République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche scientifique Ecole Nationale Polytechnique

Département Hydraulique

Projet de fin d'étude

Pour l'obtention du diplôme d'ingénieur d'état en hydraulique

Thème

Etude du réseau d'assainissement de ZHUN AISSET MUSTAPHA jusqu'à PR77 (REGHAIA)

Etudié par :

Mr Moustafa ARABI

Soutenance le 22/06/2013 devant le jury composé de :

Président: Mr S.BENZIADA

Promoteur: Mr.A.BOUKHARI

Mr. N.E.NEBBACHE

Examinateurs: Mr B.RAHMOUN

M^m A.RAHAI

Promotion: Juin 2013

Remerciements

Nous tenons, avant tout, à remercier notre DIEU, tout clément, tout puissant, de nous avoir donné la force de réaliser notre travail.

Nos remerciements vont exceptionnellement à Monsieur BOUKHARI et N.E.NEBBACHE pour son aide, son suivi, ses conseils et directives et pour son dévouement et ainsi pour la confiance qu'ils nous ont toujours témoignée.

Nous tenons à remercier Monsieur S.BENZADA, d'avoir accepté de présider le jury.

Nos remerciements vont aussi à Monsieur I.RAHMOUNE et Madame A.RAHAI, d'avoir bien voulue accepter d'examiner notre travail.

Nous remercions tous les enseignants de l'Ecole Nationale Polytechnique d'Alger, spécialement ceux des départements des Sciences Fondamentales et d'Hydraulique, pour leur apport en savoir.

Nos remerciements, vont au personnel de l'Ecole et à toute personne dévouée au service de l'Ecole Nationale Polytechnique.

Enfin, nos remerciements vont à toute personne ayant contribuée, de prés ou de loin, à réaliser ce travail.

ملخص <u>:</u>

من أجل حل مشكلة فيضان مياه الصرف الصحي في المناطق الحضرية، وكذلك منع التصريف المباشر لمياه الصرف في البيئة، نقترح إجراء دراسة تشخيص للمنطقة السكنية عيسات مصطفى من أجل حل هذه المشكلة، وتصميم جزء من الشبكة الحالية و المجمع الرئيسي الذي يربط إلى منفذ والذي هو في حالتنا محطة الضخ التي نعيد دراسة كفاءتها من اجل التغلب على هذه المشكلة.

الكلمات المفتاحية

المنطقة السكنية عيسات مصطفى، المجمع الرئيسي، الصرف الصحى، تصميم الشبكات، وتجاوز العاصفة، ومحطة ضخ

Résumé:

Dans le but d'une part de résoudre le problème de débordement des eaux usées en plein milieux urbain et d'autre part d'éviter le rejet direct de l'effluent dans le milieu naturel, on se propose de faire une étude du diagnostique sur la zone d'habitation urbaine AISSET MUSTAPHA afin de résoudre ce problème, par le dimensionnement d'une partie du réseau existant ainsi que le collecteur principal en le reliant à l'exutoire qui est dans notre cas un poste de relevage qui a été redimensionner afin qu'il remédie à notre problème

Mot clé:

ZHUN Aisset Mustapha, assainissement, collecteur principal, dimensionnement réseau, déversoir d'orage, poste de relevage

Abstract

In order to solve first part the problem of sewage overflow in the urban areas and also prevent direct discharge of effluent into the environment, it is proposed to conduct a study on diagnostic urban residential area AISSET MUSTAPHA to solve this problem, the design of part of the existing network and the main manifold connecting to the outlet which is in our case a pumping station that was resized that overcomes this problem.

Key Word:

UHAN Aisset Mustapha, Cleaning up, principal collector, network dimensioning, storm overflow, pumping station

Remerciement	II
Résumé	III
Sommaire	IV
Liste des figures	IX
Liste des tableaux	X
Liste des abréviations	XII
Introduction générale	1
Chapitre I : Présentation de la zone d'étude	
1. Situation géographique	3
2. Topographique	3
3. Situation géologique	
4. Situation climatique	
5. Hydrographie	
6. Conclusion	
L'étude démographique	т
1. Introduction	6
1 1	
3. Classement des équipements	
3.1. Equipement scolaire	
3.2. Equipement sanitaire	
3.3. Equipement commercial	
3.4. Equipement administratif	
3.5. Equipement socioculturel	
3.6. Equipement sportif	
4. Estimation des besoins	9
4.1. Norme unitaire de consommation	9
4.2. besoin en eau total	9
4.2.1. besoin domestique	9
4.2.2. besoin des équipements	10

5.	Notion d'équivalent habitant	11
6.	Notion de population réelle	11
7.	Densité d'occupation du sol	12
8.	Conclusion	12
	Chapitre II: L'étude hydrologique	
1.	Introduction	14
2.	Bassin versant	14
3.	Climat	14
	3.1. Température	
	3.2. Humidité	15
	3.3. Vent	15
	3.4. Pluviométrie	15
4.	Les averses	16
5.	Période de retour	16
6.	Temps de concentration	16
7.	Analyse statistique des données	18
	7.1. Teste d'homogénéité	20
	7.2. Ajustement statistique	22
	7.2.1. Ajustement à la loi de GUMBEL	22
	7.2.2. Ajustement à la loi de GALTON	25
8.	comparaison entre les lois d'ajustement	27
	8.1. Application du teste sur la loi de GUMBEL	28
	8.2. Application du teste sur la loi de GALTON	29
9.	Calcul de l'intensité de la pluie	30
10).Remarque	31
11	1.Conclusion	31
	Chapitre III : dimensionnement du réseau	
1.	Introduction	33
	Historique	
	Différents systèmes des réseaux d'assainissement	34

3.1. Système unitaire	34
3.2. Système séparatif	34
3.3. Système pseudo séparatif (mixte)	35
4. Avantages et Inconvénients des trois systèmes de réseaux	36
5. Principe du tracé du réseau	37
6. Choix du découpage des sous bassins	37
7. Evaluation des débits d'eaux pluviales	38
7.1. Evaluation du coefficient de ruissellement	39
7.2. Méthode rationnelle	
7.3. Méthode superficielle	40
7.4. Choix de la méthode de calcul	41
7.5. Résultats de calcul	41
8. Estimation des débits d'eaux usées	42
8.1. Type des eaux usées	42
8.2. Calcul du débit des eaux usées	43
9. Dimensionnement du réseau	45
9.1. Mode de calcul	45
9.2. Présentation du réseau projeté	47
9.2.1. Vérification de la capacité du réseau existant du SB2	47
9.2.2. Procédure de vérification	48
9.2.3. Dimensionnement du collecteur principal	51
a.VARIANTE 1	51
b. VARIANTE 2	51
c. Déversoir d'orage	56
d. COMPARAISON DES VARIANTES	58
10. Conclusion	58
Chapitre IV: dimensionnement du poste de relevage	
1. Introduction	60
2. Appareillage	60
2.1. Les turbopompes	60
2.2. Vis d'Archimède	60
3. Situation actuel	60

4. Dimensionnement du poste de relevage	61
4.1. Le débit	61
4.2. Puisard	61
4.3. Hauteur manométrique total d'élévation (Hmt)	62
4.4. Diamètre économique	64
4.5. choix de la pompe	65
5. Conclusion	67
Chapitre V: Les éléments constitutifs du réseau	
1. Introduction	69
2. Les Ouvrages Principaux	69
2.1. Canalisations	69
2.2. Types De Canalisation	69
2.2.1. Conduites en béton non armé	69
2.2.2. Conduites en béton armé	70
2.2.3. Conduites en amiante – ciment	70
2.2.4. Conduite en béton précontrainte	70
2.3. Choix du type de canalisation	70
2.4. Les joints des conduites en béton armé	71
2.4.1. Joint type Rocla	71
2.4.2. Joint à demi-emboîtement	71
2.4.3. Joint à collet	71
3. Les Ouvrages annexe	72
Ouvrage de rejet	72
4. Conclusion	72
Chapitre VI: L'étude technico-économique	
1. Introduction	74
2. Les informations sur les réseaux publics existants	74
3. Exécution des travaux	74
3.1. Vérification, manutention des canalisations	74
3.2. Emplacement des jalons des piquets	74
3.3. Exécution des tranchées et des fouilles pour les regards	75
3 3 1 Profondeur de la tranchée	75

3.3.2. Largeur de la tranchée	75
3.3.3. choix des engins de terrassement	75
3.3.4. Aménagement du lit de pose des canalisations	76
3.3.5. La mise en place des canalisations	76
3.3.6. Assemblage des conduites	76
3.4. Essais sur les joints et les canalisations	76
3.5. Exécution des regards	77
3.6. Exécution des déversoirs d'orage	77
3.7. Remblai des tranchées	77
4. Devis quantitatif estimatif du projet	78
4.1. Détermination des différents volumes	78
4.1.1. Volumes des déblais des tranchées V_d	78
4.1.2. Volume occupé par le lit de sable V_{LS}	79
4.1.3. Volume de la conduite Vc	79
4.1.4. Volume du remblai V_R	79
4.1.5. Volume du déblai évacué Ve	79
5. Conclusion	80
Conclusion général	81
Bibliographie	82
Annexe	83

Liste des figures

Liste des figures :

Figure I.1 : Situation géographique de la commune de REGHAIA	3
Graphe II.1: Teste d'ajustement à la loi de GUMBEL	24
Graphe II.2: Teste d'ajustement à la loi de GALTON	27
Figure III.1: le cloacal maxima de Rome	33
Figure III.2 : schéma de principe d'un réseau unitaire	34
Figure III.3: schéma de principe d'un réseau séparatif	35
Figure III.4: schéma de principe d'un réseau psedo-séparatif	35
Figure III.5 : découpage du sous bassin de la zone d'étude	38
Figure III.6: Collecteur principal AISSET MUSTAPHA	51
Figure III.7: variante projeté pour collecteur principal AISSET MUSTAPHA	53
Figure III.8 : Schéma de principe du déversoir d'orage	56
Figure IV.1: photo des vis d'Archimède du poste existant	59
Graphe IV.1: plage de fonctionnement des pompes	63
Graphe IV.2: point de fonctionnement du poste de relevage	64
Figure V.1 : Divers joints sur tuyau en béton	70
Figure VI.1 : Coupe transversale d'une tranchée avec la mise en place de la condu	ite 77

Liste des tableaux :

<u>Tableau I.1.</u> Evolution de la population dans le passé
Tableau I.2. Evolution futur de la population
<u>Tableau I.3</u> . Effectif dans les équipements scolaires
Tableau I.4. Effectif dans les Equipements sanitaires
Tableau I.5. Effectif dans les équipements administratifs
Tableau I.6. Effectif dans les équipements socioculturels
<u>Tableau I.7</u> . Effectif dans les équipements sportifs
Tableau I.8. Besoin en eau domestique
Tableau I.9. Besoin en eau des équipements
Tableau I.10. Besoin en eau total
Tableau II.1. Répartition mensuelle de la température moyenne
Tableau II.2. Humidité relative moyenne
<u>Tableau II.3.</u> vitesse de vent en (m/s) de la zone d'étude
<u>Tableau II.4.</u> Répartition mensuelle de la pluviométrie
<u>Tableau II.5.</u> Pluie journalière maximal
<u>Tableau II.6.</u> Test d'homogénéité de WILCOXON
<u>Tableau II.7.</u> Teste d'ajustement de GUMBEL 23
<u>Tableau II.8.</u> Teste d'ajustement de GALTON
<u>Tableau II.9.</u> Teste de khi 2 sur la loi de GUMBEL
<u>Tableau II.10</u> . Teste de khi 2 sur la loi de GALTON
<u>Tableau II.11.</u> Valeurs des intensités projet calculées
<u>Tableau II.12.</u> Comparaison entre les anciennes et nouvelles courbe IDF de Clairbois 31
<u>Tableau III.1</u> : Avantages et inconvénients des trois systèmes de réseaux 36
<u>Tableau III.2:</u> coefficient de ruissellement des sous bassins
Tableau III.3: débit pluvial des sous bassins de la zone d'étude
Tableau III.4: débit moyen journalier des eaux usées des sous bassins 43
<u>Tableau III.5</u> : débit de pointe des eaux usées des sous bassins
<u>Tableau III.6:</u> récapitulatif des données des sous bassins
<u>Tableau III.7:</u> données su réseau actuel SB2
<u>Tableau III.8:</u> vérification des dimensions du réseau actuel SB2
<u>Tableau III.9:</u> dimensions des collecteur tertiaire 1, 2, 3 du SB2
<u>Tableau III.11:</u> dimensionnement collecteur principale AISSET MUSTAPHA

Liste des tableaux

Tableau III.12: variante 1 du collecteur principale AISSET MUSTAPHA	55
Tableau III.13: variante 2 du collecteur principale AISSET MUSTAPHA	55
Tableau III.14: dimension des déversoirs d'orage	58
Tableau V.1: valeur Hmt pour chaque diamètre	62
Tableau VI.1: Devis quantitatif et estimatif du projet	81

Liste des abréviations :

P₀: population à l'horizon actuel

P_n: population à l'horizon actuel

α: taux d'accroissement

n : c'est le nombre d'année

EH: équivalent habitant

P_r: population réelle

DOS: densité d'occupation du sol

Hab: habitant

Ha: hectare

Ts: temps d'écoulement superficiel

t_c: temps de concentration

 $\overline{P_{J,max}}$: Moyenne arithmétique des pluies maximales journalières

σ: L'écarte type

 α : le risque d'erreur ou niveau de signification

y est la variable centrée réduite de GUMBEL

x : précipitation maximale journalière

 $\frac{1}{\alpha}$: Gradient exponentiel de GUMBEL

 β : Paramètre de position de GUMBEL

 \bar{x} : Moyenne des pluies journalières maximales

 μ_n : La moyenne de la loi de GALTON

 σ_n^2 : La variance de la loi de GALTON

C_v: Le coefficient de variation

STEP: station d'épuration

ZHU: zone d'habitation urbaine

C_r: coefficient de ruissellement

Q: Débit maximal

A: Surface du bassin versant

i : Intensité de pluie

C_r: Coefficient de ruissellement

α: Coefficient correcteur de l'intensité

K, u, v, w: Coefficients d'expression de la méthode superficiel

Q moy j: débit moyen rejeté quotidiennement

Kr : coefficient de rejet Qpt : débit de pointe

 K_p : coefficient de pointe

 H_u : hauteur utile du puisard

Introduction générale

Introduction général:

L'eau est un élément vital et une source précieuse qui constitue un facteur décisif pour la croissance et le développement socio-économique, le développement rapide de la population en milieu urbain ainsi que l'évolution du mode de vie entraînent un accroissement considérable des structures urbaines impliquant des besoins en eau importants. Ces derniers, faut-il le souligner, se traduisent par un accroissement permanent du volume des rejets polluants qui doit être évacué rapidement loin de l'agglomération et traité avant de les rejetées dans le milieu récepteur. ceci, bien évidemment, se fait par des modes compatibles qui prennent en considération les exigences de la santé publiques et de l'environnement.

Dans cet aspect, notre étude est portée sur l'agglomération de la ZHUN AISSET MUSTAPHA qui est une agglomération secondaire du chef-lieu de REGHAIA, où elle a connu des problèmes de débordement des eaux usées dans le milieu urbain pendant les saisons pluvieuse au niveau des cités: coopérative GCB, coopérative SONATRO côté AutoRoute, ainsi le problème de rejet direct des effluents dans l'Oued de REGHAIA ce qui cause la détérioration des écosystèmes

Notre étude vise principalement à diagnostiquer et résoudre le problème de débordement des eaux usées, ainsi à projeter d'un collecteur principale de l'agglomération jusqu'au poste de relevage PR77 qui va être redimensionné pour s'assurer de sa capacité de relever l'effluant reçu vers le collecteur allant vers la STEP de REGHAIA, afin de collecter les eaux usées évacué par le réseau actuel de l'agglomération qui sont rejetée actuellement directement dans l'Oued de REGHAIA, dans le but de Préserver le milieu naturel contre la détérioration des écosystèmes et le milieu urbain contre l'écoulement des eaux usées à ciel ouvert.

CHAPITRE I

Présentation de la zone d'étude

1. Situation géographique :

La commune de REGHAIA est située à l'extrémité nord-est de la wilaya d'ALGER à 30 Km du chef-lieu de cette dernière et à 16 Km de la Wilaya de BOUMERDES, elle appartienne à la circonscription administrative de ROUIBA, elle est étendu sur une superficie de 2630 hectares et limitée par :

- la mer méditerranée au Nord.
- la commune à l'Est par d'OULED HADADJ et HAOUCH Al MAKHFI au sud.
- la commune de HERAOUA et ROUIBA à l'Ouest.
- la commune de BOUDAOUAOU à l'Est.

Figure I.1 : situation géographique de la commune de REGHAIA

REGHAÏA est une ville à vocation industrielle bien que la moitié de son territoire (50,8 %) soit composé de zones agricoles dans une zone très fertile de la Mitidja (La superficie agricole est estimée à 1337 ha), La Zone Industrielle (ZI) de ROUÏBA-REGHAÏA est implantée au sud de la commune sur 335 hectares représentant 13,5 % de la surface totale.

Notre zone d'étude s'étale entre la ZHUN AISSET MUSTAPHA à la frontière sud de la commune de REGHAIA sud jusqu'à la route national N°5 sur une superficie d'environ 200 ha, elle est limité du

- > nord par le centre de la commune de REGHAIA
- > sud par la commune d'OULED HEDDADJ
- > 1'est par des terres agricoles
- ➤ l'ouest par la zone industriel de REGHAIA

2. Topographique:

La zone d'étude s'étale du cité AISSET Mustapha au sud jusqu'à la route national N5 passante par le centre de la commune, le terrain est caractérisé par une pente moyenne de

0.4% vers le nord, mis à part les rives d'oued où les il y a des fortes pentes, ce qui signifie que le terrain est presque plat avec une altitude qui n'excède pas les 25 mètre.

3. <u>Situation géologique</u>: [05]

La commune est située sur la limite Est du synclinale Mitidjien, la plaine de Mitidja était à l'origine une zone plane entre l'atlas Telien au sud et le sahel au nord. Cette zone s'est enfoncée d'avantage suite à des mouvements ascendants de surrection, par la suite il y a eu apparition de lambeaux des roches éruptives au nord du site, parallèlement il y a eu apparition des premiers galets qui ont été arrachés à l'atlas pour employer la plaine.

La constitution du sol de l'âge le plus récent au plus ancien est la suivante :

- L'actuel: constitué par les sables des dunes, les dépôts actuels limoneux et vaseux occupant les marais de REGHAIA, les sables argileux provenant de la dégradation des dunes et les alluvions récents formés de limons argileux
- Le quaternaire : constitué par les dunes de lumachelles, les dunes consolidés et les dunes de la phase de régression posténaire.
- Le villafranchien : c'est une formation alluviale correspond aux éléments arrachés à l'atlas.
- L'astien: correspond à un faciès argileux sableux
- Le pliocène : il se présente sous forme de marnes grises ou gris bleu, comprenant une puissante couche de marnes bleues parfois sableuses attribuées au Plaisancien
- Le miocène : un faciès argileux
- Les roches éruptives : roche métamorphique éruptive Rhyolite.

4. Situation climatique:

La zone de notre étude se trouve dans région ou règne le climat méditerranéen, il est caractérisé par une saison hivernale douce et humide et une saison estivale chaude et sèche.

5. Hydrographie: [10]

La région renferme un cours d'eau qui prend sa source à l'oued de Ben-Ammar dans les montagnes à 500 m d'altitude, il a un cheminement normal jusqu'au marais où il déverse ses eau dans le lac de REGHAIA.

Le lac de REGHAIA qui se Situe à une altitude de moins de 10 mètres du niveau de la mer, le plan d'eau s'étend sur une superficie de 75 hectares.

Le lac de REGHAIA est alimenté par trois cours d'eau:

➤ Oued BOURIAH, affluent de l'oued ELHAMIZ. Il prend sa source au niveau de ROUIBA et draine les eaux de ruissellement de la Mitidja nord-est;

- ➤ Oued REGHAÏA prend sa source dans les environs d'OULED MOUSSA. Il est alimenté par deux affluents, oued GUESBAI et oued BERRABA;
- ➤ Oued ELBIAR, prend naissance aux environs de la zone industrielle ROUIBA-REGHAÏA et alimente le lac par la commune de HERAOUA.

6. Conclusion :

Dans ce présent chapitre on a opté pour définir la zone d'étude de point de vue géographique, topographique, géologique, climatologique, afin de mieux connaître le site ce qui va nous aider par la suite à effectuer un bon dimensionnement

Etude démographique

1. Introduction:

Les ouvrages de génie civil comme ceux de l'hydraulique qu'on envisage d'utiliser dans le domaine de la collecte des eaux en milieu urbain doivent pouvoir réponde aux besoins de la population pour une certaine période appelé durée d'utilisation ou durée de vie de l'ouvrage en question.

Dans le but d'assuré ce privilège, il est primordial de faire une étude estimative de l'évolution de la population à l'horizon futur ainsi sur leur consommation, une tel étude qui va être développé dans ce présent chapitre.

2. Evolution de la population :

La création du tissu urbaine de REGHAIA se réfère à l'autorité française en 1854 où il était connu par la plantation du vignoble, à l'indépendance la population de la ville était de l'ordre de 5000 habitant concentré au sud-ouest du territoire de la commune.

Suite à l'extension de la zone industrielle la région a connu une explosion démographique où la population s'est multipliée par 10 au bout de vingtaine d'années

De la fin des années 80 jusqu'à aujourd'hui le taux d'accroissement s'est diminué et s'est stabilisé au tour de 2,6 (source **ONS**).

Tableau I.1. Evolution de la population dans le passé

Année	1987	1998	2008
Nbr de population	44 939	66 215	85 452

Source: ONS

Afin d'estimé la population à l'horizon future et à cause de l'existence de plusieurs terrain qui peut être urbanisé au futur on opte à utiliser une loi d'accroissement géométrique:

$$P_n = P_0 * (1 + \alpha)^n$$
 (I.1)

Avec

P₀: population à l'horizon actuel

P_n: population à l'horizon actuel

α : taux d'accroissement égal à 2,6 (source **ONS**)

n : c'est le nombre d'année

Les résultats sont présentés sur le tableau suivant :

Tableau I.2. Evolution futur de la population

Année	2008	2013	2023	2033	2043
nbr d'habitant	85452	97154	125584	162333	209836

3. Classement des équipements :

Les équipements sont classé selon leur service en plusieurs type tels que :

- > Equipements scolaire
- > Equipement sanitaire
- > Equipment commercial
- > Equipment administratif
- > Equipement socioculturel
- > Equipment sportif

3.1. Equipements scolaire:

La commune de REGHAIA comporte 35 équipements pour assurer la scolarité des élèves, ils sont varié entre primaire, CEM, Lycée et CFPA comme il est montré dans le tableau suivant :

Tableau I.3. Effectif dans les équipements scolaires

Equipement	nombre	Unité	Effectif
Primaire	23	Elève	8238
CEM	7	Elève	7931
Lycée	4	Elève	2259
CFPA	1	Elève	750

Source: ONS

3.2. Equipement sanitaire :

Les équipements sanitaires qui sont implanté dans la commune afin d'assurer le soin des citoyens sont montré dans le tableau suivant :

Tableau I.4. Effectif dans les équipements sanitaires

Equipement	nombre	Unité	Effectif
polyclinique	2	Lit	60
salle de soin	3	patient /j	45

Source: ONS

3.3. Equipment commercial:

- La commune comporte une zone industrielle située au sud-ouest de la commune, elle est considérée parmi les plus grande zone industrielle en Algérie, elle s'étale sur une superficie de 1000 Ha et contient 170 usines variées selon leur type de production (agro-alimentaire, MDC, transfert de métaux, cuire et textile ...).
- Un marché couvert d'une superficie de 19288 m²

3.4. Equipment administratif:

Les équipements administratifs présents dans la commune sont :

Tableau I.5. Effectif dans les équipements administratifs

équipement	nombre	unité	effectif
APC	1	employé	35
Poste	4	employé	70

Source: ONS

3.5. Equipment socioculturel:

Les équipements socioculturels dans la commune sont illustrés comme suite :

Tableau I.6. Effectif dans les équipements socioculturels

Equipement	Nombre	Unité	Effectif
bibliothèque	1	Adhérant	200
salle de cinéma	1	Place	250
mosquée	11	Fidèle	30000
maison de jeun	3	m²	3200

Source: ONS

3.6. Equipment sportif:

Les équipements sportifs dans la commune sont montrés dans le tableau suivant :

<u>Tableau I.7</u>. Effectif dans les équipements sportifs

Equipement	nombre	unité	Effectif
Stade	2	m²	22000
salle de sport	1	m²	2000
terrain de sport	7	m²	7000

Source: ONS

4. Estimation des besoins :

4.1. Norme unitaire de consommation :

La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée en litre par jour par habitant, par carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule......etc. Cette quantité d'eau s'appelle la norme de consommation c'est à dire la norme moyenne journalière de la consommation en litre par jour et par usager qui dépend de Certains critères dont les principaux sont :

- Le niveau de vie de la population ;
- Le nombre d'habitants ;
- Le développement urbain de la ville ;
- > Ressources existantes.

Cette norme est fixée à 200 l/hab/j (source SEAAL)

4.2. besoin en eau total :

Il s'agit de déterminer la consommation en eau moyenne journalière totale de la population en comptant les besoins domestiques et les besoin des différentes équipements (scolaire, sanitaire, administratif...etc.) qui comporte la ville étudié, les résultats sont illustrées comme suite :

4.2.1. besoin domestique:

Les besoins domestiques sont montrés dans le tableau suivant :

Tableau I.8. Besoin en eau domestique

Année	nbr d'habitant	dotation moyenne (l/hab/j)	consommation moyenne (m^3/j)
2013	97154	200	19430,8
2043	209836	200	41967,2

4.2.2. <u>besoin des équipements :</u>

Les différents équipements et leur besoin en eau sont présentés dans le tableau suivant :

Tableau I.9. Besoin en eau des équipements

équipements	équipements	nombre	unité	effectif	dotation	Unité	Consommation
	primaire	23	élève	8238	20	l/élève/j	164.76
scolaire	CEM	7	élève	7931	20	l/élève/j	158.62
Scolaire	lycée	4	élève	2259	20	l/élève/j	45.18
	CFPA	1	élève	750	20	l/élève/j	15.00
G	polyclinique	2	Lit	60	700	1/lit/j	42.00
Sanitaire	salle de soin	3	patient /j	45	10	l/patient/j	0.45
	bibliothèque	1	adhérant	200	5	l/adhérant/j	1.00
socioculturel	salle de cinéma	1	place	250	5	l/client	1.25
Sociocultulei	mosquée	11	fidèle	30000	10	l/fidèle/j	300.00
	maison de jeun	3	m²	3200	10	l/m²/j	32.00
administratif	APC	1	employé	35	5	l/employé/j	0.18
	Poste	4	employé	70	5	l/employé/j	0.35
	stade	2	m ²	22000	5	l/m²/j	110.00
Sportif	salle de sport	1	m²	2000	5	1/m²/j	10.00
	terrain de sport	7	m²	7000	5	l/m²/j	35.00
commercial	marché	1	m ²	19288	5	l/m²/j	96.44
						Totale (m ³ /j)	1012.23

Remarque:

Les eaux industrielles ne sont pas prises en considération car elles sont traitées localement et rejeté vers l'oued de REGHAIA dans un réseau séparatif

Donc les besoin en eau de la ville de REGHAIA sont illustrés dans le tableau récapitulatif suivant :

Tableau I.10. Besoin en eau total

type de besoin	Consommation (m³/jour)
Domestique	41967.2
Equipements	1012.23
Total	42979.43

5. Notion d'équivalent habitant :

Il s'agit d'évaluer la correspondance en nombre d'habitant des besoins en eau des différents équipements dans la ville étudié.

Il peut être calculé par la division de la consommation moyenne journalière de ces équipements sur le besoin en eau journalier d'un seul habitant :

$$EH = \frac{\text{la consommation total des \'equipements [1/j]}}{\text{la dotation pour 1 habitant [1/j/hab]}} (II.2)$$

EH=
$$\frac{1012.23}{200}$$
* $10^3 = 5062$ hab

6. Notion de population réelle :

Il s'agit du nombre d'habitant qui réside la ville étudié en prenant compte l'équivalent habitant de la consommation dans les divers équipements.

Il peut être calculé par l'addition de l'équivalent habitant à la population estimé à l'horizon futur

 $P_r = 209836 + 5062 = 214898$ habitant

7. Densité d'occupation du sol :

La densité de population est une mesure du nombre d'habitants d'une population occupant une portion donnée d'un milieu; bien qu'elle puisse être utilisée pour n'importe quel objet tangible. La densité de population est le plus souvent exprimée en termes d'individus (habitant) par unité de surface (Kilomètre carrée ou hectare).

$$DOS = \frac{\text{population r\'eel}}{\text{superficie}(Km^2)}...(II.4)$$

Avec DOS: densité d'occupation du sol

La densité d'une population donnée est considérée comme :

- Faible si le nombre d'habitants par km² est inférieur à 100.
- > moyenne s'il va de 100 à 200.
- Forte s'il est supérieur à 200.

Dans notre cas d'étude de la ville de REGHAIA on a :

Population réel: P_r=214898 hab

Superficie: S= 26,3 km²

$$DOS = \frac{214898}{26.3} = 8171.03 \text{ hab/km}^2$$

DOS=81.71 hab/ha

8. Conclusion:

Dans ce présent chapitre on vient de présenter la ville de REGHAIA d'un côté démographique ainsi tous les paramètres liés avec la population (nombre, consommation, densité de population ...) ce qui nous permettra l'évaluation de la quantité de leur effluents, une telle information est primordiale pour le dimensionnement du réseau.

CHAPITRE II

L'étude hydrologique

1. Introduction:

L'étude hydrologique joue un rôle primordial dans Le dimensionnement d'un réseau d'assainissement, il s'agit de la détermination de l'intensité de pluie qui permet l'estimation du débit des eaux pluvial qui sont prédominante dans les eaux évacué surtout pendant la saison hivernal, cette intensité est évalué à partir d'une série pluviométrique ajusté sur des lois de statistiques choisi . Une telle étude qui va être bien détaillé dans le chapitre suivant.

2. Bassin versant:

Un bassin versant est un territoire limité par des lignes de partage des eaux qui à l'intérieur de laquelle les pentes topographiques draine l'ensemble de ruissellement qui s'y produit vers un exutoire commun (cours d'eau ou mer).

La zone d'étude appartient au sous bassin de l'Oued REGHAIA qui fait partie du bassin du HAMIZ, Limité respectivement à l'ouest et à l'est par les sous bassins des oueds HAMIZ et BOUDOUAOU, il est caractérisé comme suit [07] :

➤ Surface : 81,5 Km2

Périmètre : 38,5 Km

Longueur du cours d'eau principal: 17, 13 Km

Différence d'altitude le long du cours d'eau principal : 180 m

➤ Indice de compacité de GRAVELIUS K_c : 1,2

Rectangle équivalent : Longueur (L) : 12,83 Km; Largeur (l) :6,42 Km

K_c> 1 donc le bassin est de forme allongé

3. Climat:

Le climat se défini comme étant l'ensemble des phénomènes météorologique qui caractérise l'état d'atmosphère et son évolution en un lieu donné

3.1. Température :

Le climat est caractérisé par des températures douces, elle augmente en été pour atteindre une température maximal de 32°C tandis qu'elle baisse en hiver pour atteindre une température minimale de 6°C.

<u>Tableau II.1</u>. Répartition mensuelle de la température moyenne

mois	Janv.	Févr.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept	Oct.	Nove	Dèce
T(°C)	11.7	11.5	13.5	15.2	18.7	22.8	25.2	26.5	23.7	20.4	15.4	12.7

Source: ONM

3.2. Humidité:

La commune de REGHAIA est classé parmi les zone humide on Algérie non seulement à cause de son positionnement près de la mer mais aussi à cause de la présence du lac de REGHAIA, On ne distingue pas de grande différence de l'humidité moyenne entre les saisons, elle varie autour d'une valeur moyenne de 75%

Tableau II.2. Humidité relative moyenne

Mois	Janv.	Févr.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept	Oct.	Nove	Dèce
humidité	78	81	76	75	76	71	70	69	72	74	78	79

Source: ONM

3.3. <u>Vent</u>:

Le vent est d'habitude faible à modéré, sa direction prédominante est de Nord-Ouest. Le sirocco souffle en moyenne 5 jours par an. Les orages sont fréquents surtout en hiver et en automne avec en moyenne 23.3 jours/an.

<u>Tableau II.3</u>: vitesse de vent en (m/s) de la zone d'étude.

Année	Janv	Févr.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept	Oct.	Nove	Dèce	Annuel
Moyen	2.5	2.1	2.2	2.7	2.7	2.8	2.7	2.4	2.5	2.0	2.5	2.5	2.5

Source: ONM

3.4. Pluviométrie:

La ville de REGHAIA est caractérisée par une irrégularité dans la répartition de la pluviométrie pendant l'année ce qui nous mène à distinguer

- > une saison humide qui s'étale du mois d'Octobre jusqu'au mois de mai où il s'intensifie entre les mois de Novembre et février
- > une saison sèche qui s'étale du mois de juin jusqu'au mois de septembre

La pluviométrie moyenne annuelle dans la zone est de l'ordre de 600 mm où sa répartition mensuel est montrée dans le tableau suivant :

16.5

24.7

Mois Oct. nove Dèce Janv. Fév. Mars Avril Mai Juin Juil. Aout Sept

45.2

64.1

46.3

7.3

2.0

Tableau II.4. Répartition mensuelle de la pluviométrie

74.5

Source: ONM

93,1

87,4

92.2

4. Les averses:

P (mm)

On désigne généralement par averse un ensemble de pluies associées à une même perturbation météorologique bien définie, selon l'intensité de pluie et ses conséquences on distingue deux types de pluie :

Les averses fortes:

43,3

Elles pourront durer quelques minutes ou se prolonger jusqu'à plusieurs heures, elle pourra intéresser quelques kilomètre carré tel que les orages ou quelques milliers de kilomètre carré tels que les pluies cyclonique qui provoquera les crues des grands fleuves.

Les averses faibles:

Elles sont des précipitations caractérisées essentiellement par une intensité faible qui n'engendre pas un ruissellement d'eau pendant une faible duré d'averse.

5. Période de retour :

Il est définit comme étant le temps que met une averse d'une intensité donnée pour se manifester. Il est déterminé suite à une étude technico-économique basé sur un compromis entre le coût de construction du réseau et celui de son entretien.

6. Temps de concentration :

Il est défini comme étant le temps mis par une goutte tombant sur le point le plus éloigné de l'exutoire du bassin versant pour atteindre celui-ci, ce temps doit dépendre de l'étendue, de la forme, de la pente et de la surface du bassin versant.

L'estimation du temps de concentration s'avère être une opération très délicate et laborieuse.

Dans le contexte de l'hydrologie urbaine, le temps de concentration doit être considéré comme la somme du temps d'écoulement superficiel t_s et du temps d'écoulement en réseau t_r

$$t_c = t_s + t_r \hspace{2em} (II.1)$$

ts : est déterminé par des méthodes empiriques. La formule de Terstriep (1969) est un exemple de formulation obtenue :

$$ts = 1.92 L^{0.32} i^{-0.64} \Gamma^{-0.45}$$
.....(II.2)

Avec

ts: temps d'écoulement superficiel (min)

L : plus long chemin hydraulique (m)

i : intensité de l'évènement retenu (mm/h)

I : pente du bassin versant (m/m)

L : représente la longueur de canalisation parcourue et v la vitesse, qui peut être obtenu par la formule de Manning Strickler : $v=K R_h^{2/3}I^{1/2}$(II.4)

K : coefficient de Strickler

R_h: Rayon hydraulique de la canalisation

I: pente (m/m)

La combinaison de ces deux formulations permet de déterminer t_c.

Une méthode par itération est nécessaire compte tenu de la nécessité de recalculer i pour chaque nouvelle évaluation de t_c [08]

Il existe aussi de nombreuses formules permettent de connaître le temps de concentration, parmi lesquelles on cite :

La formule de PASSINI :

$$t_c = 0.108 \frac{\sqrt[3]{S L}}{\sqrt{P}}$$
 (II.5)

t_c: temps de concentration en minute

s: surface du bassin en Km2

P: la pente en m/m

L: longueur du plus grand parcours d'eau en km

la formule du service routier de l'état de Californie :

$$t_c = 0.108 \left(\frac{L}{\sqrt{P}}\right)^{0.77}$$
 (II.6)

t_c: temps de concentration en heures

P: la pente en m/m

L : longueur du plus grand parcours d'eau en km

> la formule de VENTURA :

$$t_c = 7.62 \left(\sqrt{\frac{A}{P}} \right)$$
 (II.7)

t_c: temps de concentration en minute

A: surface du bassin en Km2

P: la pente en %

Pour les petits bassins versant (<200 ha) le temps de concentration est compris entre 10 et 20 min (SEAAL). Puisque les sous bassin versant de la zone d'étude sont d'une petite superficie totalement urbanisée, on prend le temps de concentration égal à 15 min

7. Analyse statistique des données :

Pour l'étude des précipitations d'assainissement on a besoin d'une série pluviométrique des pluies maximal journalière pour cela on a une série pluviométrique de 38 observation allant de 1972 jusqu'à 2009, fournie par le service de l'ANRH d'Alger, mesuré par la station de REGHAIA (code 020632) du coordonnée :

 $\begin{cases} X: 557.8 \text{ m} \\ Y: 382.25 \text{ m} \\ Z: 20 \text{ m} \end{cases}$

La série d'observation est la suivante :

<u>Tableau II.5.</u>: Pluie journalière maximal.

	sept	oct	Nov	Dec	janv	fev	mars	avril	mai	juin	juil	aout	P_{jmax}
1972	80	152	41.1	49	49.1	32.2	26.2	7.5	0.7	46	1.7	1.8	152
1973	98.5	26.4	17.2	43.7	33.3	34.5	87	18.7	0.2	9.5	0.6	0	98.5
1974	11.3	47.7	40.2	13	13.5	26	18.8	11	19.6	18.1	0	0	47.7
1975	3.8	9.6	42.2	30.3	36.2	30.6	10.5	9.3	14.3	5.2	20.8	11.8	42.2
1976	8.3	26	26.3	21.2	13.6	19.7	15.2	36	22.4	3	0	0	36
1977	0	5.6	32.5	3	37.6	11	21.7	71.7	24.1	0.7	0	0	71.7
1978	5.9	44.2	41	21.9	18.3	25.6	48.2	9.7	2.5	3.9	0	1.7	48.2
1979	40.3	11.9	53	33.6	30	12.7	30.7	51.4	11	1.5	0	0	53
1980	0	16.4	34	48.2	16.9	13.2	12	13	22.2	2.3	0	18.9	48.2
1981	2.3	22.6	10.4	19.8	33.2	24.4	16	6.9	15.8	16.5	0	3.5	33.2
1982	41.6	31.6	63.5	26.9	1.6	37.1	18.4	6.4	2.8	0	7.8	1.4	63.5
1983	1	20.5	19.7	34.5	46.3	21.9	12.2	12	38	13.5	0	0	46.3
1984	17.5	101.4	12.5	31.9	28	12.6	34.3	2.5	30.8	0	0	0	101.4
1985	19.3	18.6	34.4	19.6	13.6	22.1	31.5	14.1	0.7	11	11.3	2.6	34.4
1986	37.3	6.9	38.4	36.1	27.2	44	3.5	0	2	17.8	1.2	0	44
1987	24.2	19.7	41.2	14.4	18	8.5	34	15	8.4	20.4	0.7	0	41.2
1988	31.3	1.9	38.5	25.7	8.5	9.1	4.5	10.4	0	0	0.2	0	38.5
1989	7.9	12.5	9.7	6.6	2.9	0	6.3	14.8	9.5	4.6	13.8	0	14.8
1990	0.5	28	16.2	19.3	20	19.7	10.4	15	11.7	7.6	0	0.4	28
1991	40.6	24.4	25.5	3.1	48.8	16.5	17.4	30.4	28.6	10.1	3.7	0	48.8
1992	2.7	42.9	94.8	20.7	14.3	23.2	4	13.4	14.7	0.4	2.1	0	94.8
1993	26.6	15.8	28.3	23	34	16.3	0.3	18.4	2.9	0	0	0	34
1994	14.2	26.9	30.6	28.8	45.2	32.7	27.8	11.2	0	16.2	0	20.4	45.2
1995	12.4	40.8	9.8	22	24.6	21	18	49.2	10.7	50.8	1.2	1.7	50.8
1996	21.9	44	12	4.3	12	8.5	11.9	43.4	6	6.8	2.6	22.2	44
1997	64	15.9	34.1	51	19.6	37.2	22.2	32.6	59.6	6.1	0	0.9	64
1998	5.3	23.8	24.4	26.6	37.5	43.7	22.3	9.1	0.6	4	0	4.6	43.7
1999	23	29.6	40.3	35.9	9	7.3	36.8	8	37.3	1.1	0	0	40.3
2000	5.5	25.2	22.4	14.6	31.5	24.7	0	13.1	3.4	0	0	0	31.5
2001	19.6	13.8	49	21.2	13.8	2.9	11.7	6.6	9.1	0	1.2	8.4	49
2002	11.8	22.5	37.6	30	45.2	25.3	12	32.3	4.4	0	0	0	45.2
2003	23.5	13.5	13	20.7	46.6	20.7	40.6	23.5	77.4	0	0	0	77.4
2004	3.1	21	53	52.4	31.6	18.6	16.9	10.2	1.2	0	1	0	53
2005	8	24.6	44	25.3	26.4	27.6	16	1.9	105.3	0.6	0	5.9	105.3
2006	20.5	5.3	10.3	37.1	6	13.8	23.4	24.2	9.8	2.7	5	0	37.1
2007	29.8	36.4	60.8	27.2	5	7	10.8	4.8	25.3	2.4	8.3	0	60.8
2008	12.5	17.1	35.8	31.4	21.6	9.2	16.1	23.3	5.1	0	0	0	35.8
2009	62.3	6	53.2	38.1	28.2	14.3	48.6	23.8	18.8	2.9	2.3	20.9	62.3

Source ANRH

L'échantillon de pluie qu'on possède est caractérisé par :

> Moyenne arithmétique :
$$\overline{P_{J,max}} = \frac{\sum_{i=1}^{n} P_{J,max}}{n}$$
 (II.8)

n : le nombre d'années d'observations (n= 38 ans).

$$\overline{P_{J,max}} = \frac{\sum_{i=1}^{n} P_{J,max}}{n} = 54.4 \text{ mm}$$

7.1. Teste d'homogénéité:

Avant toute étude statistique on doit s'assurer que notre série pluviométrique est homogène et qu'il vient de la même population, pour cela on opte pour le teste non paramétrique de WILCOXON qui se déroule comme suite :

- ➤ Deviser l'échantillon en deux sous échantillons X, Y de taille respective N_1 , N_2 Avec : $N_1 < N_2$ et $(N_1+N_2=N)$;
- Classer l'échantillon (X U Y) par ordre croissant en associant un rang à chaque valeur.
- ➤ Déterminer l'origine de chaque valeur de (XUY) ;
- \triangleright Calculer: $W_x = \sum rang(x)$.
- ➤ Calculer W_{min} et W_{max}

$$W_{\min} = \frac{(N_1 + N_2 + 1)N_1 - 1}{2} - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{N_1 N_2 (N_1 + N_2 + 1)}{12}}....$$
 (II.10)

$$W_{\text{max}} = (N_1 + N_2 + 1) * N1 - W_{\text{min}}$$
 (II.11)

 \triangleright Vérifier que : $W_{min} \leq W_X \leq W_{max}$

On prend l'échantillon X est celui des observations du 1972 jusqu'à 1985 et Y du 1986 jusqu'2009 ce qui nous donne leur taille échantillonné respectivement N_1 =14 et N_2 =24

La division et le classement des échantillons sont illustrés dans le tableau suivant :

<u>Tableau II.6</u>: test d'homogénéité de WILCOXON.

Année	P_{jmax}	val classée	Rang	X	Y	origine échantillon	rang X
1972	152	14.8	1	152		Y	
1973	98.5	28	2	98.5		Y	
1974	47.7	31.5	3	47.7		Y	
1975	42.2	33.2	4	42.2		X	4
1976	36	34	5	36		Y	
1977	71.7	34.4	6	71.7		X	6
1978	48.2	35.8	7	48.2		Y	
1979	53	36	8	53		X	8
1980	48.2	37.1	9	48.2		Y	
1981	33.2	38.5	10	33.2		Y	
1982	63.5	40.3	11	63.5		Y	
1983	46.3	41.2	12	46.3		Y	
1984	101.4	42.2	13	101.4		X	13
1985	34.4	43.7	14	34.4		Y	
1986	44	44	15		44	Y	
1987	41.2	44	16		41.2	Y	
1988	38.5	45.2	17		38.5	Y	
1989	14.8	45.2	18		14.8	Y	
1990	28	46.3	19		28	X	19
1991	48.8	47.7	20		48.8	X	20
1992	94.8	48.2	21		94.8	X	21
1993	34	48.2	22		34	X	22
1994	45.2	48.8	23		45.2	Y	
1995	50.8	49	24		50.8	Y	
1996	44	50.8	25		44	Y	
1997	64	53	26		64	Y	
1998	43.7	53	27		43.7	Y	
1999	40.3	60.8	28		40.3	Y	
2000	31.5	62.3	29		31.5	Y	
2001	49	63.5	30		49	X	30
2002	45.2	64	31		45.2	Y	
2003	77.4	71.7	32		77.4	X	32
2004	53	77.4	33		53	X	33
2005	105.3	94.8	34		105.3	Y	
2006	37.1	98.5	35		37.1	X	35
2007	60.8	101.4	36		60.8	X	36
2008	35.8	105.3	37		35.8	Y	
2009	62.3	152	38		62.3	X	38

 $W_x = \sum rang(x) = 317$

 α : le risque d'erreur ou niveau de signification on le prend de 5%

$$z_{1-\frac{\alpha}{2}} = z_{0,975} = 1,96$$

$$W_{\min} = \frac{(14+24+1)14-1}{2} - 1,96 * \sqrt{\frac{14*24(14+24+1)}{12}} = 207,73$$

$$W_{\text{max}} = (N1+N2+1)*N1-W_{\text{min}} = (14+24+1)*14-207,73=338,27$$

Donc
$$W_{min}=207,73 < W_x=317 < W_{max}=338,27$$

Une condition vérifiée, ce qui nous mène à conclure que notre série pluviométrique est homogène

7.2. Ajustement statistique:

On choisit d'ajusté notre échantillon aux lois suivantes :

- ➤ Loi de GUMBEL
- ➤ Loi de GALTON (Log Normal)

7.2.1. Ajustement à la loi de GUMBEL :

La fonction de répartition de cette loi est donnée par

$$F(y)=e^{-e^y}$$
....(II.12)

Où

y : est la variable centrée réduite de GUMBEL : $y = \alpha(x - \beta)$.. (II.13)

x: précipitation maximale journalière (mm) $x = \frac{1}{\alpha} y + \beta$(II.14)

$$\frac{1}{\alpha}$$
: Gradient exponentiel $\frac{1}{\alpha} = 0.78 \sigma$(II.15)

$$\beta$$
: Paramètre de position $\beta = \bar{x} - 0.577 * \frac{1}{\alpha}$ (II.16)

 \bar{x} : Moyenne des pluies journalières maximales

La procédure de l'ajustement se déroule comme suite :

- ➤ Classer les valeurs des précipitations par ordre croissant avec l'attribution d'un rang (1, 2,3.....m) à chaque observation.
- Calculer pour chaque valeur de précipitation la fréquence expérimentale par la formule de HAZEN.

$$F(x) = \frac{m - 0.5}{n}.$$
 (II.17)

m : rang de précipitation

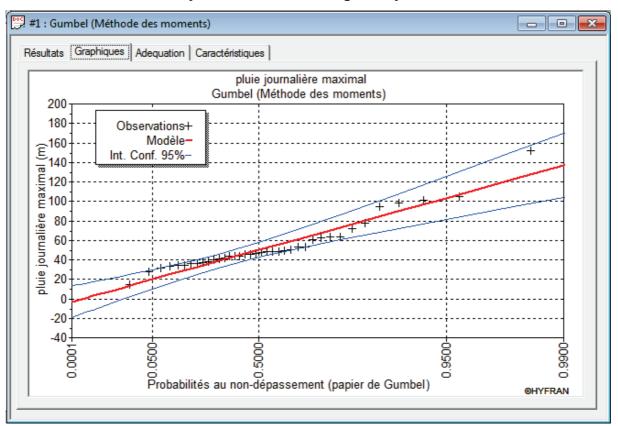
n: nombre d'observations(38)

- > Calculer la variable réduite de GUMBEL donnée par la formule suivante : $y = -\ln(-\ln(F(x)))$
- \triangleright Calculer les paramètres d'ajustement α et β

$$\frac{1}{\alpha} = 0.78 \ \sigma = 0.78 * 26.3 = 20.51$$

$$\beta = \bar{x} - 0.577 * \frac{1}{\alpha} = 54.4 - 0.577/20.51 = 42.53$$

Les calculs d'ajustement sont illustrés dans le tableau suivant :


Tableau II.7: teste d'ajustement de GUMBEL.

Valeurs de	Valeurs	Ordre de	Fréquence	Variable	Valeur	Valeur	Borne	Borne
départ	Classées	Classement	expérimentale	réduite	expérimentale	théorique	inférieure	supérieure
152	14.8	1	0.013	-1.466	14.80	12.46	-4.38	22.21
98.5	28	2	0.039	-1.173	28.00	18.46	4.10	27.24
47.7	31.5	3	0.066	-1.001	31.50	21.99	9.00	30.28
42.2	33.2	4	0.092	-0.869	33.20	24.70	12.70	32.68
36	34	5	0.118	-0.758	34.00	26.98	15.77	34.75
71.7	34.4	6	0.145	-0.659	34.40	29.01	18.44	36.63
48.2	35.8	7	0.171	-0.569	35.80	30.86	20.85	38.40
53	36	8	0.197	-0.484	36.00	32.60	23.06	40.09
48.2	37.1	9	0.224	-0.404	37.10	34.24	25.12	41.74
33.2	38.5	10	0.250	-0.327	38.50	35.83	27.06	43.36
63.5	40.3	11	0.276	-0.252	40.30	37.36	28.90	44.98
46.3	41.2	12	0.303	-0.178	41.20	38.87	30.67	46.60
101.4	42.2	13	0.329	-0.106	42.20	40.35	32.37	48.23
34.4	43.7	14	0.355	-0.034	43.70	41.82	34.02	49.89
44	44	15	0.382	0.037	44.00	43.29	35.63	51.59
41.2	44	16	0.408	0.109	44.00	44.76	37.20	53.33
38.5	45.2	17	0.434	0.181	45.20	46.25	38.75	55.11
14.8	45.2	18	0.461	0.254	45.20	47.75	40.28	56.96
28	46.3	19	0.487	0.329	46.30	49.27	41.81	58.87
48.8	47.7	20	0.513	0.405	47.70	50.83	43.33	60.86
94.8	48.2	21	0.539	0.483	48.20	52.43	44.85	62.93
34	48.2	22	0.566	0.563	48.20	54.07	46.39	65.09
45.2	48.8	23	0.592	0.646	48.80	55.78	47.96	67.37
50.8	49	24	0.618	0.733	49.00	57.56	49.56	69.77
44	50.8	25	0.645	0.823	50.80	59.42	51.20	72.31
64	53	26	0.671	0.919	53.00	61.38	52.91	75.02
43.7	53	27	0.697	1.020	53.00	63.46	54.69	77.92
40.3	60.8	28	0.724	1.129	60.80	65.68	56.57	81.04
31.5	62.3	29	0.750	1.246	62.30	68.08	58.57	84.44
49	63.5	30	0.776	1.374	63.50	70.70	60.73	88.18
45.2	64	31	0.803	1.515	64.00	73.60	63.08	92.34
77.4	71.7	32	0.829	1.673	71.70	76.85	65.70	97.05
53	77.4	33	0.855	1.856	77.40	80.59	68.68	102.48
105.3	94.8	34	0.882	2.071	94.80	85.01	72.17	108.94
37.1	98.5	35	0.908	2.337	98.50	90.46	76.44	116.94
60.8	101.4	36	0.934	2.687	101.40	97.65	82.02	127.54
35.8	105.3	37	0.961	3.212	105.30	108.41	90.30	143.48
62.3	152	38	0.987	4.324	152.00	131.22	107.70	177.43

On trouve donc:

$$P_{j,max} = x = \frac{1}{\alpha} y + \beta$$

 $P_{j,max} = 20,51 y + 42,53$

La représentation graphique des couples ($P_{j,max}$, y_i) ainsi l'intervalle de confiance avec une erreur de 5% sont présentées à l'aide du logiciel Hyfran comme suite :

Graphe II.1: teste d'ajustement à la loi de GUMBEL.

On détermine la valeur théorique de la précipitation journalière maximale qui correspond à une période de retour de 10 ans, c-à-dire une fréquence au dépassement de 10%, on la déduit à partir du graphe ou à partir de l'équation du variable réduite de GUMBEL y=-Ln(-Ln(F(1-0,1)))=2,25 ce qui nous donne $P_{j,max}=88,7$ mm

Avec un intervalle de confiance de 95% de précision

$$P(75 < P_{i,max} = 88,7 < 114,3) = 95\%$$

7.2.2. Ajustement à la loi de GALTON:

La loi de GALTON est caractérisée par la fonction de répartition

$$F(X) = \frac{1}{\sqrt{2\pi}} \int_{u}^{+\infty} e^{-\frac{1}{2}u^2} du$$
(II.18)

Ou:

$$u = \frac{x_i - \bar{x}}{\sigma_x}$$
 (variable réduite de GAUSS)

La moyenne:
$$\mu_n = \frac{1}{2} Ln(\frac{\mu}{c_n^2 + 1})$$
(II.19)

L'écart type:
$$\sigma_n^2 = Ln(c_v^2 + 1)$$
 (II.20)

Tel que

$$c_v = \frac{\sigma}{\mu} = 0.48$$
 est le coefficient de variation

Donc les caractéristiques de la loi de GALTON sont :

$$\mu_n = 3.9$$

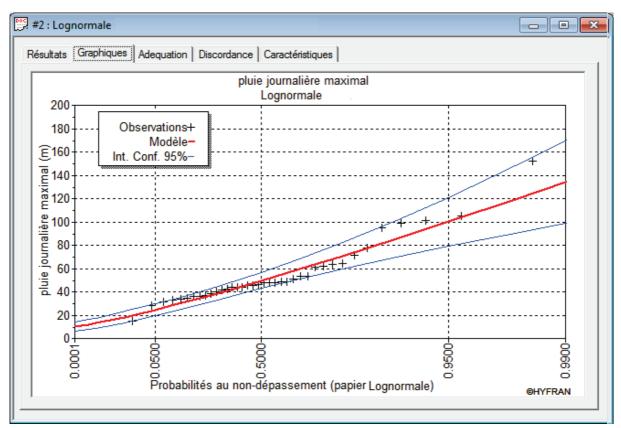
$$\sigma_n = 0.43$$

La procédure d'ajustement à la loi de GALTON est la même que celle de la loi de GUMBEL, la différence se présente dans l'équation de la droit d'Henri qui devient : $Ln(x) = \overline{Ln(x)} + Z_i * \sigma_n$ (II.21)

Donc
$$Ln (P_{j, max})=3,9+0,43*Z_{i}$$

 $X = P_{j,max}$: pluie journalière maximal

 $\overline{Ln(x)} = \mu_n$: la moyenne suivant la loi de GALTON


Z_i: variable centrée réduite

Les étapes de calcule d'ajustement sont illustré dans le tableau suivant :

<u>Tableau II.8</u>: teste d'ajustement de GALTON.

Valeurs	Valeurs	Ordre de	Eráguanaa	Variable	Valeur	Valeur	Borne	Borne
de	classées		Fréquence expérimentale	Réduite	Expérimentale		inférieure	supérieure
départ	Classees	Classement	experimentale	Reduite	Experimentale	uncorique	IIIIeiieuie	superieure
40.3	14.8	1	0.013	-2.222	14.80	19.18	13.97	23.80
14.8	28	2	0.039	-1.757	28.00	23.39	17.89	28.23
28	31.5	3	0.066	-1.508	31.50	26.01	20.39	30.98
31.5	33.2	4	0.092	-1.328	33.20	28.09	22.40	33.17
33.2	34	5	0.118	-1.183	34.00	29.89	24.14	35.06
34	34.4	6	0.145	-1.059	34.40	31.51	25.73	36.78
34.4	35.8	7	0.171	-0.950	35.80	33.02	27.20	38.39
35.8	36	8	0.197	-0.851	36.00	34.44	28.59	39.92
36	37.1	9	0.224	-0.760	37.10	35.81	29.92	41.41
37.1	38.5	10	0.250	-0.674	38.50	37.15	31.22	42.86
38.5	40.3	11	0.276	-0.593	40.30	38.45	32.48	44.30
41.2	41.2	13	0.329	-0.442	41.20	41.01	34.95	47.17
42.2	42.2	14	0.355	-0.371	42.20	42.29	36.17	48.61
43.7	43.7	15	0.382	-0.301	43.70	43.57	37.38	50.08
44	44	16	0.408	-0.233	44.00	44.86	38.60	51.58
44	44	17	0.434	-0.165	44.00	46.16	39.82	53.11
45.2	45.2	18	0.461	-0.099	45.20	47.49	41.05	54.69
45.2	45.2	19	0.487	-0.033	45.20	48.85	42.30	56.32
46.3	46.3	20	0.513	0.033	46.30	50.24	43.58	58.01
47.7	47.7	21	0.539	0.099	47.70	51.68	44.87	59.78
48.2	48.2	22	0.566	0.165	48.20	53.17	46.21	61.63
48.2	48.2	23	0.592	0.233	48.20	54.71	47.58	63.59
48.8	48.8	24	0.618	0.301	48.80	56.33	49.00	65.66
49	49	25	0.645	0.371	49.00	58.04	50.48	67.86
50.8	50.8	26	0.671	0.442	50.80	59.84	52.03	70.23
53	53	27	0.697	0.516	53.00	61.77	53.67	72.78
53	53	28	0.724	0.593	53.00	63.83	55.40	75.56
60.8	60.8	29	0.750	0.674	60.80	66.07	57.26	78.62
62.3	62.3	30	0.776	0.760	62.30	68.53	59.27	82.01
63.5	63.5	31	0.803	0.851	63.50	71.25	61.47	85.85
64	64	32	0.829	0.950	64.00	74.33	63.93	90.24
71.7	71.7	33	0.855	1.059	71.70	77.88	66.73	95.40
77.4	77.4	34	0.882	1.183	77.40	82.11	70.00	101.65
94.8	94.8	35	0.908	1.328	94.80	87.36	73.99	109.57
98.5	98.5	36	0.934	1.508	98.50	94.35	79.21	120.35
101.4	101.4	37	0.961	1.757	101.40	104.93	86.93	137.21
105.3	105.3	38	0.987	2.222	105.30	127.97	103.12	175.71
152	152	39	1.013	2.222	152.00	127.97	103.12	175.71

Et les graphes d'ajustement de la série ainsi l'intervalle de confiance pour un degré de certitude de 95% sont présentés à l'aide su logiciel Hyfran comme suite :

Graphe II.2: teste d'ajustement à la loi de GALTON.

A partir du graphe on déduit la pluie maximale journalière qui correspond à une période de retour de 10 ans, c-à-dire une probabilité au non dépassement de 90%

$$P_{J,\max(10)} = EXP^{(\overline{Ln(x)} + Zi * \sigma n)}$$
(II.22)

 $P_{i,max} = 85,7mm$ avec un intervalle de confiance

$$P(69,8 < P_{i,max} = 85,7 < 101,4) = 95\%$$

8. comparaison entre les lois d'ajustement :

D'après les graphes, notre série pluviométrique s'ajuste bien aux deux lois (GUMBEL et GALTON). Afin de choisir la loi la mieux ajustée à notre série on doit effectuer un test d'adéquation de khi-deux, qui nous facilitera la comparaison et le choix entre les deux lois d'ajustement.

La démarche de ce test est la suivante :

- ➤ On divise l'intervalle de variation en k classes de façon que chacune d'elles contienne au minimum 5 données expérimentales (généralement, on s'abstient d'analyser des échantillons de moins de 10 valeurs).
- ➤ On détermine la fréquence absolue observée ou l'effectif de chaque classe : f_{o1} , f_{o2} , ..., f_{ok} avec $\sum f_{oi} = N$; N = taille de l'échantillon.

- \triangleright On peut obtenir les fréquences théoriques : $f_{t1} = N.p_1$, $f_{t2} = N.p_2$, ..., $f_{tk} = N.p_k$ ou p_i représente la probabilité que la variable étudiée prenne une valeur appartenant à la classe i.
- ➤ Pour évaluer l'ampleur de l'écart entre les fréquences absolues observées et les fréquences théoriques f_{ti} obtenues à partir de la loi théorique que l'on suppose adéquate, on utilise la quantité :

$$\chi^2 = \sum (f_{0i} - f_{ti})^2 / f_{ti}$$
(II.23)

- Une fois le χ_e^2 relatif à notre échantillon déterminé, on le compare au, $\chi_{v,\alpha}^2$ donné par la table pour un degré de liberté connu v et une probabilité au dépassement α (seuil de signification fixé à l'avance, par exemple, FD = α =0.05
- Deux cas peuvent se poser :

Si χ_e^2 est plus petit que $\chi_{\nu,\alpha}^2$, on accepte l'hypothèse que le phénomène étudié suit la distribution théorique choisie et que les écarts entre les fréquences observées et les fréquences théoriques ne sont pas significatifs.

Si χ_e^2 est plus grand que, $\chi_{\nu,\alpha}^2$, on rejette l'hypothèse H_0 considérée car les écarts sont significatifs; ce qui veut dire que les données expérimentales suivent une loi autre que celle de notre hypothèse, et l'on essaye une autre loi d'ajustement.

8.1. Application du teste sur la loi de GUMBEL :

- ➤ On divise notre série sur 7 classe dont chaqu'une d'entre elles contient au moins 5 observation
- Déterminer la fréquence expérimentale de chaque classe qui est le nombre d'observation dans chaque classe
- Calculer les variable réduite des borne des classes à l'aide de la droite de GUMBEL déterminé précédemment ($y = \frac{x-42,53}{20,51}$) ainsi leur probabilité à l'aide de la table de GAUSS
- Calculer l'ampleur de l'écart entre les fréquences expérimentale et théorique par la formule $\chi^2 = \sum_{i=1}^{\infty} (f_{0i} f_{ti})^2 / f_{ti} = 13,87$

Ces différentes étapes sont illustrées dans le tableau suivant :

N° classe	X_{i-1}	Xi	f_{exp}	Y _{i-1}	Yi	F(Y _{i-1})	F(Y _i)	$F(Y_i)\text{-}F(Y_{i-1})$	Vi	$(f_{\text{exp}}\text{-}f_{\text{t}})^2/fi_{\text{t}}$
1	14	35	6	-1.39	-0.37	0.08	0.36	0.27	10.44	1.89
2	35	42	6	-0.37	-0.03	0.36	0.49	0.13	5.05	0.18
3	42	46	6	-0.03	0.17	0.49	0.57	0.08	2.94	3.17
4	46	49	5	0.17	0.32	0.57	0.62	0.06	2.15	3.77
5	49	61	5	0.32	0.90	0.62	0.82	0.19	7.31	0.73
6	61	80	5	0.90	1.83	0.82	0.97	0.15	5.70	0.09
7	80	160	5	1.83	5.73	0.97	1.00	0.03	1.29	10.72
				•	•			•	χ^2	20.54

Tableau II.9: teste de khi 2 sur la loi de GUMBEL.

ightharpoonup Calculer la valeur de $\chi_{\nu,\alpha}^{2}$ à partir de la table de khi 2 pour un degré de liberté ν =k-p-1=7-2-1 ν =4 et un seuil de signification α =0.05

On trouve $\chi^2_{4,0.05}=9.49<\chi^2=20.54$ ce qui signifie que l'ajustement à la loi de GUMBEL n'est pas acceptable

8.2. Application du teste sur la loi de GALTON :

La procédure est la même que celle pour la loi de GUMBEL, la différence se présente dans le calcul des variables réduites grâce à loi de GALTON : $Ln\ (P_{j,\ max})=3,9+0,43*Z_i$

La variable réduite
$$Z_i = \frac{\ln(x) - 3.9}{0.43}$$

Le tableau suivant résume les étapes de calcule du teste

Tableau II.10: teste de khi 2 sur la loi de GALTON.

N° classe	X_{i-1}	Xi	f_{exp}	ln(Xi-1)	ln(Xi)	Z_{i-1}	Z_{i}	$F(Z_{i-1})$	F(Z _i)	$F(z_i)\text{-}F(z_{i-1})$	Vi	$(f_{\text{exp}}\text{-}f_{\text{t}})^2/fi_{\text{t}}$
1	14	35	6	2.64	3.56	-2.93	-0.80	0.00	0.21	0.21	7.97	0.49
2	35	42	6	3.56	3.74	-0.80	-0.38	0.21	0.35	0.14	5.38	0.07
3	42	46	6	3.74	3.83	-0.38	-0.17	0.35	0.43	0.08	3.09	2.75
4	46	49	5	3.83	3.89	-0.17	-0.02	0.43	0.49	0.06	2.22	3.50
5	49	61	5	3.89	4.11	-0.02	0.49	0.49	0.69	0.20	7.44	0.80
6	61	80	5	4.11	4.38	0.49	1.12	0.69	0.87	0.18	6.87	0.51
7	80	160	5	4.38	5.08	1.12	2.73	0.87	1.00	0.13	4.86	0.004
		•	•				•				χ^2	8.12

On trouve donc

 χ^2 =8.12< $\chi^2_{4,0.05}$ =9.49 ce qui implique que l'ajustement à la loi de GALTON est acceptable.

Donc:

Notre série pluviométrique s'ajuste à la loi de GALTON qui est caractérisé par la droite :

$$Ln (P_{j, max})=3,9+0,43*Z_{i}$$

9. Calcul de l'intensité de la pluie :

Pour le calcul de l'intensité moyenne de précipitation d'une durée d'averse t et une période de retour T, nous utilisons la formule de MONTANARI :

$$I_{t,T} = I_T * (\frac{t}{24})^{b-1}$$
....(II.24)

Où:

 $I_{t,T}$: Intensité moyenne de précipitation pour une averse de période de retour T

 I_T : Intensité moyenne de précipitation pour une journée de fréquence donnée.

t : durée de l'averse en heure.

b : exposant climatique de la région b=0.37 (source ANRH)

 I_T : est la pluie journalière maximale (mm/jour), calculée à partir de la droite de GALTON pour une période de retour T

 Z_i : variable centrée réduite, ça valeur est celle qui correspond à une probabilité d'apparition $P=1-\frac{1}{T}$, tirée à partir de la table de GAUSS

Les calcule d'intensité projet pour les différentes durée d'avers (6, 15, 30, 60 min) et pour différente période de retour (5, 10, 20ans) sont illustré dans le tableau suivant :

Tableau II.11: valeurs des intensités projet calculées.

	It,T(1/s/ha)							
t\T	2	5	10	20				
6	180.6	259.4	313.4	366.4				
15	101.4	145.6	176.0	205.7				
30	65.5	94.1	113.7	132.9				
60	42.3	60.8	73.5	85.9				

10. Remarque:

Suite à une étude qui a été faite par l'ANRH dont le but d'actualisé les courbe IDF de ses pluviographe sur le bassin de la wilaya d'Alger qui était basé sur les pluviographes de la station de Clairbois de Bir Mourad Reis qui est la station la plus proche équipée d'un pluviographe et celle qui dispose des données sur la plus longue période.

Cette étude issue des résultats très sensiblement supérieurs à ceux de l'ancienne étude, par exemple pour une durée de 30 min (temps de concentration du bassin versant urbain de la wilaya d'Alger) les valeurs obtenues sont comme suite :

<u>Tableau II.12:</u> comparaison entre les anciennes et nouvelles courbe IDF de Clairbois.

	ancienne étude IDF T=10 ans	nouvelle étude IDF T=10 ans		
Pluie de 30	Hauteur:28.7mm	Hauteur:45.2 mm		
minutes	Intensité : 57.4 mm/h	Intensité: 90.4 mm/h		
	159 l/s/ha	251 l/s/ha		

Source: SEAAL

D'après les résultats issus de cette étude qui a été finalisé en 2008, les services de la DRE de la wilaya d'Alger ont imposés, pour les différentes projets d'assainissement (projet des réseaux qui draine les eaux d'habitations) sur le l'ensemble du bassin de la wilaya, l'intensité projet de 251 l/s/ha

11. Conclusion:

L'étude hydrologique représente une étape primordiale dans le dimensionnement des réseaux d'assainissement, elle sert à déterminer les différents paramètres hydrologiques tels que climat, caractéristique du bassin versant et surtout l'intensité projet.

A cause de l'étude d'actualisation des courbe IDF lancé par l'ANRH et qui a montré la non fiabilité des stations de mesure pluviométrique, on opte pour l'intensité projet 251 l/s/ha

CHAPITRE III

Dimensionnement du réseau

1. Introduction:

Le réseau d'assainissement est appelé à assurer la collecte et l'évacuation des eaux de ruissellement et des eaux usées d'origine diverse. Avant de consacrer la partie dimensionnement des collecteurs, une évaluation des débits d'eaux usées et pluviales est indispensable et qui porte essentiellement sur l'estimation de la quantité des rejets.

2. Historique:

En raison des nombreuses maladies liées à un milieu malsain, l'homme a visé depuis l'antiquité à assurer l'évacuation des eaux usées et des excréments en minimisant les risques pour la santé et pour son environnement, en concevant des réseaux d'assainissement

Les premiers réseaux d'assainissement remontent à l'époque des Romains qui ont été les premiers ingénieurs des réseaux d'eau ils ont construit des égouts et des latrines pour évacuer les déchets. Une ville romaine était d'abord bâtie sur l'établissement de son réseau d'évacuation, qui, avec le temps, fut couvert et enterré pour des raisons d'odeur et de salubrité. [11]

Figure III.1: le cloacal maxima de Rome

Mais c'est jusqu'à la seconde moitié du XIXème siècle que la conception moderne de l'assainissement s'élabore en Europe. C'est John Snow qui découvrit la véritable origine du choléra lors de l'épidémie terrible de 1854 à Londres. Il préconisa alors, pour éradiquer cette maladie, de collecter les eaux urbaines et de les mener par des canalisations enterrées à des sites de rejets en milieu naturel. Avec la croissance continue de l'urbanisation et la poussée démographique, les villes vont développer des réseaux d'égout comptant des milliers de kilomètres de canalisations et

aboutir au concept du « tout à l'égout ». Ces réseaux unitaires évacuent dans les mêmes canalisations les eaux usées domestiques et les eaux pluviales, Ils cumulent les avantages de l'économie, un seul réseau à construire et à gérer.

3. Différents systèmes des réseaux d'assainissement :

L'évacuation des eaux usées (domestiques, industrielles) et des eaux pluviales peut se faire au moyen de trois systèmes principaux sont :

- > Système unitaire
- > Système séparatif
- > Système pseudo séparatif

3.1. Système unitaire:

Ce système prévoit l'évacuation en commun dans une même conduite les eaux d'égout ménagères et industrielles ainsi que les eaux pluviales, ce système nécessite des ouvrages et des stations d'épurations relativement importantes afin de pouvoir absorber les points de ruissellement.

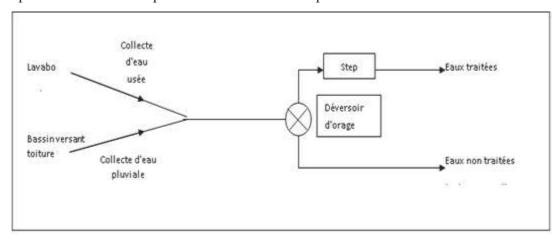
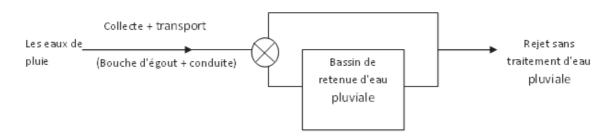


Figure III.2 : schéma de principe d'un réseau unitaire


3.2. Système séparatif:

Ce système comprend deux réseaux :

- > un réseau pour évacuer les eaux pluviales vers un cours d'eau.
- > un réseau pour évacuer les eaux d'égout ménagères et certains effluents industriels après traitement.

Ces deux réseaux ont fréquemment des tracés différents à l'exception de certains tronçons.

B: Réseau d'eau pluviale

Figure III.3 : schéma de principe d'un réseau séparatif

3.3. Système pseudo séparatif (mixte):

Ce système consiste à réaliser un réseau séparatif particulier dans lequel on admit que le réseau d'évacuation des eaux usées reçoit une fraction d'eau pluviale, à savoir les eaux de toiture et cours intérieures, le réseau d'évacuation d'eau pluviale sera réduit à la collecte des eaux de ruissellement sur les chaussées du bassin versant.

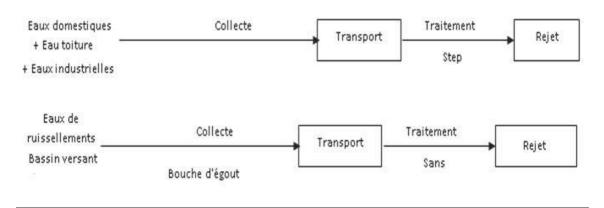


Figure III.4: schéma de principe d'un réseau pseudo-séparatif

4. Avantages et Inconvénients des trois systèmes de réseaux:

Les avantages et les inconvénients des différents systèmes du réseau sont récapitulés dans le tableau suivant :

<u>Tableau III.1</u>: Avantages et inconvénients des trois systèmes de réseaux

Système	Avantages	Inconvénients
Réseau unitaire	 coût faible Pas d'encombrement du sous-sol. L'auto curage est assurée. Pas de faux branchement. 	 Rejet intempestif Perturbation du fonctionnement de la STEP (EU+EP). Gros diamètre Problème de mise en œuvre coût de fonctionnement élevé de la STEP
Réseau séparatif	 la STEP est simplement dimensionnée pour des débits de pointes Bon fonctionnement de la STEP Pas de rejet d'EU vers le milieu naturel Faible coût de fonctionnement sur la STEP. Evacuation non rapide et non efficace des eaux usées 	 Encombrement du sous-sol Coût pour deux réseaux Problème de faux branchement Problème de dépôt et le
Réseau pseudo séparatif	 Possibilité de collecter les eaux de petite pluie Remédier au problème d'encrassement L'auto curage est assurée. 	> Problème de faux

Remarque:

A titre indicatif il existe d'autres système tel que:

- > Système non gravitaire : que l'on appelle encore transferts forcés mis en œuvre chaque fois que la topographie l'exige.
- Le système non collectif : Proposé lorsque la faible densité de l'habitat rend trop coûteuse la mise en place de réseaux publics.

5. Principe du tracé du réseau :

Le tracé des différents collecteurs se fait en fonction des paramètres suivants :

- La topographie du site.
- > Implantation des canalisations dans le domaine public.
- Les conditions de rejet.
- Emplacement des cours d'eau et talweg.
- Emplacement du cours d'eau ou de la station d'épuration.

La profondeur des canalisations doit elle aussi répondre à certains critères comme :

- ➤ La profondeur des caves avoisinante.
- La résistance de la canalisation aux efforts physique et au gel.

6. Choix du découpage des sous bassins :

Le découpage des sous bassins est fait en tenant compte des paramètres suivants :

- > Topographie du terrain.
- Les routes et voiries existantes.
- Nature d'occupation du sol, pour avoir des coefficients de ruissellement le plus homogène possible.
- Limites naturelles : oueds, talweg, collines,...etc.

Le découpage du sous bassin de notre zone d'étude est montré dans la figure suivante :

Figure III.5 : découpage du sous bassin de la zone d'étude

7. Evaluation des débits d'eaux pluviales :

Toute étude d'un réseau d'assainissement nécessite une détermination des débits pluviaux. Car ces eaux doivent être collectées dans les canalisations d'évacuation pour éviter les inondations.

Pour l'estimation des eaux pluviales, on fait un découpage de l'aire de l'agglomération en sous bassin, suivant des critères bien précis, en suite on attribue à chaque sous bassin un coefficient de ruissellement pondéré en fonction de la nature du sol drainé. La quantification des eaux de ruissellement est obtenue par l'application de différentes méthodes, comme la méthode rationnelle ou superficielle.

7.1. Evaluation du coefficient de ruissellement :

Le coefficient de ruissellement est défini comme étant le rapport du volume d'eau qui ruisselle sur le volume d'eau tombé sur le bassin considéré. Ce coefficient à la possibilité de faire varier le débit d'eau pluviale du simple au double, c'est pour cela que lors du découpage des sous bassins il faut que ces derniers soit aussi homogène que possible, pour que le coefficient de ruissellement pondéré du bassin ne soit pas trop erroné.

Sa valeur qui varie entre (0.05 à 1), dépend de plusieurs facteurs tel que

- ➤ La nature du sol
- > L'inclinaison du terrain
- ➤ Le mode d'occupation du sol
- L'humidité de la surface et L'humidité de l'air.

Il est aussi défini comme étant le rapport entre la superficie revêtue et la superficie totale [instruction technique de France; 1977]

$$C_r = \frac{Surface \ revetue}{surface \ totale}$$
 (III.1)

Les coefficients de ruissellement des différents sous bassins sont illustrés dans le tableau suivant :

Tableau III.2: coefficient de ruissellement des sous bassins de la zone d'étude

N° SB	Aire Ai (ha)	Aire revêtue	Coeff. de Ruissellement
SB1	8.72	3.31	0.38
SB2	7.72	5.53	0.72
SB3	7.2	3.84	0.53
SB4	22.35	12.26	0.55
SB5	12.81	8.56	0.67
SB6	20.3	11.55	0.57
SB7	38.71	35.77	0.92
SB8	21.9	19.7	0.90
SB9	10.13	8.86	0.87
SB10	6.82	6.1	0.89

7.2. Méthode rationnelle :

C'est une méthode qui consiste à estimer le débit à partir d'un découpage du bassin versant en secteurs limités par les lignes isochrones, cette méthode fut élaborée en 1889, mais ce n'est qu'en 1906 qu'elle a été généraliser, elle est connue aussi par la méthode de LIOYD

DAVIS, c'est une méthode qui a fait ses preuves surtout pour les bassins urbains a faible surface ≤ 10 ha.

La méthode est définie sous la forme :

$$Q = \alpha * C_r * i * A$$
(III.2)

Avec:

Q: Débit maximal [l/s].

A : Surface du bassin versant [h].

i : Intensité de pluie [l/s/h].

C_r : Coefficient de ruissellement.

 α : Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans l'espace

> Validité de la méthode rationnelle :

La méthode rationnelle est fondée sur les hypothèses suivantes :

- \triangleright L'intensité de l'averse en mm/h est uniforme, dans le temps et dans l'espace, sur l'ensemble du bassin drainé pour cela on prend $\alpha=1$
- ➤ Le débit de pointe Q_{pt} en m³/s de l'hydrogramme de ruissellement est une fonction du débit précipité i.A
- L'intervalle de récurrence du débit de pointe Q_{pt} est le même que celui de l'averse d'intensité uniforme i
- En fin, le coefficient de ruissellement est invariable d'une averse à l'autre.

7.3. Méthode superficielle :

Cette méthode a était proposée par M.CAQUOT en 1949. Elle tient compte de l'ensemble des paramètres qui influent sur le ruissellement, elle se traduit par l'équation suivante

$$Q(f) = K^{\frac{1}{u}} . I^{\frac{v}{u}} . C_r^{\frac{1}{u}} . A^{\frac{w}{u}}$$
(III.3)

Ou:

Q (f): Débit pluvial de fréquence f, en (m³/s).

K, u, v, w: Coefficients d'expression.

I : Pente moyenne du collecteur du sou bassin considéré en (m/m).

C_r: Coefficient de ruissellement.

A: Surface du sous bassin considéré (ha).

Les coefficients d'expression K, u, v, w sont donnés par les relations :

$$K = \frac{(0.5)^{b(f)}.a(f)}{6.6}$$
 (III.4)

$$v = -0.41b(f)$$
 (III.5)

$$u = 1 + 0.287b(f)$$
 (III.6)

$$w = 0.95 + 0.507b(f)$$
 (III.7)

a (f) et b (f) sont des paramètres de la relation :

$$i(t, f) = a(f)t^{b(f)}$$
 (III.8)

Où:

i (t, f) : Intensité de pluie de durée t et de fréquence f.

> Validité de la méthode superficielle :

Les limites d'application de la méthode superficielle sont :

- La limite supérieure de la surface du sous bassin est de 200 ha.
- Le coefficient de ruissellement doit être compris entre 0.2 et 1.
- ➤ Le coefficient d'allongement "M" doit être compris entre 0.8< M < 2.
- ➤ La pente doit être comprise entre 0.2 et 5%.

7.4. Choix de la méthode de calcul:

En tenant compte des caractéristiques de notre agglomération du point de vu surface, pente, et coefficient de ruissellement, et dans le but de simplification des calculs, on opte pour la méthode rationnelle.

7.5. Résultats de calcul:

D'après la méthode rationnelle, la formule du débit pluvial est donnée par la formule III.2 Où α : Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans

1'espace $\alpha = 1$

Ce qui nous donne : Q=1*251*Cr*A

Les résultats de calcule sont les suivantes :

N° SB	Aire Ai (ha)	Coeff. de Ruissellement	Ai.Cr	I(l/s/ha)	Qp(l/s)
SB1	8.72	0.38	3.31		831.71
SB2	7.72	0.72	5.53		1388.03
SB3	7.2	0.53	3.84		963.84
SB4	22.35	0.55	12.26		3077.26
SB5	12.81	0.67	8.56	251	2148.56
SB6	20.3	0.57	11.55	231	2899.05
SB7	38.71	0.92	35.77		8978.27
SB8	21.9	0.90	19.70		4944.70
SB9	10.13	0.87	8.86		2223.86
SB10	6.82	0.89	6.10	1	1531 10

<u>Tableau III.3</u>: débit pluvial des sous bassins de la zone d'étude

8. Estimation des débits d'eaux usées :

L'évacuation quantitative des rejets est fonction du type de l'agglomération ainsi que le mode d'occupation du sol. Plus l'agglomération est urbanisée, plus la proportion d'eau rejetée est élevée.

8.1. Type des eaux usées:

Les eaux usées sont classées selon leur origine qui détermine généralement leur contenue en matière polluante.

On distingue:

- Les eaux usées d'origine domestique
- Les eaux usées d'origine industrielle

a. Les eaux usées d'origine domestique :

Ce sont des eaux qui trouvent leur origine à partir des habitations de l'agglomération, elles sont constituées essentiellement d'eaux ménagères.

Les eaux ménagères englobent les eaux de lavage, des vaisselles, de douche et de bain et sanitaires.

b. Les eaux usées industrielles :

Ces eaux proviennent de diverses usines .Elles contiennent des substances chimiques (acide, basique) et toxiques.

La quantité d'eaux évacuées par les industries dépend de plusieurs facteurs :

- Nature de l'industrie : Fabrications ou de transformations
- Procédé de fabrication utilisé
- > Taux de recyclage effectivement réalisé

Mis à part la quantité à évacuer, il y a toujours certains paramètres à prendre en considération à savoir :

- Les eaux chaudes doivent avoir une température inférieure à 35°c
- > Elles ne doivent pas contenir de matières corrosives, solides ou toxiques. Si non elles doivent subir un prétraitement à l'intérieur de l'unité industrielle.

8.2. Calcul du débit des eaux usées :

L'évaluation de la quantité d'eaux usées à évacuer journellement s'effectuera à partir de la consommation d'eau par habitant qui est prise comme base égale à 200 l/j hab (source SEAAL), et nous considérons que les 80% de l'eau consommée sont rejetée comme eaux usées dans le réseau d'évacuation.

a. Débit moyen journalier :

Le débit moyen journalier rejeté est calculé par la relation suivante :

$$Q_{\text{moy,j}} = \frac{(\text{Kr.D.N}_{i})}{86400} \qquad (III.9)$$

Avec:

Q moy j: débit moyen rejeté quotidiennement en (1/s);

 $K_{\rm r}$: coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée :

D: dotation journalière prise égale à 200 l/j hab;

N_i: nombre d'habitants à l'horizon étudié (hab).

DOS: densité d'occupation du sol =81.71 hab/ha

A : la surface de l'agglomération en hectare

Les résultats de calcule sont illustrée dans le tableau suivant :

Tableau III.4: débit moyen journalier des eaux usées des sous bassins de la zone d'étude

N° SB	Aire Ai (ha)	DOS	Nbr hab	Qmoyj (l/s)
SB1	8.72		713	1.32
SB2	7.72		631	1.17
SB3	7.2		588	1.09
SB4	22.35		1826	3.38
SB5	12.81	81.71	1047	1.94
SB6	20.3	01./1	1659	3.07
SB7	38.71		3163	5.86
SB8	21.9		1789	3.31
SB9	10.13		828	1.53
SB10	6.82		557	1.03

b. Evaluation du débit de pointe :

Il est donné par la formule suivante :

$$Q_{pt} = K_p. Q_{movj}$$
(III.11)

Avec:

K_p: coefficient de pointe

Ce coefficient de pointe peut être calculé à partir du débit moyen journalier :

$$Kp = 1.5 + \frac{2.5}{\sqrt{Q_{\text{moy j}}}}$$
 si $Q_{\text{moy j}} \ge 2.8 \text{ l/s}$ (III.12)

$$Kp = 3$$
 si $Q_{moy j} < 2.8 l/s$(III.13)

Tableau III.5 : débit de pointe des eaux usées des sous bassins de la zone d'étude

N° SB	Aire Ai (ha)	Qmoyj (l/s)	Кр	Qpt (l/s)
SB1	8.72	1.32	3.00	3.96
SB2	7.72	1.17	3.00	3.50
SB3	7.2	1.09	3.00	3.27
SB4	22.35	3.38	3.00	10.15
SB5	12.81	1.94	3.00	5.82
SB6	20.3	3.07	3.00	9.22
SB7	38.71	5.86	2.53	14.84
SB8	21.9	3.31	2.87	9.52
SB9	10.13	1.53	3.00	4.60
SB10	6.82	1.03	3.00	3.10

> Récapitulatif :

Dans le tableau suivant on montre la superficie, coefficient de ruissellement, le nombre de population, débit moyen journalier des eaux usées, le coefficient et le débit de pointe, le débit pluviale ainsi le débit totale de chaque sous bassin

N° SB	Aire (ha)	Coeff. de Ruissellement	Ai.Cr	Nbr hab	Qmoyj (l/s)	Кр	Qpt (l/s)	Qp(l/s)	Qtot(l/s)
SB1	8.72	0.38	3.31	713	1.32	3.00	3.96	831.71	835.67
SB2	7.72	0.72	5.53	631	1.17	3.00	3.50	1388.03	1391.53
SB3	7.2	0.53	3.84	588	1.09	3.00	3.27	963.84	967.11
SB4	22.35	0.55	12.26	1826	3.38	3.00	10.15	3077.26	3087.41
SB5	12.81	0.67	8.56	1047	1.94	3.00	5.82	2148.56	2154.38
SB6	20.3	0.57	11.55	1659	3.07	3.00	9.22	2899.05	2908.27
SB7	38.71	0.92	35.77	3163	5.86	2.53	14.84	8978.27	8993.11
SB8	21.9	0.90	19.70	1789	3.31	2.87	9.52	4944.70	4954.22
SB9	10.13	0.87	8.86	828	1.53	3.00	4.60	2223.86	2228.46
SB10	6.82	0.89	6.10	557	1.03	3.00	3.10	1531.10	1534.20

Tableau III.6: récapitulatif des données des sous bassins de la zone d'étude

9. Dimensionnement du réseau :

Dans le cadre de l'assainissement, le dimensionnement du réseau d'assainissement du type unitaire doit dans la mesure du possible permettre l'entraînement des sables par les débits pluviaux pour empêcher leur décantation et éviter les dépôts, sans provoquer l'érosion de la paroi de la conduite.

Lorsqu'il s'agit de réseau d'évacuation des eaux pluviales et des eaux usées dans une même conduite, les conditions d'auto curage doivent être satisfaites. Il faut assurer une vitesse minimale de 0.6 m/s pour le (1/10) du débit de pleine section, et une vitesse de 0.3 m/s pour le (1/100) de ce même débit avec un diamètre minimal de 300 mm. [3]

Si ces vitesses ne sont pas respectées, il faut prévoir des chasses automatiques ou des curages périodiques.

A l'opposé des considérations relatives à l'auto curage, le souci de prévenir la dégradation des joints sur les canalisations circulaires et leur revêtement intérieur, nous conduit à poser des limites supérieures aux pentes admissibles.

Donc, il est déconseillé de dépasser des vitesses de l'ordre de (4 à 5) m/s à pleine section.

9.1. Mode de calcul

Avant de procéder au calcul hydraulique du réseau d'assainissement en gravitaire, on considère l'hypothèse suivante :

- ➤ L'écoulement est uniforme à surface libre, le gradient hydraulique de perte de charge est égal à la pente du radier.
- ➤ La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.

➤ Les canalisations d'égouts dimensionnées pour un débit en pleine section Q_{ps} ne débitent en réalité et dans la plupart du temps que des quantités d'eaux plus faibles que celles pour lesquelles elles ont été calculées.

L'écoulement dans les collecteurs est un écoulement à surface libre régi par l'équation de continuité :

Avec:

Q: Débit (m³/s).

S: Section mouillée (m²).

V: Vitesse d'écoulement (m/s).

Cette vitesse se calcule par différentes expressions, Pour le dimensionnement de notre réseau, on utilise la formule qui nous donne la vitesse moyenne. Si on choisit la formule de Manning, la vitesse en (m/s) est déterminée par l'expression :

$$V = K_s * R^{2/3} I_m^{1/2}$$
(III.15)

Où:

I_m (m/m) : Pente motrice nécessaire à l'écoulement d'un débit Q donné.

R (m): Rayon hydraulique.

K_s: Coefficient de rugosité dépend de la nature des parois.

Et on tire l'expression du débit :

$$Q = K_s * R^{2/3} * I_m^{1/2} * S$$
(III.16)

D'où le diamètre est calculé par la formule :

$$D_{cal} = \left(\frac{4^{5/3} * Q}{K_S * \sqrt{I}}\right)^{3/8}...$$
(III.17)

Le débit en plein section est donné donc par la relation :

$$Q_{ps} = V_{ps} * \frac{\pi}{4} * D_{com}^2$$
 (III.18)

D'après la méthode des régressions polynomiales et à partir des valeurs fournies par l'abaque (voir annexe $N^{\circ}1$) et à l'aide du logiciel MATLAB, nous avons établi les relations entre R_q et R_v ainsi entre R_q et R_h .

Les relations sont les suivantes :

$$R_v = -25,63*Rq^6 + 93,647*Rq^5 - 134,25*Rq^4 + 95,24*Rq^3 - 35,151*Rq^2 + 7,0395*Rq + 0,2263....(III.19)$$

$$R_h = -11,423*Rq^6 + 40.641*Rq^5 - 55.497*Rq^4 + 37.115*Rq^3 - 12.857*Rq^2 + 2,8373*Rq + 0,0359..... \ (III.20)$$

Tel que : $R_q = Q_t / Q_{ps}$

Q : Débit véhiculé par la conduite circulaire. (m³/s).

V : Vitesse d'écoulement de l'eau (m/s).

h : Hauteur de remplissage dans la conduite (m).

Q_{ps}: Débit de pleine section (m³/s).

 V_{ps} : Vitesse à pleine section (m/s).

D : Diamètre normalisé de la conduite (mm).

Pour la vitesse d'auto-curage elle doit être compris entre 0.5 et 5 m/s

9.2. Présentation du réseau projeté :

Le tracé du réseau d'assainissement devra finalement comprendre un schéma à long terme sans oublier la réservation du terrain à l'implantation des ouvrages.

Pour tracer le réseau il faut suivre le chemin des oueds qui existent et qui permettent de décharger le réseau tout en déversant les eaux pluviales.

9.2.1. Vérification de la capacité du réseau existant:

Le réseau actuel qui draine le sous bassin 2 présente une anomalie lors de son fonctionnement dans les périodes hivernales où il cause des débordements au niveau des cités : coopérative SONATRO, coopérative GCB, coopérative SONATRO côté AutoRoute, pour cela on doit vérifier les dimensions du réseau actuel.

Les données du réseau actuel de la zone sont illustrées dans le tableau suivant :

Tableau III.7: données su réseau actuel SB2

	Tronçon	N° de Regard	dist partiel	dist cumulé	cote TN	PENT TN	C _{AM}	C _{AV}	Dc	PenteI
_	A1	R43 R44	35	35	26.81 24.56	-0.064	23.5	23.15	300	0.01
A	A2	R44 R34	37.6	72.6	24.56 24.09	-0.013	23.15	22.02	300	0.03
В	B1	R45 R46	40	40	22.01 21.99	-0.001	20	19.6	300	0.01
Б	B2	R46 R47	70	110	21.99 21.99	0	19.6	15.05	300	0.065
	C1	R48 R49	55	55	21.54 20.53	-0.018	19	18.07	300	0.017
С	C2	R49 R50	33	88	20.53 18.73	-0.055	18.07	16.75	300	0.04
	C3	R50 R42	30	118	18.73 18.29	-0.015	16.75	14.65	300	0.07
	1	R31 R32	20.5	20.5	24.96 24.99	0.001	22.5	22.3	300	0.01
	2	R32 R33	31.8	52.3	24.99 25.01	0.001	22.3	21.82	300	0.015
	3	R33 R34	48.7	101	25.01 24.09	-0.019	21.82	20.6	300	0.025
	4	R34 R35	22.4	123.4	24.09 23.25	-0.037	20.6	19.93	300	0.03
PRII	5	R35 R36	45.3	168.7	23.25 20.03	-0.071	19.93	18.57	300	0.03
PRIMAIRE	6	R36 R37	26.1	194.8	20.03	-0.001	18.57	17.92	400	0.025
E 1	7	R37 R38	60	254.8	19.97 19.84	-0.002	17.92	16.42	400	0.025
	8	R38 R39	30	284.8	19.84 19.68	-0.005	16.42	15.67	400	0.025
	9	R39 R40	30	314.8	19.68 19.52	-0.005	15.67	14.92	400	0.025
	10	R40 R41	35	349.8	19.52 19.37	-0.005	14.92	14.04	400	0.025
	11	R41 R4	32	381.8	19.37 19.18	-0.006	14.04	13.24	400	0.025

Source : SEAAL

9.2.2. Procédure de vérification:

Pour vérifier les dimensions du réseau existant on doit suivre les étapes suivantes :

- Calculer le débit total a drainé
- ➤ Calculer le débit spécifique Qs=Q/L
- Calculer les paramètres hydrauliques du réseau Rq, Rv avec le débit obtenu
- ➤ Vérifier les conditions sur Rq et Rv
 - Si Rq<1 et Rv <1 le réseau est bien dimensionné

Si Rq>1 ou Rv >1 le réseau est sous dimensionné

Les résultats de calcul sont illustrés dans le tableau suivant :

Tableau III.8: vérification des dimensions du réseau actuel SB2

	Tronçon	N° de Regard	dist partiel	dist cumulé	cote TN	PENT TN	C _{AM}	C _{AV}	Dc	Vps	Qps	Rq	Rv	PenteI
	A1	R43 R44	35	35	26.81 24.56	-0.064	23.5	23.15	300	1.33	0.094	0.751	1.1	0.01
A	A2	R44 R34	37.6	72.6	24.56 24.09	-0.013	23.15	22.02	300	2.31	0.163	0.899	1.11	0.03
Б	B1	R45 R46	40	40	22.01 21.99	-0.001	20	19.6	300	1.33	0.094	0.858	1.11	0.01
В	B2	R46 R47	70	110	21.99 21.99	0	19.6	15.05	300	3.4	0.24	0.925	1.12	0.065
	C1	R48 R49	55	55	21.54 20.53	-0.018	19	18.07	300	1.74	0.123	0.905	1.12	0.017
С	C2	R49 R50	33	88	20.53 18.73	-0.055	18.07	16.75	300	2.67	0.189	0.944	1.12	0.04
	C3	R50 R42	30	118	18.73 18.29	-0.015	16.75	14.65	300	3.53	0.249	0.957	1.12	0.07
	1	R31 R32	20.5	20.5	24.96 24.99	0.001	22.5	22.3	300	1.33	0.094	0.44	0.96	0.01
	2	R32 R33	31.8	52.3	24.99 25.01	0.001	22.3	21.82	300	1.63	0.115	0.916	1.12	0.015
	3	R33 R34	48.7	101	25.01 24.09	-0.019	21.82	20.6	300	2.11	0.149	1.37	/	0.025
	4	R34 R35	22.4	123.4	24.09 23.25	-0.037	20.6	19.93	300	2.31	0.163	2.427	/	0.03
PRI	5	R35 R36	45.3	168.7	23.25 20.03	-0.071	19.93	18.57	300	2.31	0.163	2.988	/	0.03
PRIMAIRE	6	R36 R37	26.1	194.8	20.03	-0.001	18.57	17.92	400	2.55	0.321	1.684	/	0.025
E 1	7	R37 R38	60	254.8	19.97 19.84	-0.002	17.92	16.42	400	2.55	0.321	2.062	/	0.025
	8	R38 R39	30	284.8	19.84 19.68	-0.005	16.42	15.67	400	2.55	0.321	2.944	/	0.025
	9	R39 R40	30	314.8	19.68 19.52	-0.005	15.67	14.92	400	2.55	0.321	3.133	/	0.025
	10	R40 R41	35	349.8	19.52 19.37	-0.005	14.92	14.04	400	2.55	0.321	3.543	/	0.025
	11	R41 R4	32	381.8	19.37 19.18	-0.006	14.04	13.24	400	2.55	0.321	3.744	/	0.025

D'après les résultats présentées dans le tableau ci-dessus, on remarque que Rq est supérieure à 1 ce qui implique le sous dimensionnement du réseau.

Le réseau actuel est insuffisant pour évacuer le débit, donc on doit le redimensionner de nouveau, les résultats de calcul des paramètres hydrauliques du réseau sont présentés dans le tableau récapitulatif (voir annexe)

Les dimensions des collecteur tertiaire 1, 2, 3 sont montrées dans le tableau suivant :

<u>Tableau III.9:</u> dimensions des collecteur tertiaire 1, 2, 3 du SB2

N° collecteur	Tronçon	N° de Regard	dist partiel	dist cumulé	cote TN	C _{AM}	C AV	Q spécifique	Q cumulé	Dc	Pente I
	A1	P13	35	35	26.81	23.50	23.01	0.074	0.074	400	0.014
A	AI	P14			24.56	25.50			0.074	700	0.014
A	A2	P14	35	70	24.56	23.01	21.16	0.074	0.147	400	0.053
	AZ	P04	33	70	24.09	23.01	21.10	0.074	0.147	400	0.033
	B1	P15	40	40	22.01	20.00	19.28	0.084	0.084	400	0.018
	DI	P16	40	40	21.99	20.00	19.20	0.004	0.064	400	0.018
В	B2	P16	35	75	21.99	19.28	18.41	0.074	0.158	500	0.025
Б		P17			21.99						
	В3	P17	35	110	21.99	18.41	18.20	0.074	0.231	800	0.0060
		P09			19.68					800	
	C1	P18	42.9	42.9	21.54	10.00	10 40	0.000	0.000	400	0.012
	CI	P19	42.9	42.9	20.53	19.00	18.49	0.090	0.090	400	0.012
	CO	P19	40.4	02.2	20.53	10.40	17.56	0.005	0.175	500	0.023
С	C2	P20	40.4	83.3	18.73	18.49	17.56	0.085	0.175	500	
	C2	P20	40.4	123.7	18.73	17.56	16.99	0.085	0.260	600	0.014
	C3	P22	40.4		18.29	17.56					

Et les dimensions du collecteur secondaire sont illustrées dans le tableau suivant :

Tableau III.10: dimensions du collecteur secondaire du SB2

Tronçon	N° de Regard	dist partiel	dist cumulé	cote TN	C AM	C AV	Q spécifique	Q cumulé	Dc	Pente I	
1	P01	20.2	20.2	24.96	22.50	22.38	0.042	0.042	400	0.0060	
1	P02	20.2	20.2	24.99	22.30	22.36	0.042	0.042	400	0.0000	
2	P02	31.8	52	24.99	22.38	22.10	0.067	0.109	500	0.0088	
2	P03	31.0	32	25.01	22.36	22.10	0.007	0.107	300	0.0088	
3	P03	48.7	100.7	25.01	22.10	21.12	0.102	0.211	600	0.020	
3	P04	10.7	100.7	24.09	22.10	21.12	0.102	0.211		0.020	
4	R34	23.4	124.1	24.09	21.12	20.19	0.049	0.408	800	0.040	
·	P05	23.1	12 1.1	23.25	21.12	20.17	0.017	0.400	000	0.040	
5	P05	38.5	162.6	23.25	20.19	18.26	0.081	0.488	800	0.050	
3	P06	30.3	102.0	20.03		10.20				0.050	
6	P06	26.1	188.7	20.03	18.26	18.12	0.055	0.543	1000	0.0054	
0	P07	20.1	100.7	20.00						3.0021	
7	P07	30	218.7	19.97	18.12	17.92	0.063	0.606	1000	0.0067	
,	P08	30	210.7	19.84	10.12	17.72	0.003	0.000	1000	0.0007	
8	P08	30	248.7	19.84	17.92	17.68	0.063	0.669	1000	0.0082	
0	P09		210.7	19.68			0.003	0.007	1000	0.0002	
9	P09	30	278.7	19.68	17.68	17.08	0.063	0.963	1000	0.020	
	P10			19.52						0.020	
10	P10	30	308.7	19.52	17.08	16.81	0.063	1.026	1200	0.0090	
	P11			19.37					1200		
11	P11	35	343.7	19.37	16.81	16.49	0.074	1.100	1200	0.0090	
	P12			19.18						0.005	
12	P12 DO2	10	353.7	18.29 18.25	16.49	16.44	0.021	1.381	1200		
	DO2			18.25							
13	R4	16	369.7	19.70	16.44	16.40	0.010	0.010	300	0.0025	
	11/4			17.70							

9.2.3. <u>Dimensionnement du collecteur principal</u>

La projection du collecteur principale AISSAT MUSTAPHA dépend de la caractéristique topographie et géologique du site.

Suite aux données naturelles du site (topographie, géologie), on choisit de faire passer le collecteur AISSAT MUSTAPHA par la berge gauche du l'OUED REGHAIA en le longeant jusqu'au regard N°15 où on traverse l'oued vers la berge droite et on continue de le longer jusqu'au passage sous le pont du chemin de fer ; où on projette deux variante pour le relié au poste de relevage PR77

Le schéma directeur est présenté sur la figure suivante :

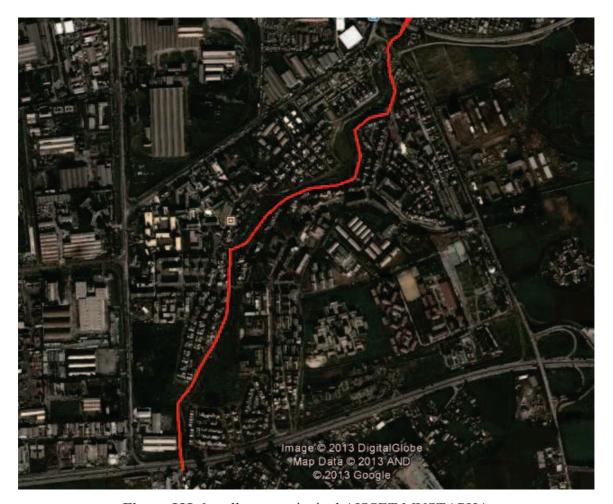


Figure III.6: collecteur principal AISSET MUSTAPHA

a. VARIANTE 1:

Cette variante consiste à raccorder le collecteur AISSAT MUSTAPHA avec le PR 77, à partir du regard n° 38 (cote fil d'eau 7.45 m) en passant par la suite l'oued REGHAIA sur le côté droit (berge droite), jusqu'à arriver au point de jonction de Oued GOUSBAYA avec Oued REGHAIA. À ce point-là, le tracé traverse obliquement Oued REGHAIA arrivant au regard de jonction qui se situe juste avant la station de relevage PR77.

b. VARIANTE 2:

Cette variante consiste à raccorder le collecteur AISSAT MUSTAPHA avec le PR 77, au premier lieu en traverse l'oued vers le côté gauche en allant jusqu'au chemin goudronné menant à la station de relevage PR77 et on le longe jusqu'à arriver au regard de jonction qui se situe juste avant la station de relevage PR77.

Le schéma illustratif des deux variantes est montré dans la figure suivante :

Figure III.7: variante projeté pour collecteur principal AISSET MUSTAPHA

Les différents résultats de calculs du collecteur et les variantes sont illustré dans les tableaux suivants :

<u>Tableau III.11:</u> dimensionnement collecteur principale AISSET MUSTAPHA

	N° de										
Tronçon	Regard	dist part	dist cumu	cote TN	PENT TN	C _{AM}	C _{AV}	Q	Qapport	Dc	Pente I
1	DO1	225.80	225.80	22.55	-0.013	19.50	17.06	0.005	0.018	300	0.011
	R4			19.70							
2	R4	220.40	446.20	19.70	-0.002	17.06	15.80	0.005	0.000	300	0.006
	R8			19.26							
3	R8	59.80	506.00	19.26 19.37	0.002	15.80	15.51	0.028	0.007	300	0.0050
	R9 R9			19.37							
4	R10	59.10	565.10	19.42	0.001	15.51	15.21	0.035	0.000	400	0.0050
	R10			19.42							
5	R11	45.60	610.70	19.47	0.001	15.21	15.03	0.035	0.004	400	0.0040
	R11			19.47		1.7.00	1106	0.040		400	
6	R12	55.60	666.30	19.65	0.003	15.03	14.86	0.040	0.000	400	0.0030
7	R12	F4 00	717 20	19.65	0.005	14.86	14.71	0.040	0.004	400	0.0030
7	R13	51.00	717.30	19.89		14.00			0.004	400	0.0030
8	R13	60.50	777.80	19.89	0.002	14.71	14.53	0.043	0.000	500	0.0030
	R14	00.50		20.01					0.000	300	0.0050
9	R14	229.90	1007.70	20.01	0.002	14.53	13.84	0.043	0.000	500	0.0030
	R18			20.49							
10	R18	59.30	1067.00	20.49	0.007	13.84	13.66	0.043	0.211	500	0.0030
	R19	56.60	1123.60	20.90	-0.004						0.0037
11	R19 R20			20.90		13.66	13.45	0.254	0.01	800	
	R20	161.80	1285.40	20.66	-0.011	13.45	12.82	0.259			0.0039
12	R23			18.91					0.000	800	
	R23			18.91			12.59	0.259	0.004		0.0039
13	R24	57.50	1342.90	18.32	-0.010	12.82				800	
4.5	R24	244.20	455440	18.32	0.613	12.50	11.60	0.262	0.00	000	0.0042
14	R28	211.20	1554.10	15.57	-0.013	12.59	11.69	0.263	0.00	800	0.0043
15	R28	54.20	1608.30	15.57	0.001	11.69	11.52	0.263	0.000	1000	0.0030
13	R29	J4.2U	1000.30	15.64	0.001	11.09	11.32	0.203	0.000	1000	0.0030
16	R29	147.30	1755.60	15.64	0.009	11.52	11.08	0.263	0.467	1000	0.0030
	R32	17.50	1, 33.00	16.90	2.003	-1.02	-1.00	0.203	0.407		0.0030
17	R32	253.50	2009.10	16.90	-0.005	11.08	7.79	0.730	0.000	1000	0.0130
	DO11			15.57					0.000	1000	0.0150
18	DO11	49.40	2121.00	15.57	-0.012	7.54	7.39	0.026	0.000	400	0.0030
	R37 R37			14.96 14.96							
19	R38	55.70	2176.70	13.83	-0.020	7.39	7.23	0.026	0.000	400	0.0030
	NOO			13.03							

<u>Tableau III.12:</u> dimensionnement variante 1 du collecteur principale AISSET MUSTAPHA

Tronçon	N° de Regard	dist part	dist cum	cote TN	C _{AM}	C AV	Q	Q apport	Dc	Pente I
40	R38	59.5	59.5	13.83	7.58	7.40	0.026	0.094	400	0.0030
40	R39	39.3	39.3	12.62	7.30	7.40	0.020	0.094		0.0030
41	R39	59.4	110.0	12.62	7.40	7.22	0.12	0.000	800	0.0030
41	R40	59.4	118.9	12.85	7.40	1.22	0.12	0.000	800	0.0030
42	R40	40.1	168	12.857	7.22	7.07	0.12	0.000	800	0.0030
42	R41	49.1		11.86	1.22			0.000	800	0.0030
43	R41	40.2	216.3	11.86	7.07	6.93	0.12	0.000	800	0.0020
43	R42	48.3	210.5	11.12	7.07		0.12	0.000	800	0.0030
44	R42	FO 4	274.7	11.12	6.93	6.75	0.12	0.000	800	0.0030
44	R43	58.4	274.7	10.64	0.93			0.000	800	0.0030
45	R43	F0 4	222.1	10.64	6.75	6.50	0.12	0.000	000	0.0020
45	R44	58.4	333.1	10.16	6.75	6.58	0.12		800	0.0030
46	R44	F4.4	384.5	10.16	6.58	6.43	0.12	0.000	000	0.0030
46	St R	51.4		11.72					800	0.0030

Tableau III.13: variante 2 du collecteur principale AISSET MUSTAPHA

Tronçon	N° de Regard	dist part	dist cum	cote TN	C _{AM}	C AV	Q	Q apport	Dc	Pente I	
40	R38	59.5	59.5	11.722	6.43	6.25	0.026	0.094	400	0.0030	
40	R39	59.5		12.62	0.43		0.020	0.054		0.0030	
41	R39	46.4	105.9	12.62	7.40	7.26	0.12	0.000	800	0.0030	
41	R40	46.4		11.56	7.40	7.20	0.12	0.000	800	0.0030	
42	R40	F2 2	159.2	11.56	7.26	7.10	0.12	0.000	800	0.0030	
42	R41	53.3		10.29		7.10				0.0030	
42	R41	58	ΓO	217.2	10.29	7.10	6.93	0.12	0.000	900	0.0030
43	R42		217.2	9.64	7.10	0.93	0.12	0.000	800	0.0030	
4.4	R42	50 4	275.2	9.64	6.93	(75	0.12	0.000	800	0.0030	
44	R43	58.1	275.3	8.47	0.93	6.75	0.12	0.000	800	0.0030	
45	R43	F4.0	220.1	8.47	6.75	6.50	0.12	0.000	900	0.0020	
45	R44	54.8	330.1	10.08	6.75	6.59	0.12		800	0.0030	
46	R44	20.5	369.6	10.08	6.59	6.15	0.12	0.000	500	0.0110	
46	St R	39.5		11.72						0.0110	

c. Déversoir d'orage :

Un déversoir d'orage est un ouvrage de contrôle permettant une régulation hydraulique des effluents en réseau d'assainissement (Figure VI.2). Il dérive une partie des effluents lorsque le débit à l'amont dépasse une certaine valeur que l'on appelle "débit de référence". Le débit dérivé peut sortir complètement du système d'assainissement, soit y être réinjecté après stockage dans le bassin.

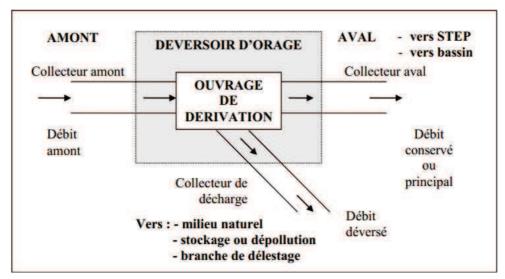


Figure III.8 : Schéma de principe du déversoir d'orage.

* Les types des déversoirs :

Les déversoirs les plus couramment utilisé selon la topographie du site sont :

- > déversoir à seuil latéral.
- déversoir à seuil frontal.
- > déversoir à Ouverture de fond.
- déversoir Automatique.
- déversoir By-pass.

Dans notre étude nous avons prévu un déversoir d'orage à seuil latéral.

* Projection des déversoirs d'orage :

Cette aménagement, consiste à projeter des déversoirs d'orage au niveau des arrivés des collecteurs secondaires de grand dimension qui collecte des débits importantes (Ø>500 mm), afin de décharger ces collecteurs des débits d'orages ce qui sert à minimisé la charge sur le collecteur principal ainsi ses dimensions.

* Mode de calcul:

Pour le calcul des déversoirs d'orage à seuil latéral et conduite aval libre on doit adopter :

➤ Le débit total de dimensionnement qui est égal à la somme des débits en temps sec (Q_{US}) et du débit pluvial (Q_P)

$$Q_T = Q_P + Q_{US} \qquad (III.21)$$

➤ Débit de pointe transité vers le collecteur de rejet qui transporte les eaux vers la station d'épuration :

$$Q_{ts} = 3*Q_{US}$$
(III.22)

Le débit rejeté vers l'Oued:

$$Q_R = Q_T - Q_{ST} \qquad (III.23)$$

➤ On détermine la valeur de la lame déversée (H_d)

$$H_{d} = \frac{H_e - H_{ts}}{2} \qquad (III.24)$$

Où:

 $H_{ts} = D_e^* R_h$ la hauteur transite par le collecteur.

He : la hauteur d'eau à l'entré.

> On détermine la longueur du seuil, déversant (L)

On applique la formule de BAZIN:

$$Q_d = \frac{2}{3} \mu L \sqrt{2g} (H_d)^{(3/2)}$$
....(III.25)

Avec:

 μ : coefficient de contraction de la lame déversante qui tient compte de l'écoulement (μ =0,6).

L : La longueur du déversoir (longueur de la lame déversante) exprimée en mètres.

g: La pesanteur: $g = 9.81 \text{ m/s}^2$

H_d: La hauteur de charge en m au-dessus du seuil du déversoir

Donc:
$$L = \frac{3}{2} * \frac{Q_d}{0.06*(2*g)^{0.5}*H_d^{3/2}} (III.26)$$

Dans notre cas nous avons projetés onze déversoirs d'orage latéraux implanté sur l'arrivée des collecteurs secondaires importants (voir plan), les résultats de leur dimensionnement sont montré dans le tableau suivant :

Ν° V Н $Q_{\mathfrak{p}}$ Q_{ts} Q_t Qr D_e D_{s} H_{ts} H_d L DO₁ 0.942 2.01 0.58 0.940 0.0023 0.938 1000 300 0.01 0.28 3.49 DO₂ 1.388 0.0048 1.393 1.383 1200 300 1.99 0.72 0.01 0.35 3.75 0.76 2.90 DO3 1.160 0.0043 1.164 1.156 1000 300 1.82 0.02 0.37 1.83 0.150.239 0.242 0.236 0.32 0.02 2.38 DO4 0.0027 500 300 400 1.79 DO5 0.964 0.0036 0.967 0.960 1000 0.64 0.02 0.31 3.11 600 DO₆ 0.347 0.0021 0.349 0.345 400 2.04 0.35 0.02 0.17 2.90 0.284 0.286 500 0.03 0.16 2.40 DO7 0.0018 0.282 500 1.86 0.36 0.04 DO8 0.851 0.0025 0.854 0.849 800 800 2.03 0.63 0.29 3.02 DO9 0.461 0.0020 0.463 0.459 600 800 2.10 0.43 0.05 0.19 3.06 0.0029 0.62 DO10 0.921 0.924 0.918 800 800 2.22 0.04 0.29 3.35 **DO11** 1.061 0.0130 1.074 1.048 1000 400 1.81 0.70 0.04 0.33 3.10

Tableau III.14: dimension des déversoirs d'orage

C. <u>Comparaison des variantes</u>:

La variante n°1:

Présente l'avantage de passer suivant des terrains vagues, ce qui facilite les travaux de réalisation. Son inconvénient est le traversé de Oued REGHAIA, ce qui présente une difficulté lors de la réalisation du fait qu'elle traverse l'Oued sur un linéaire de 30 Ml.

La variante n°2:

présente l'avantage du fait qu'elle prend un cheminement rectiligne jusqu'au la station de relevage PR 77, néanmoins cette variante présente l'inconvénient majeure qu'elle passe par le côté gauche de l'oued REGHAIA, qui est à un cote plus élevé par rapport au côté droit (une différence de côte de 03m), ce qui augmente largement les couts de réalisation, le deuxième inconvénient est le passage au voisinage du marché couvert de REGHAIA sur un linéaire de 250 ml, ce qui provoque des retards lors de la réalisation

10. Conclusion:

pour parer aux problèmes de débordement des eaux usées au niveau du milieu urbain et naturel, en se référant aux avantages et inconvénients de chacune des deux (02) variantes, vu les avantages qui y présente la variante 1 on opte pour la choisir comme une variante du tracé.

CHAPITRE IV

Dimensionnement du poste relevage

1. Introduction:

Les postes de refoulement ont pour objet de faire franchir aux eaux un point haut de leur parcours ce qui ne pourrait avoir lieu par gravité sans approfondissement excessif du réseau.

Les postes de relèvement se limitent à élever le niveau des eaux sur place en vue de leur déversement dans une bâche. Ces postes peuvent se trouver soit en cours de parcours d'un réseau dans les régions plates, soit le plus souvent en tête d'une station d'épuration.

Dans notre cas, on installe ce poste de relevage afin d'éviter les profondeurs excessifs à cause de rehaussement du profil du terrain naturel.

2. Appareillage:

Dans les postes de relevage, il existe deux types d'appareillage qui peuvent être utilisés : les turbopompes et les vis d'Archimède

2.1. Les turbopompes :

Elles sont des pompes constituées d'une roue munie d'aubes ou d'ailette, animé d'un mouvement de rotation, fournit de l'énergie cinétique dont une partie est transformé en pression par réduction de vitesse.

2.2. Vis d'Archimède :

La vis proprement dite est constituée par un tube en acier sur lequel sont soudées des spires en tôle. L'entraînement a lieu à l'aide d'un moteur électrique étanche, un anti-dévireur pouvant être monté sur son arbre garantissant, lors de la mise en marche, son bon sens de rotation et évitant le retour en sens inverse de la vis lorsqu'elle s'arrête avec une charge de liquide. Ce système peut, d'ailleurs, être remplacé par une temporisation électrique, de sorte que la vis ne puisse pas démarrer en charge.

3. Situation actuel:

Le poste de relevage PR77 est implanté à 50 m au sud de la RN5 sur la rive gauche d'Oued REGHAIA près du marché couvert, reçoit les eaux usées d'origine domestique via un collecteur qui prend naissance de la commune de ROUIBA, interceptant les eaux usées d'une grande partie de la ville de REGHAIA,

Elle est aujourd'hui équipée de 3 vis et a été conçue pour recevoir une vis supplémentaire, elle reçoit un débit moyen de l'ordre de 0.7 m³/s via le collecteur de ROUIBA de dimension Ø1100 mm qui arrive au regard de réception avec une côte fil d'eau de l'ordre de 4.5 m

Figure IV.1: photo des vis d'Archimède du poste existant

Les postes de relèvement à vis d'Archimède nécessitent une grande superficie, ainsi leur fonctionnement qui se fait à ciel ouvert peut causer des dérangements dans le milieu urbain à cause du dégagement des odeurs, comme c'est arrivé dans notre cas.

Pour cela on opte pour projeter un poste de relevage à pompe.

4. <u>Dimensionnement du poste de relevage :</u>

Le dimensionnement d'un poste de relevage nécessite la détermination des différents paramètres qui caractérise son fonctionnement

4.1. <u>Le débit :</u>

Le débit total à relever représente la somme des débits admis à la station pendant une journée, notre poste reçoit les eaux prévenantes du collecteur de ROUIBA qui sont de l'ordre de 700 l/s, ainsi les eaux du collecteur AISSET MUSTAPHA qui sont de l'ordre de 120 l/s.

Donc le débit total admis à la station est $Q = \frac{0.7 + 0.12}{86400}$

$$Q = 70848 \text{ m}^3/\text{J}$$

4.2. Puisard :

Le puisard est un puits qui sert à recevoir les eaux du réseau admis à la station afin de les refouler à un niveau plus haut. Son volume est calculé par la formule :

$$V = \frac{Q_{j}}{4*m*(N-1)} (IV.1)$$

Où:

N: nombre de pompe installé, on prend le nombre de pompe N=4 dont un seul est pris comme réserve en cas d'une panne

M : nombre de démarrage par heure, on prend m=4

Q: débit horaire admis,
$$Q_h = \frac{Q_j}{t_p}$$
 (IV.2)

Avec t_p: le temps de pompage par jour exprimé en heure, on prend t_p=20 heure

Ce qui nous donne :

$$Q_h = \frac{70848}{20} = 3542.4 \text{ m}^3/\text{h}$$

$$V = \frac{3542.4}{4*4*(4-1)} = 73.8 \text{ m}^3$$

On prend le volume utile de puisard V=75 m³

Si on choisit une forme carré pour notre puisard avec une hauteur utile de 3 m on trouve

$$V = H_u *S = H_u *L^2$$
 (IV.3)

Donc
$$L = \sqrt{\frac{V}{Hu}} = \sqrt{\frac{75}{3}} = 5 \text{ m}$$

H_u: hauteur utile du puisard

Alors les dimensions du puisard sont :

$$H_u=3$$
 m et L=5m

4.3. Hauteur manométrique total d'élévation (Hmt) :

La hauteur manométrique totale d'une pompe est la différence de pression de colonne de fluide entre les orifices d'aspiration et de refoulement.

Lors du pompage d'un fluide, la pompe ne doit pas seulement fournie une pression équivalente à celle correspondant à la différence des niveaux entre l'aspiration et le refoulement, mais également la pression nécessaire pour vaincre les pertes de charge dans ces conduites.

Dans notre cas on choisit d'installé des pompes immergées, ce qui en résulte une perte de charge d'aspiration négligeable, la longueur de la conduite de refoulement est égale à la différence de hauteur géométrique entre le point d'aspiration et celui de refoulement.

$$Hmt=H_{geo}+H_{ser}+H'$$
 (IV.4)

Avec

Hmt: hauteur manométrique total (mCE)

H_{geo}: hauteur géométrique (m)

 H_{ser} : la pression au point de refoulement (mCE), on prend $H_{ser} = 3$ m

H': perte de charge (mCE)

$$H_{geo} = CFE_{av} - CFE_{am} + H_u$$
 (IV.5)

CFE_{av}: cote file d'eau de la conduite amant, égale à 4.5 m

CFE_{am :} cote file d'eau de la conduite aval, égale à 12 m

H_u: hauteur utile du puisard, égal à 3 m

Donc H $_{geo}$ =10.5 m

Perte de charge:

Dans le calcul des pertes de charge on distingue deux types de perte de charge, linéaire et singulière :

Les pertes de charge linéaire dépendent de la longueur et la rugosité de la conduite, dans notre cas, le relèvement se fait sur le même point, ce qui fait que la longueur de la conduite de refoulement est légèrement supérieure à la hauteur géométrique.

Pour la réalisation de ce relevage on choisit des conduites en fonte qui ont présenté leur fiabilité pour les écoulements en charge

$$H_{l}' = \frac{\lambda * l}{D} \frac{V^{2}}{2*g}$$
 (IV.6)

H₁': perte de charge linéaire dans la conduite

D : diamètre de la conduite de refoulement

v : la vitesse d'écoulement dans la conduite

g: l'accélération de la pesanteur

λ : Coefficient de perte de charge linéaire, il est calculé à l'aide d'une méthode itératif basé sur la formule de Colebrook whyte

$$\frac{1}{\sqrt{\lambda}} = -2 \log_{10}(\frac{2.51}{R_e * \sqrt{\lambda_0}} + \frac{\epsilon}{3.71*D})$$
 (IV.7)

Pour 4000<R_e<10⁸

 λ_0 : coefficient de perte de charge pour le régime turbulent rugueux (valeur de départ)

$$\frac{1}{\sqrt{\lambda 0}} = -2 \log_{10} \left(\frac{\varepsilon}{3.71 * D} \right) \tag{IV.8}$$

ε : Rugosité des parois de la conduite, prise égale à 2 mm

 R_e : nombre de Reynolds $R_e = \frac{V*D}{\gamma}$(IV.9)

 γ : viscosité cinématique égale à 1.31*10 $^{\text{-}6}\,\text{m}^{\text{2}}/\text{s}$

➤ La perte de charge singulière, localisée dans une section de la conduite, est provoquée par un changement de direction et d'intensité de la vitesse.

Une telle non-uniformité de la vitesse peut être provoquée par :

- un branchement de section de la conduite,
- un changement de direction (coude),

- **•** un branchement ou raccordement,
- un dispositif de mesure et contrôle de débit...

Comme pour les pertes de charge linéaire, les pertes de charges singulières se traduisent par la relation : $H_s' = \sum \xi^* \frac{V^2}{2*g}$ (IV.10)

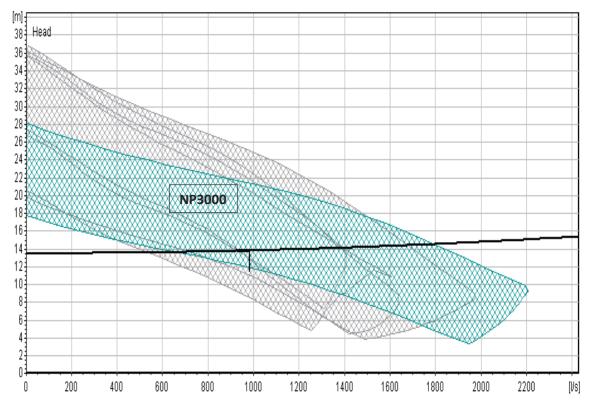
 ξ : Coefficient de perte de charge singulière, dépend des caractéristiques géométriques d'écoulement, dans notre cas les singularités qui peuvent être occasionné sont localisées au niveau des branchements des pompes dans la conduite de refoulement, les clapets et au niveau des coudes, pour cela on estime le coefficient de perte de charge singulière ξ = 1.5 Donc la perte de charge totale H'=H_s'+H_l'

Le HMT et les pertes de charge sont dépendant des diamètres de la conduite de refoulement, donc on doit calculer ces différents paramètres pour chaque diamètre, les résultats de calcule sont illustrée dans le tableau V.1

Tableau IV.1: valeur Hmt pour chaque diamètre

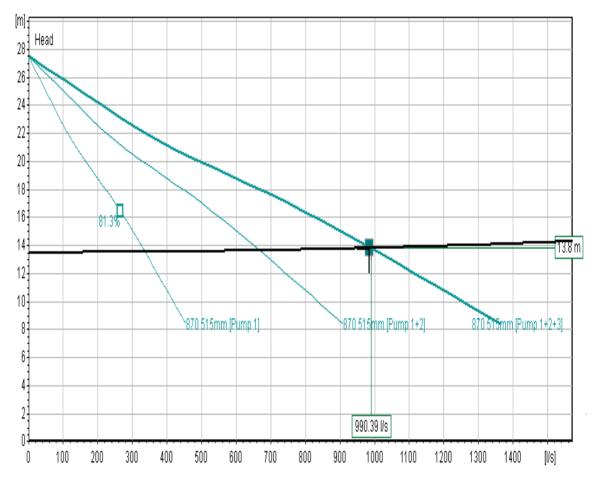
D (mm)	V (m/s)	Re	λ	H _l '	H _s '	Hmt
300	13.92	3187958.6	0.00772854733069051000	3.308	14.816	31.62
400	7.83	2390968.9	0.00740300932316469000	0.752	4.688	18.94
500	5.01	1912775.1	0.00716445975862044000	0.238	1.920	15.66
600	3.48	1593979.3	0.00697800594804395000	0.093	0.926	14.52
800	1.96	1195484.4	0.00669827117801882000	0.021	0.293	13.81
1000	1.25	956387.6	0.00649271366337639000	0.007	0.120	13.63
1100	1.04	869443.2	0.00640778791477364000	0.004	0.082	13.59
1200	0.87	796989.6	0.00633170304165283000	0.003	0.058	13.56
1400	0.64	683134	0.00620019643694145000	0.001	0.031	13.53
1500	0.56	637591.7	0.00614266152166438000	0.001	0.024	13.52
1800	0.39	531326.4	0.00599441584656452000	0.000	0.011	13.51
2000	0.31	478193.8	0.00591118016152947000	0.000	0.008	13.51

4.4. Diamètre économique :


Le diamètre économique est définit comme étant le diamètre qui permettra de réduire les frais de l'exploitation sans diminué les performances de l'installation.

Les borne d'intervalle du diamètre économique peut être estimé par la formule de Bresse et Bounin donnée comme suit $\sqrt{Q} < D_{eco} < 1.5*\sqrt{Q}$(IV.11) Pour Q=3542.4 m³/h = 984 l/s, on trouve 992 mm < D_{eco} < 1488 mm Les vitesses admissible dans les conduite de refoulement, pour les pompe centrifuge doit se situé dans la gamme suivante : $1.5 \text{ m/s} < V_{\text{adm}} < 2.5 \text{ m/s}$ (IV.12) D'après les résultats du tableau V.1 on opte pour un diamètre de $\phi 800$ mm, vu qu'il satisfait les conditions des vitesses admissibles, la faible différence de Hmt pour ce diamètre et celui des diamètres qui se situe dans la gamme des diamètres économiques

4.5. choix de la pompe :


Après la détermination des paramètres de la pompe (Q=984 l/s, Hmt=13.81 m), d'après le catalogue des pompes fournie par le constructeur et suivant les caractéristiques de notre installation, on choisit une pompe où son point de fonctionnement satisfait les caractéristiques (Q, Hmt) de notre installation.

D'après les graphes des plages de fonctionnement des pompes fournit par le constructeur des pompes [12] les caractéristiques de l'installation coïncide avec la famille de pompe NP 3000

Graphe IV.1: plage de fonctionnement des pompes

Afin d'assurer le bon fonctionnement du poste de relevage, par l'évitement de fonctionnement surchargé de la pompe qui influence sur la longévité des pompes, on opte pour l'assemblage en parallèle de trois pompes centrifuge immergées de type NP 3312/705 3~870 Le tracé des courbes caractéristiques de la conduite et celles des trois pompes assemblées en parallèle, comme il est montré dans le graphe suivant nous donne un point de fonctionnement (Q, Hmt)= (990.38 l/s, 13.81 m)

Graphe IV.2: point de fonctionnement du poste de relevage

Le fonctionnement de cette installation se fait avec un rendement total de 76.9% avec une puissance absorbé de 170 KW où ma puissance absorbé par chaque pompe est de l'ordre de 57.2 KW.

Les pompes suivent un fonctionnement automatisé qui dépend du niveau d'eau dans le puisard, dans le cas où le niveau d'eau dans le puisard soit bas, l'eau peut être refoulée par une seule pompe qui fonctionne en permutation avec les deux autres pompes, pour diminuer la charge de fonctionnement sur les pompes.

5. Conclusion:

Les postes de relevage représentent un ouvrage annexe du réseau d'assainissement mais il joue un rôle important qui nous aide à vaincre les difficultés présenté par un terrain accidenté et réduire le coût d'investissement

Dans le présent chapitre on a défini les différents types de postes de relevage et leurs utilités. Après la détermination des différents paramètres nécessaire pour le dimensionnement des pompe, on a opté pour quatre pompes dont une seul est considéré comme une pompe de secours en cas d'une panne, elles sont des pompes centrifuge immergé de type **NP 3312/705** 3~870 caractérisé par puissance absorbé de 57.2 KW/pompe qui fonctionne avec un rendement de 76.9% pour un point de fonctionnement de l'installation (Q, Hmt) = (990.38 l/s, 13.81 m).

CHAPITRE V

Les éléments constitutifs du réseau

1. Introduction:

Un réseau d'assainissement est un ensemble constitué d'organes dont chacun est le complémentaire des autres en fonction du rôle qu'il joue.

En matière d'assainissement, les éléments constitutifs d'un réseau d'égout devront assurer :

- > Une évacuation correcte et rapide sans stagnation des eaux de pluie.
- Le transport des eaux usées susceptibles de provoquer une pétrification (odeur) dans les conditions d'hygiène favorable.

Les ouvrages en matière d'assainissement comprennent :

- Des ouvrages principaux qui correspondent au développement de l'ensemble du réseau jusqu'à l'entrée des effluents dans la station d'épuration.
- ➤ Des ouvrages annexes qui constituent toutes les constructions et les installations ayant pour but de permettre l'exploitation rationnelle et correcte du réseau (bouches d'égout, regards, déversoirs d'orage... etc.)

2. Les Ouvrages Principaux:

Les ouvrages principaux correspondant aux ouvrages d'évacuation des effluents vers le point de rejet ou vers la station d'épuration sont :

2.1. Canalisations:

Elles se présentent sous plusieurs formes cylindriques préfabriquées en usine. Elles sont désignées par leurs diamètres intérieurs, dites diamètres nominaux exprimés en millimètre, ou ovoïdes préfabriqués désignés par leur hauteur exprimée en centimètre et des ouvrages visitables.

Dans notre projet nous adoptons pour les canalisations de forme circulaire.

2.2. Types De Canalisation: [02]

Il existe plusieurs types de conduites qui sont différents suivant leur matériau et leur destination.

2.2.1. Conduites en béton non armé:

Les conduites en béton non armé sont fabriquées mécaniquement par procédé assurant une compacité élevée du béton. La longueur utile ne doit pas dépasser 2,50m. Ces types de tuyaux ont une rupture brutale, mais à moins que la hauteur de recouvrement ne soit insuffisante. Elle survient aux premiers âges de la canalisation. Il est déconseillé d'utiliser les tuyaux non armés pour des canalisations visitables.

2.2.2. Conduites en béton armé:

Les tuyaux en béton armé sont fabriqués mécaniquement par un procédé assurant une compacité élevée du béton (compression radiale, vibration, centrifugation).

Les tuyaux comportent deux séries d'armatures, la première est formée des barres droites appelées génératrices, la deuxième est formée des spires en hélice continues d'un pas régulier maximal de 1,5 m. La longueur utile ne doit pas être supérieure à 2m..

2.2.3. Conduites en grés :

Le grès servant à la fabrication des tuyaux est obtenu d'un mélange d'argile et de sable argileux cuits entre 1200°C à 1300°C; Le matériau obtenu est très imperméable. Il est inattaquable aux agents chimiques, sauf l'acide fluorhydrique. L'utilisation de ce genre est recommandée dans les zones industrielles. La longueur minimale est de 1m.

2.2.4. Conduites en chlorure de polyvinyle (P.V.C) non plastifié :

Les tuyaux sont sensibles à l'effet de température au-dessous de 0°C. Ils présentent une certaine sensibilité aux chocs. L'influence de la dilatation est spécialement importante et il doit en être tenu compte au moment de la pose. La longueur minimale est de 6 m.

2.2.5. Conduite en béton précontrainte :

Les canalisations cylindriques en béton précontraint revêtu associent forte résistance à la compression et forte résistance à la traction de l'acier, et constituent une structure durable qui peut répondre aux exigences d'un projet. Ces canalisations sont parfaitement adaptées à toutes les applications municipales de transfert d'eau et d'évacuation des eaux usées, ainsi qu'aux besoins des canalisations industrielles.

2.3. Choix du type de canalisation :

Pour faire le choix des différents types de conduite on doit tenir compte :

- > Des pentes du terrain.
- > Des diamètres utilisés.
- De la nature du sol traversé.
- ➤ De la nature chimique des eaux usées.
- > Des efforts extérieurs dus au remblai.

Pour notre projet, les conduites utilisées seront en béton armé de profil circulaire vu les avantages qu'elles présentent :

- Etanchéité primordiale.
- ► Bonne résistance mécanique.
- Leur bonne stabilité dans les tranchées.

- Pose et assemblage facile.
- La disponibilité sur le marché national.

2.4. Les joints des conduites en béton armé :[02]

Le choix judicieux des assemblages est lié à la qualité du joint. Ce dernier est en fonction de la nature des eaux et leur adaptation vis à vis de la stabilité du sol et en fonction de la nature des tuyaux et de leurs caractéristiques (diamètre, épaisseur).

Pour les tuyaux en béton armé on a différents types des joints à utiliser :

2.4.1. Joint type Rocla:

Ce type de joint assure une très bonne étanchéité pour les eaux transitées et les eaux extérieures. Ce joint est valable pour tous les diamètres.

2.4.2. Joint à demi-emboîtement :

Avec cordon de bourrage en mortier de ciment, ce joint est utilisé dans les terrains stables .Il y a risque de suintement si la pression est trop élevée. Il est à éviter pour les terrains à forte pente.

2.4.3. Joint à collet :

Le bourrage se fait au mortier de ciment, il n'est utilisé que dans les bons sols à pente faible.

Les schémas des différents joints sont présentés dans la figure ci-dessous :

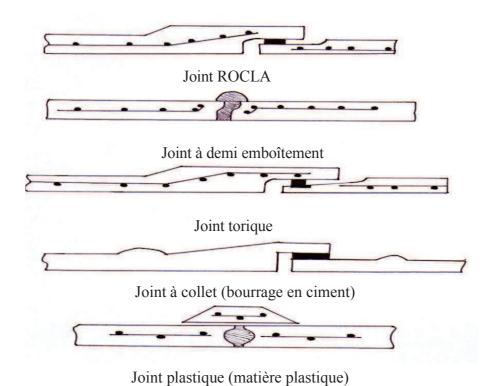


Figure V.1 : Divers joints sur tuyau en béton

3. Les Ouvrages annexe:

3.1. Ouvrage de rejet:

Il est conçu pour l'évacuation des eaux pluviales dans un cours d'eau; ce dernier est construit sur la rive de l'Oued.

Cet ouvrage a pour but de dissipé l'énergie d'écoulement à la sortie, et maintient la stabilité du collecteur dans le lieu de vidange.

Donc il est nécessaire pour la protection des rives contre l'érosion provoquée par la vitesse d'écoulement.

4. Conclusion:

Pour une exploitation rationnelle de notre réseau d'assainissement, il est nécessaire de faire un bon choix des conduites qui le constituent et ceci selon la forme et le matériau par lequel elles sont construites.

Ainsi dans notre cas et après avoir exposé les divers types de conduites, on a opté pour des conduites circulaires en béton armé car elles sont satisfaisantes aux conditions de notre projet.

D'autre part, pour faciliter les opérations de curage et assurer une meilleure sécurité à notre réseau, on a procédé à l'implantation et au dimensionnement des divers éléments constitutifs du réseau d'égouts.

CHAPITRE VI

Etude technico-économique

1. Introduction

Après avoir dimensionné les différents ouvrages de notre projet on passe à la détermination d'un système de réalisation du projet, ainsi l'estimation du coût du projet qui est un paramètre important dans l'étude du projet.

2. Les informations sur les réseaux publics existants:

Le sous-sol des voiries reçoit l'ensemble des canalisations et réseaux qui concernent :

L'eau potable, les égouts, électricité, gaz et télécommunications.

Devant cette situation, et avant de faire la pose de nos conduites, il convient de préparer une étude très détaillée sur l'encombrement du sous-sol, afin d'éviter de détruire les revêtements des chaussées et les autres conduites.

3. Exécution des travaux :

Les principales étapes à exécuter pour la pose des canalisations sont :

- Vérification, manutention des conduites
- Décapage de la couche du goudron (si elle existe)
- Emplacement des jalons des piquets
- Exécution des tranchées et des fouilles pour les regards
- Aménagement du lit de pose
- La mise en place des canalisations en tranchée
- Assemblage des tuyaux
- Faire les essais d'étanchéité pour les conduites et les joints
- Construction des regards
- Remblai des tranchées

3.1. Vérification, manutention des canalisations :

Les produits préfabriqués font l'objet sur chantier de vérification portant sur :

- Les quantités
- L'aspect et le contrôle de l'intégrité
- ➤ Le marquage en cas de défaut

Les conduites sont posées sans brutalité sur le sol où dans le fond des tranchées et ne doivent pas être roulées sur des pierres ou sur le sol rocheux, mais sur des chemins de roulement.

3.2. Emplacement des jalons des piquets :

Suivant les tracés du plan de masse, les jalons des piquets doivent être placés dans chaque point d'emplacement d'un regard à chaque changement de direction ou de pente et à chaque branchement ou jonction de canalisation.

3.3. Exécution des tranchées et des fouilles pour les regards :

Le mode d'exécution en fouille ouverte, en tranchée, est le plus fréquemment utilisé lors de la construction des collecteurs urbains.

La profondeur de la tranchée est pratiquement toujours imposée par des conditions d'axe hydraulique ou de croisement d'ouvrages existants.

La largeur de la tranchée dépend essentiellement des dimensions extérieures et du type d'emboîtement des tuyaux, de la fondation, de l'espace minimum nécessaire entre la canalisation et la paroi de la tranchée pour réaliser une pose correcte et un remblayage latéral de compacité adéquate, de la profondeur de pose de la place disponible pour l'exécution des fouilles, de la nature des terrains rencontrés, notamment si les terrassements ne sont pas réalisés à l'abri d'un blindage. Economiquement, il n'est pas intéressant d'établir des tranchées trop larges, vu le coût des terrassements ; on s'oriente donc vers l'exécution de fouilles de largeurs minimales [05].

3.3.1. Profondeur de la tranchée :

$$H = e + D + h \text{ (m)}....(VI.1)$$

Avec:

H: Profondeur de la tranchée.

e : Epaisseur du lit de sable.

D : Diamètre de la conduite.

h: Hauteur du remblai

3.3.2. Largeur de la tranchée :

$$B = D + 2c \qquad (VI.3)$$

Avec:

B: Largeur de la fouille au fond.

D : Diamètre de la conduite.

c : Espacement entre les parois de la tranchée et la conduite (c = 0.3 m)

3.3.3. choix des engins de terrassement :

Pour l'excavation des tranchées et des fouilles des regards de notre réseau, on optera pour la pelle rétro.

Les aptitudes de la pelle rétro sont :

- reuser au-dessous de la surface d'appui
- > creuser rapidement et précisément les tranchées à talus vertical
- > creuser à une profondeur importante

1- Remblai
3-Conduite
4-Lit de sable

> creuser dans la direction de la machine

<u>Figure VI.1</u>: Coupe transversale d'une tranchée avec la mise en place de la conduite

3.3.4. Aménagement du lit de pose des canalisations :

Les conduites doivent être posées sur un lit de pose de 0,1 m d'épaisseur qui se compose généralement de sable bien nivelé suivant les côtes du profil en long.

Mais si les terrains sont peu consistants, le fond des tranchées sera consolidé, Chaque tuyau repose sur deux briques placées sur ce fond, le vide doit être rempli de sable, pour les mauvais terrains on opte pour des dalles en béton.

De réaliser, si possible dans tous les cas, un appui de manière à ce que le tuyau repose sur un arc au moins égal au quart de sa circonférence extérieure ; plus le diamètre est grand, plus la surface d'appui doit être soignée.

3.3.5. La mise en place des canalisations :

La mise en place des conduites se fait soigneusement par des engins appropriés appelé « pipelayers».

3.3.6. Assemblage des conduites :

Les joints des conduites circulaires à emboîtement sont effectués à l'aide d'une bague renforcée d'une armature et coulée sur place à l'intérieur d'un moule.

3.4. Essais sur les joints et les canalisations :

C'est une épreuve d'étanchéité au quelle sont soumises les conduites déjà placées au fond de la tranchée.

L'essai est réalisé avec de l'eau, de l'air, de la fumée ou un mélange des deux.

3.5. Exécution des regards :

Les regards sont généralement de forme carrée dont les dimensions varient en fonction des collecteurs. La profondeur et l'épaisseur varient d'un regard à un autre.

Les différentes opérations pour l'exécution d'un regard sont les suivantes :

- Réglage du fond du regard
- Exécution de la couche du béton de propreté
- > Ferraillage du radier de regard
- Bétonnage du radier
- Ferraillage des parois
- Coffrage des parois
- > Bétonnage des parois
- > Décoffrage des parois
- Ferraillage de la dalle
- > Coffrage de la dalle
- ➤ Bétonnage de la dalle
- Décoffrage de la dalle

3.6. Exécution des déversoirs d'orage :

Apres avoir décapé la couche végétale, une opération de piquetage est indispensable avant de commencer les travaux.

Il est nécessaire que les coffrages aient une raideur suffisante pour résister à la pression du béton, surtout au cours de la vibration. Le démontage des coffrages doit se faire sans destruction du béton.

3.7. Remblai des tranchées :

Après avoir effectué la pose des canalisations dans les tranchées, un remblayage de qualité est nécessaire sur une certaine hauteur au-dessus de la génératrice supérieure pour assurer d'une part la transmission régulière des charges agissant sur la canalisation, et d'autre part sa protection contre tout dégât lors de l'exécution du remblai supérieur.

Le matériau utilisé est similaire à celui mis en œuvre pour le remblayage latéral. L'exécution d'un remblayage de qualité doit être effectué sur une hauteur minimale de 30 cm au-dessus de la génératrice supérieure, étant entendu que le compactage jusqu'à 75 cm doit être effectué par damage manuel, afin d'en minimiser ses effets dynamiques.

Si la mise en œuvre d'engin de compactages lourds ou vibrants est envisagée pour les remblais supérieurs, il importe d'augmenter cette hauteur minimum et dans tous les cas, de ne jamais accepter sans aucune précaution particulière l'utilisation de ces engins avec des hauteurs de recouvrement inférieur au mètre.

Cependant pour le remblai supérieur, la nature des matériaux à utiliser pour le corps du remblai et le degré de compactage dépendent essentiellement des conditions finales à atteindre au niveau de la surface du sol; le tassement des remblais est susceptible de nuire à la bonne tenue du terrain naturel reconstitué ou du revêtement de chaussée doit être évité dans toute la mesure du possible.

4. Devis quantitatif estimatif du projet :

Le calcul du devis quantitatif et estimatif permet d'effectuer une estimation du coût de notre projet, il est utile également dans le cas de choix entre deux ou plusieurs variantes c'est-à-dire faire une étude technico-économique.

Ce calcul consiste alors, à déterminer les quantités de toutes les opérations à effectuer sur terrain pour la réalisation du projet, ensuite les multiplier par le prix unitaire correspondant.

Les différentes opérations effectuées sont :

- > Travaux de décapage à grande masse
- > Travaux de décapage de la tranchée
- Fourniture et pose de lit de sable
- > Fourniture et pose des buses en béton armé
- L'exécution des regards de chute, de visite ou de jonction
- > Travaux de remblai de la tranchée
- > Transport des terres excédentaires.

4.1. <u>Détermination des différents volumes :</u>

4.1.1. Volumes des déblais des tranchées V_d :

Le volume des déblais des tranchées V_d est donné par la relation suivante :

$$V_D = B*L*H_{tr}$$

Avec : B : largeur de la tranchée (m)

$$B = D + 2*c$$

c : distance entre la conduite et l'extrémité de la fouille c=0.30m

L : longueur totale de la tranchée (m)

H_{tr}: profondeur de la tranchée (m)

$$H_{tr} = e + h + D \qquad (VI.4)$$

Ou:

e : épaisseur da la couche du lit de pose e=0.10 cm

h : profondeur minimale au-dessus de la génératrice supérieure (m)

D : diamètre nominal de la conduite (m)

Le volume totale de déblais est de $V_{d tot} = 34141.78 \text{ m}^3$

4.1.2. Volume occupé par le lit de sable V_{LS} :

Ce volume est donné par la formule suivante :

$$V_{LS} = E.B.L$$
 (VI.5)

Avec:

E : épaisseur de la couche du lit de sable ; E= 0.10m

B: largeur de la tranchée (m);

L : longueur totale de la tranchée (m).

Le volume totale du lit de sable est de $V_{ls tot} = 392.88 \text{ m}^3$

4.1.3. Volume de la conduite V_c :

Le volume occupé par la conduite dans la tranchée est donné par la relation suivante :

$$Vc = \frac{\pi . D^2}{4} . L \tag{VI.6}$$

Avec : D : diamètre de la conduite (m) ;

L : longueur totale de la tranchée (m).

4.1.4. Volume du remblai V_R :

Le volume du remblai de la conduite est donné par l'expression suivante :

$$V_R = V_D - V_{LS} - V_c \qquad (VI.7)$$

Avec:

V_{LS}: volume occupé par le lit de sable (m³);

 V_c : volume de la conduite (m^3) ;

Le volume totale du remblai est de $V_{r tot}$ =32545.32 m³

4.1.5. Volume du déblai évacué V_e:

V_D: volume des déblais.

$$Ve=(V_D - V_R)*Kf$$
 (VI.8)

K_f: Coefficient de foisonnement égale à 1.5

Le volume totale du déblai évacué est de V_{e tot} =1596.46m³

Le coût des travaux réalisés du projet est indiqué dans le tableau suivant :

<u>Tableau VI.1</u>: Devis quantitatif et estimatif du projet

N°	Désignation des travaux	U	Quantité	Prix Unitaire (DA)	Montant (DA)								
Α	Trava	ux de	terrasseme	ent									
1	Déblai pour fouille en tranchée	m ³	34141.78	1000	34141783.26								
2	Pose lit de sable, e=10cm	m ³	392.88	122	47931.482								
3	Remblai de la tranchée	m ³	32545.32	600	19527193.66								
4	Evacuation des déblais excédentaires	m ³	1596.46	200	319292.0977								
		cana	lisation										
	Fourniture, transport et	pose	de canalis	ation en béton arm	é								
	*Ø300mm	ml	522.00	4000	2088000								
	*Ø400mm	ml	549.00	5700	3129300								
В	*Ø500mm	ml	456.90	6400	3198300								
	*Ø600mm	89.10	7000	891000									
	*Ø800mm	ml	894.10	10000	13411500								
	*Ø1000mm	ml	571.10	15000	11422000								
	*Ø1200mm	ml	65.00	20000	1300000								
C Exécution de regard de visite ou de jonction en béton armé avec tampon en fonte de:													
	*Profondeur de 0 à1,5m	U	3	18000	54000								
	*Profondeur de 1,5à 2,5m	U	7	25000	175000								
1	*Profondeur de 2,5à 3,5m	U	15	35000	525000								
	*Profondeur de 3,5à 4,5m	U	7	45000	315000								
	*Profondeur superieur à 4,5m	U	33	60000	1980000								
2	Exécution de déversoir d'orage en béton armé	U	11	100000	1100000								
3	Exécution de l'ouvrage de rejet en béton armé	U	11	180000	1980000								
D	frais	poste	e de relevaç	je									
2	forniture et pose des pompes	U	4	5400000	21600000								
3	forniture et pose de conduite de refoulement en fonte	U	1	43800	43800								
4	différents accéssoir	U	/	1	1300000								
				Total (HT):	95605300.5								
				T.V.A (17%)	16252901.08								
				Total (T.T.C)	111858201.6								

5. Conclusion:

D'après l'étude technico-économique faite dans ce présent chapitre, où on a décrit le mode d'exécution des travaux ensuite on a établi le devis quantitatif et estimatif du projet ce qui nous donne un coût de projet de 111.86 million de dinars.

Conclusion générale:

Cette étude consiste d'une part à diagnostiquer le réseau de la zone urbaine AISSAT MUSTAPHA qui subit le débordement des eaux usées pendant les saisons hivernales.

Le diagnostique de ce portion du réseau à montrer qu'il est sous dimensionné, ce qui nous a mené à le redimensionner.

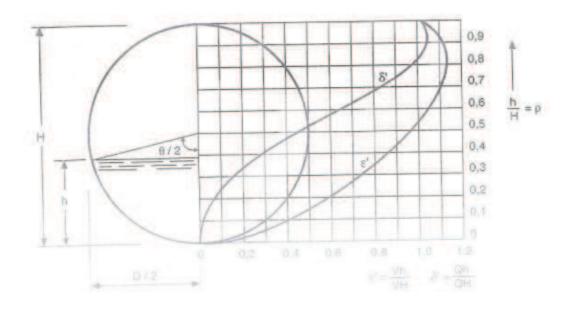
D'autre part nous avons été intéressés par le problème de rejet directe des eaux usées dans le milieu naturel, une telle action qui nuire à la nature et le milieu urbaine; ce qui nous mené a la projection du collecteur principal AISSET MUSTAPHA qui évacue les eaux usées de la zone vers le point de rejet qui est dans notre cas un poste de relevage.

La projection de ce collecteur nécessite son aménagement par la mise on œuvre des déversoirs d'orage en nombre de onze (11) projeté sur les collecteur secondaire existants, de grand diamètre avant leur branchement, afin de réduire la charge et les dimensions du collecteur principal.

En fin, pour éliminer le rejet direct des eaux usées dans le milieu urbain, on a opté pour raccorder le dudit collecteur au poste de relevage existant, en proposant deux variante et on a retenu celle la plus convenable. Ce poste de relevage est muni de 3 vis d'Archimède, où Pour des raisons d'exploitation, on a privilégié son redimensionnement en remplaçant les vis d'Archimède par des pompes qui ont été choisi selon les nouvelles caractéristiques de l'installation.

Toutefois le dimensionnement du réseau d'assainissement est achevé en prenant en considération tous les ouvrages et les dispositifs qui peuvent améliorer son fonctionnement, l'entretient permanant reste toujours un facteur primordial qui joue sur la fiabilité et la longévité des ouvrages.

Bibliographie


- [01] A.HADDAD, 2005 thèse Pour l'obtention du diplôme d'ingénieur d'état « DIAGNOSTIC ET EXTENSION DU RESEAU D'ASSAINISSEMENT DE LA VILLE DE HADJOUT (W.TIPAZA). »
- [02] AGENCE DE L'EAU Artois-Picardie, 1999 « Guide du raccordement à l'égout »
- [03] BOUHANT.Chouaib, 2012, thèse pour l'obtention du diplôme d'ingénieur d'état « diagnostique du réseau d'assainissement de la ville Ahmed Rachdi-wilaya de Mila- via SWMM »
- [04] Bruno Tassin, 2005, Calcul des débits d'eaux pluviales. Méthodes non-dynamiques
- [05] Groupement SOFRECO, étude d'actualisation du PNE Algérie « le bassin versant des côtiers algérois (BV 2B) »
- [06]: H.GUERREE et C.GOMELLA.1982 « les eaux usées dans les agglomérations urbaines ou rurales »
- [07]Marc THIBAULT, Novembre 2006 « plan de gestion de la réserve naturelle du lac de Réghaia
- [08] NONCLERCO. P. Le calcul statique des collecteurs urbains, 3 eme partie
- [09] REGIS, B., 1984 «les réseaux d'assainissement, calculs application et perspective », Paris
- [10] Samir GRIMES et Mmes Hafida LAMRI et Radia FODIL « Développement de stratégies pour un tourisme durable dans les nations méditerranéennes, rapport de diagnostique »

Webographie

- [11] microsationepuration.org (18/04/2013 15H35)
- [12] http://www.xylect.com
- [13] http://www.hydroforum.com
- [14] http://maps.google.com/maps
- [15] http://www.startimes2.com

Annexe I : Table des caractéristiques des conduites partiellement remplies

				I I ELLEMENT R	CIT LIES		
H/D	TETA	0/015	V/VPS	S/SPS	L/D	Rizi	RER
0.02	0.2838	0.001	0.14	0.005	0.280	0.013	0.151
0.04	0.4027	0.003	0.22	0.013	0.392	0.026	0.167
0.06	0.4949	0.007	0.29	0.024	0.475	0.039	0.210
0.08	0.5735	0.013	0.35	0.037	0.543	0.051	9.228
0.10	0.6435	0.021	0.40	0.052	0.400	0.064	0.241
0.13	0.7075	0.031	0.45	0.068	0.650	0.075	0.251
0.14	0.7670	0.042	0.50	0.085	0.694	0.087	0.24
0.16	0.8230	0.056	0.54	0.103	0.733	0.099	0.266
0.18	0.8763	0.071	0.58	0.122	0.768	0.110	0.27:
0.20	0.9273	0.088	0.62	0.142	0.800	0.121	9.27
0.22	0.9764	0.106	0.65	0.163	0.828	0.131	0.279
0.24	1.0239	0.126	88.0	0.185	0.854	0.142	0.28
0.26	1.0701	0.148	0.72	0.207	0.877	0.152	0.38
0.28	1.1152	0.171	0.75	0.229	0.898	0.161	0.28
0.30	1:1593	0.196	0.78	0.252	0.917	0.171	9.28
0.32	1.2025	0.222	0.80	0.276	0.933	0:180	9.28
0.34	1.2451	0.249	0.83	0.300	0.947	0.189	0.28
0.36	1.2870	0.277	0.86	0.324	0.960	0.198	0.23
0.38	1.3284	0.307	0.88	0.349	0.971	0.206	0.2.7
0.40	1.3694	0.337	0.70	0.374	0.980	0.214	9.27
0.42	1.4101	0.368	0.92	0.379	0.987	0.222	0.27
0.44	1.4505	0.400	0.94	0.424	0.993	0.229	0.27
0.46	1.4907	0.433	0.96	0.449	0.997	0.237	0.75
0.48	1.5308	0.466	0.98	0.475	0.999	0.243	0.25
0.50	1.5708	0.500	1.00	0.500	1.000	0.250	0.26
0.52	1.6108	0.534	1.02	0.525	0.999	0.256	0.25
0.54	1.6509	0.568	1.03	0.551	0.997	0.262	9.25
0.56	1.6911	0.603	1.05	0.576	0.993	0.268	0.24
300000000000000000000000000000000000000	1.7315	0.637	1.04	0.501	0.987	0.273	0.23
0.60	1.2722	0.6/2	1.02	0.626	0.980	0.278	0.23
0.62	1.8132	0.706	1.08	0.451	0.971	0.282	0.22
0.66	1.8546	0.740	1.09	0.676	0.960	0.286	0.22
84.0	1.9391	0.773	1.10	0.700	0.947	0.290	7.21
0.70	1.9823	0.806	1.11	0.724	0.933	0.293	0.20
0.72	2,0264	0.837	1.12	0.748	0.917	0.296	6.20
0.74	2.0715	0.868	1.13	0.771	0.898	0.299	0.19
0.76	2.1176	0.898	1-13	0.793	0.877	0.301	0.18
0.78	2.1652	0.953	1.14	0.815	0.854	0.302	0.17
0.80	2.7143	0.977	1-14	0.837	0.828	0.304	0.16
0.82	2.2653	1.000	1-14	0.858	0.800	0.304	0.15
0.84	2.2653	1.021	1.14	0.878	0.768	0.304	0.14
0.86	2.3746	1.039	1.11	0.897	0.733	0.304	3.13
0.88	2.4341	1.054	1.14	0.915	0.650	0.303	0.17
0.90	2.4981	1.066	1.13	0.932	0.600	0.301	0.11
0.92	2.5681	1.073	100,000,000	B. C.	100000000000000000000000000000000000000		0.10
0.54	2.6467	The Contract of the Contract o	1.12	0.963	0.543	0.274	0.09
0.96	2.7389	1.076	1.10	0.976	0.475	0.289	0.07
0.78	2.8578	1.057	711 10700	0.995	111000000000000000000000000000000000000	0.274	0.04
1.00	3.1416	1.000	1.04	1.000	0.280	0.250	0.00

Annexe II : tableau récapitulatif de dimensionnement du réseau actuel SB2

	Tronçon	N° de Regard	dist partiel	dist cumulé	cote TN	PENT TN	C _{AM}	C AV	Q _{spécifique}	Dc	Vps	Qps	Rq	Rv	Rh	V	Н	PenteI
_	A1	P13 P14	35	35	26.81 24.56	-0.064	23.50	23.01	0.074	400	1.91	0.240	0.306	0.87	0.38	1.67	150.68	0.014
A	A2	P14 P04	35	70	24.56 24.09	-0.013	23.01	21.16	0.074	400	3.72	0.467	0.314	0.88	0.38	3.26	152.85	0.053
	B1	P15 P16	40	40	22.01 21.99	-0.001	20.00	19.28	0.084	400	2.17	0.272	0.308	0.87	0.38	1.89	151.30	0.018
В	B2	P16 P17	35	75	21.99 21.99	0.000	19.28	18.41	0.074	500	2.96	0.582	0.271	0.85	0.35	2.52	177.27	0.025
	В3	P17 P09	35	110	21.99 19.68	-0.066	18.41	18.20	0.074	800	1.99	0.999	0.231	0.83	0.33	1.64	263.93	0.0060
	C1	P18 P19	42.9	42.9	21.54 20.53	-0.024	19.00	18.49	0.090	400	1.77	0.222	0.405	0.93	0.44	1.65	176.41	0.012
C	C2	P19 P20	40.4	83.3	20.53	-0.045	18.49	17.56	0.085	500	2.84	0.558	0.313	0.88	0.38	2.49	190.69	0.023
	СЗ	P20 P22	40.4	123.7	18.73 18.29	-0.011	17.56	16.99	0.085	600	2.51	0.708	0.367	0.91	0.42	2.28	249.50	0.014
	1	P01 P02	20.2	20.2	24.96 24.99	0.001	22.50	22.38	0.042	400	1.25	0.157	0.270	0.85	0.35	1.06	141.60	0.0060
	2	P02 P03	31.8	52	24.99 25.01	0.001	22.38	22.10	0.067	500	1.76	0.345	0.316	0.88	0.38	1.54	191.61	0.0088
	3	P03 P04	48.7	100.7	25.01 24.09	-0.019	22.10	21.12	0.102	600	2.99	0.847	0.250	0.84	0.34	2.51	204.94	0.020
	3	R34 P05	23.4	124.1	24.09 23.25	-0.036	21.12	20.19	0.049	800	5.13	2.579	0.158	0.76	0.28	3.91	223.14	0.040
	4	P05 P06	38.5	162.6	23.25	-0.084	20.19	18.26	0.081	800	5.74	2.883	0.169	0.78	0.29	4.44	230.19	0.050
PR	5	P06 P07	26.1	188.7	20.03	-0.001	18.26	18.12	0.055	1000	2.19	1.718	0.316	0.88	0.38	1.92	383.26	0.0054
PRIMAIRE	6	P07 P08	30	218.7	19.97 19.84	-0.004	18.12	17.92	0.063	1000	2.44	1.913	0.317	0.88	0.38	2.14	383.63	0.0067
1	7	P08 P09	30	248.7	19.84 19.68	-0.005	17.92	17.68	0.063	1000	2.70	2.117	0.316	0.88	0.38	2.36	383.20	0.0082
	8	P09 P10	30	278.7	19.68 19.52	-0.005	17.68	17.08	0.063	1000	4.21	3.306	0.291	0.86	0.37	3.63	367.55	0.020
	9	P10 P11	30	308.7	19.52 19.37	-0.005	17.08	16.81	0.063	1200	3.19	3.606	0.285	0.86	0.36	2.74	435.95	0.0090
	10	P11 P12	35	343.7	19.37 19.18	-0.005	16.81	16.49	0.074	1200	3.19	3.606	0.305	0.87	0.38	2.78	451.32	0.0090
	11	P12 DO2	10	353.7	18.29 18.25	-0.004	16.49	16.44	0.021	1200	2.38	2.688	0.514	1.01	0.51	2.39	613.35	0.005
	12	DO2 R4	16	369.7	18.25 19.70	0.091	16.44	16.40	0.010	300	0.67	0.047	0.204	0.81	0.31	0.54	93.58	0.0025

Annexe II: dimensionnement collecteur principale AISSET MUSTAPHA

Tronço n	N° de Regard	dist part	dist cum	cote TN	PENT TN	C _{AM}	C AV	Q	Qapport	Dc	Vps	Q_{ps}	Rq	Rv	Rh	V	Н	PenteI
1	DO1 R1	57.70	57.70	22.55 22.77	0.004	19.50	18.63	0.005	0.000	300	1.63	0.115	0.040	0.46	0.13	0.75	39.22	0.0150
2	R1 R2	50.00	107.70	22.77 22.15	-0.012	18.63	17.93	0.005	0.000	300	1.58	0.112	0.041	0.46	0.13	0.73	40.04	0.0140
3	R2 R3	60.00	167.70	22.15 20.50	-0.028	17.93	17.15	0.005	0.000	300	1.52	0.107	0.043	0.47	0.14	0.72	40.95	0.0130
4	R3 R4	58.10	225.80	20.50 19.70	-0.014	17.15	16.40	0.005	0.018	300	1.52	0.107	0.043	0.47	0.14	0.72	40.95	0.0130
5	R4 R5	51.70	277.50	19.70 20.00	0.006	16.40	15.93	0.02	0.00	300	1.27	0.089	0.255	0.84	0.34	1.06	103.43	0.0090
6	R5 R6	49.20	326.70	20.00	-0.019	15.93	15.74	0.023	0.005	300	0.84	0.060	0.382	0.92	0.43	0.77	127.83	0.0040
7	R6 R7	59.70	386.40	19.07 19.18	0.002	15.74	15.44	0.028	0.000	300	0.94	0.067	0.423	0.95	0.45	0.89	135.86	0.0050
8	R7 R8	59.80	446.20	19.18 19.26	0.001	15.44	15.14	0.028	0.000	300	0.94	0.067	0.423	0.95	0.45	0.89	135.86	0.0050
9	R8 R9	59.80	506.00	19.26 19.37	0.002	15.14	14.84	0.028	0.007	300	0.94	0.067	0.423	0.95	0.45	0.89	135.86	0.0050
10	R9 R10	59.10	565.10	19.37 19.42	0.001	14.84	14.55	0.035	0.000	400	1.14	0.144	0.247	0.84	0.34	0.96	135.82	0.0050
11	R10 R11	45.60	610.70	19.42 19.47	0.001	14.55	14.36	0.035	0.004	400	1.02	0.128	0.276	0.85	0.36	0.87	143.09	0.0040
12	R11 R12	55.60	666.30	19.47 19.65	0.003	14.36	14.20	0.040	0.000	400	0.89	0.111	0.356	0.90	0.41	0.80	163.55	0.0030
13	R12 R13	51.00	717.30	19.65 19.89	0.005	14.20	14.04	0.040	0.004	400	0.89	0.111	0.356	0.90	0.41	0.80	163.55	0.0030

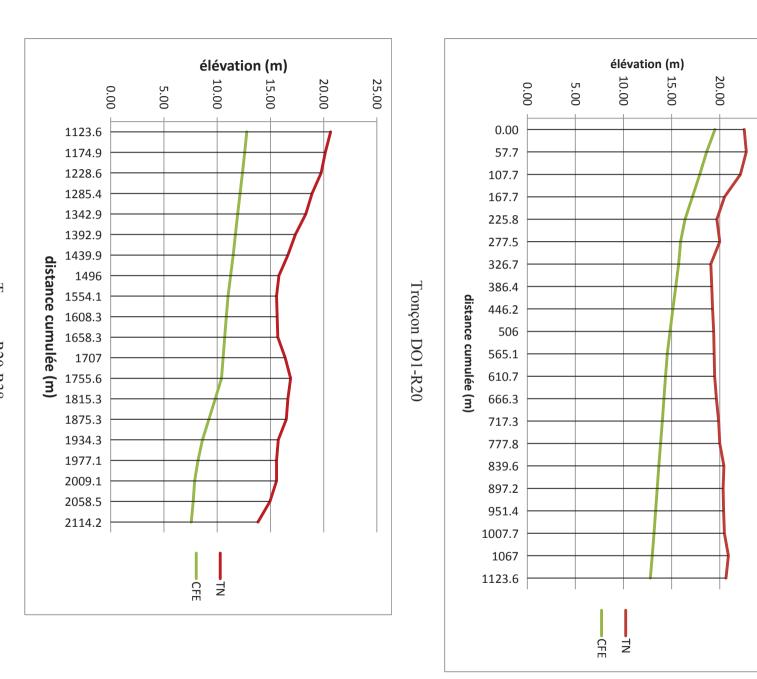
14	R13	60.50	777.80	19.89	0.002	14.04	13.86	0.043	0.000	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
14	R14	00.30	///.00	20.01	0.002	14.04	13.60	0.043	0.000	300	1.03	0.202	0.214	0.61	0.32	0.04	139.40	0.0030
15	R14	61.80	839.60	20.01	0.007	13.86	13.68	0.043	0.000	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
13	R15	01.80	839.00	20.43	0.007	13.80	13.06	0.043	0.000	300	1.03	0.202	0.214	0.61	0.32	0.64	139.40	0.0030
16	R15	57.60	897.20	20.43	-0.001	13.68	13.50	0.043	0.000	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
10	R16	37.00	697.20	20.36	-0.001	13.08	13.30	0.043	0.000	300	1.03	0.202	0.214	0.81	0.32	0.04	139.40	0.0030
17	R16	54.20	951.40	20.36	0.001	13.50	13.34	0.043	0.000	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
1 /	R17	34.20	751.40	20.41	0.001	13.30	13.34	0.043	0.000	300	1.03	0.202	0.217	0.01	0.52	0.04	137.40	0.0030
18	R17	56.30	1007.70	20.41	0.001	13.34	13.17	0.043	0.000	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
10	R18	30.30	1007.70	20.49	0.001	13.54	13.17	0.043	0.000	300	1.03	0.202	0.214	0.01	0.52	0.04	137.40	0.0030
19	R18	59.30	1067.00	20.49	0.007	13.17	12.99	0.043	0.211	500	1.03	0.202	0.214	0.81	0.32	0.84	159.46	0.0030
17	R19	37.30	1007.00	20.90	0.007	13.17	12.77	0.043	0.211	300	1.05	0.202	0.214	0.01	0.52	0.04	137.40	0.0030
20	R19	56.60	1123.60	20.90	-0.004	12.99	12.78	0.254	0.01	800	1.56	0.784	0.324	0.88	0.39	1.38	310.62	0.0037
20	R20	30.00	1123.00	20.66	-0.004	12.77	12.70	0.234	0.01	000	1.50	0.704	0.324	0.00	0.57	1.50	310.02	0.0037
21	R20	51.30	1174.90	20.66	-0.010	12.78	12.58	0.259	0.000	800	1.60	0.805	0.322	0.88	0.39	1.41	309.49	0.0039
21	R21	31.30	11/4.70	20.15	-0.010	12.70	12.50	0.237	0.000	000	1.00	0.003	0.322	0.00	0.57	1,71	307.47	0.0037
22	R21	53.70	1228.60	20.15	-0.007	12.58	12.37	0.259	0.000	800	1.60	0.805	0.322	0.88	0.39	1.41	309.49	0.0039
	R22	23.70	1220.00	19.76	0.007	12.50	12.57	0.237	0.000	000	1.00	0.005	0.322	0.00	0.57	1.11	307.17	0.0037
23	R22	56.80	1285.40	19.76	-0.015	12.37	12.15	0.259	0.000	800	1.60	0.805	0.322	0.88	0.39	1.41	309.49	0.0039
	R23	20.00	1200.10	18.91	0.012	12.57	12.10	0.209	0.000	000	1.00	0.002	0.522	0.00	0.57	1	303.13	0.0023
24	R23	57.50	1342.90	18.91	-0.010	12.15	11.93	0.259	0.004	800	1.60	0.805	0.322	0.88	0.39	1.41	309.49	0.0039
2 1	R24	27.20	13 12.90	18.32	0.010	12.15	11.75	0.237	0.001	000	1.00	0.005	0.322	0.00	0.57	1.11	307.17	0.0037
25	R24	50.00	1392.90	18.32	-0.019	11.93	11.71	0.263	0.000	800	1.68	0.845	0.311	0.87	0.38	1.47	304.10	0.0043
	R25	20.00	13,2.,0	17.35	0.017	11.75	11./1	0.203	3.000	000	1.00	3.013	0.511	0.07	0.50	1.17	301.10	0.0013
26	R25	47.00	1439.90	17.35	-0.015	11.71	11.51	0.263	0.000	800	1.68	0.845	0.311	0.87	0.38	1.47	304.10	0.0043
20	R26	17.00	1137.70	16.64	0.015	11./1	11.01	0.203	0.000	000	1.00	0.013	0.211	0.07	0.50	1.1/	50 1.10	0.0013

27	R26 R27	56.10	1496.00	16.64 15.80	-0.015	11.51	11.27	0.263	0.000	800	1.68	0.845	0.311	0.87	0.38	1.47	304.10	0.0043
28	R27 R28	58.10	1554.10	15.80 15.57	-0.004	11.27	11.02	0.263	0.00	800	1.68	0.845	0.311	0.87	0.38	1.47	304.10	0.0043
29	R28 R29	54.20	1608.30	15.57 15.64	0.001	11.02	10.86	0.263	0.000	1000	1.63	1.280	0.206	0.81	0.31	1.32	313.21	0.0030
30	R29 R30	50.00	1658.30	15.64 15.70	0.001	10.86	10.71	0.263	0.000	1000	1.63	1.280	0.206	0.81	0.31	1.32	313.21	0.0030
31	R30 R31	48.70	1707.00	15.70 16.39	0.014	10.71	10.56	0.263	0.000	1000	1.63	1.280	0.206	0.81	0.31	1.32	313.21	0.0030
32	R31 R32	48.60	1755.60	16.39 16.90	0.010	10.56	10.42	0.263	0.467	1000	1.63	1.280	0.206	0.81	0.31	1.32	313.21	0.0030
33	R32 R33	59.70	1815.30	16.90 16.65	-0.004	10.42	9.82	0.730	0.000	1000	2.98	2.338	0.312	0.87	0.38	2.60	380.73	0.0100
34	R33 R34	60.00	1875.30	16.65 16.49	-0.003	9.82	9.22	0.730	0.000	1000	2.98	2.338	0.312	0.87	0.38	2.60	380.73	0.0100
35	R34 R35	59.00	1934.30	16.49 15.74	-0.013	9.22	8.63	0.730	0.000	1000	2.98	2.338	0.312	0.87	0.38	2.60	380.73	0.0100
36	R35 R36	42.80	1977.10	15.74 15.58	-0.004	8.63	8.20	0.730	0.000	1000	2.98	2.338	0.312	0.87	0.38	2.60	380.73	0.0100
37	R36 DO11	32.00	2009.10	15.58 15.57	0.000	8.20	7.89	0.730	0.000	1000	2.92	2.290	0.319	0.88	0.38	2.56	384.82	0.0096
38	DO11 R37	49.40	2058.50	15.57 14.96	-0.012	7.89	7.75	0.026	0.000	400	0.89	0.111	0.234	0.83	0.33	0.73	132.60	0.0030
39	R37 R38	55.70	2114.20	14.96 13.83	-0.020	7.75	7.58	0.026	0.000	400	0.89	0.111	0.234	0.83	0.33	0.73	132.60	0.0030

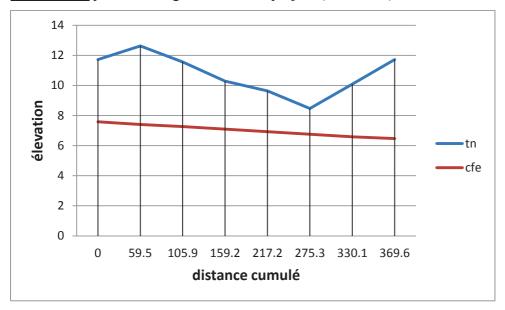
Annexe III: dimensionnement variante 1 du collecteur principale AISSET MUSTAPHA

Tronçon	N° de Regard	dist part	dist cum	cote TN	PENT TN	C _{AM}	C AV	Q	Qapport	Dc	Vps	Qps	Rq	Rv	Rh	V	Н	PenteI
40	R38	59.5	59.5	11.72	0.015	6.43	6.25	0.026	0.094	400	0.89	0.111	0.234	0.83	0.33	0.73	132.60	0.0030
	R39	07.0	37.5	12.62	0.015	0.15	0.23	0.020	0.071	100	0.07	0.111	0.23	0.05	0.55	0.75	132.00	0.0050
41	R39	46.4	105.9	12.62	-	7.40	7.26	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
41	R40	40.4	103.7	11.56	0.023	7.40	7.20	0.12	0.000	800	1.40	0.700	0.170	0.76	0.27	1.07	230.47	0.0030
42	R40	53.3	159.2	11.56	_	7.26	7.10	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
42	R41	33.3	139.2	10.29	0.024	7.20	7.10	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
43	R41	58	217.2	10.29	-	7.10	6.93	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
43	R42	36	217.2	9.64	0.011	7.10	0.93	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
44	R42	58.1	275.3	9.64	-	6.93	6.75	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
44	R43	36.1	213.3	8.47	0.020	0.93	0.73	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
45	R43	54.8	330.1	8.47	0.029	6.75	6.59	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
43	R44	34.6	330.1	10.08	0.029	0.73	0.39	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
46	R44	39.5	369.6	10.08	0.042	6.59	6.47	0.120	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
40	St R	39.3	309.0	11.72	0.042	0.39	0.47	0.120	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030

Annexe IV: dimensionnement variante 2 du collecteur principale AISSET MUSTAPHA

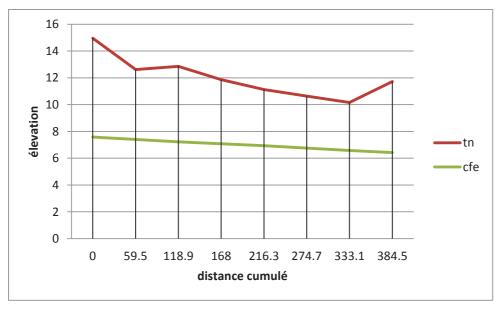

Tronçon	N° de Regard	dist part	dist cum	cote TN	PENT TN	C AM	C AV	Q	Q _{apport}	Dc	Vps	Qps	Rq	Rv	Rh	V	Н	PenteI
40	R38	59.5	59.5	13.83	-0.020	7.58	7.40	0.026	0.094	400	0.80	0.111	0.234	0.83	0.33	0.73	132.60	0.0030
40	R39	39.3	39.3	12.62	-0.020	7.56	7.40	0.020	0.034	400	0.09	0.111	0.234	0.65	0.55	0.73	132.00	0.0030
41	R39	59.4	118.9	12.62	0.004	7.40	7.22	0.12	0.000	800	1 40	0.706	0.170	0.70	0.29	1.09	230.49	0.0030
41	R40	39.4	118.9	12.85	0.004	7.40	1.22	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
42	R40	40.1	1.60	12.86	0.020	7.22	7.07	0.12	0.000	000	1 40	0.706	0.170	0.70	0.20	1.00	220.40	0.0020
42	R41	49.1	168	11.86	-0.020	7.22	7.07	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
43	R41	48.3	216.2	11.86	-0.015	7.07	6.93	0.12	0.000	900	1.40	0.706	0.170	0.79	0.20	1.09	230.49	0.0030
43	R42	40.3	216.3	11.12	-0.013	7.07	0.93	0.12	0.000	800	1.40	0.700	0.170	0.78	0.29	1.09	230.49	0.0030
4.4	R42	50.4	2747	11.12	0.000	(02	(75	0.12	0.000	000	1 40	0.706	0.170	0.70	0.20	1.00	220.40	0.0020
44	R43	58.4	274.7	10.64	-0.008	6.93	6.75	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
4.5	R43	50.4	222.1	10.64	0.000	6.75	6.50	0.12	0.000	000	1 40	0.707	0.170	0.70	0.20	1.00	220.40	0.0020
45	R44	58.4	333.1	10.16	-0.008	6.75	6.58	0.12	0.000	800	1.40	0.706	0.170	0.78	0.29	1.09	230.49	0.0030
46	R44	51 A	2015	10.16	0.020	(50	(12	0.12	0.000	900	1.40	0.707	0.170	0.70	0.20	1.00	220.40	0.0020
46	St R	51.4	384.5	11.72	0.030	6.58	6.43	0.12	0.000	800	1.40	0.706	0.170	0./8	0.29	1.09	230.49	0.0030

Annexe V: dimension des déversoirs d'orage


N°	Qp	Q _{ts}	Qt	Qr	D _e	D_s	V	Н	H_{ts}	V_{ps}	Q _{ps}	R_q	R _v	R _h	H _d	L	Pente I
DO1	0.940	0.0023	0.942	0.938	1000	300	2.01	0.58	0.01	1.88	1.48	0.003	0.248	0.045	0.28	3.49	0.004
DO2	1.388	0.0048	1.393	1.383	1200	300	1.99	0.72	0.01	1.84	2.08	0.005	0.258	0.049	0.35	3.75	0.003
DO3	1.160	0.0043	1.164	1.156	1000	300	1.82	0.76	0.02	1.63	1.28	0.007	0.272	0.054	0.37	2.90	0.003
DO4	0.239	0.0027	0.242	0.236	500	300	1.83	0.32	0.02	1.68	0.33	0.016	0.333	0.079	0.15	2.38	0.008
DO5	0.964	0.0036	0.967	0.960	1000	400	1.79	0.64	0.02	1.63	1.28	0.006	0.265	0.051	0.31	3.11	0.003
DO6	0.347	0.0021	0.349	0.345	600	400	2.04	0.35	0.02	1.89	0.54	0.008	0.279	0.057	0.17	2.90	0.008
DO7	0.284	0.0018	0.286	0.282	500	500	1.86	0.36	0.03	1.68	0.33	0.011	0.299	0.065	0.16	2.40	0.008
DO8	0.851	0.0025	0.854	0.849	800	800	2.03	0.63	0.04	1.81	0.91	0.005	0.264	0.051	0.29	3.02	0.005
DO9	0.461	0.0020	0.463	0.459	600	800	2.10	0.43	0.05	1.89	0.54	0.007	0.277	0.056	0.19	3.06	0.008
DO10	0.921	0.0029	0.924	0.918	800	800	2.22	0.62	0.04	1.99	1.00	0.006	0.266	0.052	0.29	3.35	0.006
DO11	1.061	0.0130	1.074	1.048	1000	400	1.81	0.70	0.04	1.63	1.28	0.020	0.356	0.089	0.33	3.10	0.003

Annexe VI: profil en long du collecteur projeté

25.00



Annexe VI: profil en long du collecteur projeté (variante 1)

Tronçon R20-R38

Annexe VI: profil en long du collecteur projeté (variante 2)

Tronçon R20-R38