (toujours positive).

Une loi d'interaction latérale (observée biologiquement) est aussi modélisée. Les neurones très proches (physiquement) interagissent positivement (le poids des connexions est augmenté autour quand une synapse est activée), négativement pour les neurones un peu plus loin, et pas du tout pour les neurones éloignés. Ceci crée un "amas" de neurones activés et contribue à spécialiser certains neurones: pour une entée donnée, une sortie particulière sera activée et pas les autre. On utilise aussi parfois des lois de concurrence entre les neurones (création et destruction de neurones selon certains critères, par exemple la règle du "winner-take-all").

Ceci permet de résoudre certains problèmes, dits NP complets, tels le problème du voyageur de commerce (comment relier n villes par le chemin le plus court). Les réseaux de Kohonen ont des applications dans la classification, le traitement de l'image, l'aide à la décision et l'optimisation.

III.10 Conclusion

Pour longtemps l'informatique est apparue comme une science purement formelle où les seules règles de la logique permettaient au programme de fonctionner indépendamment des données de l'environnement extérieur.

Est-ce à dire que l'informatique d'autrefois à su conquérir de nouveaux territoires aussi nombreux que variés ? Bien au contraire, un tel avènement de l'informatique reflète une profonde évolution : le développement de véritables systèmes experts aptes à apprendre et à reconnaître les spécificités à un domaine.

A cet égard, les réseaux de neurones se trouvent être une application concrète d'interaction entre le programme informatique et un milieu : il s'agit d'apprendre et de reconnaître les caractères propre au milieu. Parti d'un modèle biologique bien connu, celui des neurones, nous en avons étudié l'adaptation informatique : le neurone formel ; le choix d'un programme de prédiction des propriétés du pétrole étant pour nous l'occasion d'étudier les relations entre un tel système et un environnement numérique.

Une différence fondamentale subsiste toutefois entre nos deux modèles de neurones. Là où les performances du neurone biologique suivent la courbe d'apprentissage, le neurone formel atteint quant à lui un seuil au-delà duquel ses performances régressent : on parle alors de « sur-apprentissage ».

L'idée serait donc de se départir d'une telle limite et d'entrevoir un nouveau modèle formel qui se ferait l'écho du modèle biologique.

CHAPITRE IV

CALCULS ET RESULTATS

IV.1 Présentation du logiciel

Pour la prédiction des propriétés physiques et thermodynamiques des hydrocarbures purs, de leur mélange et des fractions pétrolières nous avons utilisé le logiciel de calcul Matlab dans sa version 7.5.

Pour d'établir notre réseau nous avons besoin d'une banque de données, celle-ci peut être exportée directement à partir d'un fichier Excel.

Après avoir exporté la banque de données, nous introduirons la commande « nntool » dans la fenêtre de commande, une interface graphique apparaît, elle nous permet de créer un réseau, le visualiser, l'entraîner, le simuler, et exporter les valeurs de sortie.

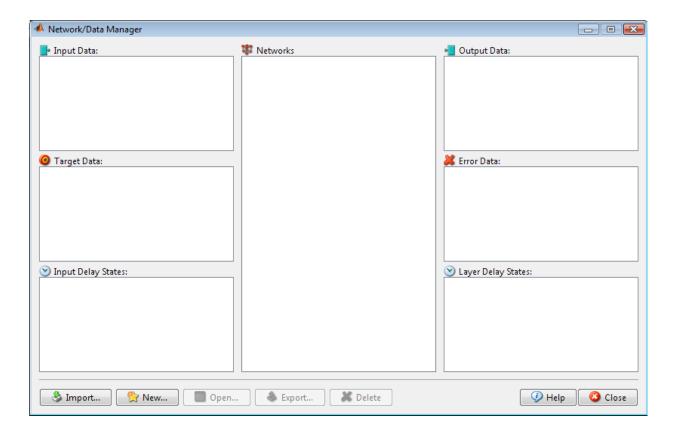


Figure 1: interface graphique « nntool »

IV.1.1 Création des données

Avant de créer un réseau, il faut d'abord introduire les entrées qui sont dans notre cas la densité, et la température d'ébullition, et les propriétés qui doivent être atteinte par le réseau et qui sont dans notre cas la chaleur spécifique, la chaleur de vaporisation, et l'indice de corrélation.

Pour cela on clique sur import (figure 1), une interface graphique apparaît (figure 2), elle nous permet d'introduire les entrées (input) et les valeur qui doivent être atteinte par le réseau.

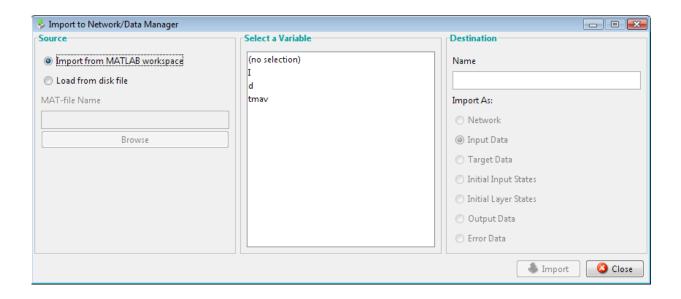


Figure 2 : fenêtre d'importation de données

IV.1.2 Création du réseau

Pour générer un nouveau réseau, on clique sur New, une nouvelle fenêtre apparaît (figure 3), on choisie le type de réseau préprogrammé. Le feed-foward Backpropagation et tout désigner pour ses propriétés de convergence et ses capacités d'approximation.

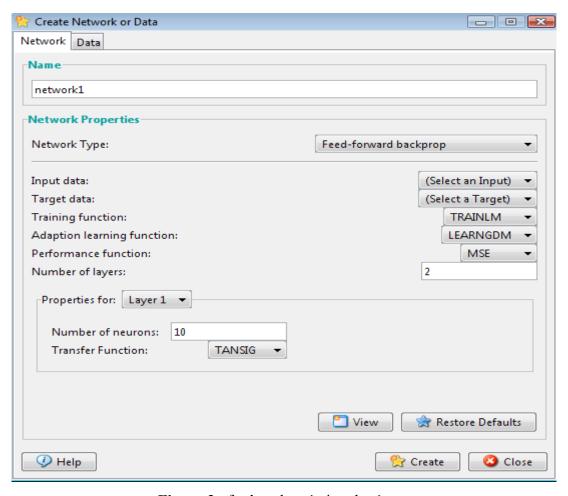


Figure 3 : fenêtre de création de réseau

On choisi la fonction d'entraînement « TRAINLM », et comme fonction d'apprentissage « LEARNGDM », et la fonction « SSE » comme fonction de performance.

Pour le nombre de couches cachées, il est de deux, la première couche a pour fonction d'activation la tangente sigmoïde « TANSIG », et la deuxième couche a pour fonction d'activation la fonction linéaire « PURLIN ».

La seule variable est le nombre de neurones cachés qui doit être optimisé pour chaque réseau par incrémentation.

Après avoir créé le réseau, il est possible de le visualiser en appuyant sur « VIEW ». La fenêtre suivante apparaît.

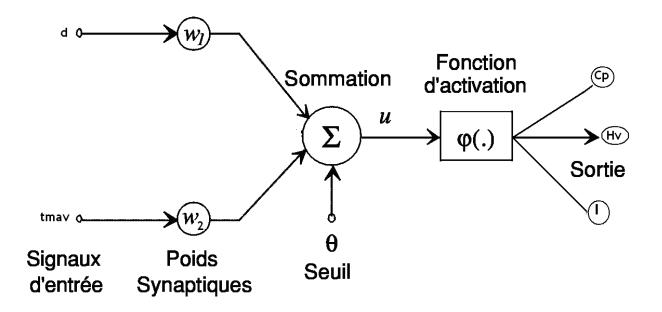


Figure 4 : Schéma du réseau établi

IV.1.3 Mise en œuvre du réseau

En cliquant sur « créate » dans l'interface de création du réseau (figure 3), puis on allant dans le « network data manager » (figure1), et cliquant sur le nom du réseau créer une nouvelle fenêtre apparaît et nous permet d'entraîner le réseau après avoir sélectionné la banque de donnée appropriée, et ajuster les paramètres tels que les époques et l'erreur désirée.

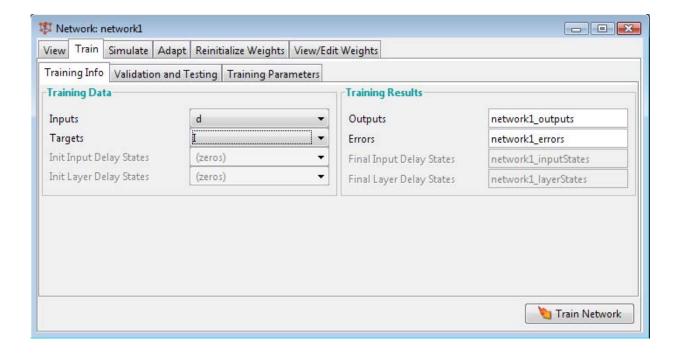


Figure 5 : fenêtre d'apprentissage et simulation du réseau.

Enfin on clique sur « train network », un graphique apparaît automatiquement présentant l'état d'avancement de l'apprentissage (figure 6). Ce dernier s'arrêtera après que le nombre d'époque atteigne la valeur fixée.

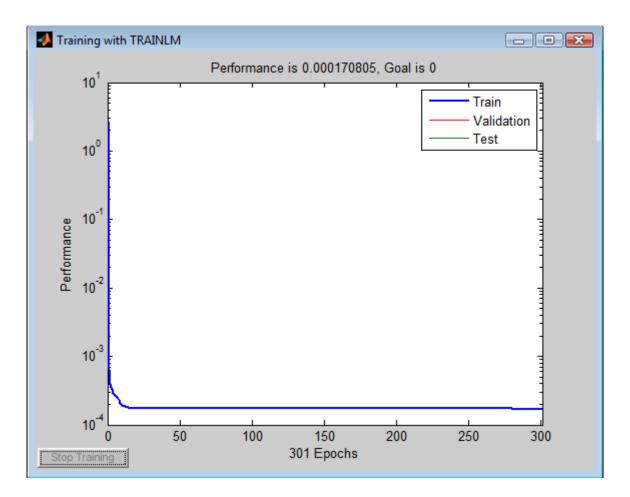


Figure 7 : graphique de l'évolution de l'apprentissage

Le tableau suivant regroupe les caractéristiques des réseaux établis

PARAMETRES	CHOIX
Structure du réseau élaboré	Percepteron multicouches (feed-foword)
Données d'entrée	Température d'ébullition, densité
Algorithme d'apprentissage	Levenberg-Marquardt (trainlm)
Fonction d'adaptation	Learngdm
Fonction de performance	SSE
Nombre de couches	2
Fonction d'activation de la 1 ^{ère} couche	Sigmoïde tangentielle (TANSIG)
Fonction d'activation de la 2 ^{ème} couche	Linéaire (PURLIN)
Nombre d'itération	10000 époques
Pas d'apprentissage	25

Tableau 1 : caractéristiques des réseaux établis

IV.2 Présentation des résultats de simulation

Dans le paragraphe suivant, nous allons présenter les résultats obtenus lors de la simulation par RNA pour le corps pur, les mélanges et les fractions pétrolières. Afin de rendre compte de l'ordre de la précision des RNA établis pour la prédiction des différentes propriétés.

IV.2.1 Application au corps pur

La banque de données des corps purs a été divisée en 03 parties :

Les hydrocarbures linéaires saturés (i-paraffines), les hydrocarbures linéaires insaturés(les oléfines et les alcynes), enfin les hydrocarbures cycliques (les naphtènes et les aromatiques). Une grande partie de cette base a été destinée à l'apprentissage, tandis que l'autre partie (environ 10%) a servit de base test.

IV.2.1.1 Les hydrocarbures linéaires saturés (i paraffines)

IV.2.1.1.1 La chaleur spécifique

NOMBRE DE NEURONES	ERREUR MOY	ERREUR MAX	ERREUR MIN
10	6.1840 E-06	3.6349 E-05	0
11	5.6181 E -06	5.2610 E-05	0
12	4.5931 E-06	2.7956 E-05	0
13	1.5498 E-05	8.4557 E-05	0
14	4.5882 E-06	3.6595 E-05	0
15	1 .1960E-05	4.5393 E-05	0
16	1.2565 E-05	6.3813 E-05	0
17	1.4093 E-05	5.1841 E-05	0
18	2.6605 E-06	1.2536 E-05	0
19	1.9883 E-05	9.0304 E-05	0
20	6.1840 E-06	3.6349 E-05	0

Tableau 2 : variation du nombre de neurones cachés.

Le nombre de neurones cachés optimum est 18.

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	cp (RNA)	%erreur
3-methylhexane	C7H16	364,998	687,15	163,6	163,600054	3.29E-05
2,4-dimethylhexane	C8H18	382,583	700,36	192,3	192,300077	4.00E-05
3,4-dimethylheptane	C9H20	413,5	731,4	205,6	205,600016	7.78E-06
2,4-dimethylheptane	C9H20	406,3	715,3	215,85	215,849977	1.06E-05
2,2,5-trimethylhexane	C9H20	397,24	707,19	207,9	207,900045	2.16E-05
3-ethyl-2,3-dimethylpentane	C9H20	417,8	754,8	212,2	212,200014	1,40E-05
Heptane, 4-propyl-	C10H22	430,6	735,9	236,5	236,500005	5,43E-06
Hexane, 3-ethyl-2,4-dimethyl-	C10H22	433,2	755,2	229,9	229,900004	4,14E-06
octane, 3,4-dimethyl-	C10H22	436,5	744,8	228	227,999976	2,37E-05
3,3-diethylhexane	C10H22	439,5	761,3	241,2	241,200014	1,38E-05
Hexane, 2,2,4,4-tetramethyl-	C10H22	427	746,2	237,9	237,899984	1,57E-05
Hexane,3-ethyl-2,3-dimethyl-	C10H22	436,8	763,7	236,8	236,799972	2,85E-05
Hexane, 2,3,4,4-tetramethyl-	C10H22	434,8	762,4	230,3	230,300012	1,22E-05
2-methyldecane	C11H24	462,34	736,8	255,1	255,099833	0,00016708
Heptane, 3,3-diethyl-	C11H24	460	770,3	262	262,000054	5.40E-05
					AD %	2.29E-05

Tableau 3 : résultats obtenus sur la base de test

IV.2.1.1.2. La chaleur de vaporisation

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	0.3974	1.6012	0
11	0.4262	1.6314	0
12	0.3988	2.3557	0
13	0.4094	1.7003	0
14	0.3967	1.3557	0
15	0.3728	1.4613	0
16	0.3442	1.9868	0
17	0.3461	1.7184	0
18	0.3244	1.6759	0
19	0.2433	1.3469	0
20	0.2874	1.1703	0

Tableau 4 : variation du nombre de neurones cachés.

Le nombre de neurones cachés optimum est 19.

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	Hv (RNA)	% erreur
3-methylhexane	C7H16	364,998	687,15	30,89	30,8217864	0.22082745
2,4-dimethylhexane	C8H18	382,583	700,36	32,51	31,9894823	1.60110027
3,4-dimethylheptane	C9H20	413,5	731,4	35,30	35,667567	1.04126628
2,4-dimethylheptane	C9H20	406,3	715,3	34,90	34,6865655	1,30990802
2,2,5-trimethylhexane	C9H20	397,24	707,19	33,30	34,4428421	1,1428421
3-ethyl-2,3-dimethylpentane	C9H20	417,8	754,8	34,80	34,8645969	0,06459687
heptane, 4-propyl-	C10H22	430,6	735,9	37,50	37,6133679	0,11336788
hexane, 3-ethyl-2,4-dimethyl-	C10H22	433,2	755,2	36,80	36,5941189	0,55945595
octane, 3,4-dimethyl-	C10H22	436,5	744,8	37,70	37,4421478	0.68395809
3,3-diethylhexane	C10H22	439,5	761,3	37,30	36,9546902	0.92575871
hexane, 2,2,4,4-tetramethyl-	C10H22	427	746,2	34,80	34,7854282	0.04187298
hexane, 3-ethyl-2,3-dimethyl-	C10H22	436,8	763,7	36,80	36,6519324	0,40238043
hexane, 2,3,4,4-tetramethyl-	C10H22	434,8	762,4	36,30	36,4012878	0.54741653
2-methyldecane	C11H24	462,34	736,8	40,50	41,5188371	2.51564716
heptane, 3,3-diethyl-	C11H24	460	770,3	40,30	40,8600218	1.38963225
					AD %	0.82698

Tableau 4 : résultats obtenus sur la base de test

IV.2.1.1.3 L'indice de corrélation

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	2.6878E-04	0.0068	0
11	2.8065E-04	0.0074	0
12	3.986 E-04	0.0098	0
13	5.7864 E-04	0.0102	0
14	2.7865 E-04	0.0070	0
15	2.4563 E-04	0.0065	0
16	3.0045 E-04	0.0071	0
17	2.1324 E-04	0.0054	0
18	2.043E-04	0.0014	0
19	2.0951 E-04	0.0032	0
20	2.074 E-04	0.0029	0

Tableau 5 : variation du nombre de neurones cachés.

Le nombre de neurones cachés optimum est 18.

Nom	Formule	Tb(K)	d20(Kg/m3)	l	I (RNA)	%erreur
3-methylhexane	C7H16	364,998	687,15	0,236	0,235199452	0,339215
2,4-dimethylhexane	C8H18	382,583	700,36	0,240	0,240545658	0,227357
3,4-dimethylheptane	C9H20	413,5	731,4	0,248	0,248449038	0,181063
2,4-dimethylheptane	C9H20	406,3	715,3	0,244	0,245063847	0,4360028
2,2,5-trimethylhexane	C9H20	397,24	707,19	0,242	0,241555597	0,1836376
3-ethyl-2,3-dimethylpentane	C9H20	417,8	754,8	0,254	0,254232015	0.0913444
heptane, 4-propyl-	C10H22	430,6	735,9	0,250	0,249763894	0,0934444
hexane, 3-ethyl-2,4-dimethyl-	C10H22	433,2	755,2	0,254	0,254150034	0,0590685
octane, 3,4-dimethyl-	C10H22	436,5	744,8	0,252	0,252010135	0,0040218
3,3-diethylhexane	C10H22	439,5	761,3	0,256	0,255770148	0,0897859
hexane, 2,2,4,4-tetramethyl-	C10H22	427	746,2	0,253	0,252445993	0,2189750
hexane, 3-ethyl-2,3-dimethyl-	C10H22	436,8	763,7	0,257	0,256228458	0,3002108
hexane, 2,3,4,4-tetramethyl-	C10H22	434,8	762,4	0,257	0,256179422	0,3192910
2-methyldecane	C11H24	462,34	736,8	0,251	0,251048764	0.0194227
heptane, 3,3-diethyl-	C11H24	460	770,3	0,258	0,258755725	0,2920166
					AD %	0.1840

Tableau 6 : résultats obtenus sur la base de test

IV.2.1.2 Les hydrocarbures linéaire insaturés (oléfines + alcynes)

IV.2.1.2.1 La chaleur spécifique:

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	3.0005	22.6253	0
11	2.7067	20.9899	0
12	2.6204	17.3653	0
13	1.3963	10.9136	0
14	1.3254	17.1226	0
15	0.5119	6.5378	0
16	0.0262	0.2378	0
17	1.2764	10.5350	0
18	0.3423	2.7422	0
19	0.0089	0 .0761	0
20	0.0099	0.0930	0

Tableau 9 : variation du nombre de neurones cachés.

Le nombre de neurones optimum est 19.

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	Cp (RNA)	%erreur
2,3-dimethyl-1-butene	C6H12	328,76700	678,1	143,5	143,5601	0,04188
2-methyl-1-pentene	C6H12	335,263	679,87	135,6	135,5021	0,07219
1-undecene	C11H22	465,86	750,3	244,0	244,0008	0.0003278
2-butyne	C4H6	300,11	691	78,02	78,0201	0,0001282
4-methyl-2-pentyne	C6H10	346,2	715,7	124,44	124,4522	0,0098039
5-methyl-2-hexyne	C7H12	375,61	737,8	144,58	144,5845	0.0031124
1-heptadecyne	C17H32	573	801,8	377,9	378,012	0,0002963
	•				AD %	0.018266

Tableau 10 : résultats obtenus sur la base de test

IV.2.1.2.2 La chaleur de vaporisation

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
3	0.0709	0.2662	0
4	0.1064	0.5505	0
5	0.0568	0.2184	0
6	0.0823	0.4079	0
7	0.0707	0.3048	0
8	0.0261	0.1515	0
9	0.070	0.0563	0
10	0.0122	0.1387	0

Tableau 7 : variation du nombre de neurones cachés.

Le nombre de neurones cachés optimum est 10.

Nom	Formule	Tb(K)	D20(Kg/m3)	Hvb(kj/mol)	Hv (RNA)	% erreur
2,3-dimethyl-1-butene	C6H12	328,767	678,1	2,74E+01	27,5442013	0,52628212
2-methyl-1-pentene	C6H12	335,263	679,87	28,2	28,2787112	0,27911773
1-undecene	C11H22	465,86	750,3	40,88	40,4683634	1.00693884
					AD %	0.6041

Tableau 8 : résultats obtenus sur la base de test

IV.2.1.2.3 L'indice de corrélation

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	6.9517e-04	0.0048	0
11	5.5593 e-04	0.0021	0
12	3.0030 e-04	0.0020	0
13	2.3993 e-04	0.0019	0
14	4.9708 e-04	0.0041	0
15	3.4281 e-04	0.0021	0
16	2.3807 e-04	0.0022	0
17	2.4884 e-04	0.0018	0
18	1.5816 e-05	2.4279 e-04	0
19	9.6307 e-05	0.0011	0
20	0	0	0

Tableau10 : variation du nombre de neurones cachés.

Le nombre de neurones optimum est 20.

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I(RNA)	% erreur
2,3-dimethyl-1-butene	C6H12	328,76700	678,1	0,237	0,23699341	0,00278059
2-methyl-1-pentene	C6H12	335,263	679,87	0,238	0,23792825	0,03014705
1-undecene	C11H22	465,86	750,3	0,256	0,25555184	0,17389062
2-butyne	C4H6	300,11	691	0,238	0,23742763	0,24049195
4-methyl-2-pentyne	C6H10	346,2	715,7	0,245	0,24255	0,99795918
5-methyl-2-hexyne	C7H12	375,61	737,8	0,252	0,25035033	0,68168181
1-heptadecyne	C17H32	573	801,8	0,267	0,26720272	0.07592509
					AD %	0.3147

Tableau: résultats obtenus sur la base de test

IV.2.1.3 Les hydrocarbure cycliques (aromatiques + naphtènes)

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	0.9505	15.3386	0
11	0.8472	12.4131	0
12	0.7903	13.1022	0
13	0.7940	15.2139	0
14	0.7461	12.9425	0
15	0.2893	4.2869	0
16	0.3008	3.6658	0
17	0.2769	3.3330	0
18	0.5886	14.4675	0
19	0.7903	13.0102	0
20	0.1975	3.1410	0

Tableau10 : variation du nombre de neurones cachés pour les trois propriétés étudiées.

Le nombre de neurones optimum est 20.

IV.2.1.3 .1 La chaleur spécifique

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	Cp (RNA)	% erreur
1,trans-3-dimethylcyclopentane	C7H14	363,9	744,76	134,5	133,8358	0.49399256
1,cis-2-dimethylcyclohexane	C8H16	402,89	796,24	151,2	152,422999	0.80886177
octylcyclopentane	C13H26	516,7	804,8	287,9	288,24333	0,11925321
dodecylcyclohexane	C18H36	600,8	822	390,8	398,855359	2.06127405
Toluène	C7H8	383,762	866,84	103,75	105,737159	1,91533397
1-ethyl-2-methylbenzene	C9H12	438,33	880,6	154,54	153,789388	0,48570726
m-diethylbenzene	C10H14	454,252	863,94	173,3	165,20748	1.1006809
o-propyltoluene	C10H14	458,08	873,6	182,3	173,254239	0.5485463
1-ethyl-2,4,5-trimethylbenzene	C16H26	571	855,4	309,58	308,84018	0,23897528
					AD %	0.8636

Tableau : résultats obtenus sur la base de test

IV.2.1.3 .2 La chaleur de vaporisation

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	Hv (RNA)	% erreur
1,trans-3-dimethylcyclopentane	C7H14	363,9	744,76	30,8	30,1692932	2.0457749
1,cis-2-dimethylcyclohexane	C8H16	402,89	796,24	33,6	33,1119664	1.1074963
Octylcyclopentane	C13H26	516,7	804,8	45,4	44,9457937	1.0004544
Dodecylcyclohexane	C18H36	600,8	822	53,56	53,3763199	0,3429426
Toluène	C7H8	383,762	866,84	33,18	33,0062487	0,5236627
1-ethyl-2-methylbenzene	C9H12	438,33	880,6	38,9	38,1837109	1.8413601
m-diethylbenzene	C10H14	454,252	863,94	39,4	39,4298608	0.0075788
o-propyltoluene	C10H14	458,08	873,6	39,5	39,5605794	0,1533655
1-ethyl-2,4,5-trimethylbenzene	C16H26	571	855,4	50,71	50,4349548	0,5423884
					AD %	0.84056

Tableau : résultats obtenus sur la base de test

IV.2.1.3 .3 L'indice de corrélation

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
1,trans-3-dimethylcyclopentane	C7H14	363,9	744,76	0,247	0,24716545	0,0669838
1,cis-2-dimethylcyclohexane	C8H16	402,89	796,24	0,261	0,25987371	0,1126290
Octylcyclopentane	C13H26	516,7	804,8	0,266	0,26854642	1.0937326
Dodecylcyclohexane	C18H36	600,8	822	0,272	0,27005088	0,7165882
Toluène	C7H8	383,762	866,84	0,293	0,29429453	0,4418191
1-ethyl-2-methylbenzene	C9H12	438,33	880,6	0,296	0,29541503	0,1976250
m-diethylbenzene	C10H14	454,252	863,94	0,292	0,29189333	0,0365308
o-propyltoluene	C10H14	458,08	873,6	0,294	0,29040572	1.2225442
1-ethyl-2,4,5-trimethylbenzene	C16H26	571	855,4	0,286	0,28464265	0.1357440
					AD %	0.4471

Tableau : résultats obtenus sur la base de test

Commentaires

Les résultats obtenus par simulation sur les différents réseaux établis sont globalement très satisfaisants puisqu'on trouve une erreur moyenne qui n'excède pas 0.2433% sur

l'ensemble des bases d'entraînement et ce pour les trois propriétés, et 0.8636 sur la base de test.

IV.2.2 Application aux mélanges

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
3	0.0709	0.2662	0
4	0.1064	0.5505	0
5	0.0568	0.2184	0
6	0.0823	0.4079	0
7	0.0707	0.3048	0
8	0.0261	0.1515	0
9	0.070	0.0563	0
10	0.0122	0.1387	0

Tableau10 : variation du nombre de neurones cachés

IV.2.2.1 La chaleur spécifique

N°	Const 1	Const 2	%mol1	%mol2	dexp	tmay	Ç.D.	Cp (RNA)	% erreur
M10	nC6	CYC6	77,78	22,22	0,6819	344.6528	133.9857	134.6785	0.5171
M20	nC15	nC7	11,26	88,74	0,7238	390.9519	184.866	183.9987	0.4691
M30	Bz	EtBz	57,67	42,33	0,8714	376.9590	101.4658	103.9487	2.4470
M40	Bz	nC14	88,97	11,03	0,842	372.3453	109.0145	107.6674	1.2357
								AD %	1.1672

Tableau 11: résultats obtenus sur la base de test

IV.2.2.2 La chaleur de vaporisation

N°	Const 1	Const 2	%mol1	%mol2	dexp	tmay	Ну	Hy (RNA)	% erreur
M10	nC6	CYC6	77,78	22,22	0,6819	344.6528	29.1055	30.0875	3.3739
M20	nC15	nC7	11,26	88,74	0,7238	390.9519	33.7608	32.2231	4.5546
M30	Bz	EtBz	57,67	42,33	0,8714	376.9590	32.8088	32.5443	0.8062
M40	Bz	nC14	88,97	11,03	0,842	372.3453	32.6185	32.9878	1.1322
								AD %	2.4667

IV.2.2.3 L'indice de corrélation

N°	Const 1	Const 2	%mol1	%mol2	dexp	tmay.	- 1	I (RNA)	% erreur
M10	nC6	CYC6	77,78	22,22	0,6819	344.6528	0.2366	0.237012	0.174133
M20	nC15	nC7	11,26	88,74	0,7238	390.9519	0.2478	0.239980	3.155771
M30	Bz	EtBz	57,67	42,33	0,8714	376.9590	0.2938	0.300120	2.105824
M40	Bz	nC14	88,97	11,03	0,842	372.3453	0.2842	0.280023	1.469739
								AD %	1.7264

Tableau 12: résultats obtenus sur la base de test

Commentaires

Les réseaux établis pour l'estimation des propriétés thermodynamiques étudiées donnent des écarts raisonnables par rapport aux valeurs expérimentales de ces propriétés.

IV.2.3 Application aux fractions pétrolières

Pour les fractions pétrolières nous ne disposons que des bases de données pour l'indice de corrélation et la capacité calorifique, la chaleur de vaporisation ne sera pas étudiée à cause de l'indisponibilité des données expérimentales.

Pour la capacité calorifique les fractions considérées sont légères (35°C – 150°C), le nombre d'échantillons est de 95 fractions, leur origine est la suivante :

Fractions N°: 2, 7, 14, 26, 47, 74,88 (issue d'un brut algérien de Guellala).

Fractions N°: 1, 3, 8, 15, 18, 23, 35, 48, 65,75 (issues d'un brut algérien de Hassi Messaoud « solvant léger »).

Fractions N°: 16, 17, 19, 24, 36, 49, 66, 76, 86,89 (issues d'un brut algérien de Hassi Messaoud « solvant lourd »).

Fraction N°: 60 (issue d'un brut algérien d'Ohanet).

Fraction N°: 44 (issue d'un brut algérien de Zarzaïtine).

Fractions N°: 21, 25, 28, 37, 42, 50, 57 (issues d'un brut algérien de Rastomb).

Fractions N°: 22, 51, 77, 90 (issues d'un brut algérien de Hassi R'mel).

Fractions N°: 30, 91 (private communication).

Fractions N°: 4, 5, 6, 9, 10, 11, 12, 13, 20, 27, 29, 31, 32, 33, 34, 38, 39, 40, 41, 43, 45, 46, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 73, 78, 79, 80, 81, 82, 83, 84, 85, 87, 92, 93, 94, 95 (bank of data collected at Penn State from private open literature and gouvernement sources).

Ces fractions sont dans l'annexe (résultats de calcul sur la base d'entrainement de cp).

Pour l'indice de réfraction,

Les fractions de 1 à 49 sont issues d'un pétrole algérien El Guellala.

Les trois fractions larges qui suivent sont issues du même pétrole.

Les fractions de 1 à 49 qui suivent sont issues d'un pétrole algérien DJW.

Les trois fractions larges qui suivent sont issues du même pétrole.

Les fractions de 1 à 49 qui suivent sont issues d'un pétrole algérien El Agreb.

Les trois fractions larges qui suivent sont issues du même pétrole. (Voir annexe, tableau résultats de calculs sur la base d'entrainement de I).

IV.2.3.1 La capacité calorifique

ir-			
NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	1.3461	7.3527	0
11	1.2983	7.2747	0.0221
12	1.5260	8.8249	0
13	1.3554	8.4262	0
14	0.9474	8.1252	0
15	1.3813	8.2950	0
16	0.9100	7.5640	0
17	0.7280	8.9442	0
18	0.4861	4.1034	0
19	1.04861	6.2585	0
20	0.2246	2.2400	0

Tableau10 : variation du nombre de neurones cachés

Le nombre de neurones cachés optimum est 20.

N°	Tmav(°C)	d	Cp _{298K} (J/moleK)	Cp (RNA)	% Erreur
5	54,44	0,6535	151,0192	152,3456	0.8782
10	58,00	0,6602	156,2000	155,2231	0.6254
15	65,00	0,6620	152,3949	153,2543	0.5693
20	79,00	0,6890	163,5696	163,7962	0,1385
25	85,50	0,7001	163,9015	163,5416	0,2196
30	91,11	0,7322	159,6643	172,0241	7,7411
35	95,00	0,7150	171,5764	176,0715	2,6199
40	100,00	0,7117	174,7851	175,5988	0,4656
45	103,89	0,7168	180,6665	177,7903	1,5920
50	105,50	0,7191	169,7160	176,0497	3,7319
55	110,00	0,7228	179,9180	181,8627	1,0809
60	112,00	0,7241	184,4102	184,0825	0,1777
65	115,00	0,7300	185,3675	182,1277	1,7477
70	117,00	0,7305	188,0318	186,4735	0,8288
75	125,00	0,7400	190,4033	187,0326	1,7703
80	127,00	0,7508	187,8452	189,8183	1,0504
85	134,00	0,7508	197,6543	198,0695	0,2101
90	146,00	0,7490	209,6657	210,3660	0,3340
				AD %	1.4323

Tableau : résultats obtenus sur la base de test.

IV.2.3.1 L'indice de corrélation

NOMBRE	ERREUR	ERREUR	ERREUR
DE	MOY	MAX	MIN
NEURONES			
10	4.7396e-04	0.0025	0
11	2.0487 e-04	0.0022	0
12	3.3540 e-04	0.0024	0
13	3.9495 e-04	0.0022	0
14	2.4692 e-04	0.0018	0
15	2.2581e-04	0.0013	0
16	2.9551 e-04	0.0022	0
17	2.8629 e-04	0.0019	0
18	2.6275 e-04	0.0017	0
19	2.1026 e-04	0.0010	0
20	2.0719 e-04	0.0010	0

Tableau : variation du nombre de neurones cachés

Le nombre de neurones optimum est 20.

Om	Formule	Tb(K)	d20(Kg/m3)	I	I(RNA)	% erreur
2,3-dimethyl-1-butene	C6H12	328,76700	678,1	0,237	0,23697312	0,0113417
2-methyl-1-pentene	C6H12	335,263	679,87	0,238	0,23792825	0,0301461
1-undecene	C11H22	465,86	750,3	0,256	0,25555184	0,1720142
2-butyne	C4H6	300,11	691	0,238	0,23742763	0,2404919
4-methyl-2-pentyne	C6H10	346,2	715,7	0,245	0,24255	1 ,0294117
5-methyl-2-hexyne	C7H12	375,61	737,8	0,252	0,25035033	0,6546315
1-heptadecyne	C17H32	573	801,8	0,267	0,26720272	0.0759251
					AD %	0.3163

Tableau : résultats obtenus sur la base de test.

Commentaires

Les résultats obtenus pour les fractions pétrolières sont satisfaisants vu que l'erreur moyenne maximum obtenue par simulation est 0.2246% sur la base d'entraînement, et1.4323 sur la base de test.

CONCLUSION GENERALE

La connaissance des propriétés physico-chimiques du pétrole et des fractions pétrolières a toujours été un souci majeur pour l'ingénieur en génie chimique, raffinage et pétrochimie.

L'expérience fournit une partie des propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important.

C'est pour cela que nous nous sommes intéressés à la prédiction de quelques propriétés par une des méthodes empiriques qui est les réseaux de neurones artificiels.

Le premier chapitre a été consacré à la présentation de généralités sur le pétrole, qui a pour but de rendre compte de l'importance de cette source d'énergie et la nécessité de caractérisation de ses fractions.

Le deuxième chapitre a été dédié à la présentation des différentes propriétés auxquelles la modélisation fait appel comme paramètres d'entrée ou de sortie, ainsi que les propriétés de base.

Le troisième chapitre de ce document est réservé à une brève introduction aux réseaux de neurones artificiels (RNA). Cette partie a pour but de rendre compte des capacités d'approximations universelles des réseaux de neurones et de ce fait justifier l'utilisation de ces derniers pour l'estimation et la prédiction des propriétés des hydrocarbures, de leurs mélanges et des fractions pétrolières.

Dans la dernière partie, nous avons présenté les résultats de simulation obtenus pour les propriétés physiques des hydrocarbures, de leurs mélanges et des fractions pétrolières. Les résultats présentent de faibles écarts par rapport aux données expérimentales et nous conforte dans notre démarche.

ANNEXE

Corps purs Familles : les hydrocarbures linéaires saturés (iparaffines). Propriété : la chaleur spécifique.

				Cp°298K		
Nom	Formule	Tb(K)	d20(Kg/m3)	(j/mol.K)	cp (RNA)	% erreur
2-methylbutane	C5H12	300,994	619,3	118,87	118,87	1,70E-08
2,2-dimethylbutane	C6H14	322,868	649,13	141,5	141,5	9,11E-10
2,3-dimethylbutane	C6H14	331,116	661,59	139,41	139,4100002	1,75E-07
3-methylpentane	C6H14	336,396	664,31	140,1	140,0999999	1,46E-07
2-methylpentane	C6H14	333,398	653,14	142,21	142,21	1,28E-08
2,4-dimethylpentane	C7H16	353,622	672,62	170,75	170,7500021	2,14E-06
2,2,3-trimethylbutane	C7H16	354,006	690,05	163,3	163,3000001	1,49E-07
3,3-dimethylpentane	C7H16	359,187	693,26	165,8	165,7999992	8,23E-07
2,3-dimethylpentane	C7H16	362,907	695,02	160,83	160,8299999	5,66E-08
2,2-dimethylpentane	C7H16	352,318	673,84	166,7	166,6999961	3,86E-06
2-methylhexane	C7H16	363,177	678,7	164,5	164,5000029	2,87E-06
3-ethylpentane	C7H16	366,625	698,32	166	166	4,32E-08
2,2,4-trimethylpentane	C8H18	372,386	691,95	188,41	188,4100016	1,56E-06
2,3,3-trimethylpentane	C8H18	387,917	726,17	187,02	187,0200007	7,06E-07
3,3-dimethylhexane	C8H18	385,123	709,96	190,87	190,8700024	2,41E-06
2,2,3-trimethylpentane	C8H18	382,994	716,02	185,64	185,639999	9,69E-07
2,3,4-trimethylpentane	C8H18	386,622	718,98	191,59	191,5899999	1,28E-07
2,3-dimethylhexane	C8H18	388,764	712,09	184,1	184,1000022	2,20E-06
4-methylheptane	C8H18	390,863	704,62	187,02	187,0199989	1,15E-06
3-methylheptane	C8H18	392,077	705,79	185,8	185,7999983	1,67E-06
2,2-dimethylhexane	C8H18	379,994	695,29	188,3	188,3000015	1,52E-06
2,5-dimethylhexane	C8H18	382,258	693,58	185,48	185,4799976	2,39E-06
2-methylheptane	C8H18	390,804	697,92	187,23	187,2299997	3,41E-07
2-methyl-3-ethylpentane	C8H18	388,806	719,28	192,05	192,0500003	3,08E-07
3-ethylhexane	C8H18	391,692	713,54	189,62	189,619999	9,92E-07
3-ethyl-3-methylpentane	C8H18	391,416	727,43	187,99	187,9899996	3,80E-07
2,3,4-trimethylhexane	C9H20	412,11	739	212,8	212,7999997	2,67E-07
3,5-dimethylheptane	C9H20	408,8	720,5	213,4	213,4000003	3,23E-07
3,3-diethylpentane	C9H20	419,336	753,49	216,73	216,7300013	1,26E-06
4,4-dimethylheptane	C9H20	409	722,3	216	216,000001	9,98E-07
3-ethyl-2,4-dimethylpentane	C9H20	409,88	737,9	207,8	207,7999995	4,52E-07
2,3,5-trimethylhexane	C9H20	404,51	721,89	211,3	211,3000001	5,35E-08
2,2,4,4-tetramethylpentane	C9H20	395,44	719,45	214,6	214,6000006	6,27E-07
2,2-dimethylheptane	C9H20	405,97	710,5	211,3	211,2999995	5,05E-07
2,6-dimethylheptane	C9H20	408,37	709,3	209,2	209,1999988	1,16E-06
2,2,3,4-tetramethylpentane	C9H20	406,18	738,93	207,3	207,2999993	6,51E-07
2,5-dimethylheptane	C9H20	409,1	717,5	207	206,9999998	1,62E-07
4-ethylheptane	C9H20	414,3	726,3	213,3	213,3000004	4,01E-07
3-methyloctane	C9H20	417,38	720,5	208,6	208,5999999	9,41E-08
4-methyloctane	C9H20	415,59	720,2	209,3	209,2999998	1,67E-07

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	cp (RNA)	% erreur
2,3-dimethylheptane	C9H20	413,6	725,9	206,44	206,44	4,07E-07
4-ethyl-2-methylhexane	C9H20	407	724,2	218,6	218,600001	1,48E-06
3-methyl-3-ethylhexane	C9H20	413,8	736	212,9	212,9	1,89E-07
3-ethyl-4-methylhexane	C9H20	413,5	738	214,1	214,1	3,00E-07
2-methyloctane	C9H20	416,43	713,4	209,8	209,799999	9,78E-07
3,3-dimethylheptane	C9H20	410,17	725,6	212,8	212,8	3,44E-07
2,2,3,3-tetramethylpentane	C9H20	413,44	756,64	212,05	212,050002	1,51E-06
3-ethylheptane	C9H20	416,3	726,5	211,9	211,9	2,35E-07
2,2,3-trimethylhexane	C9H20	406,73	729,5	208,7	208,7	1,07E-07
2,2,4-trimethylhexane	C9H20	399,69	715,5	209,5	209,499999	7,61E-07
2,3,3-trimethylhexane	C9H20	410,84	737,4	212	212	2,26E-07
2,4,4-trimethylhexane	C9H20	403,81	723,79	212,3	212,3	2,59E-07
3,3,4-trimethylhexane	C9H20	422,6	745,4	209,2	209,199999	6,66E-07
2,2-dimethyl-3-ethylpentane	C9H20	406,99	734,8	203,8	203,199999	3,62E-07
2,3,3,4-tetramethylpentane	C9H20	414,71	1	218,3	218,300001	1,07E-06
3-ethyl-2-methylhexane			754,71			
	C9H20	411,1	733	215,1	215,1	1,09E-07
2-methylnonane	C10H22	440,15	726,4	232,5	232,499999	6,42E-07
2,2,5,5-tetramethylhexane	C10H22	410,61	718,75	228,4	228,400002	1,53E-06
octane, 2,7-dimethyl-	C10H22	433,02	724,2	231,9	231,899999	5,53E-07
2,5,5-trimethylheptane	C10H22	425,95	740	232,8	232,8	1,62E-07
2,2,6-trimethylheptane	C10H22	422,09	723,8	233,5	233,499999	1,08E-06
2,6-dimethyloctane	C10H22	433,53	727,6	230,6	230,6	4,50E-08
2,4,6-trimethylheptane	C10H22	420,8	722,8	244,8	244,800001	7,41E-07
2,4,4-trimethylheptane	C10H22	424,1	734,6	237,5	237,5	3,52E-08
2,3,6-trimethylheptane	C10H22	429,1	734,7	227,1	227,100001	6,79E-07
2,4-dimethyloctane	C10H22	429	726,4	238,11	238,109999	6,16E-07
octane, 3,3-dimethyl-	C10H22	434,3	739	235,8	235,8	7,70E-08
hexane, 3,3,4,4-tetramethyl-	C10H22	443,1	782,4	236,5	236,499999	7,94E-07
octane, 3-ethyl-	C10H22	439,6	739,9	234,6	234,6	1,36E-07
3-methylnonane	C10H22	441	733,4	231,2	231,2	1,34E-07
octane, 2,3-dimethyl-	C10H22	437,46	737,9	229,2	229,2	3,13E-07
3,3,5-trimethylheptane	C10H22	428,83	742,8	232,8	232,8	8,65E-08
heptane, 5-ethyl-2-methyl-	C10H22	432,8	735,6	233	233	2,88E-09
pentane, 2,4-dimethyl-3-(1-methylethyl)-	C10H22	430,19	758,3	233,2	233,2	1,74E-07
hexane, 2,2,3,3-tetramethyl-	C10H22	433,46	734,46	236,8	236,8	1,53E-07
heptane, 3-ethyl-2-methyl-	C10H22	434,3	743,6	237,3	237,3	2,67E-07
2,2,4-trimethylheptane	C10H22	421,5	727,5	233,4	233,399999	7,57E-07
5-methylnonane	C10H22	438,2	732,6	231,5	231,5	2,70E-08
octane, 4-ethyl-	C10H22	436,79	732,0	235,3	235,3	2,70E-08
octane, 2,2-dimethyl-	C10H22	430,79	736,1	233,9	233,899999	1,11E-06
octane, 2,5-dimethyl-	C10H22	431,6	730,2	230,4	230,4	1,11E-00 1,29E-07
-	C10H22			· ·		
octane, 3,5-dimethyl-		432,5	736,7	236,9	236,9	1,65E-08
octane, 3,6-dimethyl-	C10H22	434	736,3	228,3	228,3	4,79E-07
octane, 4,4-dimethyl-	C10H22	430,6	734,7	237,9	237,9	5,13E-08
octane, 4,5-dimethyl-	C10H22	435,28	747	228,8	228,799999	1,17E-06
hexane, 2,2,4,5-tetramethyl-	C10H22	421,03	735,46	227,9	227,900001	5,69E-07
pentane, 2,2,3,3,4-pentamethyl-	C10H22	439,2	780,09	232,8	232,799999	1,08E-06
pentane, 2,2,3,4,4-pentamethyl-	C10H22	432,44	767,03	232,8	232,800001	1,39E-06
nonane, 4-methyl-	C10H22	438,8	732,2	232	232	9,97E-08
3-ethyl-3-methylheptane	C10H22	436,8	750,1	234,8	234,8	1,70E-07
heptane, 4-ethyl-4-methyl-	C10H22	434	751	237,8	237,8	4,43E-07

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	cp (RNA)	% erreur
heptane, 4-ethyl-4-methyl-	C10H22	434	751	237,8	237,8	4,43E-07
hexane, 3,4-diethyl-	C10H22	437	751	245,7	245,699997	3,01E-06
2,4,5-trimethylheptane	C10H22	429,6	741,1	232,6	232,6	1,41E-07
2,3,5-trimethylheptane	C10H22	433,8	745,1	232,5	232,5	1,01E-07
3,3,4-trimethylheptane	C10H22	435	756,5	232,2	232,2	3,66E-07
3,4,4-trimethylheptane	C10H22	434,2	757,3	234,2	234,2	3,43E-07
3,4,5-trimethylheptane	C10H22	435,6	755,7	233,7	233,7	4,34E-08
hexane, 3-ethyl-2,2-dimethyl-	C10H22	429,1	748,5	226,4	226,399998	1,76E-06
2,2,5-trimethylheptane	C10H22	424	728,1	229,2	229,2	3,89E-07
4-isopropylheptane	C10H22	432	739,2	238	238	1,59E-07
heptane, 4-ethyl-2-methyl-	C10H22	429,3	736	242,2	242,200002	1,53E-06
heptane, 4-ethyl-3-methyl-	C10H22	435,3	750,4	237	237	4,47E-07
heptane, 3-ethyl-5-methyl-	C10H22	431,3	740,6	239,7	239,7	2,45E-07
heptane, 3-ethyl-4-methyl-	C10H22	436,1	750,6	237,3	237,3	4,53E-07
2,2,3-trimethylheptane	C10H22	430,8	742,3	231,2	231,2	3,16E-08
2,3,3-trimethylheptane	C10H22	433,5	748,8	233,8	233,8	3,68E-08
2,3,4-trimethylheptane	C10H22	433	748,5	236,2	236,2	3,68E-07
hexane, 4-ethyl-2,2-dimethyl-	C10H22	420	734	234,9	234,9	2,80E-07
hexane, 4-ethyl-2,3-dimethyl-	C10H22	434,1	755,4	241,8	241,799999	7,82E-07
hexane, 4-ethyl-2,4-dimethyl-	C10H22	434,2	756,3	233,6	233,6	6,56E-08
hexane, 3-ethyl-2,5-dimethyl-	C10H22	427,2	740,6	239,5	239,5	2,36E-07
hexane, 4-ethyl-3,3-dimethyl-	C10H22	436	763,6	226,9	226,9	8,62E-08
hexane, 3-ethyl-3,4-dimethyl-	C10H22	435,2	763,4	234,1	234,100001	1,20E-06
hexane, 2,2,3,4-tetramethyl-	C10H22	432	755,1	228	227,999998	1,53E-06
hexane, 2,2,3,5-tetramethyl-	C10H22	421,6	737,8	234,4	234,4	3,62E-08
hexane, 2,3,3,4-tetramethyl-	C10H22	437,74	769,4	240	240,000002	2,11E-06
hexane, 2,3,3,5-tetramethyl-	C10H22	426,2	748,7	232,5	232,5	3,75E-07
hexane, 2,3,4,5-tetramethyl-	C10H22	429,3	749,4	241,7	241,699999	7,56E-07
pentane, 3,3-diethyl-2-methyl-	C10H22	442,8	779,3	223,4	223,4	2,81E-07
pentane, 3-ethyl-2,2,3-trimethyl-	C10H22	442,6	781,8	222,3	222,299999	5,61E-07
pentane, 3-ethyl-2,2,4-trimethyl-	C10H22	428,5	757,1	225,9	225,899999	1,17E-06
pentane, 3-ethyl-2,3,4-trimethyl-	C10H22	442,59	777,3	227,6	227,6	2,07E-08
hexane, 2-methyl-3-(1-methylethyl)-	C10H22	439,8	747,4	230,5	230,499999	8,04E-07
nonane, 4-ethyl-	C11H24	457	748,5	256	256	1,28E-07
nonane, 5,5-dimethyl-	C11H24	450	746,5	257	256,999999	5,91E-07
heptane, 2-methyl-3-(1-methylethyl)-	C11H24	451,5	755,9	252	252	3,25E-07
3-methyldecane	C11H24	463,1	743,3	253,8	253,800001	1,20E-06
decane, 5-methyl-	C11H24	459	742,9	255	255,000001	1,35E-06
hexane, 2,2,3,5,5-pentamethyl-	C11H24	439	751,9	257	257	4,02E-07
nonane, 3-ethyl-	C11H24	461	749,3	255	255	2,34E-07
nonane, 5-ethyl-	C11H24	456	748,2	256	256	1,43E-07
octane, 4-propyl-	C11H24	453	744,7	257	257	4,62E-07
nonane, 2,2-dimethyl-	C11H24	452,8	735,2	256,5	256,499999	1,03E-06
nonane, 3,3-dimethyl-	C11H24	455	747,3		255	3,94E-07
octane, 3-ethyl-3-methyl-	C11H24	458,8	757	258	258	1,79E-07

Corps purs Familles : les hydrocarbures linéaires saturés (iparaffines). Propriété : la chaleur de vaporisation.

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	Hvb (RNA)	% erreur
2-methylbutane	C5H12	300,994	619,3	24,69	24,6899975	2,45E-06
2,2-dimethylbutane	C6H14	322,868	649,13	26,31	26,3307193	0,02071926
2,3-dimethylbutane	C6H14	331,116	661,59	27,28	27,3341971	0,05419713
3-methylpentane	C6H14	336,396	664,31	28,06	28,0076865	0,05231352
2-methylpentane	C6H14	333,398	653,14	27,79	27,7628414	0,02715861
2,4-dimethylpentane	C7H16	353,622	672,62	29,55	29,5306372	0,01936276
2,2,3-trimethylbutane	C7H16	354,006	690,05	28,90	28,8220657	0,07793432
3,3-dimethylpentane	C7H16	359,187	693,26	29,62	29,7398421	0,11984209
2,3-dimethylpentane	C7H16	362,907	695,02	30,46	30,5158714	0,05587135
2,2-dimethylpentane	C7H16	352,318	673,84	29,23	29,2527574	0,0227574
2-methylhexane	C7H16	363,177	678,7	30,62	30,6215298	0,00152981
3-ethylpentane	C7H16	366,625	698,32	31,12	31,0108667	0,1091333
2,2,4-trimethylpentane	C8H18	372,386	691,95	30,79	30,7858564	0,00414357
2,3,3-trimethylpentane	C8H18	387,917	726,17	32,12	32,1704897	0,05048965
3,3-dimethylhexane	C8H18	385,123	709,96	32,31	32,4820181	0,17201807
2,2,3-trimethylpentane	C8H18	382,994	716,02	31,94	31,8492196	0,09078041
2,3,4-trimethylpentane	C8H18	386,622	718,98	32,36	32,735178	0,37517799
2,3-dimethylhexane	C8H18	388,764	712,09	33,17	33,3398643	0,16986428
4-methylheptane	C8H18	390,863	704,62	33,35	33,2832462	0,06675378
3-methylheptane	C8H18	392,077	705,79	33,66	33,6744948	0,01449482
2,2-dimethylhexane	C8H18	379,994	695,29	32,26	32,2722604	0,0122604
2,5-dimethylhexane	C8H18	382,258	693,58	32,54	32,5524407	0,01244068
2-methylheptane	C8H18	390,804	697,92	33,26	33,24974	0,01025999
2-methyl-3-ethylpentane	C8H18	388,806	719,28	32,93	32,8474406	0,08255945
3-ethylhexane	C8H18	391,692	713,54	33,59	33,1775203	0,41247968
3-ethyl-3-methylpentane	C8H18	391,416	727,43	32,78	32,6702912	0,10970883
2,3,4-trimethylhexane	C9H20	412,11	739	34,70	34,8535748	0,15357484
3,5-dimethylheptane	C9H20	408,8	720,5	35,10	33,8087371	1,29126291
3,3-diethylpentane	C9H20	419,336	753,49	35,10	35,0530359	0,04696414
4,4-dimethylheptane	C9H20	409	722,3	34,60	34,5132664	0,08673357
3-ethyl-2,4-dimethylpentane	C9H20	409,88	737,9	34,50	34,0137068	0,48629319
2,3,5-trimethylhexane	C9H20	404,51	721,89	34,40	34,7456815	0,3456815
2,2,4,4-tetramethylpentane	C9H20	395,44	719,45	32,40	33,0944456	0,69444562
2,2-dimethylheptane	C9H20	405,97	710,5	34,60	34,5787745	0,02122546
2,6-dimethylheptane	C9H20	408,37	709,3	35,10	35,0685205	0,03147945
2,2,3,4-tetramethylpentane	C9H20	406,18	738,93	33,70	33,8586375	0,15863754
2,5-dimethylheptane	C9H20	409,1	717,5	35,10	35,1214859	0,02148592
4-ethylheptane	C9H20	414,3	726,3	35,50	34,9993981	0,50060192
3-methyloctane	C9H20	417,38	720,5	36,10	36,1716441	0,07164414

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	Hvb (RNA)	% erreur
4-methyloctane	C9H20	415,59	720,2	35,80	35,6158201	0,18417989
2,3-dimethylheptane	C9H20	413,6	725,9	35,30	35,2561374	•
4-ethyl-2-methylhexane	C9H20	407	724,2	34,90	35,3237933	0,4237933
3-methyl-3-ethylhexane	C9H20	413,8	736	34,90	34,9435796	
3-ethyl-4-methylhexane	C9H20	413,5	738	35,30	35,1429528	0,15704718
2-methyloctane	C9H20	416,43	713,4	36,10	36,1002129	0,00021294
3,3-dimethylheptane	C9H20	410,17	725,6	34,80	34,9604537	0,1604537
2,2,3,3-tetramethylpentane	C9H20	413,44	756,64	34,30	34,913379	
3-ethylheptane	C9H20	416,3	726,5	35,80	34,8505949	
2,2,3-trimethylhexane	C9H20	406,73	729,5	34,30	34,5834073	0,28340734
2,2,4-trimethylhexane	C9H20	399,69	715,5	33,60	33,6445794	0,0445794
2,3,3-trimethylhexane	C9H20	410,84	737,4	34,50	34,7561442	
2,4,4-trimethylhexane	C9H20	403,81	723,79	33,70	34,8666644	
3,3,4-trimethylhexane	C9H20	422,6	745,4	34,70	34,1410941	0,55890593
2,2-dimethyl-3-ethylpentane	C9H20	406,99	734,8	34,20	34,1978163	
2,3,3,4-tetramethylpentane	C9H20	414,71	754,71	34,50	35,1815794	
3-ethyl-2-methylhexane	C9H20	411,1	733	35,00	35,1326981	0,13269815
2-methylnonane	C10H22	440,15	726,4	38,60	38,594859	·
2,2,5,5-tetramethylhexane	C10H22	410,61	718,75	34,90	34,9365787	0,03657868
octane, 2,7-dimethyl-	C10H22	433,02	724,2	37,70	37,7306175	0,03061754
2,5,5-trimethylheptane	C10H22	425,95	740	36,40	37,0285076	0,62850764
2,2,6-trimethylheptane	C10H22	422,09	723,8	36,30	36,4632088	0,1632088
2,6-dimethyloctane	C10H22	433,53	727,6	37,70	36,7199014	
2,4,6-trimethylheptane	C10H22	420,8	722,8	36,50	36,4896209	0,01037906
2,4,4-trimethylheptane	C10H22	424,1	734,6	36,00	36,7002833	0,70028332
2,3,6-trimethylheptane	C10H22	429,1	734,7	36,90	36,7755084	0,1244916
2,4-dimethyloctane	C10H22	429	726,4	37,30	37,3350056	
octane, 3,3-dimethyl-	C10H22	434,3	739	37,30	37,2507797	0,04922033
hexane, 3,3,4,4-tetramethyl-	C10H22	443,1	782,4	34,80	34,8176965	
octane, 3-ethyl-	C10H22	439,6	739,9	38,20	37,362648	0,83735202
3-methylnonane	C10H22	441	733,4	38,60	37,6855669	
octane, 2,3-dimethyl-	C10H22	437,46	737,9	37,80	36,7359331	·
3,3,5-trimethylheptane	C10H22	428,83	742,8	36,40		0,40249705
heptane, 5-ethyl-2-methyl-	C10H22	432,8	735,6	37,30	37,7825687	0,48256874
pentane, 2,4-dimethyl-3-(1-		,	,	•	·	·
methylethyl)-	C10H22	430,19	758,3	35,90	36,5871483	0,68714829
hexane, 2,2,3,3-tetramethyl-	C10H22	433,46	734,46	36,20	36,6583853	0,45838532
heptane, 3-ethyl-2-methyl-	C10H22	434,3	743,6	37,30	37,304182	0,00418196
2,2,4-trimethylheptane	C10H22	421,5	727,5	36,00	36,0037005	0,0037005
5-methylnonane	C10H22	438,2	732,6	38,20	37,7624996	0,43750044
octane, 4-ethyl-	C10H22	436,79	738,1	37,80	37,8029812	0,00298118
octane, 2,2-dimethyl-	C10H22	430	724,5	37,20	36,9696514	0,23034862
octane, 2,5-dimethyl-	C10H22	431,6	730,2	37,40	37,4762897	0,07628966
octane, 3,5-dimethyl-	C10H22	432,5	736,7	37,40	36,6980792	0,70192081
octane, 3,6-dimethyl-	C10H22	434	736,3	37,70	36,7795795	0,92042051
octane, 4,4-dimethyl-	C10H22	430,6	734,7	36,90	36,7200107	0,17998926
octane, 4,5-dimethyl-	C10H22	435,28	747	37,40	36,6187027	0,78129733
hexane, 2,2,4,5-tetramethyl-	C10H22	421,03	735,46	35,50	36,818505	1,31850502
pentane, 2,2,3,3,4-pentamethyl-	C10H22	439,2	780,09	36,00	36,0000129	1,29E-05
pentane, 2,2,3,4,4-pentamethyl-	C10H22	432,44	767,03	34,90	35,8431789	0,94317891
nonane, 4-methyl-	C10H22	438,8	732,2	38,30	37,8159494	0,4840506

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	Hvb (RNA)	% erreur
nonane, 4-methyl-	C10H22	438,8	732,2	38,30	37,8159494	0,4840506
3-ethyl-3-methylheptane	C10H22	436,8	750,1	37,20	36,9575709	0,24242912
heptane, 4-ethyl-4-methyl-	C10H22	434	751	37,00	37,2088447	0,2088447
hexane, 3,4-diethyl-	C10H22	437	751	37,30	37,5396921	0,23969208
2,4,5-trimethylheptane	C10H22	429,6	741,1	36,80	36,8851797	0,08517966
2,3,5-trimethylheptane	C10H22	433,8	745,1	36,80	36,7479023	0,05209773
3,3,4-trimethylheptane	C10H22	435	756,5	36,90	36,6075176	0,29248241
3,4,4-trimethylheptane	C10H22	434,2	757,3	36,80	36,8070652	0,00706524
3,4,5-trimethylheptane	C10H22	435,6	755,7	37,10	36,8420633	0,25793674
hexane, 3-ethyl-2,2-dimethyl-	C10H22	429,1	748,5	36,30	36,4327777	0,13277771
2,2,5-trimethylheptane	C10H22	424	728,1	36,20	36,9716169	0,77161691
4-isopropylheptane	C10H22	432	739,2	37,00	36,5713797	0,42862027
heptane, 4-ethyl-2-methyl-	C10H22	429,3	736	36,90	36,8145868	0,08541323
heptane, 4-ethyl-3-methyl-	C10H22	435,3	750,4	37,30	37,1233225	0,17667754
heptane, 3-ethyl-5-methyl-	C10H22	431,3	740,6	37,30	36,7753525	0,52464754
heptane, 3-ethyl-4-methyl-	C10H22	436,1	750,6	37,40	37,1538822	0,24611776
2,2,3-trimethylheptane	C10H22	430,8	742,3	36,70	36,6803949	0,01960513
2,3,3-trimethylheptane	C10H22	433,5	748,8	36,80	36,876524	0,07652401
2,3,4-trimethylheptane	C10H22	433	748,5	37,00	37,0309776	0,0309776
hexane, 4-ethyl-2,2-dimethyl-	C10H22	420	734	35,90	36,4650642	0,56506421
hexane, 4-ethyl-2,3-dimethyl-	C10H22	434,1	755,4	36,90	36,9228192	0,02281923
hexane, 4-ethyl-2,4-dimethyl-	C10H22	434,2	756,3	36,80	36,7981375	0,00186253
hexane, 3-ethyl-2,5-dimethyl-	C10H22	427,2	740,6	36,40	36,7142174	0,31421743
hexane, 4-ethyl-3,3-dimethyl-	C10H22	436	763,6	36,80	35,7267566	1,07324342
hexane, 3-ethyl-3,4-dimethyl-	C10H22	435,2	763,4	36,60	36,1747724	0,42522764
hexane, 2,2,3,4-tetramethyl-	C10H22	432	755,1	36,10	36,1359014	0,03590138
hexane, 2,2,3,5-tetramethyl-	C10H22	421,6	737,8	35,90	37,7077285	1,80772847
hexane, 2,3,3,4-tetramethyl-	C10H22	437,74	769,4	36,70	36,4967451	0,20325486
hexane, 2,3,3,5-tetramethyl-	C10H22	426,2	748,7	36,00	36,8121116	0,81211162
hexane, 2,3,4,5-tetramethyl-	C10H22	429,3	749,4	36,50	36,1637679	0,33623211
pentane, 3,3-diethyl-2-methyl-	C10H22	442,8	779,3	37,10	36,6417893	0,45821067
pentane, 3-ethyl-2,2,3-trimethyl-	C10H22	442,6	781,8	36,40	36,6297854	· ·
pentane, 3-ethyl-2,2,4-trimethyl-	C10H22	428,5	757,1	35,70		0,01307879
pentane, 3-ethyl-2,3,4-trimethyl-	C10H22	442,59	777,3	36,70	36,7246054	
hexane, 2-methyl-3-(1-methylethyl)-	C10H22	439,8	747,4	36,40	36,7003911	0,30039108
nonane, 4-ethyl-	C11H24	457	748,5	40,00	39,8561848	0,14381516
nonane, 5,5-dimethyl-	C11H24	450	746,5	39,20	39,3723072	0,17230717
heptane, 2-methyl-3-(1-			,	,	,	,
methylethyl)-	C11H24	451,5	755,9	39,40	39,4000126	1,26E-05
3-methyldecane	C11H24	463,1	743,3	40,60	40,4353282	0,16467183
decane, 5-methyl-	C11H24	459	742,9	40,20	40,261311	0,06131098
hexane, 2,2,3,5,5-pentamethyl-	C11H24	439	751,9	38,10	38,0668562	0,03314376
nonane, 3-ethyl-	C11H24	461	749,3	40,40	40,2427422	0,15725784
nonane, 5-ethyl-	C11H24	456	748,2	39,80	39,840102	0,04010197
octane, 4-propyl-	C11H24	453	744,7	39,50	39,3061865	0,19381345
nonane, 2,2-dimethyl-	C11H24	452,8	735,2	39,50	39,5206345	0,0206345
nonane, 3,3-dimethyl-	C11H24	455	747,3	39,70	40,0731797	0,3731797
octane, 3-ethyl-3-methyl-	C11H24	458,8	757	40,10	40,1154363	0,01543629

Corps purs Familles : les hydrocarbures linéaires saturés (iparaffines). Propriété : l'indice de corrélation.

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
2-methylbutane	C5H12	300,994	619,3	0,217	0,2172294	9,08E-06
2,2-dimethylbutane	C6H14	322,868	649,13	0,226	0,2255428	3,54E-05
2,3-dimethylbutane	C6H14	331,116	661,59	0,229	0,22897668	8,83E-05
3-methylpentane	C6H14	336,396	664,31	0,230	0,22968361	6,01E-05
2-methylpentane	C6H14	333,398	653,14	0,227	0,22692698	5,15E-05
2,4-dimethylpentane	C7H16	353,622	672,62	0,232	0,23247222	3,27E-05
2,2,3-trimethylbutane	C7H16	354,006	690,05	0,237	0,23675736	1,60E-05
3,3-dimethylpentane	C7H16	359,187	693,26	0,238	0,23754362	1,38E-06
2,3-dimethylpentane	C7H16	362,907	695,02	0,238	0,23810818	2,63E-06
2,2-dimethylpentane	C7H16	352,318	673,84	0,233	0,2328084	3,41E-08
2-methylhexane	C7H16	363,177	678,7	0,234	0,23427376	3,06E-06
3-ethylpentane	C7H16	366,625	698,32	0,239	0,23874314	0,00013758
2,2,4-trimethylpentane	C8H18	372,386	691,95	0,238	0,23773787	9,28E-05
2,3,3-trimethylpentane	C8H18	387,917	726,17	0,246	0,24616868	0,00026246
3,3-dimethylhexane	C8H18	385,123	709,96	0,242	0,24276437	0,00029192
2,2,3-trimethylpentane	C8H18	382,994	716,02	0,244	0,24379387	0,00020894
2,3,4-trimethylpentane	C8H18	386,622	718,98	0,245	0,24487926	0,00019788
2,3-dimethylhexane	C8H18	388,764	712,09	0,243	0,2429328	9,65E-05
4-methylheptane	C8H18	390,863	704,62	0,241	0,24138117	7,19E-05
3-methylheptane	C8H18	392,077	705,79	0,242	0,24164787	3,83E-05
2,2-dimethylhexane	C8H18	379,994	695,29	0,239	0,23894603	1,69E-05
2,5-dimethylhexane	C8H18	382,258	693,58	0,238	0,23841729	4,26E-05
2-methylheptane	C8H18	390,804	697,92	0,240	0,23961535	9,37E-05
2-methyl-3-ethylpentane	C8H18	388,806	719,28	0,245	0,24497548	0,00040625
3-ethylhexane	C8H18	391,692	713,54	0,243	0,24339927	0,00010775
3-ethyl-3-methylpentane	C8H18	391,416	727,43	0,247	0,24653118	3,32E-05
2,3,4-trimethylhexane	C9H20	412,11	739	0,250	0,25040479	0,00030592
3,5-dimethylheptane	C9H20	408,8	720,5	0,246	0,24584326	0,00016148
3,3-diethylpentane	C9H20	419,336	753,49	0,253	0,25369022	0,00035846
4,4-dimethylheptane	C9H20	409	722,3	0,246	0,24632944	0,00015499
3-ethyl-2,4-dimethylpentane	C9H20	409,88	737,9	0,250	0,24994343	0,00021584
2,3,5-trimethylhexane	C9H20	404,51	721,89	0,246	0,24578171	9,69E-05
2,2,4,4-tetramethylpentane	C9H20	395,44	719,45	0,246	0,24584234	0,00029035
2,2-dimethylheptane	C9H20	405,97	710,5	0,243	0,2432542	2,66E-05
2,6-dimethylheptane	C9H20	408,37	709,3	0,243	0,24307799	0,00027887
2,2,3,4-tetramethylpentane	C9H20	406,18	738,93	0,250	0,25015371	0,00011482
2,5-dimethylheptane	C9H20	409,1	717,5	0,244	0,24476158	0,00030454
4-ethylheptane	C9H20	414,3	726,3	0,248	0,24735075	0,00019855
3-methyloctane	C9H20	417,38	720,5	0,246	0,24546832	0,00032313

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
4-methyloctane	C9H20	415,59	720,2	0,246	0,24534547	0,00039265
2,3-dimethylheptane	C9H20	413,6	725,9	0,247	0,2468038	0,00016
4-ethyl-2-methylhexane	C9H20	407	724,2	0,246	0,24680601	0,00074795
3-methyl-3-ethylhexane	C9H20	413,8	736	0,250	0,24977272	0,00011401
3-ethyl-4-methylhexane	C9H20	413,5	738	0,250	0,25025203	0,00011192
2-methyloctane	C9H20	416,43	713,4	0,244	0,24397234	
3,3-dimethylheptane	C9H20	410,17	725,6	0,247	0,24719636	7,28E-05
2,2,3,3-tetramethylpentane	C9H20	413,44	756,64	0,255	0,25486591	9,55E-05
3-ethylheptane	C9H20	416,3	726,5	0,247	0,24725725	
2,2,3-trimethylhexane	C9H20	406,73	729,5	0,248	0,24804795	2,00E-05
2,2,4-trimethylhexane	C9H20	399,69	715,5	0,244	0,24416499	2,49E-05
2,3,3-trimethylhexane	C9H20	410,84	737,4	0,250	0,25002471	8,49E-05
2,4,4-trimethylhexane	C9H20	403,81	723,79	0,246	0,24655243	
3,3,4-trimethylhexane	C9H20	422,6	745,4	0,252	0,25167806	·
2,2-dimethyl-3-ethylpentane	C9H20	406,99	734,8	0,249	0,24906308	7,86E-05
2,3,3,4-tetramethylpentane	C9H20	414,71	754,71	0,254	0,25426196	2,79E-05
3-ethyl-2-methylhexane	C9H20	411,1	733	0,249	0,2487636	6,16E-05
2-methylnonane	C10H22	440,15	726,4	0,248	0,24746594	
2,2,5,5-tetramethylhexane	C10H22	410,61	718,75	0,245	0,2452475	0,0001172
octane, 2,7-dimethyl-	C10H22	433,02	724,2	0,247	0,24663022	0,00038683
2,5,5-trimethylheptane	C10H22	425,95	740	0,250	0,24990232	0,00046163
2,2,6-trimethylheptane	C10H22	422,09	723,8	0,247	0,24678947	0,00019849
2,6-dimethyloctane	C10H22	433,53	727,6	0,248	0,24817528	9,41E-05
2,4,6-trimethylheptane	C10H22	420,8	722,8	0,246	0,24620705	1,09E-05
2,4,4-trimethylheptane	C10H22	424,1	734,6	0,250	0,25142237	0,00137653
2,3,6-trimethylheptane	C10H22	429,1	734,7	0,249	0,24926156	·
2,4-dimethyloctane	C10H22	429	726,4	0,247	0,24707016	
octane, 3,3-dimethyl-	C10H22	434,3	739	0,251	0,25049403	•
hexane, 3,3,4,4-tetramethyl-	C10H22	443,1	782,4	0,262	0,26182726	5,54E-05
octane, 3-ethyl-	C10H22	439,6	739,9	0,251	0,25114068	
3-methylnonane	C10H22	441	733,4	0,249	0,24863261	0,00045809
octane, 2,3-dimethyl-	C10H22	437,46	737,9	0,250	0,25048733	·
3,3,5-trimethylheptane	C10H22	428,83	742,8	0,251		0,00019996
heptane, 5-ethyl-2-methyl-	C10H22	432,8	735,6	0,250	0,24981448	
pentane, 2,4-dimethyl-3-(1-		,	,		,	,
methylethyl)-	C10H22	430,19	758,3	0,256	0,25512562	0,00037819
hexane, 2,2,3,3-tetramethyl-	C10H22	433,46	734,46	0,257	0,25636872	0,00100153
heptane, 3-ethyl-2-methyl-	C10H22	434,3	743,6	0,252	0,2517563	6,83E-05
2,2,4-trimethylheptane	C10H22	421,5	727,5	0,247	0,24781256	0,00047612
5-methylnonane	C10H22	438,2	732,6	0,249	0,24854529	0,00038609
octane, 4-ethyl-	C10H22	436,79	738,1	0,250	0,25073715	0,00026719
octane, 2,2-dimethyl-	C10H22	430	724,5	0,247	0,24694912	0,00014507
octane, 2,5-dimethyl-	C10H22	431,6	730,2	0,248	0,24814516	0,00025495
octane, 3,5-dimethyl-	C10H22	432,5	736,7	0,250	0,249954	0,00012031
octane, 3,6-dimethyl-	C10H22	434	736,3	0,250	0,24998774	0,00015405
octane, 4,4-dimethyl-	C10H22	430,6	734,7	0,250	0,24931794	0,00078093
octane, 4,5-dimethyl-	C10H22	435,28	747	0,253	0,25295906	0,00042496
hexane, 2,2,4,5-tetramethyl-	C10H22	421,03	735,46	0,249	0,24952077	6,91E-05
pentane, 2,2,3,3,4-pentamethyl-	C10H22	439,2	780,09	0,261	0,26156455	6,82E-05
pentane, 2,2,3,4,4-pentamethyl-	C10H22	432,44	767,03	0,259	0,25840126	
nonane, 4-methyl-	C10H22	438,8	732,2	0,249	0,24878451	6,56E-05

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
3-ethyl-3-methylheptane	C10H22	436,8	750,1	0,253	0,25351814	3,33E-05
heptane, 4-ethyl-4-methyl-	C10H22	434	751	0,254	0,25347297	0,00011744
hexane, 3,4-diethyl-	C10H22	437	751	0,253	0,25291765	0,00038356
2,4,5-trimethylheptane	C10H22	429,6	741,1	0,251	0,2501589	0,0007879
2,3,5-trimethylheptane	C10H22	433,8	745,1	0,251	0,25207817	0,00065482
3,3,4-trimethylheptane	C10H22	435	756,5	0,255	0,25474257	0,00021882
3,4,4-trimethylheptane	C10H22	434,2	757,3	0,255	0,25496739	5,87E-05
3,4,5-trimethylheptane	C10H22	435,6	755,7	0,255	0,25465543	6,29E-05
hexane, 3-ethyl-2,2-dimethyl-	C10H22	429,1	748,5	0,253	0,25276401	0,00013996
2,2,5-trimethylheptane	C10H22	424	728,1	0,248	0,24793823	0,00012295
4-isopropylheptane	C10H22	432	739,2	0,251	0,25051322	0,0001687
heptane, 4-ethyl-2-methyl-	C10H22	429,3	736	0,250	0,25004212	0,00031453
heptane, 4-ethyl-3-methyl-	C10H22	435,3	750,4	0,253	0,25333693	4,23E-05
heptane, 3-ethyl-5-methyl-	C10H22	431,3	740,6	0,251	0,25096891	0,00018972
heptane, 3-ethyl-4-methyl-	C10H22	436,1	750,6	0,253	0,25337963	5,24E-05
2,2,3-trimethylheptane	C10H22	430,8	742,3	0,251	0,25146885	9,84E-05
2,3,3-trimethylheptane	C10H22	433,5	748,8	0,253	0,25312346	4,46E-05
2,3,4-trimethylheptane	C10H22	433	748,5	0,253	0,25287282	7,45E-05
hexane, 4-ethyl-2,2-dimethyl-	C10H22	420	734	0,249	0,24998062	0,00057141
hexane, 4-ethyl-2,3-dimethyl-	C10H22	434,1	755,4	0,254	0,25468948	0,00025508
hexane, 4-ethyl-2,4-dimethyl-	C10H22	434,2	756,3	0,255	0,25476289	0,00014582
hexane, 3-ethyl-2,5-dimethyl-	C10H22	427,2	740,6	0,251	0,25084343	5,55E-05
hexane, 4-ethyl-3,3-dimethyl-	C10H22	436	763,6	0,257	0,25702324	0,00032542
hexane, 3-ethyl-3,4-dimethyl-	C10H22	435,2	763,4	0,257	0,25623894	0,00035376
hexane, 2,2,3,4-tetramethyl-	C10H22	432	755,1	0,254	0,25452912	0,0006221
hexane, 2,2,3,5-tetramethyl-	C10H22	421,6	737,8	0,250	0,2506536	0,00066079
hexane, 2,3,3,4-tetramethyl-	C10H22	437,74	769,4	0,258	0,25843827	0,00021786
hexane, 2,3,3,5-tetramethyl-	C10H22	426,2	748,7	0,253	0,25305462	0,00020347
hexane, 2,3,4,5-tetramethyl-	C10H22	429,3	749,4	0,253	0,25291914	0,00035453
pentane, 3,3-diethyl-2-methyl-	C10H22	442,8	779,3	0,261	0,26059381	1,70E-05
pentane, 3-ethyl-2,2,3-trimethyl-	C10H22	442,6	781,8	0,265	0,26458616	5,09E-06
pentane, 3-ethyl-2,2,4-trimethyl-	C10H22	428,5	757,1	0,254	0,2541565	
pentane, 3-ethyl-2,3,4-trimethyl-	C10H22	442,59	777,3	0,260	0,26002916	2,47E-05
hexane, 2-methyl-3-(1-methylethyl)-	C10H22	439,8	747,4	0,253	0,25204855	0,00074977
nonane, 4-ethyl-	C11H24	457	748,5	0,253	0,25329298	1,93E-05
nonane, 5,5-dimethyl-	C11H24	450	746,5	0,253	0,25288023	0,00013475
heptane, 2-methyl-3-(1-methylethyl)-	C11H24	451,5	755,9	0,255	0,2548561	5,26E-05
3-methyldecane	C11H24	463,1	743,3	0,252	0,25217118	9,86E-05
decane, 5-methyl-	C11H24	459	742,9	0,252	0,25205784	5,25E-05
hexane, 2,2,3,5,5-pentamethyl-	C11H24	439	751,9	0,254	0,25389277	9,13E-05
nonane, 3-ethyl-	C11H24	461	749,3	0,254	0,25331352	0,00022411
nonane, 5-ethyl-	C11H24	456	748,2	0,253	0,25324043	7,24E-05
octane, 4-propyl-	C11H24	453	744,7	0,253	0,25241529	0,00011881
nonane, 2,2-dimethyl-	C11H24	452,8	735,2	0,250	0,25019737	9,85E-05
nonane, 3,3-dimethyl-	C11H24	455	747,3	0,253	0,25301434	4,81E-05
octane, 3-ethyl-3-methyl-	C11H24	458,8	757	0,256	0,25566529	3,33E-05

Corps purs Familles : les hydrocarbures linéaires insaturés (oléfines + alcynes). Propriété : la chaleur spécifique.

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K (j/mol.K)	Cp (RNA)	% erreur
cis-2-butene	C4H8	276,87	622,4	80,2	80,1504458	0,0004458
trans-2-butene	C4H8	274,03	605,1	87,7	87,6701282	0,00012819
1-pentene	C5H10	303,11	640,5	108,2	108,199983	1,72E-05
2-methyl-2-butene	C5H10	311,7	658	105,0	104,999984	1,64E-05
3-methyl-1-butene	C5H10	293,21	627,2	115,0	114,999196	0,0008038
2-methyl-1-butene	C5H10	304,3	650,4	110,0	110,000198	0,00019842
cis-2-pentene	C5H10	310,07	655,7	98,8	98,8001132	0,00011317
trans-2-pentene	C5H10	309,49	648	108,9	108,900145	0,00014548
3,3-dimethyl-1-butene	C6H12	314,39800	653,1	126,5	126,499744	0,00025611
2,3-dimethyl-2-butene	C6H12	346,35500	708,1	127,5	127,499766	0,00023359
1-hexene	C6H12	336,63	673,2	130,8	130,834595	0,00459487
trans-3-methyl-2-pentene	C6H12	343,588	697,61	126,6	126,599616	0,00038378
2-methyl-2-pentene	C6H12	340,458	686,5	126,6	126,610202	0,01020245
trans-4-methyl-2-pentene	C6H12	331,762	668,62	141,4	141,399272	0,00072759
4-methyl-1-pentene	C6H12	327,016	663,7	126,5	126,49987	0,00012982
4-methyl-cis-2-pentene	C6H12	329,537	669,18	133,6	133,594197	0,00580277
3-methyl-1-pentene	C6H12	327,328	667,45	144,9	144,90456	0,00456042
2-ethyl-1-butene	C6H12	337,832	689,58	133,6	133,595908	0,00409238
cis-3-methyl-2-pentene	C6H12	340,853	693,21	126,6	126,602625	0,00262469
trans-2-hexene	C6H12	341,034	677,95	132,4	132,418748	0,0187482
cis-3-hexene	C6H12	339,6	679,9	123,6	123,599142	0,00085841
cis-2-hexene	C6H12	342,041	687,2	125,7	125,691881	0,0081189
trans-3-hexene	C6H12	340,239	677,11	132,8	132,778922	0,02107816
1-heptène	C7H14	366,79	697	153,5	153,459967	3,33E-05
1-octene	C8H16	394,44	714,9	176,1	176,099978	2,17E-05
1-nonene	C9H18	420,03	729,2	198,7	198,73999	1,02E-05
1-decene	C10H20	443,74	740,8	221,4	221,369994	5,65E-06
1-dodecene	C12H24	486,55	758,4	266,6	266,640176	0,00017642
1-tridecene	C13H26	505,98	765,3	289,3	289,264128	0,00587162
1-tetradecene	C14H28	524,32	771,3	311,9	311,937173	0,02717313
1-pentadecene	C15H30	541,61	776,4	334,6	334,502751	0,04724911
1-hexadecene	C16H32	558,1	781,1	357,2	357,233475	0,05347451
1-heptadecene	C17H34	573,4	785,2	379,8	379,767855	0,05214488
1-octadecene	C18H36	588,08	788,8	402,5	402,453172	0,00317216
1-nonadecene	C19H38	602,17	792	425,1	425,138319	0,04831871
1-eicosene	C20H40	615,47	795	447,7	447,692702	0,02729808
3-methyl-1-butyne	C5H8	302,1	666	106,09	106,089799	0,00020137
1-pentyne	C5H8	313,4	694	102,56	102,55999	9,93E-06
2-pentyne	C5H8	329,2	710,7	99,59	99,5899857	1,43E-05

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	Cp (RNA)	% erreur
1-hexyne	C6H10	344,52	714,9	125,95	125,950036	3,58E-05
2-hexyne	C6H10	357,67	731,7	119,65	119,649987	1,34E-05
3,3-dimethyl-1-butyne	C6H10	310,9	667,8	131,31	131,309955	4,52E-05
3-methyl-1-pentyne	C6H10	330,9	703,7	129,68	129,680012	1,18E-05
3-hexyne	C6H10	354,57	722,7	119,5	119,499992	8,15E-06
4-methyl-1-pentyne	C6H10	334,4	704,5	126,69	126,68982	0,00017989
1-heptyne	C7H12	373,1	732,8	147,1	147,100005	4,65E-06
3,3-dimethyl-1-pentyne	C7H12	343,1	707,7	156	156,000344	0,0003438
2,2-dimethyl-3-pentyne	C7H12	356,1	717,6	150,56	150,559999	9,48E-07
2-heptyne	C7H12	385,1	747,7	142,99	142,990011	1,14E-05
5-methyl-1-hexyne	C7H12	365	727,4	149	148,999994	5,69E-06
3-heptyne	C7H12	380	738,1	141,3	141,299988	1,23E-05
4,4-dimethyl-1-pentyne	C7H12	349,2	714,2	153,3	153,299915	8,46E-05
3-ethyl-1-pentyne	C7H12	357,1	727,1	153,6	153,6	8,58E-08
2-methyl-3-hexyne	C7H12	368,3	724,9	147,3	147,299993	6,85E-06
1-octyne	C8H14	399,36	746,8	174,2	174,199998	2,36E-06
1-nonyne	C9H16	399	757,9	196,8	196,8	4,28E-08
1-decyne	C10H18	447	767	219,4	219,399993	7,12E-06
1-undecyne	C11H20	468	774,6	242,1	242,100069	6,93E-05
1-dodecyne	C12H22	488	780,9	264,7	264,699238	0,00076156
1-tridecyne	C13H24	507	786,4	287,3	287,305413	0,00541319
1-tetradecyne	C14H26	525	791	310	309,973954	0,02604553
1-pentadecyne	C15H28	542	795,1	332,6	332,668547	0,06854651
1-hexadecyne	C16H30	558	798,9	355,2	355,123899	0,07610122
1-octadecyne	C18H34	588	805	400,5	400,543545	0,04354468
1-nonadecyne	C19H36	602	817,5	423,2	423,200167	0,00016719
1-eicosyne	C20H38	615	809,8	445,8	445,785343	0,0146568

Corps purs Familles : les hydrocarbures linéaires insaturés (oléfines + alcynes). Propriété : la chaleur de vaporisation.

Nom	Formule	Tb(K)	Hvb(kj/mol)	Hvb(RNA)	% erreur
cis-2-butene	C4H8	276,87	2,33400E+01	23,33997298	2,70E-05
trans-2-butene	C4H8	274,03	2,27200E+01	22,72001993	1,99E-05
1-pentene	C5H10	303,11	2,52000E+01	25,19888802	0,001111982
2-methyl-2-butene	C5H10	311,7	2,63100E+01	26,30624886	0,003751144
3-methyl-1-butene	C5H10	293,21	2,39400E+01	23,94046465	0,000464649
2-methyl-1-butene	C5H10	304,3	2,55000E+01	25,49913386	0,00086614
cis-2-pentene	C5H10	310,07	2,60600E+01	26,06497558	0,00497558
trans-2-pentene	C5H10	309,49	2,60300E+01	26,03006617	6,62E-05
3,3-dimethyl-1-butene	C6H12	314,39800	2,56000E+01	25,60043685	0,000436855
2,3-dimethyl-2-butene	C6H12	346,35500	2,96400E+01	29,64032999	0,000329994
1-hexene	C6H12	336,63	28,28	28,33981067	0,059810672
trans-3-methyl-2-pentene	C6H12	343,588	29,3	29,30015802	0,000158017
2-methyl-2-pentene	C6H12	340,458	29	29,0037941	0,003794104
trans-4-methyl-2-pentene	C6H12	331,762	27,9	27,87220334	0,02779666
4-methyl-1-pentene	C6H12	327,016	27,1	27,10581787	0,005817867
4-methyl-cis-2-pentene	C6H12	329,537	27,6	27,6072721	0,007272097
3-methyl-1-pentene	C6H12	327,328	26,9	26,89466627	0,005333727
2-ethyl-1-butene	C6H12	337,832	28,8	28,80102542	0,001025425
cis-3-methyl-2-pentene	C6H12	340,853	28,8	28,79893749	0,001062511
trans-2-hexene	C6H12	341,034	28,9	28,99748501	0,09748501
cis-3-hexene	C6H12	339,6	28,7	28,69892407	0,001075933
cis-2-hexene	C6H12	342,041	29,1	29,09838191	0,001618086
trans-3-hexene	C6H12	340,239	29	28,86128643	0,138713567
1-heptène	C7H14	366,79	31,09	31,09002756	2,76E-05
1-octene	C8H16	394,44	33,76	33,7599991	9,01E-07
1-nonene	C9H18	420,03	36,31	36,31002077	2,08E-05
1-decene	C10H20	443,74	38,66	38,65994839	5,16E-05
1-dodecene	C12H24	486,55	42,97	42,9693856	0,000614401
1-tridecene	C13H26	505,98	44,98	44,98142868	0,001428677
1-tetradecene	C14H28	524,32	46,9	46,89768305	0,002316952
1-pentadecene	C15H30	541,61	48,66	48,66532341	0,005323406
1-hexadecene	C16H32	558,1	50,42	50,4074396	0,012560403
1-heptadecene	C17H34	573,4	51,84	51,85950635	0,019506354
1-octadecene	C18H36	588,08	53,3	53,28440155	0,015598453
1-nonadecene	C19H38	602,17	54,64	54,64486221	0,004862205

Corps purs Familles : les hydrocarbures linéaires insaturés (oléfines + alcynes). Propriété : l'indice de corrélation.

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
cis-2-butene	C4H8	276,87	622,4	0,223	0,22289778	1,48E-14
trans-2-butene	C4H8	274,03	605,1	0,218	0,21794045	3,13E-14
1-pentene	C5H10	303,11	640,5	0,227	0,22699486	1,16E-13
2-methyl-2-butene	C5H10	311,7	658	0,236	0,23580728	6,38E-15
3-methyl-1-butene	C5H10	293,21	627,2	0,223	0,22328209	3,72E-14
2-methyl-1-butene	C5H10	304,3	650,4	0,230	0,23044026	2,11E-15
cis-2-pentene	C5H10	310,07	655,7	0,233	0,23326388	3,03E-15
trans-2-pentene	C5H10	309,49	648	0,232	0,23201622	1,23E-13
3,3-dimethyl-1-butene	C6H12	314,39800	653,1	0,230	0,22956942	1,09E-14
2,3-dimethyl-2-butene	C6H12	346,35500	708,1	0,249	0,24901105	7,53E-14
1-hexene	C6H12	336,63	673,2	0,236	0,23590452	5,73E-13
trans-3-methyl-2-pentene	C6H12	343,588	697,61	0,243	0,24326477	7,62E-14
2-methyl-2-pentene	C6H12	340,458	686,5	0,243	0,24258492	1,63E-14
trans-4-methyl-2-pentene	C6H12	331,762	668,62	0,236	0,23639055	1,86E-14
4-methyl-1-pentene	C6H12	327,016	663,7	0,233	0,23308499	7,22E-16
4-methyl-cis-2-pentene	C6H12	329,537	669,18	0,236	0,23593153	8,99E-14
3-methyl-1-pentene	C6H12	327,328	667,45	0,234	0,23392487	2,90E-14
2-ethyl-1-butene	C6H12	337,832	689,58	0,241	0,24065989	5,35E-14
cis-3-methyl-2-pentene	C6H12	340,853	693,21	0,245	0,24484159	5,00E-15
trans-2-hexene	C6H12	341,034	677,95	0,239	0,23900449	1,53E-12
cis-3-hexene	C6H12	339,6	679,9	0,238	0,23806772	1,68E-14
cis-2-hexene	C6H12	342,041	687,2	0,240	0,24006908	1,14E-15
trans-3-hexene	C6H12	340,239	677,11	0,239	0,23935952	2,04E-12
1-heptène	C7H14	366,79	697	0,242	0,2423171	1,93E-14
1-octene	C8H16	394,44	714,9	0,247	0,24707029	1,65E-13
1-nonene	C9H18	420,03	729,2	0,251	0,25079848	3,89E-15
1-decene	C10H20	443,74	740,8	0,254	0,25383316	8,60E-15
1-dodecene	C12H24	486,55	758,4	0,258	0,25833579	4,74E-13
1-tridecene	C13H26	505,98	765,3	0,260	0,2600852	9,77E-15
1-tetradecene	C14H28	524,32	771,3	0,262	0,26162687	9,91E-13
1-pentadecene	C15H30	541,61	776,4	0,263	0,26294124	2,55E-13
1-hexadecene	C16H32	558,1	781,1	0,264	0,26417519	9,65E-13
1-heptadecene	C17H34	573,4	785,2	0,265	0,26516292	7,35E-13
1-octadecene	C18H36	588,08	788,8	0,266	0,26609742	3,75E-13
1-nonadecene	C19H38	602,17	792	0,267	0,26697889	1,67E-14
1-eicosene	C20H40	615,47	795	0,268	0,26770399	4,27E-13
3-methyl-1-butyne	C5H8	302,1	666	0,227	0,22744274	5,25E-15
1-pentyne	C5H8	313,4	694	0,234	0,23423892	2,91E-14
2-pentyne	C5H8	329,2	710,7	0,245	0,24451046	1,25E-14

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
1-hexyne	C6H10	344,52	714,9	0,242	0,24167395	1,74E-13
2-hexyne	C6H10	357,67	731,7	0,250	0,24978064	2,53E-14
3,3-dimethyl-1-butyne	C6H10	310,9	667,8	0,228	0,22815226	7,99E-14
3-methyl-1-pentyne	C6H10	330,9	703,7	0,238	0,23791148	1,03E-14
3-hexyne	C6H10	354,57	722,7	0,248	0,24845326	2,04E-13
4-methyl-1-pentyne	C6H10	334,4	704,5	0,239	0,23866544	4,83E-15
1-heptyne	C7H12	373,1	732,8	0,247	0,24707029	1,35E-13
3,3-dimethyl-1-pentyne	C7H12	343,1	707,7	0,239	0,23888072	4,93E-14
2,2-dimethyl-3-pentyne	C7H12	356,1	717,6	0,246	0,24621798	2,60E-13
2-heptyne	C7H12	385,1	747,7	0,254	0,25406527	2,52E-13
5-methyl-1-hexyne	C7H12	365	727,4	0,246	0,24557811	1,69E-13
3-heptyne	C7H12	380	738,1	0,252	0,25248124	2,11E-14
4,4-dimethyl-1-pentyne	C7H12	349,2	714,2	0,242	0,24151308	1,44E-14
3-ethyl-1-pentyne	C7H12	357,1	727,1	0,244	0,24429675	1,84E-14
2-methyl-3-hexyne	C7H12	368,3	724,9	0,249	0,24882516	2,22E-13
1-octyne	C8H14	399,36	746,8	0,251	0,25110568	9,46E-14
1-nonyne	C9H16	399	757,9	0,254	0,25406527	2,31E-13
1-decyne	C10H18	447	767	0,257	0,25685548	2,80E-13
1-undecyne	C11H20	468	774,6	0,259	0,25905911	3,18E-13
1-dodecyne	C12H22	488	780,9	0,261	0,26094267	1,50E-15
1-tridecyne	C13H24	507	786,4	0,263	0,26256073	5,23E-13
1-tetradecyne	C14H26	525	791	0,264	0,26396708	1,53E-12
1-pentadecyne	C15H28	542	795,1	0,265	0,26516292	1,81E-12
1-hexadecyne	C16H30	558	798,9	0,266	0,26620118	6,17E-13
1-octadecyne	C18H34	588	805	0,268	0,26796278	1,65E-13
1-nonadecyne	C19H36	602	817,5	0,269	0,26873857	4,95E-14
1-eicosyne	C20H38	615	809,8	0,269	0,26941025	4,44E-13

Corps purs Familles : les hydrocarbures cycliques (naphtènes + aromatiques). Propriété : la chaleur spécifique.

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K (j/mol.K)	CP (RNA)	% erreur
cyclobutane	C4H8	285,64	694,3	70,56	70,5546331	0,00536691
cyclopentane	C5H10	322,37	745,74	98,32	98,3131493	0,0068507
methylcyclopentane	C6H12	344,98	749,68	109,5	109,508398	0,00839758
cyclohexane	C6H12	354,429	778,53	106,1	106,134563	0,03456333
methylcyclohexane	C7H14	374,09	769,35	135,8	135,811842	0,01184246
cycloheptane	C7H14	391,951	811	132,014	132,072204	0,05820437
1,trans-2-dimethylcyclopentane	C7H14	364,99	751,43	134,5	134,519664	0,01966383
1,cis-2-dimethylcyclopentane	C7H14	372,65	771,23	134,1	134,089951	0,01004934
1,cis-3-dimethylcyclopentane	C7H14	364,7	748,78	134,5	134,492645	0,00735536
1,1-dimethylcyclopentane	C7H14	360,96	754,46	133,3	133,286753	0,01324744
Ethylcyclopentane	C7H14	376,59	768	133,6	133,569388	0,03061167
cyclooctane	C8H16	424,313	836,1	146,19	146,19831	0,00830983
1,1-dimethylcyclohexane	C8H16	392,74	780,92	158,5	158,303434	0,19656604
1,cis-4-dimethylcyclohexane	C8H16	397,48	782,83	153,8	153,95469	0,15468999
cis-1,3-dimethylcyclohexane	C8H16	396,68	765,99	153,6	153,601836	0,00183593
ethylcyclohexane	C8H16	404,97	787,87	163,9	163,89049	0,00951025
n-propylcyclopentane	C8H16	404,099	776,33	159,4	159,458039	0,0580394
1,trans-3-dimethylcyclohexane	C8H16	394,51	784,67	153,4	151,194048	0,00595231
1,trans-4-dimethylcyclohexane	C8H16	392,51	762,58	154,4	154,408282	0,00828184
1,trans-2-dimethylcyclohexane	C8H16	396,58	775,96	155,6	155,617788	0,01778769
n-butylcyclopentane	C9H18	429,75	784,6	185,1	184,981507	0,11849257
n-butylcyclohexane	C10H20	454,09	799,2	209,3	209,302357	0,0023565
pentylcyclopentane	C10H20	453,6	791,2	210,8	210,851559	0,05155914
n-pentylcyclohexane	C11H22	476,8	803,7	232	231,846697	0,15330316
n-hexylcyclohexane	C12H24	497,8	807,6	254,6	254,781835	0,18183496
n-heptylcyclopentane	C12H24	497	801	262,2	262,390351	0,19035129
n-heptylcyclohexane	C13H26	518	811	277,3	287,730636	0,16936441
octylcyclohexane	C14H28	536,9	814,9	300	299,882123	0,11787666
n-nonylcyclopentane	C14H28	535,2	808,1	313,6	313,549136	0,0508643
n-decylcyclopentane	C15H30	552,526	810,97	339,3	339,47673	0,17672969
n-nonylcyclohexane	C15H30	554,7	816	322,7	322,698864	0,00113636
decylcyclohexane	C16H32	570,77	818,6	345,4	345,424591	0,02459146
undecylcyclopentane	C16H32	568,9	813,5	365	364,866214	0,13378642
dodecylcyclopentane	C17H34	584,3	815,7	390,6	390,748492	0,14849194
undecylcyclohexane	C17H34	586,2	821	368,1	367,949618	0,15038151
cyclopentane, tridecyl-	C18H36	599	817,8	416,4	391,355776	0,55577639
cyclopentane, tetradecyl-	C19H38	613	819,6	442	441,55677	0,44323002
tridecylcyclohexane	C19H38	614,7	824	413,5	412,778445	0,72155476
tetradecylcyclohexane	C20H40	627	825	436,2	436,868151	0,66815076

				Cp°298K		
Nom	Formule	Tb(K)	d20(Kg/m3)	(j/mol.K)	CP (RNA)	% erreur
cyclopentane, pentadecyl-	C20H40	626	821,3	467,8	468,107209	0,30720935
pentadecylcyclohexane	C21H42	640	827	458,9	458,549552	0,35044835
hexadecylcyclopentane	C21H42	639	822,8	493,4	493,352958	0,04704221
hexadecylcyclohexane	C22H44	652	828,1	481,5	481,569669	0,06966929
benzène	C6H6	353,206	879	82,43	82,384544	0,04545597
1,2-dimethylbenzene	C8H10	417,579	880,1	132,31	103,770748	0,02074793
ethylbenzene	C8H10	409,32	866,92	127,4	127,381357	0,01864282
1,4-dimethylbenzene	C8H10	411,509	861	126,02	126,581074	0,56107416
1,3-dimethylbenzene	C8H10	412,27	864,2	125,71	125,179959	0,53004117
1,2,4-trimethylbenzene	C9H12	442,528	875,8	149,71	149,896386	0,18638621
isopropylbenzene	C9H12	425,561	861,7	159,69	159,704296	0,01429622
n-propylbenzene	C9H12	432,35	861,5	152,3	152,414866	0,11486614
1,3,5-trimethylbenzene	C9H12	437,893	865,1	147,63	148,774812	1,14481206
1,2,3-trimethylbenzene	C9H12	449,267	894,4	155,07	154,879079	0,19092075
1-ethyl-3-methylbenzene	C9H12	434,48	864,5	147,94	154,586912	0,04691194
1-ethyl-4-methylbenzene	C9H12	435,166	861,1	148,25	146,912376	1,33762396
1,2,4,5-tetramethylbenzene	C10H14	469,95	887,5	186,5	186,411043	0,08895708
tert-butylbenzene	C10H14	442,269	866,5	175,9	175,894887	0,00511287
p-isopropyltoluene	C10H14	450,25	857,3	173,7	172,867934	0,83206606
n-butylbenzene	C10H14	456,42	860,17	173,86	173,776379	0,08362059
p-diethylbenzene	C10H14	456,902	861,96	173,3	173,591314	0,29131387
o-diethylbenzene	C10H14	456,573	879,96	179	178,890078	0,10992225
sec-butylbenzene	C10H14	446,455	862,07	177,9	177,703449	0,19655102
1,2,3,4-tetramethylbenzene	C10H14	478,19	905,2	189,6	174,242828	0,94282766
1,2,3,5-tetramethylbenzene	C10H14	471,15	890,3	185,7	185,884364	0,18436438
2-isopropyltoluene	C10H14	451,3	876,6	173,7	173,737833	0,03783315
3-isopropyltoluene	C10H14	448,2	861	173,7	175,136767	1,43676727
isobutylbenzene	C10H14	445,909	853,21	173,9	173,876225	0,02377461
4-ethyl-m-xylene	C10H14	461,35	876,3	177,8	178,699592	0,89959151
3-ethyl-o-xylene	C10H14	467,06	892,1	181,7	181,485994	0,21400572
5-ethyl-m-xylene	C10H14	456,73	864,8	174	174,227712	0,22771207
4-ethyl-o-xylene	C10H14	462,63	874,5	177,8	178,182174	0,3821744
m-propyltoluene	C10H14	455,13	860,9	175,7	178,388946	3,91105394
p-propyltoluene	C10H14	456,53	858,4	175,7	174,933596	0,76640395

Nom	Formule	Tb(K)	d20(Kg/m3)	Cp°298K(j/mol.K)	CP (RNA)	% erreur
2-ethyl-p-xylene	C10H14	459,98	877,2	177,8	179,085736	1,28573594
1-ethyl-2,6-dimethylbenzene	C10H14	463,16	890,4	181,7	181,947061	0,24706149
n-pentylbenzene	C11H16	478	859,1	196,41	197,067399	0,65739861
1,2,3,4,5-pentamethylbenzene	C12H18	499	860,2	219,04	218,478376	0,56162375
1-butyl-3-methylbenzene	C13H20	520	856,7	241,68	241,886253	0,20625269
2-(1-methylpropyl)toluene	C14H22	537	856,7	264,31	264,402954	0,09295379
1-ethyl-2-propylbenzene	C15H24	555	855,8	286,95	286,821913	0,12808725
1-ethyl-4-propylbenzene	C17H28	586	855,3	332,22	309,523847	0,05615347
1-isobutyl-2-methylbenzene	C18H30	600,4	855,1	354,86	355,181248	0,3212481
benzene, 2-ethyl-1,3,4-trimethyl-	C19H32	614	855	377,49	377,27907	0,2109295
diphenylmethane	C20H34	627	854,9	400,12	399,977305	0,14269536
4-methylbiphenyl	C21H36	639	854,8	422,76	422,975724	0,21572389
octylbenzene	C22H38	650	854,7	445,39	445,310318	0,07968249

Corps purs Familles : les hydrocarbures cycliques (naphtènes + aromatiques). Propriété : la chaleur de vaporisation.

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	HVb (RNA)	% erreur
cyclobutane	C4H8	285,64	694,3	24,2	24,2584113	0,05841131
cyclopentane	C5H10	322,37	745,74	27,3	27,5749224	0,27492241
methylcyclopentane	C6H12	344,98	749,68	29,08	28,7775526	0,30244742
cyclohexane	C6H12	354,429	778,53	30	29,3138407	0,68615928
methylcyclohexane	C7H14	374,09	769,35	31,1	31,9365207	0,83652073
cycloheptane	C7H14	391,951	811	33,18	32,5340814	0,64591864
1,trans-2-dimethylcyclopentane	C7H14	364,99	751,43	30,86	30,5177725	0,34222755
1,cis-2-dimethylcyclopentane	C7H14	372,65	771,23	31,7	32,0267249	0,3267249
1,cis-3-dimethylcyclopentane	C7H14	364,7	748,78	30,4	30,9624701	0,16247014
1,1-dimethylcyclopentane	C7H14	360,96	754,46	30,29	30,5269494	0,23694944
Ethylcyclopentane	C7H14	376,59	768	32,28	31,6386924	0,6413076
cyclooctane	C8H16	424,313	836,1	35,9	37,0773343	1,17733435
1,1-dimethylcyclohexane	C8H16	392,74	780,92	32,6	33,1933819	0,59338194
1,cis-4-dimethylcyclohexane	C8H16	397,48	782,83	33,8	33,5518021	0,24819792
cis-1,3-dimethylcyclohexane	C8H16	396,68	765,99	32,8	32,3482539	0,45174614
ethylcyclohexane	C8H16	404,97	787,87	34,3	34,0674936	0,23250638
n-propylcyclopentane	C8H16	404,099	776,33	34,11	34,3017009	0,19170085
1,trans-3-dimethylcyclohexane	C8H16	394,51	784,67	33,8	33,4146132	0,18538684
1,trans-4-dimethylcyclohexane	C8H16	392,51	762,58	32,6	32,7436429	0,14364288
1,trans-2-dimethylcyclohexane	C8H16	396,58	775,96	32,9	33,2799034	0,37990339
n-butylcyclopentane	C9H18	429,75	784,6	36,4	36,7760787	0,37607866
n-butylcyclohexane	C10H20	454,09	799,2	38,5	38,8625031	0,36250314
pentylcyclopentane	C10H20	453,6	791,2	39	38,6622113	0,33778874
n-pentylcyclohexane	C11H22	476,8	803,7	40,8	40,6882897	0,11171027
n-hexylcyclohexane	C12H24	497,8	807,6	42,84	42,7411932	0,09880684
n-heptylcyclopentane	C12H24	497	801	43,35	42,9104402	0,43955985
n-heptylcyclohexane	C13H26	518	811	44,89	45,2329603	0,16703973
octylcyclohexane	C14H28	536,9	814,9	46,82	46,8782239	0,05822387
n-nonylcyclopentane	C14H28	535,2	808,1	47,24	47,4697306	0,22973063
n-decylcyclopentane	C15H30	552,526	810,97	49,003	49,3180998	0,31509979
n-nonylcyclohexane	C15H30	554,7	816	48,62	48,4284012	0,19159876
decylcyclohexane	C16H32	570,77	818,6	50,38	49,9900563	0,38994366
undecylcyclopentane	C16H32	568,9	813,5	50,88	50,8906954	0,01069537
dodecylcyclopentane	C17H34	584,3	815,7	52,59	52,6328569	0,0428569
undecylcyclohexane	C17H34	586,2	821	52,05	51,8218859	0,22811409
cyclopentane, tridecyl-	C18H36	599	817,8	54,31	53,6695092	0,10950918
cyclopentane, tetradecyl-	C19H38	613	819,6	55,98	56,1328905	0,15289051
tridecylcyclohexane	C19H38	614,7	824	55,1	55,4191881	0,31918811
tetradecylcyclohexane	C20H40	627	825	56,61	56,8923716	0,28237156

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	HVb (RNA)	% erreur
cyclopentane, pentadecyl-	C20H40	626	821,3	57,66	57,7008445	0,04084448
pentadecylcyclohexane	C21H42	640	827	57,99	58,2088201	0,21882009
hexadecylcyclopentane	C21H42	639	822,8	59,33	58,9979702	0,33202975
hexadecylcyclohexane	C22H44	652	828,1	59,33	59,1477829	0,1822171
benzène	C6H6	353,206	879	30,76	31,6878025	0,9278025
1,2-dimethylbenzene	C8H10	417,579	880,1	36,8	33,2632451	0,08324506
ethylbenzene	C8H10	409,32	866,92	35,6	34,9342108	0,66578924
1,4-dimethylbenzene	C8H10	411,509	861	36	36,009901	0,00990104
1,3-dimethylbenzene	C8H10	412,27	864,2	36,4	36,1485942	0,25140582
1,2,4-trimethylbenzene	C9H12	442,528	875,8	39,2	39,2277189	0,02771885
isopropylbenzene	C9H12	425,561	861,7	37,5	37,2921254	0,20787459
n-propylbenzene	C9H12	432,35	861,5	38,2	37,7917318	0,40826816
1,3,5-trimethylbenzene	C9H12	437,893	865,1	39	38,5380869	0,46191306
1,2,3-trimethylbenzene	C9H12	449,267	894,4	40	40,6690624	0,66906236
1-ethyl-3-methylbenzene	C9H12	434,48	864,5	38,5	38,6574188	0,24258123
1-ethyl-4-methylbenzene	C9H12	435,166	861,1	38,4	38,0072711	0,3927289
1,2,4,5-tetramethylbenzene	C10H14	469,95	887,5	45,52	42,4542445	3,06575551
tert-butylbenzene	C10H14	442,269	866,5	37,6	37,4919308	0,1080692
p-isopropyltoluene	C10H14	450,25	857,3	38,2	38,2940225	0,09402253
n-butylbenzene	C10H14	456,42	860,17	39,2	39,0123562	0,18764384
p-diethylbenzene	C10H14	456,902	861,96	39,4	39,1147454	0,28525458
o-diethylbenzene	C10H14	456,573	879,96	39,4	39,8793981	0,47939811
sec-butylbenzene	C10H14	446,455	862,07	37,9	38,0922644	0,19226443
1,2,3,4-tetramethylbenzene	C10H14	478,19	905,2	45,02	38,9760874	0,42391261
1,2,3,5-tetramethylbenzene	C10H14	471,15	890,3	43,81	42,7200842	1,08991578
2-isopropyltoluene	C10H14	451,3	876,6	38,4	38,6242934	0,22429338
3-isopropyltoluene	C10H14	448,2	861	38,1	38,2141318	0,11413181
isobutylbenzene	C10H14	445,909	853,21	37,8	37,8024521	0,00245214
4-ethyl-m-xylene	C10H14	461,35	876,3	40	40,4559167	0,45591674
3-ethyl-o-xylene	C10H14	467,06	892,1	40,6	42,008503	1,40850298
5-ethyl-m-xylene	C10H14	456,73	864,8	39,6	39,2543362	0,34566377

Nom	Formule	Tb(K)	d20(Kg/m3)	Hvb(kj/mol)	HVb (RNA)	% erreur
4-ethyl-o-xylene	C10H14	462,63	874,5	40,3	40,4762295	0,17622951
m-propyltoluene	C10H14	455,13	860,9	39,3	39,9573395	0,45733951
p-propyltoluene	C10H14	456,53	858,4	39,2	39,0179682	0,18203178
2-ethyl-p-xylene	C10H14	459,98	877,2	39,7	40,347111	0,64711105
1-ethyl-2,6-dimethylbenzene	C10H14	463,16	890,4	40,2	41,3609678	1,1609678
n-pentylbenzene	C11H16	478	859,1	41,2	41,4625831	0,26258307
1,2,3,4,5-pentamethylbenzene	C12H18	499	860,2	43,1	43,5692067	0,46920665
1-butyl-3-methylbenzene	C13H20	520	856,7	45,2	45,2924937	0,09249372
2-(1-methylpropyl)toluene	C14H22	537	856,7	46,9	47,0138973	0,11389728
1-ethyl-2-propylbenzene	C15H24	555	855,8	49	48,6613791	0,33862092
1-ethyl-4-propylbenzene	C17H28	586	855,3	52,3	50,4955842	0,21441581
1-isobutyl-2-methylbenzene	C18H30	600,4	855,1	54,4	54,3174181	0,08258193
benzene, 2-ethyl-1,3,4-trimethyl-	C19H32	614	855	56,1	56,0822778	0,01772222
diphenylmethane	C20H34	627	854,9	57,7	57,8138845	0,11388452
4-methylbiphenyl	C21H36	639	854,8	59,4	59,5035468	0,1035468
octylbenzene	C22H38	650	854,7	61,1	61,1001145	0,00011453

Corps purs Familles : les hydrocarbures cycliques (naphtènes + aromatiques). Propriété : l'indice de corrélation.

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
cyclobutane	C4H8	285,64	694,3	0,223	0,23145232	0,00800559
cyclopentane	C5H10	322,37	745,74	0,246	0,24814081	0,00226937
methylcyclopentane	C6H12	344,98	749,68	0,248	0,24706794	0,00053456
cyclohexane	C6H12	354,429	778,53	0,256	0,25678509	0,00043949
methylcyclohexane	C7H14	374,09	769,35	0,255	0,2553141	0,00061616
cycloheptane	C7H14	391,951	811	0,266	0,2690466	0,00294917
1,trans-2-dimethylcyclopentane	C7H14	364,99	751,43	0,249	0,24484528	0,00397989
1,cis-2-dimethylcyclopentane	C7H14	372,65	771,23	0,254	0,25645952	0,00225185
1,cis-3-dimethylcyclopentane	C7H14	364,7	748,78	0,248	0,24235895	0,00483911
1,1-dimethylcyclopentane	C7H14	360,96	754,46	0,250	0,24744734	0,00220598
Ethylcyclopentane	C7H14	376,59	768	0,253	0,25424642	0,00128434
cyclooctane	C8H16	424,313	836,1	0,273	0,27876964	0,00554803
1,1-dimethylcyclohexane	C8H16	392,74	780,92	0,258	0,25732605	0,00047465
1,cis-4-dimethylcyclohexane	C8H16	397,48	782,83	0,258	0,25858255	0,00046704
cis-1,3-dimethylcyclohexane	C8H16	396,68	765,99	0,255	0,25354465	0,00104788
ethylcyclohexane	C8H16	404,97	787,87	0,260	0,25950058	0,00039627
n-propylcyclopentane	C8H16	404,099	776,33	0,256	0,25841667	0,00205529
1,trans-3-dimethylcyclohexane	C8H16	394,51	784,67	0,259	0,26075974	0,00060084
1,trans-4-dimethylcyclohexane	C8H16	392,51	762,58	0,254	0,2517157	0,00182194
1,trans-2-dimethylcyclohexane	C8H16	396,58	775,96	0,257	0,25778054	0,00113527
n-butylcyclopentane	C9H18	429,75	784,6	0,259	0,2597879	0,00062402
n-butylcyclohexane	C10H20	454,09	799,2	0,264	0,26261355	0,00132751
pentylcyclopentane	C10H20	453,6	791,2	0,261	0,25990366	0,00145692
n-pentylcyclohexane	C11H22	476,8	803,7	0,266	0,26387594	0,00201392
n-hexylcyclohexane	C12H24	497,8	807,6	0,267	0,2664015	0,00057739
n-heptylcyclopentane	C12H24	497	801	0,265	0,26282898	0,00181426
n-heptylcyclohexane	C13H26	518	811	0,268	0,26572475	0,00021701
octylcyclohexane	C14H28	536,9	814,9	0,269	0,27206396	0,00311865
n-nonylcyclopentane	C14H28	535,2	808,1	0,267	0,26832997	0,00129927
n-decylcyclopentane	C15H30	552,526	810,97	0,268	0,26892266	0,00089779
n-nonylcyclohexane	C15H30	554,7	816	0,270	0,27109578	0,00122089
decylcyclohexane	C16H32	570,77	818,6	0,270	0,27130808	0,00081414
undecylcyclopentane	C16H32	568,9	813,5	0,269	0,26830138	0,00059226
dodecylcyclopentane	C17H34	584,3	815,7	0,270	0,2687939	0,00087452
undecylcyclohexane	C17H34	586,2	821	0,271	0,27323961	0,00207565
cyclopentane, tridecyl-	C18H36	599	817,8	0,270	0,27468173	0,00284838
cyclopentane, tetradecyl-	C19H38	613	819,6	0,271	0,27049755	0,00046031
tridecylcyclohexane	C19H38	614,7	824	0,273	0,27634372	0,00384161
tetradecylcyclohexane	C20H40	627	825	0,273	0,27577974	0,0026095

Nom	Formule	Tb(K)	d20(Kg/m3)	I	I (RNA)	% erreur
cyclopentane, pentadecyl-	C20H40	626	821,3	0,272	0,26995962	0,00156486
pentadecylcyclohexane	C21H42	640	827	0,274	0,27498906	0,00115133
hexadecylcyclopentane	C21H42	639	822,8	0,272	0,26812011	0,00391908
hexadecylcyclohexane	C22H44	652	828,1	0,274	0,27184098	0,00261234
benzène	C6H6	353,206	879	0,295	0,29168377	0,00298673
1,2-dimethylbenzene	C8H10	417,579	880,1	0,297	0,29191467	0,00067653
ethylbenzene	C8H10	409,32	866,92	0,292	0,29173191	0,00032971
1,4-dimethylbenzene	C8H10	411,509	861	0,292	0,29022355	0,00180809
1,3-dimethylbenzene	C8H10	412,27	864,2	0,293	0,29164461	0,00108641
1,2,4-trimethylbenzene	C9H12	442,528	875,8	0,297	0,29715532	0,00063039
isopropylbenzene	C9H12	425,561	861,7	0,290	0,28830789	0,00153597
n-propylbenzene	C9H12		861,5		0,28964783	0,00133337
, ,,		432,35		0,290	0,29276793	0,00048173
1,3,5-trimethylbenzene	C9H12	437,893	865,1	0,294		
1,2,3-trimethylbenzene	C9H12	449,267	894,4	0,301	0,29953637	0,00148619
1-ethyl-3-methylbenzene	C9H12	434,48	864,5	0,292	0,29636956	1,63E-05
1-ethyl-4-methylbenzene	C9H12	435,166	861,1	0,292	0,29035867	0,00126298
1,2,4,5-tetramethylbenzene	C10H14	469,95	887,5	0,300	0,30104976	
tert-butylbenzene	C10H14	442,269	866,5	0,290	0,2900139	0,00043644
p-isopropyltoluene	C10H14	450,25	857,3	0,290	0,28802416	0,00154385
n-butylbenzene	C10H14	456,42	860,17	0,289	0,29006774	0,00105679
p-diethylbenzene	C10H14	456,902	861,96	0,292	0,29108129	0,00045534
o-diethylbenzene	C10H14	456,573	879,96	0,296	0,29772859	0,00188915
sec-butylbenzene	C10H14	446,455	862,07	0,289	0,28971145	0,00049469
1,2,3,4-tetramethylbenzene	C10H14	478,19	905,2	0,304	0,29197919	9,75E-05
1,2,3,5-tetramethylbenzene	C10H14	471,15	890,3	0,301	0,30161495	0,00100179
2-isopropyltoluene	C10H14	451,3	876,6	0,294	0,29522763	0,00086089
3-isopropyltoluene	C10H14	448,2	861	0,291	0,28960188	0,00096869
isobutylbenzene	C10H14	445,909	853,21	0,287	0,28537287	0,00196413
4-ethyl-m-xylene	C10H14	461,35	876,3	0,296		0,00185085
3-ethyl-o-xylene	C10H14	467,06	892,1	0,300	0,30101327	0,00109126
5-ethyl-m-xylene	C10H14	456,73	864,8	0,293	0,29262015	
4-ethyl-o-xylene	C10H14	462,63	874,5	0,296	0,29727114	
m-propyltoluene	C10H14	455,13	860,9	0,291	0,29665478	· ·
p-propyltoluene	C10H14	456,53	858,4	0,290	0,2890954	1
2-ethyl-p-xylene	C10H14	459,98	877,2	0,296	0,2979358	-
1-ethyl-2,6-dimethylbenzene	C10H14	463,16	890,4	0,299	0,30002666	-
n-pentylbenzene	C11H16	478	859,1	0,288	0,28861607	0,00033376
1,2,3,4,5-pentamethylbenzene	C12H18	499	860,2	0,288	0,28646803	-
1-butyl-3-methylbenzene	C13H20	520	856,7	0,287	0,28327883	-
2-(1-methylpropyl)toluene	C14H22	537	856,7	0,287	0,28309417	0,00340684
1-ethyl-2-propylbenzene	C15H24	555	855,8	0,286	0,28325184	0,00289634
1-ethyl-4-propylbenzene	C17H28	586	855,3	0,285	0,28395573	0,00173348
1-isobutyl-2-methylbenzene	C18H30	600,4	855,1	0,285	0,28498329	0,00020626
benzene, 2-ethyl-1,3,4-trimethyl-	C19H32	614	855	0,285	0,28506181	7,42E-05
diphenylmethane	C20H34	627	854,9	0,285	0,28505845	0,00022241
4-methylbiphenyl	C21H36	639	854,8	0,285	0,28511424	0,00042977
octylbenzene	C22H38	650	854,7	0,285	0,28523848	0,0007056

Présentation des résultats de simulation Mélanges d'hydrocarbures. Propriété : la chaleur spécifique.

N°	Const 1	Const 2	%mol1	%mol2	dexp	tmav	ср	Cp (RNA)	erreur
M1	nC6	nC7	52,25	47,75	0,6721	356.0384	152.6172	i ' '	0,41996993
M2	nC6	nC7	22,11	77,89	0,679	364.9878	159.4198	159,338085	0,08171527
M3	nC6	nC7	77,07	22,93	0,6656	348.6686	147.0153	146,879083	0,13621712
M4	nC13	nC14	51,40	48,60	0,7593	517.4179	223.3398	223,338676	0,00112419
M5	nC14	nC6	10,58	89,42	0,6804	361.4189	158.6516	158,649788	0,00181203
M6	nC6	nC10	59,34	40,66	0,6958	384.7339	178.5559	178,560984	0,00508434
M7	nC6	nC10	87,08	12,92	0,6727	355.4835	153.5068	152,922065	0,5847348
M8	nC6	CYC6	45,11	54,89	0,7181	348.6418	122.2223	122,223253	0,00095268
M9	nC6	CYC6	16,60	83,40	0,7547	352.3425	112.0328	112,042662	0,00986244
M11	nC6	Bz	40,86	59,14	0,7652	348.5700	106.7049	106,788888	0,08398825
M12	nC6	Bz	14,31	85,69	0,8336	351.5824	90.9316	90,3773373	0,55426268
M13	nC6	Bz	73,31	26,69	0,7011	344.8882	125.9835	125,980596	0,00290373
M14	Bz	Tol	53,55	46,45	0,8714	367.3993	92.3331	92,2048917	0,1282083
M15	Bz	Tol	21,97	78,03	0,8684	377.0488	99.0659	99,2227227	0,15682272
M16	Bz	Tol	83,33	16,67	0,8751	358.2997	85.984	85,9413166	0,04268337
M17	Bz	CYC6	82,13	17,87	0,8442	353.4245	86.6598	87,6602315	1,00043154
M18	Bz	CYC6	23,47	76,53	0,7942	354.1419	100.5446	100,317613	0,22698663
M19	Bz	CYC6	58,56	41,44	0,8269	353.71	92.2388	92,0835766	0,15522339
M21	nC7	MetCyC6	46,71	53,29	0,7412	372.9049	149.1637	149,162	0,00170001
M22	nC7	MetCyC6	64,42	35,58	0,7313	372.4557	154.1594	154,111402	0,04799776
M23	nC7	EtBz	47,32	52,68	0,7871	391.4486	144.9131	144,934054	0,0209544
M24	EtBz	nC6	52,23	47,77	0,7678	377.0943	134.2979	134,599525	0,30162501
M25	EtBz	MetCYC6	51,63	48,37	0,8169	392.4143	131.4631	131,363131	0,09996888
M26	MetCYC6	nC6	49,04	50,96	0,7143	357.6655	138.8779	138,882299	0,00439935
M27	nC6	nC9	82,73	17,27	0,6736	356.04	153.5145	153,894747	0,38024699
M28	nC7	nC10	59,16	40,84	0,7208	402.4901	192.0709	192,070945	4,49E-05
M29	nC7	Bz	44,76	55,24	0,7795	361.4181	119.1242	118,438647	0,6855531
M31	Bz	MetCyC6	59,63	40,37	0,8204	361.6368	103.9755	103,997436	0,02193606
M32	nC7	nC13	87,89	12,11	0,7209	388.1513	180.9196	180,919278	0,00032191
M33	nC10	nC14	78,90	21,10	0,7387	464.063	251.4064	251,40675	0,00034961
M34	metCyC6	nC13	84,38	15,62	0,765	397.9319	161.5636	161,726027	0,16242696
M35	MetCYC6	nC14	85,39	14,61	0,7669	396.3902	163.2157	163,101689	0,11401063
M36	nC7	Tol	38,19	61,81	0,7957	379.0994	126.916	126,72512	0,1908801
M37	nC6	Tol	51,60	48,40	0,7503	362.1406	123.4044	123,95073	0,54633038
M38	nC13	Tol	30,45	69,55	0,8083	421.78	163.7334	163,723574	0,00982626
M39	metCYC6	Tol	47,20	52,80	0,8134	379.1968	118.8776	118,819801	0,0577985
M41	nC13	EtBz	28,16	71,84	0,816	437.2817	176.2125	176,221253	0,00875335

Présentation des résultats de simulation Mélanges d'hydrocarbures. Propriété : la chaleur de vaporisation.

M1 nC6 nC7 52,25 47,75 0,6721 356,0384 30,2443 30,25775663 0,044473264 M2 nC6 nC7 22,11 77,89 0,679 364,9878 31,1244 31,01268826 0,358920132 M3 nC6 nC7 77,07 22,93 0,6656 348,6868 29,5195 29,68355734 0,55914606 M4 nC13 nC14 nC6 10,58 89,42 0,6804 361,4189 30,8348 30,8793264 0,107484338 M6 nC6 nC10 89,34 40,66 0,6958 384,7339 33,2209 33,13642955 0,254268994 M7 nC6 nC10 87,08 12,92 0,6727 355,4835 30,2389 30,24715215 0,02738864 M8 nC6 CYC6 16,60 83,40 0,7547 352,3425 29,8091 29,8540369 0,418496311 M11 nC6 Bz 40,36 59,14 0,7652 348,5700 29,9795 <th< th=""><th>N°</th><th>Const 1</th><th>Const 2</th><th>%mol1</th><th>%mol2</th><th>dexp</th><th>tmav</th><th>Hv</th><th>Hv (RNA)</th><th>% erreur</th></th<>	N°	Const 1	Const 2	%mol1	%mol2	dexp	tmav	Hv	Hv (RNA)	% erreur
MZ nC6 nC7 22,11 77,89 0,679 364,9878 31,1244 31,01268826 0,358920132 M3 nC6 nC7 77,07 22,93 0,6656 348,6686 29,5195 29,68455734 0,559146806 M4 nC13 nC14 S1,40 48,60 0,7593 517,4179 46,6026 46,6125552 0,025010458 M5 nC14 nC6 10,58 89,42 0,6804 381,4189 30,83484 30,85794264 0,107484538 M6 nC6 nC10 87,08 12,92 0,6727 355,4835 30,2389 30,24715215 0,027289864 M8 nC6 CYC6 45,11 54,89 0,7181 348,6418 29,4812 29,6251224 0,488138655 M9 nC6 CYC6 45,11 54,89 0,7181 348,6418 29,4812 29,5251224 0,488138655 M11 nC6 Bz 40,36 59,14 0,76527 355,4835 30,248125 0,22525124 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>						•				
M3 nC6 nC7 77,07 22,93 0,6656 348.6686 29,5195 29,68455734 0,559146800 M4 nC13 nC14 51,40 48,60 0,7593 517.4179 46,6026 46,6125552 0,025010458 M5 nC14 nC6 10,58 89,42 0,6804 361,4189 30,8348 30,86794264 0,107484383 M6 nC6 nC10 87,08 12,92 0,6727 355.4835 30,2389 30,24715215 0,02728884 M8 nC6 CYC6 45,11 54,89 0,7181 348.6418 29,4812 29,6251224 0,488183655 M9 nC6 CYC6 45,11 54,89 0,7181 348.6418 29,4812 29,6251224 0,488183655 M11 nC6 BZ 40,86 39,14 0,7652 348.5700 29,9795 29,840369 0,48496311 M12 nC6 BZ 14,311 85,69 0,7011 344.8882 29,3598 29,5792990				,						
M4 nC13 nC14 51,40 48,60 0,7593 517,4179 46,6026 46,61425552 0,025010458 M5 nC14 nC6 10,58 89,42 0,6804 361,4189 30,8348 30,86794264 0,107484538 M6 nC6 nC10 59,34 40,66 0,6958 384,7339 33,2209 33,13642555 0,254268994 M7 nC6 nC10 87,08 12,92 0,6727 355,34835 30,2389 30,24715215 0,2289864 M8 nC6 CYC6 45,11 54,89 0,7181 348,6418 29,6931224 0,488138655 M9 nC6 CYC6 16,60 83,40 0,7547 352,3425 29,8091 29,88348251 0,249529523 M11 nC6 Bz 40,86 59,14 0,7652 348,5700 29,9795 29,8840369 0,418496311 M12 nC6 Bz 73,31 26,69 0,8336 351,5824 30,4866 30,28340604 0,912833712<										
M5 nC14 nC6 10,58 89,42 0,6804 361,4189 30,8348 30,86794264 0,107484538 M6 nC6 nC10 59,34 40,66 0,6958 384,7339 33,2209 33,13642955 0,254268994 M7 nC6 nC10 87,08 12,92 0,6727 355,4855 30,2389 30,24715215 0,027289864 M8 nC6 CYC6 45,11 54,889 0,7181 348,6418 29,4812 29,6251224 0,681366 M9 nC6 CYC6 16,60 83,40 0,7547 352,3425 29,80901 29,8384251 0,249252522 M11 nC6 Bz 40,86 59,14 0,7652 348,5700 29,9795 29,83843251 0,249252522 M11 nC6 Bz 73,31 26,69 0,7011 344,8882 29,3598 29,57929902 0,747617568 M14 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048229				•		,			-	
M6 nC6 nC10 59,34 40,66 0,6958 384,7339 33,2209 33,13642955 0,254268994 M7 nC6 nC10 87,08 12,92 0,6727 355,4835 30,2389 30,24715215 0,027289864 M8 nC6 CYC6 45,11 54,89 0,7181 348,6418 29,4812 29,6751224 0,488183655 M9 nC6 CYC6 16,60 83,40 0,7547 352,3425 29,89091 29,88348251 0,4818496311 M11 nC6 Bz 40,86 59,14 0,7652 348,5700 29,9795 29,8540369 0,418496311 M12 nC6 Bz 14,31 85,69 0,8336 351,5824 30,4866 30,20830604 0,91833712 M13 nC6 Bz 73,31 26,69 0,7011 344,8882 29,3598 29,57929902 0,74761568 M14 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048329				•						
M7 nC6 nC10 87,08 12,92 0,6727 355.4835 30,2389 30,24715215 0,027289864 M8 nC6 CYC6 45,11 54,89 0,7181 348.6418 29,4812 29,6251224 0,488183665 M9 nC6 CYC6 16,60 83,40 0,7547 352.3425 29,8091 29,8843251 0,249529523 M11 nC6 Bz 40,86 59,14 0,7652 348.6700 29,9795 29,840369 0,418486311 M12 nC6 Bz 14,31 85,69 0,7011 34.8882 29,3598 29,7929902 0,747617568 M14 Bz Tol 53,55 46,45 0,8714 367.3993 31,8841 32,13010154 0,771549281 M15 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264						•		,		-
M8 nC6 CYC6 45,11 54,89 0,7181 348,6418 29,4812 29,6251224 0,488183665 M9 nC6 CYC6 16,60 83,40 0,7547 352,3425 29,8091 29,88348251 0,249529523 M11 nC6 Bz 40,86 59,14 0,7652 348,5700 29,9795 29,8540369 0,41849511 M12 nC6 Bz 14,31 85,69 0,8336 351,5524 30,4866 30,20830804 0,912833712 M13 nC6 Bz 73,31 26,69 0,7011 344.8882 29,3598 29,57929902 0,747615281512 M14 Bz Tol 21,97 78,03 0,8684 377,0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358,2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353,445 30,6242 30,39470931				,						
M9 nC6 CYC6 16,80 83,40 0,7547 352.3425 29,8091 29,88348251 0,249529523 M11 nC6 Bz 40,86 59,14 0,7652 348.5700 29,9795 29,8540369 0,418496311 M12 nC6 Bz 14,31 85,69 0,8336 351.5824 30,4866 30,20830804 0,912833712 M13 nC6 Bz 73,31 26,69 0,7011 344.8882 29,57929902 0,747617568 M14 Bz Tol 53,55 46,45 0,8714 367.3993 31,8841 32,13010154 0,771549281 M15 Bz Tol 21,97 78,03 0,8684 377.0488 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 23,47 76,53 0,7942 354,1419 30,1784 30,23200874 0,177639432						,		,		
M11 nC6 Bz 40,86 59,14 0,7652 348.5700 29,9795 29,8540369 0,418496311 M12 nC6 Bz 14,31 85,69 0,8336 351.5824 30,4866 30,20830804 0,912833712 M13 nC6 Bz 73,31 26,69 0,7011 344.8882 29,3598 29,57929902 0,747617568 M14 Bz Tol 53,55 46,45 0,8714 367,3993 31,8841 32,13010154 0,771549281 M16 Bz Tol 21,97 78,03 0,8684 377,0488 32,6483 32,41048329 0,72849819879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353,4245 30,6242 30,39470931 0,77639432 M18 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,232587034								,		
M12 nC6 Bz 14,31 85,69 0,8336 351,5824 30,4866 30,20830804 0,912833712 M13 nC6 Bz 73,31 26,69 0,7011 344,8882 29,3598 29,57929902 0,747617568 M14 Bz Tol 53,55 46,45 0,8714 367.3993 31,8841 32,13010154 0,771549281 M15 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353.4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,23287034 0,9177639432 M21 nC7 MetCyC6 46,71 53,29 0,7412 372.9549 31,4129 31,46242675				,						
M13 nC6 Bz 73,31 26,69 0,7011 344,8882 29,57929902 0,747617568 M14 Bz Tol 53,55 46,45 0,8714 367.3993 31,8841 32,13010154 0,771549281 M15 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353.4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 23,47 76,53 0,7942 354.1419 30,1784 30,23200874 0,177639432 M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCYC6 64,42 35,58 0,7313 372,4557 31,5316 31,43269276 0,31367659 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>·</td> <td></td> <td>,</td> <td></td> <td></td>				•		·		,		
M14 Bz Tol 53,55 46,45 0,8714 367.3993 31,8841 32,13010154 0,771549281 M15 Bz Tol 21,97 78,03 0,8684 377.0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358.2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353.4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCyC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCyC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtB2 47,32 52,68 0,7871 391,4486 33,7857 33,78573048					,			,	-	
M15 Bz Tol 21,97 78,03 0,8684 377,0488 32,6483 32,41048329 0,728419879 M16 Bz Tol 83,33 16,67 0,8751 358,2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353,4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 23,47 76,53 0,7942 354,1419 30,1784 30,23200874 0,177639432 M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCYC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCYC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391,4486 33,7876 33,7857304						,				
M16 Bz Tol 83,33 16,67 0,8751 358,2997 31,1634 31,2747264 0,357234438 M17 Bz CYC6 82,13 17,87 0,8442 353,4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 23,47 76,53 0,7942 354,1419 30,1784 30,23200874 0,177639432 M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCYC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCYC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391.4486 33,7876 33,78573048 0,00553154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,362722	M14	Bz	Tol	•		•		,	32,13010154	0,771549281
M17 Bz CYC6 82,13 17,87 0,8442 353.4245 30,6242 30,39470031 0,74940632 M18 Bz CYC6 23,47 76,53 0,7942 354.1419 30,1784 30,325087034 0,177639432 M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCyC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCyC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391,4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233	M15	Bz	Tol	21,97	78,03	0,8684	377.0488	32,6483	32,41048329	0,728419879
M18 Bz CYC6 23,47 76,53 0,7942 354.1419 30,1784 30,23200874 0,177639432 M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCyC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCyC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391.4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,03389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534	M16	Bz	Tol	83,33	16,67	0,8751	358.2997	31,1634	31,2747264	0,357234438
M19 Bz CYC6 58,56 41,44 0,8269 353.71 30,445 30,32587034 0,391294646 M21 nC7 MetCyC6 46,71 53,29 0,7412 372.9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCyC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391.4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 <t< td=""><td>M17</td><td>Bz</td><td>CYC6</td><td>82,13</td><td>17,87</td><td>0,8442</td><td>353.4245</td><td>30,6242</td><td>30,39470031</td><td>0,74940632</td></t<>	M17	Bz	CYC6	82,13	17,87	0,8442	353.4245	30,6242	30,39470031	0,74940632
M21 nC7 MetCyC6 46,71 53,29 0,7412 372,9049 31,4129 31,46242675 0,157663729 M22 nC7 MetCyC6 64,42 35,58 0,7313 372,4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391,4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392,4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,80215203	M18	Bz	CYC6	23,47	76,53	0,7942	354.1419	30,1784	30,23200874	0,177639432
M22 nC7 MetCyC6 64,42 35,58 0,7313 372.4557 31,5316 31,43269276 0,313676559 M23 nC7 EtBz 47,32 52,68 0,7871 391.4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 <t< td=""><td>M19</td><td>Bz</td><td>CYC6</td><td>58,56</td><td>41,44</td><td>0,8269</td><td>353.71</td><td>30,445</td><td>30,32587034</td><td>0,391294646</td></t<>	M19	Bz	CYC6	58,56	41,44	0,8269	353.71	30,445	30,32587034	0,391294646
M23 nC7 EtBz 47,32 52,68 0,7871 391.4486 33,7876 33,78573048 0,005533154 M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626	M21	nC7	MetCyC6	46,71	53,29	0,7412	372.9049	31,4129	31,46242675	0,157663729
M24 EtBz nC6 52,23 47,77 0,7678 377.0943 32,3755 32,36272202 0,039468045 M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23954626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 <td< td=""><td>M22</td><td>nC7</td><td>MetCyC6</td><td>64,42</td><td>35,58</td><td>0,7313</td><td>372.4557</td><td>31,5316</td><td>31,43269276</td><td>0,313676559</td></td<>	M22	nC7	MetCyC6	64,42	35,58	0,7313	372.4557	31,5316	31,43269276	0,313676559
M25 EtBz MetCYC6 51,63 48,37 0,8169 392.4143 33,4233 33,70389202 0,839510233 M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 <td< td=""><td>M23</td><td>nC7</td><td>EtBz</td><td>47,32</td><td>52,68</td><td>0,7871</td><td>391.4486</td><td>33,7876</td><td>33,78573048</td><td>0,005533154</td></td<>	M23	nC7	EtBz	47,32	52,68	0,7871	391.4486	33,7876	33,78573048	0,005533154
M26 MetCYC6 nC6 49,04 50,96 0,7143 357.6655 29,9534 30,15346235 0,667912002 M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 <t< td=""><td>M24</td><td>EtBz</td><td>nC6</td><td>52,23</td><td>47,77</td><td>0,7678</td><td>377.0943</td><td>32,3755</td><td>32,36272202</td><td>0,039468045</td></t<>	M24	EtBz	nC6	52,23	47,77	0,7678	377.0943	32,3755	32,36272202	0,039468045
M27 nC6 nC9 82,73 17,27 0,6736 356.04 30,2748 30,32501333 0,165858517 M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 3	M25	EtBz	MetCYC6	51,63	48,37	0,8169	392.4143	33,4233	33,70389202	0,839510233
M28 nC7 nC10 59,16 40,84 0,7208 402.4901 34,82521 34,80215203 0,066210575 M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCyC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 <td< td=""><td>M26</td><td>MetCYC6</td><td>nC6</td><td>49,04</td><td>50,96</td><td>0,7143</td><td>357.6655</td><td>29,9534</td><td>30,15346235</td><td>0,667912002</td></td<>	M26	MetCYC6	nC6	49,04	50,96	0,7143	357.6655	29,9534	30,15346235	0,667912002
M29 nC7 Bz 44,76 55,24 0,7795 361.4181 31,2121 30,79735053 1,328809875 M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 3	M27	nC6	nC9	82,73	17,27	0,6736	356.04	30,2748	30,32501333	0,165858517
M31 Bz MetCyC6 59,63 40,37 0,8204 361.6368 30,8972 31,23054626 1,078888252 M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 3	M28	nC7	nC10	59,16	40,84	0,7208	402.4901	34,82521	34,80215203	0,066210575
M32 nC7 nC13 87,89 12,11 0,7209 388.1513 33,4509 33,45634388 0,016274228 M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 3	M29	nC7	Bz	44,76	55,24	0,7795	361.4181	31,2121	30,79735053	1,328809875
M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759	M31	Bz	MetCyC6	59,63	40,37	0,8204	361.6368	30,8972	31,23054626	1,078888252
M33 nC10 nC14 78,90 21,10 0,7387 464.063 41,2901 41,22702615 0,15275781 M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759	M32	nC7	nC13	87,89	12,11	0,7209	388.1513	33,4509	33,45634388	0,016274228
M34 metCyC6 nC13 84,38 15,62 0,765 397.9319 33,3727 33,3363573 0,108899475 M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759	M33	nC10	nC14	78,90	21,10	0,7387	464.063	41,2901	41,22702615	0,15275781
M35 MetCYC6 nC14 85,39 14,61 0,7669 396.3902 33,5121 33,39713862 0,343044392 M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759				84,38		0,765				0,108899475
M36 nC7 Tol 38,19 61,81 0,7957 379.0994 32,6415 32,52646265 0,352426654 M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759	M35					0,7669			33,39713862	0,343044392
M37 nC6 Tol 51,60 48,40 0,7503 362.1406 30,9457 30,68377512 0,846401545 M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759				,					32,52646265	0,352426654
M38 nC13 Tol 30,45 69,55 0,8083 421.78 36,9771 37,14374286 0,45066503 M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759										
M39 metCYC6 Tol 47,20 52,80 0,8134 379.1968 32,1982 32,4371579 0,742146759						,		,		
									-	
	M41	nC13	EtBz	28,16	71,84	0,816	437.2817	38,4301	38,35413665	0,197666271

Présentation des résultats de simulation Mélanges d'hydrocarbures. Propriété : l'indice de corrélation.

N°	Const 1	Const 2	%mol1	%mol2	dexp	tmav	I	I(RNA)	erreur
M1	nC6	nC7	52,25	47,75	0,6721	356.0384	0.2348	0,24609055	0,01129055
M2	nC6	nC7	22,11	77,89	0,679	364.9878	0.2370	0,24824427	0,01124427
МЗ	nC6	nC7	77,07	22,93	0,6656	348.6686	0.2329	0,23174471	0,00115529
M4	nC13	nC14	51,40	48,60	0,7593	517.4179	0.2589	0,27198445	0,01308445
M5	nC14	nC6	10,58	89,42	0,6804	361.4189	0.2388	0,24965383	0,01085383
M6	nC6	nC10	59,34	40,66	0,6958	384.7339	0.2424	0,24498955	0,00258955
M7	nC6	nC10	87,08	12,92	0,6727	355.4835	0.2737	0,24480745	0,02889255
M8	nC6	CYC6	45,11	54,89	0,7181	348.6418	0.2448	0,24972968	0,00492968
М9	nC6	CYC6	16,60	83,40	0,7547	352.3425	0.2531	0,2606938	0,0075938
M11	nC6	Bz	40,86	59,14	0,7652	348.5700	0.2640	0,27106452	0,00706452
M12	nC6	Bz	14,31	85,69	0,8336	351.5824	0.2836	0,27309706	0,01050294
M13	nC6	Bz	73,31	26,69	0,7011	344.8882	0.2435	0,25106541	0,00756541
M14	Bz	Tol	53,55	46,45	0,8714	367.3993	0.2952	0,29437005	0,00082995
M15	Bz	Tol	21,97	78,03	0,8684	377.0488	0.2943	0,27427515	0,02002485
M16	Bz	Tol	83,33	16,67	0,8751	358.2997	0.2956	0,28600692	0,00959308
M17	Bz	CYC6	82,13	17,87	0,8442	353.4245	0.2839	0,27449181	0,00940819
M18	Bz	CYC6	23,47	76,53	0,7942	354.1419	0.2646	0,27540405	0,01080405
M19	Bz	CYC6	58,56	41,44	0,8269	353.71	0.2772	0,2746586	0,0025414
M21	nC7	MetCyC6	46,71	53,29	0,7412	372.9049	0.2505	0,25766871	0,00716871
M22	nC7	MetCyC6	64,42	35,58	0,7313	372.4557	0.2483	0,25581489	0,00751489
M23	nC7	EtBz	47,32	52,68	0,7871	391.4486	0.2684	0,26552013	0,00287987
M24	EtBz	nC6	52,23	47,77	0,7678	377.0943	0.2656	0,26717757	0,00157757
M25	EtBz	MetCYC6	51,63	48,37	0,8169	392.4143	0.2748	0,26706495	0,00773505
M26	MetCYC6	nC6	49,04	50,96	0,7143	357.6655	0.2442	0,25955354	0,01535354
M27	nC6	nC9	82,73	17,27	0,6736	356.04	0.2734	0,24608714	0,02731286
M28	nC7	nC10	59,16	40,84	0,7208	402.4901	0.2477	0,24824214	0,00054214
M29	nC7	Bz	44,76	55,24	0,7795	361.4181	0.2645	0,26858155	0,00408155
M31	Bz	MetCyC6	59,63	40,37	0,8204	361.6368	0.2749	0,28755944	0,01265944
M32	nC7	nC13	87,89	12,11	0,7209	388.1513	0.2471	0,25220819	0,00510819
M33	nC10	nC14	78,90	21,10	0,7387	464.063	0.2532	0,26044215	0,00724215
M34	metCyC6	nC13	84,38	15,62	0,765	397.9319	0.2571	0,2555655	0,0015345
M35	MetCYC6	nC14	85,39	14,61	0,7669	396.3902	0.2574	0,25542488	0,00197512
M36	nC7	Tol	38,19	61,81	0,7957	379.0994	0.2717	0,26932372	0,00237628
M37	nC6	Tol	51,60	48,40	0,7503	362.1406	0.2634	0,26817001	0,00477001
M38	nC13	Tol	30,45	69,55	0,8083	421.78	0.2744	0,26230765	0,01209235
M39	metCYC6	Tol	47,20	52,80	0,8134	379.1968	0.2739	0,27109024	0,00280976
M41	nC13	EtBz	28,16	71,84	0,816	437.2817	0.2769	0,26553709	0,01136291

Présentation des résultats de simulation Fractions pétrolières. Propriété : la chaleur spécifique.

N°	Tmav(°C)	d	Cp _{298K} (J/moleK)	cp(RNA)	% Erreur
1	35,00	0,6160	144,2714	144,316121	0,04471153
2	40,00	0,6310	147,7628	147,762742	5,61E-05
3	45,00	0,6340	145,7851	145,730379	0,05468699
4	53,00	0,6575	152,5494	152,549143	0,00028619
6	54,50	0,6525	154,8777	154,882853	0,00516674
7	55,00	0,6490	153,6596	153,662225	0,00258643
8	55,00	0,6470	150,9257	150,928134	0,00248115
9	58,00	0,6655	153,6154	153,599923	0,01544809
11	62,00	0,6705	156,6641	156,665229	0,00113889
12	62,00	0,6585	158,1916	158,192513	0,0009376
13	63,00	0,6670	155,2522	155,253905	0,00170099
14	65,00	0,6580	158,7279	158,727237	0,00069482
16	65,00	0,6770	161,6004	161,620109	0,01973327
17	75,00	0,6930	159,9568	159,952251	0,00450566
18	75,00	0,6820	162,2220	162,217036	0,00494208
19	75,00	0,6890	164,1959	164,194157	0,00170236
21	80,50	0,6904	163,3565	163,350238	0,00630361
22	82,00	0,7129	167,2243	167,223792	0,00047438
23	85,00	0,7010	169,0472	169,046611	0,00061178
24	85,00	0,6980	167,2885	167,318474	0,02992689
26	90,00	0,7030	171,8572	171,863971	0,00677645
27	90,00	0,6895	174,5991	174,645179	0,04611407
28	90,50	0,7062	163,0418	162,975907	0,06585242
29	91,00	0,6980	170,5497	170,538076	0,01164364
31	92,00	0,6918	175,5038	175,402714	0,10108422
32	93,00	0,7067	176,3248	176,404711	0,07995204
33	94,00	0,7048	171,1827	171,452908	0,27025214
34	94,00	0,7038	172,6011	172,547196	0,05392793
36	95,00	0,7060	167,1206	166,830376	0,29019929
37	95,50	0,7095	164,2579	164,283735	0,02585911
38	97,00	0,7088	174,7429	174,742923	3,20E-06
39	97,00	0,6955	178,4220	178,497055	0,07509563
41	100,00	0,7237	171,5319	171,3648	0,16710421
42	100,50	0,7160	166,0857	166,045749	0,03993968
43	101,00	0,7153	178,4179	178,456043	0,03813925
44	102,00	0,7300	175,8599	175,989603	0,12972556
46	104,00	0,7017	183,1084	183,108434	5,44E-07
47	105,00	0,7300	176,7686	176,770816	0,00217569
48	105,00	0,7240	179,6463	180,311952	0,66569722

N°	Tmav(°C)	d	Cp _{298K} (J/moleK)	cp(RNA)	% Erreur
49	105,00	0,7140	174,3788	174,391503	0,01272897
51	106,00	0,7242	188,7681	188,201166	0,56691935
52	107,00	0,7218	181,1820	181,219155	0,03714162
53	108,89	0,7097	184,1140	184,135692	0,02168738
54	109,00	0,7067	186,4656	186,428904	0,03665706
56	110,00	0,7188	183,0254	182,986138	0,03925495
57	110,50	0,7235	172,3431	172,43991	0,0967604
58	112,00	0,7398	177,4787	177,047287	0,43138068
59	112,00	0,7347	180,4603	181,030103	0,56981003
61	113,00	0,7337	182,4066	181,697952	0,70865257
62	113,50	0,7193	184,6728	184,710373	0,03755135
63	114,00	0,7163	186,7647	186,765358	0,00063995
64	114,00	0,7258	183,3262	182,942405	0,38380114
66	115,00	0,7260	182,8823	183,150845	0,26856788
67	115,00	0,7377	180,7273	181,196441	0,46911299
68	116,00	0,7312	185,9740	185,891304	0,08271734
69	116,00	0,7437	180,1648	180,121887	0,04293004
71	117,00	0,7318	188,4293	188,59928	0,16994761
72	121,00	0,7228	191,1962	191,178602	0,01760085
73	124,00	0,7427	190,2047	190,194343	0,01033721
74	125,00	0,7320	190,8505	190,820053	0,03040843
76	125,00	0,7330	187,4294	187,466948	0,03759263
77	126,00	0,7326	199,3116	199,295881	0,01573084
78	126,67	0,7352	195,7724	195,793201	0,02084724
79	126,67	0,7483	188,6713	188,682185	0,0108834
81	128,00	0,7387	197,0838	197,072615	0,01120019
82	130,00	0,7427	194,7679	194,76447	0,00346228
83	133,00	0,7458	200,0942	198,402065	1,69208889
84	133,00	0,7458	196,6882	198,402065	1,71387992
86	135,00	0,7450	197,1978	197,173472	0,02432415
87	138,89	0,7734	192,1581	192,158825	0,00075498
88	140,00	0,7490	208,0298	208,03086	0,00104095
89	145,00	0,7540	207,3671	207,369535	0,00239991
91	146,11	0,7520	209,6959	209,682416	0,01347985
92	147,00	0,7513	206,4546	206,470454	0,01586271
93	147,00	0,7680	204,3587	204,360055	0,00131933
94	147,00	0,7635	203,0400	203,040963	0,00100144
95	148,00	0,7685	202,2910	202,283706	0,00727073

Présentation des résultats de simulation Fractions pétrolières. Propriété : la chaleur de vaporisation.

GUELLALA

			GUELL	ALA .		
	Fraction	teb °K	d20	I	I (RNA)	erreur
1	16,6-65	313,8	0,6403	0,2296	0,229573459	4,04E-06
2	65-70	340,5	0,6585	0,2348	0,234850675	1,65E-05
3	70-75	345,5	0,6649	0,2368	0,236806763	2,63E-05
4	75-80	350,5	0,6717	0,2382	0,238227348	4,65E-05
5	80-85	355,5	0,6787	0,2379	0,237898335	4,07E-05
6	85-90	360,5	0,6771	0,2434	0,243345189	4,26E-05
7	90-95	365,5	0,7111	0,2444	0,244407164	3,55E-06
8	95-100	370,5	0,7151	0,2454	0,245741262	0,000323204
9	100-105	375,5	0,7187	0,2464	0,246385345	4,58E-05
11	110-115	385,5	0,7235	0,2486	0,24899143	0,000378761
12	115-120	390,5	0,7268	0,2504	0,250399025	3,51E-05
13	120-125	395,5	0,7311	0,2508	0,251493667	0,000705779
14	125-130	400,5	0,7347	0,2524	0,252214542	0,000160977
15	130-135	405,5	0,7355	0,2532	0,253188308	3,26E-05
16	135-140	410,5	0,7453	0,2542	0,254916259	0,00069277
17	140-145	415,5	0,7480	0,2546	0,255427589	0,000835057
18	145-150	420,5	0,7513	0,2566	0,25636807	0,000224631
19	150-155	425,5	0,7568	0,2582	0,258438913	0,000218505
21	160-165	435,5	0,7638	0,2608	0,260754378	3,15E-05
22	165-170	440,5	0,7670	0,2618	0,261831202	7,63E-07
23	170-175	445,5	0,7696	0,2632	0,262755516	0,000482687
24	175-180	450,5	0,7764	0,2645	0,264818766	0,000331512
25	180-185	455,5	0,7782	0,2653	0,265489972	0,000223155
26	185-190	460,5	0,7805	0,2663	0,266348127	9,51E-05
27	190-195	465,5	0,7829	0,2673	0,267234433	0,000107096
28	195-200	470,5	0,7855	0,2683	0,268096142	0,000228778
29	200-205	475,5	0,7882	0,2687	0,26858241	0,000156164
31	210-215	485,5	0,7931	0,2698	0,269477299	0,000345979
32	215-220	490,5	0,7960	0,2707	0,270200992	0,00049917
33	220-230	498	0,8059	0,2735	0,272478172	0,001051563
34	230-240	508	0,8091	0,2744	0,273866669	0,000484089
35	240-250	518	0,8150	0,2761	0,275801355	0,000342058
36	250-260	528	0,8220	0,2781	0,278477638	0,000342089
37	260-270	538	0,8246	0,2796	0,279190267	0,000372032
38	270-280	548	0,8296	0,2814	0,281089781	0,000302609
39	280-290	558	0,8337	0,2808	0,280835238	5,23E-05
41	300-310	578	0,8418	0,2826	0,283019591	0,000460508
42	310-320	588	0,8446	0,2838	0,284186118	0,000361127
43	320-330	598	0,8479	0,2866	0,285705313	0,000896474
44	330-340	608	0,8516	0,2877	0,287536646	0,0001224
45	340-350	618	0,8543	0,2883	0,288646489	0,000384032
46	350-360	628	0,8592	0,2896	0,289618096	7,56E-08
47	360-370	638	0,8612	0,2902	0,290139774	2,99E-05
48	370-375	645,5	0,8632	0,2909	0,290887157	1,61E-05
49	375-380	650,5	0,8646	0,2915	0,291434657	3,69E-05

coupes larges guellala

	coupes	teb °K	d20	1	I (RNA)	erreur
2	80-160°C	378,52	0,7293	0,2519	0,251843623	5,60E-05
3	C5-165°C	364,33	0,7062	0,2455	0,244892624	0,000578787

DJW

			D3 V1			
	Fraction	teb °K	d20	1	I (RNA)	erreur
1	13,3-65	312,15	0,6640	0,2296	0,229570557	1,14E-06
2	65-70	340,5	0,6657	0,2348	0,234814785	1,94E-05
3	70-75	345,5	0,6730	0,2368	0,23684298	9,87E-06
4	75-80	350,5	0,6801	0,2382	0,238143236	3,76E-05
5	80-85	355,5	0,6792	0,2379	0,237817467	4,01E-05
6	85-90	360,5	0,6818	0,2434	0,243418582	3,08E-05
7	90-95	365,5	0,7055	0,2444	0,245167906	0,00076429
9	100-105	375,5	0,7137	0,2464	0,246638849	0,000207704
10	105-110	380,5	0,7177	0,2473	0,246945639	0,000337582
11	110-115	385,5	0,7217	0,2486	0,24846396	0,000148708
12	115-120	390,5	0,7257	0,2504	0,250193089	0,000170862
13	120-125	395,5	0,7298	0,2508	0,251346862	0,000558974
14	125-130	400,5	0,7337	0,2524	0,252139425	0,000236094
15	130-135	405,5	0,7376	0,2532	0,252900814	0,000320061
16	135-140	410,5	0,7410	0,2542	0,253759241	0,000464248
17	140-145	415,5	0,7434	0,2546	0,254935473	0,000342942
19	150-155	425,5	0,7558	0,2582	0,257923503	0,000296906
20	155-160	430,5	0,7605	0,2596	0,259678334	9,55E-05
21	160-165	435,5	0,7638	0,2608	0,260754378	3,15E-05
22	165-170	440,5	0,7670	0,2618	0,261831202	7,63E-07
23	170-175	445,5	0,7714	0,2632	0,263334169	9,60E-05
24	175-180	450,5	0,7754	0,2645	0,264580128	9,29E-05
25	180-185	455,5	0,7786	0,2653	0,265565663	0,000298847
26	185-190	460,5	0,7821	0,2663	0,266576979	0,000323927
27	190-195	465,5	0,7864	0,2673	0,267412096	7,06E-05
29	200-205	475,5	0,7929	0,2687	0,268405421	0,000333153
30	205-210	480,5	0,7941	0,2690	0,269334112	0,000285455
31	210-215	485,5	0,7962	0,2698	0,270119793	0,000296516
32	215-220	490,5	0,8000	0,2707	0,27106989	0,000369727
33	220-230	498	0,8124	0,2735	0,273548161	1,84E-05
34	230-240	508	0,8140	0,2744	0,274232683	0,000118076
35	240-250	518	0,8194	0,2761	0,276500436	0,000357024
36	250-260	528	0,8252	0,2781	0,278472986	0,000337437
37	260-270	538	0,8300	0,2796	0,27932089	0,000241409
39	280-290	558	0,8375	0,2808	0,280613155	0,000169741
40	290-300	568	0,8420	0,2815	0,281888839	0,00034416
41	300-310	578	0,8461	0,2826	0,283292145	0,000733062
42	310-320	588	0,8560	0,2838	0,285025713	0,001200723
43	320-330	598	0,8594	0,2866	0,286487518	0,00011427
44	330-340	608	0,8638	0,2877	0,288468899	0,000809853
45	340-350	618	0,8651	0,2883	0,288803146	0,00054069
46	350-360	628	0,8679	0,2896	0,289616045	2,13E-06
47	360-370	638	0,8703	0,2902	0,290171085	1,36E-06
49	375-380	650,5	0,9162	0,2915	0,2914715	1,00E-07

Coupes larges djw

	coupes	teb °K	d20	I	I (RNA)	erreur
1	C5-80°C	322,44	0,6543	0,2297	0,229732598	1,79E-07
2	80-160°C	372,77	0,7202	0,2469	0,246909662	8,94E-07
3	C5-165°C	352,31	0,7063	0,2435	0,243494392	4,20E-07

EL - AGREB

			EL - AG	IVED		
	Fraction	teb °K	d20	1	I (RNA)	erreur
1	17,5-65	314,25	0,6379	0,2273	0,22727759	1,32E-06
2	65-70	340,5	0,6800	0,2384	0,238400465	4,21E-06
3	70-75	345,5	0,6944	0,2421	0,242127498	2,47E-05
4	75-80	350,5	0,7030	0,2441	0,244036233	0,0001002
5	80-85	355,5	0,7043	0,2446	0,244786883	0,000169587
7	90-95	365,5	0,7067	0,2450	0,244767662	0,000276812
8	95-100	370,5	0,7200	0,2461	0,246152888	9,48E-05
9	100-105	375,5	0,7274	0,2506	0,250733281	0,000104342
10	105-110	380,5	0,7282	0,2518	0,251280542	0,000513237
11	110-115	385,5	0,7306	0,2520	0,252200231	0,000194857
12	115-120	390,5	0,7311	0,2522	0,25181594	0,000400968
13	120-125	395,5	0,7328	0,2525	0,251916542	0,000564699
14	125-130	400,5	0,7413	0,2550	0,255006491	7,58E-06
15	130-135	405,5	0,7461	0,2566	0,256374586	0,000270678
17	140-145	415,5	0,7496	0,2571	0,256257018	0,000861144
18	145-150	420,5	0,7547	0,2581	0,258182657	6,72E-05
19	150-155	425,5	0,7595	0,2598	0,259885601	9,34E-05
20	155-160	430,5	0,7651	0,2615	0,261626496	0,000109264
21	160-165	435,5	0,7674	0,2624	0,26229837	0,000105932
22	165-170	440,5	0,7727	0,2639	0,26389765	3,47E-05
23	170-175	445,5	0,7735	0,2642	0,263991731	0,000235482
24	175-180	450,5	0,7768	0,2652	0,264909068	0,000305804
25	180-185	455,5	0,7794	0,2660	0,265703227	0,000342309
27	190-195	465,5	0,7853	0,2673	0,267485575	0,000144045
28	195-200	470,5	0,7882	0,2679	0,267900188	1,08E-05
29	200-205	475,5	0,7897	0,2683	0,268433267	0,000108347
30	205-210	480,5	0,7904	0,2686	0,268838852	0,000203669
31	210-215	485,5	0,7922	0,2690	0,269274838	0,000277851
32	215-220	490,5	0,7951	0,2697	0,269961232	0,000292811
33	220-230	498	0,8038	0,2719	0,27226807	0,000331794
34	230-240	508	0,8065	0,2726	0,272878561	0,000273623
35	240-250	518	0,8145	0,2753	0,275584551	0,000260069
37	260-270	538	0,8229	0,2781	0,278137229	5,27E-05
38	270-280	548	0,8310	0,2808	0,281283631	0,000449923
39	280-290	558	0,8319	0,2811	0,281245597	0,000107098
40	290-300	568	0,8338	0,2814	0,281168593	0,000223796
41	300-310	578	0,8463	0,2844	0,283180464	0,001251335
42	310-320	588	0,8574	0,2874	0,285907831	0,001449309
43	320-330	598	0,8657	0,2900	0,290218561	0,000199216
44	330-340	608	0,8662	0,2903	0,290013749	0,000306319
45	340-350	618	0,8676	0,2907	0,289992978	0,000727846
47	360-370	638	0,8817	0,2925	0,292521445	1,63E-07
48	370-375	645,5	0,8863	0,2955	0,295465963	4,34E-06
49	375-380	650,5	0,8884	0,2959	0,295904395	4,51E-05

Coupes larges el-agreb

	coupes	teb °K	d20	I	I (RNA)	erreur
1	C5-80°C	325,67	0,6572	0,2320	0,231963145	1,22E-06
2	80-165°C	392,57	0,7361	0,2534	0,253928531	0,000549259
3	C5-165°C	368,47	0,7095	0,2477	0,247422067	0,000286832

REFERENCES BIBLIOGRAPHIQUES

- [1] CHITOUR, C.E., « Les propriétés thermiques », Edition OPU, Tome 3, 1998.
- [2] CHITOUR, C.E., «Raffinage: les propriétés physiques des hydrocarbures et des fractions pétrolières », Edition OPU, Tome 1, 1999.
- [3] CHITOUR, C.E., « Thermodynamique des fluides réels », Edition OPU, Tome2, 1998.
- [4] P.WUITHIER, « le petrole : raffinage et génie chimique », tome1, Edition technip1972.
- [5] H.ZAIT, « Etablissement de nouvelles corrélations de contribution de groupes avec interactions pour la prédiction de l'enthalpie de vaporisation en fonction de la température », projet de fin d'études, proposé et dirigé par C.E.CHITOUR, école nationale polytechnique ENP 2007.
- [6] DANNER, R.; DAUBERT, T. E., "Manuel for Predicting Chemical Process Design Data, Data Prediction Manual", Design Institute for Physical Property Data, American Institute of Chemical Engineering, New York, 1982.
- [7] AMBROSE, D., "Correlation and Estimation of Vapour-Liquid Critical Properties: I. Critical Temperatures of Organic Compounds", NPL Report Chem 92, September 1978, Teddington, UK.
- [8] PREDICT, "Chemical Thermodynamic & Transport Properties of Interest to Chemical Engineers and Chemists", Version 4.0, Users Manual, Dragon Technology, Inc. P.O. Box 585Golden, CO 80402-0585, 1995.
- [9] SKANDER, N., "Evaluation des propriétés des pétroles bruts et des fractions pétrolières par méthodes d'analyse et par corrélations", Thèse de Doctorat, Ecole Nationale Polytechnique, Alger, 2004.
- [10] SKANDER, N., « Contribution à la détermination des propriétés physiques des mélanges d'hydrocarbures et de fraction pétrolières par des méthodes de contribution de groupes », Thèse de Magister, sous la direction de Pr.C.E.Chitour, Ecole Nationale Polytechnique, 1997.
- [11] S.GORI, « caracterisation des fractions pétrolières par différentes approches utilisant l'intelligence artificielle », projet de fin d'études, école nationale polytechnique ENP 2004.
- [12] S.FEKRACHE, « détermination des propriétés des hydrocarbures par la méthode de contribution de groupes couplée aux réseaux de neurones artificiels », thèse de magister, sous la direction de Pr C.E.CHITOUR, projet de fin d'études, proposé et dirigé par C.E.CHITOUR, école nationale polytechnique ENP 2006.
- [13] RIAZY, M.R.; AL SAHHAF, T.A., Ind. Eng. Chem. Res., vol.34, n°11, 4145-4148. 1995.
- [14] Léon Personnaz et Isabelle Rivals, Réseaux de neurones formels pour la modélisation, la commande et la classification, CNRS Editions, 2003.
- [15] Richard P. Lippman, *An Introduction to Computing with Neural Nets*, IEEE ASSP Magazine, avril 1987, p. 4-22: Article de présentation (en anglais).

- [16] Yves Cochet, *Réseaux de neurones*, résumé de cours de DESS-ISA option IA n°389, IRISA, Janvier 1988 : Article de synthèse présentant entre autres les implantations des algorithmes des réseaux de neurones.
- [17] Claude Lhermitte, *Intelligence Artificielle et Connexionnisme*, Rapport technique n°10860/..a1991, Supélec, 1991
- [18] Jean-Paul Haton, *Modèles connexionnistes pour l'intelligence artificielle*, 1989 : Article de synthèse.
- [19] Gérard Dreyfus, Jean-Marc Martinez, Mannuel Samuelides, Mirta Gordon, Fouad Badran, Sylvie Thiria, Laurent Hérault, « Réseaux de neurones, méthodologie et applications », Eyrolles, 2e édition [2004].