
Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger.

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Department

Laboratoire des Dispositifs de Communication et de Conversion

Photovoltaique

Submitted in partial fulfillment of the requirements

for the Master Degree

Design of Low Complex Non Binary LDPC

Decoder using Min-Max algorithm

HARABI Kamel-eddine

Supervised by : Mr. M.TAGHI

 Presented on : 02/07/2017

Jury members :

 President Mr. S. AIT CHEIKH Professor ENP

 Examiner Mr. D. BERKANI Professor ENP

 Supervisor Mr. M.TAGHI Assistant Professor ENP

ENP 2017

2

Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger.

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Department

Laboratoire des Dispositifs de Communication et de Conversion

Photovoltaique

Submitted in partial fulfillment of the requirements

for the Master Degree

Design of Low Complex Non Binary LDPC

Decoder using Min-Max algorithm

HARABI Kamel-eddine

Supervised by : Mr. M.TAGHI

Presented on : 02/07/2017

Jury members :

 President Mr. S. AIT CHEIKH Professor ENP

 Examiner Mr. D. BERKANI Professor ENP

 Supervisor Mr. M.TAGHI Assistant Professor ENP

ENP 2017

2

Abstract

 ملخص

شفرات اختبار أیضا تسمى والتي ،q(GF(اغالو حقل على معرفةال)LDPC(ة الكثاف ةمنخفض كافؤالت شفرات اختبار
 قشانی ما نادرا. بكثیر أفضل أداء مع الثنائیة LDPC لشفرات امتداد ھي عبارة عن ،(NB-LDPC)التكافؤ الغیر ثنائیة

 ركزنا المشروع، ھذا في. الأجھزة على مستوى الإنشاء في تعقیدال بسبب الغیر ثنائي LDPC	التشفیر ككفم إنشاءو تصمیم
. (Min-Max) الأعلىالحد - الأدنى الحد خوارزمیة باستخدام التعقید	منخفض NB-LDPCمفكك شفرات تصمیم على

 (VN) المتغیر عقدة ،(CN)اربالاخت عقدةللمفكك مثل الأساسیة الأجزاء تصمیم مع تتوافق العمل لھذا الرئیسیة المساھمات
 تفاصیل وتوثیق عرض وتم ومكوناتھ، التشفیر ككفم تصمیم تفصیل تم. كفاءة ذات تقنیات باستخدام وذلك الشفرة رقرمو

	.للشرح وأمثلة المكونات ووظائف مخططاتال مثل مختلفة
شفرات اختبار التكافؤ الغیر q(,GF(اغالو حقل	,)LDPC(ة الكثاف ةمنخفض كافؤالت شفرات اختبار: الكلمات المفتاحیة

 .بنیة ,تصمیم ,التشفیر ككفم ،(NB-LDPC)ثنائیة

Résumé

Les codes contrôle de parité à matrices creuses (Low-Density Parity-Check, LDPC) définis
sur les corps de Galois GF (q), également appelés codes LDPC non binaires (NB-LDPC), sont
une extension de codes binaires LDPC avec des performances nettement meilleures. La
conception et l'implémentation des décodeurs NB-LDPC ont rarement été discutées en raison
de leur complexité de l'implémentation matérielle. Dans ce projet, on est concentré sur la
conception d'une architecture à faible complexité pour un décodeur NB-LDPC basé sur
l'algorithme de décodage Min-Max. Les principales contributions de ce travail correspondent
à la conception des blocs de base du décodeur, comme le bloc de nœud de contrôle (CN), le
bloc de nœud variable (VN) et le bloc décision de code mot avec des techniques d'efficacité.
La conception du décodeur et ses composants de base sont détaillés. De nombreux détails,
comme les schémas de blocs et les fonctionnalités des composants, ainsi que des exemples
d'explication, ont été présentés et documentés.
Mots cl´es: LDPC, Corps de Galois, NB-LDPC, Min-Max, Décodeur, Architecture,
Conception, Implémentation.

Abstract

Low-density parity-check (LDPC) codes constructed over the Galois field GF(q), which are
also called Non-Binary LDPC (NB-LDPC) codes, are an extension of binary LDPC codes
with significantly better performance. The design and implementation of NB-LDPC decoders
has rarely been discussed due to their hardware implementation complexity. In this project,
we focused on the design of low complex architecture for a NB-LDPC decoder using the
Min-Max decoding algorithm.. The main contributions of this work correspond to the design
of the decoder basic blocks, as the check node (CN) block, the variable node (VN) block and
the codeword decision block with efficiency techniques. The design of the decoder and its
components are detailed, Various details like block schematics and the components
functionality and explanation examples have been presented and documented.
Keywords : LDPC, Galois Field, NB-LDPC, Min-Max, Decoder, Architecture, Design,
Implementation.

3

Dedication

I dedicate this work to my family, my dear parents for all their sacrifices for my education,

to all my friends, and all people who taught me along my career.

4

Acknowledgments

I would like to express our gratitude towards our supervisor, Mr. M.TAGHI. for his valuable

advices, encouragement and guidance throughout the course of this project.

I would also like to thank Mr. S.AIT CHEIKH and Mr. D.BERKANI for their support as

members of jury.

5

Contents

List of Figures

List of Tables

Abbreviations

General Introduction 09

Chapter 1 : NB-LDPC Decoder Theory 10

 1.1. System model . 10

 1.2. LDPC codes . 10

 1.2.1. Representation of LDPC Codes 10

 1.2.2. Regular and Irregular LDPC Codes 11

 1.2.3. Constructing LDPC Codes 12

 1.2.4. LDPC Encoding Process . 12

 1.2.5. Decoding process . 12

 1.3. NB-LDPC codes . 12

 1.3.1. The Galois Field GF(2�) . 12

 1.3.2. GF(2�) Power representation 13

 1.3.3. GF (2�) Arithmetic . 13

 1.3.4. The NB-LDPC codes over GF(2�) 14

 1.4. Decoding Algorithm . 14

 1.4.1. Optimal Decoding Algorithm 15

 1.4.2. Min-Max Algorithm . 15

Chapter 2 : NB-LDPC Decoder Design 17

 2.1. Global Architecture Description . 17

 2.1.1. Layered architecture . 18

 2.2. The Decoder Top Level Architecture 19

 2.3. Check Node architecture . 21

 2.3.1. ECN architecture . 22

 2.4. Variable Node architecture . 25

 2.4.1. EVN Architecture . 25

 2.4.2. Decision block . 26

Conclusion 27

Bibliography 28

6

List of Figures

Figure 1.1. high level block diagram of channel coding system for LDPC.

Figure 1.2. Tanner graph with corresponding H matrix for (8,4)LDPC code.
Figure 1.3. Non binary LDPC code over GF(2�) example.

Figure 2.1. General NB-LDPC Decoder top level architecture.

Figure 2.2. (a) Row parallel architecture, (b) Block parallel architecture

Figure 2.3. Row-Parallel scheduling principle for (8,4)NB-LDPC code.

Figure 2.4. overall view of the decoder architecture.

Figure 2.5. Structure of RAMs used in the decoder.

Figure 2.6. Forward-backward CN of degree wr=4 architecture.

Figure 2.7. ECN architecture.

Figure 2.8. Address generator block architecture.

Figure 2.9. Variable Node architecture.

Figure 2.10. EVN architecture.

Figure 2.11. Sorter architecture .

7

List of Tables

Table 1.1 GF (2�) power representation
Table 1.2. Example of GF(8) LLRs values.
Table 2.1. Example of ECN computation with two sorted inputs.

8

Abbreviations

APP A Posteriori Probability
ASK Amplitude-Shift Keying
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BP Belief Propagation
BPSK Binary Phase-Shift Keying
CN Check Node
DVB Digital Video Broadcast
DU Decision Unit
ECN Elementary Check Node
EMS Extended Min-Sum
EVN Elementary Variable Node
FER Frame Error Rate
FPGA Field Programmable Gate Array
GF Galois Field
HD Hard Decision
LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio
LTE Long Term Evolution
PSK Phase-Shift Keying
RAM Random Access Memory
VN Variable Node
WiFi Wireless Local Area Network
WiMAX Worldwide Interoperability for Microwave Access

9

General Introduction

Low Density Parity-Check (LDPC) codes are a class of linear block codes. They have been

successfully included in numerous standards such as DVB-S2 [5], IEEE 802.16e and IEEE

802.11n , among others. These codes were first proposed in the 1962 PhD thesis of Gallager

at MIT. But they remained largely neglected for over 35 years, because of the computational

power to exploit iterative decoding schemes was not available until recently. The main

reasons for their success are that their performance are close to the channel capability for long

codewords [6].

Non-Binary LDPC (NB-LDPC) codes are an extensions of binary LDPC codes. These codes

perform better than the binary LDPC codes in case of codes with low and medium codeword

length. Despite the error-correcting performance advantages, NB-LDPC codes suffer from

high decoding complexity. During the last decade, significant progress has been made in the

development of low-complexity NB- LDPC decoding algorithms and the implementation of

these algorithms in flexible dedicated very-large-scale integration (VLSI) circuits.

The graphical representation of the NB-LDPC codes can be used in the implementation of

these algorithms whose effectiveness has been shown on graph models such as the Belief

Propagation algorithm generally noted BP. This algorithm guarantee optimal decoding

performances but it has not great interest for a hardware implementation. Consequently, other

algorithms based on approximations of the BP algorithm have been developed with the aim of

ensuring a reasonable performance/complexity compromise. The well known ones are the

Min-Sum, its variant Extended Min-Sum (EMS) and the Min-Max algorithm. The last one can

be implemented by a more efficient architecture then the others with small performance

degradation.

The objective of our project is to design a low complex NB-LDPC decoder based on Min-

Max decoding algorithm. In particular, we provide concepts and solutions that enable flexible

implementation and a compromise between decoding speed and implementation complexity,

which are the basic requirements of modern communication standards.

Chapter 1 : NB

This first chapter aims to present fundamental principles and concepts that will be useful for

the understanding and implementation of

This chapter begins by presenting the LDPC codes with brief

NB-LDPC codes, and finally discuss the decoding algorithm with giving some details and

examples about the Min-Max al

1.1. System model

Figure 1.1 depicts a high level block diagram of a simple channel coding system for LDPC

codes, the massages are bits or symbols.

Figure 1.1. high level block diagram of

In what follow, for an (N, K) LDPC we will use

• Information word x of length

• Code word c of length N.

• Received word r of length N.

• Decoded code word ĉ of length

• Decoded information word x

• code rate R = K/N

1.2. LDPC codes
Low Density Parity Check (LDPC) codes make up a class of linear block codes that are

characterized by a sparse parity

small number of non-zero entries

Gallager at MIT. in this section we are presenting fundamentals and characteristics of the

LDPC codes .

1.2.1. Representation of LDPC Codes

There are two ways to represent LDPC codes. Like all linear block

described via matrices. The second way

Matrix Representation

The LDPC code can be described by two basic matrix the generator matrix

× N and the parity check matrix H of dimension

before the coding process and

10

Chapter 1 : NB-LDPC Decoder Theory

This first chapter aims to present fundamental principles and concepts that will be useful for

understanding and implementation of NB-LDPC codes.

is chapter begins by presenting the LDPC codes with brief explanation than present the

LDPC codes, and finally discuss the decoding algorithm with giving some details and

Max algorithm.

model

depicts a high level block diagram of a simple channel coding system for LDPC

codes, the massages are bits or symbols.

high level block diagram of channel coding system for LDPC

) LDPC we will use :

of length K.

N.

of length N.

x of length K .

LDPC codes
Check (LDPC) codes make up a class of linear block codes that are

characterized by a sparse parity-check matrices H which mean that it contain only a very

zero entries[6]. They were first proposed in the 1962 PhD thesis

in this section we are presenting fundamentals and characteristics of the

Representation of LDPC Codes

There are two ways to represent LDPC codes. Like all linear block codes

described via matrices. The second way is via a graphical description.

The LDPC code can be described by two basic matrix the generator matrix

and the parity check matrix H of dimension M × N , with K is the length of the data

before the coding process and N is the length after the coding , M = N -

LDPC Decoder Theory

This first chapter aims to present fundamental principles and concepts that will be useful for

nation than present the

LDPC codes, and finally discuss the decoding algorithm with giving some details and

depicts a high level block diagram of a simple channel coding system for LDPC

Check (LDPC) codes make up a class of linear block codes that are

which mean that it contain only a very

were first proposed in the 1962 PhD thesis of

in this section we are presenting fundamentals and characteristics of the

codes [8], they can be

The LDPC code can be described by two basic matrix the generator matrix G of dimension K

is the length of the data

 K is the number of

parity check equations or the bits of the parity

H.	�� = 0, which is the basic relation

The illustrated matrix H in Eq.1.1

code. The number of non-zeros element (‘1’s in binary codes) in a row of

weight ’wr’ , and the number of non

referred to as the column weight ’

Graphical Representation
Tanner introduced an effective graphical representation for LDPC codes. Not only do these

graphs provide a complete representation of the code,

decoding algorithm as explained later.

Figure 1.2. Tanner graph with co

Tanner graphs are bipartite graphs

two distinctive sets and edges are only connecting nodes of two different types. The two

of nodes in a Tanner graph ar

illustrates an example for such a Tanner graph and represents the same co

H. The creation of such a graph is st

of parity bits) and N variable nodes (the number of bits in a code word).

connected to variable node ci if the element

codes).

1.2.2. Regular and Irregular LDPC Codes

LDPC code is called regular if

constant for every row [6]. The example in Eq.

also verify whether a code is regular or not from its graphical representation. If the number of

11

tions or the bits of the parity. The relation between these two matrix is

which is the basic relation in the decoding process.

in Eq.1.1 is a parity check matrix with dimension

zeros element (‘1’s in binary codes) in a row of

number of non-zeros element (‘1’s in binary codes) in a column is

weight ’wc’ .

Graphical Representation

Tanner introduced an effective graphical representation for LDPC codes. Not only do these

graphs provide a complete representation of the code, but they also help to describe the

decoding algorithm as explained later.

Figure 1.2. Tanner graph with corresponding H matrix for (8,4)LDPC code

ner graphs are bipartite graphs [9], that means the nodes of the graph are separated into

distinctive sets and edges are only connecting nodes of two different types. The two

of nodes in a Tanner graph are called variable nodes (VNs) and check nodes (CNs

an example for such a Tanner graph and represents the same co

H. The creation of such a graph is straight forward. It consists of M check nodes

variable nodes (the number of bits in a code word).

if the element hij of H is a non-zero element (

Regular and Irregular LDPC Codes

LDPC code is called regular if wc is constant for every column and wr

The example in Eq.1.1 is regular with wc = 2 and

verify whether a code is regular or not from its graphical representation. If the number of

The relation between these two matrix is

 (1.1)

is a parity check matrix with dimension N x M for a (8, 4)

zeros element (‘1’s in binary codes) in a row of H is called the row

element (‘1’s in binary codes) in a column is

Tanner introduced an effective graphical representation for LDPC codes. Not only do these

but they also help to describe the

rresponding H matrix for (8,4)LDPC code

the nodes of the graph are separated into

distinctive sets and edges are only connecting nodes of two different types. The two types

e called variable nodes (VNs) and check nodes (CNs). Fig. 1.2.

an example for such a Tanner graph and represents the same code as the matrix in

check nodes (the number

variable nodes (the number of bits in a code word). Check node vj is

zero element (1 in case of binary

r =wc·(N/M) is also

and wr = 4. We can

verify whether a code is regular or not from its graphical representation. If the number of

12

incoming edges is same for all check nodes and also for all variable nodes, then it is a regular

code. If H is low density but the number of 1's in each row or column isn't constant, the code

is called an irregular LDPC code. The irregular LDPC codes give better decoding

performance than regular ones, but the construction of the encoder as well as the decoder

becomes much more complex.

1.2.3. Constructing LDPC Codes

There are several algorithms to construct suitable LDPC codes. Gallager [1] himself

introduced one. Further, MacKay [4] proposed a way to semi-randomly generate sparse parity

check matrices. Suitably chosen array codes also give good performance to the decoding

algorithm. Constructing high performance LDPC codes is not a hard problem. In fact,

completely randomly chosen codes are good with a high probability. The problem is that the

encoding complexity of such codes is usually rather high.

1.2.4. LDPC Encoding Process

The objective of the encoding operation is to regroup a sequence of information symbols into

words (or blocks) of equal length K [6], which are independently encoded than each

information word uniquely mapped onto a code word of length N, by using the G matrix and

the following operation :

 � = ��.x (1.2)

1.2.5. Decoding process

Error detection is done by computing the syndrome and check to see if it is all zeros. If it is

not all zeros, then declare that an error has been detected. If it is all zeros, then assume that

the codeword is correct. The syndrome s given by the Eq.1.3 :

 H.r = H(c + n) = H.	��.x + H.n = H.n = S (1.3)

where n is the error vector and S is the syndrome vector.

The main issue in the decoding operation is to find a decoding algorithm that can correct the

error and find the desired estimated code word with efficient way to get good performances

and simplify the decoder implementation.

1.3. NB-LDPC codes

Many error-correcting codes [7], such as low-density parity-check (LDPC) codes are defined

over Galois Fields. The purpose of this section is to provide an elementary knowledge of the

extension field GF(2�) and a brief explanation for the NB-LDPC codes .

1.3.1. The Galois Field GF(��)

The Galois field is a finite field that consist of a specific addition and multiplication

operations [10]. One way to create a Galois field is to use the set of integers {0..., p - 1} where

p is prime and the (+) and (·) which are modulo - p addition and modulo - p multiplication,

respectively.

13

The GF(2) is a finite field with the least number of elements {0, 1} that’s why there are many

binary codes that are defined over the binary field GF(2) , in this field the addition is the XOR

operation and multiplication is the logic AND operation.

We can create extension fields (subfields) of the GF (2) one of these extension fields is based

on power of 2 [7], the GF (2�) where m is a positive integer and 2� is the order (cardinality).

The extension fields GF (2�) are usually used in digital communication, since each element

of Galois field GF (2�) can be represented in a unique way in the form of a binary symbol of

m bits.

1.3.2. GF(��) Power representation

The field elements can be represented as linear combinations of the elements in a basis (basis

representation), as well as powers of a primitive element (power representation). the

hardware complexities of finite field operations are heavily dependent on the element

representations.

The power representation has low complexity and easy to implement. This representation is

based on the primitive element of the GF (2�), which is the root of the primitive polynomial

for more details check the reference [10]. The GF (2�) is the set of primitive element α

powers and the element 0.

 GF (2�) = {0, 1, α , α�, ..., α���} (1.4)

Table.1.1 illustrates the GF(8) power representation and the corresponding binary

representation.

Table 1.1 GF (2�) power representation

1.3.3. GF (��) Arithmetic

Addition:
The addition of 2 elements of the GF (2m) is the bit-wise XOR. for x =(x1x2x3) and y =(y1y2y3)

∈ GF(8) ,The addition operation of the GF (8) is:

 x + y = (x1x2x3) XOR (y1y2y3) (1.5)

Multiplication

Using power representation, multiplication over GF(2m) can be performed by adding up the

exponents of the operands modulo 2� - 1:

14

 (1.6)

1.3.4. The NB-LDPC codes over GF(��)

The Non binary LDPC codes over GF(q) can be seen as the generalization of binary LDPC

codes over GF(2) , where q =2�. In this case, each symbol can be represented by a m-bit

binary tuple, In the parity check matrix H of a NB-LDPC code, the nonzero entries are

elements of GF (2�). Also each information and codeword symbol is an element of GF (2�).

Figure 1.3. Non binary LDPC code over GF(2�) example.

The matrix products of the parity equations are performed using the addition and

multiplication operations of the Galois Field GF (2�). It is then preferable to add to the

bipartite graph the new family of nodes called the permutation nodes which serve to model

the multiplication of the symbols of the code word by the non-zero elements of the parity

matrix hij . Figure 1.3 illustrates the bipartite graph for equation 2, by adding the permutation

nodes that correspond to the elements h11,h13 and h14.

1.4. Decoding Algorithm

Actually there is more than one such decoding algorithm. There exists a class of algorithms

that are all iterative procedures where, at each round of the algorithm, messages are passed

from variable nodes to check nodes, and from check nodes back to variable nodes. Therefore,

these algorithms are called message passing decoding algorithms.

The basic steps of these algorithm are :

Initialization: in the first iteration the intrinsic messages received from the channel at the

VNs are directly passed along the edges to CNs.

CN update : The CNs compute the extrinsic messages depending on the received messages

from the VNs. then send them back to the VNs.

VN update : The VNs compute the extrinsic messages depending on the received messages

from both the channel and the CNs.

Hard decision: after complete an iteration, a hard decision are made, then checking the

codeword validity by using the syndrome.

These steps are repeated until it converge to a valid codeword . or maximum number of

iteration is reached

15

1.4.1. Optimal Decoding Algorithm

One of the important message-passing algorithm is the belief propagation algorithm, In this

algorithm the messages exchanged are a posteriori probabilities, The BP algorithm suffers

from a prohibitive computational complexity. The reduced complexity decoding algorithms

are built in the log-domain, and this is for the reason that it transforms the products into

simple sums. In the Sum-Product Algorithm the four decoding steps are carried out in the log-

domain using the Log Likelihood Ratio (LLR) [11]. Updating the CNs in the Sum-product

requires a large amount of calculation and the complexity of the decoder still high.

The BP and sum-product algorithms guarantee optimal decoding performances but they have

not great interest for a hardware implementation. Consequently, other algorithms based on

approximations of the Sum-Product algorithm have been proposed with the aim of ensuring a

reasonable performance / complexity compromise. The basic approximated algorithms are

Min-Sum [12], EMS (Extended Min-Sum), and the Min-Max algorithm [13].

1.4.2. Min-Max Algorithm

The Min-max [13] algorithm can be implemented by a more efficient architecture comparison

to the MS or EMS, Since the sum is replaced by the max operation in the CN computations.

We can resume the steps of the Min-Max algorithm by :

• Initialization: (1.7)

Iterations :

• Check node processing

 (1.8)

• Variable node processing

 (1.9)

 Normalization

 (1.10)

• A posteriori information computation

 (1.11)

Hard decision for the jth symbol can be made as:

 (1.12)

The iterations can be carried out until the syndrome equals 0 or the maximum iteration

number has been reached.

16

The LLR definition
In order to simplify the computations and deal only with positive values. the LLRs has new

definition as illustrates the Eq.1.13 :

 (1.13)

Here the most reliable symbol has always the LLR value zero and the other symbols has a

positive LLR value. as illustrated the table 1.2, an example of GF(8) elements and LLR values

Table 1.2. Example of GF(8) LLRs values.

Before beginning the decoding process the computation of the LLR value for each symbol of

the codeword is done. Considering a BPSK modulation and an Additive White Gaussian

Noise (AWGN) channel, the received noisy codeword r consists of N × m binary symbols

independently affected by noise. The BPSK modulation associates symbol ‘-1’ to bit 0 and

symbol ‘+1’ to bit 1, and the BPSK demodulator output is the bit LLR value LLR(bj) of the

bit bj. With the hypothesis that the GF(q) symbols are equiprobable, the LLR value of 2�

symbol LLR(2�) is given by the equation:

 (1.14)

where j={0....m-1} is the bit position, HD(bj) is the hard decision of bit in position j, and

α�(j)	 bit	values	of	the	GF	element	α�.

Example of GF(4) LLR values calculation :

In the GF(4), m=2 it means each symbol can be presented in 2 bits, the received LLR are :

LLR(b1)=2 ; LLR(b0) = -4, after the Hard Decision of each bit : (1,0)

the binary presentation of 0 = (0,0) then the LLR values is LLR(0) = 2

the binary presentation of �� = (0,1) then the LLR values is LLR(��) = 2 + 4 = 6

the binary presentation �� = (1,0) then the LLR values is LLR(��) = 0

the binary presentation �� = (1,1) then the LLR values is LLR(��) = 4

17

Chapter 2 : NB-LDPC Decoder Design

In this chapter, we will discuss the design of low complex decoder based on the Min-max

algorithm for NB-LDPC codes. We will start from the decoder top level view and go one

level deeper into the basic blocks. The decoder mainly consists of a check node unit, a

variable node unit, and other additive blocks. An optimized scheme and corresponding

architecture are developed for the check node processing. Employing this scheme, the speed

of CN processing can be almost doubled when the check node degree is not small. Moreover,

the computation units and the scheduling of the computations are optimized to reduce the area

and decoding latency.

There are two basic design strategies, the layered and the non-layered one. The layered

architecture has been chosen in our design because it has lower throughput, with lower area

requirement. Our architecture is applied to a NB-LDPC code constructed over GF(8) as an

example.

2.1. Global Architecture Description

From a high-level perspective, virtually all implementations of message passing LDPC

decoders found in the open literature are derived from an isomorphic architecture [18] which

is a direct mapping of the tanner graph.

The global architecture of decoder as illustrated in Figure 2.1 consists of different types of

hardware components:

• VN unit (VNU) block and CN unit (CNU) block to compute the update equations.

• Interconnect network representing the edges of the graph and the hij/h ij multiplication

block.

• Storage devices in order to save the extrinsic and the intrinsic messages.

• LLRs calculator block to calculate the GF(q)’s LLR values and the Syndrome block to

check the codeword validity.

• Control unit which generate control signals in order to synchronize and control the data flow

between the blocks.

Figure 2.1. General NB

Based on this prototype architecture, different implementation trade

architectural transformations such as resource

decomposition of the update equations.

2.1.1. Layered architecture

The design can be partitioned into two basic architecture classes : the non

(Fullparallel) and the layered

strategies row parallel, and block

reduce the memory requirement and increase the convergence speed of LDPC decoding.

Figure 2.2. (a) Row

The row-parallel design is a step towards less parallelism. The main objective is to reduce

the area while maintaining very high throughput. The principle underlying row

architectures is illustrated in Figure 5.2(b). Essentially, the parity

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access

the messages corresponding to the current layer sequentially from a small storag

compute the output messages and send them to the CNUs through a programmable routing

network.

The row-parallel architectures provide an area advantage over full

programmable routing network illustrated in Figure 5.2(b)

architecture provides the flexibility to support multiple parity check matrices with a single

decoder. For this reason, this architecture class has been recently

flexible QC-LDPC decoders tailored to the emer

IEEE 802.11ad and IEEE 802.15.3c.

Block-parallel design rely on further resource sharing and further iterative decomposition.

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained

from the row-parallel approach and by partitioning the computation of a layer

multiple cycles, corresponding to multiple blocks in the parity

18

Figure 2.1. General NB-LDPC Decoder top level architecture.

Based on this prototype architecture, different implementation trade-offs are obtained

architectural transformations such as resource sharing across VNUs and CNUs and

decomposition of the update equations.

Layered architecture

The design can be partitioned into two basic architecture classes : the non

) and the layered architecture [14,3]. The last one also can be divided into two

block-parallel. The Layered decoding has been widely adopted to

reduce the memory requirement and increase the convergence speed of LDPC decoding.

Figure 2.2. (a) Row parallel architecture, (b) Block parallel architecture

design is a step towards less parallelism. The main objective is to reduce

the area while maintaining very high throughput. The principle underlying row

illustrated in Figure 5.2(b). Essentially, the parity-check matrix is partitioned

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access

the messages corresponding to the current layer sequentially from a small storag

compute the output messages and send them to the CNUs through a programmable routing

parallel architectures provide an area advantage over full-parallel designs. The

programmable routing network illustrated in Figure 5.2(b) required by the row

architecture provides the flexibility to support multiple parity check matrices with a single

decoder. For this reason, this architecture class has been recently considered in several

LDPC decoders tailored to the emerging high-throughput

IEEE 802.11ad and IEEE 802.15.3c.

rely on further resource sharing and further iterative decomposition.

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained

parallel approach and by partitioning the computation of a layer

multiple cycles, corresponding to multiple blocks in the parity-check matrix.

LDPC Decoder top level architecture.

offs are obtained through

sharing across VNUs and CNUs and iterative

The design can be partitioned into two basic architecture classes : the non-layered

last one also can be divided into two

decoding has been widely adopted to

reduce the memory requirement and increase the convergence speed of LDPC decoding.

parallel architecture, (b) Block parallel architecture.

design is a step towards less parallelism. The main objective is to reduce

the area while maintaining very high throughput. The principle underlying row-parallel

check matrix is partitioned

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access

the messages corresponding to the current layer sequentially from a small storage array to

compute the output messages and send them to the CNUs through a programmable routing

parallel designs. The

uired by the row-parallel

architecture provides the flexibility to support multiple parity check matrices with a single

considered in several

 wireless standards

rely on further resource sharing and further iterative decomposition.

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained by starting

parallel approach and by partitioning the computation of a layer further into

check matrix. This iterative

19

decomposition simplifies the CN processing and allows for resource sharing also across the

VNUs.

2.2. The Decoder Top Level Architecture
It has been shown that the row-parallel architecture class is highly scalable and supports the

full range of throughput requirements found in modern wireless standards. Due to its

favorable properties and spatially its flexibility i.e. be able to implement several given codes,

without changing the design of the decoder. This architecture has been chosen for designing

our decoder [16, 17].

 (2.1)

In what follow we will work on the regular (8.4)NB-LDPC code, with degree wr=4, and

wc=2. The parity matrix of this code illustrated in Eq 2.1.

The row-parallel scheduling principle for the presented H matrix is illustrated in Figure 2.3,

and consists in processing the CNs one by one in each iteration (CN in Tuner graph is similar

to row in parity matrix). When a CN is processed, it immediately transmits the new extrinsic

messages to its connected VNs, then the last ones update their extrinsic messages before

moving on to the next CN update.

Figure 2.3. Row-Parallel scheduling principle for (8,4)NB-LDPC code.

20

Consequently, the row scheduling makes it possible to accelerate the convergence of the

decoder, since in each iteration a CN cj benefits from the information of the previous

iterations (updated by the previous CNs) and the information of the current iteration .

Figure 2.4. overall view of the decoder architecture.

The overall view of the decoder architecture is presented in Figure 2.4, and it is composed of

a single check node block connected to wr=4 Variable Node block. The architecture also

contains a memory system containing RAMvc in order to save the extrinsic messages of the

VNs and of RAMo in order to save the intrinsic information I of the channel .

In the initialization step, the VNs receives the intrinsic messages from the RAMo and directly

passed them to CNs. At each iteration the CN receives in parallel Mvc (v-to-c messages) old

messages and provides after the CN processing the Mcv messages which will be immediately

sanded and processed by the VNs to generate the new Mvc new messages that will replace the

old Mvc messages in the RAMvc. This decoding process is repeated nit times. During each

iteration, m updates of CN and N = wr × m updates of VN are performed. At the last iteration

a decision is taken on each symbol. The codeword decision is performed in the VN

processors. the VNs determine sequentially the value of the code word. We must note that

since wc = 2, this decision process is done when the second edge of each VN is updated. This

concludes the decoding process and the decoder then sequentially outputs ĉ to the syndrome

block. Note that, for the sake of simplicity, we have omitted the description of the

permutation nodes that implement the GF(q) multiplications. The effect of this multiplication

is to replace the GF(q) value Mvjci(β) by Mvjci(β × hij) where the GF multiplication requires

only a few XOR operations.

21

Figure 2.5. Structure of RAMs used in the decoder.

Structure of the RAMs: The intrinsic information and the Mvc messages are stored in wr

memories RAMo and RAMvc respectively. Each memory bank contains information related

to m messages (m is the number of layers or rows in our case), and each location containing q

couples of GF(q) element and the corresponding LLR value.

The partition of the N variables in the wr memories is a coloring problem: the wr variables

associated to a given CN should be stored each in a different memory bank to avoid memory

access conflicts. This problem is solved by using highly structured code (as the quasi cyclic

codes).

2.3. Check Node architecture

Computing the c-to-v messages in a straight-forward manner requires a complexity of

O(q����). This manner requires complicated computations on GF (q) elements, and it is not

suitable for efficient hardware implementation. Alternatively, the forward-backward scheme

can be applied to the check node processing to avoid computing output message directly. This

scheme consists in constructing the outgoing messages by a set of elementary operations,

making it possible to reduce the processing latency. These elementary operations are

performed by Elementary Check Node (ECN). Figure 2.6 illustrates the Forward-Backward

architecture of CN with degree wr = 4. For clarity, the incoming CN messages are denoted by

Mvjc and the outgoing messages are denoted by Mcvj .

22

Figure 2.6. Forward-backward CN of degree wr=4 architecture.

The CN receives wr messages and generates also wr messages which will be transmitted to

the VNs. This CN requires the implantation of 3(wr - 2) ECNs distributed over 3 layers, the

Forward layer (the red direction), the backward layer (the blue direction) and the merging

layers (the green directions). In our project we are constructing CN with degree wr = 4 that

means we need to 6 ECNs. Figure 2.6 illustrate the scheme construction. The processing of

the EVNs is iterative, At the beginning only the ECNs connected directly to the input data

work first (ECN number 1 and 4 in the Figure 2.6), then after they complete their processing

the other ECNs (2,3,5 and 6) can begin processing.

2.3.1. ECN architecture

The proposed CN architecture can be used in both cases, keeping all q messages in each

vector or keeping only the nm < q most reliable messages in each vector. this can make the

decoder more flexible, if the q is small we can keep all messages for better performance, in

the other hand, if q is not small keeping only nm < q most reliable messages can reduce the

computations latency.

The EVN compute an outgoing message vector from two incoming message vectors. The

message vector consists of two parts: LLRs and corresponding GF (q) elements. Denote the

LLR vectors by LA = [LA(0), LA(1), ..., LA(q - 1)] and LB = [LB(0), LB(1), ..., LB(q - 1)],

and the corresponding finite field element vectors by GFA = [GFA(0), GFA(1), ..., GFA(q-1)]

and GFB = [GFB(0), GFB(1), ..., GFB(q-1)], also denote the output LLR and corresponding

finite field element vectors by LO and GFO. The entries in the output LLR vector for the

Min-max decoding are the q minimum values of max(LA(i), LB(j)) with different

GFA(i)+GFB(j) for any combination of i and j less than q. Computing the updating messages

in ECN by the traditional solution can make a hardware demanding and a latency problem. To

overcome this problem the ECN developed in our project which uses two incoming messages

stored in the order of increasing LLR and generate sorted outgoing message is based on an

efficient algorithm (our algorithm is based on an algorithm in the reference [3] with several

important optimizations) that make the computations in minimum clock cycles and using

serial computation to reduce the

code over GF (8) are considered in

Table 2.1. Example of ECN computation with two sorted inputs

As illustrated in the table the most reliable q messages are distributed in the top left corner,

the grey cells are the entries of the output message vector. We can see in the table a

remarkable pattern for LLR distribution , based on this pattern we find

for the ECN processing.

In the algorithm, n is the number of messages inserted into the output vector,

used to indicate the positions in the input

functionality of the Algorithm.

drawn to follow the comparison results of the LLRs. It goes down when

LB vector, and goes to the right otherwise.

algorithm tells the direction of the segments in the

left corner, by taking the entries to the left of the vertical segments and those ab

horizontal segments of the boundary. If the

23

computation to reduce the hardware area. Two example input vectors for a NB

(8) are considered in table 2.1:

Example of ECN computation with two sorted inputs

As illustrated in the table the most reliable q messages are distributed in the top left corner,

the grey cells are the entries of the output message vector. We can see in the table a

remarkable pattern for LLR distribution , based on this pattern we find a specific algorithm

is the number of messages inserted into the output vector,

used to indicate the positions in the input vectors, by using the table 2.1

functionality of the Algorithm. Beginning from the top left corner of the table, a boundary is

drawn to follow the comparison results of the LLRs. It goes down when the LLR in the

to the right otherwise. The testing result of whether LA

irection of the segments in the boundary. Therefore, starting from

left corner, by taking the entries to the left of the vertical segments and those ab

horizontal segments of the boundary. If the GF element corresponding to an entry in

Two example input vectors for a NB-LDPC

Example of ECN computation with two sorted inputs.

As illustrated in the table the most reliable q messages are distributed in the top left corner,

the grey cells are the entries of the output message vector. We can see in the table a

a specific algorithm

is the number of messages inserted into the output vector, i, j and k are

 we can explain the

table, a boundary is

the LLR in the LA <

LA(i) < LB(j) in the

boundary. Therefore, starting from the top

left corner, by taking the entries to the left of the vertical segments and those above the

element corresponding to an entry in the table

24

is the same as that of an entry previously inserted into the output vector, the new candidate

entry will not be inserted, since the previous entry has smaller LLR.

Figure 2.7. ECN architecture.

The previous algorithm can be implemented by the architecture illustrated in Figure 2.7. The

comparisons of the LLRs start from the first entries in the two input vectors. In the case that

LA(i) < LB(j) happens, LA(i) was the ’max’ value when compared with any previous LB(k)

with 0 ≤ k < j, since the LLRs in each vector are sorted. Hence, LA(i) should be inserted into

the output vector together with GFA(i)+ GFB(k) for each 0 ≤ k < j. After this process is

completed, i will increment so the next entry for the LA vector is read out in the next clock

cycle to be compared with LB(j). Similarly, in the case that LA(i) > LB(j) , LB(j) will be

inserted into the output vector with field element GFA(k) + GFB(j) for each 0 ≤ k < i.

Figure 2.8. Address generator block architecture

It can be observed from the algorithm above that the addresses i and j either do not change or

increase by one in each loop, in which the addressee generator blocks is the responsible of

increasing them. If LA(i) < LB(j), the counter ’k’ in the address generator B is cleared and

used as the read address of the B vector. As the counter output increases, GFB(k) is read out

25

and added up with GFA(i) until the counter reaches j - 1. In the case that LA(i) > LB(j), the

address generator A works in a similar way to generate the read address for the A vector. The

write address n of the output vector increases by one each time a new LLR and corresponding

finite field element needs to be inserted.

2.4. Variable Node architecture
In our project we have designed a VN with degree wc = 2, it means two extrinsic messages

and one intrinsic message are the incoming messages of the VN. In our architecture all q

messages are kept in each vector. The architecture of a VN is given in Figure 5.7.

Figure 2.9. Variable Node architecture

It contains several Elementary Blocks that can make it capable to operates on three basic

functions :

 Updating the VN: This operation is done by the EVN block, which receives two

incoming message from the CNs and generate an new outgoing message to the

normalization block .

 Normalization : The Norm block subtracts the smallest LLR in the input vector from

each LLR in the vector so that the smallest LLR in each vector is brought back to zero.

 Decision: The Decision block, firstly calculates the APP by the sum of all VN inputs,

then determine the estimated symbol c by taking the GF element corresponding to min

LLR value.

2.4.1. EVN Architecture

The EVN computes stored outgoing message vector, by adding the LLRs of the two incoming

message vectors corresponding to the same GF(q) element. Figure 5.8 illustrate the EVN

architecture, two RAMs are used to storage the incoming message vectors, adder to add the

LLR values, parallel GF elements comparators to help in finding the GF element address,

sorter for the output vector and control unit to generate the control signals.

26

Figure 2.10. EVN architecture.

At first, one entry of the A vector is read out. Since the vectors are not sorted by GF element,

the GF element of the GFA vector entry is compared with all those in the GFB vector. If there

is a match, the addr calculator can give the corresponding GF element address, then using the

addresses of A and B vectors to read theirs corresponding LLRs and perform the addition, the

LLR addition result and its corresponding GF element are the entries of the output vector. The

adder’s output is connected to a sorter in order to sort and store the output elements. Using a

counter to read out the next A vector entry and repeat these steps for all the q entries. All

previous operations are controlled by the control unit.

Figure 2.11. Sorter architecture .

An architecture for such a sorter was proposed in [15] is shown in Figure 2.11, This operator

is used for inserting a new value into an already sorted list of values. The architecture of such

operator with q registers and q parallel comparators in order to reduce the critical path of the

processor to one single clock cycle.

2.4.2. Decision block

For the decision operation, we can use the output of EVN1 and Mc2v as inputs of the

Decision block, which is a modified EVN block, that modification consist of taking as output

the GF element corresponding to the min LLR value, which is the first element since the EVN

integrate a sorter.

27

Conclusion

This project is dedicated to the architecture design of a low complex NB-LDPC decoder. we

started with an understanding of the NB-LDPC codes concepts, and various variants of the

error correcting decoding algorithms were investigated with an eye towards performance and

feasible hardware design. Then we have chosen the Min-Max algorithm because of its low

complexity in comparison with other algorithms. The complexity of the check node

processing is further reduced in the Min-max algorithm with slightly lower coding gain.

It has been shown that there exist several NB-LDPC decoder architecture classes, and with

the investigation on them we found that the row-parallel architecture class is highly scalable

and supports the full range of throughput requirements found in modern wireless standards.

Due to its favorable properties and spatially its flexibility i.e. be able to implement several

given codes, without changing the design of the decoder.

In our project we have focused on the design of a row-parallel architecture for the NB-LDPC

decoder and its basic blocks. Since modern communication systems decoders must support a

wide range of different parity-check matrices, we provided a flexible decoder which can

works with different block lengths and code rates.

In our project a particular attention was given to VN update, codeword decision and reduced

complexity CN processing. We have designed the check node block using the forward

backward technique to reduce the implementation complexity. In order to optimize the

latency, we have used a practical algorithm to design the elementary check node block, that

can work for both cases : all q messages are kept or only the nm << q most reliable elements.

We have also designed the variable node block using elementary blocks for the same reason.

From this work we can conclude about the implementation of Min-Max algorithms for NB-

LDPC that the design of the VN is sampler than the design of the CN, because of that in our

project we focus on the CN implementation which is considered as the bottleneck of the

decoder.

28

Bibliography

[1] R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, vol. 8, no.

1, pp. 21-28, Jan. 1962.

[2] Christoph Roth. Vlsi design, optimization, and implementation of channel decoding in

wireless systems. 2015.

[3] Fang Cai. Low-complexity Decoding Algorithms and Architectures for Non-binary LDPC

Codes. PhD thesis, Case Western Reserve University, 2013.

[4] D. J. C. MacKay, "Good Error-Correcting Codes Based on Very Sparse Matrices," IEEE

Trans. Inform. Theory, vol. 45, no. 2, Mar. 1999.

[5] Prof. Dr. Ing. Ulrich Reimers (auth.). Digital Video Broadcasting (DVB): The

International Standard for Digital Television. Springer Berlin Heidelberg, 2001.

[6] Sarah J Johnson. Iterative error correction: Turbo, low-density parity-check and repeat

accumulate codes. Cambridge University Press, 2009.

[7] Volker Kuhn Andre Neubauer, Jurgen Freudenberger. Coding Theory - Algorithms,

Architectures, and Applications. Wiley Inter science, 2007.

[8] E. J. Weldon W. Wesley Peterson. Error-Correcting Codes - Revised, 2nd Edition. second

edition, 1972.

[9] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on

Information Theory, Sep 1981.

[10] Daniel J. Costello Shu Lin. Error Control Coding: Fundamentals and Applications.

Prentice-Hall Computer Applications in Electrical Engineering Series. Prentice Hall, first

edition, 1983.

[11] C. Qian, W. Lei, and Z. Wang. Low complexity LDPC decoder with modified sum-

product algorithm. Tsinghua Science and Technology, Feb 2013.

[12] Li Zhang, Qin Huang, Shu Lin, Khaled Abdel-Ghaffar, and Ian F Blake. Quasi-cyclic

LDPC codes: an algebraic construction, rank analysis, and codes on Latin squares. IEEE

transactions on communications, 2010.

[13] Shu Lin, Shu mei Song, Bo Zhou, Jing yu Kang, Ying Y Tai, and Qin Huang. Algebraic

constructions of non binary quasi-cyclic LDPC codes: Array masking and dispersion. In 9th

International Symposium on Communication Theory and Applications (ISCTA), 2007.

[14] M. M. Mansour and N. R. Shanbhag. A 640-mb/s 2048-bit programmable LDPC decoder

chip. IEEE Journal of Solid-State Circuits, March 2006.

[15] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard. Architecture of a low

complexity non-binary LDPC decoder. In 2008 Digest of Technical Papers - International

Conference on Consumer Electronics, Jan 2008.

29

[16] M.M. Mansour and N.R. Shanbhag. Low-power VLSI decoder architectures for LDPC

codes. In Low Power Electronics and Design, 2002. ISLPED ’02. Proceedings of the

2002 International Symposium on, pages 284–289, 2002.

[17] M.M. Mansour and N.R. Shanbhag. High-throughput LDPC decoders. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 2003.

[18] Hubert Kaeslin. Digital Integrated Circuit Design: From VLSI Architectures to CMOS

Fabrication. Cambridge University Press, 1st edition, 2008.

