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 ملخص

هي الطريقة الأكثر استخدامًا للتنبؤ بالأداء الديناميكي الهوائي لـتربينات الرياح نظرًا  نظرية زخم جزء الشفرة حتى الآن، تظل

بشكل أساسي على بيانات الجناح لمجموعة واسعة من الظروف )شكل الجناح وزوايا  جزء الشفرة لبساطتها. تعتمد نظرية زخم

عادة ما يتم جمع هذه البيانات في تجارب نفق الرياح للأجنحة الثابتة عند زوايا مواجهة منخفضة. ومع ذلك، فإن  المواجهة(

الكلاسيكية من  زخم جزء الشفرة ة مواجهة أعلى. الدافع وراء هذا العمل هو تحسين طريقةزاوي توربينات الرياح الدوارة لديها

زوايا مواجهة العالية وشكل الاجنحة الجديدة  خلال تحديد معاملات أداء الجناح حيث توجد بيانات تجريبية قليلة أو معدومة مثل

الذكاء الاصطناعي، باستعمال الشبكات العصبية الاصطناعية، للتنبؤ  وأرقام رينولدز المنخفضة. لهذا الغرض، تم اقتراح نهج

دريب بيانات لتتم تحديده رقميا بمعاملات رفع الجناح والمقاومة. أولاً، العدد الأمثل للطبقات وكذلك العدد الأمثل للخلايا العصبية 

الشبكات العصبية ظرية زخم جزء الشفرة ونالتي تدمج  الشبكات العصبية الاصطناعية. بعد ذلك، تم مقارنة نتائج طريقة

 توافق جيد تم الحصول عليه. .الاصطناعية المقترحة مع النتائج التجريبية المتاحة للتحقق من صحة الطريقة

لخلايا لمواجهة، عدد  يةواز، الشبكات العصبية الاصطناعية، نظرية زخم جزء الشفرةالافقية،  توربينات الرياح كلمات الدالة:ال

 .العصبية

Résumé 

Jusqu’à présent, la théorie du moment d’élément de pale et quantité de mouvement (BEM) reste la 

méthode la plus largement utilisée dans la prédiction des performances aérodynamiques des 

éoliennes à axe horizontale (HAWTs) en raison de sa simplicité. La théorie de BEM est basée sur 

les données du profil de pale (la géométrie du profil, l’angle d’attaque (AOA)). Ces données sont 

généralement collectées dans des expériences en soufflerie pour des profils d'ailes stationnaires à 

des angles d'attaque faibles. Cependant une éolienne en rotation possède des angles d’attaque plus 

élevés. La motivation derrière ce travail est d’améliorer la méthode BEM classique en déterminant 

les coefficients de performance aérodynamique lorsqu’il existe peu ou pas de données 

expérimentales, comme des angles d’attaque élevés des nouveaux profils et pour de faible nombre 

de Reynolds. A cet effet, une approche d’intelligence artificielle appelée les réseaux de neurones 

(ANNs) a été proposée pour prédire les coefficients de portance et de traîné des profils. Tout 

d’abord, le nombre optimum des neurones et des couches discrètes ont été sélectionnés 

numériquement pour l’apprentissage des réseaux de neurones. Ensuite, les résultats de la méthode 

BEM-ANN proposée ont été comparés avec les résultats expérimentaux disponibles afin d’étudier 

sa validité. De bons accords ont été obtenus entre les prédictions numériques et l'expérimental. 

Mots Clés : Eoliennes à axe horizontale, Théorie BEM, Réseaux de neurones artificiels (ANNs), 

Angle d’attaque (AOA), Nombre de neurones. 

Summary  

So far, the Blade Element Momentum (BEM) theory remains the most widely used method for 

predicting aerodynamic performance of horizontal axis wind turbines (HAWTs) owing to its 

simplicity. The BEM theory is mainly based on airfoils data for wide range of conditions (airfoil 

shape, angles of attack (AOAs)). These data are usually collected in wind tunnel experiments for 

stationary airfoils at low AOAs. However, a rotating wind turbine, has higher AOAs. The 

motivation behind this work is to improve the classical BEM method by determining the airfoil 

performance coefficients where little or no experimental data exists such as at high AOAs, new 

airfoils shape and for low Reynolds numbers. For this purpose, an artificial intelligence approach, 

namely Artificial Neural Networks (ANNs) is proposed for predicting the airfoils lift and drag 

coefficients. Firstly, the optimum number of layers as well as the optimum neurons number for 

training input-output data have been selected numerically. Afterwards, the results of the proposed 

BEM-ANN method have been compared with available experimental results in order to 

investigate its validity. Good agreements were obtained between numerical predictions and 

experimental results. 
Keywords: Horizontal Axis Wind Turbines (HAWT), BEM theory, Artificial Neural Networks 

(ANNs), Angle of attack (AOA), Neurons number. 
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General introduction 

 

 

The wind energy is one of the essential green energy in the world nowadays, in the presence of 

global warming and the high amount of pollution. The wind energy is a good alternative source 

rather than oil and gaz. The increase consumption of the energy in the world, about 158839 

TWh consumed in 2019 [1]. 33% produced by the oil and 25% produced by gaz. This number 

and percentages make us thinking about decreasing these two high percentages of non-green 

sources of energy and replace them with the eco-sources.  

In 2019, Europe installed 15.4 GW of new wind power capacity. 27% higher than the capacity 

installed in 2018 and less than the record in 2017, and for now, it has a capacity of 205 GW of 

wind energy about 15% of the accounted electricity of the Europe consumed in 2019. An 

amount of three quarters of the wind energy installed in the last year in earth was onshore. New 

onshore installations of 2.2 GW of wind farms were installed in Spain, and new investments 

were done in Germany [2].  

The exploitation of the wind turbines provides a clean and a prospective option for energy 

production. Therefore, a good understanding of how the wind turbines works and interacts with 

wind is very essential in order to improve their performance and reduce their cost.  

Aerodynamics is the backbone and the foundation for the development and optimization of 

wind turbines. Wind turbine aerodynamics is generally divided into two main parts; rotor 

aerodynamics and wake aerodynamics. The first part aids in the design, development and 

optimization of wind turbine blades, whereas the other part predicts the capacity of wind farms 

and allows investigating the interaction of multiple wind turbines. 

In order to study wind turbine rotor aerodynamics, one needs to be able to model the rotor at its 

operating conditions and interaction with the wind to a certain degree of accuracy. Several 

techniques exist by which this is traditionally done, e.g. Computational Fluid Dynamics (CFD) 

methods, vortex methods, and Blade Element Momentum (BEM) methods, each having their 

own advantages. 

The Blade Element Momentum (BEM) remains the most widely used method for predicting 

aerodynamic performance of horizontal axis wind turbines (HAWTs) due to its simplicity. 

However, the BEM methods are based essentially on the introduction of the aerodynamic 

coefficients (drag and lift) as a function of the angle of attack as an input parameter. While 

these aerodynamics coefficients are not always available. 

In the present study, an artificial intelligence approach based on the so-called artificial neural 

network (ANN) has been proposed, implemented and validated in order to predict the lift and 
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the drag coefficients. After that, this approach was coupled with the BEM theory in order to 

determine the performance of HAWTs in the case were the profile’s data are not available. 

This method can make the calculation of the performance in few minutes. In addition, the use 

of new airfoil profiles newly developed by researchers is possible since the ANN can predict 

the lift and drag coefficient, so it makes the determination of the wind turbine performance fast 

allowing the researchers to make many tests of the profile geometries in a very low time. 

This report has been divided into four chapters organized as follows: 

Chapter 1 presents some general and basic concepts commonly used in the analysis of the 

aerodynamics of wind turbines followed by the literature review. 

Chapter 2 focuses on the theory behind the artificial neural network and its main features. 

Chapter 3 presents the mathematical formulation and the numerical modeling of both artificial 

neural network and BEM method. 

Chapter 4 presents and discusses the obtained results, which can be divided into two parts; drag 

and lift coefficients prediction and ANN-BEM validation.   

Finally, the main conclusions found in this study and the main recommendations relevant to the 

future work will ultimately be addressed towards the end of this report. 
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Chapter 1: Aerodynamics of Wind turbines 

1.1 Brief history of wind turbines  

The wind turbines are an old technology appeared in seventh century in Europe, it was used 

that time to grind flour, corn in windmills and to pump water. They were composed of a rotor 

with multiple blades constructed in wood and a transmission system to accomplish the desired 

task. 

The first rotor was fixed and oriented to one direction, and then an improved windmill had a 

movable part to face the incoming wind.  

In United States, according to a Californian program encouraging the use of green energy, the 

first park of modern wind turbines was installed to produce electricity in 1980’s. These 

machines generated 55 kW of power. Then the use of this green energy was highly explored in 

the world, new types of wind turbines and different power generating ranges were developed. 

 

1.2  Types and classifications of wind turbines 

There are two primary types of the wind turbine used to produce energy from wind. Horizontal 

axis wind turbines HAWTs and vertical axis wind turbines VAWTs. The horizontal axis wind 

turbine type is the most used type. It contains generally three blades.  

A high solidity HAWT is used for pumping water on farms seen on the west of America, it has 

multiples of blades. Low solidity HAWT are used for electricity generation they have long 

blades and resemble to aircraft propellers.  

 

 

Figure 1-1:  Wind turbines types. 
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1.2.1  Horizontal axis wind turbines HAWTs  

They have at the top of the tower a main rotor shaft and an electric generator; they should be 

directed parallel to the wind direction with a simple wind vane placed with the rotor. The large 

wind turbines have sensor coupled with a servomotor to guide the turbine into the wind. Most 

of the wind turbines have a gearbox to increase the rotation of the generator in case of a slow 

rotation of the rotor.  

 

Figure 1-2:  Horizontal axis wind turbine diagram. 

 

The HAWT has some advantages such as a good access to strong wind thanks to the tall tower, 

every ten meters up increases the speed by 20% and the generated power by 34%. It has also a 

high efficiency since that the blades are perpendicular to the wind. 

Whereas, the tall tower requires massive constructions to support the load of the blades and the 

generator. They disturb the appearance of the landscape since that they are visible across large 

areas. It is also necessary to make a braking system to stop the turbine from rotation with very 

high speed in order to avoid damaging or the destruction of its structure. 

 

1.2.2  Vertical axis wind turbines VAWTs 

They have a vertical rotor shaft with a vertical axis, this allows us to place the generator and 

the essential components near the ground, making their maintenance very easy comparing to 

HAWTs. The airflow near the ground is turbulent and can introduce vibrations and noise issues. 
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Figure 1-3:  Vertical axis wind turbine types diagram. 

 

The advantages of VAWTs are low maintenance costs, they can be installed in urban areas, 

they generate electricity in any wind direction and can be easily installed comparing to HAWTs. 

Whereas, their efficiency is very low compared to HAWTs, they need initial push to start and 

they create noise and vibrations. 

 

    1.3   Aerodynamic methods for HAWTs 

1.3.1  Vortex Methods 

These types of models are based on potential flow 

theory. Using the superposition of elementary flow 

solutions, a linearized potential solution used to 

calculate the velocities and pressure. This model is 

based on the so-called Biot-Savart law. The velocity 

at any point is calculated by the formula 

�⃗� =
Γ

4π
∫
𝑑𝑙 ⃗⃗ ⃗⃗ ⃗(𝑟0⃗⃗⃗⃗ −  𝑟1⃗⃗⃗ ⃗)

|𝑟0⃗⃗⃗⃗ −  𝑟1⃗⃗⃗ ⃗|3
 

Where Γ is the circulation about the curved C in a 

velocity field �⃗�. 

Γ =  ∮ �⃗�
𝐶

. 𝑑𝑙⃗⃗⃗⃗  

The blade is modeled with a lifting line presenting bound vorticity on the blade. 

Lift can determinate the bound circulation on a blade section conforming to the Kutta-

Joukowski theorem.  

𝐿′ = 𝜌𝑉Γ 

Where 𝐿′ is the lift span at a particular blade section, 𝑉 is the incoming flow velocity. 

Figure 1-4:  Velocity induced at point P by a vortex 

segment. [31] 
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 The vortex model is divided into two types, the frozen wake model in which the geometry of 

the wake is prescribed on the rotor geometry and undisturbed flow; the free wake model is the 

second category, in which the wake self-induction and bound circulation on the blade is taken 

into account resulting in deformation wake. 

1.3.2  Generalized Actuator Disk Methods 

The idea of actuator disc principal in aerodynamic calculation is to replace the rotor of the wind 

turbine by a permeable disc of its equivalent surface, in which the forces are distributed in a 

circular disk. The balance between the changed flow field and the applied forces on the actuator 

disc is commanded by the mass conservation and the balance of momentum. 

 

Figure 1-5: Actuator disk stream tube. [32] 

The Rankine-Froude theory considers the balance of axial-momentum for a uniformly loaded 

disk actuator without rotation, the thrust and power are reduced to: 

𝑇 =  �̇�(𝑉0 − 𝑢1) ; 𝑃 =
1

2
�̇�(𝑉0

2 − 𝑢1
2) 

In non-dimensional form, the axial interference factor 𝑎 = 1 −
𝑢

𝑉0
  and 𝑢 =

𝑉0+𝑢1

2
 

The power coefficient is given by:  

𝐶𝑝 =
𝑃

1
2𝜌𝑉0

3𝐴
= 4𝑎(1 − 𝑎)2 

We can prove that the maximum theoretical power coefficient is equal to 𝐶𝑝,𝑚𝑎𝑥 =
16

27
  at 𝑎 =

1

3
. 

This is known by Betz limit. 

In addition, the thrust coefficient is given by: 

𝐶𝑇 =
𝑇

1
2𝜌𝑉0

2𝐴
= 4𝑎(1 − 𝑎) 

The maximum thrust coefficient is equal to one when  𝑎 =
1

2
 .  

𝑉0 𝑉0 

𝑢1 

𝑢 

(1.1) 

(1.2) 

(1.3) 
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Figure1-6:  The distribution of the agnitude for an ideal wind turbine.[33] 

The distribution of the pressure and the velocity in the stream tube of the actuator disk is 

presented in the next figure. 

 

Figure 1-7:  Stream tube expansion, velocity and pressure through the actuator disk.[34] 

The incoming airflow has a magnitude of 𝑉0 crosses the actuator disk, the velocity decreases 

continuously while the actuator extracts the energy from wind, and it is reduced to 𝑢1 at the exit 

while the velocity far from the wind turbine remains constant. Whereas, the pressure 

distribution is not similar, it presents a discontinuity at the actuator disk. The static pressure 

around the wind turbine is equal to 𝑝0 - the atmosphere pressure -, but the decreasing in the 



 Chapter 1: Aerodynamics of Wind turbine 

   21 

  

velocity makes the static pressure rises according to Bernoulli’s Law which is represented by a 

pressure gradient ∆𝑝.  

The flow after the actuator disc is affected by the rotation of the blades, a tangential flow is 

represented by an angular induction factor 𝑎′. 

𝑎′ =
𝜔

2Ω
 

Where 𝜔 is the angular velocity imparted to the wake and Ω is the angular rotation of the rotor 

disk.. 

The generalized actuator disk method is based on solving the Navier-Stokes equations or Euler 

equation. Axisymmetric versions were solved by scientist such as Wu [4], Greenberg [5] and 

Conway [6]. 

1.3.3  Full rotor method 

The full rotor method is taking on consideration the full geometry of the wind turbine in the 

determination of its performance; the rotor, the hub, the nacelle and the blades are designed in 

3D using a CAO software. 

 

Figure 1-8:  Full rotor meshing [7]. 

This method can simulate the real case of the operation of the wind turbine, and the real airflow 

condition, these are some of its advantages, but the disadvantage of this method is the long time 

and the huge hardware capacity required for calculations. 

 

1.3.4  Blade Element Momentum Methods (BEM) 

The Blade element momentum theory is a combination of the blade element theory and the 

momentum theory developed by Glauert and Betz. It allows us to make performance 

characteristics calculation of an annular section of the rotor.  

The blade element theory mainly consists in subdividing the blade to N finite elements of profile 

sections. We suppose that there is no interaction between them in order to calculate the power 

and the trust of each element. Knowing that the blade can be twisted or may has more than one 

(1.4) 
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airfoil type. Therefore, to take these in consideration, the BEM method remains the most used 

method to calculate the wind turbine performance.  

 

Figure 1-9:  Blade subdivisions. 

The momentum theory corrects the velocities by introducing the induction factor. It is divided 

into an axial momentum and tangential momentum, the axial momentum theory is based on the 

conservation laws applied to a stream tube of an actuator disk considering the axial forces and 

the axial inductors, and the tangential momentum results by a relation between the angular 

factor and the plane forces. 

This method depends on the rotor blade design parameters such as: 

- Rotor radius  

- Blade chord  

- Blade twist 

- Number of blades 

- Airfoil shape 

- And the radial variation of all these parameters 

The torque is equal to the aerodynamic force in the rotation plan times its distance from the 

rotation axis. The trust force is perpendicular to the plane of blade rotation in any section of the 

blade. 

So, the BEM method is an iterative method, it 

iterates on the number of the subdivision of the 

blade. When we calculate the power generated 

by each element of the blade, we make a 

summarization to get the total power generated 

by the wind turbine.  

The next diagram shows the steps to take in 

this iterative method. 

  

 

 

 

 

 

 

Initialize a & a’.  ( a=a’=0) 

Compute 𝜑 

Compute AOA 𝛼 = 𝜑 − 𝜃𝑝 

Obtain the Cl & Cd related to 𝛼  

Compute Cn & Ct 

Calculate a & a’ 

Repeat until the convergence  

Calculate  ∆𝐹𝑛,  ∆𝐹𝑡 & ∆𝑄 

Calculate  T and Q and P. 

NO 
Yes 

Figure 1-10 : BEM iteration algorithm.[43] 
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1.4  BEM corrections models 

The classical BEM method does not take in consideration the losses phenomenon, which 

happens in the blade, like the stall delay and the tip losses. In order to make a realistic study 

and calculation with add some correction to the BEM method. 

1.4.1  Tip loss factor models 

The tip losses are caused by the tip vortices that create 

multiple helical structure in the wake as seen in the next 

figure.  

This helical wake has an effect on the induced velocity 

near the tips of the blades. This area has the greatest 

influence in the power that the wind turbine produces. 

To compensate these losses Prandtl developed a theory 

that simplify the wake of the turbine, this one is 

summarized by a correcting factor F. 

Later on, an empirical relationship based on the Navier-

Stokes solution of Xu and Sankar [8] for tip losses is considered as a correction of the Prandtl 

model, but this correction was made on a specific turbine design and may not be used for all 

the cases.    

1.4.2  Stall delay models 

The stall is an aerodynamic phenomena happens when the flow in the upper surface of the 

airfoil separates from the blade, it results of that a reduction of the generated lift. This 

phenomenon happens when the airfoil reaches a critical AOA. 

 

Figure 1-12:  Stall delay diagram.[35] 

To understand the stall phenomenon, we have to talk at first of the boundary layer in the blade. 

This approach consists on studying the effect of velocity in a thin region close to the blade 

surface. The stall phenomenon is directly linked to separation of the boundary layer from the 

blade surface. 

Figure 1-11: Helical wake pattren. 
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A moving airflow adheres to the surface and relatively cannot move immediately at the surface. 

As a result, the distribution velocity normal to the surface starts from zero velocity in the surface 

and it increase with normal distance until it reaches free stream velocity as shown in the next 

figure. 

 

Figure 1-13: Velocity distribution on a boundary layer.[36] 

The thickness of the boundary layer (denoted as δ) is the distance from the surface to the normal 

position that reaches 99% of the free stream velocity. It increases as the flow moves along the 

surface.  

A drag force results from the effect of viscosity in the boundary layer; it is added to the total 

drag resulting from the pressure distribution. 

The flow in the boundary layer on the blade surface if divided into two types. Laminar and 

turbulent flow; the laminar flow is located in a small distance travelled by the airflow for low 

number of Reynolds. After a certain distance, the flow becomes unstable and fluctuations on 

the motion of the flow start to appear, transiting from a laminar to a turbulent flow. 

 

Figure 1-14:  Boundary layer characteristics.[37] 

The distribution of the pressure along the airfoil within the boundary layer is essential to predict 

the behavior of the flow for a given surface. This distribution is only function of the position 

along the surface, and it guides the airflow movement. A favorable gradient of the pressure 
𝑑𝑝

𝑑𝑥
< 0 sucks the flow to the region, which has a low pressure – suction effect -, contrarily to 

the unfavorable gradient 
𝑑𝑝

𝑑𝑥
> 0 that has an opposite effect that drives the airflow in the opposite 

of its direction.  
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Figure 1-15:  Pressure gradient in a boundary layer.[38] 

Therefore, the stall phenomenon is the consequence of the separation of the flow from the 

surface in the boundary layer.  

It has been noticed that rotation has a delaying effect on the separation of the flow observed on 

aircraft propeller blades by Himmelskamp. It has been also observed and studied on helicopter 

blades and later on wind turbine blades. It has been found that the stall delay is more present in 

the region close to the root of the blades. 

Different correction models exist to take on consideration this effect when using the BEM 

method. The models of Snel et al [9], Chaviaropoulos and Hansen [10], and Raj [11] correct the 

Cl and Cd for 3D effects. The Du and Selig [12] model is based on the 3D integral boundary 

layer equations analysis on a rotating blade. Bak et al [13] proposed a model based on the 

analysis of the pressure distribution on a rotating and non-rotating blade.  

1.4.3  Dynamic stall models 

The dynamic loads from different sources are acting on the wind turbines; the air loads are 

unsteady because of the wind shear and turbulence. Yaw angle and upwind turbine wake make 

the inflow unsteady too. To achieve a 30 years lifetime of the wind turbine, we should take on 

consideration theses loads in order to well design the blade, the hub and the support structure. 

To regulate peak power and loads, the wind turbines operate in a steady stall. Buterfield et al 

discovered that during the normal operating conditions of the wind turbines the dynamic stall 

can exist on the blades. 

The most of dynamic stall models were developed on helicopter aerodynamics. We cite as an 

example the Beddoes-Lieshmann model [14] and ONERA model [15]. Also there exists models 

for wind turbine application such as DTU Riso model [16], Larsen’s model [17] and Snel’s model 

[18]. 

- Beddoes-Lieshmann model 

It was originally made for helicopter application, and then Gupta and Lieshmann adapted the 

model to make it usable in wind turbine applications and tested it on S809 airfoil. This model 

tries to simulate the physical mechanism commanding the dynamic stall phenomenon. 

- Snel’s model 

This model takes into account the periodic vortex shedding effect in deep stall regime. It 

consists of two parts, a linear part and non-linear part modeled by a first order and second order 

differential equation respectively. 
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- ONERA model  

This model was developed by Tran and Petot in 1980, based on simplifying assumption of 

linearization. It is very useful because it can be coupled with structural equations to make a 

complete dynamic analysis. It was developed by Petot to give dynamic lift, drag, and moment 

as well. 

A part of the problem of the prediction of the dynamic loads is due to the lack of the knowledge 

of the rotary wing stall performance. 

 

1.5  Aerodynamics of HAWTs airfoil  

The airfoil of HAWTs has a very important rule in the performance of the wind turbine and the 

amount of the generated power. In this context, we will see the different characteristics, the 

classification and the performance of the airfoil. 

1.5.1  Geometric characteristics 

Let us look to a section profile of an airfoil; it has specific characteristics that should be 

presented to understand more its aerodynamics. The airfoil is defined by chord, thickness and 

the coordinates of its upper and lower surfaces.  A mean line that separates the surface into two 

equal parts is called the camber line. The leading edge is situated in the front and the trailing 

edge is situated in the back of the airfoil. The straight line from the leading edge to the trailing 

edge is called the chord line. 

The lift and the drag are two type of forces that acts on the airfoil when the air flows around it. 

Their direction depends on the direction of the flowing air. The design of an airfoil has an 

objective to rise the lift and decrease the drag force in order to gain more power in lower wind 

speed. 

Figure 1-16: Airfoil characteristics. 
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.  

Figure 1-17:  Lift and drag Forces on airfoil. 

The design of the airfoil is basically done with two geometric rules: 

a) By the variation of the chord length and the thickness. 

b) By the variation of the mean camber line. 

The incoming airflow can be divided into two composites, a relative and a normal airflow. The 

velocity triangle of an airfoil is presented in the next figure. 

 

Figure 10-18:  Velocity triangle on airfoil.[34] 

 

The next relations are obtained from the velocity triangle:  

𝑈𝑛 = 𝑈(1 − 𝑎)   

𝑈𝑡 = (1 + 𝑎′)Ω𝑟  

   𝜑 = arctan (
𝑈𝑛
𝑈𝑡
)  

   𝜑 = 𝛼 + 𝜃𝑃 

 

1.5.2  Classification of profiles 

There are three classes of airfoils. The high lift, general purpose and high speed. 

The high lift airfoils are used on aircrafts and sailplanes, they have a rounded leading edge and 

a high thickness chord ratio. The general-purpose airfoils have a sharp leading edge and a low 

thickness chord ratio. The high-speed airfoils have no camber and a lower thickness chord ratio; 

they are used in high-speed aircraft. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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These airfoil profiles are divided into two categories, symmetrical and non-symmetrical. 

The symmetrical airfoils have the same upper and lower surface; the mean camber line is upon 

the chord line. They produce no lift when the AOA is equal to zero. 

The nonsymmetrical airfoils have different upper surface compared to the lower one with a 

curvature above the chord line. They produce a lift when the AOA is equal to zero. 

 

Figure 1-19: Symmetrical and non-symmetrical airfoils [39]. 

- NACA profiles 

The National advisory committee for aeronautics (NACA) known now as ‘national aeronautics 

and space administration’ (NASA) designed different types of airfoil profiles. NACA 4 digits, 

NACA 5 digits and NACA 6 digits. 

a) NACA 4 digits series: 

They were designed based on the Clark-Y efficient profiles. We cite as an example the NACA 

006, NACA 0008 …etc. 

 

Figure 1-20: 4 digits NACA airfoil. 

NACA XYZ1Z2:        X refers to maximum camber in percentage of the chord. 

   Y refers to the position of maximum camber in tenth of the chord. 

   Z1Z2 refers to thickness in percentage of the chord. 
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b) NACA 5 digits series: 

They have the same thickness variation over the chord of the NACA 4 digits series, but the 

camber line is curved to the top in order change the maximum camber position forward to rise 

the lift coefficient. We cite as an example the NACA 23015. 

 

Figure 1-21: 5 digits NACA airfoil. 

NACA XY1Y2Z1Z2: X refers to 20/3 times the lift coefficient design. 

          Y1Y2 refers to two times the position of maximum camber in percentage 

          of the chord. 

             Z1Z2 refers to thickness in percentage of the chord. 

 

c) NACA 6 digits series: 

They were developed to get a minimum of drag and to maintain a laminar flow over a portion 

of the profile. We cite as an example the NACA 63-210. 

 

Figure 1-22: 6 digits NACA airfoil. 

NACA 6XYZ1Z2: 6 refers to series number 6.  

                              X refers to position of the minimum pressure position to the tenth chord ratio. 

                    Y refers to the tenth of the lift coefficient design. 

         Z1Z2 refers to thickness in the percentage of the chord. 

1.5.3   Airfoil performance  

The pressure around the airfoil in presence of an airflow determines the aerodynamics of the 

airfoil. The loads acting on the airfoil are the lift, which is perpendicular to the relative velocity 

and the drag, which is parallel to relative velocity.  
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Figure 1-23: Pressure distribution on airfoil.[40] 

When the air flows around the airfoil, it is divided into two parts, the upper part and the lower 

part. Very closely to the airfoil, the small quantity of air tends to move from the front to the 

back of the airfoil by maintaining the same time of travel. Which mean an increase of the 

velocity of the airflow of the upper part sins that the distance is longer than the one of the lower 

part. This increasing of velocity leads to a decrease of pressure, which creates a pressure 

potential that allows the airfoil to move up. 

The aerodynamic loads depend on the shape of the airfoil, the AOA, the Mach number and 

Reynolds number, any variation of these parameters leads to a change of the aerodynamic 

behavior of the airfoil. 

The performances of an airfoil are measured by the lift coefficient and the drag coefficient. The 

more the lift coefficient is high and the drag coefficient is low the better is the profile of the 

airfoil in the wind-turbine use. For example, when we change the airfoil characteristics as the 

trailing edge thickness to rise the lift coefficient, the drag coefficient tends to rise too; so to 

have a good overview of the airfoil performance, we take both of these coefficients in 

consideration, by the creation of a ratio parameter, lift coefficient over drag coefficient 
𝐶𝑙

𝐶𝑑
. 

We compare in this case the variation of the  
𝐶𝑙

𝐶𝑑
 parameter over AOA. This will help us in the 

optimization of the airfoil performance. 

For example, let us see the comparison of the Cl and Cd of a fine plate that has different camber 

as shown in the next diagram. 
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Figure 1-24: lift and drag coefficient of different camber line configurations [19]. 

The diagrams shows that the thin plate that has a 9% camber has the highest Cl then comes the 

6% camber than 3% camber, even for the drag coefficient the three thin plate have the same 

order, so in this case we should look to the 
𝐶𝑙

𝐶𝑑
 parameter to determine which thin plate is better 

in performance. From -2° to 6.5° of AOA, the 6% camber thin plate is the most performance 

between these three thin plates, then from 6.5° to 15° the 9% camber is performing better than 

the others. 

1.6  Literature review 

   1.6.1   Methods for Determining Lift and Drag 

There are few ways to determinate the lift and drag, theoretical and experimental ones. 

These methods are: 

A) CFD 

The computational fluid dynamics simulations allow us to determine the lift and the drag 

coefficient by simulating a real case of the airflow and its conditions in the presence of the wind 

turbine model. This method demands a lot of technic and experience because the CFD is a huge 

field that can solve a lot of fluid problems. 

The most known and used software is the ANSYS Fluent developed in 2006. 

B) Xfoil  

XFOIL is an interactive software used to analyses and design the airfoils in a subsonic state. It 

has many functions such as: 

o Viscous analysis of an existing airfoil. 
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o Airfoil design and redesign by interactive modification of the surface speed distribution. 

o Airfoil redesign by interactive modification of geometric parameters. 

o Blending of airfoils. 

o Writing and reading of airfoil coordinates and polar save file. 

o Plotting of geometry, pressure distribution and multiple polars. 

It has been written in FORTRAN by Mark Drela at MIT in 1980’s and released in under GNU 

GPL. – free software license that guarantee to the end user the freedom of run, study, share and 

modify the software. –  

C) JavaFoil 

JavaFoil is a simple program that uses several traditional methods for airfoil analysis, the 

potential flow analysis and the boundary layer analysis. It has many functions such as: 

o Creating the geometry 

o Modify the essential element of the geometry 

o Design and plot the pressure coefficient of the airfoil  

o Plot the velocity distribution  

o Plot the flow field 

o Plot the boundary layers parameters 

o Calculate the lift and the drag 

o Analyze the lift and drag coefficient  

o And other options 

This program is written by Martin Hepperle in java. 

D) Wind tunnel 

We can determine the lift and the drag by using the wind tunnel. A printed model of the airfoil 

is required. Since that the external condition of the test are known such as wind speed, wind 

density, the pressure and the geometric characteristic of the airfoil, also the lift and the drag 

generated using mechanic tools, we can determine Cl and Cd easily. 

 1.6.2   Previous works on BEM models 

A lot of researches and works were done on the BEM model, in order to improve its 

performance and make it more efficient. By adding some coefficients and formulations that 

corrects some physical phenomenon. Or by integrating some algorithms to the method to make 

it more powerful. In the next paragraphs, we will cite some of the works done on BEM method. 

The blade element momentum theory introduced by H. Glauert in 1926, is a framework to 

model the aerodynamic interaction between a turbine and a fluid flow, it is used to estimate the 

efficiency of the turbine or to help in its design. This method is a good method to make the 

calculations but a lack of some physical interpretation limits its efficiency in the field of wind 

turbines. 

The BEM is improved to quantify the miscalculated power at stalled flow regime, by correcting 

the aerodynamic characteristics taking into account the 3D flow physics such as stall delay and 

rotational effect [12]. 
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Correcting the tip loss, skewed wake and rotational effect extends the use of this method to 

turbulent wake regime for the horizontal axis wind turbine  [21]. 

A modeling approach based on the blade element momentum theory is coupled to the 

computational fluid dynamics to make a model to predict the performance of tidal stream in 

oceans environment [22].   

The integration of new methods to the BEM method such as artificial intelligence to deal with 

the different sources of convergence issues using neural network [23].   

An aerodynamic design and optimization program for wind turbine is developed by integrating 

the BEM method and genetic algorithm [24]. 

1.6.3   Available experiments and data 

The airfoils data that we used in our study are available in the airfoiltools website [20], (i.e. the 

geometry, Cl and Cd). This data were used to train the ANN model. And for the BEM-ANN 

validation, we used the NREL phase IV with a NACA 0012 blade data.
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Chapter 2: Artificial neural network  

2.1  Introduction 

The definition of machine learning in the literature is defined by Tom Mitchell (1998): 

A computer program is said to learn from experience E with respect to some task T and some 

performance measure P, if its performance on T, as measured by P, improves with experience 

E. 

Machine learning is a data science field which and a technology of artificial intelligence. It 

allows to computers to learn without being explicitly programmed. To learn and to develop 

good model, computers need to analyze and to train with that data. 

Machine learning is a modern science, which allows discovering patterns and making 

predictions based on statistics and mining data. First algorithms were created in the end of 1950, 

the most known is perception. 

The basic analytics tools are not efficient to operate on big data, the large amount of data is so 

good for comprehensible analysis, making correlations that includes the maximum hypothesis, 

in a precise and fast way. For example, machine learning is able to detect a fraud transaction in 

milliseconds based on the transaction data (the amount, the localization, the stores…) and the 

history of transaction done by the person. 

Therefore, the big data and machine learning are working pretty well with each other’s to get a 

precise correlations and predictions. 

The machine learning has wide applications like image recognition, automatic translation, self-

driving cars, medical diagnostics, detection of malwares and frauds, intelligent robots and so 

on … 

Machine learning is used in many fields such as banks and industrial companies to prevent 

frauds, to identify opportunities... etc. health care sector to help doctors to analyze data of 

radiology, improve diagnostics and treatments. Marketing to analyze previous sales in order to 

determine other products that might interest the client. Transportation to determine the fast and 

the efficient itinerary for delivery people and public transportation.  

Machine learning is a sub-part of Artificial intelligence …. 

 

Figure 2-1: Artificial intelligence domain. 
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2.2  Learning methods  

The learning methods of a machine learning depends on the problem that we are trying to solve 

and its model. Supervised learning, unsupervised learning and reinforcement learning are some 

of these methods, in the next paragraph we are going to talk about supervised and unsupervised 

method. 

2.2.1  Supervised training method  

This method is based on the approach of giving the computer labeled input data and the 

expected output results. During the training on data, the computer will search for correlations 

and patterns to figure out the relation between the inputs and the outputs in order to get good 

results when it comes to new data that it did not train on it, i.e. learning by examples. So, the 

objective of it, is to predict the correct output of a new input data. 

The computer is fed with a huge amount of data, and it is told to obtain a specific output value 

for each input. The correlations that we get after the training is called “trained model». This 

trained model is tested with a test data set to verify its accuracy. 

It can be expressed with a simple mathematic relationship:  

𝑌 = 𝑓(𝑥) 

Where Y is the output predicted by the trained model by a pre-made function using the input 

value x. 

Supervised learning performs very well at regression and classification problems, such as 

predicting the price of a house based on its area, number of rooms, number of floors and 

location...etc. determining the category of a news article, classification of e-mail  as spam or 

non-spam) …etc. 

A) regression 

It is a predictive process where the designed model search for relationship between 

dependent and independent features and it has continuous output values. 

A simple regression model with one feature can be expressed by this formula: 

𝑌 = 𝑤𝑥 + 𝑏 

𝑤 is the slope, 𝑥 is the feature and 𝑏 is the y intercept. 

For this model, a line that fits the most of the data presents a good model. For a model with 

two features, the plane that fits the most of data presents a good model. 

In a general way, the formula that represent this type is: 

𝑦 = 𝑤0 ∗ 𝑥0 + 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 +⋯+ 𝑤𝑛 ∗ 𝑥𝑛 + 𝑏 

𝑤𝑖 is called weight, 𝑥 are the features and 𝑏 is called the bias. 

The computer initiates the weights and the bias randomly. 

There are many regression algorithms, the most common are: 
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- linear regression 

- logistic regression 

- polynomial regression 

Let us take an example of the salary according to the experience of the worker. A data of 

salary of 30 workers is fed to the computer according to years of their experience. After the 

training of the model, we got this result. A line that fits the most of the data, which can give 

us a good estimation of the salary of a new worker given his years of experiences. 

 

Figure 2-2: salary vs. experience plot. 

 

B) classification 

In this process, the computer is given data with assigned categories. The role of this 

classification algorithm is the assign the input value to an output category or class. The 

result of this model are discrete values. 

The algorithm will figure out how to distinguish between classes and how to accord every 

input to his appropriate class using the mapping function: 

𝑌 = 𝑓(𝑥) 

We can use many classification algorithms. The choice of which to use depends on the 

problem that we are trying to solve. Here are some of them: 

- Linear classification  

- Support vector machine (SVM) 

- Decision trees 

- K-nearest Neighbor 

- Random Forest  
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For example, the classification of an email whether is spam or not. Two classes are assigned 

“spam” and “non-spam” i.e. binary classification. According to number of mistaken words, 

number of words repeated in the mail, the number of external links …etc. 

 

 

 

 

 

 

 

 

 

 

 

2.2.2  Unsupervised training method 

It is a technique that do not need to be supervised, it is meant to work on its own and discover 

the patterns and the relationships that are hidden and undiscovered without guidance because it 

deals with data that is neither classified nor labeled. 

The common unsupervised method is clustering, it finds hidden patterns or grouping in data 

according to similarities and differences without a prior training. It is used generally for in data 

analysis. 

 The unsupervised training method is divided into three categories: 

- Clustering: discover the inherent grouping in a dataset  

- Association: discover the rules that describe the portions of the dataset  

- Anomaly detection: it detects the unusual values in the dataset  

The pattern discovered with the unsupervised training method can be very useful when we tend 

to implement a supervised training method later. It helps to pre-organize the data and make pre-

labels. 

The most common clustering algorithms are: 

- Hierarchical clustering 

- K-means clustering 

- Self-organizing map 

- Gaussian mixture models 

- Hidden Markov models 

 

spam 

Non-

spam 

Figure 2-3: E-mail classification. 
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2.3  Artificial neural network methods 

This method is inspired from the way the human brain analyzes and processes informations. It 

is made of a complex neuron network around 100 billion of neurons which are connected 

between them. They serve as transmitters of the information inside the brain. They receive 

signals from outside of the body and they transmit it to the appropriate place in the brain. 

 

Figure 2-4: Human brain neuron. 

The inputs are received in the Dendrite and transmitted through the Myelinated axon where we 

find the output in the axon terminal. 

The same for the ANN, it has hundreds of processing units, input and output ones 

interconnected by nodes. The input units receive the information (the values) and based on an 

internal weighting system, it learns to produce the output desired. 

The next diagram presents the general model of the artificial neural network (ANN) inspired 

from a biological neuron. 

 

Figure 2-5: one neuron representation. 

This diagram represents a single layer with one neuron. The 𝑥𝑖 are the features, 𝑤𝑖are the 

weights and b is the bias. 

Each feature 𝑥𝑖 is multiplied to its connection weight, then summed with the bias and fed 

through the activation function (transfer function) to get at the end the output value. 



Chapter 2: Artificial neural network  

 

40 

 

2.4  ANN architecture  

Like the human brain, the ANN has many important components, which are essential in the 

calculations such as hidden layers, hidden neurons and activation function or transfer 

function…etc. 

2.4.1  Hidden neurons 

As mentioned before, the neurons are the processing units that store the result of the 

previous layer calculated by 𝜙(𝑤0
𝑘 ∗ 𝑥0 + 𝑤1

𝑘 ∗ 𝑥1 + 𝑤2
𝑘 ∗ 𝑥2 +⋯+ 𝑤𝑛

𝑘 ∗ 𝑥𝑛 + 𝑏
𝑘). 

A simple neuron with a bias can be represented as follows:  

 

Figure 2-6: Single neuron representation. 

The result is 𝑎 = 𝑓( 𝑤 ∗ 𝑥 + 𝑏). 

The number x is multiplied with w and summed with b and fed into the transfer function 

f which at the end gives us the output a. 

2.4.2  Hidden layers 

The word hidden means that they are not visible. The hidden layer contains amount of 

neurons that are separated between them and related to the next layer. 

In general, one hidden layer is usually enough to solve the problem. The more the 

problem is complicated the more layers are added. 

Therefore, the composition of the neural network is one input layer, followed by hidden 

layers and the output layer at the end. As the next diagram demonstrates. 

x 
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Figure 2-7: Multiple hidden layer representation. 

The mathematical equation of one hidden layer is: 𝑎 = 𝑓( 𝑤 ∗ 𝑥 + 𝑏 ) 

Where a, x, b are vectors and w is a matrix. 

In another representation: 

(

  
 

𝑎1
𝑎2
𝑎3
𝑎4
⋮
𝑎𝑛)

  
 
= 𝑓

{
 
 

 
 

(𝑤1 𝑤2 𝑤3 𝑤4 ⋯ 𝑤𝑛 )

(

  
 

𝑥1
𝑥2
𝑥3
𝑥4
⋮
𝑥𝑛)

  
 
+

(

 
 
 

𝑏1
𝑏2
𝑏3
𝑏4
⋮
𝑏𝑛)

 
 
 

}
 
 

 
 

 

The schema of one hidden layer is given in the next diagram.  

 

Figure 2-8: one hidden layer representation. 

𝑥1 
 

𝑥2 
 

𝑥3 

 

𝑥4 
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In a general case of k hidden layer, the mathematic equation is:  𝑎𝑘 = 𝑓( 𝑤(𝑘) ∗ 𝑥 + 𝑏𝑘) 

Where a, x, b are vectors and w is a matrix. 

In another representation: 

(

 
 
 
 

𝑎1
𝑘

𝑎2
𝑘

𝑎3
𝑘

𝑎4
𝑘

⋮
𝑎𝑛
𝑘)

 
 
 
 

= 𝑓

{
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𝑘 𝑤3
𝑘 𝑤4

𝑘 ⋯ 𝑤𝑛
𝑘)
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𝑘

𝑥2
𝑘

𝑥3
𝑘

𝑥4
𝑘

⋮
𝑥𝑛
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+
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𝑏1
𝑘

𝑏2
𝑘

𝑏3
𝑘

𝑏4
𝑘

⋮
𝑏𝑛
𝑘)

 
 
 
 

}
  
 

  
 

 

Where the index k represents the number of hidden layer and n the number of features. 

The schema of three hidden layer is given in the next diagram. 

 

Figure 2-9: ANN representation. 

 

 

2.4.3  Activation function  

Called also transfer function, it is an essential part of the ANN. It makes sense of the 

complicated data. It relates the input of the layer into the output of the layer, which will 

be the input of the next layer. 

It decides whether the neuron will be activated or not according to the sum of the product 

of weights by features to which we add the bias. 

𝑥1 

𝑥2 

𝑥3 

. 

𝑥𝑛 
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Figure 2-10: Activation function diagram. 

The activation functions allow us to make non-linear models that maps the data. We 

should use the activation function to get significant results and make the model learn 

from a complicated data like images, audios and videos...etc. 

There are many types of activation functions, such as 

A) Threshold activation function (binary step function): 

It returns the value of one if the input value is above the threshold, and the value of 

zero otherwise.  

For example, 𝑓(𝑥) =  {
1 𝑖𝑓 𝑥 > 0    
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Figure 2-11: Threshold function graph. 

This function is used when we have just two classes or two categories, basically a 

true of false statement. 

 

B) Linear activation function 

It multiplies the input by a weight in each neuron, and return a proportional output 

to the input. It is given by the formula:  

(2.1) 
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𝑓(𝑥) = 𝑐 ∗ 𝑥  
Where c is the weight and x is the feature. 

 

 

Figure 2-12: Linear function graph. 

C) Sigmoid / logistic activation function 

It returns a continuous value situated between zero and one. It is used in probabilities 

because of the output interval.  

It is given by the formula: 

𝑓(𝑥) =  
1

1 + 𝑒−𝑧
 

 

Figure 2-13: Sigmoid function graph 

 

D) Hyperbolic tangent activation function (tanh) 

It has the same principal with the sigmoid function; they are similar in the interval 

of output e.g. zero to one. However, it is better in performance; it maps easily strong 

negative or positive inputs. 

It is given by the formula:  

(2.2) 

(2.3) 
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𝑓(𝑥) = tanh(𝑥) =  
2

1 + 𝑒−2𝑥
− 1 

 

 

Figure 2-14: Tanh function graph. 

 

E) Rectified linear unit (ReLU) 

It returns the input value when it is positive and zero when it is negative. It is the 

most used activation function; it ranges the output from zero to infinity. 

It is given by the formula:  

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Figure 2-15: ReLU function graph. 

Which activation function that should we use? 

It depends on the problem that we are trying to solve; knowing the characteristics of 

all these functions helps us to use the right one on our calculations. Note that the 

choice of the activation function can affect the precision and the speed of 

calculations, so a good choice means good results. 

 

 

 

 

(2.4) 

(2.5) 



Chapter 2: Artificial neural network  

 

46 

 

2.4.4  Training functions 

The ANN has several training functions that can be used; the main difference between 

them is the way of calculation. 

In the next table, we will cite the different training function and their main 

characteristics. 

Training 

function 
Full function name Characteristics 

Trainlm Levenberg-Marquardt backpropagation 

trainlm is a network training function 

that updates weight and bias values 

according to Levenberg-Marquardt 

optimization.     trainlm is often the 

fastest backpropagation algorithm in 

the toolbox, and is highly 

recommended as a first-choice 

supervised algorithm, although it 

does require more memory than other 

algorithms.                                                                          

This function uses the Jacobian for 

calculations, which assumes that 

performance is a mean or sum of 

squared errors. Therefore, networks 

trained with this function must use 

either the mse or sse performance 

function. 

Trainbfg BFGS quasi-Newton backpropagation 

trainbfg is a network training function 

that updates weight and bias values 

according to the BFGS quasi-Newton 

method. 

trainbr Bayesian regularization backpropagation 

trainbr is a network training function 

that updates the weight and bias 

values according to Levenberg-

Marquardt optimization. It minimizes 

a combination of squared errors and 

weights, and then determines the 

correct combination so as to produce 

a network that generalizes well. The 

process is called Bayesian 

regularization.                                                                     

This function uses the Jacobian for 

calculations, which assumes that 

performance is a mean or sum of 

squared errors. Therefore, networks 

trained with this function must use 

either the mse or sse performance 

function. 
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traincgb 
Conjugate gradient backpropagation with 

Powell-Beale restarts 

traincgb is a network training 

function that updates weight and bias 

values according to the conjugate 

gradient backpropagation with 

Powell-Beale restarts. 

Traincgf 
Conjugate gradient backpropagation with 

Fletcher-Reeves updates 

traincgf is a network training function 

that updates weight and bias values 

according to conjugate gradient 

backpropagation with Fletcher-

Reeves updates. 

traincgp 
Conjugate gradient backpropagation with 

Polak-Ribiére updates 

traincgp is a network training 

function that updates weight and bias 

values according to conjugate 

gradient backpropagation with Polak-

Ribiére updates. 

traingd Gradient descent backpropagation 

traingd is a network training function 

that updates weight and bias values 

according to gradient descent. 

traingdm 
Gradient descent with momentum 

backpropagation 

traingdm is a network training 

function that updates weight and bias 

values according to gradient descent 

with momentum. 

traingda 
Gradient descent with adaptive learning 

rate backpropagation 

traingda is a network training 

function that updates weight and bias 

values according to gradient descent 

with adaptive learning rate. 

traingdx 
Gradient descent with momentum and 

adaptive learning rate backpropagation 

traingdx is a network training 

function that updates weight and bias 

values according to gradient descent 

momentum and an adaptive learning 

rate. 

trainoss One-step secant backpropagation 

trainoss is a network training function 

that updates weight and bias values 

according to the one-step secant 

method. 

trainr 
Random order incremental training with 

learning functions 

trainr trains a network with weight 

and bias learning rules with 

incremental updates after each 

presentation of an input. Inputs are 

presented in random order. 

trainrp Resilient backpropagation 

trainrp is a network training function 

that updates weight and bias values 

according to the resilient 

backpropagation algorithm (Rprop). 

trainscg 
Scaled conjugate gradient 

backpropagation 

trainscg is a network training function 

that updates weight and bias values 

according to the scaled conjugate 

gradient method. 
 

Table 1: Training functions characteristics [29]. 
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2.4.5  Forward propagation 

Forward propagation is the passage from the input layer to the output layer passing 

through the hidden layers. A mathematic operation calculates the next neuron value. 

Taking an example of three neurons, two neurons situated in the first layer and the third 

one is in the second layer, the value of the third layer is calculated by the formula that 

follows as demonstrated in the diagram: 

𝐶 = 𝑓(𝑤1 ∗ 𝐴 + 𝑤2 ∗ 𝐵) 

 

 

In general, it is represented as follows: 

The mathematical operation of the feed forward is 

𝐴(1) = 𝑋 

𝑍(2) = 𝑤(1) ∗  𝐴(1) 

𝐴(2) = 𝑓(𝑍(2)) 

𝑍(3) = 𝑤(2) ∗  𝐴(2) 

𝐴(3) = 𝑓(𝑍(3)) 

 

 

A 

B 

C 

𝑤1 

𝑤2 

𝐴1
1 

𝐴2
1 

𝐴1
2 

𝐴2
2 

𝐴3
2 

𝐴1
3 

𝐴2
3 

𝐴3
3 

Figure 2-16: Two hidden layers forward propagation. 

Figure 2-17: Three hidden layers forward propagation. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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2.4.6  Cost function 

It is made to calculate a parameter that allows us to optimize the ANN learning, using 

backpropagation. The most used cost function is Mean Square Error (MSE). It is defined 

as:  

𝐶𝑀𝑆𝐸 =
1

2
∑(𝐴𝑗

𝐿 − 𝑦𝑗)
2

𝑗

 

Where 𝑦𝑗is the desired output, 𝐴𝑗
𝐿 is the last output of the ANN and j is the number of 

features. 

This function calculates the error between the desired output and the output of our ANN. 

It’s a parameter that allows us to estimate the efficiency of the ANN. 

 

2.4.7  Backpropagation 

This algorithm aims to minimize the cost function by adjusting and updating the weights 

and bias of the network so that we get the desired output. However, it does not adjust 

the input layer because is the value initiated by the user. It calculates the cost function 

gradient; starting from the output layer and propagates backward to the input layer.  

 Gradient computation: 

The gradient is computed by using a method called chain rule, let us take the example 

of the weight 𝑤𝑗
𝑙 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 

𝜕𝐶

𝜕𝑧𝑗
𝑙  
𝜕𝑧𝑗

𝑙

𝜕𝑤𝑗𝑘
𝑙  

And     𝑧𝑗
𝑘 = ∑ 𝑤𝑗

𝑙𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙𝑚
𝑘=1  

So,      
𝜕𝑧𝑗

𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1  

It results from that:     
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 

𝜕𝐶

𝜕𝑧𝑗
𝑙  𝑎𝑘

𝑙−1  

We will do the same operation with the bias 𝑏𝑗
𝑙 

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 

𝜕𝐶

𝜕𝑧𝑗
𝑙  
𝜕𝑧𝑗

𝑙

𝜕𝑏𝑗
𝑙 

And     𝑧𝑗
𝑘 = ∑ 𝑤𝑗

𝑙𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙𝑚
𝑘=1  

So,      
𝜕𝑧𝑗

𝑙

𝜕𝑏𝑗
𝑙 = 1 

It results from that:     

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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𝜕𝐶

𝜕𝑏𝑗
𝑙 = 

𝜕𝐶

𝜕𝑧𝑗
𝑙    

The partial derivative    
𝜕𝐶

𝜕𝑧𝑗
𝑙   is called local gradient 𝛿𝑗

𝑙 . 

Therefore, to optimize the ANN we update the value of the weights and bias of all the 

ANN one by one, to obtain the desired result, using this formulation: 

𝑤 ∶= 𝑤 − 휀 
𝜕𝐶

𝜕𝑤
 

𝑏 ∶= 𝑏 − 𝜖 
𝜕𝐶

𝜕𝑏
 

Where 𝜖 is the learning rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.8  Cross validation 

It is a technique that measures the effectiveness of the machine-learning model. This 

technique splits randomly the data into two portions, train and test one.  

When the ANN is trained with the train data, the test data helps to evaluate the accuracy 

of its results. 

𝐴1
1 

𝐴2
1 

𝐴1
2 

𝐴2
2 

𝐴3
2 

𝐴1
3 

𝐴2
3 

𝐴3
3 

𝑤(1) 𝑤(2) 

backpropagation 

(2.20) 

(2.21) 

(2.22) 

Figure 2-18: Back propagation representation. 
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Figure 2-19: Data splitting. 

 

2.5  ANN algorithms 

In this project, we will use the MATLAB software to create our ANN. MATLAB offers a 

good tool to work on ANN called NNTOOL – Neural network tool -. 

 

Figure 2-20: Neural network start window [30]. 

 This is a welcoming window of NNTOOL, it allows us to work on different types of 

machine learning categories e.g. times series, clustering, fitting and ANN. 

To launch ANN program, we should write NNTOOL in the command bar and we will get 

this window: 
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Figure 2-21: Neural network data manager [30]. 

 

2.5.1  Initialization 

First, we should start with the data arranging the data. Make it in a vector or a matrix 

and separate the input ones from the outputs. Then importing the data. 

 

 

Figure 2-22: Importing data on NNTOOL [30]. 
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Then creating the network by choosing the algorithm, the training function, the 

number of hidden layers and the number of neurons in each layer and the cost 

function. 

 

 

Figure 2-23: Creating the neural network [30]. 

Finally, launching the calculations. 

 

2.5.2  Training and testing 

The algorithm starts the training and learn from the imported data. A window 

appears to show us the evolution of the training. Indicating the MSE and the epochs 

– iterations-. The NNTOOL calculates itself the performance, the gradient, the 

validation check and the epochs of the ANN. 
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Figure 2-24: Training window [30]. 

After the training, we test the program with a new set of data to see how it performs. 

 

Then if it works pretty well, we can save the ANN and use it directly or integrate it 

in another program. 

 

NOTE: 

We must go through a period of trial and error in the design decisions before coming up with a 

satisfactory design. The design issues in neural networks are complex and are the major 

concerns of system developers. 
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Designing a neural network consist of: 

 Arranging neurons in various layers. 

 Deciding the type of connections among neurons for different layers. 

 Deciding which activation function to use between layers. 

 Deciding which training function to use. 

 Determining the strength of connection within the network by allowing the network 

learn the appropriate values of connection weights by using a training data set. 

The process of designing a neural network is an iterative process, and it takes a lot of time, 

whether in the training (calculations) or in testing all the available possibilities to get the good 

configuration of the ANN. 
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Chapter 3: Mathematical formulation and numerical modeling 

In this chapter, we will present the main mathematical formulation and the numerical modeling 

used in our study. 

3.1  General momentum theory 

3.1.1  Axial forces 

 

Figure 3-1: Stream tube representation.[34] 

Four states are considered around the wind turbine, the wind energy is extracted between two 

and three causing a change in the pressure. Assuming that 𝑝1 = 𝑝4, 𝑈2 = 𝑈3 and the flow is 

frictionless between state one and state two, also between state three and state four. By applying 

Bernoulli’s law, we get:  

𝑝2 − 𝑝3 =
1

2
𝜌(𝑈1

2 − 𝑈4
2) 

In addition, the pressure force is given by: 

𝑑𝐹𝑥 = (𝑝2 − 𝑝3)𝑑𝐴 

Combining the two equations (3.1) and (3.2): 

𝑑𝐹𝑥 =
1

2
𝜌(𝑈1

2 − 𝑈4
2)𝑑𝐴  

The axial induction factor as:  

𝑎 =
𝑈1 − 𝑈2
𝑈1

 

So, from (3.4) we get:  

𝑈2 = 𝑈1(1 − 𝑎)  

𝑈4 = 𝑈1(1 − 2𝑎) 

Finally, the pressure force is: 

𝑑𝐹𝑥 =
1

2
𝜌𝑈1

2[4𝑎(1 − 2)]2𝜋𝑟 𝑑𝑟  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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3.1.2  Rotation annular stream tube 

 

Figure 3-2: Annular stream tube representation.[41] 

Considering four states in the rotating annular stream tube, exactly like above. Between the 

state two and three, the rotation of the rotor blades impacts a rotation into the blade wake. 

The torque is given by the next formula:  

𝑇 =
𝑑𝐿

𝑑𝑡
 

Where L is the angular momentum 

𝐿 = 𝐼𝜔 

I is the moment of inertia of an annulus, 𝜔 is the angular velocity of the blade wake.  

𝐼 = 𝑚𝑟2 

From these equations, we get: 

𝑇 =
𝑑𝐼𝜔

𝑑𝑡
=
𝑑( 𝑚𝑟2𝜔)

𝑑𝑡
=
𝑑𝑚

𝑑𝑡
𝑟2𝜔 

For a small element 

𝑑𝑇 = 𝑑�̇�𝜔𝑟2 

And 𝑑�̇� = 𝜌𝐴𝑈2 

𝑑�̇� = 𝜌2𝜋 𝑟𝐴𝑈2 𝑑𝑟 

𝑑𝑇 = 𝜌𝑈2𝜔𝑟
2 2𝜋𝑟 𝑑𝑟 

The induction factor 𝑎′: 

𝑎′ =
𝜔

2Ω
 

Hence,  𝑈2 = 𝑈1(1 − 𝑎) 

𝑑𝑇 = 4𝑎′(1 − 𝑎) 𝜌𝑈1Ω 𝜋𝑟
3 𝑑𝑟 

 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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The local tip speed ratio 𝜆𝑟  or TSR relative speed is defined as  

𝜆𝑟 =
Ω𝑟

𝑈1
 

3.2  Blade element theory  

The blade is now subdivided into N elements. This allows us to determinate the forces acting 

on a single element which as following: 

 

Figure 3-3: Airfoil's forces representation.[42] 

 

The tangential elementary force 𝑑𝐹𝑡 is given by:  

𝑑𝐹𝑡 = 𝑑𝐹𝑙  𝑠𝑖𝑛𝜑 − 𝑑𝐹𝑑 cos𝜑 

The normal elementary force 𝑑𝐹𝑛 is given by: 

𝑑𝐹𝑛 = 𝑑𝐹𝑙 cos𝜑 −  𝑑𝐹𝑑  𝑠𝑖𝑛𝜑 

And from the speed triangle’s relations we get:  

𝑡𝑎𝑛𝜑 =
1 − 𝑎

𝜆𝑟(1 + 𝑎′)
 

The elementary drag force and lift force are given by: 

𝑑𝐹𝑙 =
1

2
 𝐶𝑙  𝜌 𝑈𝑟𝑒𝑙

2  𝑐 𝑑𝑟 

𝑑𝐹𝑑 =
1

2
 𝐶𝑑  𝜌 𝑈𝑟𝑒𝑙

2  𝑐 𝑑𝑟 

By replacing the equations (3.21) and (3.22) in the equations (3.18) and  (3.19) we get: 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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𝑑𝐹𝑡 = 
1

2
𝐵 𝜌 𝑈𝑟𝑒𝑙

2  ( 𝐶𝑙 𝑠𝑖𝑛𝜑 − 𝐶𝑑 cos𝜑 ) 𝑐 𝑑𝑟 

𝑑𝐹𝑛 = 
1

2
𝐵 𝜌 𝑈𝑟𝑒𝑙

2  ( 𝐶𝑙 cos𝜑 − 𝐶𝑑  𝑠𝑖𝑛𝜑) 𝑐 𝑑𝑟 

Where B is the number of the blades.  

The normal force coefficient is defined by:          𝐶𝑛 = ( 𝐶𝑙 cos𝜑 − 𝐶𝑑 𝑠𝑖𝑛𝜑) 

The tangential force coefficient is defined by:      𝐶𝑡 = ( 𝐶𝑙 𝑠𝑖𝑛𝜑 − 𝐶𝑑 cos𝜑 ) 

The axial load is given by: 

𝑑𝑄 = 𝑑𝐹𝑡. 𝑟 =
1

2
 𝐵 𝜌 𝑢𝑟𝑒𝑙

2  ( 𝐶𝑙 𝑠𝑖𝑛𝜑 − 𝐶𝑑 cos𝜑 ) 𝑐 𝑑𝑟 

 

3.3  Blade element momentum theory 

By combining the blade element theory and the momentum equation, we get: 

𝑎′ =
1

4 sin 𝜑 cos𝜑
𝜎′𝐶𝑡

− 1
 

𝑎 =
1

4 sin2𝜑
𝜎′𝐶𝑛

+ 1
 

With 

𝜎′ =
𝐵 𝑐

2 𝜋 𝑟
 

𝐶𝑡 = ( 𝐶𝑙 𝑠𝑖𝑛𝜑 − 𝐶𝑑 cos𝜑 ) 

𝐶𝑛 = ( 𝐶𝑙 cos𝜑 − 𝐶𝑑  𝑠𝑖𝑛𝜑)  

This is valid while 𝐶𝑇 < 0.96 with  

𝐶𝑇 =
𝜎′( 1 − 𝑎 )2(𝐶𝑙 cos 𝜑 + 𝐶𝑑 sin 𝜑)

sin2𝜑
 

If 𝐶𝑇 > 0.96, the tip loss correction factor correlation is used: 

𝑎 = (
1

𝐹
) [0.143 + √0.0203 − 0.6427(0.889 − 𝐶𝑇)] 

Where F is the tip losses correction factor. 

- The correction of the tip losses 

We introduce a Prandtl’s approach for correcting the top losses, resumed in F number given by 

the relation:  

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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𝐹 =
2

𝜋
cos−1 [exp (−{

(
𝐵
2
)(1 − (

𝑟
𝑅
))

(
𝑟
𝑅) sin𝜑

}] 

With  0 < 𝐹 < 1 

And  

𝑎′ =
1

4 𝐹 sin𝜑 cos𝜑
𝜎′𝐶𝑡

− 1
 

𝑎 =
1

4 𝐹 sin2 𝜑
𝜎′𝐶𝑛

+ 1
 

 

- The correction of the static stall delay 

We introduce the correction method proposed by Du & Selig, this approach take on 

consideration the 3D effect of the stall by adding a correcting coefficient. 

𝐶𝑙3𝐷 = 𝐶𝑙2𝐷 + ∆𝐶𝑙2𝐷 = 𝐶𝑙2𝐷 + 𝑓𝐿( 𝐶𝑙𝑝 − 𝐶𝑙2𝐷) 

𝐶𝑑3𝐷 = 𝐶𝑑2𝐷 + ∆𝐶𝑑2𝐷 = 𝐶𝑑2𝐷 + 𝑓𝐷( 𝐶𝑑2𝐷 − 𝐶𝑑0) 

With  

𝐶𝑙𝑝 = 2𝜋(𝛼 − 𝛼0) 

𝑓𝐿 =
1

2𝜋

[
 
 
 
 
1.6 (

𝑐
𝑟)

0.1267

(

 
 𝑎 − (

𝑐
𝑟)

𝑑𝑅
Λ𝑟
 

𝑏 + (
𝑐
𝑟)

𝑑𝑅
Λ𝑟
 

)

 
 
− 1

]
 
 
 
 

 

𝑓𝐷 =
1

2𝜋

[
 
 
 
 
1.6 (

𝑐
𝑟)

0.1267

(

 
 𝑎 − (

𝑐
𝑟)

𝑑𝑅
2Λ𝑟

 

𝑏 + (
𝑐
𝑟)

𝑑𝑅
2Λ𝑟

 

)

 
 
− 1

]
 
 
 
 

 

And Λ =
Ω𝑅

√𝑈0
2+(Ω𝑅)2

 ; a, b and c are the correcting factors considered equal to 1. 

There is a relation established by Eggars to obtain ∆𝐶𝑑 which is as follows: 

∆𝐶𝑑 = (
sin(𝜑) − 𝑋 cos(𝜑)

𝑋 sin(𝜑) + cos(𝜑)
)∆𝐶𝑙 

With  𝑋 =
0.12cos(𝜃𝑝)+sin(𝜃𝑝)

cos(𝜃𝑝)−0.12 sin(𝜃𝑝)
  

 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 
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- Drag coefficient in the cylindrical part of the blade 

The lift in the blade near the hub is considered equal to zero, because the blade has a cylindrical 

shape. Moreover, the drag is supposed equal to 1.2. Therefor the Cd changes with the Re. for a 

cylinder of infinite length:  

 

𝐶𝑑
𝑐𝑦𝑙,∞

= 

{
 
 

 
 1.8 +

6.8
𝑅𝑒0.89

+
1.96

√𝑅𝑒
−

0.0004 𝑅𝑒
1 + 3.64 × 10−7𝑅𝑒2

                                𝑅𝑒 < 2 × 105

1.6 − 3.04348 × 10−6 𝑅𝑒                                             2 × 105 < 𝑅𝑒 < 4.6 × 105

0.14321 + 0.1234568 × 10−6                                 4.6 × 105 < 𝑅𝑒 < 4.5 × 106

0.7                                                                                                            𝑅𝑒 > 4.5 × 106

  

Since that the blade is not infinite, so we should correct the Cd 

𝐶𝑑
𝑐𝑦𝑙,𝐴𝑅

= (0.624 + 0.0077 𝐴𝑅) 𝐶𝑑
𝑐𝑦𝑙,∞

 

With 𝐴𝑅 =
𝑅

𝑑
  ,   R is the total radius and d is the diameter of the cylinder. 

 

3.4  Data Collection 

We used the Airfoil tools website to download the geometry of the wind-turbine airfoil profile. 

The website contains one thousand six hundreds of different types of the airfoils. 

For the second model which will be presented in the next section, we use all the data available 

in the website without restriction on the type of the airfoil, whether it is symmetrical or not. We 

used 328 airfoils of all NACA profiles, all Wortmann, all Clark and all RAE. Except the NACA 

0012 and the modified airfoils of NACA 0012. 

In this study, we used another input model, which contains the characteristics of the airfoil. The 

structure of the geometry matrix is as follows: 

- The first row contains the maximum thickness of the airfoil 

- The second row contains the location of the maximum thickness 

- The third row contains the maximum camber of the airfoil 

- The fourth row contains the location of the maximum camber 

Example of the characteristic input template: 

  Airfoil 1 Airfoil 2 Airfoil 3 Airfoil 4 Airfoil 5 

1 12 15 15 6 10 

2 30 30 29 30 30 

3 0 0 1,6 0 24 

4 0 0 0 0 10 
 

Table 2: 2nd model data input template. 

The structure of the Cl and Cd matrix is as follows: 

(3.44) 

(3.45) 
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- First row contains the number of Cl and Cd AOA.  

- The other rows contain the Cl and Cd values. 

- The last three columns are for the test geometry. 

Example of the Cl and Cd input template: 

  Airfoil 1 Airfoil 2 

 AOA Cl Cd AOA Cl Cd 

1 9 9 9 11 11 11 

2 -20 0.165 0.01 -20 0.165 0.01 

3 -15 0.174 0.013 -18 0.174 0.013 

4 -10 0.183 0.016 -12 0.183 0.016 

5 -5 0.192 0.019 -9 0.192 0.019 

6 0 0.201 0.022 -4 0.201 0.022 

7 5 0.21 0.025 0 0.21 0.025 

8 10 0.219 0.028 4 0.219 0.028 

9 15 0.228 0.031 9 0.228 0.031 

10 20 0.237 0.034 12 0.237 0.034 

11       18 0.246 0.037 

12       20 0.255 0.04 
 

Table 3 : 2nd model data input 2 template. 

3.5  Artificial neural network modeling 

In this study, we considered three approaches in order to solve the problem. 

3.5.1  XY model 

The idea of this first model is simply giving the geometry as an input data and Cl and Cd as a 

target data. This first intuition of using the coordinates of the geometry directly was a good start 

of our study. 
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Figure 3-4: 1st model diagram. 
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The data was not in the same distribution, so we had to clean the data and make it all the same 

in term of distribution. 

The geometries were in a dimensionless scale, variating from zero to one but with different 

steps. We had to make the steps unique for every geometry. 

The solution was to interpolate each geometry from zero to one, then to define the unique step. 

This step is a variable, it depends of our choice. We programmed it in MATLAB in that way. 

Also, for the Cl and Cd data, the same idea has been considered, the interpolation of the data in 

order to heighten the number of data. This may help on the learning of our ANN. 

3.5.2  Airfoil characteristics model 

The idea of this second model is using the max thickness value and its position and the max 

camber value and its position of the airfoil as input data - each airfoil has characteristic 

parameters of its geometry - and the AOA, Cl as target data. 

 

 

 

 

 

 

 

 

 

 

3.5.3  The image model 

The idea of this third model is to present the geometry of the airfoil in a binary matrix; this 

matrix shows the shape of the airfoil. Knowing that the machine learning performs very well 

when the data is huge, so giving all the detail of the airfoil will help the ANN to get better 

results. 
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Figure 3-5: 2nd model diagram. 

Figure 3-6: 3rd model diagram. 
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3.6  Training algorithm 

One of the hard parts of the machine learning is the design of the ANN, the programmer should 

make a lot of tests and combinations to find the right design. 

The ANN has many variables to change and it takes a lot of time to test all the probabilities. 

There is not a way to get directly the right design. The variables are: 

- Number of hidden layers 

- Number of neurons in each hidden layer 

- The learning function 

- The activation function of each hidden layer 

- The interpolation step of the data 

So, we though to make the process of changing the variables automatic as much as we can.  

For a fixed number of hidden layers, we make iterations of the number of neurons in each layer. 

Noting that machine learning does not have a rule to get the adequate number of neurons, 

number of hidden layers, and even the learning method or the activation function to use; this is 

why we should test all the possibilities in order to get the right configuration. 

For example, using the TrainLM learning method and the linear activation function for all the 

hidden layers. In the case of two hidden layers, we start with one neuron in each layer, then we 

increase the number of neurons to test all the possibilities.  

 

Number of neurons in 1st H L  Number of neurons in 2nd H L 

1 1 

1 2 

1 3 

1 4 

…
 

…
 

1 50 

2 1 

2 2 

2 3 

2 4 

2 5 

…
 

…
 

2 50 

3 1 

3 2 

…
 

…
 

3 50 

…
 

…
 

50 50 
 

Table 4: iterations of number of neurons inside the hidden layers. 
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In every iteration, we calculate the predicted Cl values of the test airfoils and we compare them 

with the Cl calculated by the XFoil software. We save the errors in a vector to make a global 

performance evaluation of the ANN later. 

3.7  BEM-ANN integration 

The BEM method uses Cl and Cd values in the computations, there are generally considered as 

inputs to the method. A data table of Cl and Cd of the specific airfoil shape is used. However, 

in our case we are using a new airfoil that we do not know its Cl and Cd value. Therefore, in 

order to get that information, we will use our ANN to predict these values. Moreover, since the 

BEM method is an iterative method, in each iteration, we should get the Cl and Cd value; we 

will integrate the ANN to the BEM so that it will be efficient. 

In the step of the computation of Cl and Cd value, we will use the ANN. Like it is mentioned 

in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7:  BEM-ANN integration diagram. 

Inputs 

- Number of elements                                       - The airfoil characteristics 
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CHAPTER 4: Results and Discussion 

4.1  Models choice and validation of lift and drag coefficient 

In our study, we studied three models because of some restrictions in the hardware capacity. 

We were obliged to change the model every time that we could not go so far with results.  

In this chapter, we will present the results of each model, and then we will continue the 

discussion with the good model. 

The criteria of validation is the mean square error and the mean relative error. The MSE should 

has the lowest value and the MRE value should be less than 10-2
.  

The MRE is calculated by:  

𝑀𝑅𝐸 =
1

𝑛
∑|𝐶𝑙𝑋𝐹𝑜𝑖𝑙,𝑖 − 𝐶𝑙𝐴𝑁𝑁,𝑖|

𝑛

1

 

Where 𝐶𝑙𝑋𝐹𝑜𝑖𝑙 is the target result and 𝐶𝑙𝐴𝑁𝑁 is the predicted result, n is the number of AOA. 

- XY model: 

This was our first model, we made the study on the range of -2° to 2° in order to get familiar 

with the ANN notions, and a database of 6 geometries. Here is the best MRE result for different 

neurons in two hidden layers presented in the next table for the NACA 0015 geometry. 

hidden layer number  Neurons in HL MRE 

2 2_20 0.1660 

2 5_20 0.1796 

2 5_1 0.1833 

2 1_5 0.2019 
Table 5: Performance of the  XY model. 

These values are not good; we need to achieve an error of 10-3
 at least. Knowing that the 

database in this case is very small, we tried to use more geometries as input data, but the poor 

hardware performance of the PC was a barrier for us to extend this model. A lot of data and a 

huge number of neurons in each layer requires a lot of memory. Therefore, we could not make 

the calculations, so we changed the model to make it less RAM consumer. 

- Image model: 

The image model seemed to be a good model since that the geometry is presented in a binary 

matrix that does not really consume the RAM, and it would give us more space to use more 

geometries. 

Firstly, the model was doing well with a data set of 30 geometries, but it did not show high 

accuracy. This pushed us to use more geometries, but the same thing with this model after 

expanding the data, the computer could not make the calculation and it showed error messages 

about excessive memory use. 

 

 

(4.1) 
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- Airfoil characteristics model: 

For 328 geometries and a maximum range of AOA [ -20°, 20°], this model has good results for 

the next ANN configuration: 

For lift coefficient: 

hidden layer 

number  

Neurons in HL 

 

MRE 

 

MSE 

7 200 – 200 – 100 – 50 – 50 – 50 – 50  0.0485 0.00448 
Table 6: Cl ANN performance. 

For drag coefficient: 

hidden layer 

number  

Neurons in HL 

 

MRE 

 

MSE 

7 200 – 200 – 100 – 50 – 50 – 50 – 50  0.0031 6.7028e-5 
Table 7: Cd ANN performance. 

Some of the information relative to the model are represented in the next tables: 

Training informations for Cl 

training function  trainscg 

activation function tansig 

number of inputs 5 x 162201 (5 x 328 x AOA)  

target data 1 x 162201 (1 x 328 x AOA) 

number of outputs 1 

number of epochs 5438 

times of calculations (hh:mm:ss) 11:33:57 

best validation performance at epochs 5432 
Table 8: Cl training information. 

 

Training informations for Cd 

training function  trainscg 

activation function tansig 

number of inputs 5 x 162201 (5 x 328 x AOA)  

target data 1 x 162201 (1 x 328 x AOA) 

number of outputs 1 

number of epochs 1624 

times of calculations (hh:mm:ss) 06:44:37 

best validation performance at epochs 1618 
Table 9: Cd training information. 

The graph of the predicted Cl and the Cd vs. AOA of the principal airfoil that we will use in the 

section of BEM-ANN validation “NACA0012” is presented in the next page: 

Airfoil Coeff. AOA range mean error max error min error 

NACA0012 Cl -18.5° / 18.5° 0.0485 0.1547 4.94e-04 

 Cd -18.5° / 18.5° 0.0031 0.0213 5.48e-07 
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Characteristics 

12,30,0,0 
Table 10: NACA 0012 results. 

 

Figure 4-1: NACA 0012 Cl prediction. 

 

 

Figure 4-2: NACA 0012 Cd prediction. 
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The results of prediction for other airfoils: 

 

Airfoil Coeff. AOA range mean error max error min error 

S1012 Cl -19° / 19° 0.0511 0.123 0.0027 

 Cd -19° / 19° 0.0094 0.0336 4.817e-06 

      

Characteristics      

12,37.7,0,0      
Table 11: S1012 results. 

 

 

Airfoil Coeff. AOA range mean error max error min error 

E297 Cl -10° / 14,5° 0.0514 0.6486 0.0005217 

 Cd -10° / 14,5° 0.0038 0.1052 3.825e-05 

Characteristics 

11.4,37.7,0,0 
Table 12: E297 results. 

Figure 4-3: S1012 Cl & Cd prediction. 

Figure 4-4: E297 Cl & Cd prediction. 
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Airfoil Coeff. AOA range mean error max error min error 

boeing 737b midspan cl Cl -18.25° / 18.5° 0.0571 0.3282 0.0006746 

 Cd -18.25° / 18.5° 0.0044 0.0417 0.0001229 

Characteristics 

12.5, 29.7, 0.8, 10 
Table 13: Boeing 737b results. 

 

 

 

Airfoil Coeff. AOA range mean error max error min error 

e176 Cl -0.25° / 12.5° 0.0621 0.1373 0.0326 

 Cd -0.25° / 12.5° 0.0084 0.0225 0.0014 

Characteristics 

8.8 ,30.5,2.9,44.2 
Table 14: E176 results. 

Figure 4-5: Boeing 737b Cl & Cd prediction. 

Figure 4-6: E176 Cl & Cd prediction 
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Airfoil Coeff. AOA range mean error max error min error 

GOE 443 Cl -8.25° / 15.75° 0.0662 0.1059 0.000267 

 Cd -8.25° / 15.75° 0.0089 0.1027 8.724e-05 

Characteristics 

5,30 ,0 ,0 
Table 15: GOE 443 results 

 

 

Airfoil Coeff. AOA range mean error max error min error 

LOCKHEED C-141 

BL426.57  Cl -15.25° / 19° 0.0725 0.2726 0.0006794 

 Cd -15.25° / 19° 0.073 0.0647 0.0001235 

Characteristics 

11,40.2,1.3,50 

 

Table 16 : LOCKHEED C-141 results. 

Figure 4-7: GOE 443 Cl & Cd prediction 

Figure 4-8 : LOCKHEED C-141 Cl & Cd prediction. 
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Airfoil Coeff. AOA range mean error max error min error 

boeing 106  Cl -16° / 18.25° 0.0741 0.3591 0.0012 

 Cd -16° / 18.25° 0.0037 0.0334 2.428e-05 

Characteristics 

13.1, 30, 3.3, 40 
Table 17 : Boeing 106 results. 

 

 

 

 

Airfoil Coeff. AOA range mean error max error min error 

e186  Cl -10° / 15° 0.0897 0.3599 0.0003725 

 Cd -10° / 15° 0.0084 0.0561 1.753e-05 

Characteristics      

10.2,29,0.8,29      
Table 18 : E186 results. 

Figure 4-9 : Boeing 106 Cl & Cd prediction 

Figure 4-10 : E186 Cl & Cd prediction. 

AOA (°) 

C
l 

AOA (°) 

C
d
 

AOA (°) 

C
l 

AOA (°) 

C
d
 



Chapter 4: Results and discussion 

75 

 

 

Airfoil Coeff. AOA range mean error max error min error 

e1098  Cl -15.5° / 18° 0.1011 0.2467 0.0002504 

 Cd -15.5° / 18° 0.0088 0.0256 4.454e-05 

Characteristics 

18.9, 36.6, 3.7, 54.5 
Table 19 : E1098 results. 

 

 

 

Airfoil Coeff. AOA range mean error max error min error 

STCYR 172  Cl -18.75° / 19° 0.1267 0.3013 0.0023 

 Cd -18.75° / 19° 0.0023 0.0108 5.375E-06 

Characteristics 

13.6,30,0,0 
Table 20 : STCYR 172 results. 

 

 

Figure 4-11 : E1098 Cl & Cd prediction. 

Figure 4-12: STCYR 172 Cl & Cd prediction. 
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Discussion of the results: 

The principal profile NACA0012 presented a very good prediction result of the Cl and Cd 

values. Also, for the S1012, Boeing 737b, Boeing 106, Lockheed C141 and GOE 443 presented 

very good results of the prediction of Cl. STCYR, Boeing 737b and S1012 presented a very 

good result of the prediction of Cd. Some other airfoils did not present very good results in 

some range of AOA, it depends on the characteristics value of the airfoil. Therefore, this is due 

to the training data that is not enough to take all the consideration of airfoil types and all the 

range of AOA.  

The training data should be more expanded and includes a lot of airfoils, more than one 

thousand to get the best results. This means also having a lot of hardware capacities – huge 

memory -.  

 

4.2  ANN performance 

There is a lot of possibilities to design the ANN, a lot of combinations are possible, the criteria 

of the selection or the validation of the ANN is the efficiency of its output results. 

The performance listed in the tables below are for the Cl number ANN. 

4.2.1 Effect of the number of neurons  

In this subsection, we will discuss the effect of the number of neurons in the precision and in 

the efficiency of the model. The increase of number of neurons makes the calculations longer 

and more expensive. The tables below show the training parameters of one, three and seven 

hidden layers configuration.  

Neurons MRE Time  MSE Epochs 

5 0.1728 00:00:22 0.0441 138 

10 0.1571 00:00:44 0.0426 225 

20 0.1702 00:01:19 0.0396 309 

30 0.1608 00:01:45 0.0399 289 

40 0.1745 00:02:39 0.377 366 

50 0.1306 00:15:50 0.026 1908 

70 0.1376 00:30:03 0.0232 2549 
Table 21:Comparaison of the results of one hidden layer. 

Neurons MRE Time  MSE Epochs 

10-10-5 0.1685 00:01:42 0.0391 224 

15-15-5 0.1301 00:24:09 0.0223 2578 

20-10-5 0.17 00:04:56 0.031 577 

20-15-5 0.1719 00:02:38 0.0399 265 

30-15-5 0.1267 00:49:01 0.0172 4408 

30-30-5 0.0928 00:54:29 0.0144 3821 
Table 22: Comparaison of the results of three hidden layers. 
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Neurons   MRE Time  MSE Epochs 

100-100-100-50-50-50-50  0.0494 12:08:41 0.00307 5169 

200-100-100-50-50-50-50  0.0502 11:10:05 0.00536 3863 

200-200-100-50-50-50-50  0.048 11:33:57 0.00444 5438 
Table 23: Comparaison of the results of seven hidden layer. 

From these tables, we notice that the variation of the number of the neurons in each layer makes 

a slight difference in the results for good models as shown in the third table, and a huge 

difference in the other cases where the models has a low precise result. The MSE decreases 

with the increase of the number of neurons, but the prediction precision has a random changes. 

However, as we notice from all these tables that the increase in the number of hidden layers 

will not necessarily improve the precision. It depends in the complexity and the data distribution 

of the chosen model.  

4.2.2 Effect of the number of hidden layers  

In this subsection, we will discuss the effect of the number of hidden layers in the precision and 

the efficiency of the model. The next table shows the good result of each hidden layer 

configuration: one, two, three, four and seven hidden layers. 

The increase of hidden layers allows us to treat complex and non-linear problems, but the 

disadvantages is that the calculations become longer and more expensive. 

Hidden layers MRE Time  MSE Epochs 

200-200-100-50-50-50-50 0.048 11:33:57 0.00444 5438 

20-20-20-5 0.0751 01:21:16 0.0103 6229 

30-30-5 0.0928 00:54:29 0.0144 3821 

30-20 0.1038 00:13:27 0.0226 1376 

50 0.1306 00:15:50 0.026 1908 
Table 24: Comparaison of the results of diffrent combinaison of hidden layer. 

The MSE parameter decreases with the increase of hidden layer, the same note for the MRE, 

this shows us that the increase of the number of hidden layers makes the model more efficient. 

The time of calculations and the number of iterations increases which is very logical. 

Generally, one or two hidden layers can solve the simple problem, but it is required to use more 

than two hidden layers for complex ones. The number of hidden layers depends on complexity 

of the model and the problem. The increase of hidden layers allows us to treat complex and 

non-linear problems, but the disadvantages is that the calculations become longer and more 

expensive.  

 

4.2.3 Effect of the training methods  

The existence of many training functions makes us wonder which one to us. In this part we will 

see the effect of the training function on the efficiency and the precision of the model. 

The results are shown in the next table for one hidden layer configuration and three training 

function. 
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 Trainscg Trainbfg Trainlm 

neurons MRE Time  MSE MRE Time  MSE MRE Time  MSE 

5 0.173 00:00:22 0.044 0.154 00:01:03 0.042 0.165 00:00:50 0.042 

10 0.157 00:00:44 0.043 0.154 00:02:08 0.04 0.323 00:00:11 0.073 

20 0.17 00:01:19 0.04 0.162 00:05:17 0.029 0.164 00:00:17 0.062 

30 0.161 00:01:45 0.04 0.143 00:13:06 0.024 0.167 00:00:44 0.035 

40 0.175 00:02:39 0.377 0.144 00:16:38 0.021 0.894 00:00:14 0.453 

50 0.131 00:15:50 0.026 0.128 00:21:24 0.023 / / / 

70 0.138 00:30:03 0.023 0.139 00:15:38 0.022 / / / 
Table 25: Comparaison of the results of diffrent traning methods. 

In our case, we used for the training the function Trainscg because it does not use a lot of 

memory and it is fast in calculations. The other functions did not perform well and we could 

not use Trainbfg and Trainlm because they require a lot of memory. 

In the manual of MATLAB, it has been mentioned that the Trainscg uses less memory and 

suitable in low memory situations. Trainlm is the fastest but requires a lot of memory. Trainbfg 

may take longer time than Trainlm. 

 

The Pc that we used has Intel® Core™ i7-5500U CPU @ 2.40 GHz, 16 Go of RAM and Intel® 

HD Graphics 5500. 

The choice of the training function depends on the type of the problem, for example regression 

training functions does not perform very well in the classification. So, it is required to test all 

the training functions and choose then the adequate one. In addition, the use of these training 

methods depends on the hardware material available for the user. Because some training 

function requires a lot of memory “RAM”. 

Conclusion 

It is never known with precision the best number of hidden layer and the number of hidden 

neurons or even the training function to use for a given model for the first insight. Even in 

literature, some rule for the determination of the number of hidden layers and the number of 

neurons are made but they still not efficient for every models. So, the good number of hidden 

layers or neurons and the training function are determined by testing all the possibilities 

available until getting the efficient results. 

 

4.3 BEM-ANN integration 

In the first step, in order to validate the BEM-ANN method, we started with the validation of 

the Classical BEM using the NREL phase IV with the S809 airfoil. We could not make the 

comparison with the experimental data using the NACA0012 airfoil because we did not find a 

reliable source of its performance.  

The result of the classical BEM compared to the experimental data are presented in the next 

figure. 
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Figure 4-13: NREL phase IV performance. 

The figure shows that the classical BEM method is giving good results comparing it to the 

experimental values; the slight errors are due to the physical phenomena that are not taken in 

consideration by the classical method. Therefore, we can say that the program of classical BEM 

is valid and working pretty well. 

In the second step, we moved to validate the BEM-ANN method, we made a comparison 

between the classical BEM method and the BEM-ANN method using the NREL data with a 

NACA0012 airfoil.  

The data of the blade is as follows: 

number of blades 2 

hub radius (m) 0.883 

rotor radius (m) 5.029 

Rotational speed (RPM) 71.63 
 

Table 26: NACA0012 blade data 

 

 

 

 

 

 Figure 4-14: NREL phase IV with NACA0012 blade in 3D 
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The values of Cl and Cd are shown in the next figures: 

 

Figure 4-15: Extrapolated Cl data. 

 

Figure 4-16: Extrapolated Cd data 

Note: the values of Cl and Cd are extrapolated to 360° using the Viterna method. 

The results of the comparison is presented in the next figure: 

 

Figure 4-17: Classical BEM vs BEM-ANN. 
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The figure shows the power graphs drawn with both classical BEM and BEM-ANN. The 

results are so close for different values of wind speed. The slight difference is due to the stall 

AOA values, because the values of ClANN CdANN are slightly different from the ClXFOIL 

CdXFOIL values respectively in stall interval. 

The maximum error is about 3%, this error is acceptable in the field of mechanics. So this 

method can be used to predict the performance of a horizontal axis wind turbine for a new 

airfoil profile, it has a great accuracy and it does the calculations in a lower time. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General conclusion 
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General conclusion 

 

 

In this study, an artificial neural network (ANN) approach has been proposed, implemented and 

validated to predict lift and drag coefficients for horizontal axis wind turbine (HAWTs) 

applications. The ANN approach can increase the accuracy of the BEM theory through accurate 

prediction of the lift and drag coefficients. Firstly, a parametric study takes into account the 

variation of several parameters which influence a lot on the performances of the ANN has been 

carried out. This parametric study includes the effect of number of neurons, number of hidden 

layers, learning algorithm, training function, activation function and input method on the 

performance of the ANN and its accuracy. Then, the optimized ANN architecture was coupled 

with the BEM theory to predict the performance of HAWTs.  

From the work presented in this study, the following conclusions can be drawn: 

- The increase of the neurons number in the hidden layers does not ensure the increase in 

the accuracy of the results and increases the computational time 

- Increasing the number of hidden layers increases the accuracy of the results but requires 

a longer computation time and sometimes leads to convergence problems 

- The optimum number of hidden layers was found to be 7HL with [200 – 200 – 100 – 50 

– 50 – 50 – 50] hidden neurons 

- The trainscg learning function which is based on scaled conjugate gradient 

backpropagation gives accurate results with an acceptable computational time 

- The proposed airfoil characteristics input model gave satisfactory results and did not 

require a large capacity of memory compared to other models (XY model and Image model) 

- The proposed ANN-BEM approach is considered as a promising hybrid method that can 

be used for simulation and optimization of the HAWTs performance. 

As perspectives related to this study, on the one hand, it is recommended to use supercomputers 

and high-performance computing in order to be able to test more the effect of the parameters 

influencing the performance of the ANN. On the other hand, it is recommended to collect as 

much data as possible and it is preferable that these data be experimental, or at least from CFD.  
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