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Résumé :
L’implémentation de composants (Propriétés Intellectuelles) conformes à des standards
industriels et l’implémentation hardware d’algorithmes théoriquement validés présentent
une multitude d’intérêts. Mais, elles nécessitent la compréhension et l’investissement de
plusieurs niveaux d’abstractions. Dans cette optique, nous proposons deux Détecteurs de
Phase génériques. L’un est configurable pour être conforme aux spécifications du standard
”Clocks for the Synchronized Network: Common Generic Criteria” de Telcordia Tech-
nologies et l’autre implémente l’algorithme ”Blind Carrier Phase Tracking with Guaran-
teed Global Convergence” publié et plusieurs fois référencé. Dans ces deux travaux nous
mettons en valeurs des problèmes de conception et nous proposons des solutions qui les
résolvent. Entre autres contributions, nous proposons la simplification de l’algorithme
et des règles traités pour les adapter à des architectures VLSI. Nous montrons comment
utiliser le moins possible de composants à grandes dimensions, comment éviter d’utiliser
des diviseurs conventionnels et comment il est possible de multiplexer efficacement le temps
d’exécution de multiplieurs. Nous proposons une nouvelle méthode d’implémentation de
la fonction Arctangent et une nouvelle technique d’ajustement dynamique de la précision
des nombres codées en complément à deux. Des simulations ainsi que des implémentations
sur des FPGAs de Xilinx nous ont permis de valider nos propositions. Une partie de notre
travail de Thèse est publiée dans deux articles, l’un dans un journal et l’autre dans un
Proceeding à Jury international.

Mots Clés : Détecteur de Phase, VLSI, Arithmétique, Ajustement de la Précision, Arct-
angent
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Abstract : Implementing components (Intellectual properties) compliant with indus-
trial standards and implementing successful and theoretically validated algorithms is of
utmost importance. It requires, though, working on several levels of abstraction. To that
end, we propose in this Thesis two Phase Detectors; one configurable to be compliant
with the Telcordia Technologies ”Clocks for the Synchronized Network: Common Generic
Criteria” and the other implementing the ”Blind Carrier Phase Tracking with Guaran-
teed Global Convergence” algorithm which is published and several times referenced. We
present the way we have dedicated and simplified the algorithm and the normalized rules
for VLSI implementations. We highlight the related design issues and solutions. Among
other contributions, we show how it is possible to efficiently time multiplex large multipli-
ers, we present a novel Arctangent function implementation as well as a novel technique for
a dynamic Accuracy adjustment of two’s complement numbers. Simulation results, FPGA
implementations as well as two International publications have backed our work proposal.

Key Words: Phase Detector, VLSI, Arithmetic, Accuracy Adjustment, Arctangent.
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Chapter 1

INTRODUCTION

The phase detectors are used in synchronization systems. They are widespread over the
literature in two essential categories; Linear Phase Detectors (LPD) and Quadrature Phase
Detectors (QPD) [1], [2].
The QPDs are widely provided in research publications. References [3] and [4] are among
many other examples. In the other hand, LPDs are not presented with much of options.
Usually, the same analogical and logical phase detector architectures are found in the
description of synchronization systems. Actually, there are no details about specific func-
tionalities needed for conformance to standards [2]. These functionalities are rather given
in the data−sheets of industrial components without explicit specification about their be-
longing to phase detectors [5]. This Thesis gives detailed explanations on both of the phase
detector categories by bringing two essential contributions:
1 - Design of a linear phase detector which is able to respond to normalized generic crite-
ria. In the academic research teams, successful hardware and software IPs are developed.
They respond to specific training and academic needs, as the implementation described
in reference [6], and sometimes they even give technical improvements relatively to their
states of the art as shown in references [7] and [8]. Nevertheless, they are not specified
to be used in normalized industrial applications. So, we are describing a detailed design
of an LPD configurable to respond to industrial generic criteria. In this proposal, among
other solutions, we present a novel method to dynamically adjustment the accuracy of
two’s complement numbers particularly when they are used as operands to fixed width
dedicated dividers.
2 - Design of a phase detector implementing the ”Blind Carrier Phase Tracking with Guar-
anteed Global Convergence (BCPT)” algorithm [3] which is theoretically validated and
cited several times [9]. This contribution presents efficient design techniques to solve some
critical issues related to the needed arithmetic unit and storage components. We showed
how it is possible to efficiently time multiplex large multipliers. We benchmarked our sim-
ulations against the theoretic validation approach published in [3] and the related design
specification is published in the Proceedings of WOSSPA’ 2011 [10]. We also improved the
implementation of the Arctangent function to be run in three clock cycles while retrieving
the angle resolution and precision as chosen for the application. The related novel tech-

12



CHAPTER 1. INTRODUCTION 13

Table 1.1: Objective Framework including the phase detector designs

nique is published in the JCSC Journal [11].
These two contributions meet the need of Intellectual Properties (IPs) portfolios which
could position our work and collaborators in the value chain of the VLSI industry. They
can be considered in the logic of the useful research explicitly promoted in the National
Research Program ”Programme National de Recherche” [12] and tacitly defended in all
the national R&D forums. Table 1.1 shows the Logical Framework including the need of
Phase Detectors VLSI IPs.

Figure 1.1 gives an important motivation to work on VLSI IP creation. The related
revenue estimation was done in 2004 [13]. It didn’t take into account the present economic
downturn. However, the actual growth trend, reported in reference [13], is well established
as shown in Figure 1.2. Complex hardware IPs as well as complex theoretical algorithms
are widely developed in universities and research centers. They constitute two competitive
advantages worth to exploit.
The rest of this Thesis is organized as follows:

Chapter 2 presents the basic phase detector concepts to introduce the two following Chap-
ters. It gives an overview about the role of phase detectors in simple synchronization
systems and it briefly describes the usual analog phase detector and the basic elements of
linear and quadrature phase detectors.
Chapter 3 describes standard criteria that should be addressed by our LPD. It gives the
design specification to effectively make it configurable to be conformant to Telcordia Tech-
nologies GR−1244−CORE [16]. In this Chapter among other solutions, we propose a novel
method to dynamically adjust the accuracy of two’s complement numbers.
Chapter 4 describes quadrature phase detection when using the ”Blind Carrier Phase
Alignment with Guaranteed Global Convergence” algorithm. It gives a simplification of
the algorithm in order to be realized with logical components and it addresses the related
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Figure 1.1: Estimated Semi-conductors IP revenue. As presented in Reference
[13]

Figure 1.2: Billing by Semiconductor firms. As presented in Reference [13]
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implementation difficulties including an Arctangent design requiring high speed and high
precision data. This Chapter finishes by showing the way we benchmarked our simulations
against the theoretic validation approach published in [3].
A Conclusion is given as an open synthesis. It summarizes our work and gives some of its
future alternatives.



Chapter 2

OVERVIEW ON VLSI PHASE
DETECTORS

It is possible to categorise VLSI phase detectors in many ways. In this Chapter we present
them in two global categories; as Linear Phase Detectors and as Quadrature Phase Detec-
tors.
Because the basics for all phase detectors derive from the concept of the simplest analog
Phase Detector, we start our explanation by giving its basic expression. Then, we move
on digital Phase Detectors with their two categorises the linear and the quadrature ones.

2.1 Introduction to Linear Phase Detector

Phase Detectors are used as entry components to PLLs. They start the phase tracking
functionality by indicating the phase difference between a reference signal and a system
feedback. Figure 2.1 gives a conceptual bloc diagram of a PLL producing a signal called
fb and locking to an input reference called ref. It consists of three basic elements: a Phase
Detector, a Loop Filter, and a Controlled Oscillator.
The Controlled Oscillator generates the desired output signal fb that is used for phase
detection and correction. The Loop Filter processes the phase difference caught by the

Figure 2.1: PLL Basic Elements

16
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Phase Detector and outputs the needed correction so that fb locks to ref.
The topology in Figure 2.1 works in the analog as well as in the digital worlds. The two
next sections give an introduction to basic phase detectors in those two worlds.

2.1.1 Introduction to Analog Phase Detector

In the analog world, the Phase Detector is a multiplier associated to a gain value K [15].
To simplify our explanation, let us consider that ref(t) and fb(t) are sinusoids with the
same frequency and a phase shift of 90◦. We also consider that the multiplier’s gain K is
1.

ref(t) = Aref sin(ωt+ φref (t)) (2.1)

fb(t) = Afb cos(ωt+ φfb(t)) (2.2)

If PD was the output of the Phase Detector:

PD = ref(t) ∗ fb(t)

With some trigonometric manipulation, we can have

PD = [
ArefAfb

2
][sin(φref (t)− φfb(t)) + sin(2ωt+ φref (t) + φfb(t))] (2.3)

Equation 2.3 shows that PD consists of two terms; a function of the phase difference of the
two signals and a function running at twice the frequency of the signal ref(t). When that
second term is discarded by filtering, the remaining term constitutes the control signal CS
for phase error correction.

CS =
ArefAfb

2
sin(φref (t)− φfb(t)) (2.4)

For more analog phase detection details, reference [15] gives all the needed and related
design aspects. That is done in the general context of ICs and PLLs.

2.1.2 Introduction to Digital and Linear Phase Detector

In the digital world, instead of extracting phase differences from an analog multiplier,
logical components make it. The usual example for that is the exclusive OR (XOR) gate
that may receive periodic ref and fb and provides a pulse width proportional to the phase
difference (Figure 2.2).
Based on a XOR gate, other types of phase detectors can be elaborated. Usually, only one
transition is considered for phase detection. That reduces error risks because of timing
problems.
For more robustness, an all digital phase detector can be based on timers and edge detectors
to extract the phase difference from its two input signals with respect to rising or falling
edges (Figure 2.3). In these kinds of detectors, the precedence of the input transitions
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Figure 2.2: XOR as a Phase Detector

Figure 2.3: Digital and Linear Phase Detector

is indicated to a counter that outputs the searched phase difference by incrementing or
decrementing the phase steps. If ref was a sampled sinusoidal data, the same phase
detector architecture as the one in Figure 2.3 could be used. In such case, to generate the
rising or falling edge indicator, comparators would be used to monitor the signal’s zero
crossing. For instance, if n was a data sample index, the data rising edge is indicated when
(ref(n − 1) < 0 and ref(n) ≥ 0) The basic phase detector functionalities cited in this
section gives effectively the phase difference of fb relatively to ref . Many other processing
operations can be efficiently performed at the phase detector’s level. Limiting a range for
that phase difference, considering phase transients or ignoring them and tracking the trend
of phase changes are among capabilities that will be treated in Chapter 3.

2.2 Introduction to Quadrature Phase Detection

A modulated band pass signal s(t) can be represented as:

s(t) = A(t) cos(2πfc t+ φ(t)) (2.5)
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Figure 2.4: Constellation example for a QAM signal

where A(t) is the amplitude modulation, φ(t) is the phase modulation, and fc is the
frequency of the carrier [14].
Quadrature Amplitude Modulation (QAM) is used to generate modulated signals obtained
by summing two signals with carriers that are π/2 out of phase. That phase difference is
called quadrature phase offset and the two modulated signals are referred to as the in-phase
(I) and the quadrature (Q) signals. The summation of those two quadrature signals can
be shown to be mathematically equivalent to the amplitude and phase modulated signal
in equation 2.5. Using trigonometric identities equation 2.5 becomes:

s(t) = A(t)[cos(φ(t)) cos(2πfct− sin(φ(t))) sin(2πfct)] (2.6)

Considering AI(t) = A(t) cos(φ(t)) and AQ(t) = A(t) sin(φ(t))

s(t) = AI(t) cos(2πfct)− AQ(t) sin(2πfct) (2.7)

The I and Q amplitudes constitute a constellation diagram as presented in Figure 2.4.
The quadrature phase detector tracks the received signal to determine whether the de-
modulator’s internal clock is sampling at the right time. Basically, it determines whether
the receiver is sampling early or late to generate the needed phase corrections to the in-
ternal sampling clock. In Figure 2.5 the phase detector outputs an up-down signal to a
counter in order to control a clock synthesizer. The synthesizer generates and offsets the
needed sampling clock. Reference [14] explains in detail the QAM symbol timing recovery
in which a quadrature Phase Detector is running. In summary, it is based on a predicted
edge crossing symbol. As explained in that reference and considering that a received signal
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Figure 2.5: Quadrature Phase Detector in a DPLL

is sampled four times per symbol. ICurrent and QCurrent are the I and Q channel samples
for the current symbol while IOld and QOld are the samples for the previous symbol. IEdge

and QEdget are the samples halfway between the current and the previous symbols. An
edge occurs when the signal trajectories of the I or Q cross zero. When the symbols are
alternately positive and negative and because they have equal amplitude, at an ideal sam-
pling situation the amplitude of IEdge and QEdge should be zero. Then, the conditions to
check whether I and Q edges occurred early are:

(IEdge > 0)⊕ (ICurrent > IOld) (2.8)

(QEdge > 0)⊕ (QCurrent > QOld) (2.9)

If the conditions in equation 2.8 and in equation 2.9 are true, a count−up is generated
while a count−down is generated if those conditions are false (see Figure 2.6).
Because the receiver is not synchronized with the modulated signal, sent data cannot be
recovered unless the related phase error is continually detected and used for the correction of
data reception. Figure 2.7 shows the effect of a phase and frequency offset on a 64−QAM
demodulated data. The literature presents a large number of carrier phase tracking
algorithms [3]. Chapter 4 of this Thesis presents specifically a VLSI Design of a the blind
carrier phase tracking with guaranteed global convergence that overcomes the conventional
blind carrier recovery algorithm which show unstable behaviours for large constellation
modulation schemes such as the 256−QAM.
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Figure 2.6: Sampled Points for I and Q for a QAM−4 Signal as presented in
reference [14]

Figure 2.7: Effect of phase and frequency offset on a 64−QAM Constellation



Chapter 3

VLSI AND DIGITAL LINEAR
PHASE DETECTOR

This Chapter describes the requirements to build an LPD. It specifies the design of the
usual linear phase detector and goes through the main phase detection problems considered
in synchronization common generic criteria [16]. It formulates those problems. Then, it
gives the VLSI solutions to resolve them.

3.1 Problem Formulation Through Standardised Cri-

teria

This section describes the global problems that should be addressed by the proposed so-
lutions. We start by defining the timing concepts needed to understand the addressed
problems. Those concepts are normalized in industrial standards like the GR−1244 [16].

3.1.1 Phase Alignment and Phase Offset

The phase alignment that we are considering in this section is a situation where the edges
of ref and fb timely coincide. Their phase offset is actually their phase difference. At a
system level, when a phase alignment or a phase offset is required, it can be an Output
to Output alignment or an Input to Output alignment or a phase offset at the Input or
at the output. To change the phase offset related criteria a multitude of modules may be
evolved. The whole system’s data paths as well as external offset settings determine the
end alignments and offsets. In the phase detector, it is possible to set a kind of initial
center frequency to propagate, through the system, controllable phase steps.

3.1.2 Phase Change during Pull−In

Pull-in is the process during which the output of a synchronization system is attempting
to lock to the reference input. And the Pull-in range is a measure of the maximum output

22
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Figure 3.1: Pull-in Range Mask Representation

phase deviation respectively to the reference input phase. Figure 3.1 shows a timing
representation of the Pull-in range process.

During pull-in the signal noise should be kept in the mask between the upper and the
lower limits. The phase change caused by the locking process should not go over the slope
limits S and −S represented in Figure 3.1 .
Figure 3.2 shows an example of a valid phase pull-in. Note that the phase changes do not
go neither beyond the required slopes nor beyond the required range. We can also note
the settling time during which the signal tends to lock to the reference input phase.
Figure 3.1 shows a qualification time for the reference input. That is a time during which
the reference is not yet valid; consequently, no phase detection is needed during that time.
The mask, in that figure, defines the requirements for the phase pull−in range as well as
the locking requirements.

3.1.3 Reference Input Qualification

The input references to synchronization systems (Figure 3.1) have qualification criteria as
well as priority settings. Usually more than one reference is available to be used. And
internal configuration sets the qualification criteria and a priority level for each of the ref-
erences.
The qualification criteria determine the failure conditions for each reference and the prior-
ities determine which reference to switch to when losing the used one.
For example reference [16] reports input failures according to:

� Coarse Frequency Monitoring that invalidates the reference input when its corresponding
frequency goes over 3% relatively to its nominal value

� Single Cycle Monitoring that checks individual cycles and invalidates the reference for
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Figure 3.2: Phase Pull-in Example

phase hits.

3.1.4 Jitter and Wander Tolerance

This section gives the meaning of the Jitter and Wander tolerance. It starts by describ-
ing some concepts needed for Jitter and Wander measurement and for understanding the
related tolerance masks.

Unit Interval (UI)

A UI is the reciprocal of data rate. In a synchronized system with one clock, a UI is the
period of the system clock.

Time Interval Error (TIE) and Maximum Time Interval Error (MTIE)

TIE is the phase variation of a considered signal relative to an ideal reference input over a
measurement period (called the observation time in [16]). Figure 3.3 shows an example of
a TIE measurement. It shows also the MTIE calculation resulting from the TIE measure-
ment. MTIE is the maximum pick to pick phase variation of the considered signal relative
to the ideal reference over the observation time.

Jitter and Wander Descriptions

The Jitter is short term variations of the considered signal’s significant instants (Figure 3.4
). Those variations expressed as phase oscillation frequency are greater than 10 Hz. When
those variations are long term ones (<10Hz) they are called Wander.



CHAPTER 3. VLSI AND DIGITAL LINEAR PHASE DETECTOR 25

Figure 3.3: TIE and MTIE Representation
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Figure 3.4: Jitter representation

Figure 3.5: Jitter tolerance Mask

The Jitter is quantified in units of UIs or in terms of phase time while the Wander is
usually measured using TIE, MTIE and TDEV measurement parameters.
The Jitter and Wander Tolerance is a measurement checking the higher levels of Jitter
and Wander that are allowed to go through the system. A Jitter and Wander levels are
characterized by their amplitudes and frequencies as illustrated in Figure 3.5 . A1 and A2
correspond to amplitude limits. F1, F2, F3 and F4 correspond to Frequency levels.

3.1.5 Phase Transient Tolerance

Synchronization rearrangements may cause unexpected short time phase step, called phase
transient, causing the impairment of the system. So MTIE limits are set to characterize
the transient tolerances. Figure 3.6 shows an example where different measurement times
correspond to different transient tolerances.
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Figure 3.6: Phase transient Tolerance Mask

Figure 3.7: Linear Phase Detector Top Level Bloc Diagram

3.1.6 LPD Global Problem Description

The linear phase detector to design should resolve the global problems described in Ta-
ble 3.1.

3.2 LPD Design Specification

The linear phase detector in Figure 3.7 is organized in five modules. (1) The basic phase
detector giving the phase difference between the reference input (ref) and the feedback
output (fb). (2) The phase slope detector and limiter. (3) The phase lock detector. (4)
The phase Build-Out Controller. And (5) the Top level Controller that contains the Top
phase detector’s state machine as well as its register settings and status signals.
The Basic Phase detector tracks the ref and fb phase difference and sets offsets if they are

needed. It also sets the limits to the ref -fb difference according to the needed application
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Table 3.1: Linear Phase Detector Global Problems

Jitter Tolerance. The Phase Slope Limiter detects the slope of the phase difference and
provides the ability of limiting it. The Phase Build Out module checks the evolution of the
phase difference to determine whether the output phase should be tracking phase transients
or ignoring them. After ref qualification (Section 3.1.3), the Phase Lock Module checks
the deviations of the phase difference over a predetermined amount of time called a settling
time in Figure 3.1 and Figure 3.2 . It indicates locking states when the phase difference
keeps a deviation range within required limits. The top level controller contains the linear
phase detector’s top level state machine as well as the register map needed for the sub
modules status and configuration.
Table 3.2 shows the causes of the global problems listed in Table 3.1 as well as their
corresponding global objectives and design modules.

The following sections describe the design of the Top level modules.

3.3 Basic Phase detector Module

This input module (Figure 3.7 ) extracts the phase difference value from its two input
signals, ref and fb, with respects to their rising edges. Figure 3.8 shows the basic phase
detector block diagram.
The precedence of the ref or the fb rising edges is indicated respectively with ref leads and
fb leads (Figure 3.8 ) and a counter outputs the searched phase difference by incrementing
the phase steps between the two edges.

The rising edges of ref and fb are determined in two clock cycles as shown in Figure 3.9
.

In Figure 3.8 setting high ref leads indicates that ref positive edge occurs before fb
positive edge, and setting high fb leads indicates that fb positive edge occurs before ref
positive edge.
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Table 3.2: Global Problems vs. Global Objectives

Figure 3.8: Basic Phase Detector Bloc Diagram
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Figure 3.9: Rising Edge Logic

Table 3.3: Basic Phase Detector I/O Description

If ref leads = 1 the up/down counter is incremented, and if fb leads= 1 it is decremented.
That way, the counter outputs the phase difference value in two’s complement format.

Note that if ref was a sampled sinusoidal data, the same phase detector architecture,
as in Figure 3.8 , might be used. In such case, to generate the rising edges indicators,
comparators would be used to monitor the signal’s zero crossing. i.e. if n was a data
sample index, the data rising edge is indicated when (ref (n-1) < 0 and ref (n) ≥ 0).

3.3.1 Jitter Tolerance Capability

Considering that the system clock is running at Fsys frequency, it gives a phase step of
(1/Fsys) for every increment for the absolute value of DP (|DP|).
If Fdata was the ref and fb frequency, the largest |DP| value would be ((Fsys / Fdata)-1)
= MaxDP . In any given application the allowed range of the Jitter amplitude is specified.
So, if [-MaxDP , MaxDP ] range goes over the Jitter tolerance range the count-up and count-
down giving DP values are limited to max and min values (count-max and count-min in
Figure 3.8 ) respectively preventing the intolerable Jitter to propagate through the system.
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3.3.2 Initial Phase offset

As explained in Section 3.1.1, we can control the phase steps values (DP) by adding a
desired constant value ”phase offset” to the counter increment. So, ideally when ref and fb
are perfectly aligned the DP value should be equal to the wanted phase offset to propagate.

3.4 Phase Slope Limiter

The speed of the phase change is formulated by the phase slope calculated by the differ-
ential fraction of a phase change value (φ2 − φ1) over a delay (t2 − t1) as presented in
Figure 3.10 .
When (t2 − t1) is pre-determined and constant the slope can be coded as the phase differ-
ence (φ2−φ1). While if the slope detection is related to events, the whole (φ2−φ1)/(t2−t1)
is implemented. For example, when a slope value is needed for a phase change between
a measured value and a fixed threshold, φ1, t1 and t2 are not known beforehand. So, the
division operation becomes a must.
For both cases the phase slope monitoring can be achieved by successive comparisons of
measured slopes against a maximum allowed phase slope as presented in Figure 3.11 .
The phase slope limit is a parameter that does not allow fast phase change to go through
the system. It may be considered in the filtering part of a synchronization system. How-
ever, because all the required parameters are available at the phase detection part, it is
worth implementing the slope limiter at this stage.
Obviously, the phase slope limiter module can be disabled if there are benefits to combine
the slope limit parameters with the bandwidth settings in the used synchronization filter.
This section shows how the phase slope is monitored and limited for both of the cases;
when (t2 − t1) is a constant and when it is variable.
As mentioned above, Figure 3.11 shows how the phase slope calculation monitors contin-
ually the phase incline. Then, if a change is found sharper than an allowed slope, it is
limited as presented in Figure 3.12 . When no phase alignment is required, the phase
difference keeps being a fraction of the direct difference obtained from the ref and the fb
phases. While, when the phase alignment is required, the phase, with the limited slope,
jumps to be aligned to the direct difference between the ref and the fb phases.

3.4.1 Phase Slope Limiter Design Specification

The input phase slope is detected with a configurable timer, a phase and time interval
detector and with a divider (Figure 3.13 ). A comparator monitors the input phase slope
and generates an enable signal (called en limit in Figure 3.13 ) to trigger the phase slope
limitation when it is required.
The phase slope limit is characterized by two parameters the phase slope limit (slope limit)
that indicates violations and the phase slope fraction (PF) that is used to reduce the phase
slope to a chosen level of phase incline. Then, if phase alignment is required, as soon as
the input phase slope goes back to an allowed value, the generated phase with the limited



CHAPTER 3. VLSI AND DIGITAL LINEAR PHASE DETECTOR 32

Figure 3.10: Phase Slope Expression

Figure 3.11: Phase slope limit and monitoring

Figure 3.12: Limited phase slope representation
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Table 3.4: Phase Slope Limiter I/O Description

slope jumps to be aligned. If not (no alignment required) the phase with the limited slope
does not jump; it tracks though the wanted and valid slope.
Table 3.4 shows the I/O of the phase slope limiter module. For the best possible phase
accuracy, the phase value is coded with large bus-widths. However, dividers with any large
bus-width are not available. In arithmetic implementation, dealing with large bus widths
has been always problematic. For example, in programmable logic devices, the largest Core
generated divider with Xilinx tools has 32bit width [18] and dividing multiplication results
after using the dedicated 18bitMult [19] requires a reduction of the 36bit products to the
only possible 32bit divider’s operands. That leads to additional work to solve the induced
problems of accuracy. In the case of our slope limiter, ref and fb may have low frequencies
while the system clock used to count phase steps may run at a very high Frequency. So,
the counted phase difference between ref and fb should be coded on a large bus width.
For example, for a 1Hz ref and fb frequency and a system clock of 200Mhz, the phase
difference between ref and fb may go up to 19999999 phase steps requiring 28 bitwidth.
Considering the absolute value of phase slopes, when a phase slope limit is required, we
have no need to process larger values than the limit while the small slopes (numbers) are
needed particularly to measure continuous and short phase deviations as mentioned in Ta-
ble 3.1 and Table 3.2. In such designs it is beneficial to find a way of keeping the highest
possible accuracy for relatively small phases even at the expense of relaxing the accuracy
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Figure 3.13: Phase Slope Limiter Conceptual Block Diagram
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when dealing with large slopes. Actually, the next section is showing how to dynamically
perform that accuracy adjustment. After determining the data thresholds corresponding
to the needed accuracy levels, our technique can be used appropriately to reduce the data
size and dynamically indicate which level of accuracy that is being processed.

3.4.2 Dynamic Accuracy Adjustment

Only two’s complement integer numbers are considered. That means the accuracy has the
same meaning as the resolution [20].
An N−bit two’s complement fixed point integer can be expressed as follows:

x = −2N−1xN−1 +
N−2∑
0

2ixi (3.1)

Where xi represents the bit i of x.
When only the Most Significant Bit (MSB) represents the sign bit, s = xN−1, x has
the largest absolute value. Otherwise, all the redundant MSBs constitute the sign bits’
extension.
Let us consider xMthe bit M of x representing the sign bit with the lowest index. If x does
not have any sign extension, M would be the same as N − 1. For 1 ≤M ≤ N − 2

−2N−1s+ 2N−2s+ ...+ 2Ms = 2Ms

Then, equation 3.1 can be written as:

x = −2Ms+
M−1∑
0

2ixi (3.2)

equation 3.2 shows that for every Nbit processed number if the xM bit is detected, the
Nbit number can be reduced to M + 1 bits without altering the original Nbit accuracy.
Usually, to keep the size coherence of arithmetic operators, sign bit redundancy is not
removed. Nevertheless, reference [8] shows that in some operations removing sign bit
redundancy leads to important performance improvements. In the same way, when bit
truncation is required, instead of reducing the LSBs, as usual, an option, would be to
remove first, as much as possible, the redundancy of the sign bits, then proceed to the
truncation of LSBs. That way, a combination of MSBs and LSBs is considered to give the
best possible accuracy for a given amount of bits.
For example, 2 in 5bit two’s complement is 11110. Truncating the Least Significant Bit
(LSB) from that number would give 1111 (−1 in decimal). And truncating the MSB would
give 1110 (2 in decimal). So, for a four bit operator truncating the MSB from -2 allows
keeping the accuracy of the 5bit number.
This technique goes back though to the same accuracy as the usual LSB only truncation
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Figure 3.14: 2’s Complement two bits reduction with the LSB only reduction
and with the proposed method

when operands have no sign extension. For instance, if we needed to truncate one bit from
01111 (that is 15), we would have no choice than getting 0111 (that is 7): in this situation
no MSB can be removed.
Figure 3.14 shows 20bit two’s complement numbers with the result of their two bits re-
duction; a reduction with the usual LSB only truncation technique and with the proposed
technique. When the proposed technique is applied three levels of accuracy, corresponding
to two bit reduction, are provided. If R was the number of bits to reduce, the technique
would provide R + 1 levels of accuracy.

Accuracy Adjustment Design:

Based on the two’s complement word reduction presented above, this section shows how
to effectively reduce the word length while keeping its accuracy information.
Figure 3.15 (a) shows the logical circuit to implement the proposed method. The logic is
completely generic. To simplify its explanation 2bit reduction is used for illustration.
In Figure 3.15 (a), the XORs dynamically find the sign extension and set (A1,A0) signals.
The multiplexer MUX selects the reduced bus to output. A0 and A1 control the MUX and
state the actual accuracy to be used forward in the system.

. (A1,A0) = (0,0) means that two MSBs are removed giving the accuracy of the numbers
with the full size (Figure 3.14 ).

. (A1,A0) = (1,1) or (A1,A0) = (1,0) means that two LSBs are removed giving the accuracy
of the numbers with the usual LSB reduction method
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. (A1,A0) = (0,1) means that the MSB and the LSB are removed giving an intermediate
level of accuracy.

A1 = ln[33] xor ln[32] (3.3)

A0 = ln[32] xor ln[31] (3.4)

When considering a divider, both of the related operands should be reduced to the same
accuracy corresponding to the operand with the largest absolute value.
Because of equation 3.3 and equation 3.4, if the two operands were X and Y and their
accuracy indicators were (XA1,XA0) and (YA1,YA0) respectively (Figure 3.15 .b):

XA1 = X[33] xor X[32], XA0 = X[32] xor X[31]

YA1 = Y [33] xor Y [32], YA0 = Y [32] xor Y [31].

If DA0 and DA1 were the accuracy indicators of the whole division (Figure 3.15 (b)),
to make sure that the operand with the largest absolute value always takes the lead a
combinatorial simplification gives

DA0 = XA0 or YA0

DA1 = XA1 or YA1

For N bit operands X and Y , and for a need of M bits reduction, with 1 ≤ M ≤ N − 2,
individual accuracy indicators can be expressed as:

XA(M−1) = X[N − 1] xor X[N − 2]

XA(M−1) = X[N − 2] xor X[N − 3]

...

XA0 = X[N −M ] xor X[N − (M + 1)]

Considering that DA = {DA(M−1), DA(M−2), · · · , DA0} as the operation’s accuracy indicator
(Figure 3.15 (c)), It would be expressed as:

DA0 = XA0 or YA0

DA1 = XA1 or YA1

...

DA(M−1) = XA(M−1) or YA(M−1)
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Figure 3.15: Dynamic Accuracy Adjustment for a Fixed Width Divider
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Figure 3.16: Linear trends of the phase change detected by using the proposed
method (squares) and by using the LSB only reduction (triangles)
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If the dynamic aspect of the proposed reduction (Figure 3.15 (c)) is not needed, it can
be avoided by pre-setting an accuracy level (DA) at power up and the related circuit runs
with a fixed, but configurable, accuracy. When a bus width reduction is required, using the
usual LSB reduction would present wrongly successive and continuous small changes as a
phase without any deviation. For instance, when a 34bit phase is input to a 32bit generated
divider [18], removing systematically two LSBs of the operands would lose, among other
information, all the phase inclines that should be detected by successive divisions over 2
and over 3. Figure 3.16 shows a trend of a phase change captured by our proposed method
and that would be lost if the phase and the coded time cycles were systematically reduced
from LSBs.
In that figure, if two LSBs were removed from the corresponding data we would obtain a
flattened trend instead of the significantly increasing trend. Without our proposed method,
those small and continuous deviations would be detected tardily by measuring the wonder
of the related signal [16]. Actually, Figure 3.11 shows that to comply with some standards
[16] some phase slope limits are set. Then, the absolute values that are larger than the
limits do not even need to be precisely known. In such cases, the smallest values give more
sense to be known with the highest possible accuracy.

3.5 Phase Build-Out Module

In synchronized systems the output signal and its related reference input has an average
fixed relationship. And the phase detector is the engine which regulates and pushes the
system to that fixed relationship. In case of a phase hit the system does not always ignore
it. It depends on that fixed relationship related to the considered application. Systems that
are allowed to ignore the phase hit supports a standard concept called ”phase build−out”
[16].
The steps to trigger a phase build out can be summarised as follows:

� the transient goes beyond the phase transient tolerance (Figure 3.6 )

� the signal is not complying to the Jitter tolerance requirements (Figure 3.5 )

� it goes beyond a phase build out triggering threshold and over a period of time called in
Figure 3.17 ”allowed Transient period to not build−out”. The triggering threshold
is not necessarily the transient or the Jitter tolerance range

� the phase slop of the transient is calculated

� the end of the transient is detected before a time out limit

� After the end of the transient, the phase is relatively settled (”settling time” in Fig-
ure 3.17 ); it does not violate neither the transient nor the jitter tolerance require-
ments for a determined amount of time
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Figure 3.17: Phase Build−out parameters

When the phase build−out starts, an indication is sent to the filtering part of the syn-
chronization system (Figure 3) to ignore the incoming phase and use the phase hold before
the phase transient crosses h pbo trg (Figure 3.17 ).
Status signals are used to indicate that a build out is not required even if a transient oc-
curred.

3.5.1 Phase Build-Out Design Specification

The Phase build-out module is enabled when en pbo is set high and the phase slope limiter
is disabled (Table 3.5). The state diagram in Figure 3.18 shows mainly the conditions that
lead to start the phase build−out process. Basically, it checks that the trigger threshold
is crossed, then it ensures that the transient delay is neither shorter than D1 nor larger
than the time−out delay D2. It checks that the signal is settled for a required ( D3 −
D2 ) delay (Figure 3.17 ). Finally, it sets the start pbo command to build−out the phase.
Then, it uses the phase hold when the input DP phase was crossing the triggering threshold.

3.6 Phase Lock Detector

The Phase Lock Detector monitors the ref−fb phase difference (DP), or the output of
the Phase Slope Limiter or the output of the Phase Build Out module. It checks that
the related deviations do not go over pre−determined limits during the phase settling time
(Figure 3.1 ). Table 3.6 shows the I/O description and Figure 3.19 shows the state diagram
of the Phase Lock Detector.
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Table 3.5: Phase Build-Out I/O Description
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Figure 3.18: Phase Build Out state diagram
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Figure 3.19: Phase Lock Detector State Diagram
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Table 3.6: Lock Detector I/O Description

3.7 LPD Controller Module

This module is the top level controller of the Linear Phase Detector. As shown in Fig-
ure 3.20 a state machine controls the LPD data path and an Enhanced Parallel Port (EPP)
sets the control parameters and records the status signals. The EPP details are given to
provide a complete design reference. Any other interface works because no specific require-
ments are needed to configure our LPD.
The two next sections describe the LPD Top level control flow and the register map with
its related interfaces.

3.7.1 LPD Top Level Control Flow

As presented in Figure 3.21 the user sets the Basic Phase Detector’s parameters (Table 3.3)
and records dynamically the phase difference PD that is used by the Phase Lock Detec-
tor to indicate the locking state. The Phase Slop Limiter and the Phase Build Out are
configured and their outputs ph s out and ph b out may also be selected to be input to
the Phase Lock Detector to monitor any related phase range violation. All the control
and status signals of the Figure 3.21 are described as sub−module I/Os in Table 3.3, in
Table 3.4, in Table 3.5 and in Table 3.6.
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Figure 3.20: LPD Controller between the external master interface and the LPD
data path

3.7.2 LPD Register Map and Interface

This section describes the followed methodology to build our register map and the details
to implement the EPP protocol.

Register Addressing Mode

The addressing mode used for this project is a direct 8-bit addressing. However, larger
and more complicated designs might require more elaborated addressing modes. An option
would be to adopt indirect addressing mode where a base address is used as a page pointer
and other set of addresses are used within each page.
Another option is to use chip select signals to select different parts of that elaborated
circuit, and use the same set of addresses for the blocks that have exclusive chip select
signals.
To build a register map, rules need to be followed as much as possible to ease the monitor-
ing, the programmability, the design and the verification of the programmable registers.
Here are some principals:

� Related registers are grouped in banks

� Register banks start from predictable address offsets

� Address offsets have to be multiples of a base power of two numbers

� Related bits in different registers and in different banks have to be in the same bit fields

� Address mapping leaves open addresses for future expansion

� Address mapping let the possibility to transform an implemented direct addressing mode
to an indirect one. That way, if future expansion does not fit in an implemented
register map, new pages can be created to contain expansions that go with existing
register banks
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Register Types

Read−Write Register can be updated in two situations: by the initialization condition
and by the user when writing through the EPP interface.
Read Only Register records status signals.
Sticky Bit Register is a read only register but it cannot be updated dynamically. In this
register, a bit set high does not go back to low even if the related status signal is low. It
can be set low only after it is read through the controller.
Redundant Status Registers is a shift register recording continually changing status
signals. At a read condition the output register keeps the last stable value constant to be
transferred consistently to the Master interface (Figure 3.22 ).

Register Map Design Specification

As a detailed explanation of the Figure 3.20 , this section describes the Top level I/Os
(Table 3.7), the content of the configurable registers (Table 3.8) and the registers configu-
ration timing diagram (Figure 3.22 and Figure 3.23 ).

Figure 3.23 and Figure 3.24 present the Read/Write protocol of the configurable
registers.

EPP Slave Design Specification

This section describes the EPP slave design as well as the related transfer protocol. Ta-
ble 3.9 gives the corresponding I/Os.

The Address write cycle is shown in Figure 3.25 . Here is its protocol description:

� The peripheral data output is disabled and the epp wait is low

� The host brings epp rw b low, which causes the byte to appear on epp data, and brings
epp astrobe low

� The peripheral brings epp wait high to signal that it is ready to latch the address

� The host brings epp astrobe high to cause the peripheral to latch the address

� When the peripheral is ready for another byte, it brings epp wait low

Data write cycle is identical to address write, except that the host uses epp dstrobe
instead of epp astrobe.
The Address read cycle is shown in Figure 3.26 . Here is its protocol description:

� The peripheral brings epp wait low. The host brings epp rw b high, and brings epp astrobe
low
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Figure 3.21: Linear Phase Detector Controller State Diagram

Figure 3.22: Redundant Status Register
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Table 3.7: I/O Description of the Configurable Registers’ Bloc
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I/O Description of the Configurable Registers’ Bloc. Continued
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I/O Description of the Configurable Registers’ Bloc. Continued

Table 3.8: LPD Rgister Map
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LPD Rgister Map. Continued
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LPD Rgister Map. Continued
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LPD Rgister Map. Continued

Figure 3.23: Registers Write Timing Diagram



CHAPTER 3. VLSI AND DIGITAL LINEAR PHASE DETECTOR 55

Figure 3.24: Registers Read Timing Diagram

Table 3.9: EPP Slave I/O Description
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Figure 3.25: EPP Write Cycle

Table 3.10: EPP Slave Internal Memory organisation
Pointer Content

1 The least significant byte of the address to write to the register block
2 The most significant byte of the address to write to the register block
3 The least significant byte of the data to write to the register block
4 The most significant byte of the data to write to the register block
5 The least significant byte of the data to read from the register block
6 The most significant byte of the data to read from the register block
7 Software reset

� The peripheral writes an address to epp data, and brings epp wait high to signal to the
host that the address is available to be read

� The host reads epp data and brings epp astrobe high

� The peripheral disables the epp data and brings epp wait low

Data read cycle is identical to address read, except that the host uses epp dstrobe
instead of epp astrobe.
Figure 3.27 gives the block diagram of the EPP interface. The EPP data input is synchro-
nized and Write and Read State Machines manage to transmit data between an internal
memory and the register bloc. The content of that internal memory is shown in Table 3.10.
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Figure 3.26: EPP Read Cycle

Figure 3.27: EPP Interface Block Diagram
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Figure 3.28: LPD Verification General Approach

3.8 LPD Verification

Our verification bench is illustrated in Figure 3.28 . Matlab files generate the needed stim-
ulus and monitor the test results while a behavioral verilog tester is used as a wrapper for
the design under test. Some of the test cases use only the verilog tester because they do
not need to provide so elaborated signals.
Table 3.11 shows the test cases list. They can be described as follows:

� ref fb diff detect detects the phase difference between ref and fb. It generates ref and fb
with pre−determined phase differences and monitors the design’s output to indicate
failures in a text report

� ref fb offset sets offset values and monitors theirs effect on the ref and fb phase difference.
Failures are reported in a text file

� ph change pull in sets the criteria corresponding to phase pull−in as described in Sec-
tion 3.1.2 and monitors the phase movement accordingly

� ph lock detect sets the criteria corresponding to locking conditions as described in Sec-
tion 3.1.2 and in Section 3.1.4 and monitors the phase movement accordingly

� phase transinet detect sets the criteria describing a phase transient (Section 3.1.5) and
monitors the phase movement accordingly. Because the normalized phase transient
test is done after prototyping because of the required execution and monitoring time,
this test shows only the possibility of setting the corresponding criteria and the
possibility of catching individual transients

� jitter tolerance test sets the criteria fixing the allowed phase deviations (Section 3.3.1)
and monitors the phase movement accordingly

� pbo test sets the criteria described in Section 3.3.1, generates different scenarios of phase
movements allowing to check whether the phase build out is performed appropriately
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Table 3.11: LPD Simulation Matrix
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Table 3.12: LPD Implementation Results

3.9 LPD Implementation

The Linear Phase Detector design effectiveness is demonstrated with Xlinx Virtex−5 LX
devices dedicated for high performance general logic applications [17]. The bus width,
of ref /fb phase difference (Figure 3.7 ), affect directly the FPGA implementation perfor-
mances (Table 3.12).



Chapter 4

VLSI QUADRATURE PHASE
DETECTOR : A BCPT DESIGN

To overcome the instability of conventional blind carrier recovery algorithms when applied
to large constellation modulation, the ”blind carrier tracking with guaranteed global con-
vergence (BCPT)” algorithm has been proposed, reused and several times cited in the
literature. The need of its portable VLSI implementation requires its simplification to be
based on a simple process with usual arithmetic operators. Actually, this Thesis presents
that dedicated and simplified algorithm and its most important design issues and solu-
tions. It highlights mainly some modules, such as some arithmetic and storage components
showing, for instance, an Arctangent implementation that can be run only in three clock
cycles while always retrieving the needed angle’s resolution. Finally, simulation results
are provided to show the effectiveness of the proposed design in a Quadrature Amplitude
Demodulation environment.

4.1 BCPT Problem Formulation

Touching to the field of carrier tracking and synchronization drives inevitably to diverse
phase tracking algorithm implementations. Those implementation options are widespread
over the literature. For instance, reference [21] presents the conventional phase detection
and tracking used in industrial DPLL products, [22] presents a VLSI phase tracking, using
Hilbert transformation, placed behind an equalizer to reduce the carrier phase noise that
attributes to the main SNR loss of a Virtual Base Station (VBS) receiver, [23] presents a
microprocessor-based phase tracking system used in digital power metering.
The considered application, in this Thesis, focuses on the issue of blind carrier phase track-
ing, which is critical in blind adaptive receivers. It is known that in large constellation
modulation schemes, such as 256 QAM, conventional carrier tracking schemes frequently do
not converge and result in spinning [24] [25]. The blind Carrier Phase Tracking with Guar-
anteed Global Convergence algorithm, in reference [3], resolves that problem and shows
that the carrier tracking is equivalent to a blind source separation problem involving the

61
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separation of a linear unitary mixture of two independent real-valued components. These
two components are the real and the imaginary parts of the emitted signal.
The theory in [3] has been cited several times in the literature [9] [26]. However, its
straightforward VLSI implementation is not possible because of its computational com-
plexity evolving mainly different matrix operators, large dividers and multipliers as well as
a complex manipulation of trigonometric functions. That is not particular to the algorithm
in [3]; one may go through any of the blind carrier phase estimators summarized in [27]
to see that implementing physically their corresponding algorithms, as they are and with
input data of more than 8 bits, would require a complex arithmetic manipulation of large
buses with more than hundred bits. Actually, up to date, except our own paper [10], no
blind carrier phase tracking with global convergence algorithm dedicated for VLSI imple-
mentation has been published. It is, then, necessary to overcome the difficulty of rewriting
and simplifying such algorithms in order to express them with usual hardware operators
while reducing the processed data size explosion. In that way, this work shows how to over-
come that difficulty for the theoretical estimation presented in [5]. The proposal is general
and does not target a specific technology. Hence, a special effort was done to minimize as
much as possible the need of technology related components to ease the design portability
and its FPGA validation. For instance, it is constrained to not have any large divider.
In this Chapter we give an overview on how a blind separation procedure is used to solve
the carrier tracking problem. Then, we show the corresponding simplified expression allow-
ing the hardware implementation of the algorithm. We present its overall hardware design
specification emphasizing some critical details on modules like the arithmetic unit and the
storage components. Finally, results from MATLAB and RTL simulations are presented
to show the effectiveness of the proposed design specification.

4.2 The Blind Carrier Phase Tracking with Guaran-

teed Global Convergence

Consider a transmission system of QAM data. Assuming a flat and noise free transmission
channel (or perfect equalization), the received signal at sample time k can be expressed as

xk = exp(jφk)ak (4.1)

Where a k is the transmitted data sequence which is complex, non-Gaussian and indepen-
dent, identical distribution (i.i.d), and φk is a time varying phase shift due to frequency
offset and phase jitter, referred to as the carrier phase.
To recover the transmitted data sequence , one needs to track the carrier phase φk in order
to remove it. The aim of the blind carrier tracking is to recover the phase φk without the
knowledge of the data sequence ak . Equation 4.1 can be rewritten in terms of real and
imaginary parts as

Re(xk) = cos(φk)Re(ak)− sin(φk)Im(ak) (4.2)

Im(xk) = sin(φk)Re(ak) + cos(φk)Im(ak) (4.3)
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In matrix form, we have
x̃ = Usk (4.4)

with

x̃k =

(
Re(xk)
Im(xk)

)

sk =

(
Re(ak)
Im(ak)

)

U =

(
cos(φk) − sin(φk)
sin(φk) cos(φk)

)
(4.5)

Under the assumption of the statistical independence of the real and imaginary parts of the
data , equation 4.4 tells that the problem of carrier tracking is equivalent to the problem
of the separation of a linear unitary mixture of two real-valued independent components
[3].
Reference [3] develops a carrier tracking algorithm by utilizing the adaptive blind source
separation algorithm proposed in [28]. Then, it ends up with the following updating rule
for the estimation of the carrier phase shift:

φk+1 = φk + arctan(λγk) (4.6)

When φk is close to the convergence, equation 4.6 can be rewritten as:

φk+1 = φk + λγk (4.7)

With some algebraic manipulation γ can be expressed as:

γ = xrkxik(xi2k − xr2k) cos(4φk) + (0.25(xi2k − xr2k)− (xrkxik)2) sin(4φk) (4.8)

xrk and xik are the real and imaginary parts of the received signal of equation 4.1 at
time instant k. λ is a step size that can be considered as a tuning constant.

4.3 Algorithm Expression for Hardware Implementa-

tion

We have obtained Equation 4.8 with the effort of minimizing, as much as possible, the
number of large operators. No divider is used. It is translated below in a process to be
executed with simple hardware operators constituted mainly by eight multipliers.
Let us call that process the Hardware-Dedicated-Procedure and consider the index k (the
time instant) as implicit:
Hardware−Dedicated−Procedure
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in sq = (xi− xr) ∗ (xi+ xr);
in mult = xr ∗ xi;
4φ = 4 ∗ φ;
cos fac = cos(4φ) ∗ in sq;
cos term = cos fac ∗ in mult;
sin term1 = in sq ∗ in sq / 4;
sin term2 = in mult ∗ in mult;
sin term = sin(4φ) ∗ (sin term1− sin term2);
hyp fac = cos term+ sin term;
tan(φ) = λ ∗ hyp fac;

φ = φ+ a tan(tan(φ)) (4.9)

As shown in equation 4.7, when φ is close to the convergence, it can be rewritten as:

φ = φ+ tan(φ) (4.10)

At first glance, implementing the algorithm with equation 4.10 seems to be less area and
time consuming. However, because equation 4.9 is, anyway, required for convergence ac-
quisition, to use equation 4.10 one needs to determine the related application’s convergence
accuracy and determine accordingly when to switch from equation 4.9 to equation 4.10.
So, the convenience of utilizing equation 4.10 is directly related to the used application
where the convergence acquisition time and the convergence accuracy play the principal
roles.

To keep our proposed architecture general, in this Thesis, only equation 4.9 is consid-
ered.

4.4 BCPT Design Specification

Figure 4.1 shows the phase tracking data path. The arithmetic unit receives at the same
time λ, xr, xi, sin(φ) and cos(φ) .
sin(φ) and cos(φ) come from a ’Sin and Cos’ Look Up Table (LUT). The output of the Main
Arithmetic Unit tan(φ) is input to the Atan Unit to sort the updated φ. The obtained φ
is a coded value with the same angle’s resolution and precision as the one initially loaded
from a controller to the ’Sin and Cos’ LUT. It is summed with the previous φ value and
fed back to be used with the next data samples xr and xi.

The three following sections give the main blocks and techniques that process data.

4.5 Arithmetic Unit

The Main Arithmetic Unit (Figure 4.1) contains the most critical part of the data path. It
receives the input data from a synchronizer, λ from a CPU interface, sin(4φ) and cos(4φ)
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Figure 4.1: Quadrature Phase tracking block diagram

Table 4.1: Time Multiplexing Multipliers
MULT1 MULT2 MULT3

Step1 In sq In mult
Step2 cos fac sin term1 sin term2
Step3 cos term sin term
Step4 tan(φ)

from ’Cos and Sin’ LUT and outputs tan(φ).
To perform the computation described in Hardware-Dedicated-Procedure a straightforward
option would be to use eight large multipliers. Such implementation leads to large area
consumption unless more elaborated design techniques are adopted. A time multiplexing
technique is one of those alternatives. It allows reusing inactive operators, and then only
three multipliers may be implemented. The multipliers’ inputs are multiplexed sequen-
tially to perform all the operations. Table 4.1 shows the followed steps to achieve all the
Hardware-Dedicated-Procedure multiplications when applying all the time multiplexing
possibilities. In Table 4.1, MULT1, MULT2 and MULT3 denote the three multipliers.
Each multiplication operation is identified by its output signal name. The signal names
are identical to the ones introduced in the Hardware-Dedicated-Procedure.

The considered time multiplexing does not show in detail the required data reformat-
ting, the additions, the subtractions, and the multipliers’ input multiplexing. Those opera-
tion delays are included adequately in the time multiplexing steps. Note that only MULT1
and MULT2 are intensively used. Under relaxed timing constraints, MULT3 can be re-
moved and its corresponding operation added as a step to MULT1 or MULT2 sequences.
Conversely, under tight timing constraints, the number of multipliers can be increased.
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Figure 4.2: Cos(φ) and Sin(φ) Look Up Table

Note also that Step 4 can be removed when λ is coded as a power of 2, in which case
tan(φ) is obtained by shifting accordingly hyp fac (see Hardware-Dedicated-Procedure).

4.6 Sin And Cos Functions Implementation

The ’Sin and Cos’ LUT needs to be built with a RAM loaded with cos(4φ) and sin(4φ)
values. A dual−port memory can be used. For the same resolution of 4φ cos(4φ) and
sin(4φ) values are the same considering sin(4φ) = cos(π / 2− 4φ). The memory is loaded
by a CPU through one port with only cos(4φ) values. 4φ values coming from that CPU
interface (initial 4φ) or from the feedback loop (Figure 4.2) are used as addresses to select
the adequate cos(4φ) and sin(4φ) values.

4.7 Atan Function Implementation

The most critical storage element to implement is the one related to Atan function. To
shorten as much as possible the pipeline of the data path, the Atan function needs to be
performed in the least possible clock cycles while retrieving the φ initial resolution and pre-
cision. Hence, Atan approximations requiring necessarily several clock cycles or requiring
only small angles as the one presented in [29] is not recommended for our implementation.
The Arctangent function is widely used in Signal Processing Applications. Nevertheless,
its difficult hardware implementation is always emphasized in the literature which tries
to resolve the compromise between speed, accuracy and hardware resource consumption.
Almost every paper presenting an Arctangent computing solution starts with a summary
of the three usual Arctangent computing approaches: high order polynomial approxima-
tions, rational approximations and Look Up Table (LUT) based methods. In References
[30], [31], [32], [33], the authors show that the usual approximation algorithms, like Taylor,
Chebyshev and the Coordinate Rotation Digital Computer (CORDIC), are valid Arct-
angent implementations when high computational costs are unimportant. And the LUT
based methods are simpler to implement but increasing the precision of the considered
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input data may degrade unacceptably the corresponding memory performances. In Refer-
ences [34], [35] and [36], the authors acknowledge those very same statements and do more
than proposing an alternate theoretical option, they present detailed hardware implemen-
tations as tradeoffs between speed, power and area consumption.
References [30], [31], [32], [33], [34] and [35] are the most recent published solutions propos-
ing alternate options. More papers proposing arctangent solutions can be found in the
literature, but those six references synthesis the most compiling solutions for Arctangent
large scale integration.
R. Lyons proposes a method to estimate an angle φ of a complex value (I + jQ) using a
table that lists arctangent approximations based on the octant location of φ. The proposed
algorithm can be used in applications where I2 and Q2 are pre-computed.
In the same way, S.Rajan et al. avoid using LUTs and usual approximation methods. They
propose new approximations by using Lagrange interpolation and minimax optimization
techniques. Every proposed approximation constitutes a trade off between accuracy and
computational cost [31], [32].
M. Saber et al. present a piecewise linear approximation of the arctangent function to
avoid high power consumption and long latency as an alternative to the other methods
based on CORDIC algorithm, polynomial approximation or conventional LUT methods
[34].
F. de Dinechin et al. use a unified view of most table−lookup−and−addition methods.
They show that this option improves the speed/area tradeoffs mainly for precisions up to
16 bits [35].
R. Gutierrez et al present an architecture for the computation of the a tan(Y / X) operation
using a logarithmic transformation to ease the division implementation and a combination
of non-uniform segmentation and a multipartite LUT technique to achieve higher through-
put than the approach based on CORDIC algorithm and lower area than conventional
LUT-based approach [36].
References [35] and [36] show, with their own solutions and with their related references,
that the trend to use LUTs in an unconventional way minimizes the impact of the tangent
values (input data) on the needed memory size. They show working solutions for specific
applications characterized mainly by the data throughput and the needed arctangent pre-
cision. In both references [35] and [36], the unconventional memory based solutions have
accuracy price to pay; the related memory do not contain the exact needed output values
as it is with usual LUT based solution. They contain approximations.
Actually, regarding arctangent hardware implementation, any proposed solution should be
evaluated according to specific requirements; particular options should be followed for par-
ticular requirements. In this Chapter, we are presenting an Arctangent core that should
comply with the following requirements:
Requirement-a: Input tangent values are coded as fixed point two’s complement num-
bers. Our Arctangent is a single argument function.
Requirement-b: The performances of the Arctangent core should not be driven by the
tangent input precision. Large word input data, like 32 bit words, should be accepted and
then the use of the usual LUTs based methods should be avoided.
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Requirement-c: the core should present the least possible pipeline stages to be used in
the implementation of feedback algorithms. For positive tangent values, the Arctangent
would be preferably run in one clock cycle. Hence, the use of large operators and the use
of high order approximations should be avoided.

We show below that none of the Arctangent solutions described in the literature re-
sponds to all the above listed requirements. While there are applications which need
Arctangent functions complying exactly with the listed three requirements. One of those
applications is a blind carrier phase tracking described above. It is proposed by A. Be-
louchrani et al. in reference [3]. These applications need a new Arctangent hardware
architecture. To that end, we are proposing a Content Addressable Memory (CAM) based
solution to reduce as much as possible pipeline stages and to better control the output
accuracy and then overcome the related drawbacks in the existing approximation imple-
mentations. And we are proposing an address decoding independent from the input tangent
precision to overcome the related drawback in the usual LUTs based solutions. We are
showing all the details resolving the challenges of such solution. We are making it easily
reproducible and we are describing it at the logical gate level to allow its rapid FPGA
validation. Its design effectiveness is demonstrated with Xilinx Virtex−5 LX devices ded-
icated for high performance general logic applications [17].

4.7.1 Arctangent Existing Solutions vs. our requirements

References [27], [28], and [29] do not show hardware implementation results. However, the
related analytical formulations show the computational complexity and the needed opera-
tors to utilize for every method. They consider the input data to the arctangent function
as a complex number − a two argument input I and Q to compute arctangent of I / Q.
For those methods, input tangent values coded as fixed point real numbers do not fit. And
compared to LUTs based solution, the proposed solutions suffer from inaccuracy. They
are given as standalone solutions ignoring the unavoidable correlation of their intrinsic
errors with the inaccuracy of the input tangent values. The problem of transferring the
inaccuracy of the input through arithmetic operators concerns the solution presented in
reference [34] as well. More, that reference that is based on a piecewise linear approxima-
tion does not show the intrinsic inaccuracy related to every linear piece. It does not show
the possible non-monotonicities at the borders between intervals. A problem raised by F.
de Dinechin et al in reference [35].

References [30], [31], [32] and [34] improve the usual polynomial and rational approxi-
mations. However, they do not compete against memory based solutions. The references
[34] and [35] present clear improvement compared to previously published solutions. They
attempted to extend the possibility of using the usual LUT based solutions. However, they
still present accuracy and speed limitations because of data processing before obtaining
the final and searched Arctangent values. The application example presented in Section 3
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shows that data precision requirement may go to much more than 16 bits recommended in
reference [35] and may go even more than the maximum of 22 bits precision presented in
reference [36]. Furthermore, it shows that we need the exact Arctangent output values (not
any approximated ones) to be fed back and re-used with the same precision and resolution
as the initial input values.

In summary, our experience and F. Dinechin et al. in Reference [35] indicate that the
LUT based solution becomes unusable when input data exceeds 10-12 bits. Below the 10
bit input data, that method is clearly a competitive candidate (in most cases that we know,
it is the best candidate) because it generates Arctangent values with the desired format
(precision and resolution); exact needed values are stored and decoded as exactly expected.
Whereas, all other published solutions generate approximated Arctangent values for which
some application does not work. Actually, for any algorithm feeding back approximated
Arctangent values, as published in the existing literature; the evaluation of the overall
computation error is specific and complicated.
The question is: can we keep using memories to store the expected and needed output
values without using the input tangent value neither as a conventional address to let it
be as large as needed, nor as a major factor evolved in an Arctangent approximation to
minimize its inaccuracy propagation and impact.

The response is yes. The following sections show how to make that happen.

4.7.2 Proposed Arctangent Search Engine

The solution is to build the Arctangent function as a search engine where computed tan-
gent values are compared to pre-calculated and stored tangent values. Because the stored
tangent values correspond to the desired angle’s resolution, and because tangent function
is an increasing one in the range of [−π / 2, π / 2] , the comparisons can systematically
indicate the searched angle’s location. That moves the number of words to decode from
depending on the tangent data precision to the number of angles relative to the angle’s
resolution and to the angle’s range. For example, for a tangent value written with 18 bits,
an angle resolution of π / 180 (1◦) and a range going from −π/2 to π/2 using the proposed
search engine reduces the number of cases to decode from 218 = 262144 to 180.
Considering that tan(Φ) is the input tangent value, tan buffer is the buffer where pre−computed
tangent values are stored and Φ the angle’s value to sort, here is a simple pseudo code to
formulate the search engine:
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Arctangent Search Engine−Pseudo Code:
for each cycle do
if new tan(φ) is computed then
for 0 < i ≤ angle′s number do
if tan(φ) ≥ tan buffer[i] then
φ = i;

end if
end for

end if
end for

For a simple illustration, let us consider that the searched values Φ is coded with 1◦

resolution and belongs to the range of [0 : π / 2[. The corresponding tan buffer would
be filled with 90 pre−computed tan(φ) values. tan(0) = 0 would be the smallest value
and tan(89◦) = 57.289 the largest one. When the search engine is executed because a new
tan(φ) = 1.740 is computed, it finds that 1.740 > 1.732 that is the tan buffer(60). Then,
it stops searching to give an indication showing that the searched angle is 60◦ .
Obviously, if the angle’s resolution was not 1◦ the index i (in the pseudo−code) would
indicate the searched buffer’s location that can be considered as a coded value of φ.

4.7.3 Proposed Arctangent Architecture

Figure 4.3 shows the conceptual block diagram of the search engine. During the initial-
ization period, the tangent buffer is loaded, from the lowest to the highest tangent value.
Then, every computed tan(φ), obtained from an arithmetic unit, is compared to the buffer
values to sort φ.

For better readability the used signals and parameters, in this Chapter, are labelled as
follows:

� pre− tan(φ) as the pre−computed tangent values loaded in the tangent buffer

� tan(φ) as the computed and input tangent value obtained from an arithmetic unit

� N as the angle’s number

� Ind[i] as the i’th comparator’s indicator. Considering that 0 ≤ i < N .

� φmin is the smallest angle value corresponding to i = 0;

� φmax is the largest angle’s value corresponding to i = N − 1.

� φ[i] is the angle value corresponding to the i’th tan buffer word and to the Ind[i]
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Figure 4.3: Arctangent Conceptual Block Diagram

When tan(φ) is input, it is compared simultaneously to every buffer word (pre− tan(φi)).
By default, every comparator’s indicator (Ind[i]) is set high. And for every comparator, if
the computed tan(φ) is larger than or equal to the considered pre− tan(φi), the compara-
tor’s output (Ind[i]) is set low.
After every comparison, the indicators are decoded to output the searched value φ.
Because, in the interval [-π/2; π/2], the tangent function is increasing, the decoder has
just to detect φmin or φmax or the two adjacent indicators presenting two different states
state 1 and state 0 and showing the location of the searched φ.
So, to sort the searched value φ, we have to deal with three exclusive cases:

� φmin is output when Ind[0] is kept high

� φmax is output when Ind[N-1] is set low

� φ[i] is output when Ind[i] is different from Ind[i+1]

The selection cases to sort φ are illustrated in Figure 4.4

Because of the rotational symmetry of Arctangent, arctan(−x) = − arctan(x) where x
is a tangent value, and because sign information extraction and numbers’ complementation
are trivial, let us give the implementation details for a solution considering only positive
tangent values.
The most challenging part of the proposed design is to execute timely the CAM and the
decoding function. As shown in Figure 4.3, we consider that the CAM structure includes
the tan buffer and the comparators while the Decoder goes from the comparators indica-
tors to the final output giving the searched φ.
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Figure 4.4: Arctangent Functional Diagram

The implementations of the CAM and the Decoder are given in the following sections re-
spectively.

4.7.4 CAM Implementation

The CAM structure can be described − with a Hardware Description Language − in two
processes representing the two corresponding blocs in Figure 4.3; the first one loads the
pre−computed tangent values in the tan buffer and the second one performs the com-
parisons and generates the indicators ( Ind ). The most critical part of the CAM is the
comparator implementation that depends on the tan(φ) world length. In any kind of tech-
nology, to favour the speed, appropriate resources and algorithms need to be chosen to
minimize that comparator’s propagation delay from the Most Significant Bit to the Least
Significant one. Regarding the Xilinx FPGA implementation, the option is to use the carry
chain to cascade ’AND’ gates. More specifically, the dedicated and fast component called
MUXCY [37] are configured as a wide ’AND’ gate, allowing the word length to be ex-
pendable and the most significant bytes to have the priority to trigger the comparison
indicator. The global structure of our CAM and the use of the carry chain to speed up
the comparisons make it resemble to the CAM described in the application note in refer-
ence [38]. We could not use the exact CAM described in reference [38] because the stored
words in that application correspond exactly to the expected inputs. And to fill the used
LUTs the authors, in reference [38], utilize a serial data setting specific to the Xilinx shift
registers built in LUTs. Our inputs can have any tangent value; not only the ones we store
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in our tan buffer. And for better portability, we use a usual buffer of registers that can
be filled in a burst mode by incrementing the buffer’s pointer and setting accordingly the
pre−determined tangent values. The used comparator constitutes the slowest combinato-
rial part for the CAM. To give an idea about its physical implementation on the Virtex−5
LX 65 µm technology with 12−layers, a 32 bit comparator consumes 5 levels of logic, 16
LUTs and 3.99ns propagation delay where 33.7% is logic and 66.3% is routing.

4.7.5 Decoder Implementation

The Decoder receives the comparator indicators and outputs the searched value φ. Because
tangent is an increasing function in [0, π/2] range and the indicator’s number is equal to
the angle’s number, one of the three exclusive cases (Figure 4.4) always gives the angle’s
location.
To reduce the amount of required combinatorial logic when reading the indicators two
options are adopted:

� Make sure that no priority is set for exclusive cases. The exceptions indicated in Fig-
ure 4.3 and in Figure 4.4 (Ind[N-1] = 0 and Ind[0] = 1) are exclusive to each other and
exclusive to the regular decoding (Ind[i] 6= Ind[i + 1]). So, the outputs of the three
cases are just ORed (Figure 4.4). After every decoding operation, those outputs are
set back to the default ’0’ so that in the following operation, only the selected case
goes through the OR gate

� All adjacent indicators, Ind[i] and Ind[i+1], are XORed to detect which pair of indicators
are different (Figure 4.5). The XORs’ outputs called ”diff detect” are one hot coded.
The only diff detect bit that is set high indicates the searched φ location

The searched φ location is an integer between 0 and N-1. Because it is unique for
every φ, it can represent a coded value of itself. In applications like the one presented in
section 4.4 in Figure 4.1 the sorted integer number corresponding to φ can be fed back
to a cosines and sinus dual memory as an address. At that stage the integer number,
corresponding to φ location, is all the needed information from the Arctangent function.
That integer number is a proportional factor of φ. If a more accurate φ value is needed
farther in the system, for the application itself or in a related test bench, the sorted integer
number is multiplied by the appropriate sign and angle’s step.
The large Multiplexer in Figure 4.5 is the slowest part of such Decoder module. It de-
pends on the angle’s range and resolution. Its straightforward implementation gives large
data path delays because of the required combination and routing of the selection signals
diff detect and Sel−Max. On Virtex−5 LX device, 180 selections (N=180) of an 8−bit
data bus give a Multiplexer of 228 LUTs, 34 levels of logic and 23.923ns propagation delay
where 12.4% is logic and 87.6% is routing. To find faster φ value, either as an integer or as
a more accurate real value, the option would be to pre-store in the needed format φ values
and use the one hot diff detect and Sel−Max signals to load out the searched φ. Figure 4.6
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Figure 4.5: Decoder Logical Circuit

shows how to use D Flip Flops to eliminate any combination between diff detect bits and
Sel−Max.
As for the pre-tan(φ) buffer, the φ buffer is loaded at the system set up. Every predeter-
mined φ value is input to Flip Flops that transmit it out when the corresponding enable
signal (’en’ in Figure 4.6) is set high. A wide OR gate outputs the selected φ and after
every decoding operation, the outputs of the changed Flip Flops are set back to the default
’0’ unless their corresponding enable signal is kept high. The Flip Flop outputs are set
back to ’0’ so that in the following operation only the selected case goes through the OR
gate.
Note that for this implementation Sel−Min signal is not needed. If the searched φ is smaller
than the stored φ[0] neither Sel−Max nor any of diff detect bits is set high. In such case,
φ keeps systematically the value ’0’. For this Decoder, the wide OR gate constitutes the
slowest combinatorial part. On Virtex−5 LX device, for every output bit, a stand alone
180−input OR gate consumes 32 LUTs and 5.663 ns propagation delay where 19.3% is
logic and 80.7% is routing.

4.7.6 The Arctangent Core physical Implementation

This section gives the implementation results for resolutions of 1◦, 0.5◦ and 0.25◦ and
for values written with two different precisions. It presents a discussion that shows the
compliance of the proposed core to the three requirements listed in the Introduction. It
shows how to extend the proposed core functionality to the full range of [-π/2, π/2] and
finishes with a discussion on the timing, area and power performances of the proposed core.
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Figure 4.6: Arctangent Output Selection

Table 4.2 gives an example on the way φ and tan(φ) are coded. It gives the hexadecimal
coded values for the extreme numbers considering an angle resolution of 0.5◦ and a range
of [0, 90◦].

Table 4.3 shows the Arctangent implementation results on Virtex−5 LX devices. It
corresponds to the architecture combining the illustrations in Figure 4.3, Figure 4.5 and
Figure 4.6. Results related to 1◦ and 0.5◦ are obtained on an implementation on xc5vlx30
device. While the results related to 0.25◦ are obtained with an implementation on xc5vlx50
device. Description of the devices xc5vlx30 and xc5vlx50 can be found in reference [17].
For all the presented configurations, the worst case combinatorial delay corresponds to the
slowest path of the wide OR gate outputting φ.
For xc5vlx30 the obtained clock path delay with 0.1 uncertainty consumes 2 levels of logic
and a maximum of 2.64ns delay. For this device and for the examples shown in Table 4.3,
the largest clock cycle to generate φ is 6.381 + 2.64 = 9.021 ns (110.8 MHz) and the
smallest one is 3.823 + 2.64 = 6.463ns (154.7 MHz).
For xc5vlx50 the obtained clock path delay with 0.1 uncertainty consumes 2 levels of logic
and a maximum of 2.9ns delay. For this case the largest clock cycle to generate φ is 7.743
+ 2.9 = 10.643 ns (93.9 MHz).

4.7.7 Arctangent Implementation Extension to [-π/2, π/2] range

The proposed Arctangent core is generic and can be easily adapted to any sub-range of
[−π/2, π/2]. To cover the full range of [−π/2, π/2], the easiest option would be to apply
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Table 4.2: Example of Coding φ and tan(φ)

Table 4.3: Arctangent Implementation results
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Figure 4.7: Arctangent Core extension to cover the full range [-π/2 , π/2 ]

the rotational symmetry of the Arctangent function: Generate the absolute value of tan(φ)
for processing. And after processing and obtaining the absolute value of φ, put back the
right polarity as shown in Figure 4.7. The same configurable module is used backward
and forward to generate a two’s complement number and change the number’s polarity as
needed.
A clocked 32 bit two’s complement generator consumes 8 levels of logic, 63 LUT Flip−Flop
pairs with a 3.049ns maximum combinatorial path delay.

4.7.8 Conformance to the listed Requirements

Conformance to Requirement-a: tan(φ) is a fixed point two’s complement number.
Conformance to Requirement-b: The most beneficial consequence of utilizing the pro-
posed core is the low cost inferred by increasing the tan(φ) precision. Table 4.3 shows that
going from the minimum possible precision to 32-bit precision is possible and does not
decrease the hardware performances neither exponentially nor proportionally. Our solu-
tion has the advantage of accepting large tan(φ) precisions and generating the angle’s value
with the desired precision for cases absolutely impossible to implement with the usual LUT
based solution that is the only theoretical candidate that would be able to comply with
this requirement.
Conformance to Requirement-c: For applications where only the range [0, π/2] is
needed the proposed core can generate φ in one clock cycle. Only the Flip Flops connected
to the wide OR gate are necessary (Figure 4.6). For an execution over [−π/2, π/2] range
as illustrated in Figure 4.7, φ can be generated through three clock cycles: one to generate
the tan(φ) absolute value, one to input data to the wide OR gate and one to generate
the final two’s complement φ. Actually, with a flattened implementation, the module that
generates the tan(φ) absolute value can be merged with the comparators. Then, only two
clock cycles are needed to compute Arctangent over the whole range of [−π/2, π/2]. And
the wide OR gate keeps giving the worst combinatorial path delay and infers directly the
clock period to use.
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4.7.9 The Arctangent Core allows easy re−pipelining and Re−timing

All the considered implementations favour speed rather than area consumption. Although,
the implementation results are obtained with the free Xilinx ISE WebPack; no extra syn-
thesis tools for optimisation are used, and the preponderant impact of routing on timing
performances could be reduced by forcing a more compact localisation of the Arctangent
components. However, that would prevent the place and rout tool from utilizing the un-
used resources located in the area of the Arctangent bloc.
Obviously, if utilizing more pipeline stages fits the used application requirements, more
registers can be added to re-pipeline the proposed core and use higher frequencies. Exam-
ples of combinatorial delays of the most critical components are given with their number
of logic levels to ease the re−pipelining analysis if it is needed

4.7.10 Saving Area Consumption

To save area consumption, one may use additional and professional synthesis tools, rather
than just the free ISE WebPack. And depending on the needed modularity of the applica-
tion, one may isolate the arctangent core and concentrate its implementation in the most
compact possible area.
Another area saving can be made by replacing the two buffers of registers and their under-
lying routing by hard coded numbers distributed in shift registers located in LUTs already
used for logic functions similarly as done in reference [38]. The drawback of such option
is the lack of portability of the design to other technologies. For VLSI implementations
other than FPGAs, this option would eliminate all the registers constituting tan(φ) buffer
and φ buffer in Figure 4.3 and Figure 4.6.

4.7.11 Power Saving

XPower, the used Xilinx ISE estimator shows a maximum power estimation of 348mW
for the largest implementation of the core corresponding to an angle resolution of 0.25◦

and a 32−bit tan(φ). That includes the Input Output Block consumption. In this Thesis,
because we are presenting a generic solution portable on any VLSI technology and be-
cause our validation is done on FPGAs, our design specifications are not driven by power
consumption. As a future work, our proposed core will be implemented at the transistor
level to be more efficient on ASICs and on SoCs. The needed investigation for such imple-
mentations will consider saving power as a primer constraint. At that level of design, our
proposed core will be completed with an investigation on the most balanced speed/power
consumption; suitable transistor level components as well as power gating techniques will
be brought to the proposed architecture.
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Figure 4.8: Overall Phase Tracking Verification Flow

4.8 VLSI BCPT Validation

In this section, we show a simulation matching the validation published in [3].
So, as in reference [3], the carrier phase is assumed to be time varying and is given by
φk = φ0 + 2πkδf0 Where φ0 is the constant carrier phase error of 0.5 rad , and δf0 is the
carrier frequency offset of 0.001, and a signal-to-noise ration (SNR) level of 30db. λ is
equal to 0.04 and the input data x(k) is computed using a 256-QAM.

As shown in the verification flow in Figure 4.8, x(k) with the applied noise (Figure 4.9.a)
is generated from MATLAB and input to the RTL netlist. The phase values, obtained with
the RTL simulation, are adequately reformatted and sent to the MATLAB code where the
received data are corrected and displayed as shown in Figure 4.9.b. The same functions;
phase value extraction and data correction, are performed in MATLAB and corresponding
demodulated data are displayed in Figure 4.9.c. The carrier phase tracking from both
of the simulations is displayed in Figure 4.9.d. Comparing Figure 4.9.b and Figure 4.9.c
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Figure 4.9: Demodulated Data with MATLAB and RTL Simulations
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shows that the noise transferred by the proposed circuit is higher than the noise trans-
ferred by the MATLAB model. That is expected because of the data accuracy difference
used in the two simulations. For any given application, our architecture’s generated and
transferred jitter and wander should be carefully evaluated to determine which noise can
be tolerated, which filtering and/or which accuracy adjustment should be applied to satisfy
the needed requirements. However, both Figure 4.9.b and Figure 4.9.d show clearly that
the RTL netlist obtained from our Hardware-Dedicated-Procedure detects effectively the
needed phase deviations and allows a closed carrier tracking.



Chapter 5

CONCLUSION

Developing theoretically working Signal Processing algorithms and Intellectual Properties
compliant to industrial standards are two competitive advantages that put VLSI design
researchers in the value chain of Semiconductor Industry [13], [39]. We used those two
advantages to design two generic Phase Detectors. A linear Phase Detector and a Quadra-
ture Phase Detector.
The Linear Phase Detector is designed to be generic and to be conformant to the Telcor-
dia Technologies ”Clocks for the Synchronized Network: Common Generic Criteria” [13].
Among other contributions, in the frame of Linear Phase detectors, we present a solu-
tion for implementing ratios with high precision data. When two’s complement numbers
with the smallest absolute values need the same as or even a better accuracy than the
numbers with the largest absolute values, unlike the other published methods, we provide
dynamic accuracy adjustment favouring meanly the removal of the sign bit redundancy
while indicating which level of accuracy that is being processed. A phase slope monitoring
application, utilized in synchronization systems, is given to show the appropriateness of
the proposed method. The corresponding design is generic. FPGA implementation results
are provided to show the performance effectiveness when adding our proposed bridge to
dedicated and fixed size dividers.
For the Quadrature Phase Detector, we have proposed an optimization of the blind carrier
phase tracking with guaranteed global convergence algorithm specifically suited for VLSI
architecture. Based on statistical independence of the real and imaginary parts of the
emitted signal, the new architecture uses a blind source separation procedure to achieve
the carrier tracking with guaranteed global convergence. Efficient design techniques are
presented to solve some critical issues related to the arithmetic unit and storage compo-
nents. We showed how it is possible to efficiently time multiplex the large multipliers.
We also presented an approach for implementing a fast Arctangent function using high
precision data. A particular CAM architecture using directed inequalities rather than
equalities and a Decoder using mostly parallel logic are employed to decrease the decoding
complexity. That decoding complexity depends on the considered number of angles rather
than the related memory address precision. The approach responds to the need of VLSI
implementations of Arctangent functions running in few clock cycles, and receiving and
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transmitting high precision data. An application example is given to show that need. The
proposed solution enables designers to customise the output angle’s precision and optimize
the tangent input data to transfer the highest inaccuracy risk from Arctangent modules
to other parts of the used systems. Different FPGA implementation results are provided
to show our approach’s appropriateness when neither the usual LUTs based solution nor
the polynomial and rational approximations fit. Our proposal favours the speed and data
precision rather than power and area consumption. To show the effectiveness of the whole
algorithm design specification and to support the proof of concept, we benchmarked our
RTL simulations against the theoretic validation approach published in [3]. Simulation
results are satisfactory, as they match the results reported in [3].
We are engaged to port the proposed solutions to a transistor level design to increase circuit
density and to utilize appropriate components for a more balanced speed and power trade
off. Our work can be improved with further research and development in the field of bus-
width optimisation. To that end more resources are planned for continuing this project and
for adding-in more theoretical contributions and more engineers for conformance testing.
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[12] Préambule du Programme national de Recherche, Direction Générale de la Recherche
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