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Résume

Dans cette these on a concentré sur la méthode d’optimisation par essaim de particules appelée pour
I’optimisation des gains de commandes synthétisées. Puisque la méthode conventionnelle de Ziegler-
Nichols (Z-N) pour le réglage des paramétres du régulateur PID est une méthode classique qui permet une
identification facile des parametres dans un court laps de temps, mais souvent la sortie du systeme sous
réglage présente une réponse avec un dépassement, une erreur d'état stationnaire élevée et d'un grand
temps de montée. Afin daméliorer les performances de réglage, dans cette étude Iapproche
methaheuristique moderne de I'optimisation par essaim de particules a été utilisée avec validation
expérimental afin d’optimiser les parameétres du PID pour la stabilisation de 1'attitude d'un Quadrotor. Le
deuxieme cas traite de I’optimisation d’un contréleur Proportionnel Dérivé (PD) Flou en utilisant aussi la
technique d’optimisation par essaims de particules (PSO). Plus précisément, nous avons effectué une
étude comparative pour montrer les performances du contr6leur PD-flou en optimisant séparément ses
gains de normalisation et ses parameétres structurels des fonctions d’appartenance. Il est a noter que le
contréleur flou optimisé se comporte mieux en présence de bruit.

Mots clés : la méthode d’optimisation par essaim de particules, bras manipulateur, PID, contrdleur flou.

Abstract

In this theses focuses on the modern heuristics approach of Particle Swarm Optimization (PSO). At the
first case we have choose to apply this method for optimization of PID controller for attitude stabilization
of a Quadrotor with experiments validation. However, manual tuning of these controllers is tedious and
often leads to poor performance. The conventional Ziegler-Nichols (Z-N) method of PID tuning was done
experimentally enables easy identification stable PID parameters in a short time, but is accompanied by
overshoot, high steady-state error, and large rise time. Therefore, in this study, the modern heuristics
approach of Particle Swarm Optimization (PSO) was employed to enhance the capabilities of the
conventional Z-N technique. PSO with the constriction coefficient method experimentally demonstrated
the ability to efficiently and effectively identify optimal PID controller parameters for attitude stabilization
of a quadrotor. In second case, we conduct a comparative study to access the performance of the PD fuzzy
controller by optimizing its gain and its structural parameters separately, the optimization will done
offline; thus leading two distinct fuzzy controllers. The two controllers are applied to control a 3DOF
PUMAS560 robot manipulator. The optimized parameter controller performs better in the presence of noise
in some joints.

Key words: Particle Swarm Optimization, Quadcopter, Manipulator robot, PID, Fuzzy logic controller
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General Introduction

0.1 Introduction

In these last years, a growing interest has been shown in robotics. In fact, several
industries (automotive, medical, manufacturing, space, . . . ), require robots to replace human
in dangerous, boring or onerous situations. For example we cannot replace welding robot by
human in repetitive jobs that are boring, stressful, or labor intensive for humans. Also
cleaning the main circulating pump in the nuclear power plant which this task is dangerous
for human. Some important task need aerial robot or unmanned aerial vehicle, as wildfire
mapping, agriculture monitoring, oil and gas exploration, ...etc. for those importance we are
interest in this thesis by two type of robot the first Quadcopter which is kind of unmanned
aerial vehicle. The second PUMAS60 manipulator robot. Basic knowledge for robotics design
are; dynamics modeling, sensors, actuators, microcontroller, microprocessor and programing
language.

The advance in technology the use of the control theory more important, for that great
research progress in control theory during last decades. Lot of approach and strategies
proposed by researchers in most simple controller (PID) to most complex controller theory.
The PID controller is simplest and oldest control theory and the most widely used controller
in process control until today. A PID is widely used in control of linear or nonlinear systems.
The PID it is an important” part in every engineering control tools.

The most popular of Unmanned Arial Vehicles is the quadrotor. Because of its ability
to perform agile manoeuvres, take-off , land vertically, and hover. However, it is difficult to
model [1][2] complex and suitable quadrotor control systems. Many control methods, such as
fractional sliding mode [3], backstepping [4], nonlinear proportional-integral-derivative (PID)
[5], sliding model controllers [6], and fuzzy PID [7], have been studied. The simplest control
method among these is the PID controller [8] because of its low program complexity, low
processing speed, and small program size, occupying little memory. Therefore, the PID can
be implemented in a low-cost microcontroller.

In PID control design, the parameters of the controllers are tuned manually or by using
the tuning rules found in the linear control-based literature, such as Zieglar-Nichols (Z-N)

tuning [9][10]. Unfortunately, the manual tuning method has limitations of being time
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consuming and very tedious. While the conventional Z-N method has been very useful and
helpful in our research in terms of practicality, it is criticized by many other researchers.

After developing a quadrotor, we were met with the problem of how to choose PID
gains in order for our quadrotor to achieve stability. The fastest method with the least required
effort to experimentally select the appropriate PID gains was the Z-N tuning. Within a few
minutes of implementation we could obtain the PID gain values required to stabilize the
quadrotor. With respect to time and effort.

Many research show design and control strategies, in [11,12] full design and
implementation of PID control system for a Quadcopter. Another design with experimental
studies for switching model predictive control of a Quadcopter in [2]. In [8] present a control
approach to obtain the better stabilization in attitude and altitude of quad-rotor using PID
under different disturbance conditions. In [13] an adaptive PID controller is proposed for
fault-tolerant control of a quadrotor helicopter system in the presence of actuator faults. In
[14] presents a survey on publicly available open-source projects (OSPs) on quadrotor
unmanned aerial vehicles (UAVs) and is based also on PID controllers. In [15] presents
modeling, simulation and implementation of quadcopter, this work also based on PID
controllers. From we notice no one present use of ZN for altitude and attitude PID parameters
determination.

However, regarding robustness, overshoot, steady-state error, and rise time, the Z-N
method falls short of the necessary standards. To overcome this, we instead employed a
modern heuristics approach [16][17][18][19], specifically particle swarm optimization (PSO)
with the constriction coefficient method unlike in[20] they use the basic PSO. PSO used to
determine the optimal PID gains for attitude stabilization of the quadrotor experimentally
counterpart in [20] they applied for position control and is very clear the optimization of the
attitude stabilisation has more priority than position control optimization for quadrotor. This
stands in contrast with many other research efforts whose results come only from simulations
[21][22][23].

The second robotic system treated in this thesis, which is robot manipulator [24]. The
control based on fuzzy logic have become [25][26] an appealing alternative solution for the
control of robots manipulators as it does not require the knowledge of the dynamic model of
the latter. In addition, as the mathematical model of robot arms depends on the mechanical
parameters - subject to lifetime modifications (friction factors affected by the abuse of joints
[24]), these considerations also give advantage to fuzzy control methods over other nonlinear
control methods as a result of their robustness towards perturbations affecting the system and
uncertainties of dynamic parameters. However, such fuzzy control [26] methods require

appropriate tuning in order to work properly, particle swarm optimization [27] [28] [29] was
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selected to optimize fuzzy PD controller [30]. In this context, two strategies can be adopted: i)
either to tune the gains of the controller or to tune the structural parameters of the controllers.
In the last section, we propose a proportional derivative (PD) fuzzy controller [30]
design for a three degree of free doom (3DOF) PUMAAS560 robot manipulator. We conduct a
comparative study to access the performance of the PD fuzzy controller by optimizing [28]
[29] its gain [31][32] and its structural parameters[33][34] separately, the optimization will
done offline, it mean after PSO find the optimized gains and parameters will put them into
fuzzy PD controller ; thus leading to two distinct optimized fuzzy controllers. As far as the
authors are aware, such comparative study has not been carried out. The two controllers are
applied to control a 3DOF PUMAS60 robot manipulator. The Particle Swarm Optimization
(PSO) was selected as the optimization method. Additionally, a comparative study in terms

integral of squared error (ISE) between the two proposed controllers is carried out.

0.2 Contribution and thesis organization

Our main contributions focused in this thesis are:

e Realization customs quadcopter its autopilot based on Arduino Due and Teensy 3.2.

e Experimental PID identification using ZN for altitude and attitude stabilization of a
quadcopter.

e Optimization of the obtained PID parameters using Particle Swarm Optimization with
experiment validation.

e Parametric and structural optimization of fuzzy controller using Particle Swarm

Optimization for PUMAS560 manipulator robot control.

The thesis divided by four chapters:

The first chapter, present dynamic modeling of Quadcopter. The second chapter has
PUMAS560 manipulator robot modeling. The third chapter has a Quadcopter and its main
hardware used in our prototyping. The fourth chapter presents application Ziegler-Nichols pid
parameters tuning for stabilization of a Quadcopter with optimization of the obtained
parameters using Particle Swarm Optimization. The fifth chapter presents comparison study
between, Parametric and structural Optimization of fuzzy controller with PUMAS560
manipulator robot.

In the last, general conclusion summarizes the main obtained results and future

research can obtained using this thesis.

13



Chapter 1



Dynamic modeling of a Quadcopter

1.1 INTRODUCTION

The most famous of Unmanned Arial Vehicles is the quadcopter. Because of its ability to
perform agile maneuvers, take-off and land vertically, and hover, it is an ideal choice for search
and surveillance, rescue, monitoring, military, and agriculture applications in both outdoor and

indoor environments.

In this chapter, provide identification, design, and dynamic model of a Quadcopter. These
tools are very important because it describes how the Quadcopter fly according to its
orientations and positions in space. These tools help to define and predict the orientations and
positions reached by the Quadcopter by using just the four motor speeds. Two customs
quadcopter prototyping will present the first one its flight controller use Arduino Due and the

second use Teensy 3.2 development board.
1.2 THE QUADCOPTER MODEL

First, confirm that A quadrotor has four propellers mounted on the end of two
perpendicular arms and is actuated by four brushless DC motors. A basic configuration of a

quadrotor [35][44] is shown in Figure 1.1.

Each rotor pair of the same arm rotates in the same direction; one pair rotates clockwise,
while the other rotates counter clockwise. The quadrotor moves by adjusting the angular velocity
of each rotor. We used the literature to get dynamical model of a quadrotor same in [1][11][44]
[45].

To represent dynamic model we use Euler-Lagrage equations of motion. The generalized

coordinates of Quadcopter are:

q=(&n)" eR° (1.1)

=(xy2) eR® n=(y,0,4) R’ (L.2)
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Where &, represent the position and orientation of Quadcopter in the inertial fixed frame

respectively.

The translational and rotational kinetic energy of a quadcopter are:

m.. m
Ttrans = _é:T‘/:E = _(Xz + y2 + Zz)
2 2 (1.3)
T =20 IQ =277 31
2 2 (1.4)
_ T
Where J =W IW, (1.5)
l, 0 O
=10 1, O
0 0 1l (L6)
Where transformation matrix from inertial fixed frame to the inertial body frame is:
-s¢ 0 1
W, =|césp c¢g O 1.7)
ckyp —-s¢ O
-~ \£N L
Then n=W,Q (1.8)

The potential energy of quadcopter consists of the gravitational potential energy which as:
U =mgz (1.9)

The Lagrangian function defined as:

L=T

trans

iU =" 4y 4 22)+ 2T mgz
2 2 (1.10)

Satisfies the Euler Lagrange equation:

i[@}@ _F
dtlog ) oq (L11)

Where F represents the forces and torques applied to quadcopter

After simplification calculations, we can obtain the following standards formulation:
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M(a)g+C(a,q)4+G(a)=F (1.12)
Where

M (q) € R*®is the symmetric positive definite inertia matrix.
C(q,q) € R*®is the matrix of centrifugal and Coriolis forces.

G(q) € R®is the gravity force vector. Moreover, the matrices M and C verify the passivity

property necessary M —2C = P ,Where P denotes an antisymmetric matrix.

The full dynamics model of a quadcopter by using Euler-Lagrange’s equations is:

i aL[I’E:ll"IS _ aLtrans 0
dt| o& o& | f
0 i{al‘rot:| _ 0L, 2
dt| on | on (1.13)
f=RF (1.14)

Where (2.14) is the translational force (thrust), z represents the yaw, pitch and roll

moments.

F=
u (1.15)
u=f+f,+f,+f, (1.16)
chey syso —s0
R=|cystsg—sycd sysbsg+cycy césg
Cys&p+sysg syséd—Ccysp Cc&op (1.17)

Since no cross terms combining &,7 in (2.13) can be partitioned into dynamics separate.

The first is for translation motions are:

aI‘trgns — mf
o5 (1.18)
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i aI‘[rans —m£E
| 5]

6L(rans —
0
4 mg
Finally, we obtain
mX
f=| my
mZ +mg

For rotational motions, we have

d _aLl’Ot:| 8Lrot =7

dt| o5 | on

dl .+.0n] 10 (1.,
or L5392 9 (57 35)=
at|” 877} 2@77('7 i)=r

We get
S N BV
Jii+Jn-=-2(3"3n)=
RN 2677(77 i)=1

ny‘+(i —%%(ﬁTJ)}i:r

Jij+Cln. =

We get transitional and rotational motions represent in this formulation:

mx
f=| my
mZ +mg
Jij+Cln. =

Note that rotational motions we can be written in general form as

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)
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Mij+C(n,7 ) =7 (1.29)

Where M (17) =J(r)=W, IW,

(1.30)
E[Qna_ﬂ_dla—gzr
dt on on (1.31)
-6 0 1
L _lewp cp 0
ckp -s¢ O (1.32)
However,
d-yso I, 0 O0f-s& 0 1
a1 ®2 p+ycosp| 0 1, 0 |césp co O
ycag—p|| 0 0 1,|céd -sg 0
=[b, b, b,] (1.33)
Where
bl = —|Xx(¢-59—l/)529)+ IW(&65@¢+I//02652¢)+ |Zz<l//C26t)2¢—6b6S@¢) (1.34)
b, = |W(6b2¢+w'cﬁs¢cqﬁ)— 1, (yctsges - b5%9) (1.35)
b, = 1,,(¢—ys6) (1.36)

Differentiating Q' | @ we obtain:
on
by =1, (50 + 60— 520 — 2565000+ | (e ged — 0°sO5gc — Ode s ¢+ O e ¢
+iC?05% — 2656065 p + 2y BB o)
+1, 2067 - 2y/00002 6 — 2ndc? O do — GO ged + 07sOsgc + Do bc® g — Be o) (1.37)

b, = 1, (626 — 260ds fo g + jic O gc f— yls 5 gcd + v 6> ¢ — ygc 65
1, (icosdog —ybsosgog — o652 p + yigo b’ — 52— 2608 gog) (1.38)

19



b, = 1, (¢ — 50— yc0) (1.39)

On the other hand, we have:

0 -—ych 0
Z—Qz 0 —yskg —0Gsp+yched
QT|@=[h1 h, h,]
on (1.41)
Where
h =0 (1.42)

=1, o0 s o)1, (dbligeg +y seeos’g)- 1., (i s s —ylstsed) g

hy =1, (- 2sgcg — e g+ ylede? g+ yrc B o)+
| (CyPctsgeg + e os? g —ibeae? g+ 62sgcy) (1.44)

The Euler-Lagrange equation for torques is: first no conservative torques from the action

of the thrust and second from the gyroscopic effect resulting from the propellers rotations:

To | |Tae| | PPy
T=7,+7,=|7, |+|T4 |=|b,—h,
T 0 b, —h,

174

(1.45)

After mathematical simplification (2.27) and (2.45) we can represent the model same in
[11[11][44][45] :
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X:(c¢s6bz//+s¢sw)iu
m
.. 1
= (cstsy —sgey)—u
u
Z=—|(cgcl)-
—(ege0)-g
I, —1
jotoflale) S, 5
0:¢l//(|zz_lxxJ+‘]_r r+z-_9
IW IW IW
Y I
o
= = (1.46)

1.3 Dynamic model used for attitude stabilization

The two gyroscopic effects in dynamic model (1.46). Their influence in our case less
important than the motor’s action. Especially if we consider in hovering stabilization. In order to
simplify of design PID controllers for our quadcopter, we can neglect these gyroscopic effects
and thus remove the cross coupling [1][11][44][45]. The model (1.46) for attitude stabilization
will be as in (1.47) and for altitude stabilization as in (1.48):

Iyxézrg r,=(=f,—f,+f,+f,)xl
I, x$=1, (- f, +f,+f,—f,)xl, (1.47)

T(”
IZXV/:TW z-w:(_Tml_’_z-mZ_z-m?,-i_z-m4)

f=Cxa’, 7,=Coxa’ 1=1234, I =Ixcos(52) I,=Ixsin(52)
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Figure 1.1 A basic configuration of a quadcopter.

Where fi are the thrust forces generated by four motors, | is the length of the quad-rotor
arm, andz,, 7, 7, are the generated torques of roll and pitch and yaw plans. z,,,7,,,, 7,3, 7,4 Ar€
induced moments from there propeller rotation [35], inertial of quadcopter are Iy, I, and I,

calculated by SOLIDWORKS, the thrust and drag coefficients data | found them in this technical
data on this website [46] see Table 1.1.

Table 1.1, Quadrotor parameters
Calculated Thrust

* -7
Coefficient 8.5%10 Mass 0.49Kg
Thrust Coefficient Cr 8.8%10" Iy 0.00102 Kg*m?
Drag Coefficient Cp 11.3*10° ly 0.00059 Kg*m*
| 0.127 , 0.00138 Kg*m?
meter

Table 1.2 some experiment results for thrust calculation

Duty (ms) RPM(Rou | Motor Weight Thrust (N)= Thrust coefficient=
nd Per | speed (kg) Weight*gravity Thrust/(Motor speed?)
Minute) (rad/s)
1410 11225 1175.48 | 0.125 1.23 8.12 *10”
1900 20730 2170.84 | 0.39 3.83 8.87*10"
Average= 8.5%10”

The dynamic thrust of the motor-driven propeller was identified experimentally as
described in references [2] [47] also the thrust coefficient calculated in same experiment is

approximate to thrust coefficient in [46] see Table 1.1. The frequency response of the propeller
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(GemFan 5030) speed with respect to the duty ratio of the motor speed controller (see Table 1.2)
showed that dynamic thrust and duty ratio could be modelled as a first-order transfer function[47]

configuration for this experiment showed in Figure 1.4.

Our platform was based on a 250 mm (QAV250) fiberglass frame similar to experiment in
this work [12]. A homemade software, and the electronic components included an Arduino Due,
an IMU, and an electronic speed controller. The real photo of quadrotor in Figure 1.2. The front
adds part because Arduino Duo is long and the black thing below it is just polyester to reduce
noise affect on Ultrasonic sensor. Since the software was mostly custom-developed, it could
easily interface with any additional sensors and modify the control laws of the PID control

strategy [22] for attitude stabilization in Figure 1.3.

Figure 1.2 The realized quadcopter.
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Figure 1.3 PID control strategy for attitude stabilization [22].

'q-__\ "E}

Ve

04 :is the desired roll Angle. ¢q: is the desired pitch Angle. y:is the desired yaw angle.

Table 2.3 Experimental thrust calculation

Duty Cyclems  |1178.00{ 1214.00 1272.00 1333.00] 1381.00| 1410.00( 1473.00] 1512.86[ 1518.10| 1556.13| 1583.25| 1612.83| 1660.00| 1900.00
RPM 3000.00| 4300.00] 6330.00] 8535.00]10260.00] 11225.00] 13590.00] 14944.29| 15210.00]16533.75| 17490.00| 18695.00] 20211.00|20730.00
rate Rad/s 314.16| 450.29| 662.88| 893.78| 1074.42| 1175.48| 1256.64| 1564.96| 1644.10| 173141 183155 1957.74f 2116.49| 2170.84
T(N) 0.0869] 0.1784| 0.3867] 07030 10159| 12159 1389 14700 1.6224 17993] 2.0135 23005 2.6887] 2.8286

Note: the thrust in Table 1.2 calculated using balance in grams multiplied by gravity. This

is clear that is approximately similar to thrust calculated by f; in (1.47) based on angulare

velocity shown in Table 1.3 by Rate (Rad/s). Optical RPM give real round per minute.
Rate(rad/s)= RPM*2n/60.
T(N)=Ct*Rate?
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Figure 1.4 Hardware configuration for thrust calculation.

1.Optical RPM meter, 2. Balancer in grams, 3. Wattmetter, 4. To control motor.

1.4 Dynamic model used for altitude stabilization

Our platform is the same which used for attitude stabilization in [38][48] but in this work
for altitude stabilisation will use Teensy 3.2 as autopilot of our prototype[49]. A homemade
program, and the electronic components involved an Teensy 3.2 [50] see Figure 1.6, an Inertial
Measurement Unit(IMU), and PX4FLOW Smart Camera[51] see Figure 1.7. Reason of using this
Smart camera for its good ultrasonic sensor and its sampling time is 0.01second. The real picture
of quadcopter in Figure 1.5. Since the code of program was mostly self-developed, it could
interface with any optional sensors and changing the control strategies for the studied case. We

also based on some ready library of FreeIMU [52] [53] and this project[54].
u
Z=—cosfdcosp—gQ
m

u=f+f,+f+1, (1.48)
6 = ¢ ~0in hovering
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Figure 1.6 Teensy development board 3.2.
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Figure 1.7 PX4FLOW Smart Camera.

1.5 CONCLUSION

In This chapter we present dynamic model of a Quadcopter. Also the basics knowledge of
modelling the quadcopter as Euler-Lagragian equation presented to get dynamics equation of a
quadcopter which will be used in simulation section. Provide experiment identification for
quadcopter dynamics parameters. The obtained dynamics model using Euler-Lagrange equation
in our case was simplified to use it with PID controllers by neglect gyroscopic torque effect and
the cross coupling. We provide some pictures for the two realized quadcopter the first its flight
controller based on Arduino Due and the second based on Teensy 3.2. We have used in the first
Arduino Due because wide library used and more practitioner. After get good skills and more
understand about flight controllers we have improve the prototype by using Teensy 3.2
development board. Teensy 3.2 development board is less size and weight ten times less than
Arduine Due and faster program execution.The obtained models will used in simulation for

design PID controllers for quadcopter stabilization.
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Chapter 2



Modeling rigid manipulator robot

2.1 Introduction

The control and simulation of robots requires the development of different
mathematical models. Several levels of modeling —geometric, kinematic and dynamic- are
needed depending on the objectives, the constraints of the task and the desired performance.

Obtaining these models is not an easy task. The difficulty varies according to the
complexity of the kinematics of the mechanical structure and its degrees of freedom. For that
we take the dynamic model of PUMAS560 from [24].

This chapter shows some mathematical tools witch using for modeling robot, the aim
of modeling to simplifies and estimates the values of the geometric and dynamic parameters
of the robot. Besides to find a control law on robot controller with reduced number of

operations.

2.2 PUMA 560 robot Dynamics:
The dynamic model used for PUMASG6O it is [24]:

M (q).6+ B(a).[6.6]+ C(q).[0°]+G(q) =T (2.1)
Where,

B(q) : nxn(n-1)/2 matrix of Coriolis torques

C(q) : nxn matrix of Centrifugal torques

[dq]: n(n-1)/2x1 vector of joint velocity products given by:
[6,-d, 0 -Gge-r G G Gy Gy G- s G oG G a0 1

[62]: nx1 vector given by: [¢,”,6,%,.....d, ]

The position of zero joint angles and coordinate frame attachments to the
PUMA arm are shown in Figure 2.1 above. The modified Denavit-Hartenberg
parameters, assigned according to the method presented in [26] are listed in Table 2.1.
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i () o, a4 d
(deg rees) (meters) | (meters)

1 0 q, 0 0

2 -90 d, 0 0.2435

3 0 ds 0.4318 | -0.0934

4 90 a, -0.0203 | 0.4331

5 -90 Us 0 0

6 90 s 0 0

Table 2.1 Modified Denavit - Hartenberg Parameters[24]

The mass of links 2 through 6 of the PUMA arm are reported in Table 2.2, the

mass of link 1 in not included because that link was not removed from the base.

Separately measured mass and inertia terms are not required for link one because that

link rotates only about its own 2 axis.

Figure 2.1. The Puma 560 Robot [55]

Link Mass

Link2 17.40

Link3 4.80

Link4* 0.82

Link5* 0.34

Link6* 0.09

Link 3 with complete Wrist 6.04
Detached Wirst 2.24

Table 2.2 Link Mass[24]
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The positions of the centers of gravity are reported in Table 2.3 the dimensions

coordinate frame attached to the link.

r,,r,and r, refer to the x, y and z coordinate of the center of gravity in the

Link N ry r,
Link 2 0.068 0.006 -0.016
Link 3 0 -0.070 0.014
Link 3

With Wrist 0 -0.143 0.014
Link 4* 0 0 -0.019
Link 5* 0 0 0
Link 6* 0 0 0.032
Wirst 0 0 -0.064
Table 2.3 Centers of Gravity[24].

Lmk IXX Iyy IZZ Imotor
Link 1 - - 0.35 1.14(+0.27)
Link2 | 0.130(+3%) | 0.524(+5%) | 0.539(+3%) | 4.71(+0.54)
Link 3 0.066 0.0125 0.086 0.83(£0.09)

W:;Ihn\ljve;ist 0.192(x 4%) | OCLBAEEN) | 2154 40p) :
Link 4* 1.8x10°° 1.8x10° 1.3x10° | 0.200(+0.016)
Link5* | 0.30x10° | 0.30x10° | 0.40x10° | 0.179(x0.014)
Link 6* 0.15x10° | 0.15x10° | 0.04x10° | 0.193(+0.015)

Table 2.4 Diagonal Terms of the Inertia Dynamics and Effective Motor Inertia. [24]

Jointl | Joint2 | Joint3 | Joint4 Joint5 | Joint 6

Gear Ration 62.61 107.36 53.69 76.01 71.91 76.73
Maximum Torque(N-m) 97.6 180.4 89.4 24.2 20.1 21.3
Break Away Torque (N-m) 6.3 55 2.6 1.3 1.0 1.2

Table 2.5 Motor and Drive Parameter[24]
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2.3 Using PUMA Robot as 3-DOF Robot:
Recall that only three links of PUMA robot are used in this thesis, q, =q;, =g, =0.

The configuration space equation same in (2.1),

With,
Matrix A is a symmetric 6x6 matrix:

a, a, a; 0 0 0
a, a4, a,; 0 0 O
A(q) — a31 a32 a33 O a35 0 (22)
o 0 a, 0 O
0 0 0 0 a, O
(0 0 0 0 0 a,
Where,
a,=l,+1,+1,CC2+1,.8523+1,,.5C23+1,,.5C2+1,,.5523+
+ 2.[| ;.C2523+1,C2C23+1,..8523+1,,.C2.523+ |22.SC23] (2.3)
a,=1,52+1,C23+1,C2+1,,.523-1,,.C23 (2.4)
a,,=1,C23+1,,.523-1,.C23 (2.5)
Ay, =1, +1, + 1, +2[1,.53+1,C2+ 1, +1,,.53] 2.6)
A, =15.93+1,+1,,C3+1,,.S3+2.1, 2.7)
a33:|m3+|6 +2.|15 (28)
g5 =I5 + 17 (2.9)
Ay =g + 14 (2.10)
45 =13~ 0 (2.11)
g5 = | s + 14 (2.12)
I P P (3.13)

Ay =ay,, A3 = a3 and A, = a3
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While matrix B is:

_b112 b1s
0 0
0 0
B(q) =
b412 b413
0 0
| 0 0
Where,

by, =2.[-1,.8C2+1,C223+1,.5C23-1,,,5223+1,,.2.5C23+ 1,,C223+ 1,,.5C23 +

0

b214
b314

0

b514

0

O O O O O o

b123

b223

o O O

o O O O O o

(=2
N o

o O O o

+1,,.(1-2.8523)] + 1 5.(1- 2.5523) + 1,,.(1 - 2.552)

by, =2.[1,.C2.C23+1,.5C23-1,,C2.523+1,,.2.5C23+1,,C2.C23+1,,5C23+
+1,,.(1-2.8523)]+ 1 ,,.(1- 2.5523)

o O O O O o

by =2.[-SC23+1,..5C23+1,.C2C23+1,,CC23]

byys = 2.[-15.523+1,,,C23+1,,.523]

by, =1,,.823+1,,.523+2.1,,.523.(1—0.5)

b,,s = 2.[-1,,.53+1,.C3+1,,.C3]

Byos = 2.[116.C3+ 1]

D,ss =2.[1,,.C3+1,,]

bays = 2.[1,0.523.(1-0.5)] +1,,.523+1,,.523

O O O O O o

By =Dy =—1,,.523+ 1,4.523+ 2.1,,.523.(1— 0.5)]

Bays =—bay, =—2.[1,,.523.1— 0.5)] + 1,,.523+ 1,,.523

bas =—1,0.523—1,,.523

bays = b, = 1,0.523+1,,.523

Matrix C is:

C(a) =

o
N
w

o O O o

O O O O o o

O O O O O o

O O O O o o

o

N
w

o O o o

O O O O O o

O O O O O o

O O O O O o

O O O O o o

(2.14)

(2.15)

(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
(2.21)
(2.22)
(2.23)
(2.24)
(2.25)
(2.26)

(2.27)

(2.28)
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Where,
c,=1,C2-1,.523-1,.52+1,,C23+1,,.523

(2.29)
€, =05b,;=-1,.523+1,,C23+1,,.523 (2.30)
¢, =-0.5b,,,=1,.5C2-1,.C223-1,.5C23+1,,.5223-1,,.2.5C23-1,,.C223-1,,.SC23-
-1,,.(1-2.8523)-05.1,,.(1-2.5523)-0.5.1,,.(1- 2.552) (2.31)
C,;, =05b,,; =-1,,S3+1,.C3+1,.C3 (2.32)
€y =—05b,,,=-1,C2C23-1,.5C23+1,,C2523-1,,.25C23-1,,C2C23-1,,.5C23 -
—1,,.1-2.8523)-05.1,,.(1-2.5523) (2.33)
Cyy =—Cps =1,,.53—-1,.C3-1,,.C3 (2.34)
s, =—0.5b,,,=SC23-1,,.SC23-1,,C2.C23-1,,CC23 (2.35)
Cs, =—0.5b,, =—1,,.C3—1,, (2.36)
And matrix G is:
0
g,
g
9@=| (2.37)
Os
— O -
g,=9,C2+9,.523+9,.52+9,.C23+9,.523 (2.38)
g, =0,.523+9,.C23+9,.523 (2.39)
0s = 95-823 (2.40)
Where,

Si = sin(6i), Ci = cos(8i), Cij = cos(0i+ 6j), Sijk = sin(6i +6j +06k),
CCi = cos(6i).cos(i) and Csi = cos(6i).sin(6h)

Tables 2.7 and 2.8 contain the computed values for the constants appearing in the

equations of forces of motion,
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|, =1.43+0.05 |, =1.75+0.07
I, =1.38+0.05 |, =0.69+0.02
|, =0.372+0.031 I, =0.333+0.016
|, =0.298 +0.029 I, =—0.134+0.014
l, =0.0238+0.012 l,, =—0.0213+0.0022
l,, =—0.0142+0.0070 |, =-0.011+0.0011
|, =—0.00379 + 0.0009 l,, =0.00164 +0.000070
|, =0.00125+0.0003 |, =0.00124 + 0.0003
|,, =0.000642+0.0003 I, =0.000431+0.00013
|, =0.0003+0.0014 I, =—0.000202 +0.0008
|, =—0.0001+0.0006 |, =—0.000058+0.000015
I, = 0.00004 +0.00002 |, =1.14+0.27
|, =471+0.54 |_, =0.827 +0.093
| ,=02+0.016 | . =0.179+0.014
|, =0.193+0.016

Table 2.6 Inertiel Constants (kg.m?)[24]

g, =-37.2+05 g, =-8.44+0.20
g, =1.02+0.50 g, =0.249+0.025

g, =—0.0282 + 0.0056

Table 2.7 Gravitational Constants (N.m) [1]

The three degree of freedom PUMA robot has the same configuration space equation
general form as its 6-DOF convenient. In this type, the last three joints are blocked so they
keep their initial states while the robot is moving. Using the configuration equation of the
robot, and by setting the last joints as zero always, we can define a general equation that
allows us to use PUMA robot as a 3-DOF robot.
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However, the 3-DOF PUMA will have the same kinematics of its 6-DOF convenient
with q,,q;and g set to zero.
For the configuration space equation of the robot in (2.1),

We setq, =0, =q, =0, this yields:

G =[t,..6,..60,...0..0..0 |, (2.41)
[aa]=[4,9,...,95...0...0...0...4,,¢,...0...0...0...0...0...0...0...0..0]" , (2.42)
l42]=[a,%.-.¢,%..4,%..0..0..0] . (2.43)

B(0).90 = [B117.6, +busg Gy + D105 - D G- 0Dy Gyl +0,15:0,5--0..0] 5 449
And

CQA = 00,7+l €0 + g8 G, #1020 6,7 +C000,.0] (2.45)

The angular acceleration is found as to be:

4= A" (@).T—[B(a).9q+C(a).9% + 9(@)] (2.46)
Now let | ={['—[B(a).4¢+C(@).* +g(@) /= 4=A"().I (2.47)
. . . .2 L2
I, =T} _[bllZ'qqu +b,15.0,05 +b123.q2q3]—[012.q2 +Cy3.03 ] (2.48)
I, =T, _[bzzs-qzqs]_ lCZl'qlz +C23.q32 J_ 9, (2.49)
I, =15 _lc31'q12 +032-q22J_ 93 (2.50)
I, =T, _[b412-Q1q2 +b413-q1Q3] (2.51)
ls =T - [Csl-qlz +Coply” J— 9s (2.52)
ls =T% (2.53)

36



These equations tell us that in order to ensure that ¢, , ¢ and ¢, keep their zero values, it

is better to setl, =1, =1, =0; so by holding the control torques of the last three joints as
I, = [b412-q1Q2 +b413-q1q3] (2.54)

I = 1051-(112 + C52-q22J+ Os (2.55)

AndTI, =0, the last three joints are blocked at their initial states.

2.4 Conclusion
In this chapter we give some background mathematical to modeling robot we talking
about geometric description and dynamic modeling and about modifications to get 3DOF.
The dynamic model description for PUMAS560 robot was presented, after we explain
how can we using PUMAS560 as 3DOF robot, the control for it will presented later which is

optimized fuzzy logic controller.
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Chapter 3



A Quadcopter hardware description

3.1 INTRODUCTION

In this chapter, the main quadcopter’s component parts are presented. They are
fundamental to identify the quadcopter’s attitude and its height from the ground.
Every quadcopter requires, at minimum, the following components: a frame, motors
with propellers, motor speed controllers, a battery, a radio receiver, a flight controller, and an
attitude sensor. This chapter will discuss the function of each component and general hardware
connection between the electronic components. The real photo of the quadcopter shows in Figure
3.13 and Figure 3.14.

3.2 Flight controller

Flight controller is the brain of a quadcopter and it performs the necessary operations to
keep the quadcopter stable and controllable. For that we used Teensy development board and
Arduino due showed in Figure 3.1 and Figure 3.2.

Teensy v3.2 development board [65]:based on the 32 bit ARM Cortex-M4 72 MHz CPU .The
Teensy is a breadboard-friendly development board with loads of features in a, well, teensy
package. Each Teensy 3.2 comes pre-flashed with a bootloader so you can program it using the
on-board USB connection: No external programmer needed! You can program for the Teensy in
your favorite program editor using C or you can install the Teensyduino add-on for the Arduino
IDE and write Arduino sketches for Teensy.

i =B @
(XX XX X X

Figure 3.1: Teensy Development board[65].

Arduino due: The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM
Cortex-M3 CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller[66].
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Figure 3.2: Arduino due[66].
3.3 Inertial Measurement Unit

iIMU is the acronym of Inertial Measurement Unit, which is sensor capable of measuring

the orientation of a body in 3D space[67]. For our project we used GY-86 see Figure 3.3.
GY-86 Description:

Small based on the sensor board of Invensense MPU-6050 (3-axis accelerometer and 3-

axis gyroscope), digital 3-axis compass HMC5883L Honeywell and the pressure sensor MS56.

Figure 3.3 :GY-86 IMU[67].

The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro in
a single chip. It is very accurate, as it contains 16-bits analog to digital conversion hardware for
each channel. Therefor it captures the x, y, and z channel at the same time. The sensor uses
the 12C-bus to interface with the Arduino[68].

The Honeywell HMC5883L is a surface-mount, multi-chip module designed for low-
field magnetic sensing with a digital interface for applications such as lowcost compassing and
magnetometry[69].
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The MS5611-01BA[70] is a new generation of high resolution altimeter sensors from
MEAS Switzerland with SPI and 12C bus interface. This barometric pressure sensor is optimized

for altimeters and variometers with an altitude resolution of 10 cm.
3.4 Speed Controllers

Every motor needs an individual electronic speed controller see Figure 3.4. These speed
controllers accept commands in the form of Pulse Width Modulation signals and output the

appropriate motor speed accordingly[71].

Figure 3.4 Electronic Speed Controller (ESC)[71].
3.5 Motors and Propellers

The motors spin the propellers to provide the quadcopter with lifting thrust. Quadcopters
almost exclusively use brushless DC motors see Figure 3.5. For our project we used The DYS
BE1806-2300kv Brushless Multirotor Motor and propeller reference is GemFan 5030 see Figure
3.6.

The DYS BE1806-13 (Figure 3.5) multirotor motor is ideal for small to medium sized
multirotors and comes complete with mounting bolts, a prop adapter and 150mm power leads

with 2mm bullet connectors[71].
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Figure 3.5 brushless DC motors (DYS BE1806-2300)[71].

GemFan Propellers see Figure 3.6 have set the gold standard in the small class Multirotor
community[72]. Known for their durability, great balancing and superb hub centering and
expendable price. They come packaged as a set of 2, with one CW rotation and one CCW
rotation. There is a wide range of color options that can be mixed and matched to help with

multirotor orientation. This is the perfect upgrade for any small multirotor.

&

Figure 3.6: GemFan Propellers[72].
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3.6 Data acquisition device

Data acquisition systems are used by most engineers and scientists for laboratory
research, industrial control, test and measurement to input and output data to and from a
computer. In our work the HC-05 Bluetooth device (see Figure 3.7) used for data acquisition. It is

a great solution for wireless communication.

Figure 3.7: HC-05 Bluetooth device[73].

2.7 Radio Receiver

The radio receiver (Rx) receives radio signals from an RC transmitter and converts them
into control signals for each control channel (throttle, yaw, roll & pitch). Modern RC receivers
operate on a 2.4 GHz radio frequency, while older Rx units often used 72 MHz frequencies. Rx
units may have as few as 4 channels, but many have more channels for additional control options.
We selected a Turnigy 6 Channel Receiver for this project, seen in Figure 3.8[74].

Figure 3.8: Radio Receiver[74].
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3.8 Lipo battery

The battery provides electrical power to the motors and all electronic components of the
quadcopter. Lithium Polymer (LiPo) batteries are used almost exclusively, because they have
high specific energy. For this project, we selected Turnigy 2200mAh batteries, seen in Figure 3.9.

Figure 3.9 Turnigy 2200mAh battery[74].

Turnigy batteries are known the world over for performance, reliability and price. It’s no surprise
to us that Turnigy Lipoly packs are the go-to pack for those in the know. Turnigy batteries deliver
the full rated capacity at a price everyone can afford[74].

3.9 UBEC power

Power receiver and servos with UBEC power. The all new Turnigy 4A UBEC “Universal
Battery Elimination Circuit” is an advanced switching DC-DC regulator which will supply a
constant 5A or more with short bursts of up to 4amps. The Turnigy UBEC plugs into a 3 -10 Cell
Lipoly pack and supplies a constant 5 or 6v to your receiver. The system include an anti-short
circuit and overheat function with a thin metal shield cover, reducing noise Also included is an
Output filter to reduce noise, an on/off switch and a step down regulator adapter see Figure
3.10[75].
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Figure 3.10: Universal Battery Elimination Circuit(UBEC)[75].
3.10 Quadcopter frame

Quadcopter Frame The frame of the quadcopter provides the physical structure. It joins
the motors to the rest of the quadcopter and houses all of the other components. The frame must
be suitable to allow all four propellers to spin without collision, but must not be too large and
therefore too heavy for the motors. For our quadcopter we chose a HobbyKing™ Totem Q250
Quadcopter Kit frame as seen in Figure 3.11, which measures at 250mm across opposite
motors[76].

HMF Totem 0250 Quadcopter

Figure 3.11: a HobbyKing™ Totem Q250 frame[76].
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3.11 Hardware diagram

There are three main electronic units in our Quadcopter system. The Microcontroller
Unit (MCU) for the implementation of controller, the Electronic Speed Controllers
(ESCs) for the speed control of the brushless DC motors and finally the Inertial
Measurement Unit (IMU) for providing the orientation data for state estimation. The
selection and functionality of MCU and ESCs and their operation is described in this
chapter. Figure 3.12 depicts the basic inter-connects between different electronic hardware

modules.
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Figure 3.12: hardware diagram of interconnection between electronics parts.
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Figure 3.14: Top view of the realized quadcopter.
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3.12 CONCLUSION

The purpose of this chapter was to outline the development of the hardware that makes up
the autopilot system. The chapter began with an explanation of the choice of airframe, batteries,
actuators, sensors, communication links and propulsion system. The diagram of wire connection
between all components parts also presented. The next chapter will present discussion about

stabilization of a quadcopter based on the developed hardware.
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Chapter 4



Tuning PID Controllers for Stabilization of a
Quadcopter

4.1 INTRODUCTION

In PID control design, the parameters of the controllers are tuned manually or by using the
tuning rules found in the linear control-based literature, such as Zieglar-Nichols (Z-N) tuning
[9][10]. Unfortunately, the manual tuning method has limitations of being time consuming and
very tedious. While the conventional Z-N method has been very useful and helpful in our research

in terms of practicality.

In this chapter we give brief review of the conventional Z-N method. Present experimental
results produced from the using ZN in both attitude and altitude stabilisation of a Quadcopter.
Present strategy of the using PSO for PID controllers gains optimization for quadcopter

stabilisation. Provide simulations and experimental results for quadcopter stabilization.

4.2 TUNING THE PID CONTROLLER USING THE ZIEGLER-NICHOLS METHOD

The Ziegler and Nichols proposed rules [9][10] for determining the values of proportional
gain Kp, integral time Ki, and derivative time Kd. The determination of such parameters of PID
controllers or tuning of PID controllers can be achieved on-site using experiments involving the
quadrotor. There are two methods within the Z-N tuning approach. The first method of Z-N tuning

is based on the open-loop step response of the system.

The second method of Z-N tuning, used in this work, is a closed-loop tuning method that
requires finding the ultimate gain and period. This can be achieved by adjusting the controller gain
(Kc) until the system undergoes sustained oscillations (at the ultimate gain or critical gain), while
maintaining the integral time constant (Ti) at infinity and the derivative time constant (Td) at zero.
This work used the second method as shown in Table 4.1[9][10].
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Table 4.1, Ziegler-Nichols Tuning rule based on critical gain Kc and critical period Pc.

Type of Controller Kp K Kq
P 05xK; | 0
Pl 0.45xK; |1/1.2xP, |0
PID 0.6xK. [05xP,  [0.125xP,

After completing development of the quadrotor, we had to determine the PID parameters
efficiently, and with little theoretical basis since initially, the quadrotor dynamics were not
precisely determined. Therefore, the Z-N method was applied as the first step towards stabilizing
the quadrotor because it enabled experiments to be used for real-time acquisition of responses that
could be plotted to determine PID parameters. Our quadrotor was symmetric, so therefore we only

applied this method to the pitch component of the PID controller.

To verify the performance we used the integral of square error (ISE) as comparison criteria,

defined as follows:
ISE = fe(t)dt (4.1)

e= The desired angle —The actulle angle

Therefore, for PSO-PID tuning, this criteria (4.1) was used as the objective function to seek
a set of PID gains such that the control system met the minimum performance criteria.

4.3 PID TUNING BY PARTICLE SWARM OPTIMIZATION

There are a lot of heuristic optimization methods, and one of the most technical of these is
PSO, first created by Kennedy and Eberhart in 1995 [18]. It is based on Swarm Intelligence
methods, and aims to identify the optimal solution by imitating the movement of particles in a

swarm similar to fish schooling or birds flocking.

There are several algorithms used for PSO [16][17][18]. In this work, the integral of square
error (ISE) and maximum overshoot of error were fitness functions (multi-objective
functions)[56], and the constriction coefficient [18][36] method was selected because method was
selected because never used before with our case. The swarm is guaranteed to converge [18] and
with simplest control of the convergence speed, whereby the speed in (4.2) and position in (4.3) of

each particle changed according the following:
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Vi (t +1) =X lvii (t)+ ¢1(yij (t)_ X (t))+ 4, (91 =% (t))J (4.2)

Where:

X = 2k
[2—¢—J#lp-4)

With:
¢:¢1+¢2' ¢1 =Clrl’¢2 =G,l,, ¢24' k E[O 1]
c1 and c; are the acceleration coefficients, and r; and r, are random values in [0 1].
X; (t +1): X (t)+vij (t +1) (4.3)

PSO was used to tune PID gains (Kp, Ki, and Kd) offline using the model given in equation
(1.47). PSO first produced an initial swarm of particles in the search space. Each particle
represented a solution for PID gains, where their values were set within the range of the produced
Z-N gains. Fifteen and twenty were chosen as the number of particles within the swarm and
iterations within the search, respectively. A good set of PID controller gains yielded a good system
response, and resulted in minimization of the performance criteria in listed in equation (4.1). The

general strategy of the optimization problems is represented in Figure 4.1.

PSO Algorithm
finding the optimal Kp, Ki, Kg

gl |
Desired Angle /™ errorangle (e) / K, xe+Kx [e+K:. xe=t, / Angular Acceleration|§, o) f . f
R 1L 'Y Ix.y.z
ﬁ
= Actual Angle

Figure 4.1 The general strategy of optimization

Note: Overshoot= MAX(Actual Angle)-Desired Angle

4.4 RESULTS AND DISCUSSION

In this section we describe the simulation and experimental results for three sets of PID

gains. The first PID gains were obtained using the Z-N method. The second PID gains were
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obtained using PSO, for which the objective function was equal to sum of the integral square of
error and maximum of overshoot. The third PID gains were also obtained using the PSO method,

but the objective function was replaced with the Integral Square of Error function.

4.4 1 Z-N PID tuning for attitude stabilization

This First, we employed Z-N tuning experimentally to determine PID controllers gains for
attitude stabilization. Then, we varied the Z-N gain (Kc) until an oscillation appeared in our

experiment as shown in Figure 4.2.

Figure 4.3 shows the pitch angle error when the Z-N gain was varied. Here, a decrease in
error could be observed as Kc increased, until oscillation occurred. Based on the Z-N method, the
critical gain is depicted in the black rectangular region in Figure 4.3 and its corresponding value is
shown in Figure 4.2 (K.= 40). A magnified rendition of the black rectangle shown in Figure 4.3

was used to calculate the critical period (Pc=0.2 s), as shown in Figure 4.4.
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Figure 4.2 Critical gain (K;) variation in real time.
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Figure 4.3 Pitch error angle when K. was varied in real time.
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Figure 4.4 Magnified black rectangle to calculate Critical Period Pc.in real time
Using the second Z-N method in Table 4.1, we found that:

Kce= 40 , Pc= 0.2 for PID rule : Kp=0.6xKc=24; Ki=0.5%xPc=0.1;
Kd=0.125%Pc=0.025.

4.4.2 ZN PID for altitude stabilization

Same application which done in previous section will apply for tuning PID controller

using ZN for altitude stabilization of a quadcopter.

Figure 4.6 presents the altitude error when the Z-N gain was changed. Here, a decrease in
error could be observed as Kc increased, until oscillation come. Based on the Z-N procedure, the
critical gain is in Figure 4.6 and its corresponding value is presented in Figure 4.5 (K.= 1.6).

Figure 4.7 presents the critical period (Pc=5 s).
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time. in real time.
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Using the second Z-N procedure in Table 4.1, we got that:

Figure 4.8Altitude control while ZN using.

Kc= 1.6, Pc= 5 for PI rule : Kp=0.45xKc=0.72; Ki=0.5%Pc=2.5; Kd=0.

The calculated PID parameters found using the Z-N procedure, is summarized in Table 4.2.

Table 4.2 Summary of PID parameters found by Z-N procedure

P

D

Z-Ngains | 0.72

2.5

0

While ZN method in implementation also we record real time of altitude control see Figure

4.8 is very clear that has same behaviour of Fig 4.6 which has the real time changing of altitude

error.

The PID parameters in Table 4.2, were validated experimentally, and the responses of the

altitude error for PID Z-N, are presented in Figure 4.9, it is very clear the hovering error is

between 1.5 to -1.5 centimetre.
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Figure 4.11 The generated controlled thrust. Figure 4.12 altitude error for one second.

Figure 4.10 presents the produced PID control by using Figure 4.10, this response is output
of PID block but the control after adding the necessary constant for weight balancing is

represented in Figure 4.11 which is the generated thrust for each motors.

The all previous presented figures are for 70 second but we choose to take snapshot for just
one second to see our response system how work in real time. Figure 4.12 shows that our altitude
errors are between -1.5 to 1.5 cm. the corresponding PID control presented in Figure 4.13. The
PID control it must add amount which balance the weight of quadcopter its variation in Figure
4.14. While duration on second also we record Roll and Pitch response which are related with
attitude stabilization. We add them just to demonstrate the real time application. Figure 4.15
shows the real time responses for Roll and Pitch angle error tracking is very clear while
quadcopter flying that errors of the roll between -0.2 to 0.2 degrees and Pitch between -0.4 to 0.2

degrees. Figure 4.16 shows the corresponding control for Figure 4.15. The actuators of quadcopter
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have driver and motor and propeller this system need Pulse Width Modulation (PWM) or we can
say to it duty cycle which descripted in millisecond then the generated control law by PID

descripted for each motors presented in Figure 4.17.
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4.5 PSO - PID gains optimization

We established intervals for the resulting PID gains achieved using the Z-N method, as
shown in Table 4.3 the PSO method then searched for the optimal PID gains depending on the
objective function. The search for the optimal PID was conducted offline, meaning that all
calculations were performed via simulation, for which the determined gains were verified both
using the simulation and experimentally. We used two different objective functions: the first was
the sum of the maximum of the overshoot and the Integral Square of Error (ISE), and the second

was just the Integral Square of Error.
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Table 4.3 Limited PSO search interval based on Z-N derived gains

Z-N produced gains

Chosen interval for PSO

P 24 [13 30]
| 0.1 [0.01 1.5]
D 0.025 [0.01 1.5]

The PSO needed to determine number of particles and iterative number in order to

calculate the PID gains. In our case the number, of particles was set to 15 and the iterative number

was set to 20. Figure 4.18 shows changes in the particles’ positions during the search for

optimized PID gains according to the first objective function. The blue points represent the

swarms, the black points represent the local best particles, and the red points represent the global

best particles.
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Figure 4.18 Change in particles’ position during the search for the optimal PID controller

gains.
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The calculated PID gains obtained using two objective functions and the Z-N method, are

summarized in Table 4.4.

Table 4.4 Summary of PID gains obtained by Z-N tuning and PSO

Objective function P I D
Z-Ngains 24 0.1 0.025
PSO1 Max(overshoot)+ ISE | 28.5 0.0834 1.2
PSO2 ISE 25.69 0.4345 0.4325

The PID gains shown in Table 4.4, were tested in our simulation model, and the step
responses for the pitch angles are shown in Figure 4.19. The comparative simulation results are

given in Table 4.5, based on ISE, overshoot, and rise time.

With Z-N gains With PSO1 With PSO2

Figure 4.19 Pitch angles step responses for the three PID gains in simulation.

Table 4.5 Comparison of the Z-N and PSO gains for pitch angle stabilization.

Rise time(s) | Overshoot(degree) | ISE
Z-N 0.11 0.29 0.087
PSO1 |0.132 0.0148 0.086
PSO2 | 0.107 0.23 0.08

The objective function of PSO2 was only the Integral Square of Error. From Table 4.5, it
can be seen that the rise time was the same for PID Z-N and PSO2, given the existing overshoot,

but with lower ISE in the latter. It is very clear that the rise time and overshoot in the PID Z-N
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case was ameliorated by the PSO2. However, when we added the maximum of the overshoot as a
second criterion to the objective function, it resulted in a lower overshoot, but with a smaller rise
in ISE.

The PID controllers in Tab 4.4, were tested experimentally, and the plots of the pitch error
angle in steady-state for PID Z-N, PID PSO1, and PID PSO2 are shown in Figure 4.20, Figure
4.22, and Figure 4.24, respectively. The pulse responses are shown in Figure 4.21, Figure 4.23,
and Figure 4.25, respectively and the comparative results are listed in Table 4.6, based on ISE for

steady-state and pulse response conditions.
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Table 4.6 Experimental comparative results for three optimized PID gains.

Rise time (s) | Overshoot ISE_steady stat ISE_pulse
(degree)
Z-N 0.12 1.01 0.0433 65.506
PSO1 0.18 0.25 0.0122 40.554
PSO2 0.13 0.7 0.0107 45.87

The simulation results of the Z-N tuned PID show that the pitch angle error response
produced high ISE, high overshoot, and low rise time, but a better PID performance was obtained
by applying PSO. Different objective functions provided different PID controller gains. In case
when the overshoot was taken into consideration by the objective function, the pitch error
response produced the lowest overshoot with a low ISE, but the highest rise time. In the case when
the overshoot was not taken into consideration by the objective function, the response produced
the lowest ISE with an existing overshoot. The experimental results in Table 4.6, and Figure 4.20
through Figure 4.24 depict the corresponding simulation analyses. However, the Integral Square of
Error of PSO1 was lower than PSO2 because the response of the latter had greater overshoot than
PSOL. In actual tests, the Quadcopter is a noisy system and we cannot eliminate the gyroscopic
torque and Coriolis-centripetal force that were neglected in the simulation results. For roll and the
yaw motions, PID controllers were optimized using the same method presented in Figure 4.26, and
demonstrated successful results and the error of three angles roll, pitch and yaw around 0.3 degree.
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Figure 4.26 errors angles of the roll, pitch and yaw implemented together in experiment.

4.6 CONCLUSION

We provide experimental results of ZN method for PID controllers gains identifications
for quadcopter stabilization. ZN tuning with fast way and least required effort to experimentally
select the appropriate PID gains which stabilize our quadcopter in real time. To improve the
performances is better use new recent optimization method, PSO selected for this reason. The
second advantage of the Z-N method found in this study is that it produces PID gains that can be
put into intervals, such that the PSO search within an interval by determining the sum of the
Integral of Square Error and the maximum of the overshoot as a multi-objective function [19] or

a fitness function.

We provide results of optimized PID controllers for attitude stabilization of a Quadcopter
using PSO by the constriction coefficient method was never used before for attitude control of a
Quadcopter. The main advantage of optimization process that find the optimal solution with
scientific method not as manual finding depending on the luck, and let the user of it more
confidence with their results. The proposed method was tested both using a MATLAB simulation
and experimentally. The simulation and experimental results were also compared with a
conventional Z-N tuning PID controller and with two different objective functions that the PSO
depends on to search the optimal PID controller gains. The efficiency of PSO was verified

through simulation and experimental results in our case.
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Chapter 5



Fuzzy logic controller Optimization

5.1 Introduction

This chapter introduces the basic concepts, notation, and basic operations for the
fuzzy sets that will be needed in the following chapters. Fuzzy sets as well as their operations
will be discussed in this chapter. For this reason, in this chapter we will focus only on fuzzy
logic. Since research on fuzzy set theory has been underway for over 30 years now, it is
practically impossible to cover all aspects of current developments in this area. The main goal
of this chapter is the optimization of a proportional derivative (PD) fuzzy controller using the
particle swarm optimization (PSO) technique. More precisely, we conduct a comparative
study to access the performance of the PD fuzzy controller by optimizing its gain and its
structural parameters separately, the optimization will done offline; thus leading two distinct
fuzzy controllers. The two controllers are applied to control a 3DOF PUMAS560 robot

manipulator.

5.2 Fuzzy set theory

Fuzzy logic was first proposed by Zadeh (1965) and is based on the concept of fuzzy

sets[31]. Fuzzy set theory provides a means for representing uncertainty. In general,
probability theory is the primary tool for analyzing uncertainty, and assumes that the
uncertainty is a random process. However, not all uncertainty is random, and fuzzy set theory
is used to model the kind of uncertainty associated with imprecision, vagueness and lack of
information.
Conventional set theory distinguishes between those elements that are members of a set and
those that are not, there being very clear, or crisp boundaries. Figure 5.1 shows the crisp set
'medium temperature'. Temperatures between 20 and 30'C lie within the crisp set, and have a
membership value of one.

The central concept of fuzzy set theory is that the membership function M, like
probability theory, can have a value of between 0 and 1 [33] [57]. In Figure 5.2, the
membership function has a linear relationship with the x-axis, called the universe of discourse
U. This produces a triangular shaped fuzzy set. Fuzzy sets represented by symmetrical
triangles are commonly used because they give good results and computation is simple. Other
arrangements include non-symmetrical triangles, trapezoids, Gaussian and bell shaped curves
[34] [58].
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Let the fuzzy set 'medium temperature' be called fuzzy set M. If an element u of the
universe of discourse U lies within fuzzy set M, it will have a value of between 0 and 1. This

is expressed mathematically as [18][59]:

()01 (5.1)
When the universe of discourse is discrete and finite, fuzzy set M may be expressed as [11]:
M = Z,UM (Ui )/ui (5.2)
i=1

In equation (5.2) '/* is delimiter. Hence the numerator of each term is the membership
value in fuzzy set M associated with the element of the universe indicated in the denominator.

When n=11, equation (5.2) can be written as:

M=0/0+0/5+0/10+0.33/15+0.67/20+1/25+0.67/30+0.33/35
+0/40+0/45+0/50

(5.3)

J7E Medium
Temperature

Membership
Function o gl

0 10 20 30 40 " 50
Temperature (°C)

Figure 5.1 Crisp set (medium temperature) [18][59]:.

A Medium
Temperature
1.0
Membership
Function o g/
0.6-
M
0.4-
0.2-
0 10 20 30 40 50

Universe of Discourse (Temperature (°C))
Figure 5.2 Fuzzy set 'medium temperature'[18][59].
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5.3 Basic fuzzy set operations

Let A and B be two fuzzy sets within a universe of discourse U with membership
functions g, and ug respectively. The following fuzzy set operations can be defined

as[18][59]::

Equality: Two fuzzy sets A and B are equal if they have the same membership function within

a universe of discourse U.
1, (u)= 125 (u) for all u eU (5.4)

Union: The union of two fuzzy sets A and B corresponds to the Boolean OR function and is

given by:

Haoe (u): Hpi (u): max{,uA(u), Hg (u)} for all ueU (5.5)

Intersection: The intersection of two fuzzy sets A and B corresponds to the Boolean AND
function and is given by:

tns(U)=min{s, (U) 1z (u)}  forallueU (5.6)

Complement: The complement of fuzzy set A corresponds to the Boolean NOT function and

is given by:
uAU)=1-u,(u) forallueU (5.7)
Example 5.1[31]

Find the union and intersection of fuzzy set low temperature L and medium
temperature M shown in Figure 5.3. Find also the complement of fuzzy set M. using equation
(5.2) the fuzzy sets for n=11 are:
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J7E § Medium
Temperature
1.0+
Membership
Function ¢ gl
0.6 L M
0.4
0.2-
0 10 20 30 40 " 50

Universe of Discourse (Temperature (°C))
Figure 5.3 Overlapping sets 'low' and 'medium temperature[31]'".

L=0/0+0.33/5+0.67/10+1/15+0.67/20+0.33/25

+0/30+0/35+------ +0/50 (5.8)
M=0/0+0/5+0/10+0.33/15+0.67/20+1/25+0.67/30 '

+0.33/35+0/40+---+0/50
a - Union: Using equation (5.5)

£, (U)=max(0,0)/ 0+ max(0.33,0)/5 + max(0.67,0)/10

+max(1,0.33)/15 + max(0.67,0.67)/ 20 + max(0.33,1)/ 25 5.9)
+max(0,0.67)/30 + max(0,0.33)/35 + max(0,0)/ 40 + - -- '
+max(0,0)/50

4, (U)=0/0+0.33/5+0.67/10+1/15+0.67/20+1/ 25+ 0.67/30
+0.33/35+0/40+---+0/50

(5.10)

b- Intersection: Using equation (5.6) and replacing 'max’ by 'min' in equation (5.9) gives:

1, (Uu)=0/0+0/5+0/10+0.33/15+0.67/20+0.33/25 (5.11)
+0/30+---+0/50 '

Equations (5.10) and (5.11) are shown in Figure 5. 4.
c- Complement: Using equation (5.7):

1, (U)=(2-0)/0+(1-0)/5+(1-0)/10+(1-0.33)/15
+(1-0.67)/20+(1-1)/25+(1-0.67)/30+(1-0.33)/35 (5.12)
+(1-0)/40+---+(1-0)/50

67



y7i A
L
1.0- M
Membership Hiy (“)
Function g_g.
0.6 Him (“)
0.4-
0.2
0 10 20 30 40 750

Universe of Discourse (Temperature (°C))

Figure 5.4 'Union’ and 'intersection’ functions.[31]

5.4 Fuzzy relations
An important aspect of fuzzy logic is the ability to relate sets with different universes
of discourse. Consider the relationship [18][59]:

IF L THEN M (5.13)

In equation (5.13) L is known as the antecedent and M as the consequent. The relationship is

denoted by:
A=LxM (5.14)
Or:
R A e I A T | =
Where u, —u; and v, — v, are the discretized universe of discourse. Consider the
statement:
[l - bt

Then for the fuzzy sets L and M defined by equation (5.8), for U from 5 to 35 in steps of 5

68



min(0.33,0) --- min(0.331) --- min(0.33,0.33)

min(0.67,0) --- min(0.67,1) --- min(0.67,0.33)

LxM = (5.17)

min.(0,0) min.(O,l) min(d,0.33)

Which gives:

0.33 0.33 0.33 0.33 0.33]
0.33 0.67 0.67 0.67 0.33
033 067 1 0.67 0.33
0.33 0.67 0.67 0.67 0.33 (5.18)
0.33 0.33 0.33 0.33 0.33
0 0 0 0 0
0 0 0 0 0

LxM =

O O O O O o o
O O O O o o o

Several such statements would form a control strategy and would be linked by their union

A:A1+A2+A3+ ...... An (519)

5.5 Fuzzy logic control [31]
The basic structure of a Fuzzy Logic Control (FLC) system is shown in Figure 5.6.

Fuzzy logic controller (FLC) which used in this thesis is Mamdani. The main parts are:

5.5.1 The fuzzification process

Fuzzification is the process of mapping inputs to the FLC into fuzzy set membership
values in the various input universes of discourse. Decisions need to be made regarding[31]
[18][59]:
(@) Number of inputs
(b) Size of universes of discourse
(c) Number and shape of fuzzy sets.

A FLC that emulates a PD controller will be required to minimize the error e(t) and
the rate of change of error de/dt, or ce.
The size of the universes of discourse will depend upon the expected range (usually up to the
saturation level) of the input variables. Assume for the system about to be considered that e

has a range of £ 6 and ce a range of + 1.
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The number and shape of fuzzy sets in a particular universe of discourse is a trade- off
between precision of control action and real-time computational complexity. In this example,
seven triangular sets will be used.

Each set is given a linguistic label to identify it, such as Positive Big (PB), Positive
Medium (PM), Positive Small (PS), About Zero (Z), Negative Small (NS), Negative Medium
(NM) and Negative Big (NB). The seven set fuzzy input windows for e and ce are shown in
Figure 5.7. If at a particular instant, e(t)= 2.5 and de/dt =ce = -0.2, then, from Figure 5.7, the

input fuzzy set membership values are:

Hps (e) =07 ppy (e) =04
Hins () =06 1, (ce)=0.3 (5.20)

5.5.2 The fuzzy rulebase
The fuzzy rule base consists of a set of antecedent-consequent linguistic rules of the
form[18][59]:

IF eis PS AND ce is NS THEN u is PS (5.21)

This style of fuzzy conditional statement is often called a 'Mamdani'-type rule, after

Mamdani (1976) who first used it in a fuzzy rulebase to control steam plant.

The rulebase is constructed using a priori knowledge from either one or all of the
following sources:
(@) Physical laws that govern the plant dynamics
(b) Data from existing controllers.

(c) Imprecise heuristic knowledge obtained from experienced experts.

If (c) above is used, then knowledge of the plant mathematical model is not required.
The two seven set fuzzy input windows shown in Figure 5.7 gives a possible 7 x 7 set of
control rules of the form given in equation (5.21). It is convenient to tabulate the two-

dimensional rulebase as shown in Figure 5.8.
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5.5.3 Fuzzy inference

Figure 5.8 assumes that the output contains seven fuzzy sets with the same linguistic
labels as the input fuzzy sets[31] [18][59]. If the universe of discourse for the control signal
u(t) is 29, then the output window is as shown in Figure 5.9.
Assume that a certain rule in the rulebase is given by equation (5.22)

IFeis AANDceis BTHEN u=C (5.22)

From equation (5.5) the Boolean OR function becomes the fuzzy max operation, and

from equation (5.6) the Boolean AND function becomes the fuzzy min operation. Hence

equation (5.22) can be written as

e (u) = max({min(u, (&), 15 (ce))] (5.23)

Equation (5.23) is referred to as the max-min inference process or max-min fuzzy reasoning.

...............................................................................................................

FLC { N I—
!

) ¢(f
B+ o) |
0 “E Fuzzification || FUZ2Z¥ | | Delfuzzification - » Plant >

Maasurament
Systam

Figure 5.6 Fuzzy Logic Control[18][59]
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uie) 1.01

0BT

0.6 +MNE MM NS z PS P FB
0.4+
0.2+
£ —d4 =2 0 2 2.5 4 5]
11(6€)1.0- Error (&)
0.8+
0.6 TMNE MM NS z PS P FPE
0.4+
0.2+
-1 .67 —0.33 0.2 0 0.33 0.67 1

Rate of Change Of Error (ce)

Figure 5.7 Seven set fuzzy input windows for error (e) and rate of change of error (ce). [18][59]:

ce ° NB MM NS il PS FM FB
NBE NE NE NE MM z FM FB
N ME NE ME N PS PM PEB
NS MNE MNE MM NS PS PM FB
z MNE MM NS il PS FM FB
PS NE MM NS PS PM FB FB
PM ME N M3 PM PEB FE PEB
PB MNE MM z PM FB FB FB

Table 5.1 Tabular structure of a linguistic fuzzy rulebase[18][59].
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) 1.0

0BT

0.6
ME MM ] Z P35 P PB

0.4

02T
-3 -6 -3 o 3 B ]

Control Signal (u)
Figure 5.8 Seven set fuzzy output window for control signal (u).[18][59]

In Figure 5.7 and equation (5.20) the fuzzy sets that were 'hit' in the error input
window when e(t) = 2.5 were PS and PM. In the rate of change input window when ce = -0.2,
the fuzzy sets to be 'hit" were NS and Z. From Figure 5.8, the relevant rules that correspond to

these 'hits' are:

---OR IF eis PS AND ce is NS
ORIF eis PS AND ceis Z (5.24)
THEN u = PS

---OR IF eiis PM AND ce is NS
ORIFeis PM AND ceis Z (5.25)
THEN u =PM

Applying the max-min inference process to equation (5.24)
Hps (u) = max [min (ﬂps (e)’ Hns (Ce))’ min (/‘Ps (e)1 Hz (ce))] (5.26)
Inserting values from equation (5.20)

Les (U) = max[min(0.7,0.6), min(0.7,0.3)]

= max[0.6,0.3]= 0.6 (5.27)
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Applying the max-min inference process to equation (5.25)

Hpm (u) = max[min(:uPM (e)’ Hns (Ce))’ min(/uPM (e)1 Hz (Ce))] (5.28)

Inserting values from equation (5.20)
L (U) = max[min(0.4,0.6), min(0.4,0.3)] (5.29)
= max[0.4,0.3]= 0.4 '
Fuzzy inference is therefore the process of mapping membership values from the input

windows, through the rulebase, to the output window(s).

5.5.4 The defuzzification

Defuzzification is the procedure for mapping from a set of inferred fuzzy control
signals contained within a fuzzy output window to a non-fuzzy (crisp) control signal. The
centre of area [60, 32, 59] [18]method is the most well known defuzzification technique,

which in linguistic terms can be expressed as:

Crisp control signal = Sum of first moments of area (5.30)

Sum of areas

For a continuous system, equation (5.30) becomes:

_ ju;z(u)du
j,u(u)du

u(t)

(5.31)

Or alternatively, for a discrete system, equation (5.30) can be expressed as:
ukT)="t— (5.32)

For the case when e(t) = 2.5 and ce = -0 .2, as a result of the max-min inference
process (equations (5.27) and (5.29)), the fuzzy output window in Figure 5.9 is ‘clipped’, and
takes the form shown in Figure 5.10.
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From Figure 5.10, using the equation for the area of a trapezoid:

Area, = 06(6+24)_,
0 2(62 3.6) (.33)
Area,, = 2020 0.96
From equation (5.30)
u(t)= (2.52x3)+(0.96x6) _ 383
2.52+0.96 (5.34)

Hence, for given error of 5.5, and a rate of change of error of -0.2, the control signal

from the fuzzy controller is 3.83.

oluy 10T

0.4+

0.2

-9 -6 -3 0 3 & 9
Control Signal {u)

Figure 5.9 Clipped fuzzy output window due to fuzzy inference [31][18][59].
Example 5.2 [31]

For the input and output fuzzy windows given in Figure 5.7 and 5.9, together with the

fuzzy rulebase shown in Figure 5.8, determine:

(@) The membership values of the input windows e and ce.
(b) The max-min fuzzy inference equations.
(c) The crisp control signal u(t).

whene=-3andce=0
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Solution

(@) When e = -3 and ce = 0 .3 are mapped onto the input fuzzy windows, they are referred to

as fuzzy singletons. From Figure 5.7

e=-3 /s (e) =05 sy (e) =0.5

ce = 0.3, using similar triangles:

1 _ ,Uz(ce)
0.33 (0.33-0.3)

1, (ce)=0.09

And

1 _ Mes (Ce)
0.33 0.3

s (c8)=0.91

(b) The rules that are 'hit" in the rulebase in Figure 5.8 are
---OR IF eis NS AND ce is Z

OR IF eis NS AND ce is PS
THEN u=NS

---ORIFeis NM ANDceis Z
OR IF eis NM AND ceis PS
THEN u = NM

Applying max-min inference to equation (5.38):

s () = max[min (s, (&), 12, (ce)), min (says (€), 2205 (ce))]

Inserting values into (5.40):

#ys (U) = max[min(0.5,0.09), min(0.5,0.91)]

= max[0.09,0.5]=0.5

and similarly with equation (5.39)

Hnm (u) = max[min(luNM (e)1 Hy (Ce))’ min(ﬂNM (6)1 Hps (Ce))]
L (U) = max[min(0.5,0.09), min(0.5,0.91)]

= max[0.09,0.5] = 0.5

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

Using equations (5.41) and (5.42) to ‘clip’ the output window in Figure 5.9, the output

window is now as illustrated in Figure 5.11.
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(c) Due to the symmetry of the output window in Figure 5.11, from observation,
the crisp control signal is:

u(t)=-45
p{u)
1.0 +
0.B +
0.6 +
0.4 +
WY NS
0.2 T
-5 —B -3 0 3 &1 9

Control Signal {u)
Figure 5.10 Fuzzy output window for Example 5.2[31][18][59].

5.6 Fuzzy control of PUMAS560 with 3DOF

In Figure 5.11 we show the structure FLC type-1 of PUM560 with 3DOF, the
regulator which we use is five classes, do mean has 25 rule bases, the rule base table in Table
5.2 and in Figure 5.12 fuzzy sets for error and change error and out put of control T. All the
gains of type-1 fuzzy controller we do tuning until get good positions tracking with lower

error in ideal case.

[
errorl 11—
e T1I—»T1 |.°|. tetal el
¢ —= S ==
-
= desiredtetal: [ — =) teta?
= = e » I:I
— error2 B T3>T3 : teta3 '
- Ged—> — teta3
d dteta?] n = T
zcestredte PE_ A H = T4—>{T4 o tetad >
- T = o tetad
[ ]
o desiredetad —a T4>T5S tcs N
» = >
error3 - b | Er— Py teta
—— o -
@ AHGded >{mamem  TE—>(T6  tetad >
tetab

Figure 5.11Structure type-1 FLC of PUMA560 3DOF.
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Velocity error
LN SN Ze SP LP
Position LN LN LN LN SN Ze
error SN LN LN SN Ze SP
Ze LN SN Ze SP LP
SP SN Ze SP LP LP
LP Ze SP LP LP LP

Table 5.2 Rule Base table[30]

¢ 1(6)1 LN SN 7 Sp Lp
05t
|:| | | | |
1 08 06 04 02 0 02 04 05 08 1
Error = e (rad)
w(ce) ] ]
A S 7 sPp LP
05|
I:I | | | | | | |
4 08 06 04 02 0 02 04 08 08 1
Change in Error = ce (rad/s)
ur )1 LN SN 7 SP LP
05t
|:| | | | | |

| |
-1 08 0B -04 02 o 02 04 0B 08 1
The control T (Nm)

Figure 5.12 Fuzzy set for each articulation.
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5.7 Optimized Fuzzy PD controller
The general PSO-based fuzzy PD control scheme [61] is depicted in Figure 5.13,

below.
PSO
Ref Fuzzy PD u(t) Puma 560 y(t)
> Controller Robot
v

Figure 5.13 General PSO scheme for Fuzzy PD with manipulator robot [61].

The specific details on the PSO algorithm used for PUMAS60 control are given in the
next section. As for the fuzzy PD controller[7], two optimization strategies are employed: one
for the gain as depicted in Figure 5.14, [31][32][60][59][62][57] and the other for the
structure as depicted in Figure 5.15, [33][34][58][63][64]. Note that in the case of the gain
optimization, the membership function of the fuzzy controller is symmetric. On the other
hand, in the case of the structure optimization of the controller, the membership function is
non-symmetric.

As usual the fuzzy controller consists of three main parts: i) the fuzzification ii) inference iii)
defuzzification.

The fuzzification has as main role to change the crisp values to fuzzy values and
determine the membership degrees.

The inference is the process of formulating the mapping from a given input to an output using
fuzzy logic. It works on the rule base shown in Table 5.3 below:

Derivative error
NL | NS | Ze | PS | PL
Position| NL | NL NL NL NS Ze
error NS |NL NL NS Ze PS
Ze |NL NS Ze PS PL
PS | NS Ze PS PL PL
PL | Ze PS PL PL PL
Table 5.3 Rule Base table; Negative Large (NL), negative Small (NS), zero (Ze), positive
small (PS) and positive Large (PL)[30].
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Here, the Mamdani fuzzy inference system [25][26][18] was used in the controller
even though one can also use the max-min inference process. The defuzzification is the
process where the fuzzy output from the inference stage is mapped into a crisp or real value.
There are many methods for defuzzification in the literature. In this work the Centroid of area
is chosen [25][26][18].

Note that in our case, as we have chosen to employ a PD controller, we have two gains
Ky and Kq. The position errors and their derivative are quantized into five sets as shown in
Figure 6, 7 and 8, represented by a set of linguistic variables with triangle membership
function with universes of discourse in [-1,1].

In the case of the gain optimization, the three parameters K, Ky and Koy are optimized as
shown in Figure 5.14.

l M
€ 1 du/dt FHHKd i Torque(Control)
Derivative Fuzzy Logic

Controller
Figure 5.14 Gain optimization fuzzy controller [28] [30]

/ @ 1
M‘ Torque(Control)

i 4 Gout =1
/" Fuzzy Logic
Controller

Figure 5.15 Structural parameter optimization Fuzzy controller[33][34]

In the case of the structure optimization, the membership function parameters are
optimized while the gains K,, and Ky are kept fixed at 1. Note also that the fuzzy sets in
universal range are not symmetric. In this case we will optimize the range for two inputs and

one output each one having its min and max value.

When | was do structure optimization of fuzzy controller, I was wondering witch

better reprogram fuzzy controller with my code or just understand code of matlab tool box
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fuzzy controller for doing optimization. | think understanding the code of matlab tool box
fuzzy controller better and then optimize it to benefit from original matlab code fuzzy
controller, the first step we should know mathematical triangle membership function Figure
5.16 from each input error or its derivative calculate the membership function degree
equation(6) is very clear that triangle membership function needs three parameters(a,b,c) see
Figure 5.16.

p=trimf(a,b,c)=max(min((x-a/b-a),(c-x/c-b)),0) (6)

Figure 5.16 Triangle membership function.

Second step after take a look at fis file it should be declared in matlab workspace
contain all needed parameter to generate fuzzy controller with matlab tool box. I was found
the parameters for standard and symmetric fuzzy sets triangle in gains optimization case its
code in first column in Table 5.4 below to get fuzzy sets like in Figure 5.17, and 5.18 and
5.19.

Table 5.4 parameters of fuzzy controller to optimize.

Standard and Symmetric fuzzy sets To do parametric optimization
[Inputl] it mean for error [Inputl] it mean for error
Name="e' Name='e'

Range=[-11] Range=[-1 1]
MF1="LN"'trimf'[-1 -1 -0.5] MF1="LN"'trimf',[A A B]
MF2="SN":'trimf',[-1 -0.5 0] MF2="SN":'trimf',[A B 0]
MF3="LP"'trimf,[0.5 1 1] MF3="LP"'trimf ,[C D D]
MF4="Ze"'trimf',[-0.5 0 0.5] MF4="Ze"'trimf',[B 0 C]
MF5="SP":"'trimf',[0 0.5 1] MF5="SP":'trimf',[0 C D]
trimf name of the triangle function in Where: A < B <0 and 0<C<D
matlab fuzzy tool box Figure 5.16

81



And to do structural optimization, after deep thinking to find solution how to change
the values of this parameters to find another optimal parameters by using particle swarm
optimization, that we need four parameters (A,B,C,D) and their code it is written in Table 5.4
second column, our controller has two inputs(error and its derivative) and one output then to
get optimized controller in its parameters we need 4x3= twelve parameters, see that in gains
optimization all parameters(A,B,C,D) are same see Table 5.5, it means same membership
function for inputs and output, and all have the same shape and all are symmetric and there
plot in Figure 5.17, and 5.18 and 5.19, but in parametric optimization case for inputl(error),
input2(derivative error) and output(control) each one has its optimal membership function
with its range see Table 5.6 and its shape and all are not symmetric, the optimized parameters
(A,B,C,D) are found by PSO in table 5.6 there plot in Figure 5.20, and 5.21 and 5.22.

A B C D
Inputl(error) -1 [ -05 | 05 1
Input2(derivative error) -1 {05 | 05 1
Output(control) -1 | -05 | 05 1

Table 5.5 parameters for standard and symmetric fuzzy sets for gains optimization

A B C D
Inputl(error) -28.70 | -16.96 | 35.19 | 35.70
Input2(derivative error) -5.075 | -0.40 | 281 2.87
Output(control) -169.9 | -12.26 | 25.43 | 296.66

Table 5.6 optimized parameters for structure optimization
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Fuzzy sets for Gain Optimization

Optimized Fuzzy sets for structure

Optimozatio
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Figure 5.20 Optimized Fuzzy sets for error

in PO case
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5.8 PARTICLE SWARM OPTIMIZATION

In this section, we explain the PSO algorithm employed in the optimization of the

aforementioned controllers. The PSO is a population based method for finding an optimal

solution to an objective function. The so-called swarm consists of “n” particles, and the

position of each particle stands for the potential solution in space. The particles change its

condition according to the following three principles:

e control its inertia,

e control the position of the particles to its most optimal position,
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e Control of the velocity of the particles
The position of each particle in the swarm is affected by the most optimal position
based on its individual experience and on the global best position of the particle around its
neighborhood. There are several algorithms of thee PSO [4][5][6]. In this work integral of
square error (ISE) is fitness function (objective function) and the constriction coefficient
[4][5] method it was selected whereby the speed and position of each particle change

according the following equality:
v €)= X vy 04 05 0) 65 5 ;0 (5.43)

c1 and c; are the acceleration coefficients, r; and r, random values in[0 1]

5.9 SIMULATION RESULTS

We have used a cycloid trajectory test Figure 5.23. The different articulation
movements, respectively from position {-50°, -135°, 135°} to the position {45,-85°, 30°} with
three end time of movement equal to {1.5, 4, 8} seconds then will have three cycloid

trajectory are differ in simulation time. The mathematical description of the trajectory is given
by [1]:

0 -(O)+3x£ t
di tend
di ~

edi(tend) for tend >t

(5.44)

The Integral of Square Error (ISE) is used as performance indices in comparative between
manual tuning and PSO tuning fuzzy controller see (5.45).

t
end 2
ISE= | [e(t)]“dt ©)
0 (5.45)
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Figure 5.23. Third joint response in manual gain tuning with disturbance and its tracking
joint error.
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Figure 5.24. Third joint response in PSO gain tuning with disturbance and its tracking joint

error.

Gains manual tuning fuzzy PD are chosen from manual tuning until get good positions
with lower error and lower control energy and with smooth control signal without chattering

in ideal case.

We have use noise (disturbance) for robustness test of controller to do comparison
between manual tuning fuzzy controller and optimized fuzzy controller by use PSO, noise
(disturbance) torque d=sin(3t)+1.

The simulation results are carried out to show comparisons in the system’s response in
a feedback controller when using a gains manual tuning fuzzy controller or PSO fuzzy
controller. We started by manually tuning the gains of the fuzzy controller in ideal conditions
without any kind of noise, we have shown ISE three joint angle in Table 5.7, in Figure 5.25,
control signal or torque responses in ideal case (without noise) and with noise (disturbance)
for gains manual tuning fuzzy controller, Figure 5.26, third joint control with and without
noise PSO gains optimization. Comparison in terms of integral squared joint errors in
ideal(without noise) and with noise cases d=sin(3t)+1 is shown in Table 5.7 last column is
percentage of ISE integral square joint error for gains manual tuning fuzzy controller in noise
case (ISE_MT%) then ISE gains optimization (ISE_ GO) disturbance case its calculated
as(5.46):

ISE_MT% = (ISE_MT X 100) / (ISE_MT + ISE_GO) (5.46)

85



Table 5.7 ISE for manual (MT) and PSO gains optimization (GO), without and with noise d=

sin(3t) +1.
ISE Manual Tuning ISE PSO GO ISE_MT%
without without in  with
Joint | noise with noise noise with noise | noise
J1 4.36E-07 6.39E-06 9.19E-09 | 1.6E-07 97.56
J2 8.35E-04 9.45E-04 197E-05 | 2.214E-05 | 97.71
J3 5.40E-04 8.11E-04 1.19E-06 | 1.7E-06 99.79

Third Joint Control signal

v T
Control (Torque)withoutdisturbance | :
Control (Torque) with disturbance | :

Torque N/m
o
\. ‘. !

i 1 i i L i 1
[} 1 2 3 4 5 6 7 8
Time (sec)

Figure 5.25. Third joint control with and without disturbance manual gain tuning.

Figure 5.26. Third joint control with and without disturbance PSO gain tuning.

Table 5.8 represent comparison in terms of integral squared joint errors in ideal (without
noise) and with noise (disturbance) between Gains and parametric optimization for Fuzzy PD
controller, before last column in Table 5.8 percentage of ISE integral square joint error for
Gains optimization (GO) fuzzy controller in with noise (disturbance) case (ISE_GO%) then
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ISE_PO in with noise (disturbance) case its calculated as (5.47), at last column we have add

same term but in ideal (without noise) case:

ISE_GO% = (ISE_GO x 100) / (ISE_GO + ISE_PO) (5.47)

ISE Gain optimization ISE parameter ISE_GO | ISE_GO

(ISE_GO) optimization (ISE_PO) % % in
with without with inwith | Without

Joint without noise noise noise noise noise noise
J1 9.19E-09 1.6E-07 | 7.52E-06 7.52E-06 | 2.08 4.41E-07
J2 1.97E-05 2.2E-05 7.6E-06 8.73E-06 | 71.72 2.75E-05
J3 1.19E-06 1.7E-06 | 4.27E-07 5.21E-07 | 76.54 1.55E-06

Table 5.8 the ISE without and with disturbance for Gains and structural PSO optimization
NB. YE-0X stands for Yx10%%.
Table 5.9 shows some comparison and the initial parameters for gains and parametric PSO

optimization for PD controller, with optimal parameters calculated from PSO algorithm.

5.10 RESULTS AND DISCUSSION

When comparing results, by visual comparison the actual and desired joint angles are
overlapping Figure 5.23, and 5.24, and we can’t see the differ, but in terms ISE we can see
the differ to do comparison, we have three joints robot with noise (disturbance) torques to test
robustness, all results divided in two tables, Table 5.7 manual gains and PSO gains
optimization with/without noise d=sin(3t)+1 and Table 5.6 the ISE without and with noise
(disturbance) for Gains and parametric PSO optimization, it is very clear that average of
manual gains tuning ISE_MT% column around 98% this mean that tracking error angle for
manual gains tuning fuzzy controller is big ninety-eight percent than error angle for PSO
fuzzy controller in both case.

When comparing gains PSO and parametric optimization, is very clear ISE in PSO
gains optimization ISE_GO% in ideal (without noise) case around zero percent but in with
noise (disturbance) the average error is 50% =(2+72+76).

Finally when comparing all results in all figures and Table 5.7 and Table 5.8, it is very clear
that PSO gains optimization for fuzzy PD controller is better than PSO parametric
optimization for fuzzy PD controller in ideal (without noise) case but in with noise
(disturbance) case in ISE comparison terms will parametric optimization better, and in other

terms shown in Table 5.9, we can see that parametric optimization have big time execution
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than gains optimization to get optimal parameters and ability to programming more

complicated and much parameters.

Gain_PSO

Structural fuzzy PSO

Initial

Min=[15,0.01,50],Max
=[50,10,300]

MIN_In1=[-30,0.001,30,0.001 ]
MAX_In1=[-40,1,40,1]
Min_in2=[-3,0.001,3,0.001]
Max_in2=[-12,1,12,1]
Min_Out=[-150,0.001,150,0.001]
Max_Out=[-300,1,300,1]

structural PSO.

Particle number | 10 10
Iterative 10 10
Optimized Kp=42.8651 Rang_In1=[35.6957,-28.7037]
Kd=1.4932 Mid1=[0.9858, 0.5909]
Gout=202.1934 Rang_In2=[2.8687,-5.0750]
Mid2=[0.9803, 0.0780]
Rang_Out=[296.6617,-169.8966]
Mid=[0.0857, 0.0721]
Fast Fast five times than | Slow than Gain PSO because its

instruction big five times.

programming

Easy and simple with

few parameters

Hard and complicated with much

parameters

ISE

Without noise same

error in PO

Same error in GO

With noise is big 50%
then error in PO

Is low 50% then error in GO

Table 5.9 Some differences simulation results between Gains and structural PSO optimization

fuzzy controller.
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5.11 CONCLUSION

We have presented the particle swarm optimization for fuzzy PD with 3DOF
PUMAAS60 using manual gains tuning and PSO gains and structure optimization of fuzzy PD
controller after get our optimized gains and structure, in offline will put them on our fuzzy
PD controller to compare them. We presented simulations for three joints where we simulated
the systems’ responses with and without noise (disturbance). In the simulations, a
quantification of errors was achieved and documented in tables for ISE, it was shown that the
lower errors were obtained using a PSO for parametric optimization of fuzzy PD controller in
with noise (disturbance) but for few particle and low iterative will take long time then gains
optimization to get optimal parameters, but in ideal case we find PSO with gains optimization
is better in integral square error and in ability to programming it with few parameters and
faster to get optimal parameters, our optimized intelligent control is better than classical

control, and is applicable in real time.

89



General Conclusion

In this thesis focused on simulation and experimental control optimization using PSO
for robotic system. The first is aeronautic robot which is quadcopter. We have started by
dynamic modeling this system and simulate it on MATLAB. After we realized our two
custom prototypes or homemade prototyping the first one based on Arduino due as autopilot
controller. For weight, size and speed we have improve the first one to Teensy 3.2 autopilot
controller based. All necessary dynamics parameters identified in an experiment like thrust
calculations. For PID gains identifications, the manual tuning method has limitations of being
time consuming and very tedious. While the conventional Z-N method has been very useful
and helpful in our research in terms of practicality, it is criticized by many other researchers.
In short time and with the least required effort to experimentally select the appropriate PID
gains was the Z-N tuning. Within a few minutes of implementation we could obtain the PID
gain values required to stabilize the quadrotor. With respect to time and effort, the Z-N
method was the most advantageous. The second advantage of the Z-N method found in this
study is that it produces PID gains that can be put into intervals, such that the PSO search
within an interval by determining the sum of the Integral of Square Error and the maximum of
the overshoot as a multi-objective function [19] or a fitness function. However, regarding
robustness, overshoot, steady-state error, and rise time, the Z-N method falls short of the
necessary standards. To overcome this, we have used PSO for PID gains optimization. We
have proved in both simulation and experimental our optimized PID controller for
stabilization of a quadrotor using PSO the constriction coefficient method was never used
before for stabilization of a quadrotor. The main advantage of optimization process that find
the optimal solution with scientific method not as manual finding depending on the luck, and
let the user of it more confidence with their results. The proposed method was tested both
using a MATLAB simulation and experimentally. The simulation and experimental results
were also compared with a conventional Z-N tuning PID controller and with two different
objective functions that the PSO depends on to search the optimal PID controller. The

efficiency of PSO for finding the optimal values was verified through experimental results.

90



The second robotic system is PUMAS60 manipulator robot. We have presented the
particle swarm optimization for fuzzy PD with 3DOF PUMAAS560 using manual gains tuning
and PSO gains and parametric optimization of fuzzy PD controller after get our optimized
gains and parametric offline will put them on our fuzzy PD controller to compare them. We
presented simulations for three joints where we simulated the systems’ responses with and
without noise (disturbance). In the simulations, a quantification of errors was achieved and
documented in tables for ISE, it was shown that the lower errors were obtained using a PSO
for parametric optimization of fuzzy PD controller in with noise (disturbance) but for few
particle and low iterative will take long time then gains optimization to get optimal
parameters, but in ideal case we find PSO with gains optimization is better in integral square
error and in ability to programming it with few parameters and faster to get optimal
parameters, our optimized intelligent control is better than classical control, and is applicable
in real time. Future work implementation gains and structural optimized fuzzy PD controller
manipulator robot, hybridization with other robust control.

The efficiency of PSO for PID and fuzzy controllers was verified in this thesis both in
simulation and experiment. Because the quadcopter is our custom prototype and homemade.
Can be good platform for future research. We can do modification both in software or
material as research needed. Our prototype can test it with sliding mode, second order sliding
mode, fractional controllers, and also as future work optimization Type-2 fuzzy controller
using PSO..... etc.
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Appendix

PARTICLE SWARM OPTIMIZATION Algorithm

In this section, we explain the PSO algorithm employed in the optimization of the
aforementioned controllers. The PSO is a population based method for finding an optimal
solution to an objective function. The so-called swarm consists of “n” particles, and the position
of each particle stands for the potential solution in space. The particles change its condition

according to the following three principles:
e control its inertia,
e control the position of the particles to its most optimal position,
e Control of the velocity of the particles

The position of each particle in the swarm is affected by the most optimal position based on its

individual experience and on the global best position of the particle around its neighborhood.

There are several algorithms of the PSO [16][17][18]. In this work integral of square error (ISE)
is fitness function (objective function) and the constriction coefficient [16][17] [39]method it was

selected whereby the speed and position of each particle change according the following equality

v (t+1)= X[vij )+ Pbesty; () x; ©)] 4 Gest —x; (t)ﬂ (A1)
Where:
X = 2k
2-4-46-4) (A2)
With:
= +éy, H=Ci1.4,=Coly, $24ke[0]] A3
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¢ and c; are the acceleration coefficients, r; and r, random values in[0 1]

The corresponding algorithm for this equality (1.1) and (1.4) are in Table 1.1 and 1.2.

Table A.1, Particle Swarm Optimization Algorithm

X; (t+1) = x; (t)+ v, (t +1)

Algorithm 1.1

Initialize number of particles (n),
max of iterative (it), lower and
upper bounds for position and speed
,(Pbest,Gbest).

it=0;

While it <max of iterative

Calculate ¢;, ¢, are related with
random values (ry,r,) using (1.3)
For j=1tondo

Calculate speeds using (1.1)
Control that speeds are in searching
space. Using (1.5) and (1.6)
Calculate new positions using (1.4)
Control that positions are in
searching space.

Calculate fitness function f(x;).(1.7)
End for.

Calculate Pbest and Gbest using
algorithl.2

it=it+1

end while.

A.3 Interval limitation

(A.4)

If a particle’s velocity exceeds a specified maximum or minimum velocity, the particle’s velocity

is set to the maximum or minimum velocity. Let Vmax,j denote the maximum allowed velocity in

dimension j, and Vpinj. Particle velocity is then adjusted before the position update using[18],

V.
|

j(t+1)—{://ij

a+nwvua+nsv

if v..(t+1)>V

(A.5)
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Voo v (b)Y
min, j = i) min, j

V.. (t+1)= :
jt+d) vij(t+1)|f vij(t+1)>V

J min, | (A.6)

Where vjj(t+1) is calculated using equation(1.1).

Table A.2. Algorithm for Global and Local best particles calculations

Algorithm 1.2
e For each particle i from n do
o If f(xi) < f(Pbest) then Pbest=xi.
o |If f(Pbest) < f(Gbest) then
Gbest=Pbest.
e End for.

The Integral of Square Error (ISE) is used as performance indices:

t
ISE = ezd e at

(A7)
A.4 Example of PSO used for optimized PD Fuzzy Gains controller

In this example we have three parameters (PD and output gain) to optimize them. There

limitation and initialize values are in Table A.3.

Table A.3 initializes parameters values

parameters Min | Max
P 15 40
D 0.5 10
Gout 50 450
n 10
iterative number 10

The parameter, k in equation above controls the exploration and exploitation [18] abilities of the

swarm. For x ~ 0, fast convergence is obtained with local exploitation see Figure A.1, for PSO-
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Fuzzy PD controller with k = 0. On the other hand, k = 1 results in slow convergence with a high

degree of exploration see Figure A.2.

40

3%

15
0

(@) (b) (©

Figure A.1. Local exploitation for PSO-Fuzzy PD controller :(a) for P optimal gain search, (b)

for D, (c) for gain out.

o |- -

Recatned))

(a) (b) (©)

Figure A.2. High degree of exploration for PSO-Fuzzy PD controller :(a) for P optimal gain

search, (b) for D, (c) for gain out

For Figure A.2, in k=1, high degree of exploration that has many ten black points these points are
local best PSO find and best one is red point it mean global best PSO. On other hand in Figure

101



A.l, in k~0 local exploitation is very clear that particle positions are move locally because we can
see just two black points are local best PSO find and the red is global best PSO or best one.

A.5 Advantages and Disadvantages of the Basic Particle Swarm Optimization Algorithm.

A51 Advantages of the basic particle swarm  optimization  algorithm:
- PSO is based on the intelligence. It can be applied into both scientific research and engineering
use.

-PSO has no overlapping and mutation calculation. The search can be carried out by the speed of
the particle. During the development of several generations, only the most optimist particle can
transmit information onto the other particles, and the speed of the researching is very fast.
-The calculation in PSO is very simple. Compared with the other developing calculations, it
occupies the bigger optimization ability and it can be completed easily.
- PSO adopts the real number code, and it is decided directly by the solution. The number of the
dimension IS equal to the constant of the solution.
A5.2 Disadvantages of the basic particle swarm  optimization algorithm:
-The method easily suffers from the partial optimism, which causes the less exact at the
regulation of its speed and the direction.
-The method cannot work out the problems of scattering and optimization
-The method cannot work out the problems of non-coordinate system, such as the solution to the

energy field and the moving rules of the particles in the energy field.

A.6 Conclusion

Particle Swarm Optimization (PSO) is a biologically inspired computational search and
optimization method. In past several years, PSO has been successfully applied in many research
areas [40,41,42,43]. It is proved that PSO gets better results in a faster, simpler way compared to
other methods [18]. Another reason that PSO is likable is that there are few parameters to adjust.
One version, with slight variations, works well in a wide variety of applications. We present its
originality, formulation, algorithm and application example in our case. In the next chapters will
present more applications details of Particle Swarm Optimization approach with linear and fuzzy

controllers.
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