REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

ECOLE NATIONALE POLYTECHNIQUE

Département de Génie Chimique

Projet de Fin d'Etudes

Pour l'Obtention du Diplôme d'Ingénieur d'Etat en Génie Chimique

Contribution à la détermination des propriétés des hydrocarbures par Réseaux de Neurones Artificiels

Etudié par : M. S. FEKRACHE

Proposé et dirigé par : Dr F. SOUAHI Pr. C. E. CHITOUR

Juin 2002

مدهمي. يتمثل عملنا هذا في محاولة إيجاد الخماعين الفيزجاكية للفعمات الهيدريجينية و هذا بتطبيق شبكة الدميونات الإمطناعية .

و لهذا فقد أنجزنا شبكات للتقرب من الخام الغيزا تية بدلالة درجة مرارة الندايان و الكتابة الحجمية .

المدرسة الوطنية المتعددة التقنيمات BIBLIOTHEQUE - Line Ecole Nationale Pelytechnique

Résumé :

Ce travail consiste en une contribution à la connaissance des propriétés physiques et thermodynamiques des corps purs et de leurs mélanges par une méthode empirique, basée sur les réseaux de neurones.

Nous avons ainsi établis des réseaux pouvant approximer les propriétés étudiées des hydrocarbures en fonction de leurs températures d'ébullition et leurs densité.

Une comparaison avec les corrélations les plus citées dans la littérature a été effectuée pour rendre compte de l'efficacité de cette méthode.

Mots clés :

Hydrocarbures, propriétés, réseaux de neurones.

Abstract :

The aim of this work is to determine the properties of pure hydrocarbons and their mixtures with the use of artificials neurals networks.

For this, we made networks to approximate the pure hydrocarbons properties which are functions of boilling temperature and density of hydrocarbons.

Key words:

Hydrocarbons, properties, neurals networks.

Remerciements

Ce travail a été réalisé au Laboratoire de Valorisation des Energies Fossiles du Département de Génie Chimique de l'Ecole Nationale Polytechnique.

Je ne saurais témoigner toute la reconnaissance que je dois à Madame SOUAHI et Monsieur le Professeur CHITOUR pour les nombreuses discussions et conseils très utiles qu'ils n'ont cessé de me prodiguer tout au long de ce travail. Qu'ils trouve ici mes respectueux remerciements.

Je tiens à témoigner ma profonde gratitude à Madame DERRICHE pour m'avoir fait l'honneur de présider le jury.

Je suis également très reconnaissant à Monsieur le Professeur AIT KACI et à Monsieur ILLOUL d'avoir examiné ce travail et jugé du résultats.

Je remercie également Mademoiselle MEZIOUD pour n'avoir ménagé aucun effort tout au long de la préparation de ce projet.

Enfin, je remercie tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail.

العبرسة الوطنية المتعددة التقنيسات المحكستيسة ---- BIBLIOTHEQUE Ecolo Nationale Polytechnique

Tana	
Terme	Signification
API	densité définie par l'American Petroleum Institut
bi	Biais du neurone i
Cp°	chaleur spécifique standard (i/moloK)
dao	densite à 20 °c
Err	erreur (%)
FP	fraction pétrolière
H _f °	Enthalpie de formation à l'etat standard (Ki/mol)
Hv	Chaleur latente de vaporisation (ki/mole)
Киор	facteur de caractérisation
n ²⁰ d	indice de réfraction à 20°c
Р	pression (atm)
PA	point d'aniline (K)
Pc	pression critique (bar)
Si	Etats du neurone i
SpGr	specific gravity à 60°F/60°F
Т	Température (K)
Тс	température critique (K)
Teb	température d'ébullition (K)
Ts	tension superficielle (dyne/cm)
Vc	volume critique (10^3m ³ /mole)
Vm	volume molaire (10^3 m ³ /Kmole)
W _{ij}	Poids des connexions
Ха	fraction des aromatiques dans la fraction
XN	fraction des naphtenes dans la fraction
Хр	fraction des paraffines dans la fraction pétrolière.
Zc	facteur de compressibilité critique
μ	la viscosité (cP)
ω:	facteur acentrique

SOMMAIRE	المدرة التغنيات المحتبة - DIBLIOTHEQUE Ecole Nationale Polytechnique Page
Introduction générale.	1
Chapitre I : Prédiction des propriétés des hydrocarbure	
I.1. Essais préliminaires sur le pétrole brut	6
 I.1.1. Densité Spécificgravity) I.1.2.Point d'écoulement I.1.3.La viscosité I.1.4.Pointd'éclair I.1.5. Dosage du soufre I.1.6. Teneurs en eau, sels et sédiments 	
I.2. Analyse physico-chimiques des coupes pétrolières	
I.2.1. Le Point d'aniline I.2.2. La tension superficielle I.2.3. L'indice de réfraction	
I.3. Différentes méthodes de caractérisation des hydrocarbures	
I.3.1. Les équations d'étatI.3.2. Loi des états correspondantsI.3.3. Méthodes empiriques	
Conclusion	
Chapitre II : Présentation des réseaux de neurones.	
II.1. Neurone biologique	
II.2. Description d'un neurone formel	15
II.3. Les réseaux de neurones artificiels	
II.4. Classification des réseaux de neurones	
II.4.1. Architecture des réseaux de neurones II.4.2. Les différents types d'apprentissage	
II.5. Le perceptron multicouche (PMC)	
 II.5.1. Architecture d'un PMC. II.5.2. Approximation de fonctions. II.5.3. Apprentissage. II.5.4. Des approximateurs universels. II.5.5. La base d'apprentissage. II.5.6. la base de test. 	20 21 22 24 24 24 24

	Chapitre III : Calcul des propriétés physiques et thermodynamiques	العدرسة الوطنية المتعددة التقنيبات لمحتسبية — BIBLIOTHEQUE Ecolo Nationalo Polytechnicow
	Introduction	
	III.1. Méthodologie	
	III.2. Propriétés thermiques	
A	Chaleur latente de vaporisation	
	III.3. Propriétés de transport	
A. B. C.	Volume molaire. Tension superficielle. Viscosité. III.4. Propriétés critiques.	
A. B. C. D.	Température critique. Pression critique. Volume critique. Facteur de compressibilité critique.	
	III.5. Propriété optique	
Α.	Indice de réfraction.	
	III.6. Propriétés thermodynamiques.	
A. B. C. D.	Chaleur spécifique. Enthalpie standard de formation. Entropie. Facteur acentrique. III.7. Propriétés spécifiques.	
A. B. C.	Facteur de caracterisation K _{UOP} Point d'aniline Température de congélation	68 71
	Conclusion générale.	

×.

المدرسة الوطنية المتعددة التقنيبات المحكستسبسة --- BIBLIOTHEQUE Ecole Nationale Polytechnique

Si, pendant près de 5000 ans, la production et la consommation du pétrole étaient dérisoires, depuis la moitié du siècle dernier et dans la foulée des grandes inventions, l'utilisation du pétrole et de ses dérivés prit dés le départ un essor extraordinaire. Non seulement parce qui 'il représente un potentiel d'énergie, mais de plus, les hydrocarbures qui le composent permettent en outre la fabrication de produits a forte valeur ajoutée, comme les lubrifiants, matières plastiques, détergents caoutchoucs synthétiques....

L'ingénieur en génie des procédés a souvent recours à l'utilisation des propriétés physiques et chimiques du pétrole brut et des fractions pétrolières, pour La mise en œuvre du pétrole dans l'industrie chimique, en particulier le dimensionnement des équipements des unités de fabrication, la simulation de procédés et leur optimisation. L'expérience fournit la majorité de ces propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important.

Dans la présente étude, nous introduisons une nouvelle méthode de prédiction des propriétés physiques et thermodynamiques, d'abord des corps purs ensuite des mélanges de corps purs, basée sur les Réseaux de Neurones Artificielles (RNA).

Dans la première partie, nous présentons les différentes méthodes expérimentales d'évaluation des pétroles bruts et fractions pétrolières. Ensuite nous exposons les différentes méthodes de caractérisation des hydrocarbures. Certaines reposent sur des fondements thermodynamiques, d'autre font appel aux équations d'états, à la loi des états correspondant et des méthodes empiriques notamment les méthodes de contribution de groupes

Notre contribution consiste justement a présenté une méthode de détermination des propriétés physiques basée sur les Réseaux de Neurones Artificiels (RNA). Nous présentons dans la seconde partie les réseaux de neurones, leur fondement ainsi que leurs apport aux sciences de l'ingénieur.

La troisième partie consiste à présenter les résultats de simulation obtenus pour différentes propriétés. Nous appliquons notre méthode à dix-sept (17) propriétés pour chacune des trois familles les plus répandues dans les fractions pétrolières, il s'agit des n-paraffines, n-alkylcyclohexanes et les n-alkylbenzènes.

Une présentation des résultats ainsi qu'une comparaison avec les corrélations les plus citées dans la littérature est effectuée pour rendre compte de la fiabilité de cette nouvelle approche.

I. Généralités sur le pétrole [1]

I.1. présentation:

Le pétrole, liquide brun plus ou moins visqueux d'origine naturelle, est un mélange complexe d'hydrocarbures, principalement utilisé comme source d'énergie. Il contient des hydrocarbures saturés, à chaînes linéaires, ramifiés ou cycliques, ainsi que des traces de soufre, d'azote, d'oxygène, d'eau salée et de métaux (fer, nickel). On le trouve en grandes quantités dans des gisements enfouis sous la surface des continents ou au fond des mers.

I.2. Historique:

Les dépôts de surface de pétrole brut sont connus depuis très longtemps. La Bible mentionne le bitume, employé pour recouvrir l'arche de Noé. Le pétrole, remonté à la surface sous forme de suintement de bitume, était utilisé par les peuples de Mésopotamie, il y a plus de trois mille ans, comme mortier dans la construction des remparts, pour le calfatage des coques des navires et pour assurer l'étanchéité des citernes et conduites d'eau, comme source d'énergie et même comme médicament.

Connues depuis l'Antiquité, les utilisations du pétrole à des fins médicinales se sont développées dès le XV^e siècle. On attribuait alors au pétrole toutes les vertus.

Au Moyen Age, on utilisait des sortes de grenades en terre cuite remplies de pétrole et de salpêtre, appelées «feux grégeois», qui furent la hantise des marins : lancées d'un navire, elles explosaient en laissant échapper le pétrole, qui s'enflammait, se répandait sur l'eau et propageait le feu aux autres navires.

La révolution industrielle entraîna la recherche de nouveaux combustibles; les bouleversements sociaux qu'elle occasionna créèrent le besoin d'un pétrole peu onéreux et de bonne qualité pour les lampes. Toutefois, l'huile de baleine n'était accessible qu'aux riches, les bougies de suif avaient une odeur désagréable et les becs de gaz n'existaient que dans les maisons et appartements modernes des zones urbaines.

La recherche d'un meilleur combustible de lampe entraîna une forte demande d'«huile de roche» - c'est-à-dire de pétrole brut - et, vers le milieu du XIX^e siècle, de nombreux scientifiques mirent au point des procédés permettant d'en faire un usage commercial. C'est ainsi que James Young, en Angleterre, commença à fabriquer différents produits à partir de pétrole brut, mais il s'orienta par la suite vers la distillation du charbon et l'exploitation des schistes bitumeux. Le physicien et géologue canadien Abraham Gessner déposa, en 1852, un brevet pour obtenir, à partir du pétrole brut, un combustible peu onéreux pour lampe, brûlant sans résidu, appelé pétrole lampant; en 1855, le chimiste américain Benjamin Silliman publia un rapport indiquant la gamme de produits utiles pouvant être obtenus par distillation du pétrole.

C'est ainsi que débuta la recherche de plus importantes sources d'approvisionnement en pétrole brut. On savait que les puits creusés pour l'eau et le sel présentent parfois des infiltrations de pétrole. L'idée de forages pétroliers fit donc naturellement son chemin. Les premiers puits furent forés en Allemagne, en 1857. L'initiative qui rencontra le plus grand retentissement fut cependant celle d'Edwin L. Drake, le 27 août 1859, à Titusville, en Pennsylvanie. Drake procéda à des forages pour trouver la «nappe mère», origine des affleurements de pétrole de Pennsylvanie occidentale. Si Drake ne put extraire qu'un pétrole d'écoulement aisé et facile à distiller et si le puits était peu profond — 23 m seulement —, sa réussite n'en marquait pas moins le début de l'industrie pétrolière moderne. Cette découverte déclencha une véritable ruée vers l'«or noir».

Depuis, on a découvert du pétrole sur tous les continents, sauf en Antarctique. Le pétrole fit rapidement l'objet de toute l'attention de la communauté scientifique, et des hypothèses cohérentes furent émises quant à sa formation, sa remontée à travers les couches terrestres et son emprisonnement. Avec l'invention de l'automobile, en 1880, et les besoins en énergie issus de la Première Guerre mondiale, l'industrie du pétrole devint l'un des fondements de la société industrielle.

I.3.Raffinage

L'objectif du raffinage est de transformer par des opérations physico-chimiques des pétroles bruts d'origines diverses en carburants, combustibles, lubrifiants, bitumes et de plus en plus en produits de base pour la pétrochimie. Le commerce international porte sur plus de 100 qualités de pétrole brut différentes.

I.3.1. Distillation

Le procédé de base du raffinage est la distillation atmosphérique. Le pétrole brut est tout d'abord chauffé dans un four à 370°C, où il se vaporise partiellement, et est amené dans la tour de distillation, appelée aussi colonne de fractionnement.

Les fractions les plus légères sont en haut de colonne. Il s'agit du gaz de raffinerie, qui sera utilisé sur place comme combustible. Parmi les autres fractions légères, on trouve le butane et le propane, les essences et le naphta, qui est la matière première de la pétrochimie. Ensuite vient le kérosène utilisé dans les moteurs à réaction, le gazole et le fioul domestique. Les produits lourds — les résidus — sont soutirés en bas de la colonne, puis redistillés sous vide pour permettre l'obtention des fiouls lourds, des lubrifiants et des bitumes.

Pour satisfaire aux besoins du marché actuel, il faut obtenir de plus grandes quantités d'essences avec des indices d'octanes élevés. D'autre part, on doit diminuer la teneur en soufre des gazoles. Il est alors nécessaire de procéder à des traitements de conversion des produits issus de la distillation.

I.3.2. Craquage et reformage

Le craquage consiste à fractionner les grosses molécules des fractions lourdes en molécules plus petites. Dans le craquage thermique, la transformation des molécules est effectuée par l'action de la chaleur. Le craquage catalytique permet de décomposer les fractions lourdes en présence d'un catalyseur, qui active la rupture des liaisons entre les atomes de carbone. L'hydrocraquage consiste à faire agir de l'hydrogène à forte pression (de 50 à 150 bars) et à des températures allant de 250 à 400°C. Enfin, au cours du vapocraquage, les réactions ont lieu en présence d'eau à très haute température (de l'ordre de 900°C).

Le reformage permet de convertir le naphta ou les essences provenant de la distillation en des essences de qualité supérieure, à haut indice d'octane. Ce procédé permet aussi d'obtenir des bases pour la pétrochimie.

I.3.3 Autres procédés :

Il existe d'autres procédés de raffinage, comme l'isomérisation et l'alkylation, qui permettent d'obtenir des essences à indice d'octane élevé, indispensable pour les essences sans plomb. Les produits subissent d'autres traitements permettant d'agir sur leur couleur, leur stabilité, leur odeur (élimination des mercaptans) et leur teneur en hétéroatomes, comme le soufre et l'azote.

I.4. Utilisation et importance du pétrole :

On emploie le pétrole comme matière première dans l'industrie chimique et dans la production de carburants. Le pétrole et ses dérivés sont utilisés dans la production de médicaments, de produits agrochimiques et alimentaires, de matières plastiques, de matériaux de construction, de peintures et de fibres synthétiques, de détergents et de caoutchouc, ainsi que dans la production électrique.

En fait, notre civilisation industrielle moderne dépend du pétrole et de ses dérivés; la structure physique et le mode de vie des communautés urbaines entourant les grandes villes sont le résultat d'un approvisionnement en pétrole à grande échelle et peu coûteux. C'est la première source d'énergie mondiale; il fournit près de la moitié de la demande totale d'énergie primaire.

Le pétrole est devenu une arme politique, comme l'ont démontré les deux chocs pétroliers des années 1970. L'offre et la demande de pétrole, son prix, les solutions de remplacement et les économies d'énergie sont des questions constamment débattues. Les taxes qui frappent la production du brut et la vente des produits pétroliers participent de façon importante au budget des Etats. À titre d'exemple, la taxe intérieure sur les produits pétroliers est la troisième ressource fiscale de la France.

La mise en œuvre des fluides rencontrés dans l'industrie chimique, en particulier celle du pétrole, le dimensionnement des équipements des unités de fabrication, la simulation des procédés et leur optimisation reposent essentiellement sur la connaissance des caractéristiques physiques et thermodynamiques des corps purs et de leurs mélanges. L'expérience fournit la majorité de ces caractéristiques, mais dans la plupart des cas, la manipulation présente un certain nombre de limitations (complexité, coût élevé et temps de manipulation important) faisant que des démarches visant à utiliser des méthodes, numériques ou graphiques, pour estimer, rapidement et avec des précisions plus ou moins acceptables, ces paramètres sont souvent effectuées.

De nos jours, l'ingénieur en Génie des procédés a souvent recours à ces méthodes pour accéder aux propriétés physiques et thermodynamiques des mélanges complexes faisant l'objet d'une opération unitaire, en particulier dans le domaine pétrolier où ces méthodes prédictives gardent tout leur intérêt, lorsque l'on désire obtenir une valeur approximative ou se rendre compte de la sensibilité d'une propriété sous certaines conditions opératoires bien définies.

Depuis le milieu des années cinquante, de nombreuses études ont été menées dans le but de proposer des méthodes pour la prédiction des paramètres physiques et thermodynamiques des hydrocarbures et de leurs mélanges. Parmi les méthodes existantes, celles qui ont connu le plus grand essor sont les méthodes basées sur le principe des états correspondants et celles utilisant la relation propriété - structure dites de contributions de groupes.

La connaissance des propriétés physico-chimiques du pétrole et des fractions pétrolières a toujours été un soucis majeur pour l'ingénieur en génie chimique, raffinage et pétrochimie. La maîtrise de toutes les étapes de fabrication et de transformation des produits pétroliers, depuis l'acheminement du pétrole des puits jusqu'au stockage des produits finis passe par une parfaite connaissance des caractéristiques du pétrole et ses dérivés.

L'extraction de ces caractéristiques commence par des essais préliminaires sur le pétrole brut et ses différents produits. Des méthodes d'analyse ont été développées et normalisées pour déterminer les principales caractéristiques physico-chimiques qui vont conditionner leurs traitements ultérieurs et pour que les contrôles effectuer par les différentes parties soient comparables. Ces spécifications correspondent à des normes (ASTM, AFNOR, DIN, ...).

L'expérience fournit la majorité des propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important.

Dans le but de contourner ces contraintes, des corrélations ont été proposées par différents auteurs depuis plus d'un demi-siècle. Elle se basent essentiellement sur la loi des états correspondants, les équations d'état et les méthodes empiriques.

Dans ce chapitre, nous exposons les différents essais préliminaires sur le pétrole brut ainsi que le fondement des différentes lois sur lesquelles se basent la majorité des corrélations établies à nos jours.

I.1. Essais préliminaires sur le pétrole brut :[2]

Les principales propriétés des pétroles bruts obtenues par différentes méthodes analytiques sont la densité, le point d'écoulement, la viscosité, la tension de vapeur, la teneur en soufre et la teneur en eau, sédiment et seis. Ces grandeurs, pour lesquelles il existe des méthodes d'essais normalisées, sont nécessaires pour interpréter les processus chimiques et pour apprécier l'efficacité des traitements lors du raffinage. Elles sont aussi déterminantes pour éviter, en amont, les incidents qui pourrait parfois se révéler très sérieux.

I.1.1. Densité (spécific gravity) :

La première caractérisation est la classification des pétroles en fonction de leurs densité (pétroles lourds, moyens et légers). Cette dernière varie de 0.7 à 1 suivant les proportions en hydrogène et carbone contenus dans les pétroles. Elle est souvent exprimée en degrés API (Américan petroleum Institute) qui varie alors de 70 à 5 :

$$API = \frac{141.5}{SpGr} - 131.5$$

La densité standard ou specific gravity SpGr est le rapport entre la masse volumique de l'hydrocarbure à 15.55°C (60°F) et celle de l'eau à la même température. Elle diffère légèrement de la grandeur d^{15}_4 qui est le rapport entre la masse volumique de l'hydrocarbure à 15°C et celle de l'eau à 4°C

$$SpGr = 1.002 d_{4}^{15}$$

La connaissance de cette propriété est d'une grande importance dans la cotation commerciale des pétroles bruts. Elle est obtenue par mesure au laboratoire à l'aide de pycnomètres et grâce aussi à l'utilisation de méthodes d'essais normalisées.

I.1.2. Point d'écoulement

Les pétroles bruts sont des mélanges complexes, leur passage à l'état solide se fait dans un intervalle de température contrairement aux corps purs. Au fur et à mesure que la température diminue, ils cessent d'être des fluides et se rapprochent de l'état solide en s'épaississant. La détermination de cette caractéristique permet d'apprécier les conditions de pompage en hiver. Les normes NFT 60-105 et ASTM D97 sont utilisées pour mesurer cette température.

I.1.3. La viscosité :

La viscosité traduit l'état d'un fluide qui, par suite d'un frottement interne de ses différentes couches entre elles, éprouve une difficulté plus ou moins grande à l'écoulement. La valeur de cette grandeur à différentes températures intervient dans la mise en place du mode de transport massif des pétroles bruts depuis les champs de production jusqu'aux centres de raffinage (pipelines, navires...) faisant appel à des stations de pompage ou de compression dépendant de la viscosité des produits à acheminer. Elle est définie par des normes NFT60-100 ou ASTM D445 et 446. Des tables de conversion entre les différentes unités sont utilisées et normalisées (ASTM D2161).

I.1.4. Point d'éclair :

Le point d'éclair des pétroles bruts permet d'estimer la teneur en hydrocarbures légers, c'est à dire, la pression de vapeur qui règne au-dessus du liquide saturé, en équilibre avec la phase vapeur qui le surmonte.

Les diverses manipulations du pétrole brut, telles que le remplissage et la vidange des citernes et des bacs, sont fonction de son point d'éclair qui est directement lié à la tension e vapeur définie par les normes NF M07-007 et ASTM D323. Les normes NF M07-011 et ASTM D56 sont utilisées pour mesurer le point d'éclair.

I.1.5. Dosage du soufre :

Le soufre contenu dans les pétroles bruts est l'un des éléments dont la connaissance est particulièrement importante. Il est présent sous forme inorganique (en particulier hydrogène sulfuré H_2S) ou encore se trouve dans les molécules organiques. Les problèmes posés par ces produits, d'odeur désagréable, sont la production de SO_2 par combustion, qui peut générer une corrosion acide et l'empoisonnement des catalyseurs par le soufre.

La mesure de la teneur totale en soufre d'un brut se fait par diverses méthodes d'essais normalisés chimiques et physiques ou par l'intermédiaire d'analyseurs automatiques utilisant un principe et des méthodes de dosage différentes. Elle est comprise entre 0.05 et 0.5% en poids. IL existe des cas particuliers comme le brut de Rozel Point (Utah, Etats Unis) avec 13.95% et le brut d'Etzel (Allemagne) avec 9.6%.

I.1.6. Teneurs en eau, sédiments et sels :

Les pétroles bruts contiennent, en très faible quantité, de l'eau, des sédiments et des sels minéraux dont la majeure partie est dissoute dans l'eau, le reste se trouvant sous forme de cristaux très fins. La présence de tels produits dans le pétrole peut détériorer les équipements (corrosion, érosion, dépôt, bouchage et empoisonnement de catalyseurs).

La teneur en eau, sels et sédiments est mesurée selon des méthodes normalisées telles que NF M07-200 et ASTM D96 et D1796. La mesure de la teneur en chlorure est aussi normalisée NF M07-020 et ASTM D3230.

I.2. Analyses physico-chimiques des coupes pétrolières :

Les différentes techniques de fractionnement mises en jeu dans la caractérisation des pétroles sont généralement suivies par des analyses pour définir la qualité de chaque fraction issue de la distillation. Cette caractérisation (distillation et analyse élémentaire sur coupes) donne une bonne évaluation du pétrole brut. Ces analyses s'imposent en vue d'une valorisation complète des pétroles bruts.

En effet, les produits du pétrole brut sont séparés à partir d'un intervalle de distillation et doivent satisfaire à des critères imposées par les différentes utilisations (combustion, mise en œuvre et protection de l'environnement). Ces exigences sont définies par le biais de mesures conventionnelles et normalisées.

En plus des méthodes normalisées citées plus haut qui sont applicables à toutes les coupes obtenues, on fait appel à d'autre essais standards pour définir les qualités :

I.2.1. Le point d'aniline :

Le point d'aniline permet de caractériser la teneur en aromatique. C'est la température la plus basse à laquelle la fraction pétrolière ou l'hydrocarbure purs et l'aniline pure, mélangées en volume égaux, sont parfaitement miscibles.

I.2.2. La tension superficielle :

La tension superficielle exprime la tendance que possède un liquide à former une interface (assimilée à une membrane élastique tendue) dont la surface est minimale. Elle diminue lorsque la température augmente et s'exprime en dyne/cm. Cette grandeur intervient entre autre dans les phénomènes de transfert et les phénomènes de « surface » lors de la récupération tertiaire du pétrole.

I.2.3. L'indice de réfraction :

C'est le changement de direction que fait la lumière en traversant d'un milieu transparent à un autre milieu. L'indice de réfraction des hydrocarbures varie à la fois avec la structure chimique (n paraffines < n anomatique) et avec la masse moléculaire avec laquelle il croit.

I.3. Différentes méthodes de caractérisation des hydrocarbures [3]

I.3.1. Les équations d'état :

L'intérêt d'une équation d'état est de permettre de prévoir avec une assez bonne précision le comportement volumétrique des fluides, l'évolution des fonctions thermodynamiques avec la température et la pression ainsi que les équilibres de phases.

Une équation d'état est une relation entre les variables de pression, volume, température et composition, de forme générale :

f(P, V, T, Xi,....)=0

La plus simple des équations d'état est représentée par l'équation des gaz parfaits P V = n R T, cette équation représente une approximation d'autant meilleure que la pression est faible. Dans le cas des fluides réels, de nombreuses équations d'état ont été proposées visant à améliorer la représentation de ces fluides pour lesquels les forces d'interaction entre molécules ne sont plus négligeables. Parmi les équations d'état qui existent, les équations d'état cubiques sont très largement utilisées dans les modèles de simulation, en production et dans le traitement des hydrocarbures de gisements.

Les équations d'état cubiques se présentent sous la forme d'une série en volume de puissance un, deux et trois. Parmi ce type d'équations, les plus connues sont celles de Van Der Waals V.D.W (1873), Redlich-Kwong R.K (1949), Soave-Redlich-Kwong S.R.K (1972) et Peng-Robinson P.R (1976). Les deux dernières équations ont connu cependant le plus grand succès. Ce type d'équations a pour forme générale l'expression suivante:

$$P = \frac{RT}{V-b} - \frac{a}{V^2 + ubV + wb^2}$$

u et w sont des constantes qui dépendent de l'équation d'état. Les paramètres a et b s'expriment en fonction des coordonnées critiques.

$$a = a_c . a \qquad a_c = \Omega_a . \frac{(RT_c)^2}{P_c}$$
$$\alpha = \left[1 + m(1 - T_r)^{0.5}\right]^2 \qquad \text{et} \qquad b = \Omega_b \frac{RT_c}{P_c}$$

 Ω a et Ω b dépendent de l'équation d'état et m est une fonction du facteur acentrique. Dans le tableau I.1, nous donnons les valeurs de constantes u, w, Ω a et Ω b ainsi que les expressions de m pour les quatre équations d'état cubiques précédentes.

Equations d'état	, u	w	Ωa	M
Van Der Waals (1873)	0	0	27/64	0
Redlich-Kwong (1949)	1	0	0.42748	0
Soave-Redlich-	1	0	0.42748	0.48+1.574ω-0.76 ω²
Peng-Robinson (1976)	2	-1	0.45724	0.37464+1.5422ω-0.2699 ω²

Tableau I.1: Paramètres des équations d'état cubiques.

Des équations plus complexes que les équations précédentes, faisant intervenir un nombre plus important de paramètres, ont été proposées pour des situations particulières. Ces équations dites équations d'état non cubiques présentent l'inconvénient d'être en général d'ordre supérieur à trois et de conduire, de ce fait, à des calculs plus fastidieux. Parmi elles, nous pouvons citer les équations d'état du Viriel, Benedict, Webb et Rubin BWR (1951) ou encore de Beattie-Bridgeman (1928) etc...

Les équations d'état présentées précédemment peuvent être étendues aux mélanges en utilisant des règles de mélanges permettant de relier les paramètres des équations d'état appliquées aux mélanges à ceux des corps purs. Dans le cas des équations d'état cubiques, les règles de mélanges usuelles sont les suivantes lorsque la composition est définie en fractions molaires xi :

$$b = \sum b_{i} \cdot x_{i}$$
 $a = \sum \sum x_{i} x_{j} \cdot \sqrt{a_{i} \cdot a_{j}} \cdot (1 - k_{ij})$

Les termes k_{ij} sont des termes correctifs appelés coefficients d'interaction, caractéristiques du binaire ij considéré. L'introduction de ce terme est nécessaire lorsque les constituants i et j sont formés par des molécules très dissemblables, soit par leur volume molaire, soit par leur nature chimique.

Une autre façon d'étendre les équations d'état aux mélanges, consiste à considérer les paramètres pseudo-critiques. Cette procédure est généralement appliquée dans le cas des mélanges complexes dont la composition n'est pas connue, tels que les fractions pétrolières.

A partir des équations d'état, il est possible de calculer les fonctions thermodynamiques telles que l'enthalpie, l'entropie ou l'énergie libre pour des conditions de température et de pression fixées, en se référant aux conditions du gaz parfait. En effet, connaissant l'équation d'état, il est possible d'intégrer les expressions donnant l'enthalpie et l'entropie molaires, soient:

$$H = H^{\circ} + \int_{0}^{P} \left[V - T \left(\frac{\partial V}{\partial T} \right) \right] dP$$

$$S = S^{\circ} + \int_{0}^{P} \left[\frac{R}{P} - \left(\frac{\partial V}{\partial T} \right) \right] dP - R \ln \frac{P}{P^{\circ}}$$

H° représente l'enthalpie d'une mole de gaz parfait qui n'est fonction que de la température et S° l'entropie d'une mole de gaz parfait à la température T et à la pression de référence P° (habituellement P°=10 Pa).

L'application des équations d'état aux hydrocarbures lourds est une opération délicate, due principalement aux propriétés critiques et au facteur acentrique de ces hydrocarbures qui sont difficilement accessibles expérimentalement. Pour résoudre ce problème, certains auteurs se sont proposés de modifier les équations d'état en appliquant les méthodes de contributions de groupes pour la détermination de leurs paramètres et éviter ainsi l'utilisation des paramètres critiques.

Parmi œs auteurs, nous citons Bondi (1964) qui a proposé une méthode de contributions de groupes pour la détermination du paramètre b de l'équation d'état de Van Der Waals. Carrier et coll. (1988) ont proposé quant à eux une modification de l'équation de Peng-Robinson dans laquelle le paramètre b et le facteur acentrique sont exprimés en terme de contributions. Coniglio et coll.(1993) ont amélioré la méthode de Carrier en appliquant des contributions de type Boundi aux deux paramètres a et b. Enfin, plus récemment, Soave et coll.(1995) ont proposé une méthode de contributions de groupes pour la détermination du covolume de l'équation d'état de Redlich-Kwong.

I.3.2. Loi des états correspondants :

La loi des états correspondants constitue un élément de simplification dans la prévision des propriétés thermodynamiques des fluides réels. Cette loi affirme que les propriétés dépendantes des forces intermoléculaires sont reliées aux paramètres critiques de la même manière pour tous les composés; autrement dit, la fonction reliant les propriétés réduites est indépendante de la nature de la substance, soit:

f(Tr, Pr Vr)=0

Les termes Tr, Pr et Vr représentent respectivement les température, pression et volume réduits.

Sur la base de cette loi, de nombreuses corrélations ont été développées pour l'estimation des propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs.

La première application de la loi des états correspondants consiste dans la corrélation des données P-V-T, en exprimant le facteur de compressibilité Z comme fonction des paramètres réduits Pr et Tr. Cette corrélation a été traduite sous forme de diagrammes généralisés.

Cependant, il a été démontré que cette loi à deux paramètres ne s'applique que pour les molécules non polaires; c'est le cas par exemple des molécules sphériques telles que le méthane, l'azote, l'argon, etc.

C'est ainsi, qu'il a été proposé d'introduire un troisième paramètre pour représenter l'ensemble des fluides, en plus de la pression et de la température réduites.

Parmi les corrélations à 3 paramètres, les plus connues sont celles utilisant, soit le facteur de compressibilité critique, soit le facteur acentrique comme troisième paramètre.

I.3.2.1 Corrélations fondées sur le facteur de compressibilité critique :

Le facteur de compressibilité critique est défini par :

$$Zc = Pc Vc/(R Tc)$$

Le choix de ce facteur comme troisième paramètre pour développer des corrélations des états correspondants, repose sur l'examen des divergences entre le comportement des fluides réels et la loi des états correspondants à deux paramètres. En effet, cette dernière prévoit qu'au point critique, le facteur de compressibilité critique a la même valeur pour tous les corps, soit Zc= Z(1,1) = 0.27. Or, il n'en est rien, puisque celui-ci varie de 0.232 pour l'eau à 0.3 pour l'hydrogène, tout en restant néanmoins voisin de 0.27. L'application de cette loi à 3 paramètres aux données P-V-T des fluides réels implique l'existence d'une fonction unique Z = f(Tr, Pr, Zc) pour représenter chaque classe de composés ayant même facteur de compressibilité critique. Lydersen Greenkom et Hougen (1955) ont développé des tables donnant les valeurs de Z en fonction de Pr et Tr pour différentes valeurs de Zc.

I.3.2.2. Corrélations fondées sur le facteur acentrique

Le second paramètre utilisé dans la nouvelle formulation de la loi des états correspondants est le facteur acentrique ω , défini par Pitzer (1955) pour exprimer la non sphéricité des molécules:

 $\omega = -\log Pr^{s} - 1$ à Tr=0.7

Pr^s est la pression de saturation réduite et Tr la température réduite.

Appliquée au facteur de compressibilité Z, la loi des états correspondants exprime Z comme une fonction linéaire du facteur acentrique:

$$Z = Z^{(o)} + \omega Z^{(1)}$$

 $Z^{(0)}$ est un terme relatif au fluide simple obéissant à la loi des états correspondants à deux paramètres et $Z^{(1)}$ un terme correctif tenant compte des déviations par rapport à cette dernière loi, dues à la forme et à la dimension des molécules.

Les applications fructueuses de cette loi aux propriétés P-V-T des fluides réels a encouragé le développement de corrélations similaires pour d'autres propriétés qui dépendent des forces intermoléculaires. Ainsi, Curl et Pitzer (1958) ont développé des corrélations sous la forme :

$$L = L^{(0)} + \omega L^{(1)}$$

L est une propriété thermodynamique donnée, tels que l'enthalpie résiduelle et l'entropie résiduelle ou encore le coefficient de fugacité.

Sur la base de cette corrélation, Lee et Kesler (1975) ont traduit les valeurs des termes $L^{(0)}$ et $L^{(1)}$ sous forme tabulée et sous forme graphique pour différentes valeurs de la température et pression réduites. Ces tables et diagrammes de maniement aisé, concernent différentes propriétés.

Ces auteurs ont proposé une nouvelle formulation de l'équation de Pitzer qui consiste à calculer la valeur L d'une propriété thermodynamique exprimée en fonction des coordonnées réduites, pour un fluide dont le facteur acentrique est ω , à partir des valeurs respectives L⁽⁰⁾ et L⁽¹⁾ de cette propriété pour un fluide simple tel que $\omega = 0$ et pour un fluide de référence (n-octane) tel que $\omega = \omega$

$$L = L^{(0)} + \frac{\omega}{\omega^{(r)}} (L^{(r)} - L^{(0)})$$

Dans le cas du facteur de compressibilité Z, l'équation précédente prend la forme suivante:

$$Z = Z^{(0)} + \frac{\omega}{\omega^{(r)}} (Z^{(r)} - Z^{(0)})$$

Les termes Z⁽⁰⁾ et Z⁽¹⁾ s'expriment en fonction des coordonnées réduites en choisissant une équation d'état.

En appliquant cette méthode à l'équation de Benedict-Webb-Rubin (BWR), Lee et Kesler (1975) ont développé une équation d'état modifiée dans laquelle les paramètres numériques qui interviennent dans l'équation d'état sont exprimés en fonction des coordonnées réduites.

I.3.3. Méthodes empiriques :

Ce sont des méthodes basées essentiellement sur l'expérience où l'on essaie de caractériser les hydrocarbures à partir de propriétés facilement accessibles par expériences. Parmi elles, il y a la méthode de contribution de groupes.

I.3.3.1. Principe de la méthode de contribution de groupes

A côté de la loi des états correspondants qui a contribué à l'établissement de corrélations pour l'estimation des propriétés physiques et thermodynamiques des corps purs et de leurs mélanges, un second concept dit de contributions de groupes est lui aussi à la base de plusieurs méthodes prédictives. Ce principe postule que chaque liaison ou atome ou groupement d'atomes constitutif d'une molécule apporte sa contribution aux propriétés macroscopiques de la substance étudiée. Les méthodes qui en découlent portent le nom de méthodes de contributions de groupes.

Par leur principe même, ces méthodes ont pour objectif de rapporter les propriétés des corps à leur structure moléculaire. Leurs formes sont assez variées, et dépendent des types de groupements et d'environnements choisis pour évaluer les contributions qui sont généralement additives.

La précision de ces méthodes dépend fortement des données expérimentales des propriétés des corps purs utilisées pour déterminer les valeurs des contributions de groupes.

Conclusion :

Dans ce chapitre, nous avons montré les différentes méthodes de caractérisation des hydrocarbures et des fractions pétrolières ainsi que les différents essais pour l'évaluation des pétroles bruts, en passant de l'expérience jusqu'à l'utilisation de corrélations. L'ingénieur en génie chimique dispose d'un arsenal important en matière de caractérisation des hydrocarbures et coupes pétrolières et de ce fait il peut aisément dimensionner les différentes installations dans l'industrie pétrochimique.

L'inconvénient majeur de l'expérience est que cette dernière est coûteuse en temps et en argent, les méthodes conventionnelles sont généralement lourdes à manipuler. Dans le but de facilité la tache à l'ingénieur, nous proposons une nouvelle méthode de prédiction des caractéristiques des hydrocarbures basée sur les Réseaux de Neurones Artificiels.

Après avoir présenter les différentes méthodes de prédiction des propriétés des hydrocarbures, nous allons, dans ce chapitre, exposé les fondements théoriques de notre méthode basée sur les Réseaux de Neurones Artificiels (RNA).

Les réseaux de neurones formels (artificiels) sont des structures qui prennent leur inspiration dans le fonctionnement élémentaire des systèmes nerveux. Ils sont utilisés essentiellement à résoudre des problèmes de classification, de reconnaissance de formes, d'association, d'extraction de caractéristiques et d'identification. Ils deviennent des compléments aux méthodes classiques, et sont même susceptibles de se substituer à celles-ci avec un taux de succès supérieur.

Préambule:[4]

C'est en 1943 que W.S McCulloch et W. Pitts donne naissance au concept de réseaux de neurones formels. 'Comprendre les mécanismes à l'origine des fonctions supérieures du cerveau est l'objet de recherches au carrefour de la neurobiologie, de la psychologie, de l'informatique et de la physique. Dans ce vaste champ d'étude, le domaine particulier des réseaux de neurones s'est tout particulièrement développé durant les années 1980 '.

Néanmoins, le terme de « neurones » ne doit pas faire illusion ; les succès récents des réseaux de neurones formels ne doivent rien à la biologie, mais sont dus exclusivement à une meilleure compréhension des propriétés mathématiques fondamentales de ces réseaux. Nous sommes encore extrêmement éloignés de la réalisation de machines susceptibles de reproduire une partie, même infime, des capacités de calcul des systèmes nerveux les plus simple.

II.1. Neurone biologique:[4]

Le neurone est l'unité fonctionnelle de base du système nerveux. D'une espèce à une autre, il peut présenter des différences d'ordre fonctionnel ou anatomique, cependant divers points communs subsistent, et sont à la base de la cellule nerveuse.

Le neurone est une cellule constituée principalement de trois parties, qui ont un rôle bien défini, ce sont : les dendrites, le soma et l'axone (fig. II.1).

Fig II. 1 neurone biologique

a) Les dendrites

Cette partie qui présente une sorte de ramification appelée arbre dendritique, collecte les signaux venant d'autres cellules ou de l'extérieur. La réception des signaux en provenance des autres neurones, se fait par des points de contacts appelés synapses (certaines cellules peuvent compter jusqu'à 100 000 synapses). Ces signaux, qui ne sont que des impulsions électriques, sont par la suite acheminés vers le corps cellulaire (le soma).

a) Le soma

L'arbre dendritique fait converger vers le soma des influx nerveux venus d'une très large étendue autour du neurone. Le soma, outre son rôle concernant le métabolisme de la cellule, recueille et concentre les informations reçues et en fait une sommation dite «spatio-temporelle». Si le potentiel somatique dépasse un certain seuil, il y a émission d'un potentiel d'action appelé « spike », qui correspond à une oscillation électrique très brève (1ms)

c) L'axone

Le signal traité est transmis vers l'extérieur, le long de l'axone et repartit sur les synapses des neurones cibles grâce à l'arborisation terminale que possède l'axone.

II.2. Description d'un neurone formel :[5]

Un neurone formel ou artificiel est un opérateur mathématique très simple. Un neurone possède des entrées qui peuvent être les sorties d'autres neurones, ou des entrées de signaux extérieures, et une sortie. La valeur de la sortie résulte du calcul de la somme des entrées, pondérées par des coefficients (dits poids de connexions ou poids synaptiques) et du calcul d'une fonction non linéaire (dite fonction d'activation) de cette somme pondérée.

L'état du neurone, appelé aussi activité, est défini comme la somme pondérée de ses entrées. Son schéma de fonctionnement est donné en Figure II-2. L'information est ainsi transmise de manière unidirectionnelle. Un neurone se caractérise par trois concepts : son état, ses connexions avec d'autres neurones et sa fonction d'activation.

Nous utiliserons par la suite les notations suivantes.

- # S_i :l'état du neurone *i*.
- # fi : la fonction d'activation associée au neurone i.
- # W_{ij} : le poids de la connexion entre les neurones j et i.
- # W_{i0} : le poids de la connexion entre le neurone biais (+1) et les neurones i.

Ainsi, le neurone i recevant les informations de p neurones effectue l'opération suivante:

$$S_i = f_i \left(\sum_{j=1}^{P} W_{ij} \cdot S_j - W_{i0} \right)$$

Figure II.2. Schéma de fonctionnement d'un neurone formel.

Pour le PMC (Perceptron multicouche), on utilise le plus souvent les fonctions d'activations suivantes

la fonction identité : f(x) = x

:

Les neurones dont la fonction d'activation est linéaire sont appelés neurones linéaires.

la fonction sigmoïde :

$$f(x) = A. \frac{\exp(K.x) - 1}{\exp(K.x) + 1} = A. \tanh(\frac{K}{2}.x)$$

C'est la plus utilisée car elle introduit de la non linéarité, mais c'est aussi une fonction continue, différentiable et bornée. La fonction sigmoïde a des asymptotes horizontales en $-\infty$ et en $+\infty$. Elles permettent d'éviter que ne se propagent des valeurs trop grandes dans le réseau (Fig II.3). La fonction d'activation peut également être une gaussienne, un échelon, etc...

Le paramètre A régule la valeur de saturation, le paramètre K sert à réguler la valeur de la pente en tous points hors saturation.

L'utilisation des fonctions d'activation non linéaires permet l'obtention de modèles statistiques non linéaires. Les réseaux multicouches qui utilisent comme fonction d'activation les sigmoïdes, sont appelés réseaux multicouches quasi linéaires.

II.3. Les réseaux de neurones artificiels : [6]

Le neurone tout seul, en tant qu'unité autonome élémentaire, n'a aucun pouvoir. La force et l'efficacité d'un cerveau résident dans le regroupement de ces neurones et le partage des tâches entre eux. De même pour les neurones artificiels (formels), tous seuls ne peuvent rien faire, il faut les disposer sous forme de réseau.

Un réseau de neurone est un graphe orienté et pondéré. Les nœuds de ce graphe sont les neurones formels dotés d'un état interne, l'activation, par laquelle ils influencent les autres neurones du réseau. Cette activité se propage dans le graphe le long d'arcs pondérés appelés liens synaptiques.

Fig.II.3 : Réseau de neurones comme étant un graphe orienté

L'état du réseau entier est composé de l'activation de ses neurones constitutifs. Admettons que les N neurones du réseau sont indexés, on peut donc exprimer cet état global sous la forme d'un vecteur d'activation dont les composantes sont les valeurs d'activation des neurones individuels :

$$S=[S_1, S_2, S_3, ..., S_N]^T$$

ľ

De même, on définit la matrice des poids synaptiques :

Différents modèles de réseaux de neurones ont été établis, dont les plus importants sont résumés dans le tableau II.1

Année	Modèle	Résumé
1958	Le perceptron de Rosenblatt	Premier modèle des réseaux neuronaux, utilisé pour la reconnaissance des formes. Il comprenait: une rétine (couche d'entrée), une couche de cellules d'association (couche cachée), et une couche de cellules de décision (couche de sortie).
1960	Le Madaline de Widrow	Assemblage de plusieurs éléments adaptatifs sous forme de couches. Addition d'un terme biais à la somme pondérée et d'une fonction binaire à la sortie du neurone.
1982	Le réseau de Hopfield	Modélisation d'une mémoire associative. Le réseau est entièrement connecté, les neurones n'étant pas reliés à eux-mêmes.
1983	La machine de Bolzmann	Amélioration de l'algorithme d'apprentissage d'un réseau de Hopfield.
1984	Le modèle de Kohonen	Le réseau se distingue par une auto-adaptation, une projection lui permettant de compresser les données et une bonne résistance aux bruits.

Tab. II.1 principaux modèles des réseaux de neurones.

.

II.4. Classification des réseaux de neurones:[7]

La classification des réseaux de neurones se fait suivant trois critères : architecture, apprentissage et la fonction pour laquelle le réseau a été conçu.

Fig.II.4 Classification des réseaux de neurones artificiels

II.4.1 Architecture des réseaux de neurones :

On trouve trois types de réseaux de neurones à architectures différentes ;

a-Réseaux statiques ;

Ce type de réseaux peut être utilisé pour la classification ou l'approximation des fonctions complexes non linéaires. Il est généralement organisé en couches, chaque neurone d'une couche reçoit de l'information des neurones de la couche précédante ou simplement de l'extérieur pour les neurones de la couche d'entrée et il n'y a pas de feed-back d'information.

b-Réseaux dynamiques ;

Ce genre de réseaux a été utilisé au début pour les problèmes de classification ou de mémorisation mais actuellement il est utilisé pour l'identification des systèmes dynamiques il est caractérisé par un feed-back entre les neurones qui rend le système dynamique.

Fig II.5 :RNA dynamique

Page 18

c-Réseaux à architecture évolutive et réseaux auto organisés :

Les réseaux auto organisés sont des réseaux de neurones qui changent leur structure pendant l'utilisation. Ainsi les neurones se regroupent topologiquement suivant la représentation des exemples issus de l'espace de l'entrée. Ces réseaux sont généralement des dérivées des modèles de Kohonen.

Les réseaux sont dits évolutifs au vu de leur méthode d'apprentissage, c'est la dimension du réseau qui change pendant l'entraînement, ainsi le nombre de neurones augmente ou diminue. La structure n'est cependant pas bouleversée par ce changement.

II.4.2. Les différents types d'apprentissage

Les techniques d'apprentissage des réseaux de neurones se répartissent en trois grandes familles :

II.4.2.1 Apprentissage non supervisé

La règle d'apprentissage n'est pas fonction du comportement de sortie du réseau, mais plutôt du comportement local des neurones. Ceci simplifie considérablement le problème du choix des poids synaptiques mais rend plus ténu l'association entre l'apprentissage et un quelconque comportement globale.

II.4.2.2. Apprentissage supervisé

Le but de l'apprentissage supervisé est d'inculquer un comportement de référence au réseau. On suppose alors qu'à chaque patron d'entrée I_{i}^{T} , est associée une sortie désirée D_{i}^{T} . Un patron est présenté au neurone d'entrée, la réponse des neurones de sortie est alors comparée aux valeurs désirées, ceci détermine l'erreur du réseau E^T pour le patron donné.

Il s'agit alors de repartir cette erreur à chaque poids du réseau en fonction de la part qu'il a joué dans la production de l'erreur. On procède alors à une modification des poids qui vise à réduire l'erreur ainsi calculée.

En pratique, on procède par une série d'approximations successives, où l'ensemble des patrons est présenté plusieurs fois au réseau et ou les poids synaptiques sont modifiés de façon à améliorer graduellement le comportement global du réseau.

En général, pour cet apprentissage, on utilise la méthode du gradient (descente de gradient). Voir figure (fig.II.6)

Fig.II.6 la descente de gradient trouve, à partir d'une solution initiale (A) des solutions successivement meilleures, en effectuant des sauts (B,C) dans la direction opposée au gradient de la fonction E, la solution (D) est minimum de E.

II.4.2.3. Apprentissage par renforcement

Ce type d'apprentissage est moins « classique » que les deux premiers qui sont les principaux. Il a d'une part en commun avec l'apprentissage supervisé, la présence d'un critère qui juge l'évolution de l'apprentissage, et d'autre part, il ne nécessite que des entrée sans définir les sorties desirées comme dans l'apprentissage non supervisé. Dans ce type d'apprentissage, le réseau rajuste ses poids synaptiques suivant un critère de performance. Celui-ci renforce les poids du réseau si le critère y est favorable et les punit dans le cas contraire.

II.4.2.4. Les problèmes d'apprentissage

Les problèmes rencontrés dans l'apprentissage des réseaux de neurones se résument aux suivants:

• Minima locaux : problème rencontré dans les apprentissages supervisés procédant par descente du gradient.

• Mauvais choix des paramètres : tel que le nombre de neurones cachés dans le réseau, cette valeur est particulièrement importante parce qu'elle détermine la capacité de calcul du réseau.

• Mauvais échantillonnage : Le corpus d'apprentissage n'est pas représentatif.

• Mauvais codage.

Fig.II.6: problème des minima locaux

II.5. Le Perceptron Multicouches (PMC) [5]

II.5.1. Architecture d'un PMC

Le PMC a une structure bien particulière : ses neurones sont organisés en couches successives comme présenté sur la Figure II.4. Chaque neurone

d'une couche reçoit des signaux de la couche précédente et transmet le résultat à la suivante, si elle existe. Les neurones d'une même couche ne sont pas interconnectés. Un neurone ne peut donc envoyer son résultat qu'à un neurone situé dans une couche postérieure à la sienne.

L'orientation du réseau est fixée par le sens, unique, de propagation de l'information, de la couche d'entrée vers la couche de sortie. Pour les réseaux considérés, les notions de couches d'entrée et de sortie sont donc systématiques. Ces dernières constituent l'interface du réseau avec l'extérieur. La couche d'entrée reçoit les signaux (ou variables) d'entrée et la couche de sortie fournit les résultats. Enfin, les neurones des autres couches (couches cachées) n'ont aucun lien avec l'extérieur et sont appelés neurones cachés. Par convention, les neurones d'entrée ont toujours une fonction d'activation«identité », laissant passer l'information sans la modifier. En ce qui concerne le neurone de sortie, on peut lui associer une fonction d'activation linéaire ou non, dérivable ou non, suivant la nature du problème à résoudre. En ce qui concerne la fonction d'activation associée aux neurones cachés, on utilise dans le cadre de ce travail une fonction d'activation de la famille des sigmoïdes.

Le perceptron multicouches décrit dans la Figure II.4 comporte p unités en entrée, recevant respectivement p variables {*X1, X2,..., Xp*}, et une seule unité de sortie, qui produit la variable *Y*. Ce modèle réalise une application de \mathfrak{R}^p dans \mathfrak{R} . L'architecture du réseau, déterminée par le schéma de connexion des neurones, fige ainsi une composition de fonction élémentaire et représente une famille G(., W) de fonctions non linéaires et dont les paramètres sont les poids de connexions du réseau *W*.

Fig. II.7. Architecture d'un PMC à une couche cachée (n neurones cachés sigmoïdes) avec-p\neurones d'entrée et (q=1) neurone de sortie linéaire.

La sortie du réseau aura une expression de la forme suivante dépendant du nombre de couches le composant :

$$Y = \sum_{i=1}^{n} W_i \cdot f_i \cdot (\sum_{j=1}^{p} W_{ij} \cdot X_j + W_{i0}) + W_0$$

II.5.2. Approximation de fonction

La détermination d'une fonction neuronale à partir d'observations se ramène au problème classique de la détermination des paramètres du modèle (les poids de connexions) par rétropropagation de l'erreur. Pour construire cette fonction, deux choses sont indispensables : un ensemble de fonctions candidates (définie par l'architecture du réseau), parmi lesquelles on va rechercher celle qui nous intéresse, et un critère d'apprentissage permettant d'en choisir une. Le but de l'apprentissage est donc de déterminer un modèle qui va généraliser un processus décrit par un nombre fini *N* de comportements qui composent l'ensemble d'apprentissage.

II.5.3. Apprentissage

Approximer une fonction $T \det \Re^p$ dans \Re^q à l'aide d'un PMC revient à utiliser une fonction g choisie au sein d'une famille G(., W) associée à une architecture de réseau dont les couches d'entrée et de sortie comportent respectivement p et q neurones.

 $\begin{array}{ccc} A \in \mathfrak{R}^{\mathsf{P}} & & & & \\ & X & & & & \\ & X & & & & \\ \end{array} \xrightarrow{} B \in \mathfrak{R}^{\mathsf{q}} \\ Y = G(X, W) \end{array}$

La famille G(.,W) est donc un système paramétré qui associe un espace de sortie $B \in \Re^q$ à un espace d'entrée $A \in \Re^p$. Approximer T à partir de G(.,W) revient ainsi à rechercher la fonction $g \in G(.,W)$ telle que

$$g(x) = G(x, W') \approx T(x) \qquad \forall x \in A$$

où Wreprésente l'ensemble des poids du réseau.

Le nombre de couches cachées et le nombre de neurones des couches cachées sont à déterminer de manière optimale suivant la difficulté de la fonction à approximer et l'ensemble d'apprentissage dont on dispose. Le choix de l'architecture du réseau définit de façon implicite la famille de fonction G(., W).

L'étape suivante est la détermination des poids optimaux W^* et donc de la fonction g dans G(., W) qui approche au mieux la fonction T étudiée. Ces poids sont déterminés par un algorithme dit d'apprentissage qui correspond à la phase d'estimation des paramètres du modèle. Cette détermination se fait à partir de N exemples ((x_k, y_k), k=1,N) qui décrivent la fonction recherchée. La fonction g(x) obtenue en fin d'apprentissage est continue, elle permet donc d'interpoler la fonction entre les N points utilisés durant l'apprentissage.

L'algorithme d'adaptation des poids est connu sous le nom d'algorithme de rétropropagation du gradient (Rumelhart *et al.*, 1986 ; Le Cun *et al.*, 1985). La précision de l'approximation va dépendre de l'ensemble d'apprentissage et donc de la manière dont le problème est décrit par les données.

a-Algorithme de rétro propagation :

L'algorithme de rétro propagation de l'erreur dans les PMC reste le plus utilisé. Il a été découvert par Werbo en 1974, en 1986 Rumelhart, hunton et William ont développé l'algorithme de Back-propagation en se basant sur les règles de windrows-hopf sur les RNA multicouches.

Résumé de l'algorithme :

Soit un réseau à n neurones en entrée, m en sortie, p le nombre de couches cachées, et n_k le nombre de neurones de la couche cachée numéro k. μ étant le pas du gradient.

- 1. Initialiser tous les poids Wij aléatoirement.
- 2. Présenter au réseau une forme (x_1, \dots, x_n) et sa sortie désirée $(y_1 \dots y_m)$.
- 3. Calculer les sorties des neurones des couches cachées et de la couche de sortie par :

Première couche cachée :

$$O_j^1(k) = f\left[\sum_{i=1}^n W_{ji}(k) x_i(k)\right]$$

deuxième couche cachée :

$$O_j^2(k) = f\left[\sum_{i=1}^{n} W_{ji}(k) . O_i^1(k)\right]$$

etc...

couche de sortie :

$$S_{j}(k) = f\left[\sum_{i=1}^{np} W_{ij}(k) . O_{i}^{p}(k)\right]$$

4. Modifier les poids des connexions récursivement par :

$$W_{ji}(k+1) = W_{ji}(k) - \mu.d_j(k).O_i(k)$$

avec :

$$d_{j}(k) = (S_{i}(k) - y_{i}(k)) \cdot f'\left[\sum_{i=1}^{np} W_{ji}(k) \cdot O_{i}^{p}(k)\right]$$

pour la couche de sortie

$$d_{j}(k) = \sum_{i=1}^{n_{k+1}} d_{i}(k) \cdot W_{ji}(k) \cdot f'\left[\sum_{i=1}^{n_{k}} W_{ji}(k) \cdot O_{i}^{n_{k}}(k)\right]$$

pour la couche cachée numéro k

5. Refaire les étapes 2 à 4 jusqu'à atteindre l'erreur désirée

b – Back-propagation avec momentum :

C'est une amélioration de l'algorithme de Back-propagation, en introduisant un terme d'inertie dans la connexion des poids en tenant compte de la connexion précédante. Cette approche consiste à minimiser le critère :

$$E(n) = \frac{1}{2} \sum_{i=1}^{n} \gamma^{n-i} \|y_{i} - \hat{y}_{i}\|^{2} \quad \text{avec} \quad \gamma < 1 \text{ ; (momentum)}$$

Ce critère est la somme des erreurs quadratiques pondérées exponentiellement. La règle d'adaptation avec momentum est la suivante :

$$\Delta w_{jk}(n) = \gamma . w_{jk}(n) - a\delta_j(n) x_k(n)$$

$$w_{jk}(n + 1) = w_{jk}(n) + \Delta w_{jk}(n)$$

avec γ la constante de momentum (0< γ <1).

II.5.4. Des approximateurs universels

Vingt ans après la publication de l'ouvrage où Minsky et Papert (1969) exposaient les limitations de Perceptron simple, Cybenko *et al.* (1989) et Hornik *et al.* (1989) établissent les réseaux de neurones comme une classe d'approximateurs universels. Il a été ainsi démontré qu'un perceptron multicouches avec une seule couche cachée pourvue d'un nombre suffisant de neurones, peut approximer n'importe quelle fonction avec la précision souhaitée. Néanmoins, cette propriété ne permet pas de choisir, pour un type de fonction donné, le nombre de neurones optimal dans la couche cachée. Autrement dit ce résultat ne mène pas vers une technique de construction d'architecture.

II.5.5. La base d'apprentissage

La base d'apprentissage est une base de données contenant des couples d'entrées-sorties servant à déterminer les valeurs des paramètres d'un réseau de neurones lors de la phase d'apprentissage supervisé. Le PMC est un interpolateur imparfait des observations contenues dans cette base, puisqu'il commet une erreur aux points d'observations. Or, la base d'exemples n'échantillonne jamais l'espace des données de manière parfaite. Il est souhaitable, pour bien contraindre un PMC, que le nombre de contraintes (nombre d'exemples dans la base d'apprentissage) imposées soit très supérieur au nombre de degrés de liberté du réseau (nombre de poids). Le nombre minimum souhaitable d'exemples est lié à la complexité de la fonction à simuler et à l'architecture du réseau choisie.

II.5.6. La base de test

Du fait des capacités d'approximation universelle des modèles neuronaux, l'apprentissage peut mener à un sur-ajustement de la fonction, on parle aussi de sur-apprentissage. On observe ce genre de problème lorsque l'on utilise un modèle comportant un grand nombre de paramètres pour modéliser une fonction de trop faible complexité. Pour mettre en évidence ce problème on utilise une base de test, autre échantillonnage de l'espace des données. Lors de l'étape d'estimation des paramètres, le phénomène de sur-apprentissage se traduit par une croissance de l'erreur sur les données de la base de test. Au finale, le réseau sélectionné est alors celul qui minimise l'erreur commise sur la base de test. La caractérisation des pétroles bruts et des fractions pétrolières vise principalement à déterminer leur composition et leurs propriétés physiques, indispensables pour la mise en œuvre de ces produits en vue de leur valorisation.

Le but de ce chapitre est de proposer des méthodes permettant le calcul des propriétés physiques et thermodynamiques des hydrocarbures appartenant aux familles chimiques les plus importantes.

Nous avons classé les différentes propriétés étudiées en six catégories:

1. Propriétés thermiques

Toute transformation physique ou chimique d'une substance est suivie d'un changement d'état caractérisé par un certain nombre de propriétés dont la connaissance est indispensable pour la mise en œuvre de cette substance. Ces propriétés que nous désignons par propriétés thermiques sont nombreuses; mais, dans le cadre de notre étude, nous avons limité celles-ci aux grandeurs suivantes:

- Chaleur latente de vaporisation

2. Propriétés de transport

Leur connaissance est nécessaire dans les calculs de simulation de procédés et de dimensionnement des équipements faisant intervenir des écoulements ou le stockage des fluides, ou encore dans le calcul des réacteurs chimiques. Les propriétés de transport faisant l'objet de cette étude sont:

- Volume molaire à 20°C
- Tension superficielle à 25°C
- Viscosité dynamique à différentes températures

3. Propriétés de critiques

La connaissance des paramètres critiques est nécessaire dans la plupart des opérations de production et de traitement des coupes d'hydrocarbures où la coexistence d'une phase gazeuse et d'une phase liquide est fréquente. Ils permettent de prévoir le comportement des fluides dans un large intervalle de températures et de pressions et de définir ainsi les conditions d'existence de leurs différentes phases. Par ailleurs, la connaissance des propriétés critiques permet, par le biais de la loi des états correspondants, de prédire les propriétés thermodynamiques et volumétriques des corps purs et des mélanges de corps purs. Cette classe de propriétés comprend les paramètres suivants:

- Température critique
- Pression critique
- Volume critique
- Facteur de compressibilité critique

4. Propriétés optiques

Les propriétés optiques sont directement liées à la nature chimique des hydrocarbures. Dans le cadre de cette étude, nous avons étudié l'indice de réfraction à 20°C (n20), l'indice de corrélation étant une fonction de n20 se déduira directement par sa formule

5. Propriétés thermodynamiques

Les variations de température, pression, phase ou encore de nature chimique d'une substance sont souvent accompagnées d'effets thermiques, quantifiées le plus souvent au moyen de fonctions thermodynamiques dont les plus importantes sont l'enthalpie, la chaleur spécifique et l'entropie. En particulier, la chaleur spécifique est fréquemment utilisée dans les corrélations d'autres propriétés physiques telles que la viscosité et la conductivité thermique. Dans le cadre de cette étude, nous nous sommes intéressés particulièrement aux propriétés thermodynamiques prises à l'état standard, c'est à dire à l'état de gaz parfait sous une pression de une atmosphère et dans un intervalle de températures compris entre 298 et 1500K;

- Chaleur spécifique
- Enthalpie de formation
- Entropie

6. Propriétés spécifiques

Les propriétés spécifiques des hydrocarbures et des produits pétroliers sont très utiles pour la caractérisation de ces derniers ainsi que pour l'établissement de corrélations d'autres propriétés physiques ou encore, pour la composition.

- Trois propriétés spécifiques parmi les plus importantes sont étudiées. Il s'agit:
- Du facteur de caractérisation Kuop
- Du point d'aniline
- Du facteur acentrique
- Température de congélation

L'accomplissement de cette étude a nécessité le recueil de données expérimentales concernant les propriétés physiques et thermodynamiques des hydrocarbures allant du C₆ au C₃₀ et appartenant à trois familles d'hydrocarbures: n-paraffines, naphtènes (n-alkylcyclohexanes) et aromatiques (n-alkylbenzènes).

Ces données utilisées sont disponibles, pour la plupart, dans des banques de données dont les plus importantes sont les suivantes:

- API Technical Data Book of petroleum refining: tables publiées par l'Américain Petroleum Institute en 1977 et 1983 et plus récemment en 1994.

- DIPPR (Design Institute of Chemical Enginners): banque de données développée par l'American Institute of Chemical Enginners, et qui est une compilation des propriétés thermophysiques des constituants les plus communément rencontrés dans l'industrie chimique.

- Nous n'avons pas pu travailler avec La TRC (Thermodynamique Recherche Center) du fait que les données dont nous disposions sont incomplètes.

Une fois les données disponibles, nous avons eu recours à l'établissement des réseaux en liant chaque propriété en fonction de la densité et de la température d'ébullition.

Le choix des n-paraffines, n-alkylcyclohexanes et n-alkylbenzènes comme familles chimiques de références pour l'établissement des réseaux a été conditionné par différents facteurs, que nous énumérons comme suit:

- Disponibilité des données dans les tables;

- Les hydrocarbures appartenant aux trois familles d'hydrocarbures choisies sont rencontrés pour certains en abondance dans le pétrole brut et les produits pétroliers issus de sa transformation;

- Du fait de la complexité de la composition des pétroles bruts et de leurs fractions, il s'avérait nécessaire de regrouper les constituants de ces mélanges complexes autour de constituants clés dont les propriétés sont représentatives. Ainsi, nous avons choisi les n-paraffines pour représenter tous les hydrocarbures saturés aliphatiques et leurs isomères, les n-alkylcyclohexanes pour représenter les cycliques saturés et enfin les n-alkylbenzènes pour représenter les hydrocarbures aromatiques;

Concernant l'application des réseaux proposés aux mélanges d'hydrocarbures de compositions connues, nous avons eu à poser certaines hypothèses simplificatrices:

- Toutes les propriétés étudiées sont additives. Cette hypothèse est d'autant justifiée que les mélanges étudiés sont composés de constituants à points d'ébullition rapprochés et/ou appartenant à la même famille.

III.1. Méthodologie

La détermination des propriétés physico-chimiques des hydrocarbures par réseaux de neurones s'appuit sur les avantages qu'offre cette méthode en identification des fonctions non linéaires et du traitement parallèle de l'information.

Pour cela, nous avons choisit de travailler sous environnement MATLAB 5.3. Ce dernier est un logiciel de calcul très puissant, possédant des subroutines conçues pour créer, entraîner et simuler des réseaux de neurones.

L'objectif de ce travail est de créer des RNA pouvant approximer des fonctions non linéaires liant les différentes propriétés étudiées. Cette approximation se fait par apprentissage supervisé en utilisant une banque de donnée contenant les différentes propriétés des corps purs allant du C_6 au C_{30}

Après différents essais, nous avons élaboré des programmes contenant les subroutines suivantes:

- Newff : qui permet la création d'un réseau de neurones avec rétropropagation de gradient.
- Trainlm : subroutine d'entraînement qui se base sur l'algorithme de " Lavenberg-Marquardt "
- Tansig (tangente sigmoïde) : fonction d'activation des neurones cachés.
- Purlin (fonction identité): fonction d'activation des neurones de sortie

Les réseaux de neurones proposés sont des réseaux à trois couches.

- Une couche d'entrée, composée de deux neurones sans fonction d'activation, ils ne font que transmettre les valeurs des entrées à la couche cachée.
- Une couche cachée, composée de plusieurs neurones, le nombre est spécifique à chaque réseau, les neurones sont dotés d'une fonction d'activation sigmoïde.
- Une couche de sortie, généralement composée d'un neurone avec la fonction d'activation identité.

L'entraînement des réseaux sur fait sur vingt et un (21) hydrocarbures allant de 60°C à 450°C. La base de test est composée des hydrocarbures suivants: C_7 , C_{13} , C_{20} , C_{27} .

Nous n'avons pas voulu introduire les données de toutes les familles confondues en une seule fois de telle façon à converger plus rapidement (nous pensions-nous). Cependant, nous avons tenté un entraînement global de toutes les familles, les résultats obtenus pour les propriétés critiques Tc et Pc sont corrects.

Dans ce qui suit, nous présentant les poids des connexions, des réseaux établis, Wij (l'indice i pour la couche considérée et j pour la couche précédente) ainsi que les biais des différents neurones. Une application ainsi qu'une comparaison avec des corrélations (citées en annexe) est effectuée sur les hydrocarbures utilisés dans notre base de test.

Les graphes des différentes simulations présentés montrent l'écart entre les points de référence (représentés par des points) et les points simulés par les réseaux de neurones (représentés en cercles).

III.2. PROPRIETE THERMIQUE

A. CHALEUR LATENTE DE VAPORISATION

Réseaux proposés pour l'estimation de Hv:

n-paraffines :

		W1ij(couche cachée)	biais	
i/i	1	2	bi	
1	-0.6542	-28,0016	9,4732	
2	-0.0468	-22,9907	3.7009	
3	0.0072	-8.7640	-1.8351	
4	-0.0224	23.6548	-11.0018	1
5	-0.0002	-19,7504	14.1126	Ì
6	3.8639	- 32.5863	20.5890	
i\j	W2ij (.	1.0e-04)(couche de sortie		biais
1	-0.5921 -	0.5922 1.0481 1.3196 -0.0	0046 0.5921	5920.4

n-alkylbenzènes :

	W1ij(couche cachée) biais					
i∕j	1 2	bi	-			
1	-0.5278 38.2394	164.9038				
2	0.0152 72.4234	-72.8425				
3	0.0064 -51.8393	41.0539				
4	-0.0684 -267.9500	236,2043				
5	-216.7321 94.8972	-90.0025	ł			
6	0.3284 -258,6463	223.9528	1			
i∖j	W2ij(couche de	sortie)	biais			
1	-1.8311 5.2530 11.3393 3.1597 -5.	23.8901				

n-alkylcyclohexanes :

	W1ij	(couche cachée)	biais	
I/j	1	2	bi	-
1	0.000058987	0.434322756	0.319192667	
2	0.079172919	96.92206008	-83.658860014	}
3	-0.16598949	1.118748909	-78.001502320	
4	0.036972716	-150.5152396	98.356553437	
i\j		W2ij(couche de s	ortie)	biais
1	911.57466738	5 -182.026007812 186.82	20170693 2.680869077	-136.66016028

Résultats et comparaison :

Nous allons présenter les résultats de simulation, de notre réseau, appliquée à la base de test. Cette dernière est composée des hydrocarbures sulvants : C_7 , C_{13} , C_{20} et C_{27} . Ces résultats servent à valider notre réseau et à les comparer avec les corrélations les plus connues, toutes ces corrélations sont citées en annexes.

L'erreur calculée, exprimée en pourcentage, représente l'écart entre la valeur réelle de la propriété et la valeur obtenue par simulation, le tout divisé par la plus grande valeur des deux.

	DIPPR	RNA	Erreur %	Zidelkheir	Erreur %	SKANDER	Erreur %
C7	31,700	31,689	0,035	31,668	0,101	32,006	0,965
C13	44,700	45,538	1,87472	45,648	2,121	44,277	0,946
C20	52,600	53,503	1,71673	57,466	9,251	53,233	1,203
C27	59,600	60,340	1,24161	67,606	13,433	59,628	0,047
	_		1,21700		6.22	· · · · · · · · · · · · · · · · · · ·	0,791

n-paraffines: Tab. III. 4: Résultats et comparaison.

n-alkylbenzènes: Tab. III. 5: Résultats et comparaison.

	DIPPR	RNA	Erreur %	Zidelkheir	Erreur %	Bouamara	Erreur %
C7	33,180	33,6200	1,32610	33,08259	0,2936	32,05	3,4
C13	45,190	45,5600	0,81877	45,52768	0,7473	43,555	3,6
C20	53,360	53,3446	0,02886	57,14344	7,0904	51,341	3,784
C27	58,930	58,9281	0,00322	62,04103	5,017	56,437	4.23
			0,54423		3,3005		3,75

n-alkylcyclohexanes: Tab II. 6: Résultats et comparaison.

	DIPPR	RNA	Erreur %	Zidel- Kheir	Erreur %	Bouamara	Erreur %
C7	31,1300	30,3132	2,2634	31,6681	1,7285	32,0055	2,812
C13	43,7700	43,8626	0,21156	45,6478	4,2902	44,2772	1,159
C20	51,1500	51,2159	0,12884	55,4656	7,771	53,2331	4,073
C27	56,2900	56,3225	0,05774	59,6063	5,555	59,6279	5,930
			0,66525		4,836		3,4935

Commentaire :

Les résultats obtenus lors de la simulation de notre base de test sont très satisfaisants, l'erreur moyenne obtenue est au tour de 0,66%, cela démontre de la capacité de généralisation de ce réseau. La comparaison avec les autres corrélations est tout aussi satisfaisante et montre une erreur relativement faible comparée a ces dernières.
III.3. PROPRIETES DE TRANSPORT

A. VOLUME MOLAIRE

Réseaux proposés pour le calcul de V_M :

n-paraffines :

TADI	ū.⊋: Poids des	connections et t	viais pour le réseau re	etenu			
	Wlij(couche	cachée)	biais				
i\j	1	2	Bi				
1	-0.0924 3.1210		-12.4307				
2	-0.0019	-0.7337	3.1669				
3	0.3961 17.9317		-10.2782				
4	-1.8075	32.6975	→37.0884				
5	25.4465	-36.1736	26.0852				
	W	ij (Couche de so	rtie)	Biais			
19	//j Wij(1.0 e-03)						
1	-0.4713 -2	-0.4713 -2.8633 0.5692 -0.6220 0.6180					

à

n-alkylbenzènes :

	W1ij (1.0 e-02)	biais				
ilj	1 2	bi(1.0 e-02)	_			
1	0.001152896 0.029746904	0.102651734309	-			
2	~0.0024596863 0.3489854823	2.35330630262				
3	0.000224138 -0.1040290754	0.03802934911				
4	-0.0097642946 -1.59994236730	1.14087173803				
i\j	₩2 <i>ij(1.0 e</i> -05)					
1	0.5598300654 0.5587321933 2.2390	28360 -0.560628603	56022.2062			

n-alkylcyclohexanes :

Ta Li III	.g. Poids des	connections et l	biais pour le réseau	retenu	
	W1ij		biais	T	
i\j	1	2	bi	1	
1	-0.0475	89.7095	-88.6505	1	
2	-19.0173	139.3083	-101.5552		
3	-0.0026	0.5796	5.0718		
4	-0.1312	-165.0361	135.6767		
5	0.1288	-38.6629	17.3735		
6	0.8275	141.5922	-121.0763		
7	-0.0030	4.8161	-6.6873		
8	-0.3375	-30.2037	35.7909		
9	-0.3384	127.5301	-109.5896		
10	0.8968	-164.0674	130.0631		
11	-5.6705	-130.0120	101.2648		
i\j		W2ij(1.0	l e-05)		biais
	-0.1485 -0.	1484 ~2.8697 -	-0.1493 0.1493	0.1493	14940
1	-1.3822	-0.1493 -0.14	86 0.1484 -0.3	1484	

÷

FigIII.6 :Volume molaire des n-alkylcyclohexanes

Résultats et comparaison :

	Données	RNA	Erreur %	RD	Erreur %	SKANDER	Erreur %
C7	146,500	146,039	0,315	157,650	7,611	145,991	0,347
C13	243,800	239,777	1,650	254,591	4,426	244,031	0,095
C20	358,300	352,792	1,537	354,945	0,936	358,411	0,031
C27	473,000	464,400	1,818	440,441	6,884	472,791	0,044
			1.330		4.964		0.129

n-paraffines: Tab. II. 10: Resultats et comparaison.

n-alkylbenzènes: Tab. III. M: Resultats et comparaison.

	Données	RNA	Erreur %	RD	Erreur %	Rackett	Erreur %
C7	105,160	105,220	0,05706	106,201	0,9903	117,835	12,053
C13	205,790	205,950	0,07775	204,951	0,4076	249,530	21,255
C20	321,120	321,021	0,03083	307,338	4,2918	375,973	17,082
C27	436,140	436,315	0,04012	391,005	10,3488	475,430	9,009
			0,05144		4,0096		14,850

n-alkylcyclohexanes: Tab. III. 12: Resultats et comparaison.

	Données	RNA	Erreur %	skander	Erreur %	RD	Erreur %
C7 ,	127,6100	129,4100	1,41055	130,0124	1,843	128,3938	0,614
C13	224,8700	223,0100	0,82714	225 , 125	0,3549	232,5126	3,399
C20	339,9000	339,0840	0,24007	340,87	0,486	338,8272	0,316
C27	454,8100	457,5670	0,60619	455,85	0,413	426,4514	6,235
			0,7701		0,835		2,641

B. TENSION SUPERFICIELLE

Réseaux proposés pour le calcul de Ts :

n-paraffines: Tab III.14;

W1ij ((couche cachée)		biais	
i\j	1	2	bi	1
1	-0.0419	156,9870	-101.2697	1
2	0.0031	-52.1323	41.9445	
3	0.0269	10.3878	-0.5075	
4	-0.0197	25.5593	~10.3245	
5	0.0166	-20.2757	7.8292	
ilj	W2ij(couche	de sortie)		biais
1	-129.5650 58.2454	-30.9279 -45	.9689 47.6328	-33.9049

n-alkylbenzènes :

W1ij			biais	
i\j	1	2	bi	
1	-0.0385	-81.1809	59.2423	
2	0.0333	287.2811	-262.1550	
3	0.1763	-250.3040	218.6609	
4	0.0001	-142.4591	121.8635	
5	-0.2240	-142.7132	126.6464	
i\j	W2ij			biais
1	- 3.2496 -0	.3508 2.8555 1.79	08 -11.9713	12.2309

n-alkylcyclohéxanes

Tab. M. 16:

W1/	<u> </u>		biais	
i\j	1	2	bi	
1	-0.139724545	-43.8851953	25.4912768	
2	-0.08706565	-82.27112093	60.3588371	1
3	-0.00002593	1.96196415	-3.647344078	
4	-0.101576268	20.913500869	-21.53604174	
i į	W2ij(1.0 e-03)		, /	biais
1	-0.2539159657	-0.252235114 1.0108	72866	254.1456224

Fig.III.8 :Tension superficielle des alkylcyclohexanes

Fig.III.9 :Tension superficielle des n-alkvlbenzènes

Résultats et comparaison :

n-paraffines :

	TabI	17: Re	sultats	et Comp	a raison	:	
	Donnée	RNA	Erreur %	SANBORN	Erreur %	SKANDER	Erreur %
C7	19,650	19,5630	0,44275	21,216	7,969	19,667	0.087
C13	25,350	24,8710	1,88955	24,076	5,026	25,580	0,907
C20	28,460	28,4050	0,19325	30,247	6,279	28,480	0,070
C27	29,999	29,9779	0,07034	39,790	32,638	29,985	0,047
			0,64900		12,978		0,278

n-alkylbenzènes: Tab. III. 18: Résultats et comparsison.

	Donnée	RNA	Erreur %	Sanborn	Erreur %	skander	Erreur %
C7	28,440	28,510	0,24613	18,1630	36,1357	28,4034	0,129
C13	29,810	29,779	0,10399	11,9319	59,9735	29,8154	0,018
C20	30,250	30,227	0,07603	8,0340	73,4414	30,2600	0,033
C27	30,360	30,314	0,15152	6,6624	78,0555	30,3533	0,022
			0,14442		61,9015		0,050

n-alkylcyclohexanes: Tab. II. 19: Resultats et comparaison.

	Donnée	RN	Erreur %	skander	Erreur %	sanborn	Erreur %
C7	24,9300	24,7280	0,81026	22,6766	9,0372	45,07	80,82
C13	27,8000	27,8283	0,10180	25,5813	7,9811	32.31	16,25
C20	29,4800	29,4657	0,04851	28,4805	3,3905	25,10	14,83
C27	30,2800	30,2833	0,01090	29,9850	0,9742	21,61	28,63
			0,2427		5,345		35,135

C. VISCOSITE :

Réseaux proposés pour la viscosité :

n-paraffines: Tab III. 20:

W1	<u>j</u>	biais	
۱i	1 2	bi	
L	0.0015 13.1011	-12.0539	
2	0.1258 2.1757	-10.3231	
3	-0.0204 29.9694	-9.1597	ļ
ł	0.1191 33.7078	-24.2044	
Vi	W2ij		biais
	10.0107 5.9355 -8.11	72 6.2396	6.1543
2	3.5378 1.9558 -2.097	6 1.2837	2.5681

Le réseau proposé comporte deux sorties qui sont respectivement $\eta_{100°F}$ (cP) et $\eta_{210°F}$ (cP) *n-alkylbenz<u>ènes</u> : T_{\alpha} b. \Pi_{12} 21;*

\\i 1 2 1 -0.0279 -335.9582 2 -0.0429 -177.6099 3 0.0085 -88.5295		1	
1 -0.0279 -335.9582 2 -0.0429 -177.6099 3 0.0085 -88.5295	bi		
2 -0.0429 -177.6099 3 0.0085 -88.5295	307.9585		
3 0.0085 -88.5295	147.6884		
	69.6788		
4 0.0054 -17.5459	9.542		
∖j W2ij	W2ij		
1 -8.385 -63.8641 2.0541 1	-8.385 -63.8641 2.0541 118.3545		
2 -0.7311 -31.2434 -1.5895	65.3788	33.4567	

n-alkylcyclohéxanes : le réseau proposé comporte cette fois-ci une seule sortie qui correspond à une propriété, le premier tableau concernera la viscosité à 100°F, le second la viscosité à 210°F

W1ij			hiais	
i\j	1	2	bi	
1	-0.1087	-35.6508	17.1159	
2	0.0267	-38.7513	12,4862	
3	0.0464	-110.3515	88.9721	
4	0.0662	-73.9730	53.8718	[
5	-0.0058	-8.3830	11.1507	
ili	W2ij		,,,*,,,,,,	biais
1	-8.5977 14.	7852 3.5413 6.71	39 -12.2489	8.5565

	_		-
 i 4	114	•	Δ.
 ы	н	. J.	. .
 		_	

W1ij	· · · · · · · · · · · · · · · · · · ·			biais		
i\j	1	2		bi		1
1	0.0124	-32.2157		16.2260		1
2	-0.5213	-93.4387		66.9712		1
3	-0.0024	34.9896		-28.8659		
4	0.0508	37.5877		-21.6199		
5	-0.1532	-77.1569		67.8274		
6	0.0243	-83.7603		54.7560		
ilj	W2ij					biais
1	40.8735	-12.3763	6.9500	11.8911	-	12.3147
	11.6503	0.2289				

Fig.III.10 :µ100°F des n-alkylcyclohexanes

Fig.III.11 :µ210°F des n-alkylcyclohexanes

Page 39

Résultats et comparaison :

n-paraffines: Tab. II. 24: Résultats et Comparaison.

	µ100°F	RNA	Erreur %	skander	Erreur %
C7	0,348	0,33456	3,86207	0,348	0,051
C13	1,355	1,41480	4,41328	1,357	0,132
C20	3,856	3,94180	2,22510	4,309	11,753
C27	8,620	8,66330	0,50232	10,051	16,604
			2.751		7.135

Tab. III. 25: Résultate et comparaison.

	µ210	RNA	Erreur %	Skander	Erreur %
C7	0,210	0,21838	3,99048	0,228	7.89
C13	0,599	0,59804	0,16027	0,571	4.67
C20	1,407	1,41900	0,85288	1,426	4.33
C27	2,879	2,89600	0,59048	2,906	2,929
			1.399		3,697

n-alkylbenzènes: Tab. II. 26: Résultats et comparaison.

					-
	μ100	RNA	Erreur %	SKANDER	Erreur %
C7	0,478	0,4979	4,16318	0,477	0,270
C13	1,503	1,5622	3,93879	1,500	0,192
C20	4,739	4,9114	3,63790	4,629	2,317
C27	12,171	11,8134	2,93813	10,254	15,747
			3,66950		4.63
Tab. III. 27: Résultats et companison:					uison:
	µ210	RNA	Erreur %	API	Erreur %
C7	0,278	0,2772	0,30216	0,744	167,70
C13	0,674	0,6939	2,95252	1,040	49,88
C20	1,530	1,5682	2,49673	1,460	4,589
C27	3,192	3,2629	2,22118	2,139	32,91
			1,99315		

n-alkylcyclohexanes: Tab. II. 28: Risultats et comparaison.

	μ100	RNA	Erreur %	skander	Erreur %
C7	0,5790	0,5690	1,71711	0,582	0,474
C13	1,8980	1,9240	1,36986	1,900	0,102
C20	6,1550	6,2760	1,96588	6,160	0,079
C27	15,3260	15,5400	1,39632	15,364	0,251
			1,6117		0,2265
Tal	- 田. 29、	: Résul	stats et	compa	raison.
	µ210	RNA	Erreur %	skander	Erreur %
C7	0,3040	0,312	2,657	9 0,279	8,205
C13	0,7740	0,7868	1,6537	5 0,79	5 2,640
C20	1,7090	1,7090	0,0000	0 1,703	3 0,368
C27	3,2450	3,3540	3,3590	1 3,422	2 5,451
			1,91	5	4,166

III.4. PROPRIETES CRITIQUES

A. TEMPERATURE CRITIQUE

Réseaux proposés pour le calcul de Tc :

n-paraffines ;

V 1 2 bi 1 0.8329855 -38.71776299 18.5091747 2 -0.09863888 -9.867773308 -7.62856711 3 86.99893568 -42.80772758 20.66015832 2 -0.109015570 50.96564173 -27.6669322 3 -0.109015570 50.96564173 -27.6669322 4 -0.07675767 -24.93718715 1.50441632 5 -0.07675767 -24.93718715 1.50441632 6 -0.01489334 21.199193937 -6.25675237 7 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 j Wij(1.0 e-02) biaic	W1	ij		binie	
1 0.8329855 -38.71776299 18.5091747 2 -0.09863888 -9.86777308 -7.62856711 3 86.99893568 -42.80772758 20.66015832 4 -0.109015570 50.96564173 -27.6669322 5 -0.626895365 13.92107425 1.50441632 6 -0.07675767 -24.93718715 1.44452491 -0.01489334 21.199193937 -6.25675237 -0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721	īŊ	1		Uldis	-
1 0.8329855 -38.71776299 18.5091747 2 -0.09863888 -9.867773308 -7.62856711 3 86.99893568 -42.80772758 20.66015832 4 -0.109015570 50.96564173 -27.6669322 5 -0.626895365 13.92107425 1.50441632 6 -0.07675767 -24.93718715 1.44452491 7 -0.01489334 21.199193937 -6.25675237 9 0.0260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721			4	DI	
2 -0.09863888 -9.867773308 -7.62856711 3 86.99893568 -42.80772758 20.66015832 4 -0.109015570 50.96564173 -27.6669322 5 -0.626895365 13.92107425 1.50441632 6 -0.07675767 -24.93718715 1.44452491 7 -0.01489334 21.199193937 -6.25675237 9 0.0260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721	1	0.8329855	-38.71776299	18.5091747	
86.99893568 -42.80772758 20.66015832 -0.109015570 50.96564173 -27.6669322 -0.626895365 13.92107425 1.50441632 -0.07675767 -24.93718715 1.44452491 -0.01489334 21.199193937 -6.25675237 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721	2	-0.09863888	-9.867773308	-7.62856711	
-0.109015570 50.96564173 -27.6669322 -0.626895365 13.92107425 1.50441632 -0.07675767 -24.93718715 1.44452491 -0.01489334 21.199193937 -6.25675237 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721	3	86.99893568	-42.80772758	20.66015832	
-0.626895365 13.92107425 1.50441632 -0.07675767 -24.93718715 1.44452491 -0.01489334 21.199193937 -6.25675237 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 J Wij(1.0 e-02) biaic	4	-0.109015570	50.96564173	-27.6669322	
-0.07675767 -24.93718715 1.44452491 -0.01489334 21.199193937 -6.25675237 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 J Wij(1.0 e-02) biaic	5	-0.626895365	13.92107425	1.50441632	
-0.01489334 21.199193937 -6.25675237 0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 J Wij(1.0 e-02) biaic	5	-0.07675767	-24.93718715	1.44452491	
0.00260247 0.4298769123 -1.24539279 9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 J Wij(1.0 e-02) biaic		-0.01489334	21.199193937	-6.25675237	
9.35335675 -31.405005183 16.42567803 0 -31.65208515 -45.6879336 30.14841721 j Wij(1.0 e-02) biaic	}	0.00260247	0.4298769123	-1 24539279	
0 -31.65208515 -45.6879336 30.14841721 <i>Wij(1.0 e-02)</i>)	9.35335675	-31.405005183	16 42567803	
j Wij(1.0 e-02) biais	.0	-31.65208515	-45.6879336	30 14841721	
	Ú	Wij(1.0 e-02)			hiais
	1	-1.48358403 -(0.10359746 -0.9323953	3.670934488 1 55120	104.912/0328
1 -1.48358403 -0.10359746 -0.9323953 3.670934488 1.55120		0.1227130		1.55129	

n-alkylbenzènes ;

W1	ij(1.0 e-03)	biais	T
i\j	1 2	bi(1.0 e-02)	Í
1	-8.16737771 -0.05581219	0.0740973	1
2	-0.0005423 0.2246838	-1.9875746	
3	-0.00017565 -0.24182085	2.0051148	
4	0.0000011651 -0.01217302	0.060027162	
5	-0.00086696 -0.22474985	2.51786784	
iliji	W2ij(1.0 e-05)		biais
1	-0.50648846 -0.509871432 -0.1 -0.509403466	50759038 2.5385177	50983.76133

n-alkylcydohexanes :

Ta	b.III. 32:					
Poio	Poids des connections et biais pour le réseau retenu					
W1ij	i(1.0 e-02)	biais	T <u> </u>			
11	1 2	bi(1.0 e-02)	1.			
1	-0.0000335 0.08030189	0.011551908	-			
2	0.0080143 0.25478686	-0.2403328054	f i			
3	0.0023691 0.32014687	-0.1225721595				
4	-0.00135873 -1.2698901	1.1673165408				
5	-0.00001352 -0.06098655	-0.000040974				
6	-0.0075638 -1.32031704	1.086743689				
7	-0.00418276 0.6036560	-0.562903139	Í			
8	-0.00271722 -1.0496153	0.856211806	i i			
<u>iv</u>	W2ij(1.0 e-06)		hiais			
	-4.939386481 0.147796814	0.147918653 -0.147866749	148515 1531			
1	-3.904456660 -0.147868953 -0.:	147836603 -0.147864631	* (0313,1331			

Page 42

Chapitre III

Résultats et comparaison :

n-paraffines: Tub. III. 33: Résultats et comparaison.

	Données	RNA	Erreur %	RD	Erreur %	Penn state	Erreur %
C7	540,100	539,623	0,088	350,884	35,034	325,595	39,716
C13	675,800	675,846	0,007	456,125	32,506	475,602	29,624
C20	766,000	768,316	0,302	548,854	28,348	617,334	19,408
C27	851,300	851,458	0,019	610,844	28,246	716,762	15,804
			0.104		31.033		26.138

n-alkylbenzènes: Tab. III. 34 : Résultats et comparaison.

	Données	RNA	Erreur %	Lee kesler	Erreur %	RD	Erreur %
C7	591,720	592,020	0,05070	593,507	0,3021	601,496	1,652
C13	713,500	710,910	0,36300	710,047	0,4839	714,439	0,132
C20	792,000	795,300	0,41667	789,807	0,2768	797,758	0,727
C27	860,910	860,740	0,01975	841,252	2,2834	852,484	0,979
			0,21253		0,83655		0,8727

n-alkylcyclohexanes: Tab. II. 35: Résultats et comparaison.

	Données	RNA	Erreur %
C7	572,1200	552,7692	3,38230
C13	708,6000	710,7112	0,29794
C20	792,8000	792,9018	0,01284
C27	864,4300	865,1098	0,07864
			0,9429

Pour cette famille, les corrélations trouvées dans les différents ouvrages en notre possessions sont soit fausses ou donnent des résultats aberrants.

B. PRESSION CRITIQUE ;

Réseaux proposés pour le calcul de Pc :

n-paraffines :

	W1ij		biais	
iŊ	1	2	bi	
1	0.01739759	-11.2472062	1.228088	
2	-0.19234682	31.7656099	-20.04813032	
3	-0.01208066	30.4271128	-19.0403197	
ŧ	-20.3813795	22.1974558	-13.1456638	Į
5	1.13058057	20.8816065	-10.2968971	
Vi	W2ij			biais
1	-19.3353727 115.0397502	-117.329495 440.9	28736 -116.3276907	115.9688486

n-alkylbenzénes :

Tat	,	es connections et l	biais pour le réseau	retenu
	W	'1 <i>ij</i>	biais	
iV	1	2	bi(1.0 e-02)	-
1	-0.02382783	-215.4963	1.7593016	
2	0.0013148	-3.216480	0.070543	
3	-0.5572284	-253.7752	2.203271	
4	0.25841343	-199.04273	1.675568	
5	0.38549464	-140.55443	1.175127	
i∖j	W2ij(1.0 e-05)			biais
1	-0.7328965 0.73288714 0.	-3.66449781 -0. .7328645	.7328012	73292.02505

n-alkylcyclohexanes :

	W1ij(.	1.0 e-02)	blais	
Ŋ	1	2	bi(1.0 e-02)	
1	~0.0005851	-0.351879	0.17711369	
2	0.00007807 0.1492505		-0.15762003	
3	-0.00008976	0.09424206	-0.01891287	
4	-0.00041599	-0.76580997	0.538876314	ļ
5	-0.00129684	4.84832711	-3.30977618	
V	W2Ij		······· • • • • • • • • • • • • • • • •	biais
1	-12.976018 -8.	653608 5.579904 1	.8687277 6.1750876	13.140894

Page 45

Résultats et comparaisons :

n-paraffines ;	Таб.Ш.39:	Résultats	et	comparaison
----------------	-----------	-----------	----	-------------

	Données	RNA	Erreur %	RD	Erreur %	Penn	Erreur %
	L					State	
_C7	27,360	27,552	0,702	23,271	14,945	23,657	13,533
C13	17,230	17,281	0,296	15,735	8,674	16,172	6,141
C20	11,150	10,421	6,538	11,096	0,487	11,471	2,881
C27	6,890	6,834	0,813	8,826	28,101	9,150	32,803
			2.087		15.113		13.840

n-alkylbenzènes: Tab. III. 40: Résultats et componenson.

	Données	RNA	Erreur %	RD	Erreur %	Penn State	Erreur %
C7	41,090	40,8900	0,48674	41,1912	0,2464	43,363	5,534
C13	21,990	21,7100	1,27331	20,0335	8,8969	21.0158	4,430
C20	12,690	12,8600	1,33964	12,8797	1,4954	13,4930	6.329
C27	8,260	8,2300	0,36320	9,91075	19,9849	10,37599	25.617
			0,21253		0,8365	,	0.872

n-alkylcyclohexanes: Tab. III. 41 : Résultats et comparaison.

	Données	RNA	Erreur %	Penn State	Erreur %	RD	Erreur %
<u>C7</u>	34,7100	33,0335	4,83002	34,3722	0,9733	33,2958	4.074
C13	19,6000	19,3654	1,19694	18,4205	6,0179	17,7194	9,595
C20	11,6000	11,6644	0,55517	12,3166	6,1775	11,8250	1.940
C27	7,6900	7,6393	0,65930	9,6231	25,1382	9,2312	20.042
			1,810		9,577		7,869

C. VOLUME CRITIQUE :

	W1ij		biais	
١	1	2	Ы	7
	-3.5639	1.9910	-11.4904	7
2	0.0019	0.6501	-3.1231	
;	-85.4032	28.2361	-21.5684	
-	0.2227	32.2653	-33.3989	
,	1.0563	16.8862	61.9070	
.	-0.2525	37.5205	-31.1454	
i\j	W2ij(1.0 e-04)			biais
	-0.1327 1.0338 -	0.1442 0.177	3 0.1600 -0.2119	2118.7

n-paraffines: Tab. (III. 42). Result ats et componcaison

n-alkylbenzènes ;

	W1ij	(1.0 e-02)	biais	
i\j	1	2	bi(1.0 e-02)	
1	0.001906711	-0.605579373	-0.117126015	
2	0.197079483	-2.887789791	2.581980077	
3	0.005205256	-1.566871049	1.376028253	
4	0.025736533	3.1328821506	-2.739478916	
5	0.005602662	1.7026462722	-1.591736161	
6	0.000025505	-0.2454693417	0.176270939	
7	-0.007443668	-1.25655519158	1.023340594	
8	-0.573934531	-2.1472286370	1.906121157	
i\j	W2ij(1.0 e-04)			biais
1	0.18132506 0 0.1990085083	.197476107 0.165382 1.4280848575 -0.1560	5589 0.1561892141 648108 -0.1975210023	1975.02287

n-alkylcydohexanes :

.

Tak	S (III . 44). Poids des connectio	ns et biais pour le réseau retenu	
	W1ij (1.0 e-02)	biais	- · · · · · · · · · · · · · · · · · · ·
i\j	1 2	bi(1.0 e-04)	
1	0.000368147 0.663109612	-0.2778205135	-1
2	1.359958023 1.2677565174	-0.941637857	
3	-0.028828812 -0.9967464328	3 0.488841002	
4	-0.000007080 0.0055515057	-0.019078334	
5	-0.000029234 -0.0058297747	72 0.0497477854	
6	0.0015623971 0.5379285458	7 -0.3101637286	
7	0.0447428406 1.2321887730	06 -1.0565235222	
8	-0.42941521729 0.1790131773	-0.0796543828	
i∖i	W2ij(1.0 e-04)		biais
İ	0.52123793 0.53378033 -0.5339	8689 -1.98718539 -5.53366911	5337.267974
1	0.525674949 0.5098838295 -0.5	30648381	

Fig.III.24 :Volume critique n-alkylcyclohexanes

Page 48

Résultats et comparaisons :

n-paraffines :

aπines	Tal	ь (Ш. 45) leg	miliats e	r compo	araison.	
	Données	RNA	Erreur %	WATANASIRI	Erreur %	RD	Erreur %
C7	432,000	433,945	0,45023	461,430	6,813	431,951926	0,011
C13	770,000	755,526	1,87974	843,710	9,573	766,232698	0,489
C20	1150,000	1143,755	0,54304	1267,621	10,228	1156,22693	0,541
C27	1547,500	1527,717	1,27838	1663,991	7,528	1546,22117	0,083
L			1,03800		8,535		0.281

n-alkylbenzènes :

Tab (III. 46) - Resultats et comparaison.

				-		1	
	Données	RNA	Erreur %	Watanasiri	Erreur %	skander	Erreur %
C7	316,000	317,9600	0,62025	318,15610	0,6823	325,19577	2,910
C13	660,000	664,3300	0,65606	658,73736	0,1913	659,63808	0,055
C20	1047,500	1051,6200	0,39332	1075,1547	2,6401	1049,820	0,222
C27	1439,500	1438,3500	0,07989	1506,1150	4,6277	1440,0034	0,035
			0,4370		2,035		0,8055

n-alkylcyclohexanes:

D. FACTEUR DE COMPRESSIBILITE CRITIQUE ;

Réseaux proposés pour le calcul de Zc :

n-paraffines :

	W1ij (1.0 e-02)	biais	
i\i	1 2	bi(1.0 e-02)	
1	-0.000194803 0.322333783	-0.122515727	~-
2	-0.000159384 1.348580876	-0.9629356697	
3	0.000123029 -0.3932795357	0.2768654908	
4	-0.003178806 0.1526796043	1.2449351851	
i∖i	W2ij	L	hiais
1	0.037572340 -0.037448782 61.8	6953315 0.000839601	-61 679908

n-alkylbenzénes :

Tab	(III - 48) Poids des connections et bi	ais pour le réseau retenu	
	W1ij (1.0 e-03)	biais	
<u>i\i</u>	1 2	bi(1.0 e-03)	-
1	-0.00001814 -4.05754280	3.47984420188	1
2	-0.00001809 -4.0495974432	3.473019539181	
3	-0.000004812 0.7367163467	-0.629718574426	
4	-0.000239160 -1.02425486805	0.985434734351	}
5	0.0000514882 0.254484380	-0.2175613528033	
i∖j	W2ij		biais
1	33.309152744 -33.371855207 0.00 0.007883136 0.0679265635	099542267	0.126009445

n-alkylcyclohexanes :

ĺ

.

	W1ij (1.0 e-02)	biais	
i∖j	1 2	bi(1.0 e-02)	1
1	0.000141543 0.63148688	-0.621841242	1
2	-0.00013761 -0.640241576	0.626492688	
3	0.00005806 0.539142952	-0.474577949	
1	0.00059130 1.312533675	-1.2591337468	
5	0.00008224 1.094752687	-0.9219917773	ļ
5	0.00051005 0.947758596	-0.83194604251	
7	-0.00048947 -1.321585772	1.22509396023	
3	-0.00028278 -0.270846155	0.29064586425	
i\j	W2ij		biais
1	0.81111768 0.84362661 -0.02	327852 3.48645584	-0 488966496
	-0.007335601 -0.38535597 3.5386	17989 -1.11555649	0.100300450

Chapitre III

Résultats et comparaisons :

n-paraffines :

Tab (III. 50) Resultats et Comparaison.

	Données	RNA	Erreur %	LEE KESLER	Erreur %	EDMISTER	Erreur %
C7	0,263	0,2623	0,266	0,2524	4,035	0,255	3,042
C13	0,236	0,2346	0,593	0,2352	0,319	0,243	2,966
C20	0,190	0,1866	1,789	0,2133	23,815	0,225	18.421
C27	0,151	0,1506	0,265	0,1893	41,260	0,205	35,762
			0.7284		17.357		15.048

n-alkylbenzènes :

Tab(III. 51). Resultats et componouson.								
		Données	RNA	Erreur %	Leekesler	Erreur %	Edmister	Erreur %
	C7	0,2640	0,2632	0,30303	0,265970	0,7462	0,30923	17,136
	C13	0,2440	0,2408	1,31148	0,241834	0,8875	0,32022	31,241
	C20	0,2018	0,2043	1,23885	0,215393	6,7363	0,32967	63,367
Ĺ	C27	0,166	0,1655	0,30120	0,220610	32,8977	0,336511	102.718
L				0,86572		7,6559		10,477

n-alkylcyclohexanes :

Tab (III. 52) _ Resultats et comparaison.

	Données	RNA	Erreur %	Edmister	Erreur %	Lee Kesler	Erreur %
C7	0,2686	0,2719	1,2136	0,3118	16,1096	0,2691	0.216
C13	0,2317	0,2309	0,31769	0,3220	38,9913	0,2446	5,591
C20	0,1916	0,1917	0,05167	0,3310	72,7750	0,2210	15,326
C27	0,1584	0,1583	0,07890	0,3376	113,0873	0,2258	42,553
			0,4154				

Commentaires :

Pour le groupe de propriétés qu'on vient d'étudier, les erreurs relatives aux réseaux de neurones sont assez faibles, aux environs de un pour cent, ce qui est très acceptable. La comparaison avec les autre corrélations est satisfaisante, notre méthode donne de tous aussi bon résultats que ceux obtenus par la méthode de contribution de groupe. III.5. PROPRIETES OPTIQUES

A. INDICE DE REFRACTION :

Réseaux proposés pour l'estimation de l'indice de réfraction

n-paraffines :

	И	'1 <i>ij</i>	bi	ais	
i∖j	1	2		bi	1
1	0.3080	62.7013	15	8.4417	1
2	0.0001	-1.7086	1.	4424	
3	-0.0062	53.8855	-40).9731	İ
4	-0.0019	-28.4941	24	.1421	
5	-0.0431	-17.6129	8.	0529	
i∖j			W2ij	·	biais
1	-0.0007 0.3425	-0.3689	-1.0918	-0.0454	0.7972

n-alkylbenzénes :

	biais	W1ij				
	61	2	1	ilij		
	-195.8	216.8	-0.0000	1		
	59.8	-70.4	0.0000	2		
	221.2	-349.9	0.2000	3		
	-2211.9	2473.5	0.200	4		
	-125:4	149.5	-0.100	5		
biais		W2		i∖j		
13.7442	004 -40.1309	-0.0137	-14.1473 -13.7275	1		

n-alkylcyclohéxanes :

		W1ij	biais	
Nj	1	2	bi	-
1	0.123	20.7326	-24.9041	-1
2	0.0664	-543.2537	404.6011	
3	0.0985	-108.7799	85.7617	
4	0.0123	20.7231	-24.8909	Ì
5	0.0165	-25.5115	13.1223	
i\j	W2ij			biais
1	-3.8057 0	.0010 309.5451	3.8125 0.0159	-308.1018

Fig.III.28 : Indice de refraction n-paraffines

.

<u>Chapitre III</u>

Résultats et comparaisons :

n-paraffines :

Tab (III. 56). Resultats et companaison.

	Données	RNA	Erreur %	LIPKIN	Erreur %	SKANDER	Erreur %
C7	1,3876	1,3892	0,11531	1,38724	0,026	1,3876	0,003
C13	1,4256	1,4280	0,16835	1,42500	0,042	1,4256	0,000
C20	1,4425	1,4459	0,23570	1,44187	0,044	1,4426	0.005
C27	1,4510	1,4540	0,20675	1,45035	0,045	1,4509	0.004
			0.182		0.039		0.004

n-alkylbenzènes :

Tab (III. 57). Resultats et comparaison.

	Données	RNA	Erreur %	Lipkin	Erreur %	Bouamara	Erreur %
C7	1,497	1,5001	0,21378	1,45951	2,4981	1,48328	0.910
C13	1,485	1,4942	0,59243	1,46686	1,2484	1,49055	0.347
C20	1,482	1,4926	0,72884	1,46994	0,8004	1,49008	0.559
C27	1,480	1,4924	0,81059	1,47155	0,5980	1,48874	0,563
			0.5862		1.2862		2.379

III.6. PROPRIETES THERMODYNAMIQUES

A. CHALEUR SPECIFIQUE

Réseaux proposée pour l'estimation de la capacité calorifique :

n-paraffin	es :	Tab	(TE , 59)	1-				
	Poids des connections et biais pour le réseau reteou							
ĺ								
	i∖j	1	2	bi	1			
	1	0.2004	49.5613	-37.3195				
	2	0.0018	0.5492	-3.3315				
	3	4.6017	33.5084	-25.4208				
	4	0.7679	-133.6630) -170.9640				
	5	0.3532	50.2928	-26.3431				
	6	0.9315	29.9688	-19.4063				
	7	62.9189	-7.9575	-0.1363				
_								
i.	I\j		biais					
	1	1.1672	8.5137 1.29	69 1.1440 1.2352	1280			
Ĺ		1.0811	1.3018		L			

	<u> </u>	<u>ш, 5-),</u>		
Pc	oids des co	nnections et bi	iais pour le résea	u retenu
		W1ij	biais	T
l\j	1	2	bi	7
1	-0.2203	-89.2900	49.7888	
2	4.0841	153.3551	-140.7012	
3	-2.9795	-239.5117	230.0114	
4	0.0022	-8.5045	1.0338	
5	0.7954	-153.4491	114.4281	
i\j	W2ii(1.		-06)	hiai
1	-0.6539 0	-0.6539 0.6539 -0.6538 3.2695 0.6539		

n-alkylcyclohexanes :

Tob (III . 60)=

	Poids des d	connections et bi	ais pour le réseau	retenu
		W1ij	biais	
i\j	1	2	bi	\neg
1	-0.8326	68.2573	-40.2739	7
2	-0.3331	-20.0275	21.984	
3	-0.0023	1.0639	4.2222	
4	0.0060	-8.3299	8.4263	
5	-0.1254	-28.4704	-10.771	
57				1
iVj		biais		
1	-0.4203 -0	42237		

Fig.III.31 :Capacité calorifique standard des n-paraffines

Fig.III.32 : Capacité calotifique standard des n-alkylcyclohexanes

Page 58

B. ENTHALPIE

Réseaux de neurones proposés pour le calcule de l'enthalpie des corps purs:

n-paraffines:

T.	ab (I.6	.():			
	Poids des	connections	et biais pou	r le réseau rel	tenu
[i∖j	1	2		bi	1
1	-0.0059	3.1389		2.3592	1
2	0.5221	-13.5808		24.8438	
3	-0.0294	42.0335		-39.9647	
4	0.0023	0.6478		-2.0780	
5	-0.2819	-51.9079	1	42.5424	{
6	-0.3065	-11.2163		18.3688	
7	0.1577	-45.1700		37.9927	
8	92.1330	-45.6452		30.2417	
9	0.0086	-39.1305	1	30.9216	
j\j_		biais			
1	353.6760	-17.9983	-10.8226	-422.4890	-300.060
	101.2742 9	9.8710 8.25	28301.77	67 -8.4364	

n-alkylbenzénes:

	W1ij (1.0 e-02)		biais	1
i\j	1	2	bi	
1	0.012999	-0.1284018	23.12804	-
2	0.0000188	-0.0439285	-1.010410	
3	-0.0000302	0.2684782	-20.438029	
4	0.01103780	-2.7858084	90.882421	
i∖j		biais		
1	-1.5640756	-4.701306 -0.005	50216 -1.5635452	-156589.79

n-alkylcyclohexanes:

	Ť	W1ii	hiais	
i\j	1	2	bi bi	4
1	-2.7569	-139.0773	103.5135	1
2	-0.6179	-72.3854	40.3771	
3	-0.0663	70.1320	-67.9882	
4	-0.0004	146.4468	-122.7283	
5	0.0058	8.9346	-12.0784	
6	-0.0660	112.9842	-83.3532	
7	0.8410	-110.6031	78.6227	
8	0.0042	-8.9382	5.5445	
9	-26.1257	<u>1</u> 31.7266	-104.6943	
i\j		biais		
1	70.3138 72	2.4070 17.0434	-1.8614 -346.2004	-71.1131
	75.6461 -6	57.4728 -369.8	562 71.2686	

Résultats et comparaisons :

-

n-paraffines :

	Tab (II. 64) . Resultats et discussion							
	Données	RNA	Erreur %	SKANDER	Erreur %			
C7	-187,820	-187,568	0,13417	-187,82	0,0000			
C13	-311,510	-310,830	0,21829	-311,509	0,0003			
C20	-455,770	-453,710	0,45198	-455,777	0,0015			
C27	-600,050	-596,356	0,61562	-600,047	0,0005			
			0,3535		0,006			

n-alkylbenzènes

1. 19 ... ____ ۲. .

	lab	町 . 65/ . 1	result at
	Données	RNA	Erreur %
C7	50,000	49,6280	0,74400
C13	-75,660	-75,9280	0,35422
C20	-219,930	-218,4460	0,67476
C27	-364,210	-364,8020	0,16254
			0,4861

n-alkylcyclohexanes :

Trub (III. 66). Result ats at comparaison.

	10~0		1+- +1-		
	Données	RNA	Erreur %	RD	Erreur %
C7	-154,7700	-152,1100	1,71868	-187,820	21,3543
C13	-275,0200	-277,3700	0,85448	-311,509	13,2678
C20	-419,2900	-420,5200	0,29335	-455,777	8,7022
C27	-563,5600	-562,3600	0,21293	-600,047	6,4744
			0,7688		12,856

C. ENTROPIE

Réseaux obtenus pour l'estimation de l'entropie

n-paraffine.	s :	Tab	.(1.64):		
	Poi	ids des conne	xtions et biais	pour le réseau	retenu
		W1ij		biais	
	[i\j	1	2	bi	
	1	-1.2028	0.1864	-9.5854	
	2	-0.0073	2.5973	3.7651	
	3	0.9512	25.6253	-27.9794	
	4	0.9817	-36.5321	-18.5151	
	5	-0.0016	-0.0712	2.2898	ţ
	i∖j		W2ij(1.0e-03	3)	biais
	1	-1.2677 -0 -6.0017	0.1793 1.310	2 1.7926	1808

n-alkylbenzènes

Tab (II, 68):

Poids des connections et biais pour le réseau retenu						
		W1ij	biais			
ίŊ	1	2	bi]		
1	-17.2632	-173.8414	166.4563)		
2	-6.9780	-115.1561	112.6771			
3	1.5998	-311.4252	258.3393			
4	0.0024	-10.5728	6.1422			
5	0.3857	359.1719	-305.8831			
6 '	-1.0899	24.2385	-9.4869			
7	-0.1334	107.5813	-87.7231			
8	2.6809	-346.1794	299.0112			
9	1.4987	-326.4746	240.2278			
10	1.5256	326.5690	-346.3347			
i\j		biais				
1	-0.5102 -0	.5023 0.5276	5.6525 0.4778	642.3319		
	-0.5445 -0.	6053 0.6720	0.5821 0.7544			

n-alkylcyclohexanes :

Tab (III. 69):

Poids des connections et biais pour le réseau retenu						
		W1ij	biais			
iŊ	1	2	bi]		
1	-0.0031	-4.1531	7.0852			
2	-16.2890	110.8941	-76.9963			
3	1.5300	-92.5824	62.5937			
4	0.0026	-5.4349	6.0368	1		
5	-1.2172	312.1585	628.7896			
6	2.3708	-122.2657	106.0466			
7	1.3601	-136.8115	98.3068			
8	-0.1326	131.6204	-113.9585			
9	-33.5395	-114.3278	86.8161			
10	0.5102	-21.3549	7.8342			
i\j		biais				
1	-0.5281 0.	-0.5281 0.5486 -0.5486 4.9374 0.0001				
	-0.5363 -0.	5385 0.5411 0.5	487 -0.5401			

Fig.III.37 : Entropie standard des n-paraffines

Fig.III.39 : Entropie standard des n-alkvlcvclohexanes

Chapitre III

Résultats et comparaisons :

n-paraffines :

Tab. [III. 70) Resultate et companaison.

	S° DiPPR	RNA -	Erreur %	SKANDER	Erreur %
C7	427,780	428,340	0,13091	427,641	0,0325
C13	661,460	663,230	0,26759	661,498	0,0057
C20	934,140	937,808	0,39266	934,136	0,0004
C27	1206,790	1213,840	0,58419	1206,77	0,0017
			0,3412		0,010

n-alkylbenzènes :

Tab (III, H), Resultats et componouson.

	S° DiPPR	RNA	Erreur %	Skander	Erreur %
C7	319,750	320,2100	0,14386	316,6434	0,9716
C13	556,850	553,4460	0,61130	557,5646	0,1283
C20	829,500	826,0730	0,41314	829,7156	0,0260
C27	1102,150	1094,1343	0,72728	1101,5340	0,0559
			0,470		0,297

n-alkylcyclohexanes :

Tab (II. Fe). (pesultats et companaison).

	S° DiPPR	RNA `	Erreur %	Skander	Erreur %
C7	319,750	320,2100	0,14386	316,6434	0,9716
C13	556,850	553,4460	0,61130	557,5646	0,1283
C20	829,500	826,0730	0,41314	829,7156	0,0260
C27	1102,150	1094,1343	0,72728	1101,5340	0,0559
			0,470		0,297

D. FACTEUR ACENTRIQUE

Réseaux obtenus pour l'estimation du facteur acentrique

n-paraffines :

	Tab (III. 73):							
	Poids de	s connec	tions et b	iais p	our le	e réseau re	etenu	
	-	W1ij				biais		
i\j		1	2		bi			
1	-0.0018	-12	.9672		12.0	365		
2	-0.0179	48	.2483	1	-26.9	603		
3	0.0139	-18	-181.0011		150.	5144		
4	-0.1182	-67	.7790		51.5	899		
5	0.0034	-2	53.7361		217.	4883		
i\j	W2ij						biais	
1	-1.2817	0.1179	0.7303	-0.0)988	0.8212	0.0192	

n-alkylbenzenes :

Tab. (II. 74):

	Poids des connections et biais pour le réseau retenu						
	W1ij	i	biais				
i\j	1	2	bi				
1	0.0359	-248.4359	185.4843				
2	-0.0380	300.9995	-263.6755				
3	-0.1040	-193.5778	206.2515				
4	-0.0028	11.5358	-7.4172				
5	0.0640	-162.8433	114.7106				
6	0.0655	-289.9632	251.9181				
7	-0.2547	331.2618	-177.2168				
i∖j		W2ij		biais			
1	0.0344 1.6	423 -7.5888 -	1.7016 -4.5136	-0.8975			
	-1.5116	-2.8267					

Fig.III.40 :Facteur ascentrique des n-paraffines

Fig.III.41 :Facteur ascentrique des n-alkylbenzènes

.

.
Résultats et comparaisons :

n-paraffines :

Tab (II. 75). Resultate et comparaison.

<u> </u>	1	-	· · · · · · · · · · · · · · · · · · ·				
	Donnees	RNA	Erreur %	SKANDER	Erreur %	EDMISTER	Erreur %
C7	0,3506	0,340	3,02339	0,396	12,949	0,445	26.925
C13	0,5974	0,607	1,60696	0,640	7,131	0.605	1.272
C20	0,8863	0,900	1,54575	0,927	4,592	0.822	7 255
C27	1,1537	1,180	2,28829	1,213	5,140	1.073	6,995
			2.116		7.453		9.61

n-alkylbenzènes :

Tab II. H: Resultate et comparsison.

	Données	RNA	Erreur %	Edmister	Erreur %	Skander	Errour %
C7	0,257	0,253	1,55642	0,28594	11.2642	0.25598	0 305
C13	0,518	0,512	1,15830	0,53767	3,7979	0.51868	0,133
C20	0,812	0,801	1,35468	0,79913	1,5848	0,81143	0.070
C27	1,085	1,067	1,65899	0,73808	31,9734	1,08532	0.030
		_	1,43210		12,1551		0,157

Commentaires :

Les résultats obtenus pour les propriétés thermodynamiques sont satisfaisants, les erreurs sont, en générale, un peu plus supérieures que ceux de la méthode de contribution de groupe.

La base de test confirme la validité des réseaux obtenus pour les propriétés étudiées.

III.7. PROPRIETES SPECIFIQUES

A. FACTEUR DE CARACTERISATION Kuop

Réseaux proposés pour l'estimation de Kuop:

n-paraffines: Tab. II.77:

Poi	ds des conr	nections et biai:	s pour le réseau	retenu
·		W1ij	biais	
i∖j	1	2	bi	
1	-0.0107	5.0570	1.5750	
2	-3.6986	28.4649	-29.3227	1
3	-0.0079	16.8113	-8.0953	•
4	0.0768	-41.0678	28.4373	1
5	-0.0928	-22.6812	20.7433	
i\j		W2ij		biais
1	-0.1523 -	1.0655 -0.704	9 3.4220	7.3095
	-1.3266			

n-alkylbenzénes :

Tab. II. 78:

	<u> </u>	W1ij	biais	
i\j	1	2	bi]
1	-0.0025	52.5694	-43.2592]
2	0.4208	-235.8607	11.5367	
3	-0.1670	274.2902	-183.7958	
4	-1.9979	247.4463	-213.9194	
5	0.3708	-206.4567	176.8055	
i∖j	1	W2ij		biais
1	-2.2385 0.0	0191 -5.7806	5 -1.7746 1.8967	2.8537

n-alkylcydohexanes :

Tolb. II. 79:

Pa	Poids des connections et biais pour le réseau retenu						
		W1ij	biais				
i∖j	1	2	bi				
1	-0.0354	-76.8572	90.2976				
2	-0.0054	31.5309	-22.6633				
3	0.8209	26.5269	-11.1172				
4	-0.0911	-100.5257	116.1962				
5	0.0375	-114.1742	90.5824				
6	-0.0019	-7.8813	6.6840				
١Ŋ		W2ij	•	biais			
1	0.0077	-1.1223 2.2785	-0.0016	3.5781			
	4.8066	-2.3979]			

10 9.5 0.89

0.88

0.87

d20

0.96

0 85

750

700

850

600

550

500

Tb (K)

450

400

350

Page 69

.

Ĉhapitre Ⅲ

Résultats et comparaison :

n-paraffines :

Tab. II. 90: Résultats et compraison.

· · · · · ·							
	Données	RNA	Erreur %	skander	Erreur %	bouamara	Erreur %
_C7	12,697	12,6974	0,05516	12,711	0,165	11,402	10.150
C13	12,751	12,7509	0,07053	12,744	0,125	11,860	7.053
<u>C20</u>	13,043	13,043	0,05364	13,063	0,100	12,222	6,345
<u>C27</u>	13,307	13,3065	0,02630	13,303	0,053	12,483	6,213
			0,05100		0,111		7,440

n-alkylbenzènes :

Tab I. 81: Resultots et comprosison.

	Donaíos	DALA	1 m			1	
ļ	Donnees	RNA	Erreur %	Whiston	Erreur %	Watson	Erreur %
<u>C7</u>	10,160	10,2000	0,39370	10,21521	0,5435	10,20491	0.442
C13	11,360	11,3270	0,29049	11,38668	0,2349	11,41267	0.464
C20	12,120	12,0810	0,32178	12,20087	0,6672	12.18101	0.503
C27	12,590	12,5346	0,44003	12,78424	1,5428	12,65286	0,499
			0,364		0,747		0,477

n-alkylcyclohexanes :

Tab II. 92: Resultient conformison

						· · · · · · ·	
L	Données	RN A	Erreur %	skander	Erreur %	bouamara	Frreur %
<u>C7</u>	11,3200	11,3348	0,13074	12,7115	12,2922	11.4109	0.803
C13	11,9800	11,9879	0,06594	12,7445	6,3813	11,8917	0.737
C20	12,5500	12,5467	0,02629	13,0626	4,0843	12,2595	2,315
C27	12,9300	12,9234	0,05104	13,3026	2,8819	12,5174	3,191
			0,0665		6,40		1,760

B. POINT D'ANILINE

Réseaux de neurones pour l'estimation de PA :

n-paraffines : pour les paraffines le réseau proposé possède deux sortie : Tcg et Pa respectivement

	W1ij	biais	
i∖j	1 2	bi	
1	0.0054 -1.3313	-0.7064	7
2	0.0005 7.0598	-6.6897	1
3	63.9696 -14.6632	14.4145	1
4	-0.5960 30.7300	-18.8477	
i\i	V	V2ij	biais
1	121.4893 190.9920	2.9880 -29.5758	297.2130
2	-15.2484 173.7718	5.7667 -72.6009	431.9785

n-alkylcyclohexanes :

	W1ij		biais		
i\j	1	2	bi		
1	-2.2807	-93.0258	63.9211	,	
2	-0.2982	-120.6391	123.7	983	
3	0.0078	-20.4675	12.86	20	
4	0.0216	-74.5592	72.08	28	
5	-0.0392	127.3068	-108.1	1779	
6	0.0259	130.5142	-76.77	775	
7	12.4917	-73.6878	55.70	66	
Ŋ		W2	ij		bials
1	-112.4753	3 -7.6464	66.3688	3.4700	111.2179
	25.1423	2.7461 111	.8925		

n-alkylbenzènes :

Le point d'aniline de cette famille n'a pas été étudié pour manque de donnée.

Fig.III.45 : Point d'aniline des n-alkylcyclohexanes

-

.

C. TEMPERATURE DE CONGELATION

Réseaux proposés pour le calcul de T_{cg}:

Pour les paraffines, le calcul de Tcg se fait à partir du même réseau utilisé pour le calcul de PA des paraffines.

n-alkylbenzènes :

Tab II.85:

	Poids des	s connections et bia	is pour le réseau reter	าน
	W	lij (1.0 e-02)	biais	T
i\j	1	2	Bi (1.0 e-02)	
1	-0.00017198	-1.607323583	1.498860	
2	-0.00065924	-8.6867951403	7.552617	
3	0.00005707	-0.55515039	0.4437875	
4	0.00099464	3.665795924	-3.2492283	
5	-0.00193754	-8.90919540	7.818577	
6	0.01700307	-6.097067804	5.305058	
i∖j		W2ij		biais
1	-10.2391973	-34.79514361	93.88881115	163.71216
	78.17698727	-59.02289985 -	80.09495422	

n-alkylcydohexanes :

Tab. II.86:

	Poids des co	nnections et bio	ais pour le réseau	i retenu
	1	V1ij	biais	
ilij	1	2	Bi	
1	-0.1130	13.1152	6.9954	
2	0.0250	-46.9353	47.3973	
3	0.9675	-111.2985	-103.1694	1
4	-159.9308	214.2214	248.0200	
5	0.0024	-2.3994	3.5193	
6	0.6169	-25.7514	15.5967	
i∖j		W2ij (1.0 e-	04)	biais
1	0.3495 -0.3	3461 -0.3561	0.3511	-3363.2
	2.1148 -0.3	3363		

Fig.III.46 : Température de congelation des n-alkylbenzènes

Fig.III.47 : Température de congélation des n-alkylcyclohexanes

Application aux mélanges

Nous avons appliqué nos réseaux pour déterminer l'indice de réfraction et le point d'aniline des mélanges binaires (en appliquant la règle d'additivité sur la Température d'ebbulition et la densité) et nous avons comparer nos résultats à l'expérience.

Mélanges	PA	Err (%)	N20	Err (%)
<u>M1</u>	341,23	0,08	1,379	0,2
M2	342,70	0,36	1,3876	0,41
M3	361,05	0,63	1,429	0,14

Les résultats obtenus sont satisfaisant et prouvent qu'on peut appliquer nos réseaux aux mélanges avec une bonne précision en appliquant la règle d'additivité sur les données d'entrés.

CONCLUSION GENERALE

L'ingénieur en génie des procédés a souvent recours à l'utilisation des propriétés physiques et chimiques du pétrole brut et des fractions pétrolières pour La mise en œuvre du pétrole dans l'industrie chimique.

L'expérience fournit la majorité de ces propriétés, mais dans la plupart des cas, elle présente un certain nombre de limitations du fait de sa complexité, du coût élevé et du temps de manipulation souvent important. A coté de cela, certaines propriétés peuvent être déterminées par des résonnements thermodynamiques ou par des méthodes empiriques basées sur la connaissance de propriétés physiques généralement déduites expérimentalement, c'est le cas notamment des méthodes de contributions de groupes.

Notre démarche prospecte une nouvelle voie de détermination des propriétés physiques à l'aide des réseaux de neurones artificiels. Une fois les données recueillies, un apprentissage à été effectué pour obtenir les poids optimaux des réseaux. Nous avons appliqué cette méthode à dix-sept propriétés physiques que nous avons regroupé en six groupes (propriétés thermiques, de transport, critiques, optiques, thermodynamiques et spécifiques).

Les premiers résultats donnent des erreurs de l'ordre de un pour cent. Ces résultats sont très satisfaisants et encourageants, la prochaine étape consistera à appliquer les réseaux à des mélanges et aussi à des fractions pétrolières, tout en sachant que le plus important est d'approcher l'hydrocarbure représentatif du mélange ou de la fraction pétrolière.

- 1. Encyclopedie universalys version électronique(1999).
- 2. F. Souahi, 'Contribution à l'étude physico-chimique des petroles bruts et des fractions pétrolières', Thèse de doctorat, ENP,1999.
- 3. N.Skander. F.souahi et C.E. Chitour contribution à la détermination des propriétés physiques des mélanges d'hydrocarbures et des fractions perlières par des méthodes de contribution des groupes. Thèse de magister, Dpt de génie Chimique, Ecole Nationale Polytechnique (1997).
- 4. E.Davalo et P.Naim. Des réseaux de neurones, Edition EYROLLES (1993).
- 5. Yeddou, 'Etude de synthèse sur les réseaux de neurones et leur application', Magistère automatique, ENP, 1998.
- 6. J.Herault, C.Jutten, 'Réseaux de neurones et traitement de signal', Edition Hermes, 1994
- 7. Babhi, Dama, 'Etude de la commande par RNA : application à un train de laminoir'PFE,ENP,1995
- 8. J.M.Randers, 'Algorithmes génétiques et réseaux de neurones', Edition Hermes, 1995.
- 9. M.R.Riazi et T.E.Daubert, Ind. Eng. chem prosess 25, 1009 (1986).
- 10. Americain Petrolieum Institute, projet 44. Selected values of physical and thermodynamic proprerties of hydrocarbon and related compounds.
- 11. C.E.Chitour. thermodynamique de pétrole, Tome 1, Edition OPU (Alger-1999)
- 12. **B.Zeidelkeir**. Approche à la détermination des propriétés physiques des corps purs et des fractions pétrolières par les méthodes numériques de contribution de groupe. Thèse de magister, Dpt de génie Chimique, Ecole Nationale Polytechnique (1993).
- 13. C.E.Chitour. thermodynamique de pétrole, Tome 3, Edition OPU (Alger 1999). .
- 14. W.C.Edmister, B.IK Lee. Appleid hydrocarbon thermodynamics, vol 1 et 2, second Edition (1984)
- 15. C.E.Chitour. thermodynamique de pétrole, Tome 2, Edition OPU (Alger1999). .
- 16. E.Chitour. Corrélations sur le pétrole brut et les fractions pétrolières, Tome 2, Edition OPU (Alger1983).
- 17. F.Bouamra. contribution à la détermination des propriétés physiques et des fractions pétrolières lourdes. Thèse de magister, Dpt de génie Chimique, Ecole Nationale Polytechnique (1990).

ANNEXE

.

.

VOLUME MOLAIRE

1- CORRELATION DE RIAZI- DAUBERT:

cette corrélation est valable pour 37.8°c< Teb<450°c.

 $Vm = 7,6211 \times 10^{-5} \times Teb^{2.1262} \times SpGr^{-1.6888}.$

Vm : volume molaire en cm³/g.mole. Teb : température d'ébullition en R°. SpGr : specific-gravity.

2-CORRELATION CHITOUR ET COL :

cette méthode est basée sur la méthode de contribution des groupes.

Vm = a + b.NVm : volume molaire en ($10^{-3}m^3/Kmole$). N : nombre d'atome de carbone équivalent. A et b sont des constantes.

Familie	а	b	
Paraffine	31,61095	16 34356	
Naphtène	11,105721	16,43677	
Aromatique	-9,3967414	16,512202	

Tension superficielle

1-EQUATION DE SANBORN ET EVANS :

 $Ts = (673.3 / Kuop) \cdot (1 - (T / T_{c}))^{-1.232}.$

Ts : tension superficielle en dyne/cm.

⊤ :température de travail

Tc :température critique

Koup : facteur de caractérisation

2-CORRELATION DE CHITOUR ET COL :

$$T_{\rm c} = a + \frac{b}{1 + (N/c)^d}.$$

Ts : tension superficielle en dyne/cm.

N : nombre d'atome de carbone.

A, b, c et d sont des constantes.

	а			
Famille		b	С	b
Paraffine	-15,489487	49,980704	3,1254045	-1.0720868
Naphtène	22,298482	9,014923	10.633427	-2,1806274
Aromatique	27,694314	2,7062063	9,22385513	-3,75313335
<u> </u>	bleau 2: valeurs	des constantes	de l'équation I	III-4

la viscosité

1-CORRELATION DE L'API :

 $\log(\mu_{100^{\circ}}) = -1.2926 + 9.461.10^{-3}.Kuop + \frac{3.0522.Kuop + 9.9538.10^{-2}.Kuop^{2}}{API + 113.74 - 10.261.KUop}$ $\log(\mu_{210^\circ f}) = -0.878 + \frac{3.0952.Kuop - 5.8946}{API + 121.12 - 10.725.Kuop}$

Chaleur latente de vaporisation

1-corrélation de Zidelheir-Chitour :

 $\Delta H_v = a+b.N+c.N^2+d.N^3+e.N^4$

 ΔH_v : chaleur de vaporisation (Kcal/mole).

N : nombre d'atome de carbone.

A, b, c, d et e sont des constants.

familles	٥	b	С	д	P
paraffines	1,89756	0,982993	-0,0272393	0,00038576	0
naphtalènes	4,17028	0,281567	0,0494028	-0,00328003	6,53E-05
aromatiques	9,85228	-1,31016	0.210676	-0.0102073	0.00017121

<u>Facteur Acenterique</u> 1-<u>Corrélation d'EDMISTER</u>:

$$w = \frac{3}{7} \frac{\theta}{1 - \theta} \log P_c - 1$$

Pc:pession critique en atm.

0 = Teb/Tc.

Teb: température d'ébullition en °K.

Tc: température ctitique en °K

Propriétés critiques

1- corrélation de PENN-STAT :

 $Tc = \exp(3.9935.Teb^{0.8615}.spgr^{0.4614}).$

 $Pc = 3.4824.10^9 spgr^{2.4853} / Teb^{2.3177}$.

Tc : température critique en °F Pc : pression critique(psia).

Teb : température d'ébullition en R°.

2- corrélation de RIAZI – DAUBERT :

 $Tpc = 24.2787.T_{mav}^{0.58848}.spgr^{0.3596}.$ $Ppc = 3.12281.10^{9}.T_{MAV}^{-2.3125}.spgr^{2.3201}.$ $Vc = 7.5214.10^{5}.T_{mav}^{0.286}.spgr^{0.7666}.$

Tpc : température pseudo critique en R°. Ppc :pression pseudo-critique en psia. Vc : volume critique en ft^3 /lb. T_{mav} : température mean average en R°.

Equation d'Edmister :

Cette équation permit d'estimer Zc à partir de Tc et Pc.

Zc = 0.371-0.03431logPc/[(Tc/Tb)-1]

Avec : Pc : pression critique (atm).

Tc : température critique(K°).

Tb : température d'ébullition (K°).

<u>corrélation de Lee-Kesler :</u>

 $Zc = 0.2901-0.0879 \omega$

 ω : facteur acentrique.

0=Teb

Zc : facteur de compressibilité.

Indice de réfraction

1-CORRELATION DE LIPKIN ET MARTIN :

 $n_d^{20} = \frac{69.878.d - 0.4044.A.d - 0.797.A + 136.566}{5.543.d - 0.746.A + 126.683}.$

 n_D^{20} : indice de réfraction. d : densité à 20°C. $A = 55.3 + \frac{3516}{M+12}$. M : masse molaire.

1- CORRELATION DE CHITOUR ET COL :

$$n_D^{20} = a + \frac{b}{1 + (N/c)^d}.$$

	Famille	а	b	С	
	Paraffine	1,0383849	0,43547681	1,9777596	-1 1058713
	Naphtène	1,4044036	0,06399385	8,998799	-2.1008282
	Aromatique	1,4795363	0,03254417	7,6142466	2,7867861
	TABLEA	U <u>5:</u> valeurs de	es constantes	,,,,,,, _	
<u>Fact</u>	eur de cara				

1- corrélation de Bouamra-Chitour:

cette corrélation est valable pour les fractions lourds (Teb > 200°C).

Kuo=a+b.Teb+c.d

Teb: température d'ébullition en Kelvin.

d: densité .

a,b et c sont des constants qui dépandent de la famille chimique.

familles	а	b	С
paraffines	11,0733	3,34E-03	2,16E-06
naphténes	36,35006	0,00808	-34,95683
aromatiques	13,54416	6,185766e-3-6	-6,127023
Tableau	1 <u>6:</u> valeu	r des constantes	

3- corrélation de Chitour et col :

 $Kuop=a+b.N+c.N^2+d.N^3+e.N^4$

N: nombre d'atome de carbone.

a, b, c, d et e sont des constants.

Familles	а	b	С	Ь	0
Paraffine	1,39E+01	-3,37E-01	3,01E-02	-0.00101814	1 23E-05
Naphténe	9,69E+00	2,87E-01	-0.01165707	0.00028317	-2.95E-06
aromatique	6,9049661	6,55E-01	-3,46E-02	0,00095134	-1.03E-05
	TABLEA	U7:consta	intes de l'équation	n.	

Point d'aniline

1-CORRELATION DE WALSH-MORTIMER :

 $PA=-238,1 -1,498.N_{c50}+100,5(N_{C50}^{(1/3)})/d$

d: densité de la fraction pétrolière à 20°C.

PA: point d'aniline en°C.

 N_{c50} : nombre d'atome de carbon de la normale paraffine ayant pour point d'ébullition la température correspondantes à 50% de l'intervalle de distillation de la fraction pétolière.

1- CORRELATION DE M.ROBERT :

PA=(M-(1705,45.n+792,93.d-3287))/4,553

PA: point d'aniline en °C.

M: masse molaire.

n: indice de réfraction.

d: densité .