
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE  

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique  

Ecole Nationale Polytechnique  

                                                                                  

Department of Electronics 

Laboratory of Communication Devices and Photovoltaic Conversion 

Doctoral thesis 3rd Cycle LMD 

Option: Solar electricity 

Implementation on FPGA of an algorithm for 

the characterization of solar modules 
                                                                Presented by:  

TCHOKETCH KEBIR Selma 

Master in Automatics, University of Blida1 

 

Presented and publicly supported on 14 / 07 / 2021 

Jury members:  

Chair               M .ADNANE Mourad,                         Professor              ENP  

Supervisor      M .AIT CHEIKH Mohamed Salah,      Professor              ENP   

Supervisor      M .HADDADI Mourad,                        Professor              ENP  

Examiner        M .LARBES Cherif,                             Professor              ENP  

Examiner        M .BELMILI Hocine,                           Doctor              UDES/CDER  

Examiner       Mrs .HASSAINE Linda,                       Doctor               CDER 

Guest              Mrs .CHEGGAGA Nawal,                    Doctor              USDB1 

                                                            

ENP 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE  

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique  

Ecole Nationale Polytechnique  

                                                                                  

Department of Electronics 

Laboratory of Communication Devices and Photovoltaic Conversion 

Doctoral thesis 3rd Cycle LMD 

Option: Solar electricity 

Implementation on FPGA of an algorithm for 

the characterization of solar modules 
                                                                Presented by:  

TCHOKETCH KEBIR Selma 

Master in Automatics, University of Blida1 

 

Presented and publicly supported on 14 / 07 / 2021 

Jury members:  

Chair               M .ADNANE Mourad,                         Professor              ENP  

Supervisor      M .AIT CHEIKH Mohamed Salah,      Professor              ENP   

Supervisor      M .HADDADI Mourad,                        Professor              ENP  

Examiner        M .LARBES Cherif,                             Professor              ENP  

Examiner        M .BELMILI Hocine,                           Doctor              UDES/CDER  

Examiner       Mrs .HASSAINE Linda,                       Doctor               CDER 

Guest              Mrs .CHEGGAGA Nawal,                    Doctor              USDB1 

                                                            

ENP 2021 

  



     

 
 

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE 

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique  

Ecole Nationale Polytechnique   

                                                                                                

Département D’Electronique 

         Laboratoire de Dispositifs de Communication et de Conversion Photovoltaïque 

      Thèse de doctorat en 3ème Cycle LMD  

               Option : Electricité solaire 

Implémentation d’un algorithme pour la 

caractérisation de modules solaires 
                                                                Présentée par : 

                                                  Selma TCHOKETCH KEBIR 

                                      Master en Electronique, Université de Blida 

 

Présentée et soutenue publiquement le 14/07/2021  

Composition du Jury :  

Président                           M .Mourad ADNANE,       Professeur       ENP  

Promoteur      M .Mohamed Salah AIT CHEIKH,  Professeur  ENP  

Co-Promoteur       M .Mourad HADDADI,       Professeur       ENP 

Examinateur        M .Cherif LARBES,       Professeur       ENP 

Examinateur   M .Hocine BELMILI,       Docteur         UDES  

Examinatrice                    Mme .Linda HASSAINE,       Docteur         CDER    

Invitée                              Mme .Nawal CHEGGAGA,              MCA           USDB1                                                                                                   

 

ENP 2021  



 

هناك  لك،لذيعرض أحياناً أعطالًً أثناء حياته مما يؤدي إلى تدهور التركيب الكهروضوئي بأكمله.  كهروضوئي،الذي يعتبر قلب أي تركيب  الكهروضوئي،المولد  :ملخص

ر يساهم هذا العمل في دراسة أنواع تدهو الغايات،كتشاف الأخطاء وتجنب المخاطر الخطيرة وتوفير الحماية وإطالة العمر الصحي. ولهذه حاجة إلى تقنيات التشخيص لضمان ا

 الأداء، امة،عة: نظرة الجزء الأول "المولدات الكهروضوئي رئيسيين،المولدات الكهروضوئية وأنواع أعطالها وتقنيات التشخيص الرئيسية. تم تطوير هذه الرسالة في جزأين 

: 4". تم تنظيم هذا الجزء الأول في ثلاثة فصول. بينما يتضمن الجزء الثاني "الذكاء الًصطناعي والتنفيذ" فصلين. الفصل  التصنيف النمذجة، التشخيص، الأعطال، الإنتاجية،

. إنها شبكة PVGات العصبية وتطبيقها على تشخيص الأعطال التي تحدث في يتم تقديم وصف عام للشبك الفصل،. في هذا PVGتطبيق الشبكات العصبية لتشخيص عيوب 

في الوقت الفعلي. تم تقديم عمليات المحاكاة  PVتم تطويرها لنمذجة أنواع مختلفة من الأخطاء التي يمكن أن تظهر عند تشغيل نظام  الًصطناعية،من الشبكات العصبية 

ل يحتوي الفص الأطروحة،طريقة نتائج جيدة لنمذجة وتشخيص المجال الكهروضوئي الصحي والمعيب. كمرحلة أخيرة من هذه وقد أظهرت هذه ال التجريبية،والًختبارات 

 .المقترح على بنية بسيطة ومنتظمة ومتوازية VHDLلإحدى الشبكات العصبية المطورة. يعتمد وصف  FPGAالخامس على منهجية تجميعية للتنفيذ على لوحة 

 .FPGA العصبية، الشبكات الاصطناعي، الذكاء الإلكتروني، التشخيص الأعطال، كشف الآلية، المراقبة كهروضوئي، مولد–ية الكلمات المفتاح

Résumé : Le générateur photovoltaïque, considéré comme le cœur de toute installation photovoltaïque, présente parfois des 

dysfonctionnements durant leur vie qui entraînent des dégradations sur l'ensemble de l'installation photovoltaïque. Par conséquent, 

des techniques de diagnostic sont nécessaires pour garantir la détection des pannes, permettent d’éviter les risques dangereux, 

permettent une protection et prolongent leur vie saine. A ces fins, ce travail contribue à l’étude des types de dégradations des 

générateurs photovoltaïques, de leurs types de défauts et de ces principales techniques de diagnostic. Ce travail de thèse a été 

développé en deux parties principales, la première partie « Générateurs Photovoltaïques : Généralité, Performances, Productivité, 

Défauts, Diagnostic, Modélisation, Caractérisation, & Identification ». Cette première partie est organisée en trois chapitres. Tandis 

que la deuxième partie   « Intelligence Artificielle & Implémentation » comprend deux chapitres. Le chapitre 4 : Application des 

réseaux de neurones au diagnostic des défauts de PVG. Dans ce chapitre, une description générale des réseaux de neurones et de leur 

application au diagnostic des défauts survenant en PVG est présentée. Il s’agit d’un réseau de réseaux de neurones artificiels, 

développé afin de modéliser différents types de défauts qui peuvent paraître  lors de l’exploitation d’un système PV en temps réel. 

Des simulations et des tests expérimentaux ont été présentés, cette méthode montre de bons résultats pour la modélisation et le 

diagnostic du champ photovoltaïque sain et défectueux. Comme phase finale de ce mémoire, le chapitre 5 renferme une méthodologie 

de synthèse pour l'implémentation sur carte FPGA de l'un des réseaux de neurone développé. La description VHDL proposée est 

basée sur une architecture simple, régulière et parallèle. 

Keywords- Générateur photovoltaïque, surveillance automatique, détection de défauts, diagnostic, intelligence artificielle, réseaux 

de neurones, FPGA. 

Abstract: The photovoltaic generator, considered to be the heart of any photovoltaic installation, exhibits sometimes malfunctions 

during their life cycle, which lead to degradation of the entire photovoltaic installation. Therefore, diagnostic techniques are needed 

to ensure fault detection, prevent dangerous risks, provide protection and prolong their healthy life. To these ends, this work 

contributes to the study of the types of degradation of photovoltaic generators, their types of faults and these main diagnostic 

techniques. This thesis work has been developed into two main parts, the first part "Photovoltaic Generators: Generality, 

Performances, Productivity, Faults, Diagnosis, Modelling, Characterization, & Identification". This first part is organized in three 

chapters. While the second part "Artificial Intelligence & Implementation" includes two chapters. Chapter 4: Application of neural 

networks to the diagnosis of PVG defects. In this chapter, a general description of neural networks and their application to the 

diagnosis of faults occurring in PVG is presented. It is a network of artificial neural networks, developed to model different types of 

faults that can appear when operating a PV system in real time. Simulations and experimental tests have been presented, this method 

shows good results for the modelling and the diagnosis of the healthy and defective photovoltaic system. As a final phase of this 

thesis, chapter 5 contains a synthesis methodology for the implementation on an FPGA board of one of the neural networks developed. 

The proposed VHDL description is based on a simple, regular and parallel architecture. 

Keywords- Photovoltaic generator, automatic monitoring, faults detection, diagnosis, artificial intelligence, neural networks, 

FPGA.
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GENERAL INTRODUCTION  
  

                                  The threats of fossil energies such as dangers of nuclear energy, pollution, 

high emissions of Co2, increasing prices of petroleum, have motivated many utilities for 

developing and harnessing new forms of energy sources that are highly reliable, in order to 

satisfy the increasing energy demand in the world. In this context, renewable energy (RE) is 

the form that responds to this subject and can be produced through resources that naturally 

replenish themselves by natural processes from sunlight (Photovoltaic & thermal: 

Concentrated Solar Power (CSP)), wind (On-shore & Off-shore), rain, wave power, ocean 

energy, flowing water (Hydropower) and geothermal heat (Geothermal), hydrogen and fuel 

cells (Bioenergy). All of the RE forms have been installed with evolution during the last period 

(2015-2019), as indicated in Figure 0.1, with global renewable power capacity totalled 2378 

GW by 2018 [1]. 

 

Figure 0.1 Evolution of installed technology capacity from RE in the world (2015-2019) and 

the last addition (2019) [1].  

Renewable energy is considered not only as a source of energy but also as a promising solution 

to many problems such as energy security, creating jobs and reducing poverty, etc. Therefore, 

these sources have become the subject of advanced research for extracting power with high 

reliability, lower cost and increased energy efficiency. Power generation from solar energy is 

one of the most promising renewable energies that attract the attention of researchers, which is 

clean, renewable, inexhaustible, free and abundant in most parts of the world, and it has proven 

to be an economical source of energy in many applications. Solar energy can be exploited into 
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two major forms: the first form is the captured heat (CSP) that can be used as solar thermal 

energy. The second form is photovoltaic (PV), which converts the incident solar irradiance into 

electrical energy, and which is the most usable form of energy. Figure 0.2 illustrates the 

evolution of cumulative PV capacity (GW) installed: a) around the world; b) per region in the 

world, with projection to 2050, as indicated in the trends of the International Energy Agency 

(IEA) in [2]. 

 

a) 

 

b) 

Figure 0.2 Evolution of cumulative PV capacity installed: a) around the world; b) per region 

in the world, with projection to 2050 [2]. 
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Solar photovoltaic energy is the most well-known and widely spread renewable energy across 

the globe, where it has achieved a cumulative capacity of 635 GW by the end of 2019 [3]. In 

this energy, researchers and laboratory have interested on the development of different axes 

such as, material’s composite, cells and amelioration of their yields, panels and their 

characterization, on the global installation and its optimization, identification, and diagnosis of 

state. In this issue, the installed PV plants are subject to failures, malfunctions, and damages 

during their life cycle [4], [5]. In this regard, proper diagnosis is crucial, to avoid any loss of 

efficiency, safeguard the system, and guarantee service continuity. The failures detected in any 

solar PV system are due to different internal, external, and ageing causes [4], [6], [7]. Fault 

detection and diagnosis (FDD) methods for PV plants are needed to detect and identify 

abnormal conditions at early stages to reduce the risks associated with a long-term operation. 

Many research works have been focused on developing diverse FDD techniques, to guarantee 

efficient and intelligent monitoring and supervision in PV plants. Figure 0.3 shows the growing 

number of reference documents concerning the diagnosis of PV systems published since 2005. 

This shows how much research on this subject has increased over the years and remain strong. 

 

Figure 0.3 Growth of PV diagnosis published papers per year, since 2005. 

This thesis work has been developed in two main parts, structured as cited below: 

1st Part « Photovoltaic Generators: Generality, Performances, Productivity, Faults, 

Diagnosis, Modelling, Characterization, & Identification » 

This first part contains three chapters as bellowed. 
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- Chapter 1: Photovoltaic Generators: Generality, Applications, & Productivity. 

This chapter presents a study of the photovoltaic generation unit, known as a photovoltaic 

generator (PVG). The study of PVG encloses generalities, behaviors, performances, their main 

applications, and productivity. We have seen the importance of using such PVG, from the 

interest done with years in the historical point, the many advantages cited with some 

limitations, the abundance of energy from the sun, and the focus of researchers to get a very 

high yield from the used material technology.  The performances and several applications of 

PV systems have been also detailed. Before termination of this chapter, a presentation has been 

enlarged of the losses and productivity in a special PV application containing the major 

elements of the PV chain.  

- Chapter 2: Fault Detection and Diagnosis Techniques for PVG. 

After seeing generalities in the first chapter, particularly seeing that the productivity of a PV 

system, is affected by many factors and that PVG necessitates protections. This chapter 

summarizes the different causes and types of degradations of photovoltaic generators, the 

major types of faults and their main diagnosis techniques. Various fault detection and diagnosis 

techniques have been presented. Besides, some envisaged diagnosis solutions have been 

discussed.  

- Chapter 3: Modelling, Characterization, & Identification. 

In previous chapter, the performances of PVG affected by different faults that can occur on it, 

has been presented.  Among these faults the parasitic resistances effect and others electrical 

parameters, which have shown a prodigious influence on performances. Besides, the exact PV 

parameters values are essential for precise mathematical modelling, simulation, and control of 

the photovoltaic generation systems. In this chapter, a presentation is done about the modelling 

and identification of the different electrical parameters of the PVG. With a detail about 

different methods used for obtaining the best values of photovoltaic parameters. 

2nd Part « Artificial Intelligence & Implementation » The second part contains two chapters 

as bellowed. 

- Chapter 4: Application of Neural Networks to Faults Diagnosis of PVG. 

In this chapter, a general description of neural networks and their application to the diagnosis 

of faults occurring in PVG is presented. An artificial neural network has been developed in 

order to model different types of faults (Short-circuit, shading) that have appeared in a 

photovoltaic generator, then detect and diagnose them. Simulation and experimental testing 

have been presented, the results prove the high performance of the proposed approach. We 

obtained very satisfactory results. The approach has proven its strength while injecting noises 

(e.g presence of perturbations from inverter) and notice the presence or absence of confusion.  

- Chapter 5: FPGA implementation of FDD for PV-Generator. 
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Through this chapter, we have presented a synthesis methodology for FPGA implementation 

of a digital neural-network diagnosing faults (at short-circuit) in PVG. We were interested in 

the study of FPGA circuits, their structures, the different circuits, the VHDL, and the ISE 

Xilinx software environment, which integrates the ISim simulation module (ISE Simulator). 

VHDL description  of  the  network  begins  by  creating  a  component  neuron,  then  a  

component layer, and  finally a network. The neuron being the essential nucleus of a neural 

network, we are therefore interested in the architecture of the latter. We first checked, validated 

the operation and implemented the VHDL code of the neuron architecture based on the 

activation function (sigmoid). The proposed VHDL description is based on a simple, regular 

and parallel architecture. The use of the parametric VHDL description offers a high flexibility 

to the designer. These implementation results have been getting very good performances. 

Lastly, the conclusion of this thesis is made and proposes the scope of future work. 
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CHAPTER 1: PV Generators (Generality, Applications, & 

Productivity) 

Introduction  

Photovoltaic energy is one of the energy challenges policy in our century, which results from 

the direct transformation of sunlight to electricity, using a solar PV cell. The current available 

preliminary data for the world solar PV cell production in 2019 vary between 120 GW and 135 

GW, as illustrated in Figure 1.1. The figure shows the evolution of annual PV productions in 

the world [3].   

 

Figure 1.1 World PV Module Production from 2010 to 2019 (Data source: [3] and new 

analysis). 

Besides, the cost of PV energy has shown a major decrease, which rounds it the lowest source 

of energy during 2020 [8].  The average price per watt dropped drastically for solar PV cells 

in the last decades. While in 1977 prices for Crystalline-Silicone (C-Si), cells were about $77 

per watt, average spot prices in August 2018 were as low as $0.13 per watt or nearly 600 times 

less than forty years ago [9]. This price trend was seen as evidence supporting Swanson's 

law (an observation similar to the famous Moore's Law) which states that the per-watt cost of 

solar PV cells falls by 20 per cent for every doubling of cumulative photovoltaic production 

[10]. In this subject, this chapter presents a study of the photovoltaic generation unit, known 

as a photovoltaic generator (PVG). The study of PVG encloses generalities, behaviors, 

performances, and their main applications.  

https://en.wikipedia.org/wiki/Price_per_watt
https://en.wikipedia.org/wiki/Crystalline_silicon
https://en.wikipedia.org/wiki/Swanson%27s_law
https://en.wikipedia.org/wiki/Swanson%27s_law
https://en.wikipedia.org/wiki/Moore%27s_Law
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1.1 History research  

The French scientist Becquerel was the first to discover the photoelectric effect in 1839. 

Becquerel has observed the electrical behavior of electrodes immersed in a conductive liquid 

exposed to light [11]. Subsequently, in 1905, Albert Einstein discovered, working on the 

photoelectric effect, that light has not only an undulation character but also that, its energy 

was carried by particles, photons. It was not until 1954 that the first solar PV cells producing 

electricity appeared, thanks to the work of Bell Laboratories in the United States [12]. From 

the photoelectric effect to the design of the photovoltaic cell, we had to wait a century. 

Photovoltaic energy had a renewed interest in the 1960s during the first space launches of 

satellites and then during lunar missions [13]. The economic crises of the 1970s, then the 

accidents of nuclear power plants increased the interest of the public towards renewable 

energies, and in particular photovoltaic energy [11], which is emerging as one of the most 

promising sources of renewable energies.  

1.2 Advantages of PV systems 

 It provides green, renewable, free and available energy. 

 Can be used locally which reduces losses. 

 Operation and maintenance costs are low. 

 PV is silent (No noise), static. 

 PV has no mechanical parts and easy to install. 

 Used in spacecraft applications. 

 Reliability and long lifetime. 

 Improving efficiency and decreasing prices. 

 The flexibility of construction with a modular nature. 

 Availability of government support and incentives. 

1.3 Limitations of PV systems 

 No power at night or during cloudy or rainy weather. 

 It requires additional equipment as inverters and batteries.  

 Low efficiency of 15 to 18%. 

 Needs continuous cleaning. 

 For high power, PV requires a large area, which is difficult inside cities. 
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1.4 Solar resource 

The sun is a great natural resource of energy. The incoming irradiation on earth from the sun 

is shown in Figure 1.2 bellow [14].  

 

Figure 1.2 Breakdown of incoming solar energy on earth [14]. 

 The earth receives 174 Peta-watts (1015 Watts) of solar radiation in the upper 

atmosphere. 

 Nearly 30% are reflected space while clouds, oceans and land absorb the rest. 

Due to its geographic location, Algeria possesses one of the highest solar deposits in the world. 

The most important of the entire Mediterranean basin as shown in Figure 1.3 [15]. It is, 

therefore, legitimate to take advantage of it. It is mentioned that the global horizontal 

irradiation (GHI)* received in Algeria and all around the world is in an interval of about 3.5-

7KWh/ m2 per day. 
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Figure 1.3 Global horizontal irradiation (GHI) received in Algeria [15]. 

The sun emits electromagnetic radiation called the solar spectrum, which extends from the 

ultraviolet into the infrared (~300nm – 2500nm).  Figure 1.4 shows the variation of the spectral 

solar distribution [16]. The diagram shows a plot of the solar spectrum, indicating the 

ultraviolet (UV), visible, and infrared (IR) portions of the spectrum, as well as showing where 

the bandgap of silicon (for solar PV cells) is located. The energy, associated with this solar 

radiation, decomposes approximately as 9% in the UV band (<0.4 µm), 47% in the visible 

band (0.4 to 0.8 µm), and 44% in the IR band (> 0.8 µm).  

The use of solar radiation as an energy source, therefore, poses a very special problem. Solar 

radiation is not always available; moreover, it cannot be stored or transported. The design of 

a PV system that uses solar radiation as an energy source must therefore determine the quantity 

of solar energy available at the target location, and the moment when this energy is available. 
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Figure 1.4 Spectral analysis of solar radiation [16]. 

 1.5 Photovoltaic energy 

Photovoltaic energy is a physical phenomenon, which converts light (photons) from the sun 

into electricity using semiconductor material. The latter has special electronic properties. 

Therefore, the photovoltaic system can supply electric energy to a given load by directly 

converting sun energy through the photovoltaic effect, as shown in the following Figure 1.5. 

 

Figure 1.5 The basic PV cell/panel functioning principal. 
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Figure 1.5 shows that the photovoltaic process is based on three important principles: The first 

is the excitation of free mobile charge carriers due to light absorption, the second is the 

separation of the charge carriers and the third one is the collection of the charge carriers at the 

contacts. The fourth is to feed the load with electricity.  

1.6 Types of photovoltaic technologies   

A variety of PV technologies exists today. There are four generations according to 

technological developments. 

1.6.1 First generation  

This generation represents around 90% of the current PV market and belongs to the first 

generation PV technology, which is based on using very pure bulky semiconductor materials, 

like crystalline-silicon (C-Si), particularly the Mono-Crystalline-Silicon (Mono-C-Si) [17]. 

This first generation is considered as the most effective of the solar PV cells with 15% 

efficiency. They also last longer than other panels and perform better at low light. The main 

disadvantages are the cost, which often means that it is not the first choice for homeowners. It 

can also be affected by dirt or shade, which can break the circuit. Bifacial is the trending from 

this first technology. 

 Bifacial solar PV panels 

Bifacial are one of the newest product trends in the PV industry [18]. In fact, unlike the mono 

facial cells, bifacial cells are light-sensitive on both sides (Figure 1.6). 

 

Figure 1.6 Mono-facial & bifacial structure of PV cell [18]. 
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In the mono-facial back surface field solar cell, the rear surface is covered with aluminium. In 

a bifacial solar cell, a finger grid is used, so the sun can reach the rear side. Unlike the opaque 

back sheet that features on the mono facial solar panel, they are made with a transparent back 

sheet or dual tempered glass. Framed or frameless, bifacial panels are usually made from 

mono-crystalline cells, but polycrystalline can be used as well. Bifacial solar panels have solar 

cells that absorb light from both the front and the back. That means that besides capturing 

sunlight from the front of the panel, they also capture all the valuable sunlight that is reflected 

from the ground, as well as any diffused light that hits the back of the solar cells. Thus, they 

absorb more sunlight and provide higher efficiency than mono-facial solar cells.  

1.6.2 Second generation  

These solar cells are manufactured using cheaper processing technology based on thin-film 

[19]. Consequently, the materials have more defects resulting in lower performances. In this 

case, no C-Si wafers are used but very thin layers of silicon, which are deposited on glass or a 

flexible substrate. The silicon does not have the same lattice structure and can be amorphous 

(a-Si), Polycrystalline (Poly-C-Si) or Nano-crystalline. 

 An alternative thin-film PV technology is based on an II-VI semiconductor, the 

cadmium telluride (CdTe). The CdTe has currently the largest market among the thin-

film PV technologies.  

 Another thin-film PV technology, based on a chalcogenide alloy is copper indium 

gallium selenide (CIGS). It has the highest demonstrated conversion efficiency on the 

lab scale, just above 20%.  

 Another thin-film PV technology is based on organics, also referred to as the plastic 

solar cell. The absorption and charge transport in the solar cell occurs in conductive 

organic polymers or molecules.  

With an efficiency of 13% polycrystalline (multi-crystalline) solar panels are often seen as a 

better economic choice, particularly for homeowners. At 7%, thin-film (amorphous) solar 

panels are among the least efficient on the market but they are the cheapest option. The main 

advantage is that it can be mass-produced at a much cheaper cost but is more suitable for 

situations where space is not a big issue. The main disadvantage for thin-film solar panels are 

not generally used for residential purposes and will degrade quicker than crystalline cells. 
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1.6.3 Third generation 

The third generation PV technology would be solar organic [20] cells with higher conversion 

efficiencies about the first and second generations. Furthermore, the cost price of the materials 

and processing techniques are expected to be cheap as well. The dye-sensitized solar cell 

(DSSC) is a kind of photo electrochemical (PEC) system of a third technology, in which a 

semiconductor material based on molecular sensitizers is placed between a photo-anode and 

an electrolyte [21-22]. Third-generation PV technology covers a wide range of novel and 

innovative ideas, the most successful being multi-junctions. 

1.6.4 Fourth generation 

It is based on a hybrid process from inorganic crystalline [22]. Inorganic–organic hybrid solar 

cells (hybrid solar cells) have attracted considerable interest as a result of the synergistic 

properties of organic and inorganic semiconductors, which also take advantage of lightweight, 

robust, flexible, and inexpensive properties. The final PV technology is based on III-V 

semiconductor materials such as gallium arsenide (GaAs). III-V materials are being used in 

multi-junction devices, often processed on germanium wafers as substrate. The multi-junction 

based on III-V semiconductors are the most efficient solar cells today. The record conversion 

efficiency of 44% was obtained with a metamorphic triple junction in 2012. The III-V 

semiconductor solar cells are being used in concentrator PV technology and space applications. 

Hybrid solar cells are made from a mix of amorphous and monocrystalline cells to generate 

maximum efficiency. There are a variety of hybrid cells and they are still very much at the 

research and development stage which is why they are currently a more expensive option. 

Perovskite panels are trending from this fourth technology recently. 

 Perovskite solar cell (PSC): 

A PSC is a type of the fourth generation of solar cell which includes a Perovskite 

structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based 

material, as the light-harvesting active layer (Figure 1.7) [23]. Perovskite materials, such 

as methyl-ammonium lead halides and all-inorganic caesium lead halide, are cheap to produce 

and simple to manufacture. Solar cell efficiencies of devices using these materials have 

increased from 3.8% in 2009 to 25.2% in 2020 in single-junction architectures, and, in silicon-

based tandem cells, to 29.1%, exceeding the maximum efficiency achieved in single-junction 

silicon solar cells. Perovskite solar cells are therefore currently the fastest-advancing solar 

https://www.sciencedirect.com/topics/materials-science/hybrid-solar-cells
https://www.sciencedirect.com/topics/materials-science/hybrid-solar-cells
https://en.wikipedia.org/wiki/Solar_cell
https://en.wikipedia.org/wiki/Perovskite_structure
https://en.wikipedia.org/wiki/Perovskite_structure
https://en.wikipedia.org/wiki/Lead
https://en.wikipedia.org/wiki/Tin_based_perovskite_solar_cells
https://en.wikipedia.org/wiki/Tin_based_perovskite_solar_cells
https://en.wikipedia.org/wiki/Methylammonium_lead_halide
https://en.wikipedia.org/wiki/Solar_cell_efficiencies
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technology. With the potential of achieving even higher efficiencies and very low production 

costs, perovskite solar cells have become commercially attractive.  

 

Figure 1.7 Structure of Perovskite PV cell. 

1.7 Yield of PV generations 

There has been steady progress in improving conversion yields for many PV tgenerationes in 

recent decades. This has caused competition between the developers of each technology to 

increase their returns, as shown in Figure 1.8 bellow. This figure shows the famous chart of 

the National Renewable Energy Laboratory  (NREL) [24], which represents the evolution of 

the yield of each PV cell technology obtained in the laboratory for all sectors from 1975 to the 

present. It summarizes the worldwide research effort of the last 40 years and shows the current 

record efficiencies of solar PV cells at a research scale. 

 

 

 

 

 

https://www.nrel.gov/
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Figure 1.8 Evolution of PV yield over time (Source: NREL) [24]. 

 The blue (1st generation) lines and dots represent the crystalline silicon technology 

based on mono-crystalline and multi-crystalline silicon. The record efficiency ranges 

from 20% up to 25% under the standard one sun illumination conditions and 27% can 

be achieved under 92 suns illumination.  

 The inorganic thin-film technologies, like thin-film silicon, CdTe and CIGS are 

indicated by the green (2nd generation) markers and their record efficiencies range 

from 13.4 % up to 20%. 

 The red (3rd generation) colored lines and markers indicate the emerging PV 

technologies, like organic solar cells.  

 The purple (4th generation) colored markers represent the III-V technology based on 

single, double and triple junctions and have efficiencies ranging from 26% up to 44% 

under concentrated light conditions. 

The following table summarizes the different types of photovoltaic cells under standard test 

conditions (STC: 1000 W/m2 & 25°C). 

Table 1.1 Summarized classification of several photovoltaic technologies. 

1
st
 Generation 

2
nd

 Generation 3
rd

 Generation 

4
th

 Generation 
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Crystalline 

Silicone  

(Mono-C-Si) 

13-17% 

Good 

performance for 

a cell 

High 

manufacturing 

cost, loss of 

material during 

fabrication 

 

 

Poly-

Crystalline 

Silicone 

(Poly-C-Si) 

 

11-15% 

Good 

performance for 

a module 

High 

manufacturing 

cost, loss of 

material during 

fabrication 

 

 

 

Amorphous 

Silicone (a-Si) 
5-9% Easy to fabricate Poor performance 

 

CdTe 7-11% 

Absorb 90% of 

incident photons 

 

Cadmium highly 

polluting 
 

CIGS 20% 

Adjustable gap 

energy, 99% of 

the photons 

absorbed 

Lack of raw 

material 
 

Organic  

 

≤ 5% 

Low 

manufacturing 

cost, flexible 

Yield still too low 

 

Hybrid 18% Most efficient Most expensive 

 

1st  

Generation 

3rd  

Generation 
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Generation 
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Each PV generation has its appropriate fabricant in the world. Most fabricants are summarized 

in Figure 1.9. 

 

Figure 1.9 Fabricant of PV panels in the world. 

 Q-Cells, Solar World from Germany. 

 Sharp, Kyocera, Sanyo from Japan. 

 Suntech, Yingli, JA Solar from China. 

 Motech from Taiwan. 

After the process of manufacturing of any PV modules they are tested under standard test 

conditions (STC), with some norms IEC (61215 for C-Si, 61646 for a-Si), with a solar 

simulator* and then a datasheet* containing the major characteristics (electrical and 

mechanical) and some performances are added on the bellowed surface of PV modules. This 

process occur in a specific laboratory of testing*. 

1.8 Protection of PV generator 

Mounting of PV generator can be in various configurations as seen in Figure 1.10 [25]. 
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Cell

Module 

(Cells in series) String 

(Modules in series)

Array 

(String in parallel)

0.5 To 0.9 Volts 

 

 

Figure 1.10 Mounting of PV generator: Cell, Module, String, Subarray, and Array [25]. 

From solar PV cell, module (cells in series associations), string (modules in series association), 

an array (strings in parallel association). Hence, after the manufacturing process for a given 

PV module with a certain anatomy*, several types of protection for a PVG exist. The 

components used for protecting the PV generator are cited below.   

1.8.1 Bypass diode (BPD) 

The bypass diode is connected in antiparallel with a group of cells (Figure 1.11), in order to 

protect the weakest between them against reverse polarization, as explained in Figure 1.12. 

 

 

Figure 1.11 Protection of PVG with BPD diodes. 
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Figure 1.12 Explanation of bypass diode’s role (Shade of one cell in 72-cell of PV module). 

1.8.2 Blocking diode (BD) 

The voltage produced by each string can be different. When paralleling these strings to form a 

PV field, the string with the lowest voltage can absorb a reverse current from the other strings. 

Therefore, this leads to a drop in production. The modules of the string crossed by the reverse 

current could also be susceptible to failure. To avoid these reverse currents, a blocking diode 

is placed at the end of each string, Figure 1.13. 

 

Figure 1.13 Protection with blocking diodes. 

The use of the blocking diode introduces a loss in production due to the voltage drop caused 

by this diode during normal operation of the PV field. Besides, these diodes can go into the 

fault and therefore require regular control; a fuse is sometimes used in place of the non-return 

diode. However, the use of the fuse does not protect the string against the reverse current.  
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1.8.3 Junction Box (JB): 

A junction box (Figure 1.14) containing connectors, fuses and switches is strongly 

recommended. Besides, the majority of PV systems are equipped with circuit breakers placed 

between the PVG and the inverter to simplify isolation in the event of a failure. 

   

Figure 1.14 Constitution of a junction box. 

1.8.4 Solar PV cables 

These cables with MC4 connectors shown in Figure 1.15 are designed and tested to operate at 

a normal maximum conductor temperature of 90°C and for 20 000 hours up to 120°C.  

 

Figure 1.15 Cables with MC4 connectors used for connection of PV panels in series and/or 

parallel association. 

They are suitable for permanent outdoor long-term use under variable and harsh climatic 

conditions. 
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1.9 PV system Applications 

Two main types of PV system applications exist Grid-connected, and Off-Grid (Figure 1.16). 

In either case, basic PV system principles and elements remain the same. 
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Figure 1.16 Various kinds of PV applications. 

In what follow, some details are given about the different kinds of application of PV systems. 

1.9.1 Off-Grid PV application (Stand-alone) 

In this type, the PV system is isolated from the electric grid (remote area). The basic block 

diagram of a stand-alone PV system is described in Figure 1.17. It includes all the elements 

necessary to serve direct and alternative charges appliances in a common isolated household.  
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AC Loads

DC Loads

 

Figure 1.17 Block diagram components of Off-Grid PV installation (Stand-alone). 

It consists of a PVG, DC-DC (from direct to direct) converter, DC-AC (from direct to 

alternative) inverter, and a bank of storage with a regulator (Bidirectional DC-DC converter).  

1.9.2 Grid-Tied PV applications 

The grid connection PV systems are directly tied to the electric distribution network, with two 

major configurations as detailed below.  

a) Integrality injection 

The basic system configuration is depicted in Figure 1.18. Electric energy is either sold or 

bought from the local electric utility depending on the local energy load patterns and the solar 

resource variation during the day. 
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DC – AC

Inverter

PVG
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Converter

DC Bus

Network

~ 

AC Loads

 

Figure 1.18 Block diagram of Grid-Tied photovoltaic system with battery (injection to the 

network of integrality). 
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b) Total injection:  

DC - DC

Converter

DC – AC

Inverter

PVG

AC Bus

Network

~ 

AC Loads

 

Figure 1.19 Block diagram of Grid-Tied Photovoltaic System without battery (Direct/pure 

injection to the network). 

In the grid-connected system, dump heaters are not required, as all excess power is fed to the 

grid lines [26]. The battery is also eliminated. The DC power is first converted into AC by the 

inverter, ripples are filtered and then only the filtered power is fed into the grid lines. 

1.9.3 Hybrid application (Multisource) 

These systems consist of combination of two or more sources of energy, such as photovoltaic 

modules and a complementary means of electricity generation such as a diesel, gas or wind 

generator [26-27] (Figure 1.20).  
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AC – DC
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Figure 1.20 Block diagram representation of a multisource (hybrid) system. 
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To optimize the operations of the different generators, hybrid systems typically require more 

sophisticated controls than stand-alone PV systems.  

1.10 PV system components & productivity 

The PVG by itself does not constitute the PV power system. It must also have a structure to 

mount it, point to the sun, and the components that accept the Direct Current (DC) power 

produced by the array and condition the power in the form that is usable by loads. If the loads 

are Alternative Current (AC), the system needs an inverter to convert the DC power into AC, 

generally at 50 or 60 Hz [21]. The electrical block diagram of a PV system supplying a load, 

and containing the major components is illustrated in Figure 1.21.  

PVG

DC - DC

Converter

DC – AC

Inverter
AC Loads

MPPT 

Controller

Production

Conversion & Control

Utility

(Tamb, Tc, G)

(Vdc, Idc, Pdc) (Vac, Iac, Pac)

Yr
Ya Yf

Lc
Ls

 

Figure 1.21 Schematic components of PV system’s components with productivity. 

Figure 1.21 shows the necessary components of a PV power system, which are:  

 Production part: PV generator. 

 Conversion & control part: Converters (DC-DC & DC-AC) with MPPT 

(Maximum Power Point Tracker) controller. 

 Utility part: Loads. 

The peak power tracker (MPPT) senses the voltage, current, and/or power outputs of the PV 

array (Idc,Vdc, Pdc) and continuously adjusts the operating point to extract the maximum power 

under the given climatic conditions (ambient temperature: Tamb, cell’s temperature: Tc, and 

solar irradiation G). The output of the array goes to the inverter, which converts the DC into 

AC (Iac,Vac, Pac).  



     

54 
 

The productivity of a PV installation is relied on two main factors: the performance and the 

availability of the installation [28]. The later availability is affected by the ratio between the 

period of service continuity and a total observed period [29]. Whereas, the performance is 

affected by the global efficiency of the chain of conversion, and can be deduced through a 

performance ratio indicator, proposed by the European directive [30] and the International 

Electronic Committee (IEC) 61724 [31].To study the PV system’s performance, the 

International Energy Agency (IEA) Photovoltaic Power System Program established four 

performance parameters concerning the energy production, solar resources, rated power and 

overall effect of system losses.  The performance ratio (PR) can be expressed by the following 

expression [32], and is defined as a ratio of the measured system efficiency and the nominal 

efficiency of the PV modules: 

𝑃𝑅 =
𝑌𝑓

𝑌𝑟
=

𝐸𝑡 𝑃𝑆𝑇𝐶⁄

𝐻𝑡 𝐺𝑆𝑇𝐶⁄
=

𝑃𝑀𝑃𝑃 𝑃𝑀𝑃𝑃_𝑆𝑇𝐶⁄

𝐺 𝐺𝑆𝑇𝐶⁄
         (1.1) 

Where: 

Yf & Yr are the final and reference yields (Hours). Et is the consumed PV energy (Wh), PSTC is 

the system rated power at STC (Wp), Ht is the total in-plane irradiance (Wh/m2), GSTC is 

reference irradiation at STC (1000 W/m2). 

 The performance of PV system is also affected by losses [33], which can be: 

 Capture losses (Lc): in PVG from the DC side.  

 System losses (Ls): in converters along the chain (AC part). 

Lc occurs in the DC side of PVG and are given by the sum of thermal (Lct: high functioning 

temperature, more than 25°C) and miscellaneous (Lcm: Operation of PVG: soiling, shading, 

wiring mistakes, etc.) losses [33]. 

The losses may be calculated by the following expressions [34]: 

𝐿𝑐 = 𝑌𝑟 − 𝑌𝑎           (1.2) 

𝐿𝑠 = 𝑌𝑎 − 𝑌𝑓           (1.3) 

Where: 

𝑌𝑎 =
𝐸𝑑𝑐

𝑃𝑅𝑒𝑓
           (1.4) 



     

55 
 

Where: Ya is the array yield, Edc is energy generated by the PV array (Wh), and the Pref is the 

maximum power output of the PV array (Wp). 

The productivity of a PV system is affected by several factors [28, 32]: 

 The performance of the PV installation. 

 From one season to another (Climatic conditions of the place). 

 Electrical, mechanical and geometric configurations of PVG/plant.  

 Shading (Partial or total). 

 Several technologies of manufacturing PV modules. 

 Damage in protection and wiring components. 

 Damage in PV inverter. 

For the best productivity of the PV installation, many solutions exist as choosing PV 

components of high reliability and also insert a sophisticated diagnosis system for detecting 

damages occurring in PV plants and correcting them. 

Conclusion  

In this chapter, a small overview of the photovoltaic generator’s generality has been presented. 

We have seen the importance of using such PVG, from the interest done with years in the 

historical point, the many advantages cited with some disadvantages, the abundance of energy 

from the sun, and the focus of researchers to get a very high yield of the used material 

technology.  The performances and several applications of PV systems have been also detailed. 

Before termination of this chapter, a presentation has been enlarged of the losses and 

productivity in a special PV application containing the major elements of the PV chain. This 

chapter has been elaborated on, to include our studied photovoltaic generator, and situate the 

readers to the developed thematic. After seeing generalities in this chapter, particularly seeing 

that the productivity of a PV system, which is affected by many factors and that PVG 

necessitates protections, we choose to develop in the next chapter, the different forms and 

causes of faults in PV generator, and the techniques to diagnose them. 
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CHAPTER 2: Fault Detection and Diagnosis in PVG 

Introduction   

From the last chapter we have seen that the productivity of a photovoltaic system is affected 

by its performance, where the PR is the formulas that indicate it. Along a PV chain the PR is 

subject to different sort of losses and attenuation as illustrated in Figure 2.1 [35]. Where the 

PV generator can got a remarkable diminution of the total PR (about 19.5%).  

 

Figure 2.1 Different system losses and overall performance ratio [35]. 

Therefore, photovoltaic systems are subjected to different sort of losses, malfunctions, and 

failures during their lifecycle, particularly the PVG. Fault analysis in the PVG is a fundamental 

task to eliminate any kind of dangerous and undesirable situations arising in the operation due 

to the presence of faults. They must be detected and cleared off rapidly. Without proper fault 

detection, non-cleared faults in PVG not only cause power losses but also might lead to safety 

issues and fire hazards. This chapter summarizes the different causes and types of degradations 

of photovoltaic generators, the major types of faults and their main diagnosis techniques. 

2.1 Causes and classification of faults  

The failures detected in any solar PV system are due to different effects such as internal, 

external, and aging [3], [5], [6] (Figure 2.2). Internal PV faults originate from the PV plant 

itself and include all components failures such as generators, cabling, converters, protections, 
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batteries, inverter and data acquisition system (DAQ) [6]. External PV faults, which lead to 

several degradations [36] and annual power losses [37, 38], are due to outer unfavourable 

conditions, such as shading effect [39], high temperature [40], low irradiance, high humidity, 

suboptimal tilt or orientation, corrosion [41] and accumulation in the surface of soil, dirt, or 

snow [42].  

Causes of failures in PV systems

Internal (Components failures) External (Outer Conditions) Aging

Sub-Optimal Tilt & OrientationPVG

Cables Shading

High Temperature

Lower Irradiance

Converter

System of 
protection

Batteries

Inverter

DAQ

High Humidity

Corrosion

Accumulation of soil

 

Figure 2.2 Causes of faults in PV systems [41]. 

Many studies have been developed that deal only with the faults occurring in the PV generator 

(cell, panel, string, and array), due to dangerous failures that can occur on it [7] (electrical 

shock and fire risks). The later faults can be classified into physical, environmental, and 

electrical faults [43-44], (Figure 2.3).  Physical faults are caused by internal failures (damages 

on PV panel or on blocking and bypassing diode (BBP)) or external failures (cracks in PV 

panels, junction box (JB) damages or other degradations) [45]. Environmental faults are caused 

by soiling [46], permanent shading (Hot-Spot (HS)) [47], or temporary shading (Partial-

Shading (PS)) [48]. Electrical faults [5], and their catastrophic threat [43] are caused by Open-

Circuit (OC), Short-Circuit (SC) Line-to-Line Fault (LLF), Ground-Fault (GF), and Arc-Fault 

(AF). 
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Causes of failures in PVG
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Figure 2.3 Causes of faults in PV generator [44]. 

Faults in a photovoltaic generator (PVG) [7], [38], [49], [50] can occur due to discoloration, 

corrosion, delamination, broken glass [45], [49], bubbles, disconnection, encapsulation, 

leakage currents, wiring mistakes, installations faults, and manufacturing defects.  

2.2 Kind of degradations in PVG    

Gradual deteriorations of PV plants components involve lower performances, power losses and 

hazardous risks. Several factors cause different degradations that can occur in a photovoltaic 

generator [7, 41, 49 and 50]. The major kinds of degradations are summarized below (Figure 

2.3): 

a) Oxidation phenomenon.  

b) Corrosion phenomenon.  

c) Metal corrosion phenomenon.   

d) Dirt in PV panels. 

e) Dust in PV panels. 

f) Snow in PV panels. 
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g) Uniform and non-uniform soiling. 

h) Brocken/shattered glass.  

i) Junction box degradations. 

j) Mechanical breakage & degradation of JB: burnt diode phenomenon. 

k) Fire damage. 

l) Temporary shading (PS). 

m) Discoloration of Ethylene vinyl acetate (EVA) phenomenon. 

n) Detachment of EVA phenomenon. 

o) Snail tracks phenomenon. 

p) Back sheet-chalking phenomenon. 

q) Catastrophic bond failure phenomenon. 

r) Degradation of antireflection coating of photovoltaic cells, caused by water vapor 

ingress. 

s) Burn marks phenomenon.  

t) Delamination phenomenon.   

u) Bubbles phenomenon. 
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Figure 2.4 Kinds of degradation in photovoltaic generator. 

Other PV degradations observed through microscopic way are summarised in Figure 2.5. 

 

Figure 2.5 Microscopic degradations in photovoltaic generator. 
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a) Cell cracks.  

b) Micro cracks.  

c) Potential Induced Degradations (PID) [51].   

d) Low of adhesion in back sheet film. 

e) Disconnection of interconnected ribbon. 

f) Disconnection in PV cells. 

Other PV degradations exist such as encapsulation failures, improper installations, wiring 

mistakes, leakage currents, installations damages, manufacturing defects, and transportation 

destructions. 

2.3  Types of faults in PVG 

The non-linear behaviour of the PV generator and its intermittent operation due to 

environmental conditions (temperature and irradiance), involves the occurrence of many faults. 

Therefore, it is necessary to find out the techniques to detect them. The following Figure 2.6 

illustrates some Current-Voltage (I-V) characteristics curves. The red curve represents the 

normal I-V characteristic whereas the other ones represent faulty I-V characteristics.  

  

Figure 2.6 I-V curves indicating various types of faults. 

The six deviations curves have multiple causes, which are detailed bellow. 
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2.3.1 Shading 

 

Figure 2.7 I-V and Power-Voltage (P-V) characteristics of PV generator with shading 

fault effect. 

Shading fault may involve severe damages [48]. It can decrease the current, voltage, and power 

at the maximum power point (MPP): IMPP, VMPP & PMPP (Figure 2.7).  

2.3.2 Open-Circuit (OC) 

 

Figure 2.8 I-V and P-V characteristics with Open-Circuit fault effect. 
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Open-circuit fault affect short-circuit and MPP currents (ISC, IMPP), causing a decline of their 

values (Figure 2.8). Cracks in PV cells, weakness, due to thermal stress, and wind loading lead 

to interconnection, affects the occurrence of Open-Circuit fault [52]. Figure 2.9 gives an 

example of OC fault in a PV string. 

 

Figure 2.9 Example of Open-Circuit in a PV string (OC). 

2.3.3 Short-Circuit (SC)  

 

Figure 2.10 I-V and P-V characteristics with Short-Circuit fault effect. 
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Figure 2.10 shows that Short-Circuit fault reduces PV voltages at Open-Circuit and MPP (VOC, 

VMPP). It appears at PV cell interconnections, causing excessive heating (Figure 2.11). Besides, 

it can also be caused by bad wiring during installation or handling [52]. 

         

Figure 2.11 Example of Short-Circuited PV cell (SC). 

2.3.4 Abnormal degradations  

Abnormal degradations reduce PV generator efficiency (Figure 2.12). They are mainly due to 

the aging effect under harsh environment condition [53]. 

 

Figure 2.12 Effect of abnormal degradations in the I-V characteristic. 
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2.3.5 Increasing series resistance (Rs) 

 

Figure 2.13 Effect of increasing the series resistance in the I-V and P-V characteristics. 

Degradations, such as bond failure and resistive heating, influence series resistance value. 

From Figure 2.13 we can see that an increase of the series resistance value causes a decrease 

of the slope of OC (Increased slope in horizontal leg), getting a severe damage in reality (Figure 

2.14). Series losses are caused by excessive resistance in the circuit. This can be due to 

degradation in a particular component, or the wiring between them. The increased resistance 

can result in further degradation and permanent damage. Bypass diodes help to mitigate this. 

 

Figure 2.14 Real effect of parasitic resistances of PV cells. 
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2.3.6 Decreasing shunt resistance (Rsh) 

 

Figure 2.15 Effect of decreasing shunt resistance in the I-V & P-V characteristics. 

From Figure 2.15 one can see that a high shunt resistance value induces a poor fill factor. The 

decrease in shunt resistance value causes a decrease at the slope of SC (Reduced slope in 

vertical leg) and then severe damage. A shunt causes power losses by providing an alternate 

current path and short-circuiting a module or cell. Such a diversion causes significant heating 

of the affected component. 

2.3.7 Other dangerous faults 

It is shown from the above figures that each type of PV fault influences a special part of the 

characteristics and therefore depend on specific parameters. This implies that we need to treat 

each fault in a specific manner. In addition to the above-mentioned PV faults, there are other 

dangerous electrical failures, which are cited bellow. 

2.3.7.1 Ground-Fault (GF)  

To prevent electrical shocks in PV plants, the user connects all non-current carrying and metal 

parts to the common ground. When a high current passes through the metal parts, the 
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photovoltaic installation must stop since this can generate electrical shocks for users. This is 

known as Ground-Fault [40, 41]. Figure 2.16 presents a descriptive schematic of a GF example. 
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Figure 2.16 Descriptive schematic of a Ground-Fault (GF). 

2.3.7.2 Line to Line Fault (LLF)  

A line-to-line fault, also known as a double ground fault can be defined as a Short-Circuit fault 

among the PV panel’s cables with diverse potential [56, 57]. Figure 2.17 presents a descriptive 

schematic of LLF examples. 

Combiner  

Box

Line to Line Fault

(Cross-String)

Line to Line Fault

(Intra-String)

 

 

Figure 2.17 Descriptive schematic of Line-to-Line Fault (LLF). 
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2.3.7.3 Arc Fault (AF)  

A rise in temperature leads to combustible material in PVG and therefore the risk of an arc 

fault. It can be series or parallel AF [58, 59]. Figure 2.18 presents a descriptive schematic of 

AF examples. 
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box

PV Array

 

Figure 2.18 Descriptive schematic of Arc-Fault (AF).  

2.3.7.4 Blocking and bypassing diode (BBP) 

The blocking and bypassing diodes are integrated into PV panels to protect them (Figure 1.11 

& Figure 1.13). The faults associated with these diodes can be due to Short-Circuit or Open-

Circuit in them [43].  

2.3.7.5 Junction box fault (JB) 

The energy loss stress (ELS) is the major cause of JB faults. Other causes are from bad cabling 

during installation, or to the ageing effect [41]. Figure 2.19 gives an example of JB Fault.  

 

Figure 2.19 Example of fault in the JB: Corrosion. 



     

70 
 

The next section detail the elaborated techniques in the literature to diagnose all of the above-

mentioned PV faults. 

2.4  Fault Detection and Diagnosis techniques in PVG  

Researchers have focused in inventing different methods to detect and diagnose failures 

coming in PV generators in order to prevent main hazards such as fire risks [41], electrical 

shocks [5], physical danger, and PV panels cracking [44] and so on. FDD-based techniques 

can be classified into two main categories (visual and electrical). Details are given in what 

follows.  

2.4.1 FDD visual-based techniques  

These techniques require human factor intervention [49, 50, 60, and 61]; and consists of 

inspecting PV generator visually through: 

- Thermal imaging process [62, 63] by using infrared (IR) camera* (e.g. detection of hot spots 

in PVG, Figure 2.19). 

- Lock in thermography (LIT) [50]. 

- Electroluminescence (EL) [60] & Photoluminescence (PL) tests [41]. 

- Ultrasound scanners and X-ray tomography [41]. 

2.4.2 FDD electrical-based techniques  

These techniques are based on supervised algorithms to be implemented in PV plants [64, 65]. 

Several electrical-based FDD techniques have been developed [65]. These techniques can be 

classified also into five groups [43].  

• The first group is based in statistics and signal process [66]: these techniques use signal 

analysis tools, such as time-domain reflectometry (TDR) [67] and Fourier analysis [68].  

• The second group is based on the observation and analysis of the I-V characteristic of the 

PVG [41]. The I-V curve provides information such as short-circuit current, open-circuit 

voltage, series and shunt resistors, fill factor and presence of shading and soil. These 

parameters allow distinguishing several faults. 
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• The third group is based on power losses analysis [69-72]. These fault diagnosis techniques 

are based on parameters such as thermal and miscellaneous capture losses, which allow 

generating an indicative signal of faults in the PV plant [69]. Besides, other diagnosis 

techniques are based on the performances ratio, by developing mathematical parameters 

indicators of voltage and current in [73]. 

• The fourth group is based on the measured I-V curve [74]. The techniques compare the real 

and modelled PVG. The created models are obtained using real measured values of 

healthy/faulty PVG. 

• The fifth group is based on artificial-intelligence (AI) techniques. They have been 

successfully used for diagnosing all kinds of renewable energy systems [75], and particularly 

for PV systems [76]. In [60], [74], [77], [78] and [79], artificial neural networks (ANN) based 

techniques were used to classify different types of failures occurring in the photovoltaic field. 

Researchers in this order have developed different model types (multi-layer perceptron, radial 

basis network, feed forward, recurrent neural-network, etc.) with different structures (number 

of the hidden layer, number of neurons in the layer) and through the use of a different kind of 

learning process (supervised/non-supervised). All of the developed ANN-based techniques 

have proven good accuracy and efficiency in PV diagnosing. In [80], a decision tree-based 

approach is developed to detect many types of failures (LLF, Shading, and OC). Fuzzy logic 

controllers are used in [81] and [82] for diagnosing SC, OC, BBP, snow and shading. 

Combined Neuro-fuzzy based controllers are used in [83] to diagnose earth fault, diode SC, 

and PS. Besides, the combination of neural networks with a heuristic approach is presented in 

[84], for diagnosing SC, aging, and shading. In [85], authors used wavelet packets for the 

detection of faults under low irradiance. It differentiates the shading fault from other ones by 

the use of variations in voltage array, energy array, and variable impedance. Metaheuristics are 

developed for FDD in [86] and [87] for diagnosing BBP, SC, disconnection, and shading. 

Other methods are presented in [88-89]. All of the developed electrical FDD based techniques 

can be done through offline adaptation (test of the technique’s effectiveness) [66] or on-line 

adaptation at real-time [89-91]. It is clear that online fault diagnosis is important because: it is 

the essential for any array dynamical reconfiguration and it contains key state of health 

information useful for system maintenance. Besides, supervision of PV plants can be done in 

situ through the use of I-V solar tracers* or from distance (tele-monitoring) by recuperation of 
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collected data through DAQ system.  In what follows, details about the developed FDD 

electrical-based for each of the cited PV faults presented in section 2.3. 

a) Shading fault-based FDD:  

The measured I-V curve is generally used to diagnose this type of fault [52]. Such as the 

standard analysis error in [92], vertices principal component analysis (PCA) [93], and discrete 

wavelet transform (DWT) [94]. 

b) SC-based FDD: 

ANN-based are the most used techniques for failures identification of Short-Circuit fault in PV 

panels [61], [81]. These techniques have proven good performances in diagnosing SC.  

c) OC-based FDD: 

The work in [4], identifies and localizes failures at Open-Circuits in PV plant. The ANN-based 

technique has been developed in [94] with success to diagnose OC fault, using two NNs with 

a multilayer NN. Furthermore, in [93] a backpropagation neural-network have provided 

effective detection of OC and other faults. 

d) Abnormal degradations-based FDD 

Abnormal degradations have been diagnosed using several techniques in [52, 96]. In [84], a 

heuristic technique has been proposed for diagnosing several faults and particularly the aging 

one. Besides, the NNs based are elaborated for diagnosing aging fault in [96]. 

e) GF-based FDD: 

Some equipment is created to be inserted in the PV plants such as the fuse-based ground-fault-

protection-device (GFPD) [54]. Some simulations are investigated in [55] to present the limits 

of GFPD and suggest other solutions. Other techniques for GF are presented in [5]. 

f) LLF-based FDD: 

The over-current-protection-device (OCPD) is inserted in PV plants for protection from LLF 

[55]. LLF was also treated by the use of a support vector machine (SVM) in [56]. Other 

techniques for LLF are suggested in [5], [43], and [65].  

g) AF-based FDD: 
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Some equipment for protection from AF are inserted such as arc-fault-circuit-interrupter 

(AFCI) in [97]. Besides, it is treated through time and frequency characteristics of a capacitor 

current [58] using wavelet transform and mathematical morphology [59]. Other techniques for 

AF are suggested in [5], [43].  

h) BBP-based FDD: 

Some AI-based techniques are developed to diagnose the BBP fault, such as the fuzzy 

controller [82], and meta-heuristics [87]. Other techniques are proposed in [43], [65].  

i) JB-based FDD: 

In addition to the control users of the JB, visual-based techniques give more precision about 

the health state of JB [43], [65].  

The following Table 2.1 presents the different faults occurring in PVG with their associated 

FDD techniques. 

Table 2.1 Several PVG faults with their developed diagnosis techniques. 

PVG Faults Detection and diagnosis used techniques 

Shading AI: decision-tree [80], fuzzy[80-81], neuro-

fuzzy [83], heuristic [84], Meta-heuristic 

[87-88], Standard analysis error in I-V [92], 

PCA [93], DWT [94] 

Short-circuit (SC) AI based on I-V curve: ANN [74], [79], 

Fuzzy [81-82], Heuristic [84], Meta-

heuristic [86,87] 

Open-circuit (OC) AI based on I-V curve [78], Decision-tree 

[80], Fuzzy [80-81] 

Abnormal degradations Visual inspections and drones, IR, EL, PL 

Line to Line Fault (LLF) Wavelet-Packets [80], Support vector 

machine (SVM) [95] 
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Arc-Fault (AF) I-V test curve tracers* [92], Frequency 

domain reflectometry [67] 

Blocking and bypassing diode fault (BBP) AI: Fuzzy [82], Meta-heuristic [86-87] 

Junction-box fault (JB) User checking, Temperature sense, Visual-

based: IR [43], Multi-meter 

Hot-spot (HS) Thermal inspections [43]: IR 

Ageing effect AI [81], Visual inspections 

 

2.4.3 Material-based techniques 

In reality, when faults occur and PV system stop functioning, we can give instruments of 

measurements such as multi-meters and test the current/voltage at each level of cascading the 

PV installation. 

Moreover, to avoid PV degradations some trending solutions are mentioned bellow.   

a) Cleaning PV panels.  

Solutions such as cleaning [98, 99] PV panels are used. Cleaning can be dry or wet, related to 

the type of region. PV plants cleaning can be either through a manual manner, automatic, semi-

automatic, or using truck (Figure 2.20). 

 

Figure 2.20 Example of PV cleaning. 
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 Dry cleaning is observed in desert regions, due to water rarefaction but it is limited 

because of scratches on the glass of the PV panels, which appear after the passage of 

sand wind.  

 Wet cleaning is done in a region rich of water.  

b) Including protections equipment in PV plants.  

To protect PVG from overcurrent, fuses and overcurrent protection device as OCPD [80] are 

inserted. Besides, devices such as GFPD [51] is capable of GF detection, fault current 

interruption, indication, and provide fire hazard prevention. Furthermore, equipment named 

AFCI is developed in [97] to protect PV plants from an arc fault. 

c) Tele-monitoring  

Controlling and diagnosing the PVG from long distance using new smart protocols such as 

ZigBee technology [96] and Internet of Thing (IoT) [100]. 

Cost reduction is required for any envisaged solutions for diagnosing PV generators. In 

industry, some solutions are integrated into PV plants. Some of them have been implemented 

and some others have not been implemented by the cause of their high complexity or great cost 

estimation. In this order, cost estimation, efficiency, robustness, availability to the PV site, low 

complexity of implementation, integration in the whole PV system have a major influence in 

the choice of the appropriate FDD technique for diagnosing the faults in PVG. 

2.4   Process of FDD techniques in PVG  

Many anomalies, degradations, and faults, presented above, can occur in PV generators. A 

challenge is required to detect automatically these faults and diagnose them in early stages 

before dangerous risks and severe damages appear. PV plants inspections and alarms allow the 

users, when failures are detected, to take decisions for correcting the process. In general, 

operators do some visual PV inspections (detection of bubbles, delamination, detachment of 

the frame, discolouring) before system start-up. As for thermal fault and defects, like a hotspot, 

it is necessary to use instruments such as infrared (IR) camera mounted on drones* [80-82] for 

image thermography inspections to detect hotter areas within PVG. Drones can detect 

anomalies with high precision. This process is also required for electrical-based FDD, by using 

the images stored in a database, taken from drones. Researchers developed further techniques 

analysis, as electrical FDD-based, to be implemented with the PV plant to detect, diagnose, 
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correct failures, and protect the system. The major faults diagnosis steps, using FDD electrical-

based techniques, are cited bellow (Figure 2.21):  

 

 

Figure 2.21 Process of diagnosis in the PV plant. 

 Measurements through sensors and data acquisition system. 

 Modelling of the health and fault states. 

 Detection and localization of faults. 

 Classification and decision about the health state.  

 Correction, protection, and adaptation. 

Conclusion  

This chapter has contributed to the diagnosis techniques of faults occurring in the PV generator. 

It presents the major forms of degradations in PVG and gives details about the different types 

of PV faults taking into consideration their causes, as detailed in my work in [101]. Various 

FDD techniques have been presented. Besides, some envisaged diagnosis solutions have been 

discussed. Some criteria (low cost, simple implementation, high efficiency, availability, 

robustness) are required for any envisaged solutions for diagnosing a PV generator/plant. From 

the study in this chapter, the major influences of faults caused by parasitic resistances have 

attired our interest to model and identify parameters of PVG, in the next chapter. 
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CHAPTER 3: PVG (Modelling, Characterization, & 

Identification) 

Introduction   

In previous chapter, the performances of PVGs affected by different faults that can occur on it, 

has been presented.  Among these faults the parasitic resistances effect and others electrical 

parameters, which have shown a prodigious influence on performances. Besides, the exact PV 

parameters values are essential for precise mathematical modelling, simulation, and control of 

the photovoltaic generation systems. In this chapter, a presentation is done about the modelling 

and identification of the different electrical parameters of the PVG.   

3.1 Modeling of electrical equivalent circuit of PVG 

There are several electrical circuit models, used by researchers, describing the physical behaviors 

of solar PV cells. They are represented in Figure 3.1. The corresponding PV panel and PV 

generator’s electrical schematics are then represented as in Figure 3.2 [102], [103].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Solar PV cell’s electrical equivalent circuits: 

(a) Ideal model. (b) Single diode model with series resistance Rs. (c) Single diode model 

with series Rs and shunt Rsh resistances. (d) Double diode model. 
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Figure 3.2 PV panel and PV generator’s electrical equivalent circuits: 

(a) Panel of Ns cells in series. (b) Generator composed of Ns and Np branches. 

 

The mathematical expressions related to the Current-Voltage, (I-V) relationship of the different 

electrical models are given bellow. Then the equations (3.1) through (3.9) could be obtained.  

First case « Cell: Single Diode Model (SDM)» 

 

a) Ideal Model (contains three unknown parameters) 

𝐼 = 𝐼𝐿 − 𝐼𝐷 
(3.1) 

 

𝐼 = 𝐼𝐿 − 𝐼𝑑𝑠. (𝑒𝑥𝑝 (
𝑉

𝑛. 𝑉𝑡
) − 1) (3.2) 

  

b) Single diode model with series resistance (contains four unknown parameters) 

 

𝐼 = 𝐼𝐿 − 𝐼𝑑𝑠. (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠. 𝐼

𝑛. 𝑉𝑡
) − 1) (3.3) 

 

c) Single diode model with series and shunt resistances (contains five unknown 

parameters) 

 

𝐼 = 𝐼𝐿 − 𝐼𝐷 − 𝐼𝑠ℎ (3.4) 

 

𝐼 = 𝐼𝐿 − 𝐼𝑑𝑠. (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠. 𝐼

𝑛. 𝑉𝑡
) − 1) −

𝑉 + 𝑅𝑠. 𝐼

𝑅𝑠ℎ
 

(3.5) 

  

   Second case « Cell: Double Diode Model (DDM)» 

 

d) Double diode model (contains seven unknown parameters) 

 

𝐼 = 𝐼𝐿 − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ (3.6) 

  

𝐼 = 𝐼𝐿 − 𝐼𝑑𝑠1. (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠. 𝐼

𝑛1. 𝑉𝑡
) − 1) − 𝐼𝑑𝑠2. (𝑒𝑥𝑝 (

𝑉 + 𝑅𝑠. 𝐼

𝑛2. 𝑉𝑡
) − 1) −

𝑉 + 𝑅𝑠. 𝐼

𝑅𝑠ℎ
 

          

(3.7) 

 

Third case « Panel » 

a) Panel of Ns cells in series  
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𝐼 = 𝐼𝐿 − 𝐼𝑑𝑠. (𝑒𝑥𝑝 (
𝑉 + 𝑅𝑠. 𝑁𝑠. 𝐼

𝑛. 𝑉𝑡. 𝑁𝑠
) − 1) −

𝑉 + 𝑅𝑠. 𝐼. 𝑁𝑠

𝑅𝑠ℎ . 𝑁𝑠
 

    

(3.8) 

 

Fourth case « Generator » 

 

b) Composed of Nms and Nmp branches. 

 

𝐼 = 𝐼𝐿𝑁𝑚𝑝 − 𝐼𝑑𝑠 . 𝑁𝑚𝑝 (𝑒𝑥𝑝 (
𝑉. 𝑁𝑚𝑝 + 𝑅𝑠. 𝐼. 𝑁𝑠. 𝑁𝑚𝑠

𝑛. 𝑉𝑡. 𝑁𝑠. 𝑁𝑚𝑠
) − 1)

−
𝑉. 𝑁𝑚𝑝 + 𝑅𝑠. 𝐼. 𝑁𝑠. 𝑁𝑚𝑠

𝑅𝑠ℎ . 𝑁𝑠 . 𝑁𝑚𝑠
 

    

(3.9) 

 

All of the above mathematical equations are in non-linear form (contain exponential terms) and 

contain a set of unknown parameters. These later are usually unknown to the users since they are 

not directly measurable and are not mentioned in the PV manufacturers’ datasheet. They are 

closely related to the internal physical behaviors of solar PV cells, where:  

 

 IL: Light current.   

 Ids1: Diode saturation current (Diffusion phenomenon). 

 Ids2: Reverse diode saturation current (Recombination phenomenon). 

 n1: Diode ideality factor (Diffusion phenomenon). 

 n2: Second diode ideality factor (Recombination phenomenon). 

 Rs: Series resistance. 

 Rsh: Shunt resistance. 

With 𝑉𝑡 = 𝐾𝐵 ∗ 𝑇𝑐 : Thermal voltage constant, KB: Boltzmann’s constant (1.380650*10 -23 J/K), 

q: Electronic charge (1.6021764*10-19 C) and Tc: Cell’s temperature. Ns: Number of series cells. 

Nms: Number of panels in series branches. Nmp: Number of panels in parallel branches.  

 

3.2 Photovoltaic electrical characteristics  

Current–Voltage (I–V) curves are obtained by exposing the cell to a constant level of light, 

while maintaining a constant cell temperature, varying the resistance of the load, and measuring 

the produced current (Figure 3.3).  
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Figure 3.3 Solar I-V curve characteristic. 

The I–V curve typically passes through two points: 

 Short-circuit current (ISC):  

𝐼𝑠𝑐 = 𝑁𝑝(
𝐼𝑠𝑐_𝑆𝑇𝐶

1000
G + 𝐾𝑖(𝑇 − 𝑇𝑆𝑇𝐶)                            (3.10) 

 Open-circuit voltage (VOC):  

𝑉𝑜𝑐 = 𝑁𝑠(𝑉𝑜𝑐𝑆𝑇𝐶
+ 𝐾𝑣(𝑇 − 𝑇𝑆𝑇𝐶) + 𝑉𝑡ℎ ln (

𝐼𝑠𝑐/𝑁𝑝

𝐼𝑠𝑐_𝑆𝑇𝐶
))                          (3.11) 

Some other electrical interesting parameters can be obtained from the I-V characteristic such 

as: 

 Efficiency (η): 

Maximum efficiency in the solar PV cell context means the ratio between incident light power 

and maximum power. The equation 3.12 depicts efficiency clearly. 

𝜂 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑠𝑜𝑙𝑎𝑟 𝑝𝑜𝑤𝑒𝑟 𝑖𝑚𝑝𝑖𝑛𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙
=

𝑃𝑀𝑎𝑥

𝑃𝑖𝑛
=

𝐼𝑀𝑎𝑥.𝑉𝑀𝑎𝑥

𝐴.𝐺𝑎
                        (3.12) 

Where: A is the cell area and Ga is the ambient irradiance. 

 Fill factor (FF): 

The fill factor is considered as key metric for comparing I-V curve shapes. Fill-factor is easy 

to understand graphically (Figure 3.3). Just divide the area of the green rectangle (defined by 

the max power point) by the area of the blue rectangle (defined by Isc and Voc). Fill-factor is a 
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measure of the square-ness of the I-V curve. A squarer curve (less rounded) means higher 

output power (and higher module efficiency). 

𝐹𝐹 =
𝐼𝑚𝑝𝑝∗𝑉𝑚𝑝𝑝(𝑊𝑎𝑡𝑡𝑠)

𝐼𝑠𝑐∗𝑉𝑜𝑐(𝑊𝑎𝑡𝑡𝑠)
                                                      (3.14) 

The fill factor for some specific materials is bellowed:  

{
𝑎𝑆𝑖: 0.50 − 0.70
𝑥𝑆𝑖: 0.75 − 0.85
𝐺𝑎𝐴𝑠: 0.85 − 0.9

                             (3.15) 

 Current ratio & voltage ratio 

Indicators of slope differences. If a PV string or module has a low fill factor compared with 

the population, and there are no steps in the curve, the current and voltage ratios are clues that 

can help you troubleshoot the problem and are calculated by the following expressions [92]. 

𝐶𝑟 =
𝐼𝑚𝑝𝑝

𝐼𝑠𝑐
                               (3.16) 

𝑉𝑟 =
𝑉𝑚𝑝𝑝

𝑉𝑜𝑐
                                           (3.17) 

3.3 Influence of factors 

PV generator’s performances are affected by many factors, where some of them are external, 

related to the environmental conditions like the weather’s variations (solar irradiance and 

temperature). Others are internal, related to the electrical, physical and mathematical 

modelling. 

3.3.1 External effect (Climatic conditions) 

 

Power, voltage, and current outputs of the PV modules are affected by environmental outdoor 

conditions such as solar irradiance and temperature, Figure 3.4 and 3.5. 
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a) 

 

b) 

Figure 3.4 PV curve characteristics under different solar irradiance: a) I-V; b) P-V.  

It is observed from Figure 3.4 that the irradiance have a proportional influence on the I-V and P-V 

characteristics. 
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a) 

 

b) 

Figure 3.5 PV curve characteristics under different temperature: a) I-V; b) P-V. 

It is observed from Figure 3.5 that the temperature have an inverse proportional influence on the I-V 

and P-V characteristics. 

3.3.2 Internal effect (Electrical parameters) 

The overhead electrical governing equations (from 3.1 to 3.9) contain several unknown 

parameters (IL, Ids1, Ids2, n1, n2, Rs, Rsh). Each of the PV parameters has a crucial influence on 

the performances and PV power production. The effects of variation of the internal five PV 

electrical parameters on the solar photovoltaic cell’s performances [104] are shown in Figure 

3.6.  
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                             (a)                                    (b) 

           

                                                             (c) 

            

                                (d)                                        (e) 
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Figure 3.6 Variations effects of the electrical parameters on the (I-V) & (P-V) curves 

characteristics of solar PV cells: (a) Light current ‘IL’. (b) Diode saturation current ‘Ids’. (c) 

Diode ideality factor ‘n’. (d) Series resistance ‘Rs’. (e). Shunt resistance ‘Rsh’. 

Figure 3.6 (a) illustrates the light current IL effect, which is similar to that of the solar irradiance 

effect, so it has a proportional relationship with the generated current. Figure 3.6 (b), illustrates 

that diode saturation current Ids has a proportional relationship with the voltage as shown, so it 

has an inverse effect compared to the temperature effect. In Figure 3.6 (c), the diode ideality 

factor n shows an effect on the obtained maximum power point (MPP). Figure 3.6 (d) and (e) 

illustrate that series Rs and shunt Rsh resistances have an effect on the slope at the open and 

short circuit points respectively. Consequently, each of these parameters has a crucial influence 

on the performances and the PV power production. This information involves the importance 

of accurate PV parameters values.  

After the modelling step of any PV generator, their identified parameters values are used in an 

established model. Therefore, it is necessary to find the accurate values of the unknown 

electrical PV parameters by an appropriate approach. Besides, accurate parameters value of PV 

cells are essential for the development of good controlling techniques for Maximum Power 

Point Tracking (MPPT) based power electronic converters [105]. As shown in the following 

Figure 3.7 the importance of PV parameters’ obtaining accurate values for a whole PV system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Importance of accurate PV parameters determination values in PV systems [105]. 
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With the problem of non-linearity found in PV models and the dependence of environmental 

conditions [106], the determination of PV parameters becomes a complex problem, which 

necessitates an appropriate approach to find the best accurate values of the unknown PV 

parameters. The next section give more details about PV parameters obtaining methods. 

 

3.4 Classification of identification methods 

Earliest, numerous research workings have been developed only for getting the series and shunt 

resistances values (parasitic effects), by the cause of their high influences in the PV performances 

[107]. Afterthought, it has been observed that some other electrical parameters (Light current, 

diode saturation current, and diode ideality factor) have also an effect in PV performances [104]. 

For this reason, researchers have done many works to get the electrical unknown PV parameters 

[108] values with high precision and fast computational process. From the literature, these 

methods can be classified as the following Figure 3.8 [109].  

 

Figure 3.8 Classification of the PV panel’s electrical parameters getting methods. 

3.4.1 General methods  

In a general way, Duffie obtained each parameter individually [110]. The parasitic resistances 

(series and shunt) are found graphically through the calculation of the slopes at open and short-

circuits respectively [110, 111]. The diode ideality factor is taken in an interval depending on 

the used material’s technology for the PV selected panels, for different manufacturers and 

different PV technologies (Si-Mono, Si-Poly, CDTE, Amorphous, CIS, Multi-junctions) [111, 

112]. Light current and diode saturation current are obtained by the use of mathematical 

expressions [108], and by the use of PV manufacturer’s datasheet information. 

3.4.2 Analytical methods  

Analytical methods such as Carrero’s method [113], are based on the analytical resolution of 

mathematical non-linear expressions through some simplifications and approximations [114], 

Methods

General Analytical Optimization Adaptive



     

88 
 

[115]. The use of explicit formulas such as in [116] leads to reasonable PV parameters values. 

The PV parameters can be found through an analytical way through the use of three points at 

the current-voltage (I-V) characteristic. These points are found at the short-circuit, open-circuit, 

and maximum power points (MPP) [116]. This lead to obtain a set of expressions at each point. 

Then, through a suitable estimation to the problem, the problem can be approximated to a series 

of decoupled equations representing each parameter’s value. This approach requires the 

datasheet information. The major analytical methods have a similar way of getting off the PV 

parameters expressions values and lead usually to similar results [113-115]. 

3.4.3 Optimization methods  

The optimization algorithms are categorized into numeric-traditional, meta-heuristics, and 

hybrid methods. By the cause of limits of the analytical method to achieve with high precision 

the PV parameters values, our interest is gone for the optimization-based methods. This latter 

can be classified as in Figure 3.9. 

 

Figure 3.9 Classification of PV cell’s electrical parameters determination optimization-based 

methods. 

3.4.3.1 Numeric conventional 

Numeric conventional optimization-based methods for PV parameters getting values, such as 

Kashif’s one [117], are based on the reduction of the number of parameters to be evaluated. 

Optimization

Conventionals

Iteratif

Non-Iteratif

Meta-Heuristics

Evolution

Physic

Human

Swarm
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The conventional Newton-Raphson (NR) method can also be used as developed in [118, 119]. 

It necessitates an iterative process with good initialization guess of PV parameters values, to 

converge to the best solutions. Besides, the traditional methods are used to obtain the optimum 

of the function using the gradient or the hessian. A presentation of three numeric methods’ 

obtained parameters values is in Table 3.1 [120]. 

Table 3.1 Extracted single-diode PV model parameters using three numerical algorithms. 

Parameters 

Models 

T. Esram Vilalva Vika 

IL (A) 

Ids (mA) 

n 

Rs (Ω) 

Rsh (Ω) 

1.220 

1.6e-6 

1.833 

0.164 

461.962 

5.500 

2.0e-08 

1.200 

0.372 

200.602 

5.532 

2.0e-8 

1.200 

0.370 

169.789 

 

3.4.3.2 Metaheuristics 

In recent times, meta-heuristic optimization-based methods, using Artificial-Intelligence (AI) 

inspired algorithms, have attracted the care of researchers to obtain with good precision, the 

unknown PV parameters values. The metaheuristic methods use evolution-based [120], 

physics-based [121], or immune-human-based [122] and swarm-based [123], algorithms in the 

search process, which are presented in the subsections below. 

a) Evolution-based 

Evolutionary Algorithm (EA) [124], Differential Evolutionary (DE) [125], Genetic Algorithms 

(GAs) [126], Pattern Search (PS) [127], Simulated Annealing (SA) [128], Repaired Adaptive 

Differential Evolution (Rcr-IJADE) [117]. 

b) Physics-based 
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Electromagnetic Field Optimization (EFO), Gravitational Search Algorithm (GSA), 

Electromagnetism-Like Algorithm (EMA), Weighted Superposition Attraction (WSA) [129]. 

c) Human-based 

Harmony Search (HS) [130], Bacterial Foraging Algorithm (BFA) [131], Simplified Teaching-

Learning-Based Optimization (STLBO) [132], Discrete Symbiosis Organism Search (DSOS) 

[133], Artificial Immune system (AIS) [134]. 

d) Swarm-based 

The swarm-based, Particle Swarm Optimization (PSO) [135, 136], Bird Mating Optimization 

(BMO) [137], Artificial Bee Swarm Optimization (ABSO) [138]. Grey Wolf Optimizer 

(GWO) [139], Chaotic Whale Optimization Algorithm (CWOA) [140], Cat Swarm 

Optimization (CSO) [141], and Cluster Analysis (CA) [142]. 

The metaheuristics are more attractive than the traditional deterministic methods in terms of 

accuracy and robustness, by the cause of their good global research achieving. In addition, they 

do not require a gradient or differentiable of the objective function. Besides, the initial guess 

of parameters values is not a necessity but it necessitates the upper and lower limits of an 

interval of research. An evaluation of some metaheuristics methods for PV parameters getting 

values is carried out as in [143]. Table 3.2 bellow presents a comparison between different 

metaheuristics parameters getting methods for SDM. 

Table 3.2 Comparison among different metaheuristics parameters getting methods for SDM. 

Parameters/Models GA PS SA HS ABSO 

IL (A) 

Ids (mA) 

n 

Rs (Ω) 

Rsh (Ω) 

 

0.7619 

0.8087 

1.5751 

0.0299 

42.3729 

 

0.7167 

0.9980 

1.6000 

0.0313 

64.1026 

 

0.7620 

0.4798 

1.5172 

0.0345 

43.103 

 

0.76070 

0.30495 

1.47538 

0.0345 

43.1034 

0.7608 

0.3062 

1.4758 

0.0366 

52.2903 
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The metaheuristic methods transformed the difficult model of PV parameters getting values 

into a simple non-linear optimization problem. In addition, they use inspired algorithms from 

artificial intelligence to finding their precise values, which professionalism more the process 

of research [143]. 

3.4.3.3 Hybrid 

To improve the effectiveness of methods, researchers have combined a mix between different 

simple methods such as (analytical and numerical, analytical and optimization, numerical and 

optimization, so on). Hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy 

(EHA-NMS) [144], Nelder-Mead and Modified Particle Swarm Optimization (NM-MPSO) 

[145], Artificial Bee Colony-Differential Evolution (ABC-DE) [146], Trust-Region Reflective 

deterministic algorithm with the Artificial Bee Colony (ABC-TRR) [146], Teaching–learning–

based Artificial Bee Colony (TLABC) [146]. Those methods, which are called hybrid, have 

excellent performances because they restrict the universe in the search process without losing 

precision (without losing the optimum). They achieve the best results in less number of 

iterations compared to simple optimization-based methods. Therefore, an evaluation between 

the obtained PV parameters values from simple PSO and the hybrid particle swarm 

optimization combined with simulated annealing (HPSOSA) is presented in the following 

Table 3.3. 

Table 3.3 Comparison between PV parameters results from PSO and HPSOSA. 

Parameters 

Models 

PSO HPSOA 

IL (A) 

Ids (mA) 

n 

Rs (Ω) 

Rsh (Ω) 

0.7619 

0.8087 

1.5751 

0.0299 

42.3729 

0.7167 

0.9980 

1.6000 

0.0313 

64.1026 

From the works in [147], it is proved that the HPSOA has better performances compared to 

simple PSO and has achieved the global optimum in all test runs.  



     

92 
 

3.4.4 Adaptive 

As the physical behavior of solar PV cells/panels is influenced by environmental conditions. 

There are several other methods in literature capable of finding the parameters of a more 

general model, in which the physical parameters models change dynamically concerning with 

irradiance and temperature values. Those models and their respective methods are called 

adaptive models and methods [144, 145]. 

After seeing the major methods developed, we have seen that there is a compromise of some 

characteristics for obtaining high effectiveness and precision of PV parameters values. It is 

necessary that the method chosen to be applied should ensure simplicity, rapidity, popularity, 

robustness, and high accuracy. For this reason, we opted in the following section to develop a 

hybrid optimisation-based method. 

3.5 Hybrid optimization-based method 

The identification process is based on the development of a mathematical representation for a 

physical system by the use of experimental data [148], through details explained in the major 

steps cited in the points below of Figure 3.10. 

 

Figure 3.10 Major steps of parameters identification in systems. 

 First Step: Acquisition of real Data. 

 Second Step: Choice of an appropriate model. 

 Third Step: Parameters estimation. 

 Fourth Step: Validation of the model.  

In the third step, the application of the chosen optimization algorithm to identify and obtain the 

optimal values of PV parameters. The idea is based on a prediction error between the output of 

the real PV process and the output predicted by the PV model [149]. 

Aqcuisition of 
Input / Output

Step 1
Choice of 
a model

Step 2
Parameters
estimation

Step 3
Validation 
of a model

Step 4
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The combination of a traditional method and a recent smart swarm-based optimization method 

is done, with a big focus on the application of the topic of artificial intelligence algorithms into 

solar photovoltaic production. The combined approach was done between the traditional 

method, which is the non-iterative Levenberg-Marquardt (LM) technic and between the recent 

meta-heuristic optimization technic, called by Grey Wolf Optimizer (GWO) algorithm.  

Our focus is to estimate the PV parameters values of the SDM model using RTC France data 

at the conditions of irradiance about 1 000 W/m2 and of temperature about 3000C. Only the 

third part of identification process is detailed, which is the estimation of PV parameters values. 

The big focus is to optimize the damping factor of LM through GWO. The 

estimation/identification process can be gotten in three major phases, such as the initial step of 

prediction through the use of least-squares mean (LSM), the getting of optimal PV parameters 

values through LM, and the optimization of a dominant factor through GWO as detailed below 

[150]. 

3.5.1 Least Squares Mean (Initial phase of prediction) 

Prediction of initial PV parameters values using LSM [151] for the two parts of the introduced 

real experimental points of I-V curve characteristics as described below. 

 For the linear part:  

The prediction in the linear part [152] of the model can be obtained simply through the use of 

the following expressions. 

( ) ( )Model ModelI i a V i b  
                                                                            (3.18) 

Re( ) ( ) ( )al ModelError i I i I i 
                                                   (3.19) 

2( ) ( 1) ( )J i J i error i  
                                      (3.20) 

Where a and b are constants depending on a determinant and others constants introduced by 

user. J is the Jacobian and is defined below. 

 For the non-linear part:  
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The prediction in the non-linear part [153] of the model can be obtained with a logarithmic 

way through the use of the following logarithmic expression. 

Re
0 1 2

( )
( ) ( ) log(1 )al

Model Model

I i
I i C C I i C

b
     

                                                                            (3.21) 

Re( ) ( ) ( )al ModelError i I i I i 
                                                      (3.22) 

2( 1) ( ) ( )J i J i error i  
                                                                         (3.23) 

Where C0, C1, C2 and b are constants depending on a determinant, on the hessian and other 

constants introduced by the user. J is the Jacobian and is defined below.  

Once obtaining initial values of PV parameters values, we introduce them on the LM in order 

to optimize their values, as explained in the following subsection. 

 

3.5.2 Levenberg Marquardt (Get of optimal PV parameters values) 

The traditional Levenberg-Marquardt approach is a gradient order from Steepest-Descent (SD) 

in its first step and from Gauss-Newton (GN) in its second step [153]. It is mainly based on an 

optimization of the error between real data and data from the model through the following 

expression. 

2

1

( )
N

i

Ecart Quad Error i


 
                                      (3.24) 

Where N is the number of measured I-V data. 

Re ( ) ( )al ModelError I i I i 
                                          (3.25) 

The real and simulated data are denoted by IReal and IModel, respectively. While IModel is the 

objective function given as Equation (2). 

( ) ( , , )ModelI i f I V 
                                             (3.26) 

Evaluate the objective function f(ϴ)| ϴ = ϴk  . 
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Where ϴ is considered as the PV parameters vector. 

 , , , ,L ds s shI I n R R 
                                          (3.27) 

Calculus of Jacobian of f(I,V,ϴ) for ϴk, as the derivative calculation of I (Eq.2) with respect to 

parameters. 

( )

k

f
J

 



 

 
   

                                            (3.28)  

For (damping optimized) update ϴk. The PV parameters to be found are updated at each 

iteration by the use of the expression bellow.   

'

1 '
[ ]

kk k

k

J

J J I
 


 


 


 

  
                                        (3.29) 

The dominant factor λ is considered as responsible parameters for switching from SD to GN 

in the LM process [154]. 

For this reason, it is important to get an optimal value of this damping factor by the use of 

another optimization-based method, our choice was for the recent swarm-based method called 

GWO, through the following idea. 

( , , , ) ( )
k

Ecart Quad I V Ecart Quad
 

  


  
                                 (3.30) 

In addition, it is mentioned that at each iteration of the LM process that the damping factor 

must be found and is considered as crucial factor for the convergence process of the algorithm. 

Therefore, its value must be optimized by the use of another approach such as the GWO 

approach. 

3.5.3 Grey Wolf Optimizer (optimize of damping factor’s value) 

In this subsection, our focus is on the evolution of the function f(I,V,ϴ,λ) indicated by f(λ) for 

ϴ fixed at ϴk, as regards with various varied values of the damping factor, at each iteration of 

the LM. As it is observed that at each iteration different local minimums values of f(λ) exist. 

So, for obtaining the global minimum of f(λ), which correspond to the best minimal value of 

the objective function f(I,V,ϴ), we suggest using the swarm-based meta-heuristic GWO 

method. 
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3.5.4 LMGWO 

The main steps of the used hybrid LMGWO method applied for the PV parameters obtaining 

values are presented in Figure 3.11, below.  

Optimization of PV parameters values using 

traditionnal LM method

Prediction of initial PV parameters values using 

LSM for the two parts

Introduce the Real I-V Data from RTC 

France Si solar cell

f(ϴ) > epsYes

No

Begin

Optimize the control parameter λ  of LM using GWO

Evale of Objective function

Obtain the Optimal PV Parameters Values

End

k=k+1

Division of I-V Characterestic into two parts 

(Linear & Non-Linear)

 

Figure 3.11 PV parameters identification steps using the hybrid LM approach with GWO 

approach. 

The following Table 3 presents PV parameters results for the all classified optimization-based 

method discussed in section 2. 
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Table 3.4 Parameters extraction results for 57-mm diameter R.T.C. France commercial silicon 

solar cell using the single diode model. 

Parameters/Methods IL (A) Ids(𝜇A) n Rs(Ω) Rsh(Ω) RMSE 

LM-GWO 0.760776 0.32306 1.48118 0.03637 53.7222 .8601E-04 

 

The fitting obtained curves of real and simulated data are illustrated in Figure 3.12 bellow. 

 

Figure 3.12 Fitted I-V curve characteristic for the RTC silicon solar cell, using the hybrid 

LM-GWO method. 

The best approximation gotten from the fitted curves in Figure 3.12 has proved the 

effectiveness of our hybrid LMGWO method. 

Conclusion  

In this chapter, accurate parameters values of PV cells/panels are essential for researchers in 

the modelling and the development of good controlling techniques for Maximum Power Point 

Tracking based power electronic converters. This chapter has presented a comprehensive study 

of a new hybrid method developed for obtaining the electrical unknown parameters of solar 

PV cells. The final obtained results show that the used hybrid method outperforms the classical 

methods. 
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CHAPTER 4: Application of Neural-Networks to fault diagnosis 

of PVG 

Introduction   

Intelligence is too complex to be described by any single theory. Instead, researchers 

are constructing a hierarchy of theories that characterize it at multiple levels of abstraction and 

called it artificial intelligence (AI) [155]. At the lowest levels of this hierarchy, neural 

networks, genetic algorithms and other forms of emergent computation have enabled us to 

address the processes of adaptation, perception, embodiment, and interaction with the physical 

world that must underlie any form of intelligent activity. Since the appearance of artificial 

intelligence, researchers have been constantly competing with each other to invent new 

methods. Neural network computing is an intelligent information processing paradigm, 

inspired by the biological system, composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. Indeed, the 

greatest advantage of ANN compared to other modelling approaches is their ability to model 

complex non-linear processes, without having to learn the form of the relationship between the 

input and output variables. In this chapter, a general description of neural networks and their 

application to PVG diagnosis will be presented. 

4.1 Biological neuron  

The brain is made up of approximately 1012 (one trillion) interconnected neurons, with 

1 000 to 10 000 synapses (connections) per neuron. The human brain consists of a large 

number; more than a billion neural cells that process information. Each cell works like a simple 

processor. The massive interaction between all cells and their parallel processing makes the 

brain’s abilities possible. The structure of the neural cell is detailed as follow (Figure 4.1.a) 

[156]:  

 Dendrites are branching fibres that extend from the cell body or soma. 

 Soma or cell body of a neuron contains the nucleus and other structures, support the 

chemical production of neurotransmitters. 

 Axon is a singular fibre carries information away from the soma to the synaptic sites 

of other neurons (dendrites and somas), muscles, or glands. 
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a)                                                   b) 

Figure 4.1 a) Structure of biological neuron; b) Flow of information.  

Each neuron is an autonomous unit within the brain. The neuron continuously receives 

inputs. The cell body of the neuron is the control centre. This is where the information received 

is interpreted. The unique response to these signals is sent through the axon (Figure 4.1.b). The 

axon synapses on other neurons (a thousand). The transmitted signal can have an excitatory or 

inhibitory effect. The nerve impulse is comparable to an electrical signal propagating like this: 

- Dendrites receive nerve impulses from other neurons. 

- The neuron evaluates all of the stimulation received. 

- If it is sufficient, it is excited: it transmits a signal (0/1) along the axon. 

- The excitement is propagated to the other neurons connected to it via the synapses. 

4.2 Artificial neuron  

The three main regions of biological neuron: cell body, dendrites, and axon, are modelled 

mathematically to get the artificial neuron, Figure 4.2 [157].  
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Figure 4.2 Basic components of an artificial neuron.  

An artificial neuron is a mathematical function conceived as a simple model of a real 

(biological) neuron. The total synaptic input, u, to the neuron is given by the inner product of 

the input and weight vectors by the following formulas: 

1

*
I

i i

i

u w x


             (4.1) 

Where the threshold of the activation is incorporated in the weight vector. The output activation 

y is given by. 

( )y u                        (4.2) 

Where: 

 y: is the output of the neuron. 

 u: is the i input of the neuron, it characterizes the data communicated by the sensor (test 

of detection) or by the expert (diagnosis and base of facts and knowledge). 

 ɸ: activation function. 

 wi: weight of connections with inputs. 

 

4.3 Artificial neural networks 

An artificial neural network is an elementary processor, which receives a variable number of 

inputs from the upstream (afferent) neurons or pattern of input (Figure 4.3). Each weight is 
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associated with a weight w, abbreviation of weight, representative of the strength (or 

weighting) of the connection. Each elementary processor has a unique output, which then 

branches out to supply a variable number of downstream (efferent) neurons or pattern of output, 

which is like the biological neuron [157].  

 

Figure 4.3 Basic structure of ANN. 

An Artificial Neural Network (ANN) is often called a “Neural Network” or simply Neural Net 

(NN), which is an artificial representation of the human brain that tries to simulate its learning 

process. ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network.  

4.4 Characteristics of NNs 

A neural network can be fully described by specifying the following four elements: 

- Architecture or topology of the network (number of hidden layers, number of neuron 

in the layers). 

- Type of learning process.  

- Processing element (activation function). 
 

4.4.1 Learning and adaptation 

Learning is the process by which the neural network acquires the ability to perform certain 

tasks by adjusting its internal parameters (synaptic weights) according to a specific learning 

pattern. At the end of this learning process, the network is likely to provide us with outputs as 

close as possible to the desired outputs. It also allows the network to dynamically modify its 
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behaviour in order to meet new situations. The learning methods in neural networks are 

classified into three basic types (supervised, unsupervised, and reinforced learning), Figure 4.4.  

Neural Network Learning Algorithm

Supervised Learning (Error based) Reinforced Learning (Output based) Unsupervised Learning

Stochastic Error Correction Gradient descent

Least Mean 

Square
Back Propagation

Hebbian Competitive

 

Figure 4.4 Classification of learning algorithms [159]. 

The learning phase is a decisive step in the design of the neural network. For this, appropriate 

algorithms have been developed, each of which is found to be specific to a specific type of 

network. There are several types of algorithms, the most frequently used are: 

 Back-Propagation algorithm.  

 Levenberg-Marquardt algorithm. 

4.5 Some practical considerations for choosing the right neural network 

Before the use of an artificial neural network, a certain number of parameters must be set, 

among others: dimensioning of the network, no learning, etc. this could risk generating and / 

or compromising the training process in the event of a bad choice. To configure a neural 

network, we must determine the following variables: 

• Number of input neurons. 

• Number of hidden layers and the number of hidden neurons. 

• Number of training samples. 

4.6 Types of NNs 

The major types of NNs are summarized in Figure 4.5 [158], [159]. 
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Figure 4.5 Types of NNs. 

4.7 Application of neural network 

Neural network applications are several, as can be cited in what follow [159]:  

 Clustering. 

 Classification/Pattern recognition. 

 Function approximation. 

 Identification. 

 Control. 

 Diagnosis.  

4.8 Application of NNs for diagnosing PVG  

In this section, a novel neural network-based method is developed for the detection of all short-

circuit (SC) failures along the faulty PV string, using real data [160]. To achieve this, three 

major steps (injection of data, faults modelling, and decision) are elaborated. For the data 

injection step, measured data are used, namely, the PV panel’s temperature, solar irradiance, 

voltage, and current at Maximum Power Point (MPP). The second step consists in modelling 

and fault detection, two Networks of Artificial Neural Networks (NANNs), named NANN1 

and NANN2 are used to detect the faults from the injected data, and generate outputs (currents 

and voltages), which will be injected into two Probabilistic Neural Networks (PNNs), called 

PNN1 and PNN2. Therefore, the role of PNN1 and PNN2 will be to classify the current and 
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voltage modelled values from the model based on the NANN1 and NANN2, respectively. It is 

mentioned that the PNN1 is a PNN used to classify the data related to current at its maximum 

value, into two classes (healthy and faulty), and the PNN2 will rank the voltage data at its 

maximum value into five classes. The third step deals with the online diagnosis of the PV 

system by combining the outputs from both PNNs and carrying out the final decision about the 

state of the PV system.  

4.8.1 Modeling and diagnosis of PV faults  

The proposed PV monitoring system is depicted in Figure 4.6. The overall block diagram 

shows the intelligent global monitoring and fault diagnosis structure for the PV system.  

Agilent 34970A

PC

Raccordement
GPIB Bus

GPV

G

Vmpp

Impp

T

Detection & diagnosis 

Visualisation

Agilent 34970A

Decision

Acquisition

AI

 

Figure 4.6 Global structure of the monitored PV system for fault detection and diagnosis. 

The PV system under study is located at the Centre of Development of Renewable Energies 

(CDER) of Algiers, Algeria [161]. It is organized according to three sub-arrays where each 

subarray is connected to a single-phase inverter. Each sub-array consists of 30 PV Isofoton 

panels (106W-12V). Table 4.1 summarizes the specifications of the used Isofoton PV panel. 

The panels are arranged according to two parallel strings with 15 series-connected panels for 

each string. This PV plant is endowed with a monitoring system using an Agilent 34970A 

card* for data acquisition. A pyranometer* is used for measuring the solar irradiance (G) in 
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the horizontal plane. For the temperature (T) measurements, a set of k-type thermocouples* is 

used. The measurements were carried out for 11 months in the year 2018. 

Table 4.1 Specifications of Isofoton 106-12. 

Parameters Value 

Maximum Power (Pmpp) 

Short-Circuit Current (Isc) 

Open Circuit Voltage (Voc) 

Coefficient of temperature at Isc (α) 

Coefficient of temperature at Voc (β) 

Maximum Current (Impp) 

Maximum Voltage (Vmpp) 

106 W 

6.54 A 

21.6 V 

0.060%/°C 

-0.36%/°C 

6.1 A 

17.4 V 

 

In PV plants, faults usually occur from the electrical grid (instability of the grid), from the 

storage system, most widespread are from inverters and/or from the photovoltaic generator. 

This work deals with the generators’ connections short-circuit failure types, which are common 

in PV systems. The names of these failures and their symbols are summarized in Table 4.2. 

Table 4.2 Type of faults and their symbols in PVG. 

 

Name of Faults Symbols 

Healthy model 

Fault detection due to voltage of one panel short-circuited 

Fault detection due to voltage of two panels short-circuited 

Fault detection due to voltage of four panels short-circuited 

Fault detection due to voltage of six panels short-circuited 

Fault detection due to current of string short-circuited 

C1 

C2 

C3 

C4 

C5 

C6 
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To detect these faults, two operational modes are considered, the first mode refers to a healthy 

PV generator (Class1) while the second mode refers to the faulty PV generator (Class2-Class6). 

The fault diagnosis process for the above PV plant can be explained through two organigrams, 

as mentioned below: 

o The first organigram (Figure 4.7): for exploitation of the developed method. 

o The second organigram (Figure 4.8): for the developed method. 

The exploitation process of the developed diagnosis method follows three main steps namely, 

data injection, faults modelling, and decision about fault classification, as depicted in Figure 

4.7.  

NANN1

NANN2

PNN1

PNN2

Impp_real

Vmpp_real

Decision about Voltage

Impp_healthy

Vmpp_healthy

Vmpp_1sc
Vmpp_2sc

Vmpp_4sc

Vmpp_6sc

G

T

Impp_string

Injection of data
Modeling and detection 

of faults Diagnosis and 

classification

Decision about Current

 

Figure 4.7 Exploitation process of diagnosis in the PV array. 

In the modelling step, real data are feed into two networks of artificial neural networks, 

NANN1 and NANN2. Afterward, the diagnosis is carried out through failure classification 

using probabilistic neural networks (PNNs) from the NANNs outputs. The following 

subsections give more details about each step. 



     

109 
 

It can be seen from Figure 4.7, that the exploitation process is done through the major following 

steps: 

 Collection of real meteorological data (G & T) with sensors, & their injection to NANNs. 

 Production of classes from NANNs. 

 Acquisition of real data from the PV array (Impp & Vmpp) & their injection to PNNs. 

 Classification of the later measured data to their convenient classes by PNNs. 

 Decision about the health state of the PV array. 

 The development process of the developed method given by the chart of Figure 4.8, describes 

in details the working principle of the PV diagnosis process. 

 

Figure 4.8 Global organigram of developing functioning of PV diagnosis process. 

The following subsections provide additional details about PV diagnostic steps. 

4.8.1.1 Injection of real data 

In the first step, experimental data, namely, panel’s temperature, solar irradiance, current and 

voltage at their maximum values (T, G, Impp, Vmpp) are feed to the created NANNs and PNNs 

for learning, the time variation of these parameters are summarized in Figure 4.9. The 

experimental setup of the PV plant, located at the Renewable Energies Development Centre 

(CDER) of Algiers, Algeria, is detailed at section 4.8.1 [160], [161]. The measurements were 

Collection of real data 
with sensors

Developement of ANNs 
(Structure, Learning 
process, Validation)

Developpement of 
PNNs

Test & Validation of the 
method
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taken in March 2018 with a sampling period of one minute, which is equivalent to 220 data 

points for each parameter. 

 

Figure 4.9 Real data of (a) Panel’s temperature; (b) Solar irradiance; (c) Current; (d) 

Voltage. 

For the meteorological data, it can be seen that the temperature varies between 36 and 48 °C 

while the irradiance reaches 1000 W/m2. For the electrical parameters, the current varies in the 

range (6; 12 A), while the voltage varies in the range (20; 30 V). 

4.8.1.2 Modelling and detection of faults using NANNs 

The primary process of modelling, fault detection and classification is presented in Figure 4.10, 

and is described in detail in [163]. As illustrated in Figure 4.10, we used multiple neural 

networks (NNs) for the healthy operation and multiple-fault modelling. Therefore, every fault 

is modelled by a neural network. The output of every model is compared with the real (healthy 

or faulty) state, which will be classified using a probabilistic neural network. 
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Figure 4.10 Ageneric neural network-based multiple-model fault detection and isolation 

scheme [163]. 

In this work, two networks of artificial neural networks (NANN1, NANN2) are used for 

modelling current and voltage at their maximum values (Impp and Vmpp). The followed approach 

consists of modelling a healthy mode and five defective modes. The first NANN is used to 

model current outputs while the second NANN is used to model voltage outputs under variable 

operating conditions as shown in Figure 4.11 and Figure 4.12. 
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Figure 4.11 The current modelling structure by network of artificial neural network 1 

(NANN1). 
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Figure 4.12 The voltage modelling structure by network of artificial neural network 2 

(NANN2). 

Each proposed NANN contains ANNs. Where each ANN contains three layers: the input layer, 

hidden layer, and output layer. While considering the injection of temperature and irradiance 

in the input layer for each mode and accommodate both current and voltage at the MPP at the 

output layer. The networks are trained by providing inputs and outputs to match the different 

models (healthy and faulty).  More details on the elaboration of ANNs will be provided in 

section 4.10; the architectures of each NANNs are summarized in Table 4.3 and Table 4.4. 
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Table 4.3 Architecture of two ANNs developed in NANN1. 

 

Table 4.4 Architecture of five ANNs developed in NANN2. 

 

The NANN1 contains two ANNs, each ANN has two nodes in the input layer, one for 

temperature and one for the irradiance, the hidden layer contains 40 neurons, and the output 

layer contains one neuron to get current vector at the maximum power point (healthy and faulty 

mode, Figure 4.10). The NANN2 contains five ANNs, each ANN has two nodes in the input 

layer, one for temperature and one for the irradiance, the hidden layer contains 40 neurons, and 

the output layer contains one neuron to get voltage vector at the maximum power point (for 

healthy and the four faulty modes, Figure  4.11). Both healthy and defective modes were 

modelled by artificial neural networks, using temperature and irradiance data inputs as shown 

in Figure 4.10 and Figure 4.11. For each introduced data, the NANNs are developed to give 

seven outputs according to seven estimates states shown in Table 4.5 below. 

 

Numbers ANNs of NANN1 Input 

layer 

Hidden 

layer 

Output layer 

ANN1 

ANN2 

Healthy current  

Fault in current of string short-circuited 

2 

2 

40 

40 

1 (Impp_healthy) 

1 (Impp_string) 

Numbers ANNs of NANN2 Input 

layer 

Hidden 

layer 

Output layer 

ANN1 

ANN2 

ANN3 

ANN4 

ANN5 

Healthy voltage model 

Fault in voltage of one panel SC 

Fault in voltage of two panels SC 

Fault in voltage of four panels SC 

Fault in voltage of six panels SC 

2 

2 

2 

2 

2 

40 

40 

40 

40 

40 

  1(Vmpp_healthy) 

1 (Vmpp_1SC) 

1 (Vmpp_2SC) 

1 (Vmpp_4SC) 

1 (Vmpp_6SC) 
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Table 4.5 Type of parameters with symbols and classes. 

Symbols Parameters Classes 

Impp_h 

Vmpp_h 

Vmpp1sc 

Vmpp2sc 

Vmpp4sc 

Vmpp6sc 

Impp_s 

Healthy current at the maximal power point 

Healthy voltage at the maximal power point 

Voltage at maximum power point of 1 panel short-circuited 

Voltage at maximum power point of 2 panels short-circuited 

Voltage at maximum power point of 4 panels short-circuited 

Voltage at maximum power point of 6 panels short-circuited 

Current at maximal power point of string fault 

Class 1 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

Class 6 

 

 Obtained classes from ANNs: 

The different classes for healthy and faulty operation are built using a Matlab/Simulink model 

for the PV array (Figure 4.13) [164]. The healthy case uses real data as inputs (temperature and 

irradiance) and determines the corresponding outputs (“healthy” current and “healthy” 

voltage). After that, we introduce the desired fault, one for the current with a string fault and 

four for the voltage with a different number of short-circuited panels, into this Simulink model 

[164]. With the same input data, we obtain the faulty outputs. Finally, all the results are 

recorded (one healthy and five faulty cases) and used as a dataset for learning the neural 

networks (NNs). Using the Matlab/Simulink model is preferable as it would be impossible to 

reproduce experimentally the same meteorological conditions for all healthy and faulty 

operation scenarios. 

Simulink Model

T

G

Impp

Vmpp

 

Figure 4.13 Classes obtained for the current/voltage modelled at MPP. 
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The classes obtained from the NANN1 are shown in Figure 4.12, the classed are described by 

two graphs that represent the values of two current modelled at the maximum power point with 

220 data points, we see that two classes for the MPP current are obtained from the NANN1 

described in Figure 4.14. 

 

Figure 4.14 The classes obtained for current modelled at MPP. 

- The first graph (in blue line) represents the Class1, which models the MPP current at the 

healthy state.  

-The second graph (in black line) represents the Class6, which models the MPP current at a 

faulty state where a string is short-circuited. 

Figure 4.15 gives the graphs that represent the values of the different voltages modelled at the 

MPP using the NANN2 described in Figure 4.12 with a period of 220 data points. 
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Figure 4.15 The classes obtained for voltage modelled at MPP. 

- The first graph (in green line) represents the Class1, which stands for the healthy voltage 

model at MPP.  

- The second graph (in blue line) represents the Class2, which stands for the faulty voltage 

model at MPP for one panel short-circuited.  

- The third graph (in magenta line) represents the Class3, which stands for the faulty voltage 

model at MPP for two short-circuited panels. 

- The fourth graph (in cyan line) represents the Class4, which stands for the faulty voltage 

model at MPP for four panels short-circuited. 

- The fifth graph (in black line) represents the Class5, which stands for the faulty voltage at 

MPP where six panels are short-circuited.    

Therefore, by combining the results from the two figures, the following fault models can be 

drawn. 

- The healthy model (Figure 4.14 Impph with blue, Vmpph with green Figure 4.15). 

- The string faulty model (Figure 4.14 Impp_string with black, Vmpph with green Figure 4.15). 

- The faulty model 1 panel short-circuited (Vmpp1sc with blue Figure 4.15). 
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- The faulty model 2 panels short-circuited (Vmpp2sc with magenta Figure 4.15). 

- The faulty model 4 panels short-circuited (Vmpp4sc with cyan Figure 4.15).  

- The faulty model 6 panels short-circuited (Vmpp6sc with black Figure 4.15). 

From this second step, six classes have been obtained as presented in Table 4.5. 

4.8.1.3 Diagnosis online, classification and decision using PNNs 

The third step is the diagnosis and decision step, it consists of injecting the outputs from the 

NANNs into two probabilistic neural networks, PNN1 and PNN2, the data to be injected is:  

• The actual data from NANN1 (Impp_h, Impp_string) shown in Figure 4.15.  

• The actual data from NANN2 (Vmpp_h, Vmpp_1SC, Vmpp_2SC, Vmpp_4SC, Vmpp_6SC) shown in Figure 

4.16. 

• The real data from the PV system to be monitored (Impp, Vmpp) shown in Figure 4.9.c and 

Figure 4.9.d. 

The main role of these PNNs is to classify, in real-time, both the real measured currents and 

voltages compared with original models from NANN1 and NANN2. The fault detection 

algorithm compares the real measured data and the output modelled from the NANNs by using 

PNNs to determine the location of the fault. The analysis of the main attributes in characteristic 

Impp and Vmpp of each branch leads to the identification and isolation of failures. Along with the 

measured data under real conditions from the solar station. The PNN is a monitored neural 

network, which is widely used in pattern recognition; it has the potential in fault diagnosis for 

its distributed parallel processing, self-organization, and self-learning ability. The following 

characteristics distinguish PNN from the other networks in the learning process [165]. 

 A PNN is implemented using the probabilistic model, Bayesian classifiers. 

 A PNN is guaranteed to converge to a Bayesian classifier when enough training data 

are provided. 

 No learning process is required in PNNs. 

 No need for initializing the weights of the PNN. 

 There is no relationship between learning and recall process. 
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The PNNs receive nine data points at a time (Figure 4.7), three for the PNN1 and six for the 

PNN2. The PNN1 will classify the current data into two classes while the PNN2 will classify 

the voltage data into five classes. For each data vector, the PNN will work over a range of least 

220 data points by using data in memory. The final decision will be taken by the last step as 

explained in the following Table 4.6. 

Table 4.6 Diagnosis and decision about PV system. 

Impp Vmpp Decision about PV system 

Impph 

Impph 

Impph 

Impph 

Impph 

Imppstring 

Vmpph 

Vmpp1sc 

Vmpp2sc 

Vmpp4sc 

Vmpp6sc 

Vmpph 

2Healthy system 

Fault detection due to one panel short-circuited 

Fault detection due to two panels short-circuited 

Fault detection due to four panels short-circuited 

Fault detection due to six panels short-circuited 

Fault detection due to string 

 

 Obtained classification  

Two types of faults have been chosen to be classified, one at current and the other at voltage. 

In the first fault classification, the outputs from the PNN1 classification are illustrated in Figure 

4.16 which shows the classification for fault at Impp. It shows that a fault in a string has a direct 

impact on the output current of the PV system. 
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Figure 4.16 Classification of current fault at the maximum power point. 

In the second fault classification, the outputs from the PNN2 classification are illustrated in 

Figure 4.16. It shows the classification for fault in Vmpp. 

 

Figure 4.17 Classification of voltage faults at the maximum power point. 

After removing Figure 4.6 and Figure 4.7, the PNNs classes the real data injected into them, as 

shown in Figure 4.9 and Figure 4.10. Where we noticed in Figure 4.9 a new graph presented 

with red colour, which represents the new classified current at MPP with Class6. Besides, in 
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Figure 4.10 we notice a new graph presented in red colour that represents the new classified 

voltage at MPP with Class5.  

In this third stage of diagnosis, there is a routine that collects decisions from both PNNs 

following Table 4.6 and thus calculates the Probability Density Function (PDF) [166].  

Unlike Multi-Layer Perceptron (MLP) networks, radial basis (RBF) functions (including 

PNNs) use radial functions instead of sigmoidal activation functions to build a local decision 

function centred at a subset of the input space [167]. The global decision function is the sum 

of all local functions [165], [168].  

In the context of pattern classification, every observed vector x (x is a d-dimensional vector) is 

placed inside one the predefined cluster classes: 

, 1,2,...,iC i m ;  

Where m is the number of possible classes that x can belong to (six in this study). 

The efficiency of the classifier is limited by the length of the input vector x and the number of 

possible classes m.  

The Bayes classifier uses the Bayes conditional probability rule that is the probability  iP C x  

for x to belong to a class iC .  

This probability is given by: 

 
   

   
1

i i

i m

j jj

P x C P C
P C x

P x C P C





                               (4.3) 

Where: 

  iP C x  is the conditional probability density function of x given iC . 

 
 jP C

is the probability of choosing a sample from the class jC . 

An input vector x is classified to belong to the class iC if: 

    :  1,2,..., ;  i jP C x P C x j m j i   
                            (4.4) 
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The estimation process of the later probabilities from a learning set uses Parzen’s windowing 

technique to determine the PDF. Therefore, the estimator used for the PNN networks, fA(x), is 

given by: 

𝑓𝐴(𝑥) =
1

2𝜋𝑃 2⁄ 𝜎𝑃

1

𝑚
∑ exp [−

(𝑥−𝑥𝑎𝑖)′−(𝑥−𝑥𝑎𝑖)

2𝜎2
]𝑚

𝑖=1                  (4.5) 

Where aix represents the 
thi sample belonging to the class AC  and   is a smoothing parameter. 

When the diagnosis algorithm is executed, it will display the errors and gives the decision about 

the state of the system, as shown in Figure 4.18. 

 

Figure 4.18 Snapshot of the classification result and estimation errors about the PV system. 

All of the above three steps (data injection, faults modelling, and decision about diagnosis) 

should be reiterated at each classification. 

4.9 Details about elaboration of NANNs for PV diagnosis 

This section presents more details for modeling the ANNs used in NANNs. The approach given 

may work well for a whole life cycle of the system but requires a substantive prior work, which 

includes:   

- The collection of real measured data (T, G, Impp, Vmpp), reserved for learning and validation 

of NANNs.   

- The choice of the type of ANNs (Multi-layer Perceptron (MLP)) and their architectures. 

- The choice of the learning type (Supervised learning). 

- The validation of NANNs. 

- The exploitation of the results. 
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In what follows, more details about each of these steps are provided. 

4.9.1 Collect of real measured data 

The data from the Station at the CDER including panel’ temperature, solar irradiance, current, 

and voltage are collected on 20 March 2018, for a period about 460 data points as presented in 

Figure 4.19. 

 

Figure 4.19 Collected meteorological and electrical data for 460 data points. 

4.9.2 Choice of type of ANNs and their architectures 

The developed ANNs are based on a Multi-Layer Perceptron (MLP). To find the optimal 

network architecture, several simulations were carried out, varying the number of hidden layers 

and the number of neurons in each hidden layer. Table 4.3 and Table 4.4 summarize the 

obtained architectures of each ANN. 

 4.9.3 Choice of learning type  

From the 460 introduced data points of Figure 4.13, only 220 points are used for learning the 

NANNs.  The type of learning used in this paper is called the “supervised learning” in which 

the network is formed by providing the input and output to match the model. During the 

learning process, the network is likely to produce outputs that are as close as possible to the 
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desired real outputs. The weights of the network are adjusted progressively based on the error 

signal, which represents the difference between the real output and the model output, this 

adjustment is done by using an appropriate algorithm called the learning algorithm. The 

following Figure 4.19 presents the process of supervising the ANNs. 

G (W/m2)

Impp_healthy (Modelled)

.

.

.

Error

T(°C)

Impp_healthy (Real)

+

-

Weights adjustement

 

Figure 4.20 Process of supervising and weight adjustments in ANN1 for a healthy system. 

The inputs to the ANNs are the temperature, irradiance while the outputs are Impp (supervised 

following real healthy and real faulty) and Vmpp (supervised following real healthy and reals 

faulty). Besides, faults are introduced in the real PV system to obtain real current and voltage 

data for each faulty mode. These real electrical data are matched using ANNs to generate their 

modelled electrical outputs. In Figure 4.21 and Figure 4.22, the data provided for ANN1 of 

NANN1 and ANN1 of NANN2 are presented.  
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Figure 4.21 Data provided to the ANN1 of NANN1 in a healthy system for the current 

learning process. 

 

Figure 4.22 Data provided to the ANN1 of NANN2 in a healthy system for the voltage 

learning process. 

The weights adjustment is achieved using the Levenberg-Marquardt (LM) [154] 

backpropagation algorithm using Matlab 2015a Software environment. Results after learning 

from a healthy ANN are summarized in Figure 4.23 bellow, which shows good training 

performance. 
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Figure 4.23 Generated toolbox interface for the developed NNs training on Matlab. 

The appropriate neural structure is characterized by the transfer function a hyperbolic tangent 

in the first hidden layer (for ANNS) and a linear transfer function in the second hidden layer 

(for PNNs). 

Regression of complex training process of NNs based controllers is shown in the following 

Figure 4.24. 

 

Figure 4.24 Generated regression of training process. 
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Figure 4.22 illustrates that the major points of scatter (Target output) are regrouped around the 

right (Y=T), which demonstrates the good efficiency of the approach. 

Figure 4.22 and 4.23 clearly show that the weights of the network are well adjusted and the 

model could reproduce the output data with good accuracy. 

4.9.4 Validation of ANNs 

The remaining data points out of 460 from Figure 4.18 are used for validation. In what follow, 

some cases for healthy and faulty scenarios are presented. 

4.9.4.1 Healthy system validation 

a) Validation of model from ANN1 of NANN1 (Impp of healthy system): 

 

Figure 4.25 Real vs modeled data from current, Impp in a healthy system. 

The following Figure 4.26 shows the error between real and modelled currents data. Error is 

given by the following equation: 

, ,MPP Real MPP ModelError I I 
                    (4.6) 
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Figure 4.26 Error between Impp_Real and Impp_modelled. 

b) Validation of model from ANN1 of NANN2 (Vmpp of healthy system) 

 

Figure 4.27 Real and modelled data from voltage, Vmpp in a healthy system. 

Modeling by ANNs as shown in results of Figure 4.25 and Figure 4.27 involved how a high 

fitting comparison between the real data (current and voltage), and the ones estimated by the 

modeled ANNs in a healthy system. 

The error between real and modelled voltage data for a healthy system is depicted in Figure 

4.28 bellow. 
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Figure 4.28 Error between Vmpp_Real and Vmpp_modelled. 

It can be seen from errors of Figure 4.26 and Figure 4.28 that there is a good agreement between 

modelled and real data, which indicates the good performance of the developed NANN1-model 

and NANN2-model. Therefore, the network weights and bias of the network are well adjusted 

and the model is able to reproduce the output data with good accuracy. 

4.9.4.2 Faulty system validation 

a) Validation of model from ANN2 of NANN1 (Impp faulty string) 

 

Figure 4.29 Real and modelled data from current, Impp in a faulty string system. 
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b) Validation of model from ANN2 of NANN2 (Vmpp of one panel short circuited) 

 

Figure 4.30 Real and modelled data from voltage, Vmpp in a faulty system (1 Panel SC). 

4.9.5 Exploitation of results: 

The diagnosis step of the PV system, using the classification method, consists of using the root 

mean square error (RMSE) and the mean relative error (MRE) methods in order to display the 

state about the PV system. For example, for a faulty PV system, Figure 4.31 and Figure 4.32 

show the state of faulty current and voltage respectively. 

 

Figure 4.31 RMSE command window results for a fault at current. 

 

Figure 4.32 MRE command window results for fault at six panels SC. 

The expression of Root Mean Squared Error (RMSE) can be written as:  

 
2

1

1 n

Real Model

i

RMSE Data Data
N 

  
                                                                        (4.7) 
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Where: 

 N: number of data points. 

The equation of the Relative Mean Error (MRE) is expressed as follow: 

1

1
100

N
Real Model

i Mean

Data Data
MRE

N Data

  
  
 


                                                                        (4.8) 

Where: 

 DataMean: Mean of real data points. 

The relative mean error has no unit; it tells us the quality (accuracy) of the results voltage 

obtained. It is usually expressed in percentage (%).  

More results values of obtained errors (RMSE, MRE) for each class of the real PV system are 

presented in Table 4.7 bellow. 

Table 4.7 RMSE (Root Mean Square Error) and MRE (Mean Relative Error (%)). 

 Current 

Healthy 

System 

Current 

String 

Fault 

Voltage 

Healthy 

System 

Voltage 

1 Panel 

SC 

Voltage 

2 Panels 

SC 

Voltage 

4 

Panels 

SC 

Voltage 

6 Panels 

SC 

RMSE 0.5737 0.8264 2.4928 2.4493 1.1601 1.7280 0.8201 

MRE (%) 3.21 1.62 1.78 1.02 1.51 1.54 1.67 

 

4.10 Test of robustness 

The robustness of the ANNs based fault diagnosis method is assessed by introducing noises in 

the PV system and showing the effect of injected data. Moreover, noise can be perceived as an 

error, a statistical uncertainty or an undesired random disturbance of a useful modeled response 

of the PV system. Several different effects can cause such noise such as thermal noise, device 

type, or manufacturing quality.    
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4.10.1 Presence of noise from inverter 

In this subsection, the PV system is related to the grid through an inverter, this leads to noises 

on the current and the voltage at the level of the vector to be classified. Figure 4.33 and Figure 

4.34 show the classification of the overall system (current and voltage) along with the results 

from the faulty string model in the presence of noise from the inverter. 

 

Figure 4.33 Classification of current at maximum power point in the presence of noise from 

the inverter. 

Figure 4.33 illustrates that the classification of current (in red) is closer to the healthy current 

(in blue) than the defective current (in black). The most important data belong to class 1 (for 

a healthy system). 

 

Figure 4.34 Classification of voltage at maximum power point in the presence of noise from 

the inverter. 
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Figure 4.34 shows that the classification of voltage (in red) is closer to the healthy voltage (in 

green) than the other defective voltages (in blue, magenta, cyan, and black). Besides, even 

though the data to be classified is corrupted by noise from the inverter, the proposed approach 

was able to classify it correctly (Figure 4.33 and Figure 4.34), which shows the effectiveness 

of PNNs in classification. 

4.10.2 Effect of detection time 

It is worth mentioning also that the classification can be carried out in a reduced time interval 

such as chosen 10 data points as shown in Figure 4.34 and Figure 4.35. 

 

Figure 4.35 Classification of current at maximum power point in the presence of noise from 

an inverter, over 10 data points. 

 

Figure 4.36 Classification of voltage at maximum power point in the presence of noise from 

the inverter, over 10 data points. 
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From Figure 4.35 and Figure 4.36 it can be observed that even though the detection time is 

reduced, the data to be classified is indeed well classified, and the system was able to classify 

it correctly. 

4.11 Proposed FDD electrical-based for diagnosing shading fault 

For a well and clarified explanation of the process of the FDD electrical-based techniques 

[163], we have opted for an approach to diagnose shading fault in a PV generator (Figure 4.37) 

installed on the roof of Multi-Sources-System (SMS) laboratory at Unité de Développement 

des Equipements Solaire (UDES) (Figure 4.38), using neural-networks (NN). 

 

Figure 4.37 PV generator with one panel shaded of the SMS laboratory. 

 

Figure 4.38 Multi-Sources installation (PV / Wind turbines) of the SMS laboratory. 
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Generally, hybrid installations (multi-sources) of the renewable energy type (Photovoltaic, 

Wind turbines, etc.) are subject to various faults, degradations, anomalies and damage during 

their lifetimes. In particular, the photovoltaic generator sometimes presents major 

malfunctions, which lead to degradation on the entire photovoltaic installation, or multi-

sources such as that of the Systems-Multi-Sources (SMS) laboratory, in Figure 4.39. 

 

Figure 4.39 Various faults that may occur in the multi-source installation of the SMS 

laboratory. 

The hybrid installation of the SMS laboratory is equipped with (Figure 4.39): 

 2 Wind turbines (Whisper), 1000W of each. 

 30 Suntech PV solar panels (STP-135), 135W of each, mounted for 48V. 

 5 Solar chargers (Tristar MPPT 45), connected in parallel on the DC bus (MPPT 

control). 

 2 Wind chargers (Whisper). 

 3 Inverters. 

 Storage: 1 bank of batteries (12 * 2) 48VDC, ie 12 OPZS, 2V, mounted in 1 bank in 

series. 

The capacity of the system is as follow: 

 Overall system capacity: 6kWp 
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 Photovoltaic system capacity: 4kWp 

 Wind system capacity: 2kWp 

Figure 4.39 shows schematically the various faults that can affect the various components of 

the multi-source installation (PV / Wind turbine / Battery) of the SMS laboratory. Diagnosis 

techniques are needed to ensure fault detection, avoid dangerous risks, prevent damage and 

extend their lifecycle.   

As there are several types of faults that can occur within the PV generator (Figure 4.40), which 

represents the normal current-voltage (I-V) characteristic curve, the one in red and those 

showing a fault with the other colours (degradation, shading, open-circuit, and short-circuit). 

Our focus was in the detection and diagnosis of shading (Figure 4.37) defects using an artificial 

intelligence method such as neural networks. The electrical diagnosis technique based on 

neural networks is developed to implement diagnostic techniques, using artificial intelligence. 

The proposed diagnosis technique has been developed in three main steps, providing 

experimental data to neural networks, the fault modelling step and the decision step. PVG 

power is the parameter to be processed. The descriptive schematic of the elaborated FDD 

electrical-based technique is presented in Figure 4.40.   

      Real PV Generator

NN Healthy Model  

Decision 

RMSE Healthy

Faults

NN Faulty Model 

RMSE Faulty

P Healthy_Model (t)

P Faulty_Model (t)

Real 

Environnemental 

Data

State 

about 

PVG

P PV_Real (t)

Figure 4.40 Descriptive schematic of the proposed FDD electrical-based in the PV generator. 

The major steps of the developed FDD electrical-based for PVG are detailed in the following 

points. 
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a) Acquisition of real data 

Some measurements have been done, through an acquisition work for obtaining real 

environmental (temperature and irradiance) and electrical (current and voltage from the 

battery) data for the PV system at SMS. They are required at the first step of PV diagnosis. 

b) NN-based modelling and validation  

Using a database of several days two neural-network models are created for healthy and faulty 

(shaded) PV generator respectively. From the introduced real data (temperature, irradiance, 

battery current, and battery voltage), power models for healthy and faulty PVG are elaborated 

(Figure 4.40). 

c) Detection & localization of faults. 

c.1. Reading of real data  

In specific two days (11/03/2020 & 26/11/2020) for both healthy and faulty PVG respectively, 

read of real acquired data to be diagnosed.   

c.2. Simulation using the two models 

In Matlab environment, simulate of healthy and faulty models behaviour using the real data as 

inputs. At this step, the obtained results are illustrated in Figure 4.41 and Figure 4.42 [101]. 

 

Figure 4.41 Real and modelled data for power, in a healthy PVG (11/03/2020). 
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Figure 4.42 Real and modelled data for power, in a faulty PVG (shading a single PV module 

in the PVG) (26/10/2020). 

It is observed from Figure 4.40 that the healthy generated model is the nearest one from the 

real data. Besides, it is observed from Figure 4.42 that the faulty (shaded) generated model is 

the nearest one from the real data. 

c.3 Decision about diagnosis 

Comparing the results of the two obtained models with the measured power of the real PVG 

using Root Mean Square Errors (RMSE), which is calculated between the real power and both 

of the healthy and faulty modeled powers through the following expression. 

2

1

1
(P (i) P (i))

N

Real Model

i

RMSE
N 

 

                   (4.9) 

Where N: is the number of data. 

Based on the values of RMSEHealthy and RMSEFaulty, a decision is made about the state of the 

PV generator, as shown in Figure 4.42 and Figure 4.43 bellow. 
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Figure 4.43 RMSE command window results for healthy PVG. 

 

Figure 4.44 RMSE command window results for faulty PVG. 

The lowest value of RMSE allows deciding the health state of the system. As in Figure 4.40, 

the PVG was healthy in the day of (11/03/2020) relatively to the lowest value of RMSEHealthy 

compared to RMSEFaulty. In contrast, the PVG of Figure 4.41 was faulty in the day of 

(26/10/2020) relatively to the lowest value obtained for RMSEFaulty compared to RMSEHealthy.  

For classifying with high accuracy and effectiveness of different other faults occurring in PVG, 

more sophisticated techniques exist in the literature, which can be an extension of this 

developing technique as perspective work. 

Conclusion  

In this chapter, an artificial neural network has been developed in order to model different types 

of faults that have appeared in a photovoltaic generator. Simulation and experimental testing 

have been presented, the results prove the high performance of the proposed approach. We 

opted for this type of diagnosis method based on the calculation and comparison of the mean 

relative error for the voltage and current classification using the root mean square error and we 

obtained very satisfactory results. Even though ANNs methods are inherently statistical, they 
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suffer from the need for a large number of unknown observations, which are not always 

available, and above all, they need a very important number of iterations. In [165], this problem 

is dealt with by providing a neural network model called PNN allowing instant learning and 

running even with a small number of observations [166-167]. The diagnosis by the use of PNNs 

have required the input layer of the various simulated faults by NANNs to have a classification 

on the output. The approach has proven its strength while injecting noises (e.g presence of 

perturbations from inverter) and notice the presence or absence of confusion. Besides, it does 

not require the entire I-V curve to be elaborated for telling us the decision about diagnosis, only 

reduced time from real collected data may suffice for the diagnosis process. The next chapter, 

will devote the implementation on FPGA card, for the developed NN approach. 
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CHAPTER 5: Implementation on FPGA of FDD for PVG 

Introduction  

After studying the theory of FDD in PVG and the application of neural networks in 

previous chapters, this chapter will present the benefit of using such hardware implementation, 

which is well described in a paper by R.  L [169] : << The great interest of building neural 

networks remains in the high speed processing that could  be provided through  massively 

parallel implementation >>. One   would   assume   that   the   neural   network   models   

developed   in   computational neuroscience could be directly implemented in silicon.  This 

assumption is false because when implementing a neural network, the designer is confined to 

some specific problems related to the characteristics of these algorithms such as:  speed 

processing, precision, high memorization, parallelism, regularity and flexibility of the 

architecture. Nowadays, with the increasing complexity of Very Large Scale Integrated (VLSI) 

circuits, state of the art design is focused around high level synthesis which is a top down 

design methodology, that transform an abstract level such as the Very High speed integrated 

circuits Hardware Description Language (VHDL) into a physical implementation level a new 

design methodology of ANNs based upon a VHDL synthesis of the network is applied.  In this 

chapter, we see a parametric Hardware Implementation of Artificial Neurons models using 

Filed Programmable Gate Array (FPGA) for diagnosing faults in PVG. The implementation is 

carried out with the aim of optimizing the area occupied in the FPGA circuit and increasing 

the rate of flexibility. 

5.1 Design methodology  

The   proposed   approach   for   the   ANN   implementation   follows   a   top   down   design 

methodology.   As illustrated in Figure 5.1, architecture is first fixed for the ANN.  This phase 

is  followed  by  the  VHDL  description  of  the  network  at  the  register  transfer  level  (RTL) 

[170],  Then  this  VHDL  code  is  passed  through  a  synthesis  tool  which  performs  logic 

synthesis  and  optimization  according  to  the  target  technology.  The  result  is a Netlist  

ready for place  and  root  using  an  automatic  FPGA  place  and  root  tool.  At this level 

verification is required before final FPGA implementation. 
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VHDL Description

Synthesis tool

Place & Root tool

Logic synthesis & 
optimisation

Technology mapping

ANN Architecture

Verification

FPGA

 

Figure 5.1 Design methodology of the ANN to be implemented in FPGA card [171]. 

5.2 FPGA card  

Field Programmable Gate Array FPGAs, components invented by the Xilinx company, made 

up of a "sea" of logic gates, used for rapid and inexpensive ASIC development [172]. A brief 

history about FPGA development, & their characteristics, & the most fabricants in the market, 

and their architectures are in the next subsections. 

5.2.1 History research 

Programmable logic circuits appeared in the early 1980s. Developers already had 

"Programmable Logic Device" (PLD) circuits, which were easily configurable. The PLD have 

many types such as, Programmable Array Logic (PAL), Generic Array Logic (GAL), Erasable 

Programmable Logic Device (EPLD), Complex Programmable Logic Device (CPLD) and 

FPGA (Figure 5.2) [172]. 

 

Figure 5.2 Types of PLD. 
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Then in 1984 Ross Freeman, Bernie Vonderschmitt and Jim Barnett founded the Xilinx 

Company [173]. In 1985, they introduced to the market the XC2064, the first Field 

Programmable Gate Array (FPGA) circuit, which is a reprogrammable integrated circuit, 

offering an alternative to previous approaches. 

5.2.2 Characteristics of FPGA card 

Among the main characteristics of FPGA circuits [173], we can mention: 

 Performances. 

 Time to market. 

 Cost. 

 Reliability. 

 Long term maintenance. 

5.2.3 Fabricants of FPGA card 

The FPGA market is booming with dozens of manufacturers, who use more or less similar 

technologies for the manufacture of FPGAs. We can cite for example: Actel, Abound Logic, 

Atmel, Cypress, Lattice Semiconductor, Xilinx, Altera, etc (Figure 5.3). Among all these 

manufacturers, only two main firms have a monopoly on the market for FPGA circuits, namely 

Xilinx and Altera [173]. 

 

Figure 5.3 Different fabricants of FPGA. 
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5.2.4 General structure of FPGA card (from Xilinx) 

The general structure of FPGA consists of a network of programmable configurable logic 

blocks (CLB) structure, of configurable input/output (IO) blocks, and interconnection matrix 

which surrounds the CLB and surrounds them all (Figure 5.4) [158], [172]. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 General structure of FPGA. 

The architecture, adopted by Xilinx, is in the form of two layers: one layer called configurable 

circuit, the second is a Static Random Access Memory (SRAM) memory network layer. The 

so-called “configurable circuit” layer consists of a matrix of configurable logic blocks CLB 

making it possible to perform combinatorial functions and sequential functions. All around 

these configurable logic blocks, we find Inputs / Outputs blocks (IOB) whose role is to manage 

the inputs-outputs making the interface with the external modules (Figure 5.4). 

a) CLB structure 

Configurable logic blocks are the main building blocks of an FPGA (Figure 5.5). Their 

structure varies by manufacturer and family, several types of architectures are used by 

Interconnect Resources 
Configurable 

Logic 

Block I/O Cell 
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manufacturers, and some based on multiplexers (MUX), and others on look-up tables (LUT). 

The CLB is mainly constituted from Look-Up Table (LUT) and Flip Flop (bascule D) [172]. 

3-input

LUT

a

b

c
flip-flop

clock

mux

y

q
d

 

Figure 5.5 Structure of CLB. 

b) Connexions resources 

Internal connections in FPGA circuits are made up of metallized segments. Interconnection 

resources within an FPGA allow arbitrary connection of CLBs and IOBs (Figure 5.6) [174]. 

 

Figure 5.6 Structure of FPGA (connexions resources). 

c) Inputs/Outputs blocks (IOB) 

IO blocks allow internal logic to be interconnected to the input and output ports of the FPGA 

(Figure 5.7). These blocks are presented on the entire periphery of the FPGA circuit. Each IOB 

block controls a pin of the component and it can be set as input, output, and bidirectional signals 

[174]. 
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Figure 5.7 Architecture of IOB in FPGA. 

5.3 VHDL 

5.3.1 VHDL Description 

VHDL is a modern powerful tool language: excellent visibility, high modularity, description 

fiability [175]. The level of VHDL abstractions are: 

 Structural description. 

 Behavioral description 

 Data flow description. 

 

The VHDL description of a circuit is composed of: 

 Extern vision of circuit: Entity (Figure 5.8.a). 

 Intern vision of circuit: Architecture (Figure 5.8.b). 

 

 

 

 

 

 

Figure 5.8 a) Top view of Entity in VHDL. b) Top view of Architecture in VHDL. 

 The generic clause declares the constants which can be for the control of the structure 

(behavior of the entity). 

 The generic port clause is used to define the circuit connections. 

Entity entity-name is 

generic (generic declaration); 

port (port declaration); 

 

end entity-name; 

Architecture architecture_name of entity_name is 

process () –Declarative part 

begin 

-- Descriptive part 

end architecture-name; 
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Figure 5.9 Representation of entity & architecture from software to hardware. 

From a technical point of view, VHDL is a modern and powerful language characterized by its 

excellent readability, its high modularity, and its ease of use and the reliability of its 

descriptions. From an economic point of view, the VHDL tries to identify errors from the 

compilation, which costs less expensive. 

5.4 Xilinx Ise 

Xilinx ISE (Integrated Software Environment) software is a development environment for 

digital systems that allows you to walk through all stages of the development of an FPGA 

target design project (Design Entry, Design Synthesis, Design Verification (simulation), 

Design Implementation, Device Configuration) [176]. The hardware implementation will 

follow all the steps from classic design to implementation on an FPGA target, as presented in 

Figure 5.10. 

 

Figure 5.10 Xilinx ISE implementation main steps [177]. 
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Designs of project can be described in three main forms: as schematics, HDLs, or state 

diagrams. In  the  following  sections  the  modelling and digital  architecture  of  the  ANN for 

diagnosing faults in PVG, will  be  derived  then  the proposed  parametric  VHDL  description.  

 5.5 ANN Modeling for FPGA 

This section is dedicated to introduce the modeling of ANN for diagnosing faults in PVG to be 

implemented in FPGA. We have the three-layer feed-forward back propagation network 

(Figure 5.11) for implementation, which describe the main structure of our developed ANN 

for diagnosing faults occurring in PVG. The ANN computation can be divided in two phases:  

learning phase and recall phase.  The learning phase performs an iterative updating of the 

synaptic weights based upon the error back-propagation algorithm [175].  It teaches the ANN 

to produce the desired output for a set of input patterns.  The  recall phase  computes  the  

activation  values  of the  neurons  from the output  layer according  to the weighted  values  

(computed  in  the  learning  phase).  

G (W/m2)

T

Impp

Vmpp..
.

Input layer

(2 Neurons)

Hidden layer (40 Neurons)

Output layer

(1 Neuron)

 

Figure 5.11 Main structure of ANN for a healthy system (feed-forward). 

Training (learning) of an ANN is carried out in Matlab, as follows:  

a) Initialize the weights and bias.  

b) Compute the weighted sum of all processing elements from the input to output layer.  

c) Starting from the output layer and going back word to the input layer adjust the weights 

and bias recursively until the weights are stabilized. 
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It is mentioned that the learning phase of this neural-network happens in Matlab (chapter 

above). Then, we obtain the weights and bias of the network through the use of the function 

(getwb(name-of-network)) and [b,iw,lw] = separatewb(net,wb). 

The latter weights, are directly used in the hardware implementation. 

 

5.6 Digital architecture of the ANN  

The hardware requirements of ANNs are parallelism, performance, flexibility and their 

relational-ship to silicon area (in our case number of CLBs).  Based  upon  the  above  ANN  

hardware  requirements,  the  FPGA  equivalent  architectural model of the  neuron  of Figure 

5.12  is represented  by Figure 5.12.a.   
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a)                                                        b) 

Figure 5.12 a): Neuron hardware model. b) ANN hardware architecture. 

The hardware model of neuron is mainly based on a:  

- Multiply accumulate circuit (MAC) which computes the weighted sum with the following 

expressions:  

µ𝑖 = ∑ 𝑤𝑖𝑗 ∗ 𝑥𝑖
𝑛
𝑗=1           (5.1) 

Where: 

𝑤𝑖𝑗: are the weight of connexions. 

𝑥𝑖: is the activation of neuron i. 
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- Memory circuit (ROM) where the final values of the synaptic weights are stocked.  

- Look-up table (LUT) which implements the sigmoid activation function with the following 

expressions.  

𝑦𝑖 = 𝑓(µ𝑖)           (5.2) 

The resulting ANN hardware architecture of Figure 5.12 is represented in Figure.12.b.  (note  

that only  the second and output  layers are represented  in this  figure),  with  the following 

features: For the same  neuron, only one MAC  is used  to compute the product sum. Each 

MAC has its own ROM of weights.  The depth of each ROM is equal to the number of nodes 

constituting its input layer. For the same layer, neurons are computed in parallel.  Computation 

between layers is done serially. The whole network is controlled by a unit control. As we can 

see, the resulting architecture exhibits a high degree of parallelism, simplicity, regularity and 

repeat-ness. 

5.7 Parametric VHDL description of ANN 

Our  approach  to  the  ANN  hierarchic  VHDL  description  is  illustrated  in  Figure 

5.13. VHDL description  of  the  network  begins  by  creating  a  component  neuron,  then  

a  component layer is created  and  finally a network  is described [175].  

 

Network

Component Layer

Component 
Neuron

 

 

Figure 5.13 Top view of an artificial neural network parametric VHDL description. 

 Component neuron is composed by a bloc of synaptic weights, a MAC component, a 

ROM component and a LUT component.  

 Component layer is composed by a set of component neurons and multiplexers.  

 A Network  is  composed  by  a  set  of component  layer  (input  layer,  hidden  layer,  

and output layer). 
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5.7.1 Architectural description of neural component 

The main components of a neural component are represented in Figure 5.14.a [158]. The 

hardware description of a neural component implied the MAC, ROM, and LUT (Figure 

5.14.b). 
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Activation 
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LUT
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Sel
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b) 

Figure 5.14 Schematic representation: a) Simplified neural model; b) Equivalent neural 

hardware model. 

The basic building block of the Feed-forward module is the neuron. It consists of a MAC block, 

a synaptic weight block, and an activation block, as we see in the Figure 5.14.a). 

5.7.2 Architectural description of layer component: 

The layer component is constituted of a neuron component with a multiplexer, which allow to 

aiguille the input data and transmit it to all the neurons constituting the layer. For our 

application, we have created three layer components: layer1, layer2, and layer3. Each of the 

above layer contains a number of neuron component. The hardware representation of the three 

layers is given in Figure 5.15 (a, b, & c). 
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c) 

Figure 5.15 Hardware representation of the three layers: a) First layer (2 neurons); b) Second 

layer (40 neurons); c) Third layer (1neuron). 
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The developed ANN is a network of three layers with the following parameters. 

 The first layer contains two neurons: 4bits (from nm11 to nm12). 

 The second layer contains 40 neurons: 8bits (from nm21 to nm240). 

 The third layer contains one neuron: 16bits (nm31). 

Each of these layers consists of a number (N) of neurons preceded by a multiplexing block as 

shown in the Figure 5.16. 

 

Figure 5.16 General architectural hardware representation of a layer. 

 

5.7.3 Architectural description of neural-network Component:  

From the hardware representation of a neuron with the regularity of a network, the architectural 

representation of a neural-network is illustrated in Figure 5.17. 
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Figure 5.17 Architectural hardware representation of neural network. 

The hardware representation of our neural-network is in Figure 5.18. 



     

155 
 

nm

11

M
U

L
T

IP
L

E
X

E
U

R

nm

12 X1

X2

s1

s2

s3

clk1

clk2

clk3

rst

ready1

Read_en1
M

U
L

T
IP

L
E

X
E

U
R

nm

21

nm

240

M
U

L
T

IP
L

E
X

E
U

R

nm

31
r132

Read_en11

Read_en12

ready2

ready3

 

Figure 5.18 Hardware architectural representation of our neural network. 

5.7.4 Case study:  Implementation of ANN models for diagnosing faults in PVG  

In this subsection, we focalize our interest to implement the developed neural-networks 

approach (modeling and validating the faults of a PVG using ANN), presented in previous 

chapter. The main structure of ANN is given in Figure 5.19. We have chosen to begin our 

implementation to the simple ANN1 for a healthy PVG.  

G (W/m2)

Impp_healthy

...

Input layer Hidden layer Output layer

T(°C)

 

Figure 5.19 Main structure of ANN1 for a healthy system. 

The ANN1 have the following characteristics:  

 Type of ANN: MLP. 
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 Type of learning: supervised (in Matlab). 

 Validation of ANN: (in Matlab). 

 Type of learning algorithm: weights adjustment is using back-propagation algorithm. 

 Type of transfer function: hyperbolic tangent. 

There are two approaches in the hardware implementations of artificial neural networks [171]: 

a) On-chip training circuits: the implementation herein integrates the learning phase and 

the test / generalization phase in the same circuit. This type of implementation allows 

flexibility and adaptability of the circuit to several applications. 

b) Off-chip training circuits: the implementation herein integrates only the generalization 

phase. In this approach, the learning is done in software in order to generate the synaptic 

weights. The hardware implementation of the ANN consists in this case of loading its 

synaptic weights into memories and implementing the summation and activation 

functions. 

Figure 5.20 shows the total design flow using MATLAB and Xilinx (off-chip training). The 

MATLAB program consists of the built and learning programs of NN. After the leaning 

procedure, weights data are fixed and saved to a file. Then transmit the weights to the Xilinx 

[178]. 

 

Figure 5.20 Implementation of ANN from Matlab to Xilinx ISE (Off-chip training circuits) 

[178]. 

In this work, we have used the off-chip training circuits. It is mentioned that the learning phase 

of this neural-network occurs in Matlab. Then, we obtain the weights of the network through 

the use of the function (get(name-of-network));getwb(net). The latter weights, are directly used 

in the hardware implementation. 
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5.8 Hardware representation  

Having fixed architecture, the next phase is the VHDL description of the ANN.  The VHDL 

description of our neural network begins with a neuron component, constituted of bloc of 

synaptic weights, MAC, ROM, and a LUT. Then, a layer component constituted of a set of 

neuron components.  

Therefore, a VHDL description of the network is achieved.  The  parameters  that  introduce 

the  flexibility  of  the  network  are  the  neurons  word  sizes  (n),  the  number  of  neurons  

in each  layer  (nb_neuron) and  component  instantiation  of  each  layer  (component layer1, 

component layer2, and  component layer3).  

In what follows, we present the neuron, its internal architecture, and then we will validate by a 

simulation and synthesis of the results obtained for the family of FPGA circuits Virtex 5 

(xc5vlx50-lff676). 

5.8.1 Hardware implementation of block of synaptic weights 

For synaptic weights it suffices to use a RAM to store these values, however and since we must 

first initialize these weights to random values and put them in RAM and then update these 

weights and to store them, the addition of a multiplexer is necessary at the entry of the RAM 

for the mixing between the values of initialization and that of the update. Thus our block of 

synaptic weights consists of a multiplexer and a RAM, Figure 5.21 [179]. 

 

Figure 5.21 Architecture of the block of synaptic weights. 

5.8.2 Hardware implementation of MAC Bloc 

The MAC block realizes the weighted sum Equation (5.1). It is composed of a multiplier and 

an accumulator, in order to find the value of the weighted sum, we use the multiplier and the 

accumulator to calculate this value and a register to store it (Figure 5.22). 
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Figure 5.22 Architecture of MAC bloc. 

5.8.3 Hardware implementation of Activation block (LUT) 

The role of the activation function block is to take the value of the weighted sum calculated by 

the neuron and apply the function called Sigmoid to it, to generate the activation value of the 

neuron. For our network we used the sigmoid function as follows: 

)exp(1

1
)(

j

jj

x
xfy


   (5.3) 

 

 

Modelling this function requires the implementation of division and exponential operations, 

each of these operators requires a significant number of FPGA resources. To remedy this 

problem we use the FPGA Look-Up-Tables (LUTs) for the modelling of this function. 

In our case we are using these LUTs in ROM addressed by the value of the weighted sum and 

the activation values will be loaded in this ROM, so we will have the value of the weighted 

sum in input, and that of the activation in output. Figure 5.23 shows the plot of the sigmoid 

function. 

 

Figure 5.23 Sigmoid graph. 
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5.9 Synthesis and simulation of ANN in ISE 

In order to validate the operation of the proposed architecture, we considered our network of 

size (2, 40, 1), so we have a total of 3 nodes (neurons), an input layer is used for the transfer of 

inputs, a layer hidden with 40 nodes and an output layer of one node. We used the FPGA ISE 

implementation tool from XILINX, which integrates the ISim simulation module (ISE 

Simulator) [180]. The algorithm mapping was done on the following FPGA circuit: Virtex-5 

LX50. 

5.9.1 Virtex 5 

There are several families of FPGA circuits, in our study we are interested in XILINX Virtex-

5 of FPGA circuits based on SRAM technology [181]. The circuit of Virtex 5 is represented in 

Figure 5.24. The revolution concerns the integration of memories, multipliers, processors, 

Digital Signal Processor (DSP) circuits in a single FPGA circuit. This evolution in the structure 

of FPGAs has obviously been accompanied by an evolution of development tools. More and 

more efficient tools were needed to take advantage of these structures, which were becoming 

both larger and larger, but also more and more heterogeneous [179]. 

 

Figure 5.24 Virtex 5 LX 50. 
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The Virtex-5 family provides some of the most powerful devices on the FPGA market. 

Characterized by a clock frequency which can be increased to 550 MHz, these components are 

used in various applications such as telecommunications, cryptography, image processing, etc. 

The following figure 5.25 shows the internal architecture of Virtex-5. The latter is the 13th 

generation in 2006, with 6 input LUT. 

Produced with a 65nm technological process with 12 metallization levels, the FPGAs of this 

family have a higher integration rate and allow more routing possibilities compared to previous 

families. 

 

 

 

 

 

 

Figure 5.25 Internal architecture of the FPGA circuit of the Virtex-5 family. 

The Virtex 5 family is divided into five different platforms namely LX, LXT, SXT, TXT and 

FXT [182]. We present below the basic components of the LX platform, intended for high 

performance logic applications for which the XC5VLX50 component is chosen as an 

implementation target in this chapter. 

FPGAs circuits follow the following nomenclature information [181]: 

 

                                        XC5VLX50-1 FF 665 C  

                                                                                           Temperature               

                Device type                                                                 C = Commercial (Tj = 0°Cto+85°C)                                                                                                                                      

                                                                                                      I = Industrial (Tj = –40°C to +100°C) 

                        Speed                                                                   Number of Pins                         

                        (-1, -2, -3)                                                             Package Type  
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Device type: the type of the family which is in our example VIRTEX-5. 

Speed: the speed of the component according to the technology. 

5.9.2 Synthesis results of complete neuron  

In what follows, we will show the synthesis results of the neuron for the family of FPGAs 

xc5vlx50-lff676. After synthesis, the resulting netlist file is mapped into the FPGA Xilinx 

Virtex5 family circuit's for physical implementation. 

Table 5.1 shows the synthesis results of a neuron that occupies different surfaces for FPGA of 

Virtex5LX50 (xc5vlx50-lff676). 

Table 5.1 Synthesis results of a neuron. 

FPGA 

Circuit 

Activation 

function 
Resources Used Total Utilisation 

Virtex5LX50 

(xc5vlx50-

lff676) 

Sigmoid Slice 

Registres 

4128 28800 14% 

Slice LUTs 1780 28800 16% 

DSP48E 1 48 1% 

I/O 110 440 25% 

 

 Results interpretation 

From the results obtained, we can conclude the following points: 

- Each neuron consumes 1 Digital Signal Processor (DSP) to do the multiplication, this is an 

advantage for the implementation of large neural networks. 

The xc5vlx50-1ff676 card of the Virtex-5 family with sigmoid activation function offers better 

performance compared to I/Os. 
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5.9.3 Simulation results 

In what follows, the simulation results of each block constituting the neuron of the Feed-

forward module [181]. 

 The Mux Multiplexer has: 

- Two (2) 16-bit coded inputs (w, wt1). 

- A selection input coded on 1 bit (sel). 

- An output coded on 16 bits (wn). 

 

Figure 5.26 Simulation timing of a multiplexer. 

Figure 5.26 shows the results of functional simulation of the multiplexer block. 

The simulation results clearly show the correct operation of the multiplexer unit. For a "sel" 

selection input equal to 1, the "wt1" input will be transmitted to the output then in the opposite 

case the "w" which takes over. 

• A RAM block is an 8-bit address memory (addr) has: 

                     - One entry coded on 16-bit (wn). 

                     - Two control signals write (write), read (read) coded on 1 bit. 

                     - An output coded on 16-bit (wc). 

Figure 5.27 shows the functional simulation of a RAM block. 

 

 

Sel=0 Sel=1 
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Figure 5.27 RAM simulation timing diagram. 

The simulation results clearly show the correct functioning of the RAM. In the case where we 

are in write mode, the output is worth Z and we start to stack the addresses 0 and 1 of the RAM 

by the data present in input. Then, for the write mode, we recover the data stored in the 

addresses 0 and 1 output. 

 Multiplier Mult has: 

- Two inputs coded on 16 bits (din0, din1). 

- An output coded on 16-bit (prod). 

Figure 5.28 shows the functional simulation of the multiplier block. 

Figure 5.28 Simulation timing of a multiplier. 

The simulation results clearly show the correct operation of the multiplier block. Namely, 

multiply the data presented at inputs “din0 and din1” and present the result at output “prod”. 

 The Acc accumulator has: 

                                - An input coded on 16 bits (din). 

                               - An output coded on 16 bits (doubt). 

                               - Command signals coded on 1 bit (clock "clk", reset "" reset "). 

Write, wc worth‘z’ Read,  wc get the content of addr 

Results corresponding to multiplication  
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Figure 5.29 shows the functional simulation of an accumulator. 

 

Figure 5.29 Simulation chronogram of an accumulator. 

The simulation results clearly show the correct operation of the Acc block, namely adding the 

data present at the “din” input and outputting the result in “doubt”. 

• The activation block (LUT): 

The Sigmoid possesses: 

- An input addressed on 16 bits (ai). 

- An output coded on 16 bits (yi). 

Figure 5.30 shows the functional simulation of a sigmoid. 

 

Figure 5.30 Simulation timing of a sigmoid. 

We observe that the output result corresponds to the content of the sigmoid, if the value present 

at the input “ai” is outside the operating interval of the function, the output “yi” will be 

undefined. 

• Complete neuron simulation results 

Figure 5.31 shows the overall simulation of a neural network. 

Results corresponding to accumulation 

Accepted Results Results hors interval 
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Figure 5.31 Neuron simulation timeline. 

The simulation starts from 130 ns after resetting the system "reset" where we start to store the 

data of the synaptic weights "wt1 or w" (in our case wt = w so we took sel = 0) in the RAM 

memory at the addresses " addr ”corresponding, by choosing the write mode“ write ”. 

After 3 clock ticks, we reset the system so that it can retrieve the stored data, then we go to 

read mode "read", in this phase the output of the RAM "wc" goes from state "Z" at "1" which 

corresponds to the chosen synaptic weight, the latter first goes through the multiplier where it 

will be multiplied "wc * x (1)" then the result will be stored in "x11" after the latter will be 

added to the new value “x (2) * wc” and so on, in each clock tick if the value of x11 is outside 

the operating range of the sigmoid function, the result of the “O11” output of the neuron will 

be undefined. The “O11” output is defined by the following relation: 

𝑂11 = ∑ 𝑤𝑐 ∗ 𝑥𝑖 = 𝑤𝑐(1) ∗ 𝑥(1) + 𝑤𝑐(2) ∗ 𝑥(2)      (5.3) 

The simulation results clearly show the correct functioning of the blocks. We note that the 

circuit meets the required requirements, namely to multiply and then accumulate the data 

present in inputs. 

Conclusion  

Through this chapter, we have presented a synthesis methodology for FPGA implementation 

of a digital ANN diagnosing faults in PVG. We were interested in the study of FPGA circuits, 

their structures, the different circuits, the VHDL, and the ISE Xilinx software environment. 

The neuron being the essential nucleus of a neural network, we are therefore interested in the 

architecture of the latter. We first checked, validated the operation and implemented the VHDL 

code of the neuron architecture based on the activation function of the sigmoid type. The 
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implementation was made on the FPGA circuit of VIRETX 5LX and before synthesis, 

simulation was required until the ANN meets the functional specifications. The proposed 

VHDL description is based on a simple, regular and parallel architecture. The use of the 

parametric VHDL description offers a high flexibility to the designer. These implementation 

results have been getting very high results quality, and good performances. 
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GENERAL CONCLUSION  

  

  Commonly solar PV plants encounters failures during their life cycle, for this reason, it 

is necessary to detect and diagnose the PV system all the time, in order to avoid any loss of 

performance, and guarantee of service continuity. For the moment, artificial intelligence 

techniques are needed for diagnosing of the photovoltaic system and particularly the 

photovoltaic generator. The later are considered as the main part (the heart) of any PV plant. 

Automatic monitoring, supervision, detection, and diagnosis of faults that occur in solar 

photovoltaic generators have recently become a very important research topic. In this thesis 

work, an overview have been done of the main faults occurring in the PVG such as, SC, OC, 

LLF, GF,AF. Then, an efficient neural-network based approach have been developed for the 

diagnosis of failures scenarios at SC occurring in a photovoltaic generator. The developed 

method has been elaborated in three main steps, feeding experimental data to the neural 

networks, modelling of faults and decision about diagnosis. To achieve this, each imposed fault 

has been detected and classified. The obtained results confirm the effectiveness of the 

developed models to locate and identify different types of failures even with the presence of 

noises. The proposed fault diagnosis method can easily be generalized and applied to large 

scale PV plants. An implementation on FPGA card of the developed neural-network based 

approach for diagnosing PVG, have been done. A VHDL parametric hardware implementation 

have been synthesized and simulated, which gives good results. 
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APPENDIX 

 Calcul of GHI : 

Direct

Global = Direct * Cos (B) + Diffus

Diffus

B

 
Figure 6.1 Calculation of the Global horizontal irradiation (GHI). 

Solar simulator 
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Figure 6.2 Solar Simulators for PV module testing. 

PV panel’s datasheet: PS250P-AC (250W) 

 

Figure 6.3 Datasheet of PV panel parameters. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Feternalsunspire.com%2F&psig=AOvVaw3W5olMmMdEtKQnR7-4FdNP&ust=1619565777099000&source=images&cd=vfe&ved=2ahUKEwjk9Pjnhp3wAhWMGRQKHUS4CE0Qjhx6BAgAEBI
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Figure 6.4 Constitution and anatomy of a PV panel. 

 

Figure 6.5 Laboratory for PV module testing. 

 FLIR camera for inspection of PV panels 

In the field of research and development, thermal imaging cameras are an established tool for 

evaluating solar cells and panels. However, the use of thermal imaging cameras for solar panel 

evaluation is not restricted to the field of research. Uncooled thermal imaging cameras are 

currently being used more and more for solar panel quality controls before installation and 

regular predictive maintenance check-ups after the panel has been installed. Because these 

affordable cameras are handheld and lightweight, they allow a very flexible use in the field. 

http://www.flir.com/cs/emea/en/view/?id=41642
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Figure 6.6 FLIR picture. 

 I-V test curve tracers 

 
Figure 6.7 PV analyser (Solmetric). 

 

 Drones 

 

Figure 6.8 Drones. 
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Drones are used to monitor solar site construction or to conduct regular assessments. The 

integration of infrared imaging and artificial intelligence (AI) algorithms, allow to identify 

deterioration, damage and other abnormalities in an early stage. 

 

 Agilent 34970A card for data acquisition 

The Keysight 34970A data acquisition / data logger switch consists of a three-slot mainframe 

with a built-in 6 1/2 digit digital multimeter. Each channel can be configured independently to 

measure one of 11 different functions without the added cost or hassles of signal-conditioning 

accessories. Choose from eight optional plug-in modules to create a compact data logger, full-

featured data acquisition system or low-cost switching unit. On-module screw-terminal 

connections eliminate the need for terminal blocks and a unique relay maintenance feature 

counts every closure on every switch for easy, predictable relay maintenance. Our most popular 

module 34901A features a built-in thermocouple reference and 20 two-wire channels.  

 

Figure 6.9 Agilent Card. 

  

 Pyranometer 

 
Figure 6.10 Pyranometer. 
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 K-type thermocouple 

Type K Thermocouple (Nickel-Chromium / Nickel-Alumel): The type K is the most common 

type of thermocouple. It’s inexpensive, accurate, reliable, and has a wide temperature range. 

The type K is commonly found in nuclear applications because of its relative radiation 

hardness. Maximum continuous temperature is around 1,100C. 

 
Figure 6.11 K -type thermocouple. 
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