
Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger. 

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

Ecole Nationale Polytechnique 

 

 

 

 

 

Electronic Department  

Laboratoire des Dispositifs de Communication et de Conversion 

Photovoltaique 

Submitted in partial fulfillment of the requirements 

for the Master Degree 

 

Design of Low Complex Non Binary LDPC 

Decoder using Min-Max algorithm 

 

HARABI Kamel-eddine 

Supervised by : Mr. M.TAGHI 

 Presented on : 02/07/2017 

Jury members : 

                      President           Mr. S. AIT CHEIKH         Professor ENP 

                   Examiner          Mr. D. BERKANI              Professor ENP 

                   Supervisor        Mr. M.TAGHI                   Assistant Professor ENP 

ENP 2017



2 
 



Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger. 

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

Ecole Nationale Polytechnique 

 

 

 

 

 

Electronic Department  

Laboratoire des Dispositifs de Communication et de Conversion 

Photovoltaique 

Submitted in partial fulfillment of the requirements 

for the Master Degree 

 

Design of Low Complex Non Binary LDPC 

Decoder using Min-Max algorithm 

 

HARABI Kamel-eddine 

Supervised by : Mr. M.TAGHI 

Presented on : 02/07/2017 

Jury members : 

                      President           Mr. S. AIT CHEIKH         Professor ENP 

                   Examiner          Mr. D. BERKANI              Professor ENP 

                   Supervisor        Mr. M.TAGHI                   Assistant Professor ENP 

ENP 2017 

 



2 
 

Abstract 

  ملخص 

شفرات اختبار  أیضا تسمى والتي ،q(GF( اغالو حقل على معرفةال )LDPC(ة الكثاف ةمنخفض كافؤالت شفرات اختبار
 قشانی ما نادرا. بكثیر أفضل أداء مع الثنائیة LDPC لشفرات امتداد ھي عبارة عن ،(NB-LDPC)التكافؤ الغیر ثنائیة

 ركزنا المشروع، ھذا في. الأجھزة على مستوى الإنشاء في تعقیدال بسبب الغیر ثنائي LDPC	التشفیر ككفم إنشاءو تصمیم
.  (Min-Max) الأعلىالحد - الأدنى الحد خوارزمیة باستخدام التعقید	منخفض NB-LDPCمفكك شفرات  تصمیم على

 (VN) المتغیر عقدة ،(CN)اربالاخت عقدةللمفكك مثل  الأساسیة الأجزاء تصمیم مع تتوافق العمل لھذا الرئیسیة المساھمات
 تفاصیل وتوثیق عرض وتم ومكوناتھ، التشفیر ككفم تصمیم تفصیل تم. كفاءة ذات تقنیات باستخدام وذلك الشفرة رقرمو

	.للشرح وأمثلة المكونات ووظائف مخططاتال مثل مختلفة
شفرات اختبار التكافؤ الغیر  q(,GF( اغالو حقل	,)LDPC(ة الكثاف ةمنخفض كافؤالت شفرات اختبار: الكلمات المفتاحیة 

  .بنیة  ,تصمیم ,التشفیر ككفم ،(NB-LDPC)ثنائیة

Résumé 

Les codes contrôle de parité à matrices creuses (Low-Density Parity-Check, LDPC) définis 
sur les corps de Galois GF (q), également appelés codes LDPC non binaires (NB-LDPC), sont 
une extension de codes binaires LDPC avec des performances nettement meilleures. La 
conception et l'implémentation des décodeurs NB-LDPC ont rarement été discutées en raison 
de leur complexité de l'implémentation matérielle. Dans ce projet, on est concentré sur la 
conception d'une architecture à faible complexité pour un décodeur NB-LDPC basé sur 
l'algorithme de décodage Min-Max. Les principales contributions de ce travail correspondent 
à la conception des blocs de base du décodeur, comme le bloc de nœud de contrôle (CN), le 
bloc de nœud variable (VN) et le bloc décision de code mot avec des techniques d'efficacité. 
La conception du décodeur et ses composants de base sont détaillés. De nombreux détails, 
comme les schémas de blocs et les fonctionnalités des composants, ainsi que des exemples 
d'explication, ont été présentés et documentés. 
Mots cl´es: LDPC, Corps de Galois, NB-LDPC, Min-Max, Décodeur, Architecture, 
Conception, Implémentation. 

 

Abstract 

Low-density parity-check (LDPC) codes constructed over the Galois field GF(q), which are 
also called Non-Binary LDPC (NB-LDPC) codes, are an extension of binary LDPC codes 
with significantly better performance. The design and implementation of  NB-LDPC decoders 
has rarely been discussed due to their hardware implementation complexity. In this project, 
we focused on the design of low complex architecture for a NB-LDPC decoder using the 
Min-Max decoding algorithm.. The main contributions of this work correspond to the design 
of the decoder basic blocks, as the check node (CN) block, the variable node (VN) block and 
the codeword decision block  with efficiency techniques. The design of the decoder and its 
components are detailed, Various details like block schematics and the components 
functionality and explanation examples have been presented and documented. 
Keywords : LDPC, Galois Field, NB-LDPC, Min-Max, Decoder, Architecture, Design, 
Implementation. 
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General Introduction 
 

Low Density Parity-Check (LDPC) codes are a class of linear block codes. They have been 

successfully included in numerous standards such as DVB-S2 [5], IEEE 802.16e and IEEE 

802.11n , among others. These codes were first proposed in the 1962 PhD thesis of Gallager 

at MIT. But they remained largely neglected for over 35 years, because of the computational 

power to exploit iterative decoding schemes was not available until recently. The main 

reasons for their success are that their performance are close to the channel capability for long 

codewords [6]. 

Non-Binary LDPC (NB-LDPC) codes are an extensions of binary LDPC codes. These codes 

perform better than the binary LDPC codes in case of codes with low and medium codeword 

length. Despite the error-correcting performance advantages, NB-LDPC codes suffer from 

high decoding complexity. During the last decade, significant progress has been made in the 

development of low-complexity NB- LDPC decoding algorithms and the implementation of 

these algorithms in flexible dedicated very-large-scale integration (VLSI) circuits. 

The graphical representation of the NB-LDPC codes can be used in the implementation of 

these algorithms whose effectiveness has been shown on graph models such as the Belief 

Propagation algorithm generally noted BP. This algorithm guarantee optimal decoding 

performances but it has not great interest for a hardware implementation. Consequently, other 

algorithms based on approximations of the BP algorithm have been developed with the aim of 

ensuring a reasonable performance/complexity compromise. The well known ones are the 

Min-Sum, its variant Extended Min-Sum (EMS) and the Min-Max algorithm. The last one can 

be implemented by a more efficient architecture then the others with small performance 

degradation. 

The objective of our project is to design a low complex NB-LDPC decoder based on Min-

Max decoding algorithm. In particular, we provide concepts and solutions that enable flexible 

implementation and a compromise between decoding speed and implementation complexity, 

which are the basic requirements of modern communication standards. 

 

 

 

 

 

 

 



 

Chapter 1 : NB

This first chapter aims to present fundamental principles and concepts that will be useful for

the understanding and implementation of

This chapter begins by presenting the LDPC codes with brief

NB-LDPC codes, and finally discuss the decoding algorithm with giving some details and 

examples about the Min-Max al

1.1. System model 

Figure 1.1 depicts a high level block diagram of a simple channel coding system for LDPC 

codes, the massages are bits or symbols.

 

Figure 1.1. high level block diagram of 

In what follow, for an (N, K) LDPC we will use 

• Information word x of length 

• Code word c of length N. 

• Received word r of length N.

• Decoded code word ĉ of length 

• Decoded information word x

• code rate R = K/N 

1.2. LDPC codes 
Low Density Parity Check (LDPC) codes make up a class of linear block codes that are

characterized by a sparse parity

small number of non-zero entries

Gallager at MIT. in this section we are presenting fundamentals and characteristics of the 

LDPC codes . 

1.2.1. Representation of LDPC Codes

There are two ways to represent LDPC codes. Like all linear block 

described via matrices. The second way 

Matrix Representation 

The LDPC code can be described by two basic matrix the generator matrix 

× N and the parity check matrix H of dimension 

before the coding process and 
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parity check equations or the bits of the parity

H.	�� = 0, which is the basic relation

 

 

 

 

 

The illustrated matrix H in Eq.1.1

code. The number of non-zeros element (‘1’s in binary codes ) in a row of 

weight ’wr’ , and the number of non

referred to as the column weight ’

Graphical Representation
Tanner introduced an effective graphical representation for LDPC codes. Not only do these

graphs provide a complete representation of the code, 

decoding algorithm as explained later.

Figure 1.2. Tanner graph with co

Tanner graphs are bipartite graphs

two distinctive sets and edges are only connecting nodes of two different types. The two

of nodes in a Tanner graph ar

illustrates an example for such a Tanner graph and represents the same co

H. The creation of such a graph is st

of parity bits) and N variable nodes (the number of bits in a code word).

connected to variable node ci if the element 

codes ). 

1.2.2. Regular and Irregular LDPC Codes

LDPC code is called regular if 

constant for every row [6]. The example in Eq.

also verify whether a code is regular or not from its graphical representation. If the number of
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tions or the bits of the parity. The relation between these two matrix is 

which is the basic relation in the decoding process.  

                  

in Eq.1.1 is a parity check matrix with dimension 

zeros element (‘1’s in binary codes ) in a row of 

number of non-zeros element (‘1’s in binary codes) in a column is 

weight ’wc’ . 

Graphical Representation 

Tanner introduced an effective graphical representation for LDPC codes. Not only do these

graphs provide a complete representation of the code, but they also help to describe the

decoding algorithm as explained later. 

Figure 1.2. Tanner graph with corresponding H matrix for (8,4)LDPC code 

ner graphs are bipartite graphs [9], that means the nodes of the graph are separated into

distinctive sets and edges are only connecting nodes of two different types. The two

of nodes in a Tanner graph are called variable nodes (VNs) and check nodes (CNs

an example for such a Tanner graph and represents the same co

H. The creation of such a graph is straight forward. It consists of M check nodes

variable nodes (the number of bits in a code word).

if the element hij of H is a non-zero element (

Regular and Irregular LDPC Codes 

LDPC code is called regular if wc is constant for every column and wr 

The example in Eq.1.1 is regular with wc = 2 and 

verify whether a code is regular or not from its graphical representation. If the number of

The relation between these two matrix is 

                 (1.1) 

is a parity check matrix with dimension N x M for a (8, 4) 

zeros element (‘1’s in binary codes ) in a row of H is called the row 

element (‘1’s in binary codes) in a column is 

Tanner introduced an effective graphical representation for LDPC codes. Not only do these 

but they also help to describe the 

 

rresponding H matrix for (8,4)LDPC code  

the nodes of the graph are separated into 

distinctive sets and edges are only connecting nodes of two different types. The two types 

e called variable nodes (VNs) and check nodes (CNs). Fig. 1.2. 

an example for such a Tanner graph and represents the same code as the matrix in 

check nodes (the number 

variable nodes (the number of bits in a code word). Check node vj is 

zero element (1 in case of binary 

r =wc·(N/M) is also 

and wr = 4. We can 

verify whether a code is regular or not from its graphical representation. If the number of 
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incoming edges is same for all check nodes and also for all variable nodes, then it is a regular 

code. If H is low density but the number of 1's in each row or column isn't constant, the code 

is called an irregular LDPC code. The irregular LDPC codes give better decoding 

performance than regular ones, but the construction of the encoder as well as the decoder 

becomes much more complex. 

1.2.3. Constructing LDPC Codes 

There are several algorithms to construct suitable LDPC codes. Gallager [1] himself 

introduced one. Further, MacKay [4] proposed a way to semi-randomly generate sparse parity 

check matrices. Suitably chosen array codes also give good performance to the decoding 

algorithm. Constructing high performance LDPC codes is not a hard problem. In fact, 

completely randomly chosen codes are good with a high probability. The problem is that the 

encoding complexity of such codes is usually rather high. 

1.2.4. LDPC Encoding Process   

The objective of the encoding operation is to regroup a sequence of information symbols into 

words (or blocks) of equal length K [6], which are independently encoded than each 

information word uniquely mapped onto a code word of length N, by using the G matrix and  

the following operation : 

                                                                   � = ��.x                                         (1.2) 

1.2.5. Decoding process  

Error detection is done by computing the syndrome and check to see if it is all zeros. If it is 

not all zeros, then declare that an error has been detected. If it is all zeros, then assume that 

the codeword is correct. The syndrome s given by the Eq.1.3  : 

                                       H.r = H(c + n) = H.	��.x + H.n = H.n = S                 (1.3) 

where n is the error vector and S is the syndrome vector. 

The main issue in the decoding operation is to find a decoding algorithm that can correct the 

error and find the desired estimated code word with efficient way to get good performances 

and simplify the decoder implementation. 

1.3. NB-LDPC codes 

Many error-correcting codes [7], such as low-density parity-check (LDPC) codes are defined 

over Galois Fields. The purpose of this section is to provide an elementary knowledge of the 

extension field GF(2�) and a brief explanation for the NB-LDPC codes . 

1.3.1. The Galois Field GF(��)  

The Galois field is a finite field that consist of a specific addition and multiplication 

operations [10]. One way to create a Galois field is to use the set of integers {0..., p - 1} where 

p is prime and the (+) and (·) which are modulo - p addition and modulo - p multiplication, 

respectively. 
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The GF(2) is a finite field with the least number of elements {0, 1} that’s why there are many 

binary codes that are defined over the binary field GF(2) , in this field the addition is the XOR 

operation and multiplication is the logic AND operation. 

We can create extension fields (subfields) of the GF (2) one of these extension fields is based 

on power of 2 [7], the GF (2�) where m is a positive integer and 2� is the order (cardinality). 

The extension fields GF (2�) are usually used in digital communication, since each element 

of Galois field GF (2�) can be represented in a unique way in the form of a binary symbol of 

m bits. 

1.3.2. GF(��) Power representation 

The field elements can be represented as linear combinations of the elements in a basis (basis 

representation ), as well as powers of a primitive element (power representation). the 

hardware complexities of finite field operations are heavily dependent on the element 

representations. 

The power representation has low complexity and easy to implement. This representation is 

based on the primitive element of the GF (2�), which is the root of the primitive polynomial 

for more details check the reference [10]. The GF (2�) is the set of primitive element α 

powers and the element 0. 

                                        GF (2�) = {0, 1, α , α�, ..., α���}                 (1.4) 

Table.1.1 illustrates the GF(8) power representation and the corresponding binary 

representation. 

 
Table 1.1 GF (2�) power representation  

1.3.3. GF (��) Arithmetic  

Addition: 
The addition of 2 elements of the GF (2m) is the bit-wise XOR. for x =(x1x2x3) and y =(y1y2y3) 

∈  GF(8) ,The addition operation of the GF (8) is: 

                                                     x + y = (x1x2x3) XOR (y1y2y3)                    (1.5) 

Multiplication 

Using power representation, multiplication over GF(2m) can be performed by adding up the 

exponents of the operands modulo 2� - 1: 
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                           (1.6) 

1.3.4. The NB-LDPC codes over GF(��) 

The Non binary LDPC codes over GF(q) can be seen as the generalization of binary LDPC 

codes over GF(2) , where q =2�. In this case, each symbol can be represented by a m-bit 

binary tuple, In the parity check matrix H of a NB-LDPC code, the nonzero entries are 

elements of GF (2�). Also each information and codeword symbol is an element of GF (2�). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Non binary LDPC code over GF(2�) example.  

The matrix products of the parity equations are performed using the addition and 

multiplication operations of the Galois Field GF (2�). It is then preferable to add to the 

bipartite graph the new family of nodes called the permutation nodes which serve to model 

the multiplication of the symbols of the code word by the non-zero elements of the parity 

matrix hij . Figure 1.3 illustrates the bipartite graph for equation 2, by adding the permutation 

nodes that correspond to the elements h11,h13 and h14. 

1.4. Decoding Algorithm 

Actually there is more than one such decoding algorithm. There exists a class of algorithms 

that are all iterative procedures where, at each round of the algorithm, messages are passed 

from variable nodes to check nodes, and from check nodes back to variable nodes. Therefore, 

these algorithms are called message passing decoding algorithms. 

The basic steps of these algorithm are :   

Initialization: in the first iteration the intrinsic messages received from the channel at the 

VNs are directly passed along the edges to CNs. 

CN update : The CNs compute the extrinsic messages depending on the received messages 

from the VNs. then send them back to the VNs. 

VN update : The VNs compute the extrinsic messages depending on the received messages 

from both the channel and the CNs.  

Hard decision: after complete an iteration, a hard decision are made, then checking the 

codeword validity by using the syndrome. 

These steps are repeated until it converge to a valid codeword . or maximum number of 

iteration is reached  
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1.4.1. Optimal Decoding Algorithm  

One of the important message-passing algorithm is the belief propagation algorithm, In this 

algorithm the messages exchanged are a posteriori probabilities, The BP algorithm suffers 

from a prohibitive computational complexity. The reduced complexity decoding algorithms 

are built in the log-domain, and this is for the reason that it transforms the products into 

simple sums. In the Sum-Product Algorithm the four decoding steps are carried out in the log-

domain using the Log Likelihood Ratio (LLR) [11]. Updating the CNs in the Sum-product 

requires a large amount of calculation and the complexity of the decoder still high.  

The BP and sum-product algorithms guarantee optimal decoding performances but they have 

not great interest for a hardware implementation. Consequently, other algorithms based on 

approximations of the  Sum-Product algorithm have been proposed with the aim of ensuring a 

reasonable performance / complexity compromise. The basic approximated algorithms are 

Min-Sum [12], EMS (Extended Min-Sum), and the Min-Max algorithm [13]. 

1.4.2. Min-Max Algorithm  

The Min-max [13] algorithm can be implemented by a more efficient architecture comparison 

to the MS or EMS, Since the sum is replaced by the max operation in the CN computations.  

We can resume the steps of the Min-Max algorithm by : 

• Initialization:                                                                                       (1.7) 

Iterations : 

• Check node processing 

             (1.8) 

• Variable node processing 

 (1.9) 

  Normalization  

 (1.10) 

• A posteriori information computation 

 (1.11) 
 

Hard decision for the jth symbol can be made as: 

  

         (1.12) 

 

The iterations can be carried out until the syndrome equals 0 or the maximum iteration 

number has been reached. 
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The LLR definition  
In order to  simplify the computations and deal only with positive values. the LLRs has new 

definition as illustrates the Eq.1.13 :  

  

 (1.13) 
 

 

Here the most reliable symbol has always the LLR value zero  and the other symbols has a 

positive LLR value. as illustrated the table 1.2, an example of GF(8) elements and LLR values   

 

Table 1.2. Example of GF(8) LLRs values. 

Before beginning the decoding process the computation of the LLR value for each symbol of 

the codeword is done. Considering a BPSK modulation and an Additive White Gaussian 

Noise (AWGN) channel, the received noisy codeword r consists of N × m binary symbols 

independently affected by noise. The BPSK modulation associates symbol ‘-1’ to bit 0 and 

symbol ‘+1’ to bit 1, and the BPSK demodulator output is the bit LLR value LLR(bj) of the 

bit bj. With the hypothesis that the GF(q) symbols are equiprobable, the LLR value of 2� 

symbol LLR(2�) is given by the equation: 

 

         (1.14) 
 

where j={0....m-1} is the bit position, HD(bj) is the hard decision of bit in position j, and  

α�(j)	 bit	values	of	the	GF	element	α�. 

Example of GF(4) LLR values calculation : 

In the GF(4), m=2 it means each symbol can be presented in 2 bits, the received LLR are : 

LLR(b1)=2 ; LLR(b0) = -4, after the Hard Decision of each bit : (1,0)  

the binary presentation of  0 = (0,0) then the LLR values is LLR(0) = 2  

the binary presentation of �� = (0,1) then the LLR values is LLR(��) = 2 + 4 = 6  

the binary presentation �� = (1,0) then the LLR values is LLR(��) = 0  

the binary presentation �� = (1,1) then the LLR values is LLR(��) = 4  
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Chapter 2 : NB-LDPC Decoder Design 

In this chapter, we will discuss the design of low complex decoder based on the Min-max 

algorithm for NB-LDPC codes. We will start from the decoder top level view and go one 

level deeper into the basic blocks. The decoder mainly consists of a check node unit, a 

variable node unit, and other additive blocks. An optimized scheme and corresponding 

architecture are developed for the check node processing. Employing this scheme, the speed 

of CN processing can be almost doubled when the check node degree is not small. Moreover, 

the computation units and the scheduling of the computations are optimized to reduce the area 

and decoding latency. 

There are two basic design strategies, the layered and the non-layered one. The layered 

architecture has been chosen in our design because it has lower throughput, with lower area 

requirement. Our architecture is applied to a NB-LDPC code constructed over GF(8) as an 

example. 

2.1. Global Architecture Description 

From a high-level perspective, virtually all implementations of message passing LDPC 

decoders found in the open literature are derived from an isomorphic architecture [18] which 

is a direct mapping of the tanner graph. 

The global architecture of decoder as illustrated in Figure 2.1 consists of different types of 

hardware components: 

• VN unit (VNU) block and CN unit (CNU) block to compute the update equations. 

• Interconnect network representing the edges of the graph and the hij/h ij multiplication 

block. 

• Storage devices in order to save the extrinsic and the intrinsic messages. 

• LLRs calculator block to calculate the GF(q)’s LLR values and the Syndrome block to 

check the codeword validity. 

• Control unit which generate control signals in order to synchronize and control the data flow 

between the blocks. 

 



 

Figure 2.1. General NB

Based on this prototype architecture, different implementation trade

architectural transformations such as resource

decomposition of the update equations.

2.1.1. Layered architecture

The design can be partitioned into two basic architecture classes : the non

(Fullparallel) and the layered 

strategies row parallel, and block

reduce the memory requirement and increase the convergence speed of LDPC decoding.

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. (a) Row 

The row-parallel design is a step towards less parallelism. The main objective is to reduce 

the area while maintaining very high throughput. The principle underlying row

architectures is illustrated in Figure 5.2(b). Essentially, the parity

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access

the messages corresponding to the current layer sequentially from a small storag

compute the output messages and send them to the CNUs through a programmable routing

network.  

The row-parallel architectures provide an area advantage over full

programmable routing network illustrated in Figure 5.2(b)

architecture provides the flexibility to support multiple parity check matrices with a single 

decoder. For this reason, this architecture class has been recently

flexible QC-LDPC decoders tailored to the emer

IEEE 802.11ad and IEEE 802.15.3c.

Block-parallel design rely on further resource sharing and further iterative decomposition. 

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained

from the row-parallel approach and by partitioning the computation of a layer

multiple cycles, corresponding to multiple blocks in the parity
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Figure 2.1. General NB-LDPC Decoder top level architecture. 

Based on this prototype architecture, different implementation trade-offs are obtained

architectural transformations such as resource sharing across VNUs and CNUs and

decomposition of the update equations. 

Layered architecture 

The design can be partitioned into two basic architecture classes : the non

) and the layered architecture [14,3]. The last one also can be divided into two 

block-parallel. The Layered decoding has been widely adopted to 

reduce the memory requirement and increase the convergence speed of LDPC decoding.

 

Figure 2.2. (a) Row parallel architecture, (b) Block parallel architecture

design is a step towards less parallelism. The main objective is to reduce 

the area while maintaining very high throughput. The principle underlying row

illustrated in Figure 5.2(b). Essentially, the parity-check matrix is partitioned

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access

the messages corresponding to the current layer sequentially from a small storag

compute the output messages and send them to the CNUs through a programmable routing

parallel architectures provide an area advantage over full-parallel designs. The 

programmable routing network illustrated in Figure 5.2(b) required by the row

architecture provides the flexibility to support multiple parity check matrices with a single 

decoder. For this reason, this architecture class has been recently considered in several 

LDPC decoders tailored to the emerging high-throughput 

IEEE 802.11ad and IEEE 802.15.3c. 

rely on further resource sharing and further iterative decomposition. 

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained

parallel approach and by partitioning the computation of a layer

multiple cycles, corresponding to multiple blocks in the parity-check matrix.

LDPC Decoder top level architecture.  

offs are obtained through 

sharing across VNUs and CNUs and iterative 

The design can be partitioned into two basic architecture classes : the non-layered 

last one also can be divided into two 

decoding has been widely adopted to 

reduce the memory requirement and increase the convergence speed of LDPC decoding. 

parallel architecture, (b) Block parallel architecture. 

design is a step towards less parallelism. The main objective is to reduce 

the area while maintaining very high throughput. The principle underlying row-parallel 

check matrix is partitioned 

vertically into layers. An iteration now consists of multiple cycles in which the VNUs access 

the messages corresponding to the current layer sequentially from a small storage array to 

compute the output messages and send them to the CNUs through a programmable routing 

parallel designs. The 

uired by the row-parallel 

architecture provides the flexibility to support multiple parity check matrices with a single 

considered in several 

 wireless standards 

rely on further resource sharing and further iterative decomposition. 

Figure 5.2(c) outlines the architectural principle, this architecture class is obtained by starting 

parallel approach and by partitioning the computation of a layer further into 

check matrix. This iterative 
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decomposition simplifies the CN processing and allows for resource sharing also across the 

VNUs.  

2.2. The Decoder Top Level Architecture  
It has been shown that the row-parallel architecture class is highly scalable and supports the 

full range of throughput requirements found in modern wireless standards. Due to its 

favorable properties and spatially its flexibility i.e. be able to implement several given codes, 

without changing the design of the decoder. This architecture has been chosen for designing 

our decoder [16, 17].  

 

         

                                                                                                                               (2.1) 

 

In what follow we will work on the regular (8.4)NB-LDPC code, with degree wr=4, and 

wc=2. The parity matrix of this code illustrated in Eq 2.1. 

The row-parallel scheduling principle for the presented H matrix is illustrated in Figure 2.3, 

and consists in processing the CNs one by one in each iteration ( CN in Tuner graph is similar 

to row in parity matrix ). When a CN is processed, it immediately transmits the new extrinsic 

messages to its connected VNs, then the last ones update their extrinsic messages before 

moving on to the next CN update. 

 

Figure 2.3. Row-Parallel scheduling principle for (8,4)NB-LDPC code. 
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Consequently, the row scheduling makes it possible to accelerate the convergence of the 

decoder, since in each iteration a CN cj benefits from the information of the previous 

iterations (updated by the previous CNs)  and the information of the current iteration . 

 

Figure 2.4. overall view of the decoder architecture. 

The overall view of the decoder architecture is presented in Figure 2.4, and it is composed of 

a single check node block connected to wr=4  Variable Node block. The architecture also 

contains a memory system containing RAMvc in order to save the extrinsic messages of the 

VNs and of  RAMo in order to save the intrinsic information I of the channel . 

In the initialization step, the VNs receives the intrinsic messages from the RAMo and directly 

passed them to CNs. At each iteration the CN receives in parallel Mvc (v-to-c messages) old 

messages and provides after the CN processing the Mcv messages which will be immediately 

sanded and processed by the VNs to generate the new Mvc new messages that will replace the 

old Mvc messages in the RAMvc. This decoding process is repeated nit times. During each 

iteration, m updates of CN and N = wr × m updates of VN are performed. At the last iteration 

a decision is taken on each symbol. The codeword decision is performed in the VN 

processors. the VNs determine sequentially the value of the code word. We must note that 

since wc = 2, this decision process is done when the second edge of each VN is updated. This 

concludes the decoding process and the decoder then sequentially outputs ĉ to the syndrome 

block. Note that, for the sake of simplicity, we have omitted the description of the 

permutation nodes that implement the GF(q) multiplications. The effect of this multiplication 

is to replace the GF(q) value Mvjci(β) by Mvjci(β × hij) where the GF multiplication requires 

only a few XOR operations. 
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Figure 2.5. Structure of RAMs used in the decoder. 

Structure of the RAMs: The intrinsic information and the Mvc messages are stored in wr 

memories RAMo and RAMvc respectively. Each memory bank contains information related 

to m messages (m is the number of layers or rows in our case ), and each location containing q 

couples of GF(q) element and the corresponding LLR value.  

The partition of the N variables in the wr memories is a coloring problem: the wr variables 

associated to a given CN should be stored each in a different memory bank to avoid memory 

access conflicts. This problem is solved by using highly structured code (as the quasi cyclic 

codes).  

2.3. Check Node architecture 

Computing the c-to-v messages in a straight-forward manner requires a complexity of 

O(q����). This manner requires complicated computations on GF (q) elements, and it is not 

suitable for efficient hardware implementation. Alternatively, the forward-backward scheme 

can be applied to the check node processing to avoid computing output message directly. This 

scheme consists in constructing the outgoing messages by a set of elementary operations, 

making it possible to reduce the processing latency. These elementary operations are 

performed by Elementary Check Node (ECN). Figure 2.6 illustrates the Forward-Backward 

architecture of CN with degree wr = 4. For clarity, the incoming CN messages are denoted by 

Mvjc and the outgoing messages are denoted by Mcvj . 
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Figure 2.6. Forward-backward CN of degree wr=4 architecture.  

The CN receives wr messages and generates also wr messages which will be transmitted to 

the VNs. This CN requires the implantation of 3(wr - 2) ECNs distributed over 3 layers, the 

Forward layer (the red direction), the backward layer (the blue direction) and the merging 

layers (the green directions). In our project we are constructing CN with degree wr = 4 that 

means we need to 6 ECNs. Figure 2.6 illustrate the scheme construction. The processing of 

the EVNs is iterative, At the beginning only the ECNs connected directly to the input data 

work first (ECN number 1 and 4 in the Figure 2.6), then after they complete their processing 

the other ECNs (2,3,5 and 6 ) can begin processing. 

2.3.1. ECN architecture 

The proposed CN architecture can be used in both cases, keeping all q messages in each 

vector or keeping only the nm < q most reliable messages in each vector. this can make the 

decoder more flexible, if the q is small we can keep all messages for better performance, in 

the other hand, if q is not small keeping only nm < q most reliable messages can reduce the 

computations latency. 

The EVN compute an outgoing message vector from two incoming message vectors. The 

message vector consists of two parts: LLRs and corresponding GF (q) elements. Denote the 

LLR vectors by LA = [LA(0), LA(1), ..., LA(q - 1)] and LB = [LB(0), LB(1), ..., LB(q - 1)], 

and the corresponding finite field element vectors by GFA = [GFA(0), GFA(1), ..., GFA(q-1)] 

and GFB = [GFB(0), GFB(1), ..., GFB(q-1)], also denote the output LLR and corresponding 

finite field element vectors by LO and GFO. The entries in the output LLR vector for the 

Min-max decoding are the q minimum values of max(LA(i), LB(j)) with different 

GFA(i)+GFB(j) for any combination of i and j less than q. Computing the updating messages 

in ECN by the traditional solution can make a hardware demanding and a latency problem. To 

overcome this problem the ECN developed in our project which uses two incoming messages 

stored in the order of increasing LLR and generate sorted outgoing message is based on an 

efficient algorithm (our algorithm is based on an algorithm in the reference [3] with several 

important optimizations) that make the computations in minimum clock cycles and using 



 

serial computation to reduce the

code over GF (8) are considered in

Table 2.1. Example of ECN computation with two sorted inputs

As illustrated in the table the most reliable q messages are distributed in the top left corner, 

the grey cells are the entries of the output message vector. We can see in the table a 

remarkable pattern for LLR distribution , based on this pattern we find 

for the ECN processing.  

In the algorithm, n is the number of messages inserted into the output vector, 

used to indicate the positions in the input

functionality of the Algorithm.

drawn to follow the comparison results of the LLRs. It goes down when

LB vector, and goes to the right otherwise.

algorithm tells the direction of the segments in the 

left corner, by taking the entries to the left of the vertical segments and those ab

horizontal segments of the boundary. If the 
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computation to reduce the hardware area. Two example input vectors for a NB

(8) are considered in table 2.1: 

Example of ECN computation with two sorted inputs

As illustrated in the table the most reliable q messages are distributed in the top left corner, 

the grey cells are the entries of the output message vector. We can see in the table a 

remarkable pattern for LLR distribution , based on this pattern we find a specific algorithm 

                                                                       
is the number of messages inserted into the output vector, 

used to indicate the positions in the input vectors, by using the table 2.1 

functionality of the Algorithm. Beginning from the top left corner of the table, a boundary is 

drawn to follow the comparison results of the LLRs. It goes down when the LLR in the 

to the right otherwise. The testing result of whether LA

irection of the segments in the boundary. Therefore, starting from

left corner, by taking the entries to the left of the vertical segments and those ab

horizontal segments of the boundary. If the GF element corresponding to an entry in

Two example input vectors for a NB-LDPC 

 

Example of ECN computation with two sorted inputs. 

As illustrated in the table the most reliable q messages are distributed in the top left corner, 

the grey cells are the entries of the output message vector. We can see in the table a 

a specific algorithm 

                                                                        
is the number of messages inserted into the output vector, i, j and k are 

 we can explain the 

table, a boundary is 

the LLR in the LA < 

LA(i) < LB(j) in the 

boundary. Therefore, starting from the top 

left corner, by taking the entries to the left of the vertical segments and those above the 

element corresponding to an entry in the table 
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is the same as that of an entry previously inserted into the output vector, the new candidate 

entry will not be inserted, since the previous entry has smaller LLR. 

 

Figure 2.7. ECN architecture. 

The previous algorithm can be implemented by the architecture illustrated in Figure 2.7. The 

comparisons of the LLRs start from the first entries in the two input vectors. In the case that 

LA(i) < LB(j) happens, LA(i) was the ’max’ value when compared with any previous LB(k) 

with 0 ≤ k < j, since the LLRs in each vector are sorted. Hence, LA(i) should be inserted into 

the output vector together with GFA(i)+ GFB(k) for each 0 ≤ k < j. After this process is 

completed, i will increment so the next entry for the LA vector is read out in the next clock 

cycle to be compared with LB(j). Similarly, in the case that LA(i) > LB(j) , LB(j) will be 

inserted into the output vector with field element GFA(k) + GFB(j) for each 0 ≤ k < i. 

 

Figure 2.8. Address generator block architecture 

It can be observed from the algorithm above that the addresses i and j either do not change or 

increase by one in each loop, in which the addressee generator blocks is the responsible of 

increasing them. If LA(i) < LB(j), the counter ’k’ in the address generator B is cleared and 

used as the read address of the B vector. As the counter output increases, GFB(k) is read out 
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and added up with GFA(i) until the counter reaches j - 1. In the case that LA(i) > LB(j), the 

address generator A works in a similar way to generate the read address for the A vector. The 

write address n of the output vector increases by one each time a new LLR and corresponding 

finite field element needs to be inserted. 

2.4. Variable Node architecture 
In our project we have designed a VN with degree wc = 2, it means two extrinsic messages 

and one intrinsic message are the incoming messages of the VN. In our architecture all q 

messages are kept in each vector. The architecture of a VN is given in Figure 5.7. 

 

Figure 2.9. Variable Node architecture 

It contains several Elementary Blocks that can make it capable to operates on three basic 

functions : 

 Updating the VN: This operation is done by the EVN block, which receives two 

incoming message from the CNs and generate an new outgoing message to the 

normalization block . 

 Normalization : The Norm block subtracts the smallest LLR in the input vector from 

each LLR in the vector so that the smallest LLR in each vector is brought back to zero. 

 Decision: The Decision block, firstly calculates the APP by the sum of all VN inputs, 

then determine the estimated symbol c by taking the GF element corresponding to min 

LLR value.  
 

2.4.1. EVN Architecture 

The EVN computes stored outgoing message vector, by adding the LLRs of the two incoming 

message vectors corresponding to the same GF(q) element. Figure 5.8 illustrate the EVN 

architecture, two RAMs are used to storage the incoming message vectors, adder to add the 

LLR values, parallel GF elements comparators to help in finding the GF element address, 

sorter for the output vector and control unit to generate the control signals. 
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Figure 2.10. EVN architecture. 

At first, one entry of the A vector is read out. Since the vectors are not sorted by GF element, 

the GF element of the GFA vector entry is compared with all those in the GFB vector. If there 

is a match, the addr calculator can give the corresponding GF element address, then using the 

addresses of A and B vectors to read theirs corresponding LLRs and perform the addition, the 

LLR addition result and its corresponding GF element are the entries of the output vector. The 

adder’s output is connected to a sorter in order to sort and store the output elements. Using a 

counter to read out the next A vector entry and repeat these steps for all the q entries. All 

previous operations are controlled by the control unit. 

 

Figure 2.11. Sorter architecture .  

An architecture for such a sorter was proposed in [15] is shown in Figure 2.11, This operator 

is used for inserting a new value into an already sorted list of values. The architecture of such 

operator with q registers and q parallel comparators in order to reduce the critical path of the 

processor to one single clock cycle. 

2.4.2. Decision block 

For the decision operation, we can use the output of EVN1 and Mc2v as inputs of the 

Decision block, which is a modified EVN block, that modification consist of taking as output 

the GF element corresponding to the min LLR value, which is the first element since the EVN 

integrate a sorter. 
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Conclusion 

This project is dedicated to the architecture design of a low complex NB-LDPC decoder. we 

started with an understanding of the NB-LDPC codes concepts, and various variants of the 

error correcting decoding algorithms were investigated with an eye towards performance and 

feasible hardware design. Then we have chosen the Min-Max algorithm because of its low 

complexity in comparison with other algorithms. The complexity of the check node 

processing is further reduced in the Min-max algorithm with slightly lower coding gain. 

It has been shown that there exist several NB-LDPC decoder architecture classes, and with 

the investigation on them we found that the row-parallel architecture class is highly scalable 

and supports the full range of throughput requirements found in modern wireless standards. 

Due to its favorable properties and spatially its flexibility i.e. be able to implement several 

given codes, without changing the design of the decoder. 

In our project we have focused on the design of a row-parallel architecture for the NB-LDPC 

decoder and its basic blocks. Since modern communication systems decoders must support a 

wide range of different parity-check matrices, we provided a flexible decoder which can 

works with different block lengths and code rates.  

In our project a particular attention was given to VN update, codeword decision and reduced 

complexity CN processing. We have designed the check node block using the forward 

backward technique to reduce the implementation complexity. In order to optimize the 

latency, we have used a practical algorithm to design the elementary check node block, that 

can work for both cases : all q messages are kept or only the nm << q most reliable elements. 

We have also designed the variable node block using elementary blocks for the same reason. 

From this work we can conclude about the implementation of Min-Max algorithms for NB-

LDPC that the design of the VN is sampler than the design of the CN, because of that in our 

project we focus on the CN implementation which is considered as the bottleneck of the 

decoder. 
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