REPUBLIQUE ALGERIENNE DEMOCRATIQUE L'EMPULAIRE

2/00

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

To OLE NATIONALE POLYTECHNIQUE

Département de Génie Chimiqu.

Memoire de Fin d'Eudes

CRAQUAGE CATALYTIQUE DES COUPES LOUI-DES

Propusé par : Pr. C.E. CHITOUR Etudić par : I. BELKHODJA Dingerant Pr. Ch. CHITOUR Mine A. METTI Mine S. HADDOUM

PROMOTION
Juin 2000

A ma très très chère mère à qui je dois tout l'amour et le respect.

A la mémoire de mon père.

A mes chères sœurs Farida et Houria, leurs époux ainsi qu'à mon frère et son épouse.

A ma sœur SAIDA et chère nièce LYDIA.

A mon frère.

Ainsi qu'à tous mes ami (es).

Isma

Le présent travail a été réalisé au laboratoire de valorisation des énergies fossiles du département de Génie Chimique de l'Ecole Nationale Polytechnique, sous la direction du professeur C.E. CHITOUR à qui j'adresse mes sincères remerciements pour m'avoir suivi jusqu'à son élaboration.

Je tiens à remercier Mme A. MEFTI ainsi que Mme S. HADDOUM pour l'aide et l'assistance qu'elles m'ont fourni tout au long de mon travail.

Que M. A. SELATNIA trouve ici mes remerciements pour m'avoir fait l'honneur de présider le jury.

Que Mme A. MEFTI, Mme S. HADDOUM et M. R. BOZET!NE trouvent ici l'expression de ma reconnaissance pour avoir accepter de participer à ce jury.

Je tiens également à remercier M. M. HADJ SAID, M. D. HADDAD ET M. F. SOUALILI pour l'aide précieuse qu'ils m'ont fourni tout au long de mon travail au C.R.D Dar El Beida, service catalyse.

Je remercie Mme M. MELOUANI ainsi que Melle A.AIT OUAKLI pour leur aide dans la réalisation des analyses chromatographiques.

Je ne saurais oublier toute personne qui m'a apportée une aide technique durant la réalisation de ce travail.

TABLE DES MATIERES

INTRODUCTION GÉNÉRALE

PARTIE THEORIQUE

CHAPITRE 1 : GÉNÉRALITÉS SUR LA CATALYSE ET LES CATALYSEURS	
I INTRODUCTION:	2
II TYPES DE CATALYSE :	2
II 1 Cataling homogena .	2
11.2 Catalyse neterogene	
III DIFFÉRENTES ETAPES DU CYCLE CATALYTIQUE EN CATALYSE HÉTÉROGÈNE:	3
III 1 Diffusion des réactifs et des produits :	4
111 2 Adecention des réactifs sur le catalyseur :	
III 3 Transformation des espèces adsorbés :	
III.4 La désorption des produits :	ر سے
IV CLASSIFICATION DES CATALYSEURS :	C
IV.1 Les métaux :	5 6
11/2 Las vami canducto ire.	1/
IV.3 Les isolants:	ο
V CARACTÉRISTIQUES ET PROPRIÉTÉS DU CATALYSEUR:	٥
V.1 L'activité :	y a
V.1 L activité :	
V.4 La régénérabilité :	10
V.5 La morphologie :	10
VI CRITÈRES DE SÉLECTION D'UN CATALYSEUR :	10
VI CRITERES DE SELECTION D'UN CATALISEUR	
CHAPITRE 2 : LES SUPPORTS UTILISÉS	
I LES ARGILES :	11
The state of the s	11
1.2 Classification des Argues :	
II FAMILLE DE LA MONTMORILLONITE : LA BENTONITE :	14
III LE KIESELGUHR:	15
IV Préparation des Catalyseurs :	16
TII 1 Activation thermians .	10
IV 2 Activation chimique .	10
IV.3 Activation par échange de cations :	16

CHAPITRE 3: CRACKING CATALYTIQUE

I GÉNÉRALITÉS SUR LE CRACKING :	18
II CRAQUAGE THERMIC JE:	18
II CRAQUAGE THERMIN, JE :	10
III CRAQUAGE CATALYTIQUE:	X.7
IV CRAQUAGE DES PRINCIPALES CLASSES D'HYDROCARBURES :	19
IV 1 Common des Paraffines	<i>19</i>
IV 2 Crannago dos Nanh'ènes :	***************************************
IV.3 Craquage des arom. tiques:	20
V PARAMÈTRES INFLUANTS SUR LE CRACKING CATALYTIQUE :	22
Y PARAMETRES INFEDAL IS SON DE CICACIANO CITALE DE CICACIANO CICACIANO CITALE DE CICACIANO CICAC	22
V.1 La nature de la charge :	72
V.2 Le catalyseur :	22
V.3 La température :	23
V.4 La pression :	20
VI MISE EN ŒUVRE DES PROCÉDÉS INDUSTRIELS DU CRAQUAGE CATALYTIQUE:	
VI 1 Commana catalytique à lit fixe :	24
VI 2 Cranuago à lit mobile :	*****
VI.3 Le craquage à lit fluide :	25
VII ETUDE THERMODYNAMIQUE DU PROCÉDÉ :	27
VIII DÉSACTIVATION DE CATALYSEUR PAR DÉPÔT DE COKE :	
VIII 1 Origina du caka	29
VIII 2 Nature du coke	
VIII 3 Hydrocarbures reécurseurs de coke :	30
VIII 4 Fmnoisonnemert du catalyseur :	30
VIII.5 Régénération du catalyseur :	32

Ecolo Mationalo Polytechnique

PARTIE EXPERIMENTALE

CHAPITRE 1 : PRÉPARATION DES CATALYSEURS

I COMPOSITION DES SUPPORTS:	33
II PRÉPARATION:	34
II 1 Activation thermique ·	34
II 2 Activation acida :	34
II.3 Activation par échange cationique :	34
CHAPITRE 2 : CARACTÉRISATION PHYSICO-CHIMIQUE DES CATALYSEURS	
I Introduction:	37
II MESURE DU TAUX D'IMPRÉGNATION :	37
II I Analysa das filtrats :	37
II 2 Mosure de la surface spécifique :	70
II.3 Mesure d'acidité :	40
CHAPITRE 3 : CRAQUAGE CATALYTIQUE DES MOLÉCULES SONDES	
1 DISPOSITIF EXPÉRIMENTAL :	43
Il Appareillage:	45
12 Mode Opératoire:	.,,,,
I 3 Ramplissaga du Réactaur :	43
I.4 Conditions Opératoices :	رۍ
II CRAQUAGE CATALYTYQUE DES MOLÉCULES SONDES :	40
III CONCLUSION	51
CHAPITRE 4 : CRAQUAGE CATALYTIQUE DU MÉLANGE BITUME-TOLUÈNE	
I DÉFINITION:	52
II MÉTHODES DE CARACTÉRISATION DES BITUMES :	52
III PRÉPARATION:	52
IV UTILISATION:	53
TV OTILISATION	53
V PROPRIÉTÉS PHYSIQUES DU MÉLANGE BITUME-TOLUÈNE :	ري
VI CRACKING CATALYTIQUE DU MÉLANGE BITUME-TOLUÈNE :	53
VII CHROMATOGRAPHIE EN PHASE GAZEUSE (C.P.G):	54
CONCLUSION GÉNÉRALE	
BIBLIOGRAPHIE	
ANNEXES	

TABLE DES FIGURES

Figure 1 : Diminution de l'énergie d'activation dans une réaction catalytique[2]	2
Figure 2: Les étapes d'une réaction catalytique hétérogène [3].	3
Figure 3: Nature des sites acides superficielles dans les catalyseurs du craquage.	7
Figure 4 : Structure chimique des zéolithes	12
Figure 5 : Structure chimique des aluminosilicates	13
Figure 6 : Schémas de principe des procédés de craquage catalytique	26
Figure 7 : Stabilité relative des hydrocarbures en fonction de la température.	28
Figure 8 : Diminution de l'activité catalytique pendant le craquage d'un Gaz-oil.	29
Figure 9 : Courbes d'étalonnages des différentes métaux	39
Figure 10 : Schéma descriptif du système réacteur jumelés	44
Figure 11: Remplissage du réacteur.	45

TABLE DES TABLEAUX

Tableau 1 : Principaux métaux catalyseurs dans la classification periodique des elements.	o
Tableau 2 : Principaux Types de Catalyseurs	8
Tableau 3 : Propriétés des Catalyseurs	9
Tableau 4 : Principales réactions dans le craquage catalytique des diverses familles	
d'hydrocarbures.	21
Tableau 5 : Composition Chimique de la Bentonite.	_ 33
Tableau 6 : Composition Chimique du Kieselguhr.	33
Tableau 7 · Composition Chimiane du Support Prepare.	フー
Tableau 8 : Pourcentage de Transmission :	
Tahleau 9 · Résultats d'analyse par Colorimètrie.	_ 20
Tableau 10 : Taux de fixation des métaux.	_ 30
Tableau 11 : Les Indices d'acidité des catalyseurs.	~1
Tableau 12 : propriétés physiques des molécules sondes.	_ 46
Tableau 13: Résultats du Craquage de l'Heptane.	47
Tableau 14: Composition et nature chimique du produit.	47
Tableau 15 : Résultats du Craquage du n-Hexadécane.	48
Tableau 16: Composition et nature chimique du produit.	_ 48
Tableau 17: Résultats du Craquage du Cyclohexane.	49
Tableau 18: Composition et nature chimique du produit.	_ 49
Tableau 19 : Résultats du Craquage des Xylènes.	49
Tableau 20 : composition et nature chimique du produit.	_ 50
Tableau 21 : Propriétés physiques du mélange. Tableau 22 : résultats du craquage du mélange Bitume-Tohiène.	53
Tableau 22 : résultats du craquage du mélange Bitume-Toluène.	_ 54
Tableau 23 : Composition et nature chimique du produit.	_ 54
Tableau 24: Principaux produits du craquage catalytique du n-Heptane avec KBA	_ 60
Tableau 25: Principaux produits du craquage catalytique du n-Heptane avec KBACu	_ 01
Tableau 26: Principaux produits du craquage catalytique du n-Heptane avec KBACo	_ 62
Tableau 27: Principaux produits du craquage catalytique du n-Hexadecane avec KBACu	63
Tableau 28: Principaux produits du craquage catalytique du n-Hexadecane avec KBACo	_ 04
Tablean 29 Principaux produits du craquage calalytique du Cyclonexane avec KBA	00
Tableau 30: Principaux produits du craquage catalytique du Cyclohexane avec KBACu	_ 00
Tableau 31: Principaux produits du craquage catalytique du Cyclohexane avec KBACo	0/
Tableau 32: Principaux produits du craquage catalytique des Xylènes avec KBA	00
Tableau 33: Principaux produits du craquage catalytique des Xylènes avec KBACu	09
Tableau 34: Principaux produits du craquage catalytique des Xylènes avec KBACo	/0
Tableau 35: Principaux produits du craquage catalytique du Bitume-Foluene avec KBACu	_ / 3
Tableau 36: Principaux produits du craquage catalytique du Bitume-Toluène avec KBACo_	_ /2

ملخص:

لقد تم تحضير المحنزات على أساس كل من البنتونيت ر الكيسلغور, منشطة بسامض الكلور و مشربة بالنماس و الكوبالت.

لقد أنجزت بعض المميزات الفيزيوكيماوية للمحفزات ثم انتقلنا بعد ذلك إلى التكسير الحفزي للجزيذات النموذجية و التي بعد التحليل مكنتنا من إختيار احسن السحفزات لتكسير خليط من الزفت و التوليان.

Résumé:

Le travail réalisé concerne la préparation des catalyseurs a base de bentonite et de kieselguhr, activés à l'acide puis imprégnés par les sels précurseurs de cuivre et de cobalt.

Des caractérisation physico-chimique ont été effectuées sur les catalyseurs cités. Des tests de craquage catalytique sur des molécules d'hydrocarbures pures conduits pour choisir les catalyseurs les plus actifs.

Finalement, les meilleures formulations de catalyseur ont été recenues pour le craquage catalytique du mélange bitume-toluène.

Mots clés:

Catalyse, catalyseurs, craquage, catalytique pétrole

Abstract:

The work wich was inderlaken concerns catalysts preparation, at bentonit and kieselgulir base, actived by acid and impregnated by copper and cobalt salt precursors.

Physical and chemic dearacterizations were achieded on the formentioned catalysts.

Catalytic cracking tests were conducted by using pure by drocarbon molecules in order to select the most actives catalysts.

Finally, the best catalyst formulations was retained for bounces olden mixture catalytic cracking.

Key WordsS:

Catalysets, catalytic, cracking, oil

Introduction Generale

La demande en produits pétroliers est caractérisée dans les pays industrialisés et notamment aux U.S.A par une d'iminutriende la consommation de coupes lourdes et une augmentation de carburants.

Pour faire face à cette nouvelle structure de le demande, il est nécessaires d'adapter l'outil de raffinage à la transformation des produits lourds en produits plus légers.

L'objectif de notre travail est de valoriser des fractions lourdes telles que le bitume en solution dans le toluène pour l'obtention de quantité supplémentaires d'essence à haut indice d'octane, dont la demande est de plus en plus croissante et ce en présence de catalyseurs à base de matières premières locales qui sont la bentonite et le kieselguhr.

La première partie a été consacré à l'élaboration de catalyseurs utilisant un support mixte (bentonite/kieselguhr) de rapport massique 60/40. Nous avons préparé trois catalyseurs qui subissent une activation thermique et acide puis deux d'entre eux sont imprégnés par des sels précurseurs de métaux (Cu, Co), les caractéristiques physico-chimiques des catalyseurs ont été déterminées par différentes méthodes (taux d'imprégnation, indice d'acidité).

Dans la deuxième partie des tests catalytiques ont été effectués sur des molécules sondes

(n-heptane, n-hexadecane, cyclohexane, xylenes) qui simulent les trois familles d'hydrocarbures dont le but est d'approcher les catalyseurs présentants les meilleures activités.

Enfin, ces catalyseurs feront l'objet de tests catalytiques du mélange bitume-toluène, dans le but de mieux valoriser le bitume.

PARTIE THEORIQUE

CHAPITRE 1 : GENERALITES SUR LA CATALYSE ET LES CATALYSEURS

I INTRODUCTION:

La catalyse est l'augmentation de la vitesse des réactions chimiques par une substance dite catalyseur. Ce dernier ne modifie en aucune façon les possibilités réactionnelles d'un système chimique qui sont fixées par la thermodynamique.

La catalyse traduit une interaction chimique intermédiaire entre les réactifs et le catalyseur, elle fournit ainsi un nouveau chemin réactionnel par lequel les réactifs se transforment en produits de la réaction[1]. Le chemin réactionnel est souvent plus complexe que celui suivi par les réactifs en l'absence de catalyseur. Le nombre d'étapes intermédiaires est plus élevé en présence du catalyseur, mais les hauteurs d'énergie de ces étapes individuelles sont toutes inférieures à celles des étapes intermédiaires d'une même réaction globale non catalysée.

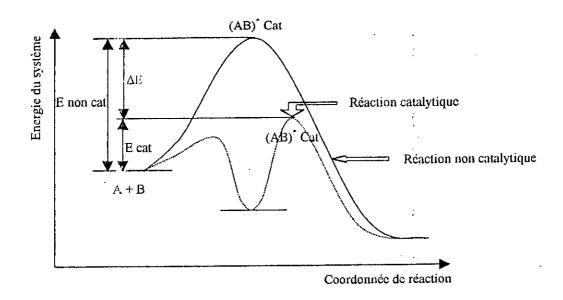


Figure 1 : Diminution de l'énergie d'activation dans une réaction catalytique[2]

II Types de Catalyse:

Il existe deux types de catalyse:

II.1 Catalyse homogène:

Lors de la catalyse homogène, le catalyseur et les réactifs constituent la même phase fluide (gazeuse ou liquide).

Le mécanisme de la réaction consiste en la formation d'intermédiaires résultant de l'interaction entre les réactifs et le catalyseur.

II.2 Catalyse hétérogène :

Contrairement à la catalyse homogène, la catalyse est dite hétérogène quand le catalyseur constitue une phase distincte de la phase réactionnelle; un catalyseur est un solide qui a la propriété d'accélérer une transformation chimique thermodynamiquement possible.

Les composés initiaux et les produits de la réaction constituent une phase gazeuse ou liquide, et le catalyseur se trouve en principe inaltéré à la fin de la réaction.

Si le système réactionnel peut évoluer suivant plusieurs voies thermodynamiquement permises, le catalyseur accélère sélectivement l'une de ces voies. Il a donc un effet d'orientation sur l'évolution du système. Comme il ne figure pas dans l'équation stechiométrique de la réaction qu'il accélère, il ne peut modifier ses caractéristiques thermodynamiques notamment son $\Delta G^{\rm u}$, variation d'enthalpie libre standard. Il ne modifie donc pas la position des équilibres qu'il aide à réaliser.

III DIFFERENTES ETAPES DU CYCLE CATALYTIQUE EN CATALYSE

HETEROGENE:

La réaction ayant lieu non pas dans tout le volume d'une phase fluide, mais à l'interface solide-fluide, la formation des espèces adsorbées actives implique un transfert des molécules vers la surface, suivi d'adsorption. La réaction de surface donne des produits qui doivent d'abord se désorber du solide puis migrer dans la phase fluide.

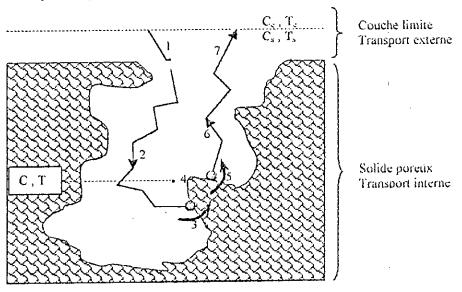


Figure 2 : Les étapes d'une réaction catalytique hétérogène [3].

Un cycle catalytique se déroule donc en cinq étapes :

- transfert des réactifs vers la surface du solide
- adsorption des réactifs sur le catalyseur
- interaction entre réactifs adsorbés à la surface
- désorption des produits de la surface catalytique
- transfert des produits quittant le catalyseur

Les étapes 2, 3 et 4 sont de nature chimique, alors que les étapes 1 et 5 correspondent à des processus physiques de transfert de matière.

La loi de vitesse expérimentale permet en principe de cerner l'étape limitante qui est souvent l'étape chimique 3, d'où l'énergie d'activation est alors celle de l'étape 3.[3] [4]

III.1 Diffusion des réactifs et des produits :

La diffusion, processus physique tend à égaliser les concentrations dans la phase fluide. Un courant de diffusion s'établit donc au voisinage de l'interface solide-fluide lorsque la consommation des réactifs sur la surface et la formation de produits provoquent dans cette région des gradients de concentration.

Deux cas sont à considérer :

III.1.1 La diffusion externe:

Dans une couche fluide entourant le grain de catalyseur, il s'établit un flux permanent de réactif qui a pour effet d'abaisser sa concentration de la valeur C_h au sein de l'espace intergranulaire à la valeur C_{ext} sur la surface externe du grain. Un gradient de signe opposé s'établit pour les moléculaires des produits formés. C'est la diffusion externe.

III.1.2 La diffusion interne:

L'extérieur du grain ne présente qu'une faible fraction de la surface de catalyseur si celui-ci est poreux. La surface interne du catalyseur est formée de canaux dont l'accès est toujours réglé par la diffusion. Celle-ci tend à abaisser la concentration en réactif de la valeur C_{ext} à la valeur C_{int} au fur et à mesure que celui-ci pénètre dans le grain. Plusieurs mécanismes de diffusion interne sont à considérer selon que le diamètre moyen des pores est supérieur ou inférieur au libre parcours moyen des molécules.[4]

L'abaissement de la concentration C_{int} du réactif le long du pore résulte non seulement de la diffusion, mais aussi de sa disparition par la réaction.

III.2 Adsorption des réactifs sur le catalyseur :

Parvenus au voisinage immédiat de la surface catalytique, les réactifs vont s'y adsorber, c'est-à-dire réagir avec celle-ci pour donner naissance à de nouvelles espèces chimiques plus réactives. L'adsorption se traduit donc souvent par des ruptures de liaison intramoléculaires et il y

a toujours formation de liaisons avec la surface. Ces espèces adsorbées constituent des intermédiaires actifs qui, réagissant entre eux, permettront à la réaction de se dérouler suivent un mécanisme différent de celui de l'activation thermique et plus favorisé du point de vue de l'énergie d'activation.

III.3 Transformation des espèces adsorbées:

Les atomes adsorbés à la surface du catalyseur ne restent pas figés à la surface. Si la température devient suffisante, ils s'activent en acquérant une certaine mobilité à la surface et la réaction chimique se déroule.

III.4 La désorption des produits :

Les produits de la réaction ainsi formés doivent quitter la surface catalytique pour laisser place aux réactifs pour s'adsorber. la désorption est le phénomène inverse de l'adsorption.

IV CLASSIFICATION DES CATALYSEURS:

Il n'existe qu'un petit nombre de catalyseurs capables d'effectuer dans des conditions optimales une réaction donnée. Le catalyseur réel adapté à un procédé particulier est le plus souvent un solide complexe.

Pour examiner les propriétés des catalyseurs, on a classer les phases actives en trois grandes familles :

- Les métaux.
- Les semi-conducteurs, oxydes, sulfures ou autres ions supportés.
- Les oxydes isolants, acides ou basiques.

IV.1 Les métaux:

Les métaux utilisés en catalyse sont ceux des 4^{ème}, 5^{ème} et 6^{ème} périodes de transition et quelques métaux IB limitrophes les plus utilisés sont les triades du groupe VIII,

Ils sont actifs dans les réactions d'hydrogénation, déshydrogénation, oxydation, et ils chimisorbent les gaz simples dans la catégorie des catalyseurs métalliques au cours de l'acte catalytique, on estime généralement que l'activité est due à la phase métallique à l'état réduit.

Les catalyseurs métalliques présentent une conductibilité électrique élevée de 10⁴ à 10⁶ et sont utilisés surtout en réforming catalytique.

VIIIA \mathbf{IB} **IIIA** íVA VA**VIA VIIA** 4^{ème} Νi Cu Ti V Mn Гe Co Sc Cr période 5^{ème} PdY Tc Ru Rh Ag ZrNb Mo période 6ème Pt Au Hf W Ra Os Ir Ta La période

Tableau 1 : Principaux métaux catalyseurs dans la classification périodique des éléments.

IV.2 Les semi-conducteurs:

La phase active d'un catalyseur appelé semi conducteur est généralement un oxyde de métaux de transition (NiO, ZnO, ...) qui permettent plusieurs degrés d'oxydation stables et dont le spectre d'activité est le suivant:

$$TiO_2 < V_2O_5 < Cr_2O_3 < MnO_2 < Fe_2O_3 < Co_3O_4 < NiO < CuO < ZnO.$$

Ces catalyseurs peuvent, sans changer la structure cristalline, s'écarter entre certaines limites de leur composition théorique, par perte ou gain d'oxygène avec réduction ou oxydation concomitante de cation. Ils deviennent conducteurs électriques mais avec des conductances beaucoup plus petites que celles des métaux 10^{-4} à 10^{-2} .

En catalyse, les semi-conducteurs sont moins actifs par rapport aux métaux d'où la nécessité de travailler à des températures élevées.

On les appelle aussi oxydes à valence variable.

IV.3 Les isolants:

Ce sont les oxydes solides de métaux IA, IIA et des métaux et métalloïdesIIB, IIIB, VB légers, les oxydes des premiers sont basiques, ceux des seconds sont acides. Ils catalysent les mêmes réactions que les acides et bases en solutions.

Leurs centres actifs sont des centres de LEWIS et BRONSTED (cation ou proton lié à l'anion) ou des centres basiques (anions). Les oxydes acides ont comme type l'alumine, mais on obtient des catalyseurs acides beaucoup plus actifs en associant l'alumine à la silice dans des oxydes mixtes amorphes, les aluminosilicates constituent donc de variables acides solides.[7]

Notons que les argiles naturelles sont des silicates d'alumines complexes, comme la Montmorillonite.

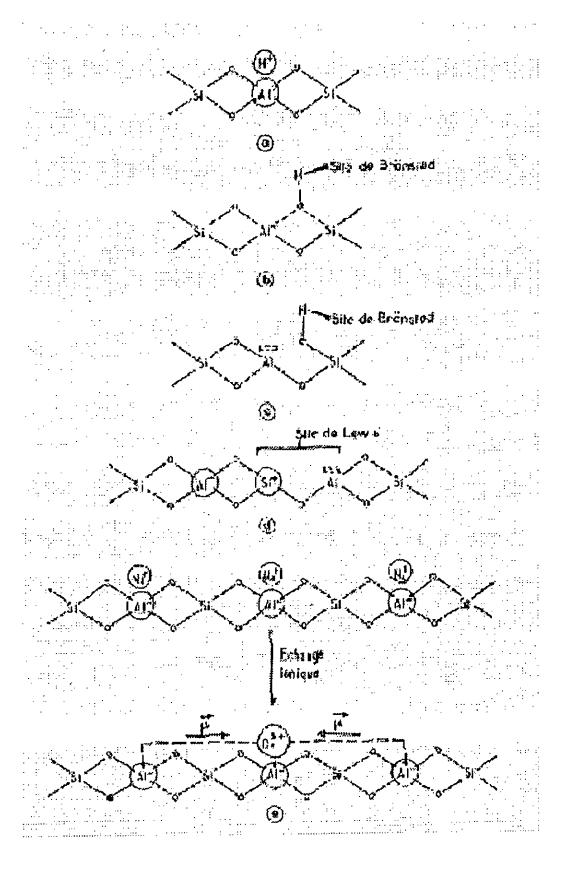


Figure 3 : Nature des sites acides superficielles dans les catalyseurs du craquage.

Tableau 2 : Principaux Types de Catalyseurs

	Métaux	Sulfures	Oxydes	lons supportés	Acides
Principales phases actives	Ni, Co, Fe, Pd, Rh, Ru, Pt, Ir, Cu, Ag,	Ni ₃ S ₂ , Co ₉ S ₈ , MoS ₂ , WS ₂	ZnO, CuO, Cr ₂ O ₃ , Fe ₂ O ₃ , V ₂ O ₅ , MoO ₃	Ni ²⁺ ,Mo ⁶⁺ , Cr ³⁺ , Ti ³⁺ , Zr ⁴⁺ , Re ⁷⁺	Alumine modifiée (Cl, F) silice-alumine silice-magnésie acide phosphorique supporté zéolithes résine sulforiques
Réactions	Hydrogénations Déshydrogénations Hydrogénolyse Oxydations Cyclisations	Hydrogenations Deshydrogenations Hydrogenolyse	Oxydations Hydrogénations Déshydrogénations Cyclisations	Oligomérisations Métathèses Polymérisations Oxychlorations	Hydratations Déshydrogénations Isomérisations Oligomérisations Alkylations
Principales applications industrielles	Synthèse de I'ammoniac Raffinage pétrolier hydrogénations en chimie fine Postcombustion (1) Oxydations ménagées Production du gaz de synthèse	i lydrotraitements en raffinage Hydrocraquages	Oxydations Synthèses du méthanol	Dimérisation des oléfines Métathèses Polymérisation de l'éthylène Polymérisation du propylène Polymérisation du chlorure de vinyle	Production d'éthers Craquage catalytique Alkylation de l'iso-butane par des oléfines. Alkylation des aromatiques Isomérisation des paraffines

V CARACTERISTIQUES ET PROPRIETES DU CA TALYSEUR:

Les caractéristiques économiques des procédés catalytiques du raffinage sont étroitement dépendantes des propriétés et plus spécifiquement des caractéristiques du catalyseur. L'utilisateur, le bailleur de procédé et le fabricant du catalyseur attachent beaucoup d'importance à leur contrôle et, pour les deux derniers, à leur reproductibilité par une maîtrise achevée des techniques de préparation et de caractérisation.[5]

Trois grandeurs fondamentales caractérisent l'action du catalyseur: l'activité, la sélectivité et la stabilité, on les résume dans le tableau suivant :

Tableau 3 : Propriétés des Catalyseurs

Propriétés	Définitions			
	Capacité du catalyseur à activer la transformation d'une charge en produits.			
	Elle s'exprime en			
	Kg de réactif converti par kg (ou par litre) de catalyseur et par heure			
Activité	% du réactif converti			
	mol.g de réactif transformées par g de catalyseur et par seconde			
	mol.g de réactif transformées par m2 de catalyseur et par seconde			
	molécules de réactifs transformés par site et par seconde			
	Capacité du catalyseur à activer la transformation vers le produit recherché, parmi tous ceux possibles,			
Sélectivité	s'exprime en pour-cent par rapport à la fraction de réactif transformé (ou aux produits formés)			
Stabilité	S'exprime par la durée (minutes, heures, mois, années) pendant laquelle le catalyseur maintient l'activité et/ou la sélectivité visées.			

V.1 L'activité:

L'activité d'un catalyseur exprime sous différentes formes la vitesse de transformation des réactifs dans des conditions opératoires données. Une bonne activité se traduit par une vitesse de réaction élevée permettant soit d'utiliser peu de catalyseur, soit d'opérer dans des conditions opératoires peu sévères et notamment à une température relativement basse.

V.2 La sélectivité:

La sélectivité caractérise l'aptitude du catalyseur à activer essentiellement la transformation des réactifs vers le produit recherché parmi, tous ceux dont la formation est possible.

Une sélectivité élevée permet d'obtenir de bons rendements dans le produit désiré, en rendant minimum les réactions secondaires.

V.3 La stabilité:

Une bonne stabilité caractérise le fait que le catalyseur n'évolue que très lentement au cours du temps dans les conditions de mise en œuvre et de régénération. En pratique, il est loin d'être ainsi et parmi les causes d'évolution entraînant progressivement la perte d'activité, de sélectivité ou de solidité, on cite :

- 1- le dépôt de coke.
- L'attaque des supports par les réactifs ou les produits.[6]

V.4 La régénérabilité:

Lorsque l'activité et la sélectivité du catalyseur descendent au dessous d'un seuil critique, son caractère régénérable doit permettre alors de restaurer tout ou partie de ses vertus initiales par un traitement approprié directement applicable sur l'unité industrielle. Cette opération de régénération doit pouvoir être répétée dans le temps à intervalles réguliers sans dommage pour l'agent activant afin d'obtenir une durée de vie totale du catalyseurs satisfaisante.[7]

V.5 La morphologie:

La forme et la granulométrie (morphologie) d'un catalyseur doivent être adaptées au procédé catalytique correspondant. Cependant, pour un lit fluide on utilise une poudre de forme sphéroïdale si possible pour limiter l'attrition et de répartition granulométrique bien déterminée pour obtenir une bonne fluidisation tandis que dans un lit fixe on utilisera des billes, des anneaux, des pastilles, des extrudés ou des écailles.

VI CRITERES DE SELECTION D'UN CATALYSEUR:

Les principaux critères déterminant le choix d'un catalyseur sont les suivants :

- Une bonne activité catalytique.
- Une bonne sélectivité pour le produit désiré
- Une bonne stabilité chimique vis-à vis du milieu réactionnel
- Une bonne stabilité thermique
- Une bonne résistance mécanique (pour les solides : résistance à l'effritement ou à l'écrasement).
- Possibilité de régénération (régénérabilité)
- Longue durée de vie
- Longue durée de cycle (longue utilisation entre deux régénérations)[8]

CHAPITRE 2 : LES SUPPORTS UTILISES

I LES ARGILES:

I.1 Généralités sur les Argiles :

Les premiers catalyseurs de cracking utilisés industriellement ont été des argiles naturelles du type bentonite dont le constituant principal est la montmorillonite, silicate d'aluminium hydraté renfermant un peu de magnésie. Il était alors nécessaire de procéder à leur activation par attaque acide. Celle-ci entraîne des modifications importantes dans les propriétés physiques, chimiques et morphologiquesde ces argiles; On observe notamment un accroissement de leur surface spécifique et de leur porosité, provoqué par la dissolution d'atomes d'aluminium et de magnésium, qui s'accompagne de la réaction, par échange ionique, de sites superficiels favorables aux réactions de craquage des hydrocarbures.

Toutefois, en raison de la présence d'impuretés diverses comme le fer, ces catalyseurs manifestaient une grande sensibilité à l'empoisonnement par les dérivés soufrés contenus dans les charges pétrolières. Afin de remédier à cet inconvénient, on s'est donc adressé à des kaolinites ou à des montmorillonites soigneusement épurées, par traitement chimique complémentaire, de leurs contaminants métalliques.

Mais les argiles naturelles ont été rapidement supplantées par des catalyseurs synthétiques dont le premier fût mis au point en 1940 dans les laboratoires de la Houdry Process Corporation.

Les données technologiques relatives au craquage catalytique qui reposaient jusqu'alors sur ces catalyseurs synthétiques conventionnels ont été complètement transformées en 1962, par l'apparition d'une troisième génération de catalyseurs à base d'aluminosilicates cristallisés ou zéolithes qui existent pour certains à l'état naturel.

Les motifs structuraux réalisés délimitent des cavités ou supercages de géométrie bien définie dont les dimensions peuvent être modifiées suivant la nature des cations compenseurs.

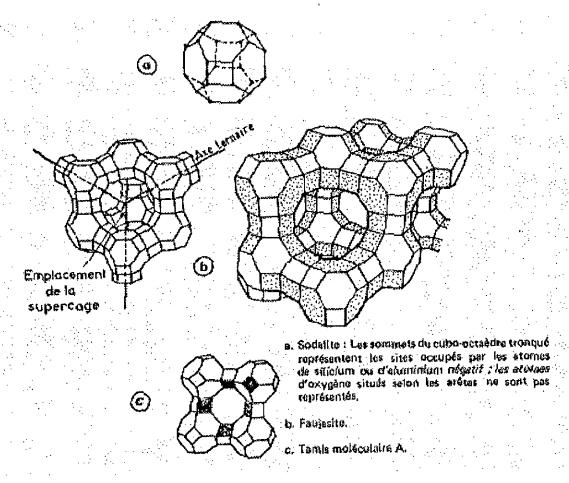
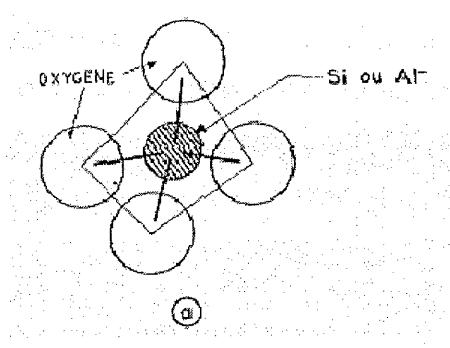


Figure 4 : Structure chimique des zéolithes

1.2 Classification des Argiles :

Dans les minéraux argileux, on distingue sept grands groupes et environ cinq espèces. Les six premiers groupes sont constitués de minéraux à feuillets (phylosilicates). Le septième est formé de minéraux en lattes. Il s'agit des groupes de la kaolinite, des micas, des illites, des montmorillonites, des chlorites, des vermicullites et des sepiollites ou attapulgites.


L'organisation cristalline est soigneusement combinée à l'échelle du millionième de mètre. Les différentes espèces de minéraux argileux proviennent des variations de cette organisation.

Les argiles présentent généralement un caractère acide qui lui confère un pouvoir catalytique important. Cette acidité peut être de type Lewis ou Bronsted.

I.2.1 Acidité de Bronsted :

Un acide de Bronsted est une substance qui cède des protons en solution aqueuse. Dans les argiles, les protons sont donnés par deux sources :

- Les hydroxyles de constitution et l'eau adsorbée.

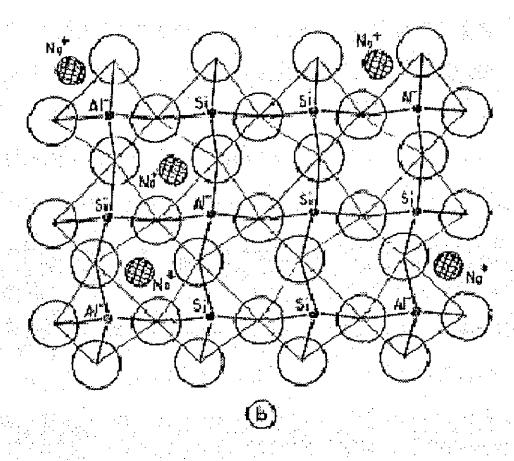


Figure 5 : Structure chimique des aluminosilicates

- Les sites de Bronsted sont représentés par les hydroxyles structuraux situés sur les arrêtes ou dans les faces des particules.

1.2.2 Acidité de Lewis:

Un acide de Lewis est une substance qui peut échanger avec un substrat basique des électrons.

Leur présence à la surface de l'argile est démontrée par leur capacité à oxyder des substances organiques.[10]

Les principaux sites de Lewis proviennent des ions ferriques située dans la structure, et des ions aluminium octaédriques situés aux arrêtes des particules.

II FAMILLE DE LA MONTMORILLONITE: LA BENTONITE:

La Montmorillonite est un minéral originaire de Montmorillon dans la Vienne (France) où elle fut découverte pour la première fois.

La Montmorillonite est plus connue sous le nom bentonite, son appellation technique et commerciale. Cette dénomination dérive du nom de Fort BENTON dans le Wyoming (USA) où en 1888 fut découverte une nouvelle variété d'argile dont la Montmorillonite constitue la principale partie est appelée bentonite.

La bentonite est utilisée comme boue de forage, comme terre décolorante dans l'industrie des matières grasses, et en tant que catalyseur et échangeurs d'ions dans l'industrie chimique et pétrolière. Elle est également utilisée dans diverses industries : céramique, produits pharmaceutiques, fabrication du papier et traitement des eaux...

Propriétés de la bentonite :

La bentonite est une roche tendre de teinte blanche ou même légèrement teintée de bleu, elle présente un aspect gras qui la rend très onctueuse au toucher. Elle possède la propriété de gonfler fortement en présence d'eau ce qui lui confère un fort pouvoir viscosifiant et thixiotrope

Cette smectite alumineuse possède un feuillet composé d'une succession de couches tétraédrique-octaédrique-tétraédrique (Te-Oc-Te) avec un espace interfolier.

Cette particularité de la structure de la Montmorillonite explique la possibilité pour certaines molécules (eau, molécules organiques polaires ...) de pénétrer entre les couche et de les écarter, EDELMAN et FAVEGEC[25] ont proposé un modèle où les tétraèdres de silicium dont les couches sont dirigées dans des directions opposées, de plus des atomes d'oxygènes remplacent des groupements hydroxyles (OH) dans certains tétraèdres de silicium. Selon l'hypothèse de HOFFMAN, ENDELL et WILM,[11] une unité structurale de Montmorillonite correspond à la formule suivante :

$$\left[Si_4Al_2O_{10}(OH)_2\right]_2$$

La formule générale de la Montmorillonite est (pour la demi-maille) :

$$Si_4O_{|0}(Al_{(2-x)}^{3+}R_x^{2+})(OH)_2CE_xnH_2O$$

Avec

R²⁺: Mg²⁺, Fe²⁺, Mn²⁺

Al³⁺: peut être Fe³⁺, Cr³⁺

X : charge du feuillet

CE : cation enterfoliaire $\stackrel{.}{Na^{+}}$, K^{+} , Ca^{2+} , Mg^{2+} ...

Parmi les principales propriétés chimiques de la bentonite, on peut citer :

son affinité adsorptionnelle aux liquides polaires : cette propriété dépend de la forme de liaison de l'eau avec l'argile.

Les différentes affinités ont donné lieu à des théories diverses parmi lesquelles on cite celle de MARKENZI qui sépare :

- * L'eau liés chimiquement sous forme d'ions hydroxydes.
- * L'eau d'adsorption sur la couche monomoléculaire.
- L'eau de capillarité absorbée par suite d'une condensation capillaire.
- Son pouvoir gonflant exceptionnel et sa colloidabilité.
- Sa capacité d'échange des cations.

III LE KIESELGUHR:

Le kieselguhr, acide silicique ,naturel, appelé encore silice fossile, farine fossile, terre de diatomées(ou d'infusoires), diatomite, tripoli, terre de Moler (en raison de certaines provences), il est constitué par l'amoncellement de microscopiques frustules de diatomées. Ces frustules sont elles-mêmes constituées de silice hydratée et sont mélangées d'une plus ou moins grande quantité d'argile.[13]

Le kieselguhr est une roche blanche, plus ou moins claire, friable, très légère : elle contient environ 85% de silice hydratée, d'oxyde de fer et de matières organiques.

Il peut se présenter sous forme feuilletée ou compacte, on le trouve très fréquemment en liaison avec le désordre cristallin de la silice, on note une grande richesse en eau et aussi en cations étrangers en particuliers des oxydes de fer et d'aluminium.

Du fait de sa grande porosité et donc sa grande capacité d'adsorption jusqu'à 80% de son poids, elle est donc utilisée dans l'industrie chimique, pharmaceutique et alimentaire, on l'utilise aussi comme catalyseur(car il améliore la résistance mécanique du catalyseur).

IV PREPARATION DES CATALYSEURS:

Afin d'améliorer l'affinité adsorptionnelle de la bentonite aux liquides polaires, il est recommandé de procéder à trois activation :

- Activation thermique.
- Activation chimique.
- Activation par échange de cations

IV.1 Activation thermique:

Selon certains auteurs[14], l'activation thermique entraîne un changement du pouvoir adsorbant et ce grâce à la libération des sites actifs occupés par l'eau d'adsorption en effet le chauffage d'une argile à une température comprise entre 105 et120°C, permet d'éliminer l'eau fixée entre les feuillets caractérisant sa structure. Une augmentation de température jusqu'à 500°C provoque le départ de l'eau de constitution et la destruction d'impuretés telle que le carbonate de calcium, ce qui transforme les pores et la surface spécifique de l'argile et par conséquent sa capacité sorptionnelle.

IV.2 Activation chimique:

On l'appelle aussi activation acide car elle conduit à la formation des bentonites H (ou bentonites acides); la formation des bentonites H résulte de la modification des liaisons octaédriques de la couche centrale composée de quatre atome d'aluminium.

Le départ de deux atomes d'aluminium sur quatre laisserait l'ensemble du treillis de la structure élémentaire avec une charge négative qui serait immédiatement compensée par un ion H⁺, de l'acide de traitement, qui confère le caractère acide aux argiles activées et duquel dépend l'amélioration du pouvoir de sorption. L'activation se fait généralement par l'acide sulfurique, mais d'autres acides peuvent s'y présenter tels que l'acide chlorhydrique et l'acide nitrique, en effet le premier présente un avantage particulier lié à sa pureté et à la solubilité de ses sels.

IV.3 Activation par échange de cations :

La bentonite à la capacité d'adsorber certains cations et de les retenir dans les conditions d'échange.[15]

Trois facteurs principaux permettent l'échange cationique :

- la possibilité d'échanger des cations de haute valence par des cations de plus faible valence en laissant des charges libres, ce qui mène à une structure non équilibrée.
- Les liaisons entre les différentes molécules se trouvant au bords et au coins des structures d'aluminosilicates sont rompues provoquant une augmentation de charges libres.

- L'existence de groupes hydroxyles sur les surfaces des argiles et entre les feuillets peuvent être parfaitement remplacés par d'autres cations.
- La possibilité d'échange à la surface est plus grande qu'entre les feuillets du fait que la faible distance entre les feuillets ne permet pas la pénétration de cations de grandes tailles.

CHAPITRE 3 : CRACKING CATALYTIQUE

I GENERALITES SUR LE CRACKING:

Les procédés les plus importants à l'égard de modifier, en fonction des exigences du marché des produits finis, la répartition quantitative des coupes légères, moyenne et lourdes, ont été développés aux Etats-Unis afin de convertir des coupes lourdes, largement excédentaires, en produits plus légers pour mieux les valoriser. Il s'agit en l'occurrence des unités de craquage des coupes lourdes.

La réaction fondamentale qui gouverne le craquage des coupes lourdes consiste en la scission d'un hydrocarbure aliphatique saturé en une paraffine et une oléfine : c'est le craquage primaire. Les entités ainsi formées conduisent, par des réactions de craquage secondaire, à des produits légers variés : gaz incondensables, gaz liquéfiés ,et essences riches en oléfines dont le rendement et la composition dépendent des conditions opératoires retenues.

La transformation chimique s'avère complexe par le fait que de nombreux autres processus interfèrent avec les craquages primaires et secondaires.

Sur le plan des procédés industriels on distingue les opérations de craquage suivant qu'elles s'effectuent sous la seule influence de la température ou en présence d'un catalyseur.

II CRAQUAGE THERMIQUE:

Il s'effectue uniquement sous l'effet de la température. Sa première application industrielle était faite au sortir de la première guerre mondiale pour la fabrication d'essences à hautes performances à partir de coupes lourdes.

Selon la nature de la charge, les procédés thermiques fonctionnent entre 460 et 530°C et à une pression de 30 à 40 atmosphères.

Les réactions de scission dans ce procédé sont de type radicalaires, comme le montre la réaction suivante :

$$C: C \rightarrow C' + C'$$

Les essences obtenues, à des rendements guère supérieurs à 40 ou 45 % en poids par rapport à la charge, présentaient un nombre d'octane clair compris entre 75 et 80 qui s'est rapidement avéré trop faible. De plus, le caractère fortement insaturé de ces essences, dû à la présence d'oléfines et de dioléfines, leur conférait une mauvaise stabilité thermique, une susceptibilité au plomb médiocre et une dépréciation en octane importante.

Le craquage thermique à donc été, dans la fabrication des essences, progressivement abandonné au profit d'un autre procédé qui est le craquage catalytique.

III CRAQUAGE CATALYTIQUE:

Le craquage catalytique est une opération qui consiste à fragmenter sur un catalyseur acide à température voisine de 500°C et à basse pression, des hydrocarbures de masses moléculaires élevées situés dans une fraction distillant au dessus de 350°C environ, en hydrocarbures de masses moléculaires plus faibles dont la plus grande partie est constituée par une coupe essence allant de C₅₊ à 200 ou 220°C.[5]

Le craquage catalytique fait intervenir des sites donneurs de proton H⁺. Ce mécanisme permet d'obtenir un ion carbanium par transfert d'un doublet et formation d'ions électropositifs comme l'indique la réaction suivante :

$$C:C\to C:+C^+$$

Les principaux avantages du craquage catalytique résultent d'une modification profonde du mécanisme due à l'intervention du catalyseur.

Ces avantages sont:

- augmentation de la vitesse permettant d'abaisser la sévérité.
- Une sélectivité plus grande qui conduit :
 - à une production d'un maximum d'hydrocarbures légers dans la zone des C₄ plutôt que l'éthylène.
 - à un rendement plus élevé en fraction légère des essences (C₆ et C₇). Ces essences renferment très peu de dioléfines et les fractions plus lourdes très de polycycliques.
- à des molécules contenant des hydrocarbures paraffiniques plus ramifiés, plus de cyclanes et plus d'aromatiques.

Tous ces facteurs augmentent la qualité de l'essence.

IV CRAQUAGE DES PRINCIPALES CLASSES D'HY DROCARBURES:

Les réactions catalytiques de scission sont d'autant plus faciles que le poids moléculaire est élevé. On peut diviser l'ensemble des réactions en deux groupes :

- les réactions primaires de scission de la molécule.
- Les réactions secondaires mettant en jeu les produits de la réaction primaire.

Les hydrocarbures constituants des séries usuelles se comportent d'une façon assez semblable à l'intérieur de chaque famille. Nous examinerons dans ce qui suit chacune d'elles :

IV.1 Craquage des Paraffines:

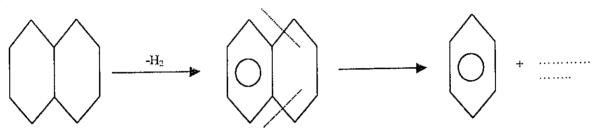
Le craquage des paraffines donne :

- Par scission:

$$C_n H_{2n} \to C_m H_{2m} + C_p H_{2p+2}$$

Par déshydrogénation

$$C_{nH}H_{2n+2} \rightarrow C_nH_{2n} + H_2$$


- Par isomérisation des paraffines plus ramifiées. La paraffine peut s'isomériser et donner des chaîne ramifiées[17] (réaction intéressante du point de vue gain d'octane).

Du point de vue thermodynamique, l'isomérisation des paraffines est possible et favorisée par des plus basses températures.

Une cyclisation des paraffines en aromatiques est possible aussi à température élevée.

IV.2 Craquage des Naphtènes :

Le craquage des naphtènes commence par une désalkylation et la chaîne droite ainsi détachée subira à son tour un cracking :

Il faut noter que les hydrocarbures naphténiques peuvent se déshydrogéner facilement pour former des aromatiques, ce qui fait augmenter le NO.

IV.3 Craquage des aromatiques :

Les hydrocarbures aromatiques ne comportant pas de chaîne latérale s'avèrent, par suite de la grande stabilité du noyau benzénique, quasi réfractaires au craquage (formation de coke). On conçoit donc que les charges fortement aromatiques, ne constituent en fait qu'une alimentation médiocre pour les unités de craquage.

Les alkylaromatiques craquent et donnent des oléfines et des aromatiques suivant la réaction :

$$ArC_nH_{2n+1} \rightarrow ArH + C_nH_{2n}$$

La séparation des chaînes alkylées a lieu au ras du noyau.

Les principales réactions intervenant dans le cracking catalytique des diverses familles d'hydrocarbures sont résumées dans le tableau suivant :

Tableau 4 : Principales réactions dans le craquage catalytique des diverses familles d'hydrocarbures.

Hydrocartxures S	Structure chimique schématique	Nature des réactions prédominantes	Principal y products obtainus
		Region & Actoristy Cocartocate or Cocar points (Actorist or Cocartocate bout de desire sont offeronses	
		Figure des cycles et des Califer Materials	Parationes et oldfines (un peu d'aromatiques
Sephtines aromatiques		Ouverture du cycle naph- ténique ; rupture des chai- nes latinales au niveau du cycle aromatique.	Paraffines, oléfines et erometiques.
Committees same chaîne latérale		Craquage népligeable.	Cole
		Rustics des chaires later rates au mercu des cycles accreatiques	
		Fuctors of the district by district the district of the distri	Odfoe renities; un

ENP / Promotion 2000

V PARAMETRES. INFLUANTS SUR LE CRACKIN G CATALYTIQUE:

La quantité et la qualité des produits du cracking catalytique dépendent de plusieurs paramètres qui sont :

V.1 La nature de la charge :

Le rendement en essence varie selon la nature de la charge introduite au craquage catalytique donc il augmente au fur et à mesure que la nature paraffinique est plus lourde.

Le craquage catalytique des paraffines très lourdes est beaucoup plus facile, on obtient effectivement de meilleurs rendements en essence qu'avec des distillats légers.

Les paraffines craquent très aisément et produisent les gaz et les essences légères, les naphténiques un peu moins bien mais donnent de bons rendements en essence et les aromatiques craquent mal mais produisent des essences à nombre d'octane plus élevé.

V.2 Le catalyseur:

Les catalyseurs du cracking prennent part successivement à deux types de réactions :

- les réactions de cracking qui sont des réactions endothermiques.
- Les réactions de régénération du catalyseur qui sont l'oxydation exothermique du coke déposé sur le catalyseur pendant l'opération de cracking.

Les réactions de cracking nécessitent un caractère acide du catalyseur et les opérations de régénération nécessitent une grande stabilité physique et chimique vu les très hautes températures et les effets mécaniques auxquels ils sont soumis.

Les premiers catalyseurs utilisés industriellement ont été des argiles naturelles de type bentonite, mais elles ont été rapidement supplantées par des catalyseurs synthétiques constitués par des aluminosilicates amorphes dont l'activité est sensiblement plus grande du point de vue rendement et indice d'octane. Une troisième génération de catalyseurs a vu le jour en 1962 et qui a révolutionné la fabrication des essences à base d'aluminosilicates cristallisées ou zéolithes (tamis moléculaires), ces catalyseurs résistent mieux aux poisons et à la température élevée.

La résistance mécanique des zéolithes étant mauvaise, on ne les emploie pas à l'état pur comme catalyseurs industriels. Ordinairement, on les introduit 5 à 20% dans une matrice amorphe de silico-aluminate qui possède une structure suffisamment solide.[18]

V.3 La température :

La température est un paramètre important du craquage car elle agit sur l'équilibre des transformations chimiques, qui sont des réactions endothermiques.

En outre, la vitesse de craquage augmente avec la température à cause de la concentration croissante en radicaux.

Une augmentation de température conduit à :

- Une augmentation de la production d'essence pourvu que la température atteinte ne provoque pas, par le craquage, la destruction de l'essence formée(réactions secondaires).
- Une conversion plus importante.
- Des rendements en gaz et coke plus élevés.
- Une modification de la nature chimique des produits :
 - * Des proportions d'oléfines plus importantes dans les produits légers: à partir d'environ 400°C les chaînes d'hydrocarbures sont coupées de préférence en leur milieu, lorsque la température croit, la scission se déplace vers l'extrémité de la chaîne, c'est à dire qu'elle conduit à la formation d'oléfines plus légères.
 - * Des proportions d'aromatiques plus importantes conduisant en particulier à une augmentation du nombre d'octane dans les produits moyens et lourds.

Les températures de cracking se situent entre 450 et 550°C.

V.4 La pression:

La pression de marche ne dépasse généralement pas une atmosphère dans le cas du cracking catalytique. Bien que l'accroissement de la pression fasse augmenter le pourcentage en coke, tout en diminuant l'indice d'octane de l'essence ce qui peut être expliqué par la désorption plus lente à des pressions plus hautes des hydrocarbures non saturés résultants du processus et adsorbés sur la surface du catalyseur, ce qui favorise la formation du coke par des réactions de polymérisation et de condensation (favorisées à haute pression) et décroît la quantité d'hydrocarbures non saturés qui passe dans l'essence.

V.5 Temps de contact, vitesse spatiale :

Le temps de contact est le temps de mise en contact du réactif avec le lit catalytique qui est directement proportionnel à la quantité de catalyseur et varie en sens inverse du débit d'alimentation.

Dans la pratique industrielle, on fait appel plus volontiers à la vitesse spatiale pondérale, exprimée en général en tonnes de charge traitée par tonnes de catalyseur et par heure, on la désigne par :

$$P.P.H = \frac{M_R^o}{m}$$

Où:

 M_R^0 : débit massique.

m: masse du catalyseur.

On utilise également le rapport du débit volumique de la charge liquide au volume du lit, catalytique, c'est la vitesse spatiale volumique qu'on note par V.V.H telle que :

$$V.V.H = \frac{Q}{V} = P.P.H.\frac{d_l}{d_R}$$

Q : débit volumique.

V : volume du lit catalytique.

d₁: masse spécifique du lit catalytique.

d_R: masse spécifique du réactif.

VI MISE EN ŒUVRE DES PROCEDES INDUSTRIELS DU CRAQUAGE

CATALYTIQUE:

Plusieurs procédés se sont succédés après l'apparition du cracking catalytique au 19^{ème} siècle qui diffèrent par le type de lit et le mode d'alimentation en charge(le cycle).

VI.1 Craquage catalytique à lit fixe :

La première unité industrielle issue des travaux d'Eugène Houdry a été construite à la raffinerie de le *Sun oOil Company* à Markus Hook New-jersey (U.S.A) en 1937. Le procédé comprenait trois réacteurs travaillant alternativement en réaction puis en régénération. Pour un réacteur, le cycle complet durait 30 mn (pour le craquage) qui se répartissent comme suit :

10 mn pour le craquage

10 mn pour la régénération

10 mn pour le lavage à la vapeur d'eau.

Afin d'éviter tout contact entre les hydrocarbures et l'air de la régénération, pour éliminer la chaleur dégagée lors de la régénération du catalyseur, chaque réacteur comprenait des faisceaux réfrigérants contenant un sel fondu circulant en boucle fermée et transférant cette chaleur vers la charge du craquage.

Les inconvénients du craquage à lit fixe :

- → Des difficultés dans la bonne marche de l'unité à cause de la rapidité dans la commutation des trois réacteurs et la réalisation des différentes phases réaction purge régénération purge, dans une même enceinte.
- → La teneur en soufre dans les charges inférieures à 0.2% ce qui provoque des problèmes de corrosion dans les faisceaux réfrigérants.
- → Coûts opératoires très élevés.

VI,2 Craquage à lit mobile :

En 1941, le craquage catalytique thermofor T.C.C a été réalisé par la Socony Vacuum Oil Company afin de remédier aux problèmes des manœuvres cycliques nécessaires au passage du catalyseur sur traitement et sur régénération dans le craquage catalytique à lit fixe. Dans le procédé à lit mobile, le catalyseur circule en continu et traverse par gravité le réacteur et le régénérateur.

Les techniques d'élévation diffèrent d'un modèle à un autre. Dans le modèle T.C.C air lift, c'est un courant d'air qui assure l'élévation du catalyseur; alors que dans le procédés Houdry ce sont les fumées de combustion surpressées par un éjecteur à vapeur, qui servent de gaz de transfert.

Le transport pneumatique tel qu'il est mis en œuvre dans le T.C.C air lift ne permet pas d'atteindre des vitesses de circulation importantes. La durée d'un cycle de catalyseur est d'une heure. Ainsi, l'idée de réaliser des vitesses de circulation beaucoup plus grandes réduirait énormément la qualité et la quantité du coke déposé sur le catalyseur qui est proportionnelle au temps de séjour.

VI.3 Le craquage à lit fluide :

Dans ce procédé, le catalyseur utilisé est sous forme de poudre et circule comme un fluide entre le réacteur et le régénérateur. La circulation du catalyseur est assurée par la différence de pression existant entre ces deux capacités et par la différence de densité le long de chaque tube de transfert.

Le catalyseur chaud venant du régénérateur (à 590°C) est mélangé à la charge, ce qui la vaporise. Les vapeurs formées vont entraîner le catalyseur en poudre tout comme l'air comprimé le faisait dans le procédé T.C.C.

Le mélange vapeur d'hydrocarbure plus le catalyseur se comporte comme un fluide en alimentant le réacteur où se fait également le séparation des vapeurs et du catalyseur.

Celui-ci, après stripping par la vapeur, s'écoule vers le régénérateur, à l'entrée de ce dernier, une injection d'air de contrôle avec le catalyseur dont la densité est plus faible que dans le réacteur, force le mouvement dans le sens réacteur vers régénérateur. Et le cycle recommence. Une augmentation de la circulation du catalyseur s'obtient en augmentant le débit d'air de contrôle. Les vapeurs d'hydrocarbures générées par le F.C.C entraînent le catalyseur qui sera retenu par des cyclones. Le brûlage du coke est assuré dans le régénérateur par l'injection de l'air.

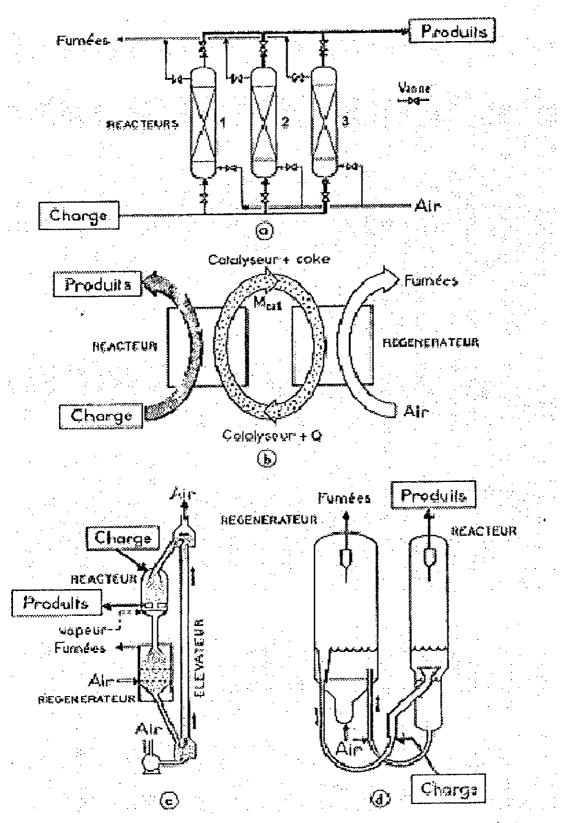


Figure 6 : Schémas de principe des procédés de craquage catalytique.

La présence permanente du catalyseur dans les tubes de transfert fait joint étanche entre les hydrocarbures et l'air de la régénération.[19]

VII ETUDE THERMODYNAMIQUE DU PROCEDE:

Les calculs thermodynamiques permettent dans le cas des processus de craquage, la connaissance de la direction du déroulement du processus des réactions secondaires possibles en fonction de la température et de la pression de la zone de réaction.

Sur le plan thermodynamique, les hydrocarbures insaturés n'apparaissent stables par rapport aux hydrocarbures saturés qui leur donnent naissance qu'à des températures relativement élevées.

Les réactions recherchées sont :

La pyrolyse avec coupure de liaison C-C:

$$C_{m+n}H_{2(m+n)+2} \to C_mH_{2m} + C_nH_{2n+2}$$

 $\Delta G_1 = 18000 - 34T$ cal/ml

qui fournit, une paraffine et une oléfine.

La déshydrogénation:

$$C_p H_{2p+2} \to C_p H_{2p} + H_2$$

 $\Delta G_2 = 30000 - 34T$

Les réactions de craquage sont donc très endothermiques.

On peut ajouter à ces réactions, des réactions secondaires de transformation des oléfines formées, comme par la polymérisation pour laquelle :

$$\Delta G_3 = -19000 + 34T$$

qui est notamment défavorisée par la température et favorisée par la pression.

La figure suivante montre pour un certain nombre d'hydrocarbures, la variation de l'énergie libre de formation ΔG , rapportée à un atome de carbone en fonction de la température.

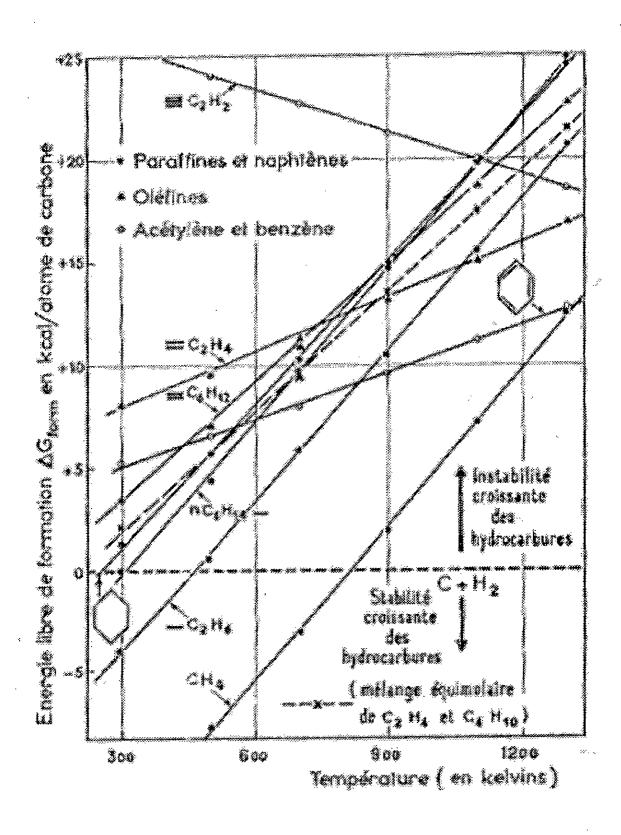


Figure 7 : Stabilité relative des hydrocarbures en fonction de la température.

VIII DESACTIVATION DU CATALYSEUR PAR DEPOT DE COKE:

La désactivation d'un catalyseur de craquage par cokage est un phénomène rapide. La figure ci-dessous montre que la durée pendant laquelle le catalyseur travaille de manière efficace dans le réacteur est de l'ordre de la minute, il est ensuite nécessaire de procéder à la régénération.

Les fourchettes de teneurs en coke avant et après régénération sont en général respectivement les suivantes : 2 à 6 % pds et 0.05 à 0.5 pds.

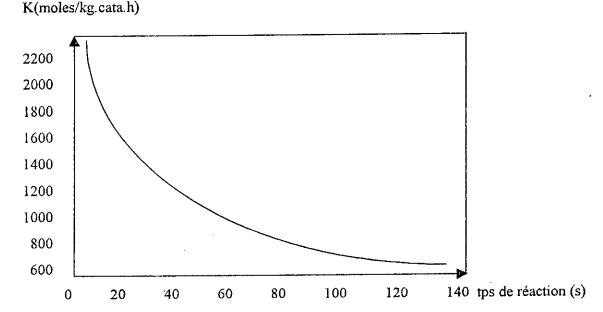


Figure 8 : Diminution de l'activité catalytique pendant le craquage d'un Gaz-oil.

VIII.1 Origine du coke :

On reconnaît généralement quatre origines distinctes pour le coke présent sur le catalyseur à l'entrée du régénérateur [20] [21]

- le coke catalytique qui résulte directement de l'acidité du catalyseur.
- Le coke C/O, le coke qui résulte du strippage incomplet des hydrocarbures du catalyseur à la sortie du réacteur (C/O: rapport pondéral des débits de catalyseur à sa sortie du réacteur).
- Le coke C_{add} (additive coke) directement relié au poids moléculaire et au carbone conradson de la charge, et qui peut être considéré comme d'origine thermique.
- Le coke de contamination qui est dû aux poisons métalliques déposés irréversiblement sur le catalyseur.

VIII.2 Nature du coke :

Très tôt (avant 1960) deux types de coke ont été mis en évidence dans la porosité d'une silice-alumine de craquage. L'un résultait de l'empilement aléatoire de couches à caractère graphique (coke pseudographitique ou turbostatique) sans véritable organisation tridimensionnelle. L'autre, de nature amorphe était constitué de molécules aromatiques polynucléaires.

A l'heure actuelle, les connaissances concernant sa localisation et ses mécanismes de formation, ont assez peu progressé et sont encore loin d'être claires, l'ensemble des spécialistes s'accordent au moins sur le caractère polyaromatique de ce coke.

Dans les catalyseurs zéolithiques de craquage, la quantité de coke formée peut être importante, pouvant atteindre jusqu'à 80% du coke total dans les cas extrêmes. Il est évident que ce coke zéolithique ne peut être constitué que d'un nombre limité de noyaux aromatiques condensés, car il doit nécessairement s'accommoder de l'espace limité disponible dans les supercages de la structure. Le coke pseudographique se situe donc forcément à l'extérieur de la zéolithe, c'est-à-dire sur la matrice.

VIII.3 Hydrocarbures précurseurs de coke :

Tous les auteurs[21] [22] [23] s'accordent à reconnaître que le coke se forme plus rapidement à partir des molécules insaturées, oléfines, dioléfines et aromatiques, qu'à partir des paraffines ou des naphtènes.

NACE, VOLTZ et WEEKMAN[23] ont montrés que la désactivation du catalyseur est d'autant plus importante que la concentration en aromatique est plus élevée et que la formation de coke est surtout reliée aux aromatiques de hauts poids moléculaires.

Le coke étant une molécule de poids moléculaire élevé donc il est de dimension relativement importante.

Il est probable que les principales réactions responsables de la formation de coke sur les sites acides sont :

- la condensation des cycles aromatiques;
- les transferts d'hydrogène qui ,ont lieu sur les oléfines, les naphtènes ou les chaînes alkyles des aromatiques conduisent à des composés insaturés fortement réactifs qui pourront se polymériser, se cycliser et/ou s'aromatiser;
- l'alkylation des oléfines, produits primaires du craquage des paraffines et des naphtènes, sur les cycles aromatiques avec fermeture et formation de nouveaux cycles.

VIII.4 Empoisonnement du catalyseur:

L'empoisonnement peut avoir essentiellement deux causes :

- D'une part une inhibition de la fonction acide par des composés basiques, hétérocycles azotés, métaux alcalins ou à un degré moindre, alcalino-terreux, dont l'action principale est de diminuer l'activité du catalyseur.
- D'autre part le dépôt de composés métalliques (Ni, V), qui influent surtout sur la sélectivité.

La perte d'activité provoquée par l'adsorption de composés azotés à caractère aromatique et fortement basiques, apportés par la charge, est réversible : ces composés peuvent être désorbés ou décomposés et brûlés au cours de la régénération.

VIII.4.1 Contaminants métalliques :

Les deux principaux contaminants sont le nickel et le vanadium présent dans les charges de FCC sous forme de molécules organométalliques en teneurs faibles et variables selon les cas : la somme (Ni + V) généralement inférieure à 1 ppm dans les DSV peut atteindre plusieurs ppm jusqu'à 20 ppm dans des charges contenant du résidu sous vide.

Dans le *riser*, ces molécules sont rapidement décomposées au contact du catalyseur. Les deux métaux se fixent quantitativement sur la partie périphérique des microsphères de catalyseur. Dans le régénérateur à haute température et en présence de vapeur d'eau, le vanadium migre dans le grain de catalyseur, probablement sous forme d'un oxohydroxyle e V⁵⁺et attaque la zéolithe qu'il désactive selon un processus encore mal connu (obstruction de la porosité, destruction de l'organisation cristalline). Le nickel n'est pas ou est peu mobile et reste localisé essentiellement à l'intérieur d'une couche périphérique des grains.

Le vanadium est responsable d'un léger surcroît de formation d'hydrogène moléculaire dans les gaz secs par déshydrogénation de certains hydrocarbures et surtout d'une diminution notable de l'activité craquante du catalyseur. Le nickel détériore la sélectivité du catalyseur en accroissant fortement les productions d'hydrogène moléculaire et de coke.

VIII.4.2 Moyens de lutte contre la contamination métallique :

De très nombreux moyens ont été proposés. nous nous limiterons aux plus connus.

Nickel

Certaines matrices permettraient de neutraliser l'effet délétère du nickel :

- soit par un effet d'enfouissement du composé métallique dans la masse de la matrice, le rendant ainsi inaccessible aux réactifs;
- soit par leur faible surface qui favoriserait processus de frittage des particules à base de nickel diminuant ainsi leur surface accessible.

L'addition à la charge de composés à base d'antimoine ou de bismuth permet de réduire très sensiblement mais pas totalement les effets déshydrogénant et cokant du nickel en formant avec ce dernier une combinaison métallique moins active.

Vanadium

L'incorporation de divers oxydes métalliques au sein des microsphères de catalyseur neuf (ou dans des particules indépendantes ne présentant pas de propriétés craquantes propres) permet de neutraliser l'effet du vanadium en piégeant ce dernier sous forme de combinaisons d'oxydes stables non volatiles. Les oxydes les plus efficaces sont ceux des métaux alcalino-terreux MgO et CaO, les oxydes de terres rares RE₂O₃ et divers oxydes mixtes tels que les titanates de calcium, strontium ou baryum.

Remarque:

Le nickel est le plus nuisible : à quantité identique, il produirait quatre à cinq fois plus de coke que le vanadium.

VIII.5 Régénération du catalyseur :

Des essais de régénérations ont permis de montrer que la combustion totale du coke à 500°C dans un courant d'air (4 l/h) est possible. Une oxydation totale en CO₂ a été obtenue dans ces conditions en 30 minutes et la même activité catalytique initiale vis à vis de la réaction de méthylénation a été retrouvée après régénération.

Le suivi de la régénération a été effectué en analysant la teneur en CO₂ du gaz de combustion et celle-ci a été considérée comme totale lorsque la teneur en CO₂ des gaz issus du réacteur a atteint celle de l'air entrant.[24]

PARTIE EXPERIMENTALE

CHAPITRE 1 : PREPARATION DES CATALYSEURS

Notre but en premier lieu est l'élaboration d'un catalyseur portant à sa surface, une densité élevée de centres actifs afin d'atteindre une vitesse de réaction suffisante par unité de surface.

Nous présentons dans ce chapitre succinctement la composition chimique des supports ainsi que le protocole opératoire pour l'élaboration des catalyseurs utilisés au craquage catalytique.

I COMPOSITION DES SUPPORTS:

Avant de décrire le protocole préconisé pour la fabrication des catalyseurs, nous présentons dans un premier temps les supports utilisés ainsi que la proportion choisie :

la bentonite 60%

le kieselguhr 40%

La bentonite que nous avons utilisé provient de la mine de Mostaganem, elle est fourni par l'entreprise nationale des produits miniers non ferreux (E.N.O.F). sa composition chimique est donnée dans le tableau I-1.

Tableau 5 : Composition Chimique de la Bentonite. (en%)

ſ	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	PAF
	65.2	17.25	2.1	3.1	1.2	2.15	0.6	0.2	8.2

Le rapport SiO₂/Al₂O₃ est 3.78

Le kieselguhr est produit par l'ENOF il est extrait de la mine de Sig. Sa composition chimique est donnée dans le tableau I-2.

Tableau 6 : Composition Chimique du Kieselguhr. (en %).

SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	H ₂ O	CO_2	PAF
58.52	2.65	1.12	1.96	12.32	1.85	9.73	. 12

Le rapport SiO_2/Al_2O_3 est 22.08.

Compte tenu des travaux déjà faits concernant le craquage catalytique et dans le but d'orienter de futures recherches pour la détermination de la composition optimale, nous avons choisi un support mixte (bentonite, kieselguhr) de rapport massique (60/40).

La composition chimique du support est calculée en faisant une moyenne pondérée à partir de celles de la bentonite et du kieselguhr, elle est donnée dans le tableau I-3 :

Tableau 7 : Composition Chimique du Support Préparé.

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	PAF	H ₂ O	CO ₂
62.53	10.35	1.71	2.64	5,65	2.15	0.6	0.2	9.72	1.85	9.73

Le rapport SiO₂/Al₂O₃ est 6.04.

II PREPARATION:

Dans un premier temps, les deux roches de bentonite et de kieselguhr sont broyées puis tamisées de façon à retenir que les particules à diamètres inférieur à 140μ m, ensuite pour éliminer certains constituants comme les calcites, les carbonates et le quartz, et afin de doter le support de certaines fonctions désirées, on fait subir le support à plusieurs activations :

II.1 Activation thermique:

Les fractions recueillies sont séchées dans une étuve à 120°C pendant 8h afin d'éliminer les traces d'eau d'adsorption puis mélangées de telle manière à obtenir le rapport massique voulu' (60/40).

Après avoir réaliser les deux autres activations (acide et par échange cationique), le catalyseurs fini est calciné à 500°C pendant 8h afin d'assurer une bonne résistance mécanique.

II.2 Activation acide:

On met en contact 100 g de support et 100 ml d'acide chlorhydrique (20% en poids, cette concentration a été optimisée lors des travaux précédants). Le mélange est soumis ensuite à une agitation magnétique pendant 48h à température ambiante, nous procéderons ensuite à une filtration suivie d'un lavage à l'eau distillée jusqu'à élimination des ions chlorures (testé par les nitrates d'argent).

II.3 Activation par échange cationique :

Cette opération consiste à disperser un agent actif sur le support qui possède lui même une activité catalytique.

On mélange 100g du support déjà activé à l'acide avec une solution métallique soit 250ml d'eau distillée contenant 10g du métal à imprégner, le tous est soumis ensuite à une agitation magnétique pendant 48h suivit d'une filtration et un lavage afin d'éliminer les nitrates.

Les pattes finales obtenues sont mise sous formes d'extrudés qui seront séchées à 120°C pendant 12h puis calciné à 500°C pendant 8h.

La nomenclature des catalyseurs préparés est résumée dans le tableau suivant :

Catalyseur à base de bentonite et kieselguhr (60/40) traité à l'acide	KBA
Catalyseur KBA imprégné au cuivre	KBACu
Catalyseur KBA imprégné au cobalt	KBACo

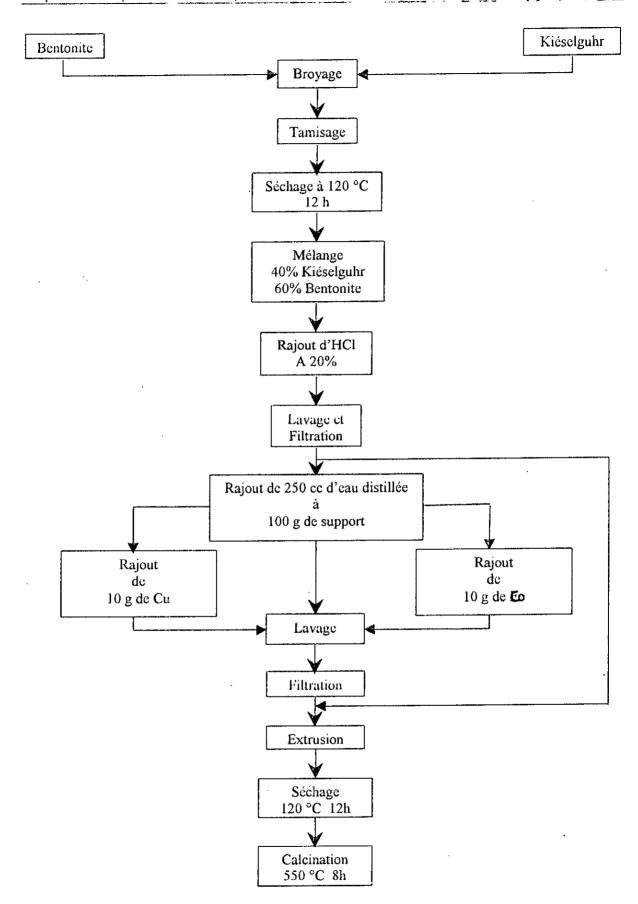


Figure 8 : Protocole de préparation des catalyseurs

CHAPITRE 2 : CARACTERISATION PHYSICO-CHIMIQUE DES CATALYSEURS

I Introduction:

Dans le but de caractériser les catalyseurs préparés donc mieux interpréter leurs performances, nous avons procéder à :

- la mesure du taux de fixation du métal.
- la mesure de la surface spécifique par la méthode B.E.T.
- la mesure d'acidité.

II MESURE DU TAUX D'IMPREGNATION:

Afin de doter le catalyseur de certaines fonctions, nous l'avons mis en contact avec des solutions métalliques, il serait donc intéressant de mesurer le taux de fixation de chaque cation métallique. Pour cela, nous procéderons après chaque filtration, à une analyse de filtrat recueilli par colorimétrie.

II.1 Analyse des filtrats:

Ayant la concentration initiale du métal dans la solution, et par analyse du filtrat, on peut déduire la quantité non adsorbée par le support, et cela après avoir tracé la courbe d'étalonnage par dilutions successives. En faisant la différence entre la concentration initiale et la quantité ainsi obtenue, on déduit la quantité du métal fixée sur le support.

Les pourcentages de transmission de chaque métal sont donnés dans le tableau II-1 :

Tableau 8 : Pourcentage de Transmission :

	Filtrat de cuivre	Filtrat de cobalt
N° du filtre	42	42
% de transmission	51.5	48

Courbes d'étalonnage :

Nous prenons une masse connue de métal contenu dans le sel précurseur et nous procédons à des dilutions successives, on obtient les résultats suivant :

Tableau 9 : Résultats d'analyse par Colorimètrie.

[Cu] g/l	3	6	9	12	15	20	25	30	40
% trans	84	72	64.5	61	57.5	54	50.5	47	45
[Co]g/l	. 3	6	9	12	15	20	25	30	40
% trans	83.5	76.5	69	64.5	60	56.5	53	51	46

A partir des courbes d'étalonnage tracées, nous pouvons déduire les taux d'imprégnation correspondant à chaque métal.

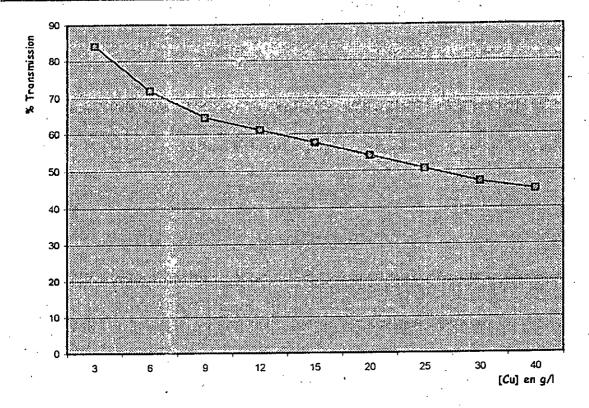

Les résultats obtenus sont représentés dans le tableau suivant :

Tableau 10 : Taux de fixation des métaux.

Métal	Cu	Со
Taux de fixation	58	79,99

Commentaires:

D'après les résultats obtenus, le taux d'imprégnation le plus élevé est marqué pour le cobalt et ce car le cation $[Co(H_2O)_6]^{2+}$ est moins volumineux que le cation $[Cu(H_2O)_3]^{2+}$ d'où la facilité de son insertion donc sa fixation.

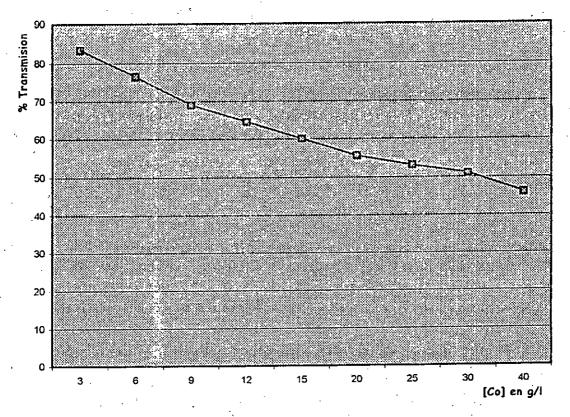


Figure 9 : Courbes d'étalonnages des différentes métaux

II.2 Mesure de la surface spécifique :

La surface spécifique des catalyseurs est un paramètre important dans la caractérisation des catalyseurs, on la mesure généralement par la méthode B.E.T (Brunauer, Emmet, Teller).

II.2.1 Principe de la méthode :

Cette méthode consiste à déterminer l'isotherme d'adsorption physique d'un gaz par le solide étudié à une température le plus souvent voisine du point d'ébullition de ce gaz.

Pour déterminer la surface, il faut repérer sur l'isotherme le point correspondant à l'adsorption d'une couche monomoléculaire complète. Connaissant la quantité d'azote adsorbée pour former une monocouche sur la surface du solide (V_m) et l'aire occupée par une molécule d'azote (16.2 A°2), on peut en déduire la surface totale du catalyseur.[26]

L'équation de l'isotherme établit par B.E.T est la suivante :

$$\frac{P}{V_a(P_s - P)} = \frac{1}{V_m C} + \frac{C - 1}{V_m} \cdot \frac{P}{p_s}$$

- V_a: le volume de gaz adsorbé à T.P.N.

- V_m: le volume correspondant à la formation d'une monocouche à T.P.N.

- P_s: la tension de vapeur saturante de l'adsorba à la température de l'expérience.

- C : une constante.

La surface est déduite à partir de la représentation graphique de P/V_a(P_s-P) en fonction de (P/P_s).

D'où on obtient une droite de pente $A = \frac{(C-1)}{V_m C}$

Et d'ordonnée à l'origine $B = \frac{1}{V_m C}$

la surface spécifique est donnée par la relation :

$$S(m^2/g) = \frac{\sigma 10^{-2}N}{22 \cdot 41410^3 (A+B)}$$

où: σ : l'aire d'une molécule d'absorbat (A²⁰).

N: nombre d'avogadro.

II.3 Mesure d'acidité :

L'acidité est une caractérisation très importante des catalyseurs. Dans notre travail, nous avons choisi une technique classique pour mesurer ce critère.

Cette technique consiste' en l'imprégnation de poudre de catalyseurs avec des bases dans un solvant apolaire. L'utilisation comme base d'un excès d'amine de basicité bien déterminée permet de neutraliser une partie ou la totalité de l'acidité de surface. Ainsi, en fonction de l'amine utilisé, il est possible de doser les acidités présentes.

II.3.1 Principe:

L'argile ayant un caractère acide réagit avec le n-butylamine. L'excès de base est dosé par l'acide perchlorique (HclO₄) en utilisant la méthode acido-basique.

II.3.2 produits utilisés:

- HclO₄ (1N).
- n-butylamine 0.1 N (dans le benzène).
- Butanol
- Rouge de méthyl.

II.3.3 Mode opératoire:

On met 10g du catalyseur, on y ajoute 5 ml de n-butylamine préparé dans du benzène, le tout est porté à une agitation pendant 24 heures, temps suffisant pour atteindre l'équilibre d'adsorption de la base et ce à température ambiante. Puis on transvase la solution dans un erlein meyer de 200 ml de Butanol et on titre à l'aide d'une burette par HclO₄(0.1 n) préparé dans du Butanol.

II.3.4 Méthode de calcul:

L'acidité est déterminée par la relation suivante :

$$I_a = \frac{V_1 N_1 - N_2 V_2}{m}$$

ou:

- I_a: indice d'acidité exprimé en méq H⁺/g.(ou milliéquivalent de n-butylamine par gramme de catalyseur).
- N₁V₁: sont respectivement la normalité et le volume de départ.
- N₂V₂: sont respectivement la normalité et le volume de HClO₄.
- m : prise de catalyseur en gramme.

П.3.5 Résultats:

Le dosage d'acidité des catalyseurs préparés a donné les résultats suivants :

Tableau 11 : Les Indices d'acidité des catalyseurs.

Catalyseurs	КВА	KBACu	KBACo
Ia	l	1.3	1.6

Commentaires:

Le traitement à l'acide ainsi que l'imprégnation par les métaux sont basés sur un phénomène d'échange ionique. L'acidité est différente d'un support à un autre, les plus grandes sont enregistrée pour le KBACo et le KBACu. Ceci est probablement dû au remplacement des ions monovalents(Na¹ et Ca²¹), initialement contenus dans le support, par des ions divalents(Cu²+, Co²+).les ligands ainsi insérés peuvent libérer par la suite des protons H+ par le biais de la réaction suivante :

$$[M, (H_2O)x]^{2+} \rightarrow [M(OH), X(H_2O)]^{+} + H^{+}$$

CHAPITRE 3 : CRAQUAGE CATALYTIQUE DES MOLECULES SONDES

Dans le but de mieux comprendre le phénomène qui se déroule, nous avons été amené à craquer trois molécules représentatives des trois familles d'hydrocarbures, sachant que les fractions pétrolières contiennent les trois familles.

I DISPOSITIF EXPERIMENTAL:

I.1 Appareillage :

L'appareil utilisé est : le réacteur jumelé de type OL-105/02, qui existe au niveau du C.R.D / Dar-El-Beida.

Ce type de système sert à l'étude des processus catalytiques, homogène ou hétérogène.

Aussi, industriellement de nombreux procédés font appel à ce type de réacteur dont on peut décrire les plus importants :

- 1- la désulfuration catalytique de la benzine, du kérosène, des gas-oils.
- L'hydrocraquage catalytique.
- 3- Préparation des différentes synthèses dans l'industrie chimique organique et pharmaceutique.

Le système réacteur jumelé permet l'exécution simultanée du même procédé technologique aux différents paramètres expérimentaux.

Il est constitué d'une armoire de commande qui comprend les instruments de mesure et d'enregistrement de température et de quantité de gaz, et de part et d'autre se place les réacteurs.

Les systèmes réacteurs ajustés symétriquement à droite et à gauche se composent de trois étages :

- 1- sur l'étage supérieur sont placés les manomètres et les enregistreurs de pression, en dos du montant, on trouve le réacteur, relié à sa sortie à un réfrigérant. Le réacteur est de type tubulaire et de volume de 250 cc, son chauffage est assuré par des résistance dont la puissance est de 1 kWat, embobinés aux extrémités inférieures et extérieures de telle façon que la température de la partie du milieu du réacteur soit uniforme. La température intérieure du réacteur est mesurée à l'aide d'un détecteur de température interne placé dans une gaine d protection de bas en haut, soudé dans le couvercle inférieur.
- 2- Sur l'étage du milieu sont placés les récipients d'alimentation de liquide, le rota-mètre, le compteur de gaz et le séparateur.
- 3- Sur l'étage inférieur, on trouve la pompe d'alimentation de liquide et le compresseur.

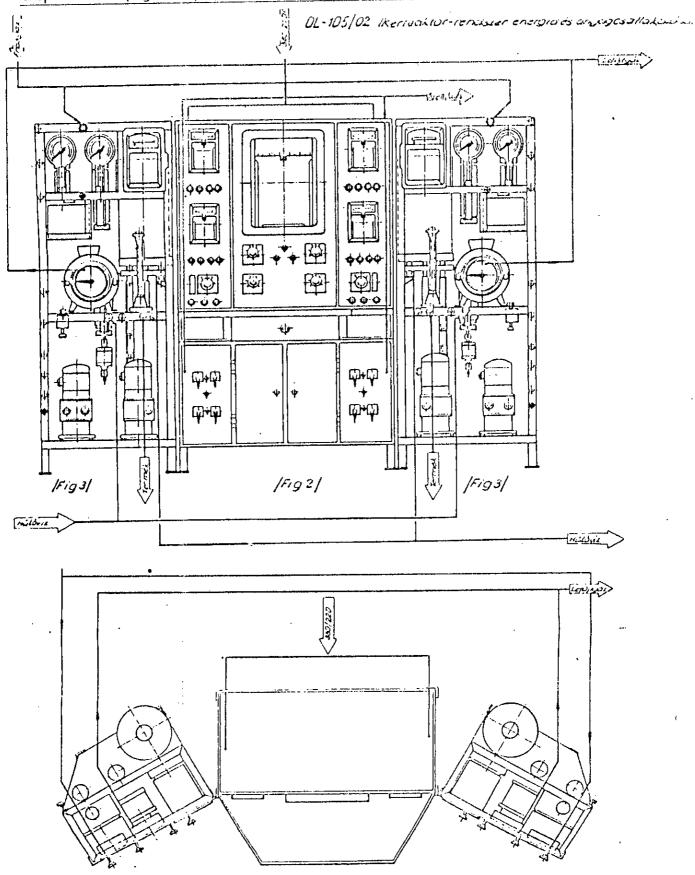


Figure 10 : Schéma descriptif du système réacteur jumelés

1.2 Mode Opératoire :

Les différentes opérations dans l'utilisation du réacteur sont les suivantes :

- 1- démonter le réacteur à l'installation, le remplir par le catalyseur et le support inerte, le refermer et le replacer.
- 2- Raccorder le réacteur au réfrigérant par le bas, par le haut au refoulement de la pompe et au gaz inerte.
- 3- Remplir le récipient de la charge d'alimentation.
- 4- Régler la pompe à un débit (pour obtenir une V.V.H bien déterminée).
- 5- Mettre en service les régulateurs de température.
- 6- Une fois la température du craquage est atteinte et stabilisée, on fait passer un gaz inerte à travers le réacteur.
- 7- Mettre la pompe en marche.
- 8- Dès que le temps de la réaction est écoulé, arrêter la pompe et les régulateurs de température.
- 9- Arrêter la réfrigération quelques minutes après.
- 10- Noter le volume du liquide recueilli.
- 11- Attendre que le réacteur refroidisse, le vider et recueillir le catalyseur usé pour le peser afin de déduire la masse du coke déposé.

1.3 Remplissage du Réacteur :

Afin d'assurer un bon transfert de matière et de chaleur, nous avons mélangé le catalyseur avec un support inerte qui est des billes de verre.

L'ensemble est placé au milieu du réacteur (figure 11).

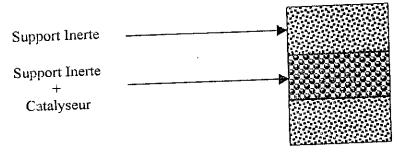


Figure 11: Remplissage du réacteur.

I.4 Conditions Opératoires :

Dans notre étude, nous avons opté pour les conditions opératoires suivantes :

- Température de réaction 500 °C;
- Vitesse spatiale V.V.H = 1h⁻¹;

• Volume du lit catalytique = 20cc.

Ces conditions ont été inspirées des travaux déjà réalisé dans le Laboratoire de Valorisation des Energies Fossiles concernant le craquage catalytique.

II CRAQUAGE CATALYTIQUE DES MOLECULES SONDES:

Toute fraction pétrolière est composée généralement des trois familles d'hydrocarbures à savoir les paraffines (n- et iso) les naphtènes et les aromatiques.

Dans le but de voir l'effet des catalyseurs préparés sur la transformation des hydrocarbures, nous avons opté pour quatre molécules sondes représentatives de ces trois familles :

- 1- le n-heptane et le n-hexadécane (pour faire ensuite une comparaison des analyses de la C.P.G. dans la même famille).
- 2- le cyclohexane.
- Les xylènes (mélange des isomères).

Les propriétés physiques de ces molécules sont donnés dans le tableau III-1

Pour comparer les capacités sorptionnelles des différents catalyseurs, nous avons évalué le taux de conversion pour chaque charge.

La chromatographie en phase gazeuse (C.P.G.) donne directement la composition massique des produits n'ayant pas réagi, ainsi le taux de conversion se déduit par la relation :

Taux =
$$C_0$$
- C_1

C₀: % massique initial de l'hydrocarbure introduit.

C_f: % final du produit n'ayant pas réagi.

Tableau 12 : Propriétés physiques des molécules sondes.

Hydrocarbures	MM (g)	T eb(°C)	d_{20}	n ₂₀	Pureté %
Heptane	100.2	98.5	0.69	1.388	99
n-Hexadecane	226.45	287.15	0.7733	1.4345	98
Cyclohexane	81.16	80.5	0.78	1.425	99.5
Xylènes	106.17	144.4	0.86	1.5055	98

II.1.1 Cracking Catalytique de l'Heptane :

II.1.1.1 Résultats du Craquage :

Les tests catalytiques ont été réalisés dans l'installation décrite précédemment aux conditions opératoires déjà définis. Une charge de 20 cc d'heptane, de pureté 99% et de densité 0.6840 est introduite dans le réacteurs. Les résultats obtenus sont représentés dans le tableau suivant :

% Final %Conv. R_G+pertes Catalyseur R_L R_{C} d_{20} n₂₀ 0.7182 1.40242 7.51 92.49 79.33 KBA 0.53 20.14 33.76 0.7159 1.40136 8.25 91.75 KBACu 63.12 3.12 7.97 92.03 KBACo 82.72 2,33 14.95 0.7139 1.40008

Tableau 13 : Résultats du Craquage de l'Heptane.

R_L: rendement massique en liquide.

R_C: rendement massique en coke.

R_G: rendement en gaz.

d₁: densité de la recette liquide.

II.1.1.2 Résultats d'Analyse par CPG-MS:

La chromatographie en phase gazeuse a donné les résultats suivants (voir Tableaux 24-25-26 en Annexes)

Tableau 14 : Composition et nature chimique du produit.

Calladyseur C_5 C_6 C_{12} C_{13} C_{14} C_{10} C_{11} C_{12} C_{13}	
KBA - 60.47 7.51 6.01 0.86 2.96 0.8 0.92 1.67	
KBACu; 2.76 [15:19] 32.34 [15/38] 1.38 [15:33] - 70.93 - 5	25:50 - 61:20 1:03 (5:75
KBACo 13:93 33:87 34:07 J4:61 0:18 0:29 -	27.2 37.26 33.87 1.02

Commentaires:

Du point de vue conversion, on remarque que le taux de conversion est trop élevé pour les trois catalyseurs, mais le KBACu et le KBACo sont plus sélectifs car ils donnent les plus grands pourcentages en oléfines.

D'autre part, on note un meilleur rendement en liquide pour le catalyseurs KBACo, cependant on enregistre pour ce dernier le rendement en gaz le plus faible.

Le craquage de l'heptane donne des C₅, C₆ mais surtout des C₇ pour les meilleurs catalyseurs, ce qui suggère le mécanisme suivant :

$$C_7H_{16} \rightarrow C_7H_{14} + H_2$$

II.1.2 Cracking Catalytique du n-Hexadécane:

II.1.2.1 Résultats du Craquage :

Les tests catalytiques ont été réalisés dans l'installation décrite précédemment aux conditions opératoires déjà définis. Une charge de 20 cc du n-hexadécane, de pureté 98% et de

densité 0.7733 est introduite dans le réacteur. Les résultats obtenus sont représentés dans le tableau suivant :

Tableau 15 : Résultats du Craquage du n-Hexadécane.

Catalyseur	$R_{\rm L}$	R _C	R _G +pertes	d ₂₀	n ₂₀	% Final	%Conv.
KBACu	72.69	2.16	25.15	0.7758	1.43686	17.83	82.53
KBACo	73.52	1.26	25.22	0.7684	1.43265	15.47	84.53

II.1.2.2 Résultats d'Analyse par CPG-MS :

La chromatographie en phase gazeuse a donné les résultats suivants (voir Tableaux 27-28 en Annexes)

Tableau 16 : Composition et nature chimique du produit.

Catalyseur C ₅ C ₆ C ₇ G ₈ C ₉ C ₁₈ C ₁₁ C ₁₂ C ₁₃ C ₁₄ C ₁₄ KBAC ₁₁ 9 45 817 9.24 20 84 0.87 0.85 0.49 0.71 1 05 21 1) 5	78 (17.83 46.68 (27.57) - (23.05)
KBACo 10:07 15:81 10:27 14:04 3:16 3:33 2:14 3:29 0:67 1:8	

Commentaires:

Dans ce cas nous constatons que là aussi, le pourcentage de conversion est élevé mais concernant la nature des produits, on remarque que c'est le pourcentage des paraffines qui domine contrairement au craquage de l'heptane.

Du point de vue rendement liquide, le plus grand est marqué pour le KBACo.

D'autre part, on note que le craquage du n-hexadecane donne des pourcentages élevés en C₈ sous formes de paraffines et aromatiques.

Enfin, on remarque que les produits obtenus sont surtout des paraffines et des oléfines ramifiées, ce qui indique que les catalyseurs sont très sélectifs.

II.1.3 Cracking Catalytique du Cyclohexane:

II.1.3.1 Résultats du Craquage :

On réalise le craquage catalytique dans l'installation décrite précédemment. Une charge de 20 cc du cyclohéxane de pureté 99.5% et de densité 0.78 est introduite dans le réacteur.

Les résultats sont reportés sur le tableau suivant :

Catalyseur	R_L	R_{C}	R _G +pertes	d ₂₀	n ₂₀	% Final	%Conv.
KBA	77.93	0.79	21.28	0.7783	1.42686	24.64	75.36
KBACu	81.17	1.34	17,49	0.7811	1.42960	24.15	75.85
KBACo	83.32	1.95	14.73	0.7817	1.43004	41.39	58.61

Tableau 17 : Résultats du Craquage du Cyclohexane.

II.1.3.2 Résultats d'Analyse par CPG-MS :

La chromatographie en phase gazeuse a donné les résultats suivants (voir Tableaux 29-30-31 en Annexes)

Tableau 18 : Composition et nature chimique du produit.

Catalyseur C5 C6 C7 C8 C9 C10 C11 C12 C13 P O N A
KBA - 59.82 6:79 46:44 5:35 0:31 - 0:37 - 16:32 37.9 25:03 17:53
KBACo - 24:15 26:77 36:44: 1:04 4:10 0:45 2:22 - 8:54 28:62 32:62 25:92
ተመመመር የመመር የመመር የመመር የመመር የመመር የመመር የመመር
- PROCESSOR AND
KBACo - 24 15 26.77 36 44 1:04 4:10 0:45 2:22 - 8:54 28.62 32.62 25:92
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$. \ \ The property of $
$- m_1 m_2 m_3 m_4 m_5 m_6 m_6 m_6 m_6 m_6 m_6 m_6 m_6 m_6 m_6$
$-\infty$
KBACo - 43/23 2.26 45/00 1/98 - 2/44 0/24 - 7/14 15/24 41/39 34/64

Commentaires

Le taux de conversion le plus élevé est enregistré pour le catalyseur KBACu suivi du KBA, le meilleur rendement en liquide est noté pour le KBACo.

Le pourcentage en oléfines est élevé pour les trois catalyseurs avec toujours une grande quantité de cyclohexane non craquée.

Le pourcentage en aromatiques est enregistré en grande proportion pour le catalyseur KBACo, d'où le mécanisme suggéré est le suivant :

$$C_6H_{12} \rightarrow C_6H_6 + 3H_2$$

Il.1.4 Cracking Catalytique des Xylènes :

II.1.4.1 Résultats du Craquage :

Une charge de 20 cc des xylènes de pureté 98% et de densité 0.86 est introduite dans le réacteur. Les résultats obtenus sont représentés dans le tableau suivant :

Tableau 19 : Résultats du Craquage des Xylènes.

Catalyseur	$R_{\rm L}$	Ŕc	R _G +pertes	d_{20}	n ₂₀	% Final	%Conv.
КВА	69.98	2.21	27.81	0.8619	1.49522	31.89	68.11
KBACu	79.34	2.86	17.80	0.8620	1.49550	28.75	71.25
KBACo	68.5	1.61 .	29.89	0.8495	1.48776	19.45	80.55

II.1.4.2 Résultats d'Analyse par CPG-MS :

La chromatographie en phase gazeuse a donné les résultats suivants (voir Tableaux 32-33-34 en Annexes)

Tableau 20 : Composition et nature chimique du produit.

Catalyseur C5 C6 C7 C9 C9 C9 C10 C11 C12 C13 P O	N A
KBA - 11.76 58.51 11.91 0.8 - 5.12 - 14.37 26.62	47.45
KBA - 11.76 58.51 11.91 0.8 - 5.12 - 14.37 20.62	
-2	1200
KBACu - 32.03 58.02 22.92 0.29 - 1.17 - 15.82 37.75	45.00

KBAC0 - 36.51 39.71 10.4 2.72 0.29 0.45 - 5.62 58.59	26,09
KBACo - 36.51 39.71 10.4 2.72 0.29 0.45 - 5362 58.59	
WATER CHICAGO CONTROL	

Commentaires:

Dans ce cas, le taux de conversion le plus élevé est enregistré pour le catalyseur KBACo tandis que le rendement liquide le plus élevé est indiqué pour le catalyseur KBACu avec un rendement en gaz relativement faible.

Les catalyseurs utilisés sont très sélectifs, ceci étant expliqué par le pourcentage en oléfines élevé très marqué.

Les catalyseurs KBA et KBACu donnent des produits majoritaires de nature aromatique malgré l'existance de paraffines de proportion non négligeable.

Consultant le tableau 4 et vu les résultats obtenus, on en déduire que les catalyseurs sont très sélectifs (%O + %A) très élevé.

Remarques:

- 1- En faisant la somme %P + %O + %N + %A on trouve un pourcentage inférieur à 100 et ce car nous étions obligé de supprimer quelques pic à cause de leurs faibles pourcentages massiques (généralement < 0.2%).
- 2- D'après les tableaux des résultats, en partant d'un nombre de carbone compris entre 6 et 8, on retrouve des composés qui ont un nombre de carbone pouvant aller jusqu'à 13, l'explication de ce phénomène est qu'il y a eu une polycondensation, d'ailleurs c'est ce qui explique le fait que la densité de quelques produits est supérieurs à la densité de la charge avant craquage.

III CONCLUSION

Afin de sélectionner les meilleurs catalyseurs nous avons dressé des tableaux récapitulatifs qui vont nous faciliter le choix, ils sont basés sur trois critères :

- 1- Taux de conversion.
- 2- Le taux d'imprégnation.
- 3- L'indice d'acidité.

l'heptane:

Catalyseur	% conv	Taux d'imprg	I_a	Σ	Classement
КВА	1	3	3	7	2
KBACu	3	2	2	7	2
KBACo	2	1	1	4	1

Le n-hexadecane:

Catalyseur	% conv	Taux d'imprg	I _a	Σ	Classement
KBACu	2	2	2	6	2
KBACo	<u> </u>	1	1	3	· 1

Le cyclohexane:

Catalyseur	% conv	Taux d'imprg	I_a	Σ	Classement
KBA	2	3	3	8	2
KBACu	1	2	2	5	I
KBACo	3	1	1	5	1

Les xylènes :

Catalyseur	% conv	Taux d'imprg	I_a	Σ	Classement
KBA	3	3	3	9	3
KBACu	2	2	2	6	2
KBACo	1	1	1	3	1

Ce classement nous permet de déduire que le meilleur catalyseur est KBACo suivi de KBACu et enfin le KBA.

En se basant sur ce classement, nous avons effectué le craquage du mélange bitume-toluène sur les deux meilleurs catalyseurs.

ENP / Promotion 2000 51

CHAPITRE 4 : CRAQUAGE CATALYTIQUE DU MELANGE BITUME-TOLUENE

Vu que le bitume est une fraction très lourde qu'on ne peut pas craquer, nous avons été amené à le solubiliser, d'où nous avons préparé une charge bitume-toluène dans la proportion d'environ 3% en masse de bitume, c'est la proportion maximale qui permet la solubilisation du bitume (environ 10g de bitume dans 400 ml de toluène).

I DEFINITION:

Les bitumes sont les fractions les plus lourdes du pétrole que l'on obtient soit par distillation sous vide très poussée, soit par désasphaltages au propane d'un résidu sous vide.

II METHODES DE CARACTERISATION DES BITUMES:

Les bitumes sont de couleur noire, solides ou semi-solides à la température ambiante et entièrement solubles dans le sulfure de carbone, on les caractérise par des nombres qui représentent soit :

- 1- les limites de la pénétration à 25°C (100g 5s), lorsqu'il s'agit des bitumes purs de distillation directe.
- 2- Les limites de viscosité à 25°C, dans le cas de mélanges de bitumes avec du pétrole. Ces mélanges sont appelés bitumes fluxés ou cat backs.
- 3- Le point de ramollissement moyen (R,B) et la pénétration moyenne dans le cas de bitumes oxydés à usage industriel. Le premier nombre R indique le point de ramollissement et le second point B, la pénétration à 25°C (100g, 5s).

Les caractéristiques principales des bitumes sont présentées dans le tableau suivant :

Températures de figeage	≥ 30°C	NF T60-128 ASTM D938-60 IP 76-64
Densité à 70°C	≥ 0.942	NF T66-007
Pénétrabilité à l'aiguille à 25°C	< 400	NF T66-004 ASTM D3 IP 49-56

III PREPARATION:

En poussant la distillation sous vide du résidu atmosphérique jusqu'à l'obtention d'un résidu court ayant comme pénétration celle du bitume pur, le plus fluide soit 180-220.

Il sera ensuite facile de préparer les autres bitumes plus durs par addition de brai de désasphaltage, dont le point de ramollissement est de l'ordre de 60°C et la pénétration comprise entre 10 et 20. La proportion de brai ajoutée va limiter la dureté du bitume préparé (plus on augmente la quantité du brai plus le bitume est dur).

IV UTILISATION:

Les bitumes de base servent, soit comme bitumes purs, soit à la fabrication des cat backs (bitumes fluxés, mélange de bitumes 80/100 avec du pétrole lampant).

Les bitumes sont surtout utilisés pour les travaux publics et le bâtiment : revêtement des routes, étanchéité imperméabilisation et isolation.

V PROPRIETES PHYSIQUES DU MELANGE BITU ME-TOLUENE:

La charge préparée est un mélange bitume-toluène dans la proportion d'environ 3% en masse de bitume (10g de bitume dans 400 ml de toluène) de façon à obtenir un fluide dans lequel le bitume est complètement dissout.

Les propriétés physiques déterminés du mélange sont représentées dans le tableau suivant :

Densité	0.8728
Indice de réfraction	1,49964
Point d'écoulement	-15°C

Tableau 21 : Propriétés physiques du mélange.

VI CRACKING CATALYTIQUE DU MELANGE BITUME-TOLUENE:

Nous avons choisi les catalyseurs KBACu et KBACo pour effectuer le craquage du mélange car il s'est avéré, d'après les travaux déjà faits, que les catalyseurs imprégnés aux métaux sont plus performants que le catalyseur activé uniquement à l'acide.

Le craquage est réalisé dans l'installation décrite dans chapitre III. Les conditions retenues sont celles données par les études précédentes réalisées au Laboratoire de Valorisation des Energies Fossiles.

- Volume de la charge : 20 cc
- V.V.H:1h-1
- Température du réacteur 500°C

La fraction liquide récupérée a été analysée pour déterminer les différents rendements, ainsi que l'indice de réfraction et la densité, qu'on représente dans le tableau suivant :

Tableau 22 : Résultats du craquage du mélange Bitume-Toluène.

Catalyseur	R_{L}	$R_{\rm C}$	R _G +pertes	d ₂₀	n ₂₀
KBACu	69.83	1.58	28.59	0.8498	1.48502
KBACo	79.29	0.67	20.04	0.8602	1.49268

VI.1.1.1 Résultats d'Analyse par CPG-MS:

La chromatographie en phase gazeuse a donné les résultats suivants (voir Tableaux 35-36 en Annexes)

Tableau 23 : Composition et nature chimique du produit.

		O N A
Calabyscu	ır r	U R A
KBACu	0.25 61	70 0.81 33.77
KBACo	5,98 45	89 6 84 37.88

Commentaires

Le craquage a été effectué sur les meilleurs catalyseurs.

Les produits de nature oléfiniques sont majoritaires suivi des aromatiques, les paraffines sont présentes en pourcentage très faible ce qui nous amène à dire que les produits obtenus du craquage du mélange bitume-toluène sont issus du bitume car le craquage donne généralement un grand pourcentage en aromatiques (résultat inspiré des travaux déjà fait), donc l'objectif est atteint.

VII CHROMATOGRAPHIE EN PHASE GAZEUSE (C.P.G):

La chromatographie en phase gazeuse est une méthode physico-chimique de séparation, basée sur la répartition des composants entre deux phase : fixe et mobile, cette dernière traversant en continu la phase stationnaire (phase fixe). Un détecteur analyse en continu la phase mobile à la sortie de la colonne et y révèle la présence de substances différentes du gaz vecteur. De plus, il est relié à un enregistreur qui traduit sous la forme de chromatogramme les informations reçues du détecteur.

Spectrométrie de masse et couplage G.C/M.S

La spectrométrie de masse a été appliquée la première fois en 1940 à l'analyse des fractions pétrolières à bas point d'ébullition, mais il était difficile de l'utiliser pour identifier les composant de mélange d'une masse moléculaire plus élevée du fait de l'analogie que présentent les spectres de masse de certain hydrocarbures et spécialement ceux des isomères. Le principe de la spectrométrie de masse consiste en une ionisation dissociatives des molécules organiques par choc

électronique, accompagnée de formation d'une série de fragments enregistrables, qui caractérisent les molécules initiales.

De plus en plus on s'oriente vers l'utilisation du couplage chromatographique en phase gazeuse /spectrométrie de masse (C.P.G/M.S). cette méthode donne des résultats autrement plus performants que les méthodes classiques, en effet, l'apport informatique permet de disposer d'une banque de données de plusieurs milliers de spectres de référence, et l'appareil donne par comparaison très rapide les probabilités de ressemblance entre le spectre de référence et celui de l'expérience, et ceci pour chaque pic.

```
** GC Paramburb **
[ Injecter ]
                         : 260.00
Temp. (BC)
[ Oven ]
                         : 45.00
Initial Temp. (BC)
Initial Time (min)
                            1.00
                                           TEMP (BC)
                                                       TIME (min)
                         : RATE (SC/min)
Temp. Program
                                           70.00
                                                         4.00
                             U.00
                                           260.00
                                                         15.00
                            16.00
                             0.50
Equil. Time (min)
[ Flow Controller ] Split
Carr.Gas Press (kPa) : 44,9
Carr.Gas Press Time (min): 0.00
Press. Program : RFATE(kPa/min) PRESS(kPa) TIME(min)
                          --- No data exists ! ---
                         : 25.00
: 21.00
Total Flow(ml/min)
Split Ratio
[ Column ]
                         : 25.00
Length(m)
                            0.25
Diameter (mm)
[ Interface ]
                         : 260.00
Temp. (AC)
** GC Event Program **
--- No data exists ! ---
** DI Parameters **
                           --- No data exists ! ---
** Scan Parameters **
[ Acquisition ]
                                1.50 -
0.00
0.00 -
Detector Volts(kV)
Solvent Cut Time (min)
                                              36.04
Acquisition Time (min)
                                             500.00
                               15.00 -
Mass Range
                                 0.50
                         :
Interval(sec)
                                 1000
Threshold
Real Time Monitor
  Monitor (TIC and)
                             Spectrum
  TIC Time Scale (min) :
TIC Intensity Scale :
MC Intensity Scale :
                               10.00
                              1000000
                             1000000
  Monitoring M/2*Factor : --- No data exists ! ---
[ MS Program ]
--- not used ---
** Qualitative Parameters **
[ Integration Parameters ]
Processing Time : Full
                        ; Average
Raw Spectrum
Background Spectrum
[ Peak Processing Parameters ]
Slope(*1000/min)
                                 13.00
                              10000.00
Drift(*1000/min)
                                 0.00
                                  9.00
T.DBL (min)
Smoothing Width(sec)
Smoothing Times
                                  0.00
                                    0
Minimum Count
                                 25000
{ Time Program }
--- not used ---
[ Multi Ion Chromatogram List ]
```

*** Method ***

--- No data exists ! ---

```
[ Mass Chromatogram List ]
 --- No data exists | ---
 [ Spectrum Format Parameters |
 Fixed Display Mass Range : 15.00 ~ 500.00 Relative Intensity Threshold(:) : 1.00
                                  : No
 Base Peak M/Z
                                   : 100
 Multiplication
 Hydrogen Compensation
                                   : No
 ¶ Similarity Search Parameters ]
                                  : (1) NIST62.LIB - 20
 Library File - Minimum SI
                                     (2) NIST12.LIB - 20
                                   : 5
 Search Depth
                                   : 25
Maximum Hit #
                                   : Yes
Post Search
                                   : No
     Molecular Weight
     Molecular Formura
                                   : No
     Class
                                  : No
                                  : No
     Rel. Ret. Index
                                  : No
     Base Peak M/Z
     Compound Name
                                  : No
```

CONCLUSION GENERALE

Dans le travail que nous avons fait, nous avons pu élaborer des catalyseurs à base de bentonite et kieselguhr de rapport massique (60/40) qui ont permis de convertir une coupes pétrolière lourde de poids moléculaire élevé (bitume-toluène) en fractions légères dont le rendement en essences est appréciables.

Les tests catalytiques effectués avec les molécules sondes nous ont permis de déterminer les meilleurs catalyseurs (KBACo, KBACu). Ces derniers sont utilisés pour le craquage du mélange (bitume-toluène), ce qui a donné un rendement liquide important ainsi qu'un pourcentage élevé d'oléfine.

Une voie de continuation possible, serait d'élaborer d'autres catalyseurs avec le même support (bentonite, kieselguhr) mais avec une composition différente et imprégnés avec d'autres métaux afin d'optimiser la meilleures composition et les meilleurs métaux.

56

${\cal B}$ ibliographie

[1] CLAUDEL B.

la catalyse au laboratoire et dans l'industrie, Edition Masson (1967) Paris.

[2] Michel BOUDART

cinétique des réactions en catalyse hétérogène, Edition Masson, (1978) Paris.

[3] J VILLERMAUX

génie de la réaction chimique et fonctionnement des réacteurs, Edition Lavoisier, (1982), Paris.

[4] J.E GERMAIN

Catalyse de contact, Technique de l'ingénieur J 1180 et J1182 (1992)

[5] J.P. WAUKIER

La raffinage du pétrole, Tome 3 : Procédés de transformation. Edition Technip.

[6] SELMI E

Etude des catalyseurs à base de bentonite et kieselguhr pour le cracking catalytique de coupes lourdes des pétroles Algeriens, thèse de magister (1994)

[7] D. DECROOCQ

Lcraquage catalytique des coupes lourdes, Edition technip, Paris, (1978).

[8] A. AZOUZ

cinétique chimique, Edition Berti, Alger, (1991).

[9] J.E. GERMAIN

Catalyse de contact, Technique de l'ingénieur, J 1180et J 1182, (1992).

[10] G. MILLOT

les argiles pour la science, Mens, N° 20 (1979)

[11] U. HOFFMAN, MENDELL D. WILD

cristal, structure and quellues montmorillonite and holiste, Edition Z. Kris; 1930

[12] S. E. HENDRICKS

Lattrice structure of clay minerals and some propreties of clays, J. Geol, (1942).

- [13] SIDIBOUMEDIENE, thèse de projet de fin d'études. contribution à l'amélieration.
- [14] H. VAN OLPHEN

An introduction to clay colloïd chemestry, Edition Awilay Interscience, 1977.

[15] G. SARDAN, G. MILLOT et M.BONIFAS

Sur l'origine des gisements d'argiles bentoniques de Lalla Maghnia (Oran), Bull. serv.

Cart. Géol. Algérie, Vol. 5,213-234 (1954).

[16] KNICK-OTHMER

Encyclopedia of chemical technology Bentonite, Vol. 3, 2nd Edition(1994).

[17] C. E. CHITOUR.

Raffinage du pétrole, tome 1, OPU ALGER (1983).

[18] V. PROSKORIAV A.DRABKINE

La chimie du pétrole et du gaz, Edition Mire Moscou 1983.

[19] K.E. ROUIBET. Revalorisation des coupes lourdes du pétrole, le craquage catalytique. Thèse de magister, I.N.H.C Boumerdes.

[20] C. MARCILLY

Evolution au cours de l'évolution du catalyseur industriel de craquage de coupes lourdes,

Revue de l'I.F.P Sep, Oct 1980

[21] VENUTO (P.B) HABIB (E.T)

Catalysis Rev. Sci. Eng 1978

[22] EBERLY, Jr, KIMBERLIN et DRUSHEL

Symp A.C.S Atl City 1965

[23] VOLTZ ,NACE, WEEKMAN

Jr I.E.C., P.R.D 1971.

[24] C. LACROIX, A.DELUZARCHE, AKIENNEMANN, A. BOYER

Etude de l'alkylation du toluène en éthylbenzène et styrène, Journal de chimie-physique, 1984.

[25] EDELMAN and FAVEJEC

On the cristal structure of montmorillonite and holisite, Edition Kris, 1930.

[26] C.E. CHIROUR

Cours de chimie-physique des phénomènes de surface, OPU (1983).

[27] P. WUITHIER

Raffinage et génie chimique, tome 1, Edition Technip Paris(1972)

[28] L. OLEVEIRA

Catalytic cracking kinectic models parameter estimation and model evaluation,

Ind. Eng. Chem. VOL. 28 n° 3, 264-271, (1989).

[28] PERRY and CHILTON

Chemical Engineering Hand Book, Edition Mac GrawHill, New York (1984).

[29] X. NORMAND

Leçons sommaires sur l'industrie du raffinage du pétrole, Edition Technip Paris (1977).

[30] J VIDAL

Méthodes appliquées au raffinage et au génie chimiques, Edition Technip Paris (1974).

[31] N. KERRI

Contribution à l'élaboration de catalyseurs à base de bentonite et de kieselguhr appliqués au craquage catalytique du gas-oil, thèse de magister E.N.P (1994).

[32] M. KHELIOUEN

Elaboration de catalyseurs à base de bentonite et de kieselguhr. Applications au cracking catalytique des hydrocarbures et du Gas-oil, thèse de projet de fin d'étude E.N.P 1996)

[33] S. LADOUL

Contribution à l'élaboration d'un catalyseur de cracking à base de bentonite et kieselguhr (application au cracking catalytique du gas-oil et du bitume. (1999).

*** CLASS-5000 *** Report No. # 1 Data : NC7 N1.D14 100/06/0 711:34:1 Sample : nc7 kba : hex. TIC

```
*** CLASS-5000 *** Report No. = 1 Data : NC7 N1, D14 100/06/0 711:34:1
Sample : nd7 kba
Sample : hex.

Sample Amount : 100

Dilution Factor : 1

Type : Unknown

Operator : IAP

Method File Name : ENS.MET
Vial No. : 1
```

Barcode

Total

***	Peak Rep	ort ****					
	R.Time	I.Time - F.Time	Λrea		A/H(sec)	MK	%Total Name
1	1.313	1.167 - 1.533	261074146	19230621			2.17
2	1.661	1.533 - 1.733	546015517	59654546	9.153	V	4.54
3	1.900	1.733 - 2.767	6731141554	123694178	54.418	VE	55.93
4	2.784	2.767 - 2.867	599633362	121504946	4.935	VE	4.98
5	2.927	2.867 - 3.100	904011027	96388744	9.379	VΕ	7.51
6	3.177	3.100 - 3.467	397774271	31511676	12.623	V	3.30
7	3.667	3.467 - 3.700	72106237	8579588	8.404	٧	0.60
8	3.733	3.700 - 3.933	108925523	20721928	5.257	V	0.91
9	4.167	3.933 - 4.300	144910954	19647457	7.376	ν	1.20
10	4.467	4.300 - 4.500	50383655	6345658	7.940	V	0.42
11		. 4.500 - 4.867	50554575	9109208	5.550	V	0.42
12	10.000	9.933 - 10.067	12792099	2230581	5.735	•	0.11
13	10.100	10.067 - 11.000	48648854	2726048	17.846	v	0.40
1.4	11.115	11.000 - 11.333	103594236	31626623	3.276	V	0.86
15	13.100	12.933 - 13.833	201095457	946178	212.534		1.67
16	13.875	13.833 - 14.267	95762643	7072716	13.540	V	0.80
17	14.333	14.267 - 14.400	111266986	32135185	3.462	V	0.92
1.8	14.900	14.400 - 15.067	114550877	5429922	21.096	V	0.95
19	15,100	15.067 - 15.133	18004350	6055741	2.973	V	0.15
20	15.386	15.133 - 15.500	201593696	41654890	4.840	V	1.67
21	16.016	15.500 - 16.133	159168079	11938677	13.332	ν	1.32
22	16.348	16.133 - 16.533	204379713	45549323	4.487	V	1.70
23	16.761	16.533 - 17.067	143523346	8843912	16.228	V	1.19
24	17.200	17.067 - 17.367	160057430	. 45839639	3.492	V	1.33
25	17.604	17.367 - 17.867	100271949	6678028	15.015	v	0.83
26	18.000	17.867 - 18.200	128525796	22901711	5.612	V	1.07
27	18.318	18.200 - 18.567	45804780	3508749	13.054	V	0.38
28	18.733	18.567 - 18.933	87567801	15468524	5.661	V.	0.73
29	19.400	18.933 - 19.800	76903054	11789360	6.523	v	0.64
30	23.618	23.400 - 23.933	155526294	40654302	3.826		1.29
Total			12035568262				100.00

Tableau 24: Principaux produits du craquage catalytique du n-Heptane avec KBA

Nº Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
2	1.661	4.54	Hexane	6	C ₆ H ₁₄	P
3	1.900	55.93	Pentane, 3- methylene-	6	C ₆ H ₁₂	Р
4	2.784	4.98	1,5-heptadien-3-yne	7	C ₇ H ₈	0
5	2.927	7.51	Heptane	7	C_7H_{16}	Ρ.
6	3.177	3,30	2-octene, (E)-	8	C ₈ H ₁₆	0
7	3.667	0.60	1-heptene, 5-methyl-	- 8	C ₈ H ₁₆	0
8	3.733	0.91	1-pentene, 3-ethyl-2- methyl-	8	C ₈ H ₁₆	О
9	4.167	1.20	Benzene, 1,3- dimethyl-	8	C8H10	A
14	11.115	0.86	Nonane	9	C ₉ H ₂₀	P
15	13.100	1.67	Decane	10	$C_{10}H_{22}$	Р
16	13.875	0.80	Decane, 2-methyl-	11	$C_{11}H_{24}$	P
17	14.333	0.92	Dodecane	12	$C_{12}H_{26}$	P
20	15.368	1.67	Tetradecane	13	$C_{13}H_{28}$	P
22	16.348	1.70	Tetradecane	14	$C_{14}H_{30}$	P
24	17.200	1.33	Pentadecane	15	$C_{15}H_{32}$	Р
26	18.000	1.07	Hexadecane	16	$C_{16}H_{34}$	P
29	19.400	0.64	Heptadecane	17	$C_{17}H_{36}$	P
30	23.618	1.29	Octane, 3-ethyl-	10	$C_{10}H_{22}$	<u> </u>

* Poport No. = : Nov - Ruscu them. 271455103 TIC 11 16 1 l 20 l ÁΙ 27 Нİ | || | 1 1^r 20 10

-1 Bata : NC7M2.D14 | 100/06/0 614:37:3

Mothod File Hame : EHS.MET Vial No. : 1

Barcode

****	Peak Rep	ort ****				A/H(sec)	1.416	%Total	Name
	r.Time	J. Time -	F.Tim-	Area		11.485	1413	2.73	
1	1.307	1.217 -	1.517	247874372	21582200	8.105	v	2.76	
2	1.661	1.517 -	1.733	251124364	30983665	31.365	VE	15.19	
3	1.966	1.733 -	3.033	1381145134	121527669	8.771	v	11.52	
4	2,150	2.033 -	2.183	1047171657	119385744		v	15.33	
5	2.213	2.183 -	2.383	1393406912	119645047	11.646	VE	7.62	
6	2.433	2.383 +	2.483	692866022	122933813	5.636	VE	13.20	
7	2.642	2.493 -	2.683	1109802009	115407238	10.396	V E	8.19	
9	2.700	2.683 -	2.817	744544490	100618877	7.400	v	8.25	
9	2.829	2.817 -	3.050	749793719	75672622	9.908	v	1.67	
70	3.144	3.050 -	3.267	151654249	25619134	5.920	v	1.92	
1.1	3.300	3.267 -	3.467	174152450	60998772	2.855	v	1.03	
32	3.708	3.467 -	3.767	93234650	15399944	6.054	v	0.33	
13	3.800	3.767 -	3.933	29989715	3904974	7.680	v	0.49	
14	4.001	3.933 -	4.100	44220175	8974528	4.927 4.146	v	2.68	
15	4.157	4.100 -	4.417	243294179	58697149		v	1.30	
16	4,537	4.417 -	4.850	119795571	24504896		v	0.22	
17	4.998	4.850 -	5.167	20283824	4319662		v	0.24	
18	6.046	6.000 -	6,200	22014749	3900790		v	0.20	
19	6.250	6.200 -	6.367	18491170	5094141		V	0.74	
20	6.931	6.867 -	7.000	66950736	15092711			0.29	
21	7.732	7.667 -	7.950	26423805	3720216			0.22	
22	10.021	9.950 -	10.183	19602042	2485773	_	ν	0.17	
23	10.250	10.183 -		15527502	2800197		v	0.07	
2.4	10.400	10.350	10.467	6444896	1522799		٧	0.64	
25	11.117	10.967 -	11.333	57837934	12618328			0.29	
26	12.400	12.100 -	12.733	26571742	1.922057		v	0.24	
27	12.983	12.733 -	13.007	21650157	10038656		V	0.25	
28	13.889	13.783 -	14.000	22932651	3945914		v	0.14	
29	14.083	14.000 -	14.217	13143864	2637075		٧	0.20	
30	15.220	15.083 -		18546099	2875805		ν	0.52	
31	15.345	15.300 -	35.500	46830213	5395430		v	0.33	
30	16.025	15.500 -	16.067	28797269	0107969		v	0.14	
33	16.579	16.533 -	16.700	12991249	2172466		ν	0.1	
34	16.783	16.700 -	16.900	19044670	2467687		v	0.43	
35	17.195	16.900 -	17.350	37696859	11224310		٧	0.19	
36		17.550 -	17.833	13486143	1811510			0.14	
37	17.977	17.850 -	18.100	12410180	4287201	2.895			
				9091867458				100.00	0
10	tal			3031007400					

Tableau 25: Principaux produits du craquage catalytique du n-Heptane avec KBACu

N° Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
2	1.661	2.76	Butanc, 2-methyl-	5	C ₅ H ₁₂	Р
3	1.966	15.19	3-hexene, (Z)-	6	C_6H_{12}	0
4	2.150	11.52	Hexane, 2-methyl	7	C_7H_{16}	P
5	2.213	15.33	2-octene, 4-ethyl-, (E)-	10	$C_{10}H_{20}$	0
6	2,433	7.62	i-heptene	7	C_7H_{14}	0
7	2.642	13.20	1-hexene, 3-methyl-	7	C ₇ H ₁₄	0
8	2.700	8.19	2-octene	8	C_8H_{16}	0
9	2.829	8.25	Heptane	7	C_7H_{16}	P
10	3,144	1.67	4-octene, (E)-	8	C ₈ H ₁₆	0
11	3.300	1.92	Hexane, 3-methyl-	7	C ₇ H ₁₆	P
12	3.708	1.03	Cyclohexane, ethyl-	8	C ₈ H ₁₆	N
14	4.001	0.49	Ethylbenzene	8	C_8H_{10}	A
15	4.157	2.68	m-xylene	8	C ₈ H ₁₀	A
16	4.537	1.32	o-dimethylbenzne	8	C_8H_{10}	A
20	6.931	0.74	Benzene, 1,2,3- trimethyl-	9	C ₉ H ₁₂	A
25	11.117	0.64	Heptane, 3,4- dimethyl-	9	C ₉ H ₂₀	P
31	15.345	0.52	Naphtalene, 1 ,7- dimethyl-	12	C ₁₂ H ₁₂	A
35	17.195	0.41	Dodecane	12	$C_{12}H_{26}$	P

*** CIASS-5000 *** Report No. Sample : NC7 KBACo
ID : hex. Tic

15 16

*** GLASS 5000 *** Report No. 1 Date : NC703.D11 100/06/0 709:12:2

Sample : NC7 KBACo

ID : hex.

Sample Amount : 100

Dilution Factor : 1

Type : Unknown

Operator : TAP

Method File Name : EMS.MET

Vial No. : 1

Bargode :

***	Peak Pep	ort ****						_	
PKNO	R Time	I.Time -	E.Time	Area	Height	A/H(sec)	MK	%Total	Name
1	1.364	1.167 -	1.500	214252600	19064122	11.343		2.40	
2	1.647	1.500 -	1.917	1257064078	58302667	21.561	VE	13.93	
3	2.262	1.917 -	2 350	3056608748	121706847	25.115	VE	33.87	
1	2.674	2.350 -	2.717	2354944457	112569213	20.920	VE	26.10	
5	2.731	2.717 -	2.850	762342770	121829193	6.257	VE	9.45	
6	2.856	2.850 -	3.067	719336187	80377685	8.949	V	7.97	
7	3.155	3.067 -	3.200	123237037	33728558	3.654	v	1.37	
		3.200 -	3.500	219422973	62974897	3.484	v	2.43	
9 a	3.298	3.500 -	3.950	120618471	20674254	5.834	V	1.34	
	3.708	=	4.100	23066719	4285915	5.382	v	0.26	
10	4.017	3.950 ~ 4 100 ~	4.283	56677445	13929823	4.069	v .	0.63	
11	4.150	1.155	4.203	35369405	4621009	7.654	v	0.39	
12	4.533	4.283 -	7.083	9156223	1.846400	4.959		0.10	
13	6.921	6.817 -		13918262	3338943	4.168		0.15	
14	7.707	7.583 -	7.867		5786464	2.370		0.15	
15	14.308	14.233 -		13716276	=	2.564		0.18	
16	15.394	15.317 -		16505084	6445788	****		0.29	
1.7	17.191	17.083 -	17.367	26310645	9934740	2.648		() - 1. 3 	

100.00 9024467376 Total

Tableau 26: Principaux produits du craquage catalytique du n-Heptane avec KBACo

				, ,		
Nº Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
_1	1.264	2.40	ethane	2	C ₂ H ₆	P
2	1.647	13.93	Butane, 2-methyl-	5	C_5H_{12}	P
3	2.262	33.87	cyclohexane	6	C ₆ H ₁₂	N
4	2.674	26.10	1-heptene	7	C ₇ H ₁₄	0
5	2.731	8.45	1-octene	8	C ₈ H ₁₆	0
6	2.856	7.97	heptane	7	C ₇ H ₁₆	P
7	3.155	1.37	2-octene, (Z)-	8	C ₈ H ₁₆	0
8	3.298	2.43	Hexane, 2,4- dimethyl-	8	C ₈ H ₁₆	P
9	3.708	1.34	2-hexene, 2,3- dimethyl-	8	C ₈ H ₁₆	0
11	4.150	0.63	Benzene, 1,2- dimethyl-	8	C ₈ H ₁₀	Α
12	4.533	0,39	p-xylene	8	C ₈ H ₁₀	A
16	15.394	0.18	Undecane	11	C ₁₁ H ₂₄	P
17	17.191	0.29	Dodecane	12	$C_{12}H_{26}$	P

*** CLASS-5000 *** Report Mr. = 1 Data : NHEDC.DOB 100/06/0 713:12:1
Sample : n hexadecane F & A C.C. Sample ID : hex. 190047538 TIC 14 16 17 15 11 30 35 25 20 15 10 Ś

U Hexadecane xpach

*** CLASS-5000 *** Report No. = [1 Para : NRFDC. D08 100/06/0 712:12:1

Cample : n horadscame : hex.

Sample Amount : 100
Dilution Factor : 1
Type : Unknown
Operator : TAP

Method File Name : ENS.MET Vial No. : 1

Barcode

Total

**** Peak Rep	ort ****		فيامد شمانا	A/H(mer)	14K	Smotal Name
PKNO R.Timo	r.Time ~ P.Time	Arna 	38012055	16.190	,	9.45
1 1.473	L.200 - 1.617	615407860		12.938	V	6.32
0 1.739	1.617 ~ 1.900	411317315	31790449	9.245	v	2.38
3 1.959	1.900 - 2.083	155195980	16787440 17660529	17.163	v	4.65
4 2.247	2.083 - 2.583	303105612		13.013	V	4.50
5 2.724	n,583 = 3.033°	298902318	202020	19.578	v	2.39
< 3.254	3.033 - 3.683	155215055	7927877	6.510	•	2.38
7 4.000	3.683 - 4.083	154710796	23764192	10 374	1/	10 85
A 162	ላ ሰዩን 🕳 ላ ላነን	ግበፍይዲያዕለፉ		9.008	v	5.23
0 4,514	4.417 - 4.833	340701162	37824061		v	0.87
10 5.000	4.833 - 5.183	56461968	5108540		٧	0.36
11 7.324	7.250 - 7.517	23448229	3169073	4.183		0.49
12 10.850	10.800 - 10.967	33215819	7702332		V	0.49
13 11,123	$\hat{1}0.267 + 11.300$	31905759	5711533		٧	0.50
14 12.795	12.733 - 12.933	32700929	11816786	2.769		0.21
15 12.983	12.933 - 13.100	13504833	4869035			0.21
10 12.500	ng 640 - 32 day	Nobandan	११२२४००			0.38
17 15.000	15.017 - 15.367	24843946	11013087			• •
	16.617 - 16.717	11195074	0793139			0.17
18 16.683 19 16.780	16.717 - 16.850	25574069	5007071		v	0.39
20 16.883	16.850 - 16.983	12751606	2070946		77	0.20 20 91
70 16.66	16,083 17,383	1362144050	113210836		WP	5.78
23 17.405	17.393 - 17.450	376619118	97202303		V	
73 17 533	17.450 - 18.133	1161469937	102505074		ν	17.83
94 10 777	10 667 - 10 050	161700101	54671166	6 566		2.51
Total		6512845070				100.00

Tableau 27: Principaux produits du craquage catalytique du n-Hexadecane avec KBACu

						
Nº Pic	Tr (mn)	%Mass.	Identification	пC	Formule chimique	Nature Chimique
1	1.473	9.45	2-pentene, (Z)-	5	C ₅ H ₁₀	0
2	1.720	6.32	3-hexene, (Z)-	6	C ₆ H ₁₂	0
3	1.956	2.38	2-pentene, 3-methyl-, (E)-	6	C ₆ H ₁₂	0
4	2.247	4.65	3-heptene	7	C ₂ H ₁₄	0
5	2.724	4.59	Toluene	7	C ₇ H ₈	A
6	3.254	2.38	4-octene, (E)-	8	C ₈ H ₁₆	0
7	4.000	2.38	Ethylbenzene	8	C ₈ H ₁₀	Α
8	4.162	10.85	Benzene, 1,2- dimethyl-	8	C ₈ H ₁₀	A
9	4.544	5.23	o-xylene	8	C ₈ H ₁₀	A
10	5.000	0.87	Nonane	9	C ₉ H ₂₀	Р
11	7.324	0.36	1-decene	10	C ₁₀ H ₂₀	0
12	10.850	0.49	1-undecene	11	C ₁₁ H ₂₂	0
13	11.123	0.49	Octane, 3,5- dimethyl-	10	C ₁₀ H ₂₂	Р
14	12.795	0.50	2-dodecene, (E)-	12	C ₁₂ H ₂₄	0
15	12.983	0.21	Dodecane	12	C ₁₂ H ₂₆	P
16	14.183	0.66	1-tridecene	13	C13H26	0
17	15.292	0.38	3-tetradecene, (Z)-	14	C ₁₄ H ₂₈	0
19	16.780	0.39	Dodccane, 3-methyl-	13	C ₁₃ H ₂₈	P
20	16.883	0.20	Tetradecane	14	C ₁₄ H ₃₀	P
21	17.333	20.91	Tridecane, 2-methyl-	14	C ₁₄ H ₃₀	Р
22	17.406	5.78	Dodecane, 2,6,11- trimethyl-	15	C ₁₅ l-I ₃₂	Р
23	17.533	17.83	Hexadecane	16	C ₁₆ H ₃₄	Р

ENP / Promotion 2000

*** CLASS-5000 *** Report No. : 1: Data : NBEDC14.513 100/06/3 013:25:4
Sample : n hevadorase KBACO : best. ťβ 261340449, TIC 1 13 ћо ∥ ј 1 181 i IIII 1 1111 33 i lilli 1.100 36 1111 1115 11 | 11.1 11 18 ji h t 11 | 1 | 1 | 1 | 3 | 1 37 16 1 19 W 13/17 35

20

15

10

30

*** CLASS-5000 *** Report No. = 1 Data : NHEDCl3.Dl3 100/06/1 013:25:4 Sample : n hexadecane KBACO

and the same one of the same o

Sample in hexade

10 : hex.

Sample Amount : 100

Dilution Factor : 1

Type : Unknown

Operator : IAP Method File Name : ENS.MET

Vial No. : 1 Barcode : Barcode

****	Peak Rep	ort ****				- ((1.07	%Total	Name
	R.Time	I.Time -	F.Time	Area	Height	A/H(sec)	1,71,7	10.07	Name
1	1.545	1.225 -		1472859987	106590815	13.818	**	10.48	
2		1.625 -	1.950	1533599434	103349165	14.839	V	5.33	
3	2.048	1.950 -	2.175	780299732	71585684	10.900	-	5.83	
4	2.288	2.175 -	2.650	853615908	69045176	12.363	ν	2.33	
5	2.771	2.650 -	2.875	341028120	39662299	8.598	V		
6	2.909	2.875 -	3.100	308434852	34274800	8.999	V	2.11	
7	3.328	3.100 -	3.575	401134483	35643574	11.254	٧	2.74	
8	3.825	3.575 -	3.950	83235615	4153783	20.0	ν . ν	0.57	
9	4.235	3.950 -	4.475	1184806774	91535751	12.944	V	8.10	
10	4.599	4.475 -	4.875	464079802	56305672	8.242	V	3.17	
11	5.041	4.875 -	5.200	196458255	36006460	5.456	v	1.34	
12	6.096	6.025 -	6.225	34035033	5236298	6.500		0.23	
13	6.305	6.225 -	6.425	57405316	8449314	6.794	v	0.39	
14	6.534	6.425 -	6.750	121089029	10142546	11.939	v	0.83	
15	6.825	6.750 -	6.900	51041791	10662645	4.787	V	0.35	
16	6.978	6.900 -	7.275	92253911	15527405		V	0.63	
17	7.359	7.275 -	7.550	47058886	6823320	6.897		0.32	
18	7.780	7.550 -	8.050	156730816	26053255		V	1.07	
19	8.950	8.825 -		14077018	1895135			0.10	
20	9.200	9.100 -		24851164	2389634		v	0.17	
21	9.461	9.350 -		30983324	3620137		v	0.21	
22	10.038	9.625 -		83364985	10143667		v	0.57	
23	10.050	10.100 -	10.500	122103967	11992399		V	0.83	
24	10.863	10.625 -	10.975	56886559	13405739			0.39	
25	11.061	10.975 -	11.350	162576294	5325172		V	1.11	
26	11.450	11.350 -	11.625	22206197	1148383			0.15	
27	11.450	11.625 -	11.950	50507871	3781622		v	0.35	
	12.000	11.950 -	12 025	4457981	875145	5.094	V	0.03	
28		12.025 -	12 125	11473.544	3317242	3.458	V	0.08	
29	12.061	12.025	12.125	58671261	5705235	10.284	v	0.40	
30	12.327	12.125 -	12.575	49294678	9844809	5.007	V	0.34	
31	12.410	12.600 -	12.000	60168411	13542925			0.41	
32	12.825	12.800 -	13 075	98748516	41499418		v	0.67	
33	13.000	13.650 -	13.070	2262846	912175	2.481		0.02	
34	13.675	13.700 -	13.750	22817133	3950651	5.776	v	0.16	
35	13.750	13.700 -	14 500	133396046	33408869	3.993	ν	0.91	
30	14.314 15.300	15.175 -	15 800	129717384	16553250	7.836		0.89	
37	16.100	15.800 -	16 250	180666019	9105264	19.842	V	1.23	
38		16.250 -	16 600	394425656	26209389		v	2.70	
39	16.365	16.230	17.100	593829004	40552210	14.644	V	4.06	
40	16.797	17.100 -	17.475	1846084759	118071605		VE		
41	17.300	17.100 -		2264357741	95931722	23.604	v	15.47	
42	17.783 18.500	18.400 -	18.825	35429433	4368136		v	0.24	l
43	18.500							100.00	· -
TO	tal			14632523532				100.00	,
20									

Tableau 28: Principaux produits du craquage catalytique du n-Hexadecane avec KBACo

Nº Pic	Tr (mn)	%Mass.	Identification	пC	Formule chimique	Nature Chimique
1	1.545	10.07	1-Butene, 2-methyl-	5	C_5H_{10}	0
2	1.763	10.48	1-Hexene-	6	C ₆ H ₁₂	0
3	2.048	5.33	1-pentene, 2-methyl-	6	C_6H_{12}	0
4	2.288	5.83	3-heptene, (E)	7	C ₇ H ₁₄	0
5	2.771	2.33	Toluene	7	C_7H_8	A
6	2.909	2.11	Heptane	7	C ₇ H ₁₆	P
7	3.328	2.74	Octane	8	C ₈ H ₁₈	P
8	3.825	0.57	Octane, 2-methyl-	9	C ₉ H ₂₀	P
9	4.235	8.10	p-xylene	8	C ₈ H ₁₀	A
10	4.599	3.17	Cyclopentene, 1- ethyl-3-methylene-	8	C_8H_{10}	N
11	5.041	1.34	Nonane	9	C_9H_{20}	Р
12	6.096	0.23	Benzene, 1,2,3- trimethyl-	9	C_9H_{12}	A
13	6.305	0.39	Benzene, 1,2,4- trimethyl-	9	C ₉ H ₁₂	A
14	6.534	0.83	Nonane, 2-methyl-	10	$C_{10}H_{22}$	P
15	6,825	0.35	Decane,3-methyl-	11	$C_{11}H_{24}$	Р
16	6.978	0.63	Benzenc, (1- methylethyl)-	9	C ₉ H ₁₂	A
17	7.359	0.32	I-decene	10	$C_{10}H_{20}$	0
18	7.780	1.07	Decane	10	$C_{10}H_{22}$	P
22	10,038	0.57	Decane, 5-methyl-	11	$C_{11}H_{24}$	P
23	10.250	0.83	Decane, 2-methyl-	11	$C_{11}H_{24}$	Р
24	10.863	0.39	1-undecene	11	$C_{11}H_{22}$	N
25	11.061	1.11	Benzene, 1,2,4,5- tetramethyl-	10	C ₁₀ H ₁₄	A
30	12.367	0.40	Undecane, 4-methyl-	12	$C_{12}H_{26}$	Р
31	12.410	0.34	Dodecane	12	$C_{12}H_{26}$	P
32	12.825	0.41	3-dodecene, (Z)-	12	$C_{12}H_{24}$	N
33	13,000	0.67	Tridecane	13	$C_{13}H_{26}$	P
36	14.314	0.91	Tetradecane	14	C ₁₄ H ₃₀	Р
37	15.300	0.89	3-tetradecene, (Z)-	14	C ₁₄ H ₂₈	N
39	16.365	2.70	Pentadecane	15	$C_{15}H_{32}$	P
40	16.797	4.06	Dodecane, 2,7,10,- trimethyl-	15	C ₁₅ H ₃₂	P
41	17.300	12.62	Tetradecane, 6,9- dimethyl-	16	C ₁₆ H ₃₄	P
42	17.783	15.47	Hexadecane	16	C ₁₆ H ₃₄	P
43	18.500	0.24	Tridecane, 4,8- dimethyl-	15	C ₁₅ H ₃₂	Р

: cyclobennae Rha : bex. Sample JD 286908939 TIC 114 11.111 11/11 11113 抽抗 НЩ | IIII į wi 1 11 i til 1 11 11 28 35 30 25 20 15 10

**** Peak Re	port ****					
PIMO R. Timo		Area	11 a d - 3 a			
1 1.278	1.133 - 1.483	139154333	neight	A/H(sec)	MIC	%Total Name
2 1.983	1.483 - 2.167	2826820089	14581471	9.543		1.21
3 2.267	2.167 - 2.450	1509077043	124163135	22.767	VE	24.64
4 2.500		381425922	123956802	12.174	VΕ	13.16
5 2.643			122294893	3.119	SVE	3.33
6 2.782		3891755	3009267	1.293	T	0.03
7 3.017		396719315	92137676	4.306	v	3.46
8 3.333	3.083 - 3.433	47380033	9600398	4.935	V	0.41
9 3.467	3.433 - 3.533	95478409	5223235	15.342	Λ	0.83
10 3.600	3.533 - 3.777	26671839	6203484	4.299	V	0.23
11 4.208		39643945	4980446	7.960	v	0.35
12 4.800		3521307035	112771961	31.225	VE	30.70
13 5.126		1675375982	1.21641572	13.773	VE	14.61
14 5.289		231369405	82324233	2.810	v	2.02
	5.250 - 5.437	56829172	11498653	4.942	V	0.50
	5.417 - 5.550	35450899	4886803	7.254	v	0.31
	5.550 - 5.800	45090885	3190035	14.198	v	0.39
17 5.933	5.800 - 6.067	29319285	3067196	9.559	v	
18 6.117	6.067 - 6.267	53718830	9393567	5.719	v	0.26
19 6.317	6.267 - 6.483	37060539	11040949	3.357	v	0.47
20 0.550	6.483 - 6.617	5805628	1736586	3.343	٧	0.32
21 6.994	6.917 - 7.417	144468305	34285468	4.214		0.05
22 7.832	7.700 - 7.983	24828087	4044270			1.26
23 14.206	13.767 - 14.400	44518602	5060245	6.139		0.22
04 15.20%	15.167 - 15.300	19594042	4853882	8.798		0.39
25 15.350	15.300 - 15.500	41999584		4.037		·0 - 1.7
26 15.567	15.500 - 15.650	14974936	7159275	5.866	V	0.37
27 15.717	15.650 - 15.817	7709030	2331493	6.423	ν	0.13
28 23.636	23.517 - 23.750	15000062	1308498	5.892	v	0.07
		79000007	2997011	5.005		0.13
That it	·					

Total 11470882988 100.00 .

Tableau 29: Principaux produits du craquage catalytique du Cyclohexane avec KBA

N° Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
2	1.983	24.64	cyclohexane	6	C ₆ H ₁₂	N
3	2.267	13.16	Butanc, 2,2-dimethyl-	6	C_6H_{14}	P
4	2,500	3,33	2-heptene, (E)-	7	C_7H_{14}	0
6	2.782	3.46	1,5-heptadien-3-yne	7.	C_7H_8	0
7	3.017	0.41	l-nonyne	9	C9H16	0
8	3.333	0.83	Hexane, 2,4- dimethyl-	8	C ₈ H ₁₈	Р
11	4.208	30.70	1,7-octadiyne	8	C_8H_{10}	0
12	4.800	14,61	Benzene, 1,3- dimethyl-	8	C ₈ H ₁₆	A
13	5.126	2.02	hexane	6	C_6H_{14}	P
14	5.289	0.50	Benzene, (1-methylethyl)-	9	C ₉ H ₁₂	A
15	5.433	0.31	Heptane, 3-ethyl-2- methyl-	10	$C_{10}H_{22}$	Р
18	6.117	0:47	1,2,4trimethylbenzene	9	C_9H_{12}	A
19	6.317	0.32	Benzene, 1,2,4- trimethyl-	9	C ₉ H ₁₂	A
21	6.994	1.26	Benzene, 1,2,3- trimethyl-	9	C ₉ H ₁₂	Α
23	14.206	0.39	Cyclohexane, (1- methylethyl)-	9	C ₉ H ₁₈	N
25	15.350	0.37	Naphtalene, 1,5- dimethyl-	12	$C_{12}H_{12}$	A

*** CLASS=5000 *** Report Mo. : 1 Data : CYCLHEX5.D14 100/06/0 710:24:0 Sample : cyclohexane khacu 11) i best 269975308 TIC 2 3 5 11 10h 32 1 11 1 4) 730 1411 1111 i pir 1 }# 1 111 Įί 1 11 u III j 1 11 1 [1] 1 11 1 111 8 16 31 12 型7 12 到8 12 32 制8 2 9 01

20

15

25

5

10

35

*** CLASS-5000 *** Report No. 4 | 1 Data : CYCLHEX5.014 | 100/06/0 710:24:0

Sample : cyclohexane khacu

TD : hex.
Sample Amount : 100
Dilution Factor : 1
Type

Type : Unknown
Operator : IAP
Method rile Name : ENS.MET

Vial No. : 1
Bergode :

****	Peak Repo	ort ****		نه برامد که به ۱۷	A/H(sec)	MK	%Total Name
	R.Tiber	T.Time - F.T.		24170794	9.453		1.85
1	1.283	1.167 - 1.5		124216445	23.986	VE	24.15
2	1.927	1.500 - 2.1			8.726	VE	3.47
3	2.200	2.167 - 2.3	17 1044440580	119693658	16.275	VE	14.76
4	11 1 644	2.317 2.0		111870910		V	3.54
5	2.772	2.683 - 2.8		108533295	4.022	v	2.27
6	2.835	2.817 - 3.0		24950878	11.198	v	0.52
7	3.160	3.067 - 3.2	83 64569713	8676990	7.441	-	0.52 0.64
ė	3.311	3.283 - 3.5	78971920	16171086	4.884	V	0.49
9	3.767	3.533 - 3.8	350 60355039	. 4517947	13.359	Ω. A	22.11
10	4.257	3.850 - 4.5	2727954827	109465040	24.921	-	9.80
1.1	4.700	4.517 - 4.9	950 1208534271	114798445		٧	
12	5.061	4.950 - 5		54708024	2.486	V	1.10
13	5.428		533 24157015	2228047	10.842	v	0.20
14	6.074	0727	31356828	6507946			0.25
15	6.277		117 29307994	9776757			0.24
16	0.277 0.963	0.850 - 7		28074871			0.87
17	7.806	0.00	950 20416201	3801874			0.17
18	11.114	10.983 - 11.		2209722			0.08
19	11.617	11.550 - 12.	050 13990639	1090196			0.11 0.14
20	10.150	12.050 - 12.		2814140			0.14
21	13.873	13.833 - 13.	983 55200224	18350600			0.45
22	14.067	13.083 - 14.	167 32595130	9328951		v V	0.19
0.3	14.317	14.167 - 14.	460 23436716	2735005	_	V	0.13
24	15.083	14.967 - 15.	150 14695312	3501827			0.83
25	15.202	15.150 - 15.	300 102952087	29580245		V V	1.18
26	15.346	15.300 - 15.	483 145010013	33702661		V	0.31
27	15.541	15.403 - 15.	650 38774649	10073382		V	0.31
28	15.683	15.650 - 15.	800 15751801	4704219		٧,	0.14
29	16.343	16.283 - 16.	517 16772073	2526545			0.14
, 30	16.750	16.517 - 16.	833 13656238	1354748		Λ	0.11
31	17.109	17.133 - 17.	350 52461681	25014310			U.43 4.10
32	23.668	23.533 - 23.	850 505945947	109516794	4.620	_	4.10
	tal		12335698673				100.00

Tableau 30: Principaux produits du craquage catalytique du Cyclohexane avec KBACu

N° Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
2	1.927	24,15	cyclohexane	6	C ₆ H ₁₂	N
3	2.200	8,47	Cyclopropane, butyl-	7	C ₂ H ₁₄	N
4	2.499	14.76	2-pentene, 3,4- dimethyl-	7	C ₂ H ₁₄	0
5	2.772	3.54	1,5heptadien-3-yne	7	C_7H_8	0
6	2.835	2.27	Pentane, 3-ethyl-2- methyl-	8	C ₈ H ₁₈	P
7	3.160	0.52	2-octene, (Z)-	8	C ₈ H ₁₆	0
8	3.311	0.64	octane	8	C_8H_{18}	P
10	4.257	22.11	Benzene, 1,2- dimethyl-	8	C_8H_{10}	A
11	4.700	9.80	1,7-octadiyne	8	C8H ₁₀	0
12	5.061	1.10	Hexane, 2,4- dimethyl-	8	C ₈ H ₁₈	Р
16	6,963	0.87	Benzene, 1,2,3- trimethyl-	9	C ₉ H ₁₂	A
17	7.806	0.17	Benzene, 1,2,4- trimethyl-	9	C ₉ H ₁₂	A
21	13.873	0.45	Naphtalene, 1- methyl-	11	$C_{11}H_{10}$	A
25	15.202	0.83	Naphtalene, 1,3- dimethyl-	12	$C_{12}H_{12}$	A
26	15.346	1.18	Naphtalene, 1,8- dimethyl-	12	$C_{12}H_{12}$	A
27	15.541	0.31	Naphtalene, 1,5- dimethyl-	12	C ₁₂ H ₁₂	А
31	17.189	0.43	dodecane	12	C ₁₂ H ₂₆	P
32	23.668	4.10	Octane, 3-ethyl-	10	$C_{10}H_{22}$	P

*** Classesoon *** Report to - Unitaria e eveniene più labovo de caleggio Sample : CYCLOHEXANE KBACO TD : bex. TIC 266312343 11 | 19 Hi I \dot{H} 1111 i hi 15 12 H $\pm m$ $T_{\mathcal{F}}^{1\beta}$

10

15

20

25

30

*** CIASS 5000 *** Report Bo ... I have a cycseve old 100/00/0 (13-72-7

Sample : CYCLOHERANE BRACE

ID : hex.
Sample Amount : 100
Dilution Factor : 1

: Unknorm Type Operator : INP Method File Name : ENS.MET Vial No. : 1

Barcode

***	Peak Rep	ort ****							
	R.Timo		F.Time	Area	Height	A/H(sec)	MK	STotal	Name
1	1.310	1.167 -	1.617	246746633	19654251	12.554		3.26	
::	1.750	1.617 -	1.817	139104938	16238760	8.567	V	1.84	
3	1.950	1.817 -	2.600	3127882950	123181665	25.392	VE	41.39	
4	2.717	2.600 -	2.950	170495640.	34435912	4.951	V	2.26	
15	2.967	2.050	3.117	6752312	1820866	3.708	V	0.09	
6	3.850	3.767 -		8849949	1258718	7.030		0.12	
7	4.226	3.933 -		2279549714	103698295	21.983	V	30.16	
8	4.670	4.467 -		1012850062	111424670	9.090	v	13.40	
ā	5.029	4.950 -		1.0861.6674	43193917	2.515	v	1.44	
10	5.217	5.150 -		17046450	3017397	5.360	V	0.23	
11	5.406	5.333 -		9978083	2051624	4.864	V	0.13	
12	5.533	5.483 -		17107441	1215843	14.070	v	0.23	
13	6.063	6.000 -		32739507	5205088	6.290		0.43	
11	6.267	6.017 -		33886894	9256727	3.661	V	0.45	
15	6.948	6.833 -		117098492	28431966	4.119		1.55	
16	7.700	7.717 -		14635208	2941174	4.976		0.19	
17	15.221	15.167 -		11046933	2517366	4.388		0.15	
18	15.350	15.317		18276564	3776706	4.839	ν	0.24	
19	17.205	17.133 -		184489752	82910607	2.225		2.44	
Tot	 al			7557372108				100.00	

Tableau 31: Principaux produits du craquage catalytique du Cyclohexane avec KBACo

Nº Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
1	1.310	3.26	Ethane	2	C_2H_6	P
2	1.750	1.84	1,3-hexadiene, c et t	6	C_6H_{10}	0
3	1.950	41.39	Cyclohexane	6	C_6H_{12}	N
4	2.717	2.26	Toluene	7	C_7H_8	A
7	4.226	30,16	Benzene, 1,2- dimethyl-	8	C ₈ H ₁₀	A
8	4.670	13.40	1,7-octadiyne	8	C_8H_{10}	0
9	5.029	1.44	Hexane, 2,4- dimethyl-	8	C8H18	Р
13	6.063	0.43	Benzene, 1-ethyl-2- methyl-	9	C ₉ H ₁₂	A
15	6,948	1.55	Benzene, 1,2,3trimethyl-	9	C ₉ H ₁₂	A
18	15.350	0.24	Naphtalene, 1,8- dimethyl-	12	C ₁₂ H ₁₂	A
19	17.205	2.44	Decane, 2-methyl-	11	C ₁₁ H ₂₄	P

1 Pata + YYLEBEN7, D14 100/06/0 713:07:1 Sample : Mylene kbo : bex. Ιb 286334980 TIC 1 | 11 | 13 | 1 | 13 | 1 ij 17 16 16 16 17 18 18 21.

20

25

15

10

35

1 Data : MYDENEND.D14 100/06/0 717:07:1 *** GLASS-5000 *** Report No. -

: xylene Eba Sample

ID : hex. : 100 Sample Amount : 1. Dilution Factor

: Unknown Type : IAP Operator Method File Name : ENS.MET : 1

6.117 -

6.300 -

6.533 -

6.717 -

7.717 -

23.533 - 23.833

6.300

6.533

6.717

7.250

8.133

6.157

6.355

6.583

7.052

7.859

23.612

1.6

17

18

19

20

21

Vial No. Barcode

**** Peak Report **** MK %Total Name Height A/H(sec) I.Time - F.Time 1.167 - 1.667 PKNO R.Time Arca 2.44 11.092 17795858 197398708 1.274 1 4.02 326099388 27867552 11.702 2.150 1.667 -2.083 32971055 7.898 3.21 2.150 -260390618 2.317 3 2.208 2.00 ν 9.559 162413843 16990392 2.317 -2.633 2.361 366787008 31568591 11.619 ٧ 4.53 2.633 -3.117 2.731 26.283 31.89 3.667 -4.467 2584592986 98336858 6 4.160 5.781 5.19 420744657 72779628 7 4.550 4.467 -4.567 1.948 ٧ 1.67 4.567 -135223919 69433401 4.600 8 4.583 7.585 v 6.71 71641077 543397273 9 4.644 4.600 -4.733 VE 24.62 5.150 122510132 16.286 4.784 1995206419 4.733 -10 5.46 122006891 3.626 5.150 -5.483 442400627 11 5.222 v 0.61 8129577 6.067 49321100 5.617 5.500 5.483 -1.2 ν 0.46 4.273 8736384 5.617 -37328367 5.733 5.683 13 5357003 4.111 ٧ 0.27 22025095 5.733 ~ 5.833 14 5.783 0.55 ν 9.237 5.833 -44566730 4824776 6.117 15 5.983

17115612

23792211

.3119522

56086804

7839029

5781339

5.730

3.499

5.776

4.407

5.353

4.777

ν

ν

٧

1.21

1.03

0.22

3.05

0.52

0.34

27615577 100.00 8103987656 Total

98074896

83256388

247159191

41965108

18019758

Tableau 32: Principaux produits du craquage catalytique des Xylènes avec KBA

	•	·				,
Nº Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
2	2.083	4.02	heptane	7	C ₇ H ₁₆	P
3	2.208	3.21	Hexane, 3-methyl-	7	C ₇ H ₁₆	P
4	2.361	2.00	1-octene	8	C_8H_{16}	0
5	2.731	4.53	toluene	7	C_7H_8	A
6	4.160	31.89	p-xylene	8	C ₈ H ₁₀	A
7	4.550	5.19	Benzene, (1,3- dimethyl-3-butenyl)-	12	$C_{12}H_{16}$	A
10	4.784	24.62	1-octene	8	C_8H_{16}	0
11	5.222	5.46	nonane	9	C_9H_{20}	P
12	5.500	0.61	Heptane, 2,5- dimethyl-	9	C ₉ H ₂₀	Р
13	5.683	0.46	Octane, 2,5- dimethyl-	10	$C_{10}H_{22}$	Р
14	5.783	0.27	dodecane	12	$C_{12}H_{26}$	P
15	5.983	0.55	Benzene, propyl-	9	C_9H_{12}	A
16	6.157	1.21	Benzene, 1,2,3- trimethyl-	9	C ₉ H ₁₂	A
17	6.355	1.03	Benzene, 1,2,4- trimethyl	9	C ₉ H ₁₂	A
19	7.052	3.05	Benzene, 1,3,5- trimethyl	9	C ₉ H ₁₂	A
21	23.612	0.34	Octane, 3-ethyl-	10	$C_{10}H_{22}$	P

*** CIADS-5000 *** Report No. = 1 Data : MYLENEN9.D13 100/06/0 515:38:2
Sample : MYLENE KBACU
ID : hex.

TTC 279164927 H III 71 111 19911 真頂 Ħ 14 26 16 | İ \parallel Ш [] 11 \prod ij 3^{4} || |12 ||| 11 194 H $\| \mathbf{i} \|$ -11 111.11 加山 明₁4 明 7 月 融界 四 7 月 28 1/3 11/ 27 HANNING IT 14 16 8 ΤO 12 20 18 22 26

жулене пажоп

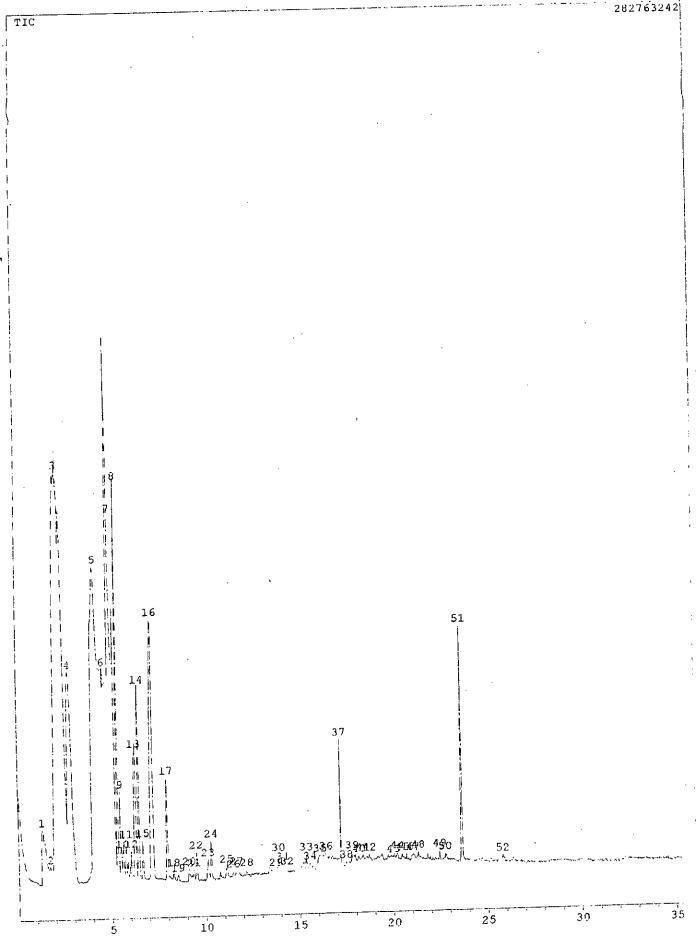
1 Data : MYLEBENG.D13 100/06/0 515:39:0

*** CLASS 5000 *** Report Do.
Sample : XYLENE KBACU
ID : hex.
Sample Amount : 100
Dilution Factor : 1

Type : Unknown
Operator : TAP
Mothod File Name : ENS.MET
Vial No. : 1
Barcode :

Total

****	Peak Per	ort ****								
PKM	R.Time	I.Time	-	F.Time	Area	Height	A/H(sec)	MK	STotal	Name
1	1.278	1.337	-	1.717	316800803	15081289	14.587		2.39	
2	1.750	1.717	_	1.850	15018197	2707127	5.548	V	0.16	
3	2.029	1.950 -	_	2.167	395597131	26763433	14.781	ν	4.30	
4	2.220	2.167 -	-	2.333	221305498	28022764	7.897	ν	2.41	
5	2.393	2.333 -	-	2.617	130364280	13850426	9.412	ν	1.42	
6	2.745	2.617 -	-	3.150	826057632	61054084	13.530	ν	8.98	
7	4.172	3.717	_	4.483	2514405232	95401839	26.356		27.35	
8	4.500	4.483 -	-	4.533	208895212	70840581	2.949	ν	2.27	
e.	4.550	4.533			207628670	70938070	2.927	V	2.26	
10	4.899	4.583	-	5.183	2643275361	117899887	22.420	VE		
1.3	5.259	5.183	-	5.367	353293807	110590455	3.195	٧	3.84	
1.2	5.405	5.367 ·	-	5.500	72300935	19154195		ν	0.79	
1.3	5.509	5.500 -	-	5.650	49829421	6922089	7.199	v	0.54	
14	5.718	5.650 -	-	6.133	92440806	8899239	10.387	V	1.01	
1.5	6.199	6.133 -	-	6.350	190291417	30625499	6.213	V	2.07	
1.6	6.416	6.350 -		6.567	180136605	47306164	3.808	V	1.26	
17	6.600	5.567 ·	-	6.850	37701250	8093246	4.658	ν	0.41	
18	7.156			7.317		75563667	7.030		5.78	
19	7.922	7.833 -	-	8.133	88818582	21838274	4.067		0.97	
2.0	9.117	9.067 -	-	9.283	6866811	1043628	6.580		0.07	
21	9.333	9.283 -	-	9.433	5445244	733056	7.428	V	0.06	
22	9.508	9.433 -			18798560	4228446	4.446	ν	.0.20	
23	10.115	10.017 -	-	10.233	3.4010770	2456782	5.703		0.15	
24	10.294	10.233 -	-	10.383	16220947	4554117			0.18	
25	11.155	11.050 -	-	11.267	1,3408052	2319687	5.780		0.15	
26	17.207	17.067 -	-	17.433	107199358	51048591	2.100		1.17	
27	17.817	17.683 -	-	17.900	7316441	2339023			0.08	
28	23.656	23.550 -	-	23.817	26593874	6220906	4.275		0.29	


9194410061

100.00

Tableau 33: Principaux produits du craquage catalytique des Xylènes avec KBACu

N° Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
3	2.029	4.30	Heptane, 2,3- dimethyl-	9	C_9 H $_{20}$	Р
4	2.220	2.41	Hexane, 3-methyl-	7	C ₇ H ₁₆	P
5	2.383	1.42	1-octene	8	C ₈ H ₁₆	0
6	2.745	8.98	1,5-heptadien-3-ync	7	C ₇ H ₈	0
7	4.172	27.35	1,7-octadiyne	8	C8H10	0
8	4.500	2.27	toluene	7	C ₇ H ₈	A
9	4.550	2.26	Octane, 4-methyl-	9	C91-120	Р
10	4.899	28.75	p-xylene	8	C_8H_{10}	A
11	5.259	3.84	Heptane, 3,4- dimethyl-	9	C ₉ H ₂₀	Р
12	5.405	0.79	Benzene, (1-methylethyl)-	9	C ₉ H ₁₂	A
13	5.529	0.54	Heptane, 2,5- dimethyl-	9	C ₉ H ₂₀	Р
14	5.718	1.01	Octane, 3,5- dimethyl-	10	C ₁₀ H ₂₂	Р
15	6.199	2.07	1,2,4- trimethylbenzene	9	C ₉ H ₁₂	A
16	6.416	1.96	Benzene 1,2,4- trimethyl-	9	C ₉ H ₁₂	Α
17	6.622	0.41	Benzene, (1- methylethyl)-	9	C ₉ H ₁₂	A
18	7.156	5.78	Benzene 1,2,3- trimethyl-	9	C ₆ H ₁₂	A
19	7.922	0.97	Benzene 1,3,5- trimethyl-	9	C9H12	A
26	17.207	1.17	dodecane	12	C ₁₂ H ₂₆	P
28	23,656	0.29	Octane, 3-ethyl-	10	C ₁₀ H ₂₂	р

*** CLASS 5000 *** Report H. I Data : MYLENERO.DIR 100/00/0 609:10:4
Sample : XYLENE RBACO
ID : bex.

*** CLASS-5000 *** Report No. = 1 Data : XYLENEU9.D13 100/06/0 609:10:4

Sample : XYLENE KPACO
TD : hem.
Sample Amount : 100 Dilution Factor : 1

Type : Unknown
Operator : TAP
Method File Name : ENS.MET
Vial No. : 1
Barcode : Unknown

****	Peak Rep	nr+ ***					
	rwaa Kap R.Timo	T.Time - F.Time	Area	Height	A/II(sec)	M11	Protal Name
1.	1.279	1.217 - 1.650	274595171	17374250	15.805		1.93
	1.717	1.650 - 1.850	55043665	5611749	9.809	v	0.39
?	2,142	1.850 - 2.650	4163517667	122989376	33.853	VE	29.29
3		2.650 - 3.217	1026989974	66291327	15.493	ν	7.32
4	2.755	3.633 - 4.450	2488210607	98993975	25.135		17.50
5	4.163		590971489	66682472	8.862	v	4.16
ς .	4.567		2765059330	111650275	24.765	VE	19.45
7	4.983		392622443	118557467	3.312	VE	2.76
8	5.327		84927355	26101356	3.254	v	0.60
9	5.461		55989458	8718506	6.422	v	0.39
10	5.583		60840954	12311346	4.942	V	0.43
1 1.	5.767	5.700 - 5.917	47475142	8987318	5.382	V	0.33
1.2	6.033	5.017 - 6.167	243897295	40003530	6.097	v	1.72
13	6.239	6.167 - 6.367		61079384	3.594	Ÿ	1.54
14	6.454	6.367 - 6.583	219509241	11826011	3.428	v	0.29
15	6.647	6.583 - 6.817	40541724	80231601	8.107	V	4.58
16	7.200	6.817 - 7.333	650474648		4.316	٧	0.95
17	7.952	7.817 - 8.167	135502263	31396683 3118478	5.062	v	0.11
1.8	9.271	8.167 - 8.433	15785003		6.025	7	0.08
19	8.509	8.433 - 8.733	10852280	1801347	5.801		0.17
20	9,105	ล. 967 - 9.217	24034904	41.43454		٧	0.16
2.1	9.367	9.217 - 9.433	22278613	31.71083	7.026		0.25
22	9.504	9,433 - 4,650	35236208	8737980	4.033	ν	0.25
23	10 107	9.967 - 10.217	35614738	6372299	5.584		
2.4	10.285	10.217 - 10.367	36731469	1131.6076		V	0.26
25	11.083	10.983 - 11.400	29134792	3422742	8.512		0.20
26	11.450	11.400 - 11.550	8009970	1689478	4.741	٧	0.06
27	11.631	11.550 - 11.917	28778532	2611712	11.019	ν	0.20
28	10,167	11.917 - 12.233	7413850	1885816	3.937		0.05
29	13.733	13.700 - 13.833	5343238	550076			0.04
30	13.879	13.833 - 14.073	20481745	5046325		V	0.14
31	14.093	14.033 ~ 14.103	10181826	2517203			0.07
32	14.317	14.193 - 14.357	3450040	684302		V	0.03
33	15,340	15.283 - 15.500	18474437	4352685			0.13
34	15.550	15.500 - 15.633	6044295	1943110		V	0.04
35	16.083	15.850 - 16.317	63832260	3191660			0.45
36	16.393	15.317 - 16.550	20434774	2371271		V	0.14
37	17.195	17.133 - 17.250	66487398	33814639			0.47
38	17.483	17.367 - 17.717	10090459	1038627			0.07
39	17.793	17.717 - 18.093	41887350	3738888		V	0.29
40	18.167	18.083 - 18.243	13893149	2068701		V	0.10
41	18.371	18.233 - 18.500	21281459	2472832		V	0.15
4?	18.717	18.500 - 18.817	20985345	2008919	10.446	ν	0.15
43	20.000	19.967 - 20.117	4641805	193537	23.984		0.03
	20.005	20.117 - 20.333	9362612	1887509	4.47]		0.06
. 44	20.467	20.367 - 20.667	15917772	1920193	8.290		0.11
45 46	20.407	20.667 - 20.883	8148744	1963103		V	0.06
45	21.025	20.983 - 21.217	17819772	1740310			0.13
4.8	21.317	21.517 - 21.400	5743253	14601,59		1.	0.04
49	22.454	22.400 - 22.517	8855545	2952170			0.06
50	22.742	22.717 - 22.900	8253935	1801123			0.06
51	23.639	23.517 - 23.750	253463588	73558723			1.78
52	25.796	25.733 - 25.917	11954082	2052708	5.824		0.08
Tot	al		14216186664				100.00

Tableau 34: Principaux produits du craquage catalytique des Xylènes avec KBACo

N° Pic	Tr (mn)	%Mass.	Identification	nC	Formule chimique	Nature Chimique
3	2.142	29.29	1-heptene	7	C ₇ H ₁₄	. 0
4	2.755	7.22	1,5_heptadien-3-yne	7	C ₇ H ₈	0
5	4.163	17.50	1,7-octadiyne	8	C_8H_{10}	0
7	4.983	19.45	p-xylene	8	C_8H_{10}	A
8	5.327	2.76	hexane, 2,4- dimethyl-	8	C ₈ H ₁₈	P
9	5.461	0.60	Benzene, (1- methylethyl)-	9	C ₉ H ₁₂	A
10	5.583	0.39	Heptane, 2,5- dimethyl-	9	C ₉ H ₂₀	Р
11	5.767	0.43	Nonane, 4-methyl-	10	$C_{10}H_{22}$	P
12	6.033	0.33	Benzene, propyl-	9	C_9H_{12}	<u>A</u>
13	6.239	1.72	Benzene, 1,2,3- trimethyl-	9	C ₉ H ₁₂	A
14	6.454	1.54	Benzene, 1,3,5- trimethyl-	9	C ₉ H ₁₂	A
15	6.647	0.29	Benzene, 1-ethyl-2- methyl-	9	C ₉ H ₁₂	A
16	7.200	4.58	2,3-heptadien-5-yne, 2,4-dimethyl-	9	C ₉ H ₁₂	0
17	7.952	0.95	Benzene, 1,2,4- trimethyl-	9	C ₉ H ₁₂	A
22	9,504	0.25	Benzene, 2-ethyl-1, 4-dimethyl-	10	C ₁₀ H ₁₄	A
23	10.107	0.25	Benzene, 4-ethyl-1, 2-dimethyl-	10	C10H14	A
24	10.285	0.26	Benzene, 1-ethyl-3, 5-dimethyl-	10	$C_{10}H_{14}$	A
31	16.083	0.45	Naphtalene, 2,6- dimethyl-	12	C ₁₂ H ₁₂	Α
35	17.791	0.29	undecane	11	$C_{11}H_{24}$	P
45	23.638	1.78	Octane, 3-ethyl-	10	$C_{10}H_{22}$	P

Sample ID : hex. TIC 313185813 10 H 1 Ψİ !!! \$!!! \$ III İ 111 111 1 | | 11 1 iilie Huzi 26 20 21 24 1, 22 29 30 31

25

35

30

20

- L Data : BITUME10.047 | 100/06/1 211:17:0

*** CLASS-5000 *** Report No. =

5

10

1.5

: bitime ul0

da a a hada a hiy

*** CLASS-5000 *** Report No. = 1 Data : BTTUME10.D17 100/06/1 211:17:0

: bitume n10 MARACA Sample

: hex. TĐ : 100 Sample Amount Dilution Factor : 1

: Unknown Type Operator : TAP Method File Name : ENS.MET Vial No. : 1

Barcode

****	Peak Rep	ort ****						
		I.Time -	F.Time	Area		A/H(sec)	MK	%Total Name
1	1.318	1.183 -	1.417	135371446	16435880	8.236		1.58
2	1,467	1.417 -	1.633	102902390	12147649	8.471	v	1.20
3	1.712	1.633 -	1.900	367547749	10788316	34.069	VE	4.30
4	1.933	1.900 -	2.667	3107322592	116362377	26.704		36.32
5	2.700	2.667 -	2.850	912816688	116050137	7.866	VE	10.67
6	3.219	2.850 -	3.700	2166718927	70369292	30.791	VE	25.33
7	3.867	3.700 ~	3.917	69378027	6193215	11.202	٧	0.81
8	3.983	3.917 -	4.083	40195782	4617548	8.705	V	0.47
9	4.133	4.083 -	4.233	88828366	27147019	3.272	V	104
10	4.350	4.233 -	4.517	732245531	115378142	6.346	VE	8.56
11	4,655	4.517 -	4.917	251624587	83874656	3.000	V	2.94
12	5.083	4.917 -	5.200	19451474	4418406	4.402	V	0.23
13	6.106	6.050 -	6.267	48665878	8901095	5.467		0.57
14	6.317	6.267 -	6.450	11393632	3159577	3.606	ν	0.13
15	6.542	6.483 -	6,750	11886896	2639302	4.504		0.14
16	6.983	6.750 -	7.250	45106659	9810678	4.598	V	0.53
17	7.841	7.667 -		12578794	1782178	7.058		0.15
18	11.123	10.967 -		21125436	5529544	3.820		0.25
19	11.718	11.517 -		1.9932121	2028777	9.825		0.23
20	13,875	13.717 -		37717368	10936833	3.449		0.44
21	14.063	13.983 -		22652600	4939547	4.586	v	0.26
22	15.033	14.967 -		7097781	549649	12.895		0.08
23	15,202	15.150 -	15.300	1,9852522	4101130	4.841	V	0.23
24	15.337	15.300 -		35467116	5394000	6.575	v	0.41
25	15.567	15.483 -	15.650	6092731	1361880	4.474	v	0.07
26	16.334	16.267 -		113014441	20752002	5.446		1.32
27	17.122	17.017 -		29514781	10411586	2.835		0.34
28	17.247	17.167 -		34123245	7039187	4.848	V	0.40
. 29	22.241	22.050 -		55644715	9185926	6.058		0.65
30	22.433	22.383 -		7515978	1830365		v	0.09
31	32.540	32.367 -		21389306	2025161	10.562	- -	0.25
Tot	 al		AND THE REAL PROPERTY AND ADDRESS.	8555165556				100.00

Tableau 35: Principaux produits du craquage catalytique du Bitume-Toluène avec KBACu

N° Pic	Tr (mn)	%Mass.	Identification	пC	Formule chimique	Nature Chimique
2	1,467	1.20	I-butene,3-methyl-	5	C ₅ H ₁₀	0
3	1.712	4.30	I-octyne	8	C ₈ H ₁₄	0
4	1.933	36.32	1-pentene, 2-methyl-	6	C_6H_{12}	0
5	2.700	10.67	1,5-heptadien-3-yne	7	C ₇ H ₈	0
6	3.219	25.33	toluene	7	C ₇ H ₈	A
7	3.867	0.81	Cyclopentane, 1-ethyl-3- methyl, cis-	8	C ₈ H ₁₆	P
9	4.133	1.04	ethylbenzene	8	C ₈ H ₁₀	A
10	4.350	8.56	1,7-octadiyne	8	C ₈ H ₁₀	0
11	4.655	2.94	Benzene, 1,2-dimethyl-	8	C ₈ H ₁₀	A
13	6.106	0.57	Benzene, 1-ethyl-2- methyl-	9	C ₉ H ₁₂	A
14	6.317	0.13	Benzene1,2,3-trimethyl-	9	C ₉ H ₁₂	A
16	6.983	0.53	1,2,3-trimethylbenzene	9	C ₉ H ₁₂	A
18	11.123	0.25	Octane, 3,5-dimethyl-	10	$C_{10}H_{22}$	P
19	11.718	0.23	Benzene, 1-methyl-4-(- 1-methylethyl)-	10	C ₁₀ H ₁₄	A
20	13.875	0.44	Naphtalene, 1-methyl-	11	$C_{13}H_{10}$	A
21	14.063	0.26	Naphtalene, 2-methyl-	11	$C_{11}H_{10}$	A
23	15.202	0.23	Naphtalene, 1,7- dimethyl-	12	C ₁₂ H ₁₂	A
24	15.337	0.41	Naphtalene, 1,8- dimethyl-	12	C ₁₂ H ₁₂	A
25	16.334	1.32	Benzene, 1-methyl-4- (phenylmethyl)-	14	C ₁₄ H ₁₄	A
26	17.122	0.34	Benzene, 1-methyl-2- (4methylphenyl)methyl	15	C ₁₅ H ₁₆	A
28	22.241	0.65	1-hexadecene	16	$C_{16}H_{32}$	0

Sample : bitime nil 1D1 los. 311323772 TIC ħ 11 Π H Ц 12 \perp 113 111 111 | | ř 111 1 | | 1 111 Ш 111 11 ļin i į lii Ηį i bi A 11 THEFT H 년 네 1 11 31 11 1 1 | | 111.4 ij iga 25 38 1 011 Ŗ | 1 111 HIj sin i oin Ш 1 11 | III e યા ક્ષેડ્ર 35 30 20 25 15 10

*** CIASS-5000 *** Poport No. " | 1 Data : RPPOMETE.DIV | 100/06/1 212:07:3

```
*** CLASS-5000 *** Report No. - | Fibala : BITUMETED17 100/06/1 212:07:3
```

Sample : bitume nii
in z.

1D : hex.
Sample Amount : 100
Dilution Factor : 1

Type : Unknown
Operator : TAP
Mathod File Magnet : ENS MEG

Method File Name : ENS.MET Vial No. : 1

Barcode :

****	Peak Rep	oort ****						
		I.Time - F.Time	Area	Height	A/H(sec)	MK	%Total	Name
1	1.455	1.175 - 1.625	607864619	37722772	16.114		4.94	
2	2.200	1.625 - 2.650	4665952704	117287535		VE	37.96	
3	2.675	2.650 - 2.825	840265631	116957333	7.184	VE	6.84	
4	3.380	2.825 - 4.025	3022884903	73615378		v		
5	4.200	4.025 - 4.400	688148370	41257320	16.679	VE	5.60	
6	4.446	4.400 - 4.575	299620126	52073492		VE	2.44	
7	4.718	4.575 - 5.075	367119737	88159569		V		
8	5.125	5.075 - 5.375	21556814	4242624		v	0.18	
9	6.582	6.500 ~ 6.800	26280214	4815659	5.457		0.21	
10	7.023	6.800 - 7.325	73477934	13536783			0.60	
1.1.	7.807	7.750 - 7.975	22298596	3490657	6.388		0.18	
12	9.477	9.050 - 9.650	36474277	2240808	16.277		0.30	
1.3	10.052	9.650 - 10.225	14179979	1742313	8.139		0.12	
14	11.066	31.025 13.350	74247365	2948220	25.184		0.60	
1.5	11.475	11.350 - 11.525	11014810	2140057	5.147	V	0.09	
16	11.650	11.525 - 12.125	74887546	3906275	19.171	v	0.61	
17	12.166	12.125 - 12.309	33379000	4081098	8.179	v	0.27	
18	12.325	12.300 - 12.375	8817137	2883948	3.057	V	0.07	
19	12.407	12.375 - 12.600	27157064	4212054	6.447	V	0.22	
20	12.825	12.600 - 12.925	27805950	2907934	9.562	v	0.23	
21	13.225	12.925 - 13.375	80928986	5546819	14.590		0.66	
22	13.438	13.375 + 13.650	25323881	2971574	8.522	v	0.21	
23	13.887	13.650 - 14.000	87080606	16724481	5.207	V	0.71	
24	14.025	14.000 - 14.250	53240245	5417664		v	0.43	
25	14.325	14.250 - 14.425	57093553	25215779		V	0.46	
26	15.050	14.825 - 15.075	31402988	4078508	7.700	·	0.26	
27	15.200	15.075 - 15.275	65123667	9526658	6.836	V	0.53	
28	15.348	15.275 - 15.500	139204235	12718332	10.945	ν	1.13	
29	15.575	15.500 - 15.650	25429756	4699031	5.412	v	0.21	
30	16.021	15.650 - 16.175	79512566	7211095	11.026	v	0.65	
31.	16.354	16.175 - 16.700	231873869	34436436	6.733	V	1.89	
32	16.766	16.700 - 16.825	33685567	6940268	4.854	V	0.27	
33	16.875	16.825 - 17.000	36350753	4463932	8.143	V	0.30	
34	17.134	17.000 - 17.375	155007778	11917899	13.006	V	1.26	
35	17.425	17.375 - 17.550	14676707	2474619	5.931	V	0.12	
36	17.625	17.550 - 17.825	44614911	7388064	6.039	v	0.36	
37	17.900	17.825 - 17.950	19032533	3177027		v	0.16	
38	17.980	17.950 - 18.225	76748209	18756467		v	0.62	
30	18.418	18.225 - 18.650	38009333	3015816		ν	0.31	
40	18.712	18.650 - 18.950	54751877	18546883	2.952	V	0.45	
						-		

' Total

12293324794

100.00

Tableau 36: Principaux produits du craquage catalytique du Bitume-Toluène avec KBACo

N° Pic	Tr (mn)	%Mass.	Identification	пC	Formule chimique	Nature Chimique
1	1.455	4.94	1-butene, 2-methyl	5	C_5H_{10}	0
2	2,200	37.96	1-hexene	6	C ₆ H ₁₂	0
3	2.675	6,84	Cyclohexane, methyl	6	C_6H_{12}	N
4	3.380	24.59	Toluene	7	C_yH_8	A
5	4.200	5.60	Benzene, 1,2-dimethyl-	8	C ₈ H ₁₀	A
6	4.446	2.44	Ethyl-benzene	8	C_8H_{10}	A
7	4.718	2.99	Cyclopentene, 1-ethenyl- 3-methylene-	8	C ₈ H ₁₀	0
8	5,125	0.18	Nonane	9	C ₉ H ₂₀	Р
9	6.582	0.21	Trimethylbenzene	9	C ₉ H ₁₂	A
10	7.023	0.60	m-ethylmethylbenzene	9	C ₉ H ₁₀	A
11	7.807	0.18	Decane	10	C ₁₀ H ₂₂	P
14	11.066	0.60	Benzene, 1,2,4,5- tetramethyl	11	$C_{11}H_{10}$	A
20	12.825	0.23	undecane	11	$C_{11}H_{24}$	Р
23	13.887	0.71	Naphtalene, 1-methyl-	11	$C_{11}H_{10}$	A
24	14.025	0.43	Octane, 2,3,6-trimethyl-	11	$C_{11}H_{11}$	P
25	14.325	0.46	dodecane	12	$C_{12}H_{26}$	P
27	15.200	0.53	Naphtalene, 1,8-dimethyl-	12	$C_{12}H_{12}$	A
28	15.348	1.13	Naphtalene, 2,3-dimethyl-	12	$C_{12}H_{12}$	A
29	15.575	0.21	Naphtalene, 2-ethyl	12	$C_{12}H_{12}$	A
30	16.021	0.65	tridecane	13	$C_{13}H_{28}$	Р
31	16,354	1.89	Tridecane, 2-methyl-	14	C ₁₄ H ₃₀	P .
32	16.766	0.27	Tridecane, 4,8-dimethyl-	15	C ₁₅ H ₃₂	P
33	16.875	0.30	Dodecane, 2,6,11- trimethyl-	15	C ₁₅ H ₃₂	P
34	17.134	1.26	Benzene, 1-methyl-2- (3-methylphenyl)methyl	15	C ₁₅ H ₁₆	A
38	17,980	0.62	hexadecane	16	C ₁₆ H ₃₄	P
39	18.418	0.31	heptadecane	17	C ₁₇ H ₃₆	P
40	18.712	0.45	eicosane	20	$C_{20}H_{42}$	P