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Résumé :
Le travail présenté dans cette thèse concerne l’observation et le diagnostic de défauts du convertisseur à 3
cellules de commutation qui est considéré comme un système hybride vu son comportement de commuta-
tion. De ce fait, l’analyse de l’observabilité a été montré, pour une trajectoire temps hybride, en utilisant
une approche géométrique basé sur le calcul de sous espace inobservable le long de la trajectoire temps
hybride. Un observateur à mode glissants est ensuite conçu pour le sous espace observable du convertis-
seur. La convergence de l’erreur d’observation est démontré en utilisant le formalisme de Lyapunov. Les
paramètres de l’observateur sont calculés en résolvant une LMI. Les résultats de simulation montrent une
bonne reconstructions des tensions flottantes du convertisseur. La deuxième partie, est consacrée pour le
diagnostic de défauts cellules du convertisseur. En effet, une approche géométrique a été appliqué pour le
calcul des sous espaces sensibles á un ensemble de défaut et insensible á un autre ensemble. La détection
et l’isolation des défauts est basée sur la conception de générateurs de résidus à base d’observateurs. Les
résultats de simulation ont montré l’efficacité des générateurs de résidus proposés à base d’observateurs
à mode glissant.
Mot clés : Convertisseur multi-cellulaire ,obsérvabilité des systèmes hybrides, diagnostic de défauts,
observateur á mode glissant.

Abstract :
The work presented in this thesis concerns the observation and diagnosis of faults in the 3-cell converter
which is considered to be a hybrid system du to its switching behavior. Indeed, the observability analysis
has been shown for a hybrid time trajectory using a geometric approach based on the computation of the
unobservable subspace along the hybrid time trajectory. A sliding mode observer is then designed for the
observable subspace of the converter. The convergence of the observation error is demonstrated using the
Lyapunov theory. Observer parameters are computed by solving a linear matrix inequality (LMI). The
simulation results show a good reconstruction of the floating voltages of the converter. The second part
is devoted to the diagnosis of converter faults. Indeed, a geometric approach has been applied for the
determination of the subspaces sensitive to a set of faults and insensitive to another set. Fault detection
and isolation is based on the designing of observer-based residual generators. The simulation results show
the efficiency of the proposed residual generators based on sliding mode observers.

Key words :Multi cell converter, observability of hybrid systems, fault diagnosis, sliding mode observer.
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Introduction

Most practical control systems require both analog and logic components. A hybrid sys-
tem is a generic term for such systems. Switched systems are a class of hybrid systems, where
the continuous and discrete dynamics are interacting and cohabit. These systems arise natu-
rally in many automatic applications of control and becoming more and more complex due
to the emergence of complex control techniques. The execution of switched systems can be
defined by a sequence of transitions between modes (sub-systems), in each mode, the system
state evolves continuously according to a dynamical control law until a discrete transition
occurs which drives it to the other modes. The continuous dynamic of each mode may be
continuous or discrete-time but generally is given by differential equations. The discrete va-
riable dynamic is governed by a digital automaton with a countable number of states.

The multilevel voltage converter systems are considered as switched systems and are requi-
red more and more in many applications in industry for their improved performances. These
systems are not a new topologies, some of them are known since 1960 [1], but they were not
used until recently because of certain technical barriers, that have disappeared mainly due to
the improvement of the control theory of switching systems and the intensive computer use
in the control of the process [2]. One of these multilevel voltage converters is the flying capa-
citor also reported as an imbricated cell converter or the multicellular converter. It has been
introduced in the early 1990s for energy conversion and it consists of a series of elementary
cells of semiconductor devices that operate in commutation mode, makes it possible to share
the constraint in tension and improve the harmonic contents of the output waveform and also
allows the reduction of different losses due to commutation of power semiconductors. For all
these offered features and benefits, the multicellular converter becomes more attractive in in-
dustrial applications, especially in renewable energy and automotive high-power applications
[3]. These advantages are acquired when the converter operates in optimal conditions, i.e.,
it is necessary to ensure a particular distribution of the voltage for every cell of the conver-
ter. To this end, a suitable control sequence for switches must be applied. Consequently, the
convergence of the floating capacitor voltages to their references. These properties are lost
if the capacitor voltages deviated from their references, caused by different anomalies that
can affect the functioning of the converter. However, it is important to measure the floating
capacitor voltages, and the use of sensors increases the cost and the complexity of the system.
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The estimation of the floating voltages by using an observer is then an interesting alterna-
tive. Many observers are proposed in the literature to overcome a problem of state estimation
of the multicellular converter. In the two last decades, the sliding mode observer has been
intensively studied thanks to its interesting features and its robustness.

The observability is an important property that should be studied before designing observers
for any system. For the hybrid three cell converter, the observability matrix is never full rank
for each operating mode, but it does not imply the unobservability of the system in a clas-
sical sense. Indeed, new concepts have been recently introduced to analyze the observability
of the states for hybrid systems. First, the Z{TN} observability which is introduced in [4] for
switched hybrid systems gives the condition under which there exists a hybrid time trajectory
that makes the system observable [5]. The second method, based on a geometrical condition
is more recently introduced in [6] and it is based on determining the unobservable subspace
along the hybrid time trajectory.

Safety and reliability are crucial for the operation of power electronic converters. Indeed, the
continuous increase in the use of power converters in complex and sensitive industrial plants,
and the emergence of complex control techniques make it necessary to ensure its safety
and reliability. In power electronics, we distinguish two types of faults, parameter faults,
and discrete faults. Parameter faults depend mainly on the variation of certain parameters
of the converter from their nominal values [7]. Such faults are of low dynamics and can
often be detected before the breakdown of the converter. Capacitance degradation of the
3-cell converter, due to multiple causes such as high ambient temperature, high humidity [8]
and aging of the capacitance are some examples of parameters faults. Discrete faults which
include short and open-circuit of the converter cells are considered as hard faults and lead to
a breakdown of the component if the fault is not detected on time. These faults are of high
dynamics and are often difficult to handle to save the entire component [9]. Therefore, it is
necessary to have reliable diagnostic tools to ensure the good functioning of the converter and
to protect not only the electrical devices that are connected to it and avoid the shutdown of
the production, but also to protect the human operators around. Fault diagnosis is the process
of determining the type, size, location, and the occurrence time of the faults. Indeed, detecting
a fault returns to point out its occurrence, i.e., determine if the current state of the system
and its components are in normal functioning, signaling any deviation from the expected
behavior. While the isolation task consists of analyzing the events to be able to determine
the source of the fault. In the literature, several approaches have been developed to perform
a reliable diagnosis procedure. Methods based on the analytical model consist of knowledge
of the system constituted by the explicit formulation of the analytical model (for example
differential equations). These methods consist of comparing the current behavior of the real
system characterized by the collected information to the theoretical behavior provided by an
analytical model. Consequently, a set of indicator signals are generated so-called "residual
signals". A temporal or frequency analysis of these signals and their evolution should not
only detecting any abnormal behavior of the system but also localize its origin.
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Developed results

The main contribution of this thesis can be summarized as follow :

• Application of geometrical approach based hybrid observability to a hybrid 3-cell conver-
ter model to demonstrate the observability of the floating capacitor voltages under a
known hybrid time trajectory.

• Reconstruction of the floating capacitor voltages of the 3-cell converter using a sliding
mode observer.

• To establish the diagnosis procedure using an analytical model, a faulty model that
takes into account discrete faults in a 3-cell converter is proposed.

• Application of the geometric approach based on observability co-distribution to the
detection and isolation of discrete faults of the 3-cell converter.

• Two diagnosis strategies are proposed. The first is based on the Luenberger residual
generator, while the second is based on the sliding mode residual generator. A compa-
rison between the two proposed strategies is done in terms of robustness to highlight
the best suited to fault diagnosis of the converter.

Thesis organization

The thesis is organized as follows :

Chapter 1 : Throughout this chapter, basic concepts of hybrid systems are presented
to familiarize with hybrid systems, since the three cell converter is considered as a hybrid
system, and different tools that are used to analyze or to control the converter are related to
hybrid systems. Different observability criteria for linear time-invariant, nonlinear affine, and
switching linear time-invariant systems are also presented, and some observation structures
for hybrid systems are given. The end of this chapter is devoted to basic concepts of the fault
diagnosis to familiarize with the diagnosis concepts that will be used in chapter five for fault
diagnosis of the 3-cell converter.

Chapter 2 : Is devoted to a 3-cell converter which will be the subject of observability
analysis and observation in chapter three and fault diagnosis in chapter five. First, properties
and control requirements of the multicellular converter are presented. Thereafter, different
mathematical model of the converter are introduced, and our attention will be focused on
instantaneous and hybrid models, this is the fact of their use along of this thesis. Finally,
some control strategies of the 3-cell converter will be presented.

Chapter 3 : Addresses the observability analysis and observation of the 3-cell converter.
First, a state of art on observability and observation of hybrid systems is presented. Then,
observability analysis of the 3-cell converter is demonstrated using the ZTn-observability
which is the most known for the observability analysis of the hybrid systems. Recently, a geo-
metrical approach is introduced for the observability of the hybrid systems, we have applied
it to show the observability of the floating capacitor voltages of the 3-cell converter. Under a
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control sequence input that made the floating capacitor voltages observable, a sliding mode
observer will be designed for the observable subspace of the converter. The Lyapunov theory
will be used to demonstrate the finite-time convergence of the designed observer. Observer
parameters are derived from a Linear Matrix Inequality solution. The reconstruction of the
capacitor floating voltages is then made from the designed sliding mode observer.

Chapter 4 : First, we present an overview of different methods used for fault diagnosis,
either physical redundancy methods or analytical redundancy methods. Then, the nonlinear
geometric approach to nonlinear fault detection and isolation, which will be applied to the
3-cell converter in chapter five, is introduced. An academic example will be considered to
highlight the approach.

Chapter 5 : This chapter is dedicated to the application of the nonlinear geometrical ap-
proach to the diagnosis of switch faults of the 3-cell converter. First, a nonlinear model that
takes into account the discrete faults of the converter is introduced. Based on this faulty
model, a functional analysis of the capacitor flying voltages is given for each fault situation.
This latter will be useful to study the capacitor floating voltages behaviors in failure mode,
which will depend on the remaining operating modes after the appearance of the fault. Then,
we apply the geometric approach presented in chapter four to switch faults detection and
isolation of the 3-cell converter. The application of the method seems impossible for the
ideal case. For this, we propose a way to ensure the solution to the Fundamental Problem of
Residual Generation (FPRG). Consequently, two types of residual generators are proposed.
The first is based on Luenberger observer assuming that all state variables of the converter
are available to measurement. While the second is based on sliding mode observer assuming
that only the load current is available to measurement. In this case, a sliding mode obser-
ver is designed to estimate the capacitor floating voltages. A comparison between the two
strategies is carried out in terms of robustness to multiple noises and parameter uncertainties.

Finally, concluding remarks and suggestions for future research ideas are discussed in conclu-
sion.
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Introduction

1.1 Introduction

The control of processes consists on the study of the dynamic of different kinds of systems
(Electrical, mechanical, chemical,...,etc) in order to take decision and then make a desired
behavior of the system. A dynamical system can be represented by a mathematical model.
This model is described by means input-output or input-state relations. These relations allow
to design actions to be carried out to impose a desired behavior to the system. Usually, two
kind of systems are distinguished according to a nature of state variables, continuous and
discrete. Continuous dynamic may be represented by a continuous time control system as
a linear system with the state x(t) and the control input u(t). As an example of discrete
dynamics, one can consider a finite-state automaton with discrete states, qi (i = 1, ..., N),
taking value in some finite set Q, and where transitions between different discrete states are
triggered by suitable value of an input variable σ(t). When the input u(t) of the continuous
dynamics is some function of the discrete states qi, and similarly, the value of the input σ(t) to
the discrete dynamics, is determined by the value of the continuous state x(t), a hybrid system
is then arisen. The importance offered by a system modeled as hybrid model is that it consists
of two dynamics (continuous and discrete) which cohabits, defining for each operating mode
a region that limits the system to evolve within of a subspace. For that, several techniques
of control and analyze (stability, controllability, observability) are appeared, mainly with the
technological increase and the intensive computer use in control. This chapter is dedicated
to present some basic definitions used along of this thesis. First, some definitions related
to hybrid systems are presented, mainly, the different classes of hybrid systems as well as
their different modeling formalisms. Followed by the observability and observation issues of
hybrid systems. Finally, some diagnostic tools are given to succeed the designing of diagnosis
procedure of physical systems.

1.2 Basic concepts of hybrid systems

1.2.1 Definition of hybrid systems

A hybrid systems are dynamical systems composed by discrete and continuous states. Their
evolution is given by equation of motion that generally depends on both. The execution of
hybrid system can be defined by a sequence of steps ; in each step, the system state evolves
continuously according to a dynamical law until a discrete transition occurs. The continuous
dynamics of each sub-system may be continuous time, discrete time but is generally given
by differential equations. The discrete variable dynamics of hybrid system is generally go-
verned by a digital automaton with a countable number of states [10]. The continuous and
discrete dynamics interact at "event" or "trigger" times when the continuous state hits certain
prescribed sets in the continuous state space.

Example 1.1 : The heating system is considered as a hybrid system with two commutation
modes. Figure (1.1) represents the graphical representation of hybrid automaton of a heating
system. The system exhibits the continuous dynamic represented by the temperature x(t)
while the discrete dynamic is represented by switching on and off the heating. The tempe-
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Figure 1.1: The graphical representation of hybrid automata of heating system.

rature is regulated around 75o by turning the heating on when the temperature is between
68o and 70o and turning the heating off when the temperature is between 80o and 82o. The
discrete mode of the heating is changed in response to a discrete control command event sent
by a discrete controller. As an example, if the initial discrete mode of the heating is q0, in this
mode, the continuous dynamic is governed by the following differential equation ẋ(t) = −x
with x > 68. Ones the temperature is around 68o and 70o, the control command event "Hea-
ting ON" will change the discrete mode to q1, and the continuous dynamic evolution is given
by ẋ = −x+ 100 with x < 82.

1.2.2 Applications

The reasons to study hybrid systems can be quite diverse. Here, we will provide three sources
of motivation, which are related to [11] :

1. Design of technological systems,

2. Networked control system,

3. Physical processes exhibiting no smooth behavior.

These three sources find its origin in many field, namely :

- Air traffic management : A finite set of manoeuvres, such as speed change, short cut and
detor are used by the air traffic controller to obtain a conflict-free flight environment
[11], [12],

- Simulation of complex process composed by several continuous modes operation [13],

- The supervision of processes and reliability (Safety) of multi-model systems [13],

- Modeling of the dynamic behavior of the systems of response time constrained by their
environment [13],

- Chemical process control : as an example keeping a reference temperature while chemical
reaction take place [12],

- Communication network : Large data flows are conveniently modeled as continuous
variables, while traffic control mechanisms such as routing induce discrete variables
[12],

- Embedded control : as computer disk drive [10],

- Robotic : As example, modeling of the co-operation of two robot manipulators [14].
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1.2.3 Classes of hybrid systems

Research on hybrid systems has a strong multidisciplinary flavor, and different communities
have developed different viewpoints. The researchers in computer science concentrate on
studying the discrete behavior of the system, while the continuous dynamics are assumed to
take relatively simple form [15]. In this case, the discrete model such as automata or finite
state machines, need to be extended concept like time, clocks and continuous evolution to
capture the mixed discrete and continuous evolution in hybrid systems [11]. On the other
hand, the researchers in system and control science, tend to regard hybrid systems as a
continuous system with switching. Indeed, continuous models represented by differential or
difference equations have to be extended to be suitable for describing a hybrid system [11].
The main issues, in this case, become then, stability analysis and control synthesis [15]. Let
consider a system given by its differential equation of the form :

ẋ = fσ(x(t)), (1.1)

where x(t) ∈ Rn is the state vector. f(x(t)) is a vector field and σ is the switching signal.
Then the switching events on hybrid systems can be classified into :

- Autonomous switching of the dynamic.
- Controlled switching.
- Autonomous state-jump.
- Controlled state-jump.

a- Autonomous switching of the dynamics

Autonomous switching are phenomena which appears when the dynamic of the system change
discontinuously. The switching can be caused by a clock if the vector field f depends explicitly
on the time t. As an example :

ẋ = f(x(t), t) =
{
f1(x(t)) if t ∈ [2kT, (2k + 1)T ], k ∈ N
f2(x(t)) if t ∈ [(2k + 1)T, (2k + 2)T ], k ∈ N

(1.2)

In this example we have a commutation between two different modes of operation with a
period 2T . This kind of hybrid dynamical system is called time-dependent switching. In
other hand, if the switching is invoked when the continuous state x reaches a specific surface
on the continuous state space, the system is considered as state dependent switching.
This surface is usually called the "commutation function". As an example, let consider the
following hybrid system

ẋ = fσ(x(t)) =
{
f1(x(t)) if h(x) = x ≤ h1

f2(x(t)) if h(x) = x > h1
(1.3)

h(x) is the commutation function. It can also represent the imposed state variable limits [16].
The figure (1.2) represents an autonomous state dependent switching of a hybrid system.
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Figure 1.2: Autonomous state-dependent switching

b- Controlled switching

This occurs if the system has a discrete input σ that is used to invoke the switching among
different continuous dynamics. Then the vector field of the system of equation (1.1) becomes
f(x(t), σ(t)) and it changes abruptly when the input σ(t) is changed. A switched system with
controlled switching can be described by a controlled switching model. The DC-DC converter
is a simple example of such systems.

c- Autonomous state jump

In this case, when the continuous state reaches a certain sub-space of the state space, the
commutation of the dynamic passes from its current value to an other discontinuously [16].
Figure bellow illustrates the autonomous state jump phenomena.

Figure 1.3: Autonomous state-jump

A simple description of state jump is given as follow. An autonomous jump set is a set S on
which a state jump is invoked [11]. Some relation R, which often called reset map determines
when the state jump is produced as depicted by figure (1.3).

x((t̄−), x(t̄+)) ∈ R (1.4)

t̄ is the time instant at which the trajectory x(t) reaches the set S. Then in this case, the
system is described by the extended model.
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{
ẋ = f(x(t)), for x(t) ∈ S
x((t−), x(t+)) ∈ R(q(t̄−)) for x(t) ∈ S

(1.5)

An illustrative example is a bouncing ball. If the ball touches the ground at time t̄, then its
velocity is instantaneously reversed.

d- Controlled state jump

Are discontinuities in the state trajectory that occur as a response to a control command.
An example in which such a state jump is necessary for satisfying performance requirements
in the automatic gearbox. A state jumps in the gearbox controller must be invoked when the
gearing is changed in order to avoid a jump in the acceleration of the vehicle.

1.3 Modeling of hybrid systems

1.3.1 Hybrid Bond-Graph

The bond graph methodology provides a systematic framework for building consistent and
well-constrained models of dynamic systems across multiple domains. It is a topological re-
presentation that captures the energy-based interactions among the different components
that make up the system. It is a powerful modeling tool, especially when multiple physi-
cal domains are combined to define the system dynamics (electrical, mechanical, hydraulic,
thermodynamic,...etc). The bond graph models based on two principles :

1. Conservation of energy and continuities of power.

2. A lumped parameter approach that converts the physical system configuration to a set
of generic interacting process.

The bond represents the energy connection between two components. There are two power
related variables, effort and flow, associated with each bond. Energy transfer is represented
by power=effort × flow, the rate of change of energy is ∂E∂t . The bonds are represented as
lines with half arrowheads, the direction of the arrowhead representing the direction of energy
flow. The edges, called also signals, represent the signal flows between subsystems which can
either be a flow, an effort, function of effort and flow variables or an external signal [17].
The bond graph were mainly developed to obtain a mathematical model of system as ODEs
or DAEs for simulation, for analysis of structural observability and controlability or for the
design of the controller.
Besides, various proposals to extend the bond graph modeling framework to represent discrete
discontinuities events have evolved during the past two decades. Hybrid Bond Graph (HBG)
extends Bond Graph (BG) by incorporating switched junctions to enable discrete changes
in system configuration. The BG junction may be dynamically switched on (active) and off
(inactive) as system behavior evolves. An active junction behaves like a regular BG junction,
whereas in the off state, all bonds incident on the junction are inactivated. Therefore, an
inactive junction and the connected bonds do not play any part in determining the system
dynamics.
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Example (Hybrid bond graph for the one tank system) : Figure (1.4) represents
one tank water level system. Its hybrid bond graph is depicted by figure (1.5). The input
flow into the tank ensured by the pump, is represented as flow source SF. The two pressures
are : the input flow Op and the output flow Ov. A 0-junction defines each of these variables
(pressures) and connect to the storage element that represent the tank capacity C according
to the section St of the tank. The dissipation element represented by the valve section Sv is
connected to the 1-junction to represent the emptying of the tank through the valve.

Figure 1.4: One tank water level control system

Figure 1.5: Hybrid bond graph for the one
tank system.

1.3.2 Hybrid Petri-Net

Petri Nets (PNs) are widely used to model discrete event dynamic systems (computer systems,
manufacturing systems, communication systems,...etc). A hybrid petri net can be obtained
if one part is discrete and an other part is continuous. According to [18], a hybrid petri net
is a sextuple :
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Q = {P, T, Pre, Post,m0, h}; (1.6)

such that

- P = {P1, ..., Pn} is a finite, not empty, set of places ;

- T = {T1, ..., Tn} is a finite, not empty, set of transition ;

- h : P ∩T = {D,C}, called hybrid function, indicates for every node whether is discrete
mode (sets PD and TD) or a continuous node (sets PC and TC) ;

- Pre : P × T → R+ or N , is input incidence mapping ;

- Post : P × T → R+ or N , is output incidence mapping ;

- m0 : P → R+ or N , is the initial marking.

Example (Hybrid petri net for the one tank system) : Hybrid petri net for the one
tank system is depicted in figure (1.6). It consists of one continuous place P1 represented by
a double circle, two continuous transitions represented by the empty bars T1 and T2, four dis-
crete places P2, P3, P4 and P5 represented by a circle and four discrete transitions represented
by full bars T3, T4, T5 and T6. P1 describes the level x of the tank, P2 and P3 represent respec-
tively the position closed and opened of the valve and P4 and P5 describe, respectively the
OFF and ON of the pump. Continuous transition T1 and T2 describe, respectively the filling
and the emptying of the tank. Discrete transitions T3, T4, T5 and T6 describe, respectively the
controller commands to open and close the valve and to start or to stop the pump.

Figure 1.6: Petri net for the one tank system.

1.3.3 Hybrid automata

A hybrid automaton is a dynamical system that describes the evolution in time the value of
the set of discrete and continuous state variables.

26



Modeling of hybrid systems

Definition 1.1 : A hybrid automaton H is an 8-tuple

H = (Q,X, f, Init, Inv, T,G,R), (1.7)

where :

- Q = {q1, q2, ..., qk} is a finite set of discrete states ;

- X is the continuous state space ;

- f : Q × Rn → Rn is a vector field ; defines the evolution of the continuous states.
Generally given by differential equation.

- Init ⊂ Q×Rn is the set of initial hybrid states ;

- Inv : Q→ 2Rn describes the invariants of the locations ; which describes the conditions
that the continuous state has to satisfy at this mode ;

- T ⊆ Q×Q is a set of all possible discrete transitions ;

- G : T → 2Rn×2Rn is a set of guards, prescribing when a discrete state transition occurs.

- R : T ×X×U → 2Rn represents a reset map, which specifies how new continuous states
are related to previous continuous states for a particular transition.

Definition 1.2 (Directed graph of H) : An oriented graph of a hybrid automaton defi-
ned by H is obtained by associating to each mode qi ∈ Q a node, and to each transition Ti,j
an oriented arc from the node of mode qi to the node of mode qj .

It is often convenient to visualize hybrid automaton as directed graph (Q,T ), with modes
qi ∈ Q and transitions Ti,j ∈ T . For each mode qi ∈ Q we associate, a vector field fqi : Rn →
Rn which describes the evolution of the continuous state in mode qi, and an invariant set
inv(qi), which describes the condition that the continuous state has to satisfy. A transition
Ti,j ∈ T starts at qi ∈ Q and ends at qj ∈ Q. With each transition we associate a guard
G(qi, qj) and a reset function R(qi, qj). Invariant and guard play a complementary roles ;
whereas invariants describe when a transition must take place, the guards serve a enabling
conditions that describe when a particular transition may take place. The reset map is, in
general, a set valued function that specifies how continuous states are related to previous
continuous state for a particular transition.
As an example of a hybrid automaton, figure (1.7) depicts a schematic representation of a
hybrid automaton consisting of three discrete modes. The hybrid state of the system is given
by (q, x) ∈ Q×X. Starting from an initial value (q0, x0) ∈ Init, the continuous state x evolves
according the differential equation

{
ẋ = f(q0, x)
x(0) = x0,

(1.8)

while the discrete state q remains constant q(t) = q0. The continuous evolution can go as
long as x remains in the invariant set of the location q0. If at some point, the continuous
state x reaches the guard condition G(q0, q1) ⊆ Rn, the discrete state may change value
to q1. At the same time the continuous state gets reset to some value in R(q0, q1, x) ⊆ Rn.
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Figure 1.7: Schematic representation of a hybrid automaton with three discrete states.

After this discrete transition, continuous evolution resumes and the whole process is repeated.

Example : Figure (1.8)depicts the topology of dc-dc boost converter, it is considered as
hybrid system since it works in commutation mode due to the opening or closing of the switch
(SW) and the conduction or non conduction of the diode (D). It consists of a resistance R,
an inductance L, a capacitor C, a controlled switch SW and uncontrolled diode (D). In the
modeling, all the resistances like equivalent series resistance of the capacitor rc, inductor
series resistance rL, switch on time resistance rs, and the diode on time resistance rd have
been considered. The output voltage and the capacitor voltage are different due to the ESR
of capacitor, but if the ESR is negligible then we can assume that the output voltage is equal
to capacitor voltage. The state variables are then x1 = i and the output voltage x2 = v.
The dc-dc boost converter is modeled by three operation modes, which depend on the the
switch position (opened or closed) and the conduction or the non conduction of the diode.
All sub models are linear of the form Ẋ = AqX +BqU , where X ∈ R2 is the state vector. Aq
and Bq are the state and input matrices respectively, where q = 1, 2, 3 denotes the mode of
operation. U = E is the source voltage. The hybrid automaton diagram of the dc-dc boost
converter is depicted by figure (1.9), and its dynamic can be described by the following 7-tuple
hybrid automaton :

H = (Q,X, f, T,G, inv, Init), (1.9)

where

- Q = {q1, q2, q3} : represents a set of 3 discrete modes, according to the position of the
switch (SW) and the diode (D).

- X ∈ R2 is the the continuous space, the state vector is then x = [i, v]T .

- f : Q×R2 → R2 is the vector field that assigns to every discrete mode qi (i = 1, 2, 3),
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Figure 1.8: Circuit diagram for dc-dc boost converter

Figure 1.9: Hybrid automaton for the dc-dc boost converter.

a linear continuous dynamic described by the following equation

fqi(x) = Aqix+Bqi , qi ∈ Q, i = 1, 2, 3; (1.10)

with

A1 =

 − rL+rs
L 0

0 − 1
(R+rc)C

 , B1 =
[ 1

L

0

]
,

A2 =
[

− rL+rd
L − 1

L
R

R+rc
( 1
C −

rc(rL+rd)
L ) − R

R+rc
( rc
L + 1

RC )

]
, B2 =

[ 1
L
R

R+rc

rc
L

]
,

A3 =

 0 0
0 − 1

(R+rc)C

 , B3 =
[

0
0

]
.

- T = {T1,2, T2,1, T2,3, T3,1} is the set of all possible transitions between modes.

- G : T → 2R2 is the guard that associates to each edges a condition that enables the
transition between two modes. The guards are as follow :
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G(T1,2) = {X ∈ R2 : i > Iref},
G(T2,1) = {X ∈ R2 : (i = 0) ∧ (v < Vref )},
G(T2,3) = {X ∈ R2 : (i = 0) ∧ (v < Vref )},
G(T3,1) = {X ∈ R2 : v < Vref},

where Iref is the desired reference current of the inductor and Vref is the desired
reference of the output voltage.

- The invariant set of different modes are :

Inv(q1) = {X ∈ R3 : 0 < i < Iref},
Inv(q2) = {X ∈ R3 : i > 0},
inv(q3) = {X ∈ R3 : (i = 0) ∧ (v > Vref )},

- Init ⊆ R2 ×Q : gives the initial states. As example :

Init = q1 ×
(
v0

0

)
, (1.11)

where v0 represents the initial state of the capacitor voltage.

1.4 Solution of switched system

Consider a switched system given by the following equation :

ẋ(t) = Aqix(t) +Bqi , i = 1, ..., N. (1.12)

Suppose that the switching signal is given as follow

S
[t0,tf ]
qi = {x0, (t0, q1), (t1, q2), ..., (tN−1, qN )}; (1.13)

where q1 is the initial activated mode during the time interval [t0, t1] and x0 is the initial
continuous state. It is well known that the solution of a linear time invariant system (LTI) of
the form ẋ = Ax(t) +Bu(t) over the time interval [t0, t1] is :

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bu(τ)dτ ; (1.14)

where eAt is the transition matrix. It can be seen from (1.14) that the most difficult part
in the solution is the evaluation of the integral. If a certain transformation is introduced
to remove the B term, the solution to the original problem can be significantly simplified.
For the switched system, u(t) = 1, an extra-state xn+1(t) = u(t) can be introduced. Clearly,
ẋn+1(t) = 0. Thus the state space equation of the switched system can be rewritten as follow :

[
ẋ(t)

ẋn+1(t)

]
=
[
Aqi Bqi

0 0

] [
x(t)

xn+1(t)

]
(1.15)

Let z(t) be the augmented state vector, and Fqi a matrix of dimension (n+ 1)× (n+ 1), such
that :
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z(t) =
[

x(t)
xn+1(t)

]
, andFqi =

[
Aqi Bqi

0 0

]
.

Then, the augmented system (1.15) can be rewritten as :

ż(t) = Fqiz(t), i = 1, ..., N. (1.16)

Since for each operation mode qi, the continuous dynamic given by equation (1.16) represents
an autonomous equation, then its solution on the time interval [t0, t1] is

z1(t) = eF1(t−t0)z0 (1.17)

with z0 = z(t0) = [x(t0), xn+1(t0)]T = [x(t0), 1]T . And its solution over the time interval
[t1, t2] is :

z2(t) = eF2(t−t1)z1 (1.18)

by substituting (1.17) on equation (1.19), z2(t) becomes :

z2(t) = eF2(t−t1)eF1(t1−t0)z0 (1.19)

Following the same reasoning as above, the solution of the augmented switched system (1.16)
according to the ordered sequence S[t0,tf ]

qi can be computed as follow :

z(t, t0, z0) = eFN (t−tN−1)eFN (tN−1−tN−2).....eF2(t2−t1)eF1(t1−t0)z0 (1.20)

Then the solution of the original switched system (1.12) is given by the n first equations of
the solution (1.20).

1.5 Observability and observation of hybrid systems

In many industrial applications, the knowledge of state variables of the system is of great uti-
lity either for control purposes, monitoring or even for fault diagnosis. For this, two methods
can be distinguished. The first consists of implementing sensors to measure the state variables.
Unfortunately, using multiple sensors involves extra hardware cost and extra weight, and the
system can become bulky, or for technical reasons, the measurement can not be performed.
To overcome all these drawbacks, other option can be used to accomplish the same objectives,
this second method is based on state estimation using observers. State estimation is a fun-
damental problem in many areas of control engineering and has always been the objective of
intensive investigations since the pioneering works of Kalman (1960) and Luenberger (1964).
Many observers are proposed in the literature to overcome a problem of state estimation of
dynamical systems, high gain observer, Luenberger observer, sliding mode observer, adaptive
observer..., etc. The observability of the system is a very important characteristic that should
be checked before any observer designing. By definition, the observability is the ability to
reconstruct the state vector from the available signals of the system. Hence, if the state vec-
tor can be reconstructed, then an observer can be designed to estimate the state variables.

31



Observability and observation of hybrid systems

The rest of this chapter will be devoted to the observability, observation, and diagnosis of
dynamical systems. First, we recall the observability of linear and nonlinear continuous sys-
tems and then we treat the case of switching systems. Also, we give an overview of different
criteria presented in different researches for the observability of both continuous and discrete
states of hybrid systems. Then, we move to cite different observation structures that allow
the reconstruction of the continuous and the discrete states of a hybrid system, followed by
an overview of different works that address the observation of hybrid systems. Finally, we
recall some principle definitions about the diagnosis of dynamical systems.

1.5.1 Observability of linear continuous systems

In this section we recall observability analysis criteria of both linear and nonlinear conti-
nuous systems before pointing our attention on the observability of linear hybrid systems.
Let consider the continuous linear system

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(1.21)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input control vector and y(t) ∈ Rq is
the output vector. A,B and C are matrices of appropriate dimensions.

Definition 1.3 : The continuous state of the system (1.21) is said to be observable if for
any initial state x(t0) = x0 and for t1 > 0, the availability of the input and the output of the
system on the time interval [t0, t1] allows the reconstruction of the initial state x(t0).

generally, to check the observability of linear continuous system, we use the Kalman criterion
given by the following theorem.

Theorem 1.1 : System (1.21) is said to be locally weakly observable if the observability
matrix is of full rank, i.e.,

rank(O) = rank


C

CA
...

CAn−1

 = n (1.22)

1.5.2 Observability of nonlinear continuous systems

Consider a continuous nonlinear affine system of the form

{
ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t)),
(1.23)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input control vector, y(t) ∈ Rq is the
output vector, f(x(t)) and g(x(t)) are smooth vector fields and h(x(t)) is smooth application.
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Theorem 1.2 : The system (1.23) is said to be observable if

rank


dh

dLfh
...

dLn−1
f h

 = n, (1.24)

where Lfh is the Lie derivative of h(x(t)) along the direction of the vector field f(x(t)).

1.5.3 Observability of switched linear system (classical sense)

Let consider a linear switching system given as follow :

Σ :
{

ẋ(t) = Aqix(t) +Bqiu(t)
y(t) = Cqix(t) +Dqiu(t), i = 1, ...,m.

(1.25)

where x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rq, are respectively the state vector, the control input
vector and the output vector. qi ∈ Q = {q1, q2, ..., qm} represent the index of the switching
signal σ(t), which indicate the active mode of the hybrid system. σ(t) is a piecewise and right
continuous function, where its value changes each switching time tk ∈ R+, k ∈ N . Between
two commutations, the discrete state of the switching system is defined by :

σ(t) = qi ∈ Q, ti−1 ≤ t < ti,with t0 = 0. (1.26)

In the case of switching systems, it is often introduced the dwell time between two consecutive
commutations. It represent the stay time in an operating mode, where the continuous states
evolve under external input u(t), and the switching signal remains constant. The dwell time
play a crucial role either in control or in the observation of dynamical hybrid systems. Indeed,
almost all works, assume that there exists a constant time less than the dwell time, such that
the error stabilization is guaranteed. Hence, we assume for the rest of this thesis that the
inequality (1.27) holds and verify the minimum condition of the dwell time.

Td ≤ ti+1 − ti, i ≥ 0. (1.27)

In literature, many approaches are presented to analyze the observability of switched systems.
In this chapter, we give the classical sense of the observability in term of the rank condition
of observability matrix before presenting other approaches in chapter three. Assuming that
the switching signal is well known, we said that the continuous state of the switched system
(1.25) is observable in classical sense, if and only if, the observability matrix of each mode
Oqi , i ∈ Im is of full rank, i.e.,

Rank(Oqi) = Rank


Cqi

CqiAqi

...
CqiA

n−1
qi

 = n. (1.28)

This rank condition is a weak condition for the observability of the continuous states of
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switched system, i.e., the non satisfaction of the above rank condition does not imply that
the state of the switching system can not be reconstructed. Other approaches treat the case
where some modes are not observable in classical sense, that we introduce some of them in
chapter three.

1.5.4 Overview on observability of hybrid systems

In the majority of cases, only partial information about the internal state of the hybrid
system can be measured, and the most of the control strategies need the knowledge of all
state variables of the system, in order to establish a control law based on state feedback, or
to design a diagnosis procedure to detect and isolate any abnormal behavior of the system
or to supervisor the system. For all these purposes, the design of an observer to estimate
the internal states of the hybrid system becomes necessary. However, the observability is a
concept of fundamental importance that establish the conditions for the reconstruction of
the states. For the hybrid systems, the observability involves both the discrete as well as
the continuous dynamic of the system. A hybrid system is said to be observable, when it is
possible to reconstruct both the discrete and the continuous states of the system from the
observed output information [19]. In the two last decades, many researches have addressed
the observability of hybrid systems, and several criteria have appeared in the literature. Ho-
wever, the main difference between these approaches is how the switching signal is viewed ;
some consider it as a fixed and known function of times, others viewed it as an unknown
external signal, others consider it as a result of a discrete dynamical system or it is controlled
and therefore an input [20]. In [21], sufficient conditions for final state observability are given,
and a methodology to design a dynamical observer for a class of hybrid system is presented
in [22]. While the hybrid observer consists of two parts ; a location observer that identifies
the location of the hybrid plant, while the continuous observer produces an estimate of the
continuous states evolutions. The authors assume that all modes of the hybrid system are
observable to guarantee the exponential convergence of the hybrid observer. In [16], [23], [24],
the authors give algebraic conditions for the discrete state observability based on the switch
function reconstruction for a linear hybrid system of two modes. The switch equation is a
function of output and input signals and their times derivatives. The determination of the
sign of the switch function allows to distinguish the active mode at any time. Using the same
reasoning, i.e., the computation of a switch function, they give geometrical conditions for the
observability of the discrete mode of a non linear hybrid system, assuming that the two sub
systems are observable and verifying the transversality concept. While the authors in [25] give
weak conditions, based on the concept of indistinguishability, that are sufficient to guarantee
the uniqueness of the reconstruction of the state trajectory of an autonomous switched linear
system, even if the individual sub-systems are unobservable. They also give a way to recons-
truct the continuous state trajectory, the discrete state trajectory and the switching times. In
[26], observability of switched systems has been investigated. Indeed, the authors introduce
the notion of critical observability for safety critical switching systems, where a set of critical
states must be reconstructed immediately, since they correspond to hazards that may yield
catastrophic events. In [27], the authors treat the strong observability for a class of hybrid
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systems with periodic jumps, they introduce the concept of weak unobservable sub space,
and then provide a structural properties in term of algebraic and geometric conditions to a
strong observability, which can be guaranteed if the weakly unobservable space is restricted
to zero. The authors in [28], deal with switching time observability and switch observability
for both homogeneous and inhomogeneous switched systems, unlike in the work of [25], where
the observability is studied for a homogeneous hybrid systems. Indeed, they characterize the
strong observability by rank condition relaxing then the rank condition given in [25].
In [4] and [29], the authors propose a new concept for characterizing the observability of
switched systems w.r.t the hybrid time trajectory, called Z{TN}-observability. They also give
practical conditions for checking the Z{TN}-observability of the switched system. Different
works are presented as an application of the Z{TN}-observability approach for several swit-
ched system. In [4], [30], [31], [32], [33], [5] and [34], the Z{TN}-observability have been
applied to analyze the observability of the floating voltages of the series 3-cell converter. In
[35], the authors apply the Z{TN}-observability approach to analyze the observability of the
3-cell converter, it is also considered the case when a dc-motor is coupled with a multi-cell
converter. They also show that under certain admissible assumptions, the floating voltages of
the converter and the speed of the dc-motor can be estimated with an acceptable error due
to the fact that the dynamic of the electrical part (multi-cell converter) is much faster than
the one of mechanical part (dc-motor). The author in [36], applied the Z{TN}-observability
to analyze the floating voltages of the parallel multi-cell converter. In [37], the approach has
been investigated to deal with the left invertibility of switched linear system.
In [38] and [39], a geometrical conditions for the observability of hybrid systems are pre-
sented. The authors introduced an algorithm to compute the unobservability subspace of a
hybrid system along of a hybrid time trajectory. Then, they proved that if the unobservable
subspace is restricted to zero, then the hybrid system is observable along of the hybrid time
trajectory, i.e., an uncorrect application of the switching signal, the system losses the obser-
vability characteristic. The approach has been applied to a multicellular converter as in [40],
[41], [2] and [42]. In [20], the authors give relaxed geometrical conditions for observability of
the continuous state of a hybrid system comparing with the works of [38] and [39].
Recently, the almost always observability is introduced and characterized for an autonomous
hybrid system in [43]. Indeed, the authors give a geometrical condition for the possibility
reconstructing the current continuous component of the state, from the observable output,
for almost switching time. They also investigate the optimal location of additional sensors
that make the system almost always observable. In [44] a geometrical condition for the ob-
servability of the multi-cell converter is investigated. Indeed, the authors give a new results
to compute the unobservable sub space along of a hybrid time trajectory, based on the in-
tersection of all unobservable sub space of each mode. In [45], the authors design an output
feedback control of the multi-cell converter using a super twisting observer. They establish a
switching control strategy that guarantee the existence and the finite time stability of a limit
cycle. Also, they show that the repetitive switching sequence of the limit cycle guarantee the
continuous state observability. The authors in [46] have addressed the observability of the dis-
crete state of a switching discrete time linear systems. They show that the mode-observability
problem return to the existence of a discerning control sequence.

35



Observability and observation of hybrid systems

1.5.5 Observation of hybrid systems

Several observer structures are proposed in order to estimate the continuous or the discrete
states or both for a switching systems. The main difference between these structures is related
to knowledge of the continuous state or the discrete state [47]. Figures (1.10), (1.11), (1.12)
depict these structures.

Figure 1.10: a- Observation of the continuous state when the switching signal is known. b- Observation
of the discrete state when the continuous state is available to measurement.

Figure (1.10.a) depicts the first structure for the continuous state estimation of the hybrid
system when the switching signal is known. Where (1.10.b) depicts the second structure for
the estimation of the switching signal assuming that the continuous states are available to
measurement.

Figure 1.11: a- Identification of the switching signal using the continuous state estimation. b- Esti-
mation of the continuous states after identifying the switching signal.

Observer structure based simultaneous estimation of the continuous and discrete states of
a hybrid system is given by figure (1.11). Indeed, figure (1.11.a) depicts the observation
structure of the discrete state using the estimation of the continuous state, provided by the
continuous observer. While figure (1.11.b) depicts the observation structure of the continuous
state using an estimation of the discrete state provided from the discrete observer.

Figure (1.12) show an other structure for the simultaneous estimation of continuous and
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Figure 1.12: Identification of the switching signal using a stuck of continuous observers and an
identification algorithm

discrete states of a hybrid system. The strategy based on the designing an observer for each
mode. A decision algorithm is then designed to reconstruct the switching signal.

1.6 Basic concepts on fault diagnosis

With the massive growth of the technologies in the last decades, more expected from auto-
matic systems, where these systems are expected to perform more complicated and complex
tasks. However, whatever the productivity and effectiveness of these systems, they are still
subject to malfunctions. There are many factors that can cause these malfunctions. They can
be external factors that physically damage the components or sensors of the systems (ex :
under harsh weather condition), or they could just be an ordinary degradation of the overall
performance of the systems, i.e., the internal part of the manufacturing machine that has
not been maintained for a long time. All these factors can be the origins of the appearance
of faults on the system. A fault is said to have occurred, whenever the systems start to be-
have abnormally and are not able to perform the task well. If the system does not have a
fault detection procedure to handle the faults at the occurrence time, these faults can lead
to negative consequences such as the damage of the system, injuries or loss of valuable hu-
man life, economic loss, and also unhealthy effects on the environment. To avoid these heavy
consequences, a reliable diagnosis procedure is necessary. The main purpose of a diagnosis
procedure is determining the type, size, location, and the occurrence time of the faults, we
refer then to fault detection and isolation procedure (FDI). In this section, the basic concepts
of fault diagnosis will be given. We also give an overview of existing structures dedicated to
fault diagnosis that are developed over the years. Starting by clarifying the definition of some
concepts specific to fault diagnosis.

Fault : A fault is an unpermitted deviation of at least one characteristic property (feature)
of the system from the acceptable usual standard condition [48].
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Failure : A failure is a permanent interruption of a system’s ability to perform a required
function under specified operating condition [48].

Malfunction : A malfunction is an intermittent irregularity in the fulfillment of a system’s
desired function, i.e., a temporary interruption of a system’s function [48].

Residual : Signal designed as an indicator of functional or behavioral anomaly [49].

Fault diagnosis : The task of fault diagnosis consists in determining the type, the size and
the location of the most possible faults, as well as its time of detection [49].

1.6.1 Diagnosis performances criteria

The performance of a diagnosis technic is characterized by a number of important and quan-
tifiable criteria. These performances describe the efficiency of the diagnosis procedure.

Detectability : defines the ability of the diagnosis procedure to detect the fault occur-
rence. This criterion is related directly to the residual signals, that must be sensitive to the
considered faults.

Sensitivity : characterizes the ability of the diagnosis system to detect faults of certain
magnitude (faults that have their effects on residual closed to zero). It depends not only on
the residual structure but also on the ratio of the measurement noise magnitude to that of
the fault. According to [50], the residuals are sensitive to a fault, if this latter has an impact
on the output signals of the system.

Isolability : consists on the ability of the diagnosis system to distinguish between faults.
i.e., locate which part of the system has been affected by the fault. This criterion is related to
the residual structure which must allow the discrimination between multiple faults to locate
their origins. Multiple simultaneous faults are in general more difficult to isolate than a single
fault. Also, the interplay between faults and disturbances, noise, and model errors may lead
to uncertain or incorrect isolation decision. Furthermore, some faults may be non-isolable
from one another because they act on the system plant in an indistinguishable way [51].

Speed reaction : consists on the ability of the diagnosis system to detect the faults with
reasonable small delay after their occurrence. In practice, this criterion can be a determinant
factor to avoid a disaster (ex : in nuclear stations and aeronautic applications).

Robustness : determines the ability of the diagnosis procedure to detect the fault inde-
pendently of unknown inputs (disturbances, parameter uncertainties and modeling errors).
Fault detection and isolation (FDI) methods that are able to handle these unknown inputs
are referred to as robust. Robust diagnosis approach avoid false alarms.
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1.6.2 Type of faults

A fault is a behavior anomaly within a physical system. It’s corresponds to a deviation from
the normal behavior of the system, of its control system, or of its instrumentation system
(sensors). Then we distinguish :

Actuator fault : actuator fault is a failure representing a total or partial loss of an actuator
leading to the loss of a control action on the system [52]. This type of fault act directly on
the system and will therefore influence the whole process affecting the system variables. It
can be considered as additive fault as described by figure (1.13).

Figure 1.13: Additive actuator and sensor faults onto the system

The input to the system is expressed by ufi = ui + fi. As an example of an actuator fault,
the damage of the pitch control of an aircraft, which causes great difficulty in controlling the
pitch speed and the pitch angle of the aircraft [53].

Sensor faults : A sensor fault represents an error in the measurement of a physical quan-
tities, and it can be partial or total [52]. Basically, sensor faults do not affect the process of
open loop systems, such as the one shown in figure (1.13). However, in closed loop systems as
shown in figure (1.14), where the output is used to generate the control signal, sensor faults
will indirectly affect the operation of the system.

Figure 1.14: sensor fault affects a closed-loop system

The cause of sensor faults might be due to wear and tear of the sensors leading to inaccurate
measurement or total failure of the sensors yielding zero measurement [53].

System faults : System faults are all those that affect the system components other than
actuator and sensors. They act on changing system parameters. This type of faults is difficult
to diagnosis because of variety of failure situations [52].
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1.6.3 Different structures of diagnosis using an observer

The diagnosis of physical systems that are described by a mathematical model in the form of
state equations, consists on studying the behavioral coherence of the model with respect to
the real system. Diagnosis based observer approaches allow comparing the measured variables
to the estimated variables provided from an observer. Figure (1.15) depicts the principle
structure of fault diagnosis using an observer.

Figure 1.15: Observer-based diagnostic principle

An observer-based diagnosis is a technique that has been the subject of several developments.
This involves state estimation from the knowledge inputs and outputs of the system and using
the output estimation error as residual. Ideally, in free-faults conditions, this residual should
be substantially zero, and deviate significantly from zero when a fault occurs on the system.
Detecting the occurrence of faults is generally always feasible ; however, its isolation is more
delicate. Hence, a bank of observer piloted by a set of different input and output signals is
then frequently designed. The analysis of the generated residuals by these observers associated
with a decision logic allows the isolation of the faults. Different diagnostic structures using a
bank of observers can be used for isolating sensor and actuator faults.

Dedicated Observer Scheme (DOS) :

In the case of dedicated observer scheme (DOS), as many observers as faults are synthesized,
each one is considered as a residual generator sensitive to only a specific fault. Thus, the
occurrence of the fault is indicated by the observer of bad estimation which allows fault
detection and isolation. Figure (1.16) shows the principle of the DOS structure.

Simplified Observer Scheme (SOS) :

In the case of a simplified observer structure, only one observer is designed such as will be
sensitive to a set of faults. If one of the faults in which the observer is sensitive occurs, the
observer provides bad estimation, then the generated residuals deviate from zero indicating
the presence of a fault. Figure (1.17) shows the principe of the SOS structure.
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Figure 1.16: Dedicated observer scheme
(DOS) Figure 1.17: Simplified observer scheme (SOS)

Generalized Observer Scheme (GOS) :

In the case of a generalized observer scheme, q observers are designed, each one is sensitive
to one fault. Figures (1.18) and depicts the generalized observer structure for both sensor
and actuator faults detection and isolation. If a fault occurs, the estimation of the sensitive
subspace will be bad. Hence, all residuals except one will be sensitive to the occurred fault.

Figure 1.18: GOS-based sensor FDI Figure 1.19: GOS-based actuator FDI

1.7 Conclusion

The aim of this chapter is to familiarize with the basic concepts of hybrid systems. These
systems that arise in many industrial applications, which has attracted the community of
researchers to develop the theory for hybrid systems. This is mainly due to advances in com-
puter technology in recent years, which allowed the implementation of very complex modeling
and control algorithms. In the literature of hybrid systems, several modeling formalisms have
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been developed, three types are presented, Bond Graph, Petri Net and Hybrid automaton.
This later is adopted along of this thesis and used to model the three cell converter in chapter
two. Also, the observability of hybrid system in classical sense is presented, and different struc-
tures of observation of hybrid system is discussed. These two issues of concern will be studied
convenably for the three cell converter in chapter three. The end of the current chapter is
dedicated to introduce some basic concepts of fault diagnosis, mainly, diagnosis performance
criteria, type of faults and different structures of fault diagnosis based on observers. This will
be as a tool for chapter four and five where the diagnosis of the 3-cell converter is performed.
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Multicellular converter : Modeling and
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Introduction

2.1 Introduction

Many industrial applications require more and more the use of the multi-level voltages conver-
ter for performance improvements on one hand and costs reducing on the other hand. The
multi-level voltages converter is not a new topology, some of them are known since 1960,
but they were not used in industry until recently because of certain technical barriers. These
converters have been reappeared mainly due to the improvement of the control theory of
switching systems and the intensive computer use in the control of the processes. This chap-
ter is devoted to the study of the 3-cell converter, which can generate several voltage levels
in the output voltage signal. The mathematical modeling of the converter is a primordial
step to analyze its behavior and before designing any controlling law, or the designing of an
observer, or carrying out a diagnostic task. For this, we present the different existing models
of the 3-cell converter. Thereafter, we present some control law using these different models.

2.2 An overview on control of multicellular converter

The multicellular converter shares the constraint in elevated tension of the power source by
dividing it over several cells, this limits the voltages that sustained by the semiconductors.
The later operate in switching mode, it can be either closed or opened, which allows changing
the operating mode of the converter according to the switch states, that allows generating
several voltage levels on the output voltage signal, which is increasingly requested more and
more by industrials. The switches are considered as ideal [54], so their behavior can be mo-
deled by a discrete state(0 for closed and 1 for opened). Therefore, it can be considered as a
hybrid or switching system. The main objectives of the control strategy of the multicellular
converter consist of computing a control law to have a desired average output voltage and
the desired load current to supply electric machines. This is obtained by a commutation bet-
ween different operating modes at an appropriate switching frequency of the semiconductors.
Consequently, the different signals are chopping at the switching times, and this allows the
appearance of several undesirable harmonics on the output signal. This is why it is necessary
to design control techniques minimizing the appearance of this unwanted phenomenon. Ma-
thematical modeling is of a particular interest step before any study designing of the control
law. However, the multicellular converter can be described by continuous variables (generally
the load current and floating voltages), but also with discrete variables (cell states). In li-
terature, the multicellular converter is described by different mathematical models such as
the average model, harmonic model, instantaneous model, and hybrid model. On the first
one, the discrete variables are replaced by their average values over the switching period [54].
The obtained model is well defined as the switching period is less than the time constant of
the converter, and it is continuous which allows the possibility of several linear and nonli-
near control design. Whereas, the instantaneous model called also direct model, represents
accurately the state of each commutation cell, i.e., with their real values(0 or 1) over the
switching period, and takes into account the instantaneous state of the state variables. Thus,
all harmonics of high frequency related to the switches commutation will be represented in
this model. Furthermore, the nonlinear behavior of the converter can be captured using the
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nonlinear instantaneous model [3]. However, the hybrid model of the converter has been at-
tracted the attention of several researchers in recent years, while fully justifiable since the
dynamic behavior of the converter is based on both continuous and discrete state variables.
The choice between these different models depends mainly on its use(control design, observa-
bility analysis, observer design, diagnosis). In the literature, several control approaches have
been proposed. However, the proposed control techniques are based on all cited mathemati-
cal models. In [54] several control techniques are proposed. Nonlinear approaches have been
applied to the average model. The first, based on the exact input-output linearization of
the nonlinear average model. However, several drawbacks are associated with this approach.
Indeed, a singularity point can appear in the neighborhood of an average value of the current
close to zero, and the saturation of the control signal. But, the main limitation of this control
technic is that it requires precise knowledge of the converter parameters [54]. To overcome
these disadvantages, another approach based on the Lyapunov theory is proposed. All these
proposed technics require the complete knowledge of all state variables using additional sen-
sors. A pseudo-observer is than proposed to overcome the use of sensors. Using the average
model, the author proposes another control technic using fuzzy logic. From a dynamic point
of view, this type of control is highly efficient and robust [54]. Always using fuzzy logic, the
same author uses the inverse of the harmonic model to design a control law. In [55], the
authors propose a hybrid automaton to control the two cell converter. They show that the
equilibrium zone is attractive and invariant under the defined invariance set of each operating
mode, which means that the control law guarantees a practical attractive to their reference
points. This control strategy is then generalized to a 3-cell converter in [56]. Recently, a very
interesting control approach has been proposed to control of switched affine linear systems
[57]. The control problem is formulated as a desired limit cycle stabilization using a hybrid
Poincaré map approach. Indeed, the author proposes a new control automaton scheme by
using a hybrid model of the 3-cell converter [3]. The proposed control strategy requires a
deep analysis of the 3-cell converter operation for each mode. The control scheme is divided
into two-controller blocs, the transitory state controller and the steady-state controller. The
first controller guarantees a fast convergence to the steady-state with a minimum number
of commutations, whereas the second controller ensures the local asymptotic stability of the
predefined limit cycles. Using the hybrid model of the 3-cell converter, the authors in [58]
have proposed a control approach based on a state-space partition, by solving a bilinear ma-
trix inequality to guarantee practical stability. The main idea of this control strategy is to
assign each discrete mode a quadratic region. The control switching law is then based on the
selection of the subsystem that has the highest decrease of Lyapunov function. In [59] the au-
thors propose a method for computing optimal state feedback for continuous switched affine
systems exhibiting cyclic behavior in steady-state. They proved that the optimal trajectory
synthesis implies to determine singular arcs of the trajectory. The interpolation of the solution
through a neural network yields a state feedback control law. The approach is then applied
to a 3-cell converter. In [60], a predictive control law is proposed using the hybrid model. The
control strategy consists at each switching period, computing the distance between the refe-
rence point and the reached point of each configuration. The later, which corresponds to the
minimal distance is selected. The approach has been compared to a PWM control strategy,
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and it has been experimentally validated. Other approaches have been proposed using sliding
mode theory, as in [61], where the proposed sliding surfaces guarantee the attractiveness of
the state variables of the 3-cell converter to their references. The authors in [47] propose a
sliding direct control law using the Lyapunov theory to show the convergence of the state
variables to their references. Furthermore, adjacency constraints are given in order to improve
the performance of the system and then minimizing the harmonic content of the load current
and the output voltage. A second order super twisting control algorithm has been proposed
to regulate the speed of a dc-motor connected to a 3-cell converter in [62]. The authors give
away to generate several output voltage levels of the converter that supply the dc-motor. A
practical realization of the proposed control algorithm is presented, and the results are very
acceptable. Other approaches using the petri-net formalism have been proposed as in [], or
the passivity approach based control which has been proposed in [63].

2.3 Necessity of multilevel topologies

Before starting to explore the multicellular converter, it is convenient to give an overview
of the common multi-level conversion structures and their properties. The increase of the
world energy demand has entailed the appearance of new power converter topologies and
new semiconductor technology capable to drive all needed power. However, there is a rough
competition between the use of classical power converter topologies (two-level converters)
using high voltage semiconductors and new power converter topologies (multi-levels conver-
ters) using medium voltage devices [64]. Nowadays, multilevel converters are a good solution
for power applications, since they can achieve high power using medium power semiconductor
topology. They present great advantages compared with classical topologies. These advan-
tages are fundamentally focussed on improvements of the output signal quality, which can be
more improved as the number of levels increases reducing the total harmonic distortion (THD)
of the output waveforms. These properties make the multi-levels converters very attractive
to industry and researchers all over the world that spend great efforts trying to improve
the multi-levels converters performances such as control simplification and performance of
different optimization algorithms to enhance the THD of the output signals, the balancing
of the dc capacitor voltages, and the ripple of the currents. The multilevel converter is not
a new topology, some converters are known since 1960s [65], [1], but they were not used in
industry until recently because of certain technical barriers [65]. The first multilevel conver-
ter introduced is the series-connected H-Bridge, which is also known as cascaded H-Bridge
(CHB) in the late 1960s. In the same year, the low power flying capacitor converter has been
introduced [1]. In 1975, The diode clamped converter (DCC) was introduced for the first
time [32]. The DCC concept evolved into the three-level neutral point clamped (3L-NPC),
and it is considered as the first real multilevel converter for medium voltage application [66].
Around 1995, the clamped H-Bridge would be reintroduced for more relevance in industry
application [1]. In the early 1990s, the flying capacitor converter which introduced for low
power in the 1960s, developed into the medium-voltage multilevel converter topology and has
been reported as the imbricated-cell or multicellular converter [1], [54] [67]. These structures
can be considered as the basic structures of multilevel energy conversion, and many of its
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properties are common with the new structures of nowadays.

2.4 Multicellular converter : topology, properties and control
requirements

Figure (??) depicts the topology of the multi-cell voltage-source converter leg. It is basically
composed of p elementary cells associated in series and separated by (p− 1) floating voltage
sources indicated by capacitors Cj , (j = 1, ..., p− 1).

Figure 2.1: Multicellular converter

Each elementary cell called also commutation cell (figure (2.2)), consists of a pair of switches.
Each of these switches being represented as an IGBT with an antiparallel diode. The two
switches of any pair must always be in opposite states, which is obtained by controlling the
two IGBT with quasi opposite signals for each commutation. The blocking cell switch has
to sustain a voltage equal to E

p , where E represents the source voltage which can be chosen
accordingly to the desired output voltages. Each commutation cell is controlled by a binary
control signal uk. uk = 1 means that the upper switch of the kth cell is conducting and the
lower switch of the same cell is not conducting. uk = 0 means that the upper switch is non
conducting and the lower switch is conducting.

Figure 2.2: Elementary commutation cell

The functioning safety of the converter depends directly on a good distribution of the vol-
tage for each cell. This is why, it is necessary to ensure the balancing of the voltage across
the floating capacitors. The converter features offer the possibility to ensure this balancing
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by acting on the switches control signals. So, a suitable control sequence for switches must
be applied. Otherwise, the floating voltages deviate from their references and the converter
features are lost.

In order to study the multicellular converter properties, some assumptions should be consi-
dered [54] :

- The switches are considered ideals.

- The dead time of the commutation is considered to be zero.

- The voltage sources are considered to be ideals.

- The duty cycle is the same for all switching cell control signals.

The cell index number (k = 1, ..., p) starts from the closest cell from the load R-L. Even for
the capacitor index number (j = 1, ..., p − 1) starts from the closest capacitor to the load
R-L. The state variables and the input control signals can be chosen as :

- The floating voltages vcj , (j = 1, ..., p− 1) across the floating capacitors.

- The load current il that flows the load R− L.

- The control input signals uk ∈ {0, 1}, with (k = 1, ..., p)

In order to share the same constraint in tension over all cells (vcellk = E
P ), the floating

voltages vcj should have a difference between two successive cells equal to vcj − vcj−1 = E
p ,

with (j = 1, ..., p− 1). In this case, the following property is verified.

Property 1 : For a p-cell converter, each floating capacitor must have a voltage equal to
vcj = jEp , (j = 1, ..., p− 1).

In this case, the output voltage signal has (p+ 1) voltage levels.

Property 2 : For a p-cell converter, one can have 2p different topologies and (p+1) voltage
levels in the output voltage signal (0, Ep , ...,

p−1
p E,E).

Let α be the duty cycle of the cell control signals. By definition, the duty cycle is defined as
the average value of the control input signal over the switching period. Noted that the duty
cycle is assumed to be the same for all control input signals.

α =< u1 >=< u2 >= · · · =< up > (2.1)

with < u > represents the average value of u. The duty cycle value depends on the desired
load current. In the steady state (identical voltages across all switching cell), the average
value of the output voltage vo has the following reference value [3] :

< vo >ref= α
p∑

k=1
< vcellk >= αE (2.2)

In steady state, using the equation of the current dynamic, we get :
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α = Iref
Imax

(2.3)

where Iref and Imax represent respectively the reference current and the maximal current
which can flows the load R-L. This latter is equal to E

R .

Property 3 : For a p-cell converter, if the duty cycle α ∈ [k−1
p , kp ], then the output voltage

will be between (k − 1)Ep and kEp over a switching period.

Let φ be the phase shift between the control input signals. We have then these properties.

Property 4 : For a p-cell converter, if all control signals have the same duty cycle and are
phase shifted by 2π

p , then the output voltage ripple is divided by p.

Property 5 : For a p-cell converter, if we impose the same duty cycle for all control input
signals and a regular phase shift equal to 2π

p , then the apparent commutation frequency of
the output voltage vo is multiplied by p.

2.5 Modeling of the multicellular converter

In the literature, researchers have proposed several mathematical models of the converter,
instantaneous model, average model, harmonic model and hybrid model. The choice between
them depends on its use (analysis, control, observation, diagnosis). In the current section, we
focus our attention on the instantaneous and hybrid modeling of the p-cell converter. These
two models will be used along of this thesis. However, we just give the definitions for the two
other models.

2.5.1 Average model

This model is obtained by replacing each variable (state variables and control inputs) by their
average values over the switching period [54], tacking into account that the switching period
must be small then the time constant of the system [3]. The obtained model is continuous and
offers the possibility to synthesize a certain number of nonlinear control laws. Furthermore,
the average model use the duty cycle as the unique information concerning the switching
cell. Besides, the phase shift of the control signals is not considering, this implies that the
average model does not allow to highlight the harmonic phenomena at the switching times
[32]. Consequently, the natural balancing of the floating voltages, which is essential to benefit
from all advantages that offers the multi cellular converter, is not respected.

2.5.2 Harmonic model

The harmonic model is based on Fourier series decomposition of different signals as the control
inputs, the output voltage and the load current. It allows to obtain a dynamic representation
that take into account the harmonic phenomena under some assumptions as :

- The time constant of the load is supposed less than a switching period.

49



Modeling of the multicellular converter

- The current is assumed reaching the steady state.

- The floating voltages are supposed constants over the switching period.

- The dead time between two commutations is supposed zero.

- The switches are considered ideals.

- The load is considered inductive.

More about this model can be found in [54].

2.5.3 Instantaneous model

Instantaneous model called also direct model, represents accurately the state of each com-
mutation cell, i.e., with their real values (0 or 1) over the switching period, and takes into
account the instantaneous state of the state variables of the converter [32]. Thus, all harmo-
nic or high frequency related to the switches commutation will be present in this model [54].
Furthermore, the nonlinear phenomena of the converter can be captured using the nonlinear
instantaneous model [3].
To describe the dynamic behavior of the p−cell converter using the instantaneous mo-
del, we have to give (p − 1) equations related to the evolution of the floating voltages
vcj , (j = 1, ..., p − 1) of each capacitors Cj , and one equation related the current flowing
the load R-L.

The voltage evolution across the jth capacitor is related to the current flowing through the
capacitor Cj ,

dvcj

dt
= 1
Cj
icj (2.4)

The current flowing the capacitor Cj is related to the state of their adjacent cells and load
current, it is given by :

icj = (uj+1 − uj)il, j = 1, ..., p− 1. (2.5)

Substituting equation (2.5) into equation (2.4), we obtain :

dvcj

dt
= 1
Cj

(uj+1 − uj)iL, j = 1, ..., p− 1, (2.6)

which describes the evolution of the floating voltage of each capacitor. Other hand, the output
voltage of a p-cell converter, denoted vo, is given by :

vo =
p∑

k=1
ukvcellk , (2.7)

with vcellk represents the voltage across the kth cell, it is given by :

vcellk = vck
− vck−1 , k = 1, ..., p. (2.8)

Thus, by substituting (2.8) into (2.7), the output voltage across the load is :
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vo =
p∑

k=1
(vck
− vck−1)uk, (2.9)

with vc0 = 0 and vcp = E.
The dynamic behavior of the load current is :

diL
dt

= vo
L
− R

L
iL. (2.10)

Substituting equation (2.10) into (2.9), we obtain :

diL
dt

= −R
L
iL + 1

L

p∑
k=1

(vck
− vck−1)uk. (2.11)

Finally, the instantaneous model of the p-cell converter associated to a load R-L is described
by the following equations :

Σp−cell :


dvck
dt = 1

Ck
(uk+1 − uk)iL

diL
dt = −R

L iL + 1
L

∑p
k=1(vck

− vck−1)uk
k = 1, ..., p. (2.12)

With vc0 = 0 and vcp = E. And where x = [vc1 vc2 ... vcp−1 iL]T ∈ Rn is the state
vector, u = [u1 u2 ... up]T ∈ {0, 1}p is the control input vector. Model (2.12) can be put
in a compact form :

ẋ = A(u)x+B(u), (2.13)

where :

A(u) =


0 · · · 0 u2−u1

C1... . . . . . . ...
0 · · · 0 up−up−1

Cp−1

−u2−u1
L · · · −up−up−1

L −R
L

 , B(u) =


0
. . .
0

E
Lu3

 .

Moreover, the model (2.12) can be rewritten as a nonlinear affine model of the form :

ẋ = g0(x) +
m∑
k=1

gk(x)uk, (2.14)

and where g0(x) and gk(x), k = 1, ..., p, are smooth vector fields. Let g(x) = [g1(x) · · · gp(x)],
then :

g0(x) =


0
...
0

−R
L iL

 , g(x) =



− iL
C1

iL
C1

0 0 · · · 0 0
0 − iL

C2
iL
C2

0 0 · · · 0
... . . . . . . . . . . . . ...

...
0 · · · · · · · · · · · · − iL

Cp−1
iL

Cp−1
vc1
L

vc2−vc1
L

vc3−vc2
L · · · · · · vcp−1−vcp−2

L

E−vcp−1
L


This model will be used for fault detection and isolation of the converter switch faults in
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chapter 5.

2.5.4 Hybrid model

It is clear that the multicellular converter is a switching system, since it works on commutation
mode. The opening and the closing of the switches by the control signals u ∈ {0, 1}, allow to
select only one operating mode each commutation. This is why it is judicious to model the
multicellular converter as a hybrid system. Many works are presented the hybrid model of the
multicellular converter [32], [3], [47],[68],...etc. In this section we propose to model the 3-cell
converter, this choice is based on its use along of this thesis. It consists of 3 commutation
cells, two floating capacitors C1 and C2, a load R-L, a voltage source E. Therefore, 23 = 8
different operating modes, 4 voltage levels (0, E3 ,

2E
3 , E), 3 control inputs u1, u2 and u3. Figure

(2.3) depicts the 3-cell converter.

Figure 2.3: A three-cell converter

The continuous variables of the 3-cell converter correspond to the capacitor voltages vc1 , vc2 ,
and the load current iL. The cells states (u1, u2 and u3 combinations offer eight discrete
modes as described by table (2.1).

modes q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

output voltages 0 E
3

E
3

2E
3

E
3

2E
3

E
3 E

Table 2.1: Different operating modes associated with the cell states and the output voltage in steady
state for the 3-cell converter.

The hybrid model of the 3-cell converter can be described by the following 6-tuple hybrid
automaton :

H = (Q,X, fqi , T,G, Init), (2.15)

where :
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- Q = {qi, i ∈ 1, · · · , 8} is a set of discrete states of the converter. For a 3-cell converter,
we distinguish eight different discrete modes, each one corresponds to a specific topology
of the converter as presented below.

- X = {x ∈ R3/(0 ≤ vcj ≤ E) ∧ (0 ≤ iL ≤ Imax), j = 1, 2} is the continuous state space
of the converter. Where vck

is the floating voltage of each capacitor, and iL is the load
current.

- T = {Ti,j , i, j ∈ 1, · · · , 8, i 6= j} represent a collection of all possible transition between
all operating modes.

- G : T → 2X represents the guard conditions.

- Init ⊆ X ×Q gives the initial hybrid states.

- fqi is a vector field such as fqi : Q×R3 → R3, that describes the dynamic behavior of
the converter for each operating mode, it is defined by the following equation :

ẋ = fqi(x, u) = Aqix+Bqi , i = 1, · · · , 8 and qi ∈ Q. (2.16)

Aqi ∈ R3×3 and Bqi ∈ R3 are matrices of appropriate dimension. Different state equa-
tions for each operating mode are presented below.

Mode q1 (u1 = 0, u2 = 0, u3 = 0) :

Figure (2.4) shows the 3-cell converter in mode q1.

Figure 2.4: 3-cell converter in mode q1

In this situation the dynamic behavior can be represented by the following equations.
Note that in the current mode, the output voltage vo = 0.

Σq1 :


ẋ =


0 0 0
0 0 0
0 0 −R

L

x
v0 = 0

(2.17)

Mode q2 (u1 = 1, u2 = 0, u3 = 0) :

Figure (2.5) shows the 3-cell converter in mode q2.
The dynamic behavior can be represented by the following equations. Note that the
output voltage vo = vc1 .
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Modeling of the multicellular converter

Figure 2.5: 3-cell converter in mode q2

Σq2 :


ẋ =


0 0 − 1

C1

0 0 0
1
L 0 −R

L

x
vo = vc1

(2.18)

Mode q3 (u1 = 0, u2 = 1, u3 = 0) :

Figure (2.6) shows the 3-cell converter in the mode q3.

Figure 2.6: 3-cell converter in mode q3

The dynamic behavior can be represented by the following equations. Note that in the
current mode, the output voltage v0 = vc2 − vc1 .

Σq3 :


ẋ =


0 0 1

C1

0 0 − 1
C2

− 1
L

1
L −R

L

x
v0 = vc2 − vc1

(2.19)

Mode q4 (u1 = 1, u2 = 1, u3 = 0) :

Figure (2.7) shows the 3-cell converter in mode q4.

Figure 2.7: 3-cell converter in mode q4
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In this situation, the dynamic behavior of the 3-cell converter can be represented by
the following equations. Note that in the current mode, the output voltage v0 = vc2 .

Σq4 :


ẋ =


0 0 0
0 0 − 1

C2

0 1
L −R

L

x
v0 = vc2

(2.20)

Mode q5 (u1 = 0, u2 = 0, u3 = 1) :

Figure (2.8) shows the 3-cell converter in mode q5.

Figure 2.8: 3-cell converter in mode q5

In this situation, the dynamic behavior can be represented by the following equations.
Note that in the current mode, the output voltage vo = E − vc2 .

Σq5 :


ẋ =


0 0 0
0 0 1

C2

0 − 1
L −R

L

x+


0
0
E
L


vo = E − vc2

(2.21)

Mode q6 (u1 = 1, u2 = 0, u3 = 1) :

Figure (2.9) shows the 3-cell converter in mode q6.

Figure 2.9: 3-cell converter in mode q6

The dynamic behavior of the converter can be represented by the following equations.
Note that in the current mode, the output voltage vo = E + vc1 − vc2 .

Σq6 :


ẋ =


0 0 − 1

C1

0 0 1
C2

1
L − 1

L −R
L

x+


0
0
E
L


vs = E − vc1 − vc2

(2.22)
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Mode q7 (u1 = 0, u2 = 1, u3 = 1) :

Figure (2.10) shows the 3-cell converter in mode q7.

Figure 2.10: 3-cell converter in mode q7

The dynamic behavior can be represented by the following equation. Note that in the
current mode, the output voltage vo = E − vc1 .

Σq7 :


ẋ =


0 0 1

C1

0 0 0
−1
L

−R
L 0

x+


0
0
E
L


vo = E − vc1

(2.23)

Mode q8 (u1 = 1, u2 = 1, u3 = 1) :

Figure (2.11) shows the 3-cell converter in mode q8.

Figure 2.11: 3-cell converter in mode q8

In this situation, the dynamic behavior of the converter can be represented by the
following equations. Note that in the current mode, the output voltage vs = E.

Σq8 :


ẋ =


0 0 0
0 0 0
0 0 −R

L

x+


0
0
E
L


vo = E

(2.24)

2.6 Control of the 3-cell converter

The main objective of the control is to generate discrete signals uk, (k = 1, 2, 3) such that :

- The stabilization of the load current iL around its desired state Iref , i.e., the error
iL − Iref must be close to zero.
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Control of the 3-cell converter

- The capacitor floating voltages vc1 and vc2 must be regulated respectively around their
references Vref1 = E

3 and Vref2 = 2E
3 .

In what follows, some control strategies of the 3-cell converter that we thought very interesting
will be presented.

2.6.1 Hybrid control of 3-cell converter

The presented control strategy in [56] for the 3-cell converter is an extended control strategy
for the two cell converter presented in [55]. In fact, for the 3-cell converter, the control scheme
is depicted in figure (2.12), and the guard conditions are as follow :

G(T1,2) = {x ∈ X : (vc1 > V +
ref1) ∧ (i < I−

ref )}
G(T2,1) = {x ∈ X : (vc1 < V +

ref1) ∧ (i < I+
ref )}

G(T1,3) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 > V +

ref2) ∧ (i < I−
ref )}

G(T3,1) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 > V −

ref2) ∧ (i > I+
ref )}

G(T1,5) = {x ∈ X : (vc2 < V −
ref2) ∧ (i > I−

ref )}
G(T5,1) = {x ∈ X : (vc2 > V +

ref2) ∧ (i > I+
ref )}

G(T2,4) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 > V +

ref2) ∧ (i < I−
ref )}

G(T4,2) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 < V −

ref2) ∧ (i > I+
ref )}

G(T2,6) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 < V −

ref2) ∧ (i < I−
ref )}

G(T6,2) = {x ∈ X : (vc2 < V +
ref2)}

G(T3,4) = {x ∈ X : (vc1 > V +
ref1)}

G(T4,3) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 < V −

ref2) ∧ (i > I+
ref )}

G(T3,7) = {x ∈ X : (vc2 < V −
ref2)}

G(T7,3) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 > V +

ref2) ∧ (i > I+
ref )}

G(T4,8) = {x ∈ X : (vc2 < V −
ref2) ∧ (i < I−

ref )}
G(T8,4) = {x ∈ X : (vc2 > V −

ref2) ∧ (i > I+
ref )}

G(T5,6) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 > V +

ref2) ∧ (i < I−
ref )}

G(T6,5) = {x ∈ X : (vc1 < V −
ref2)}

G(T5,7) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 > V +

ref2) ∧ (i < I−
ref )}

G(T7,5) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 < V −

ref2) ∧ (i > I+
ref )}

G(T6,8) = {x ∈ X : (vc1 < V −
ref1) ∧ (vc2 > V +

ref2) ∧ (i < I−
ref )}

G(T8,6) = {x ∈ X : (vc1 > V +
ref1) ∧ (vc2 < V −

ref2) ∧ (i > I+
ref )}

G(T7,8) = {x ∈ X : (vc1 > V +
ref1) ∧ (i < I−

ref )}
G(T2,1) = {x ∈ X : (vc1 > V −

ref1) ∧ (i > I+
ref )}.

Where V ±refj
= Vrefj

±∆vj and I±ref = Iref±∆i, and where ∆vj and ∆i represent respectively
the ripples of the floating capacitor voltages and the load current.

2.6.2 Control of 3-cell converter based on stabilization of limit cycles

Recently in [57], [3] proposed a new hybrid control strategy based on stabilization of limit
cycles of the 3-cell converter. As depicted in figure (2.13), the authors developed the control
strategy using the hybrid automaton formalism. The control scheme is divided into two
controller blocs, the transitory state controller and the steady state controller. Indeed, the
first controller guarantees a fast convergence to the steady state with minimum number of
commutations, whereas the second controller ensures the local asymptotic stability of the
predefined limit cycles.
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Control of the 3-cell converter

Figure 2.12: Hybrid control automaton for a 3-cell converter

Figure 2.13: Hybrid automaton control based on desired limit cycles stabilization of 3-cell converter.

Steady state controller

The authors have seen that it is more suitable to divide the steady state controller hybrid
automaton to three stages since the desired limit cycles of the 3-cell converter has 3 main
geometric shapes [3]. Let Ti denotes the set of possible transitions in each stages (i = 1, 2, 3),
and let Gs(Ti,j), the guard condition between the discrete modes in the same stage. In each
stage, the transitions and guards are defined as follow :

Case 1 ( 0 < Iref ≤ Imax
3 ) : The set of possible transitions in this stage is :

T1 = {T1,2, T2,1, T1,3, T3,1, T1,5, T5,1} (2.25)
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Control of the 3-cell converter

and the guards are :

Gs(T1,2) = Gs(T1,2) = Gs(T1,2) = {x ∈ X : iL < Iref −∆i}
Gs(T5,1) = {x ∈ X : vc2 ≥ Vref2 +∆v2}
Gs(T2,1) = {x ∈ X : vc1 ≤ Vref1 −∆v1}
Gs(T3,1) = {x ∈ X : vc1 ≥ Vref1 +∆v1}

where ∆v1 = ( Iref

C1
)αT2 , ∆v2 = ( Iref

C2
)αT2 and ∆i = α(1

3 − α)ET2L are respectively the ripples of
the capacitor voltages and the load current, with T represents the period of limit cycle and
α = Iref

Imax
. The switching points of the desired limit cycle are :

x∗1,2 =


V +
ref1
V +
ref2
I−ref

 , x∗5,1 =


V +
ref1
V +
ref2
I+
ref

 , x∗1,5 =


V +
ref1
V −ref2
I−ref

 ,

x∗3,1 =


V +
ref1
V −ref2
I+
ref

 , x∗1,3 =


V −ref1
V +
ref2
I−ref

 , x∗2,1 =


V −ref1
V +
ref2
I+
ref

 ;

where : V ±refi = Vrefi ± ∆vi and I±ref = Iref ± ∆i. The dwell time in each discrete mode is
given by :

t∗1,2 = t∗1,3 = t∗1,5 = (1
3 − α)T

t∗2,1 = t∗3,1 = t∗5,1 = αT ;

Case 2 ( Imax
3 < Iref ≤ 2Imax

3 ) : The set of possible transitions in this stage is :

T 2 = {T4,3, T3,7, T7,5, T5,6, T6,2, T2,4} (2.26)

and their corresponding guards conditions are :

Gs(T4,3) = {x ∈ X : vc2 ≤ Vref2 +∆v1
2}

Gs(T3,7) = {x ∈ X : vc2 ≤ Vref2 −∆v2}
Gs(T7,5) = {x ∈ X : vc1 ≥ Vref1 −∆v1}
Gs(T5,6) = {x ∈ X : vc2 ≥ Vref2 +∆v1

2}
Gs(T6,2) = {x ∈ X : vc2 ≥ Vref2 +∆v2}
Gs(T2,4) = {x ∈ X : vc1 ≤ Vref1 −∆v1}

where ∆v1 = ( Iref

6C1
)T , ∆v1

1 = ( Iref

6C1
)(1 − 2α),∆v2 = ( Iref

C2
)T , ∆v1

2 = ( Iref

C2
)(1 − 2α) and

∆i = α(α− 1
3)ET2L . The switching points of the limit cycle are :

x∗2,4 =


V −ref1
V +
ref2
I−ref

 , x∗6,2 =


Vref1 +∆v1

1
V +
ref2
I+
ref

 , x∗5,6 =


V +
ref1

Vref2 +∆v1
2

I−ref

 ,

x∗7,5 =


V +
ref1
V −ref2
I+
ref

 , x∗3,7 =


Vref1 + δv1

1
V −ref2
I−ref

 , x∗2,1 =


V −ref1

Vref2 +∆v1
2

I+
ref

 ;
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The dwell time in each discrete mode is given by :

t∗4,3 = t∗7,5 = t∗6,2 = (α− 1
3)T

t∗3,7 = t∗5,6 = t∗2,4 = (2
3 − α)T ;

Case 3 (2Imax
3 < Iref ≤ Imax) : The set of possible transitions in this stage is :

T 3 = {T8,4, T4,8, T8,6, T6,8, T8,7, T7,8} (2.27)

and their corresponding guard conditions are :

Gs(T8,4) = Gs(T8,6) = Gs(T8,7) = {x ∈ X : iL ≥ Iref +∆i}
Gs(T4,8) = {x ∈ X : vc2 ≤ Vref2 −∆v2}
Gs(T6,8) = {x ∈ X : vc1 ≤ Vref1 −∆v1}
Gs(T7,8) = {x ∈ X : vc1 ≥ Vref1 +∆v1}

where ∆v1 = ( Iref

C1
) (1−α)T

2 , ∆v2 = ( Iref

C2
) (1−α)T

2 , and ∆i = α(α− 2
3)(1−α)ET2L . The switching

points of the limit cycle are :

x∗8,7 =


V −ref1
V −ref2
I+
ref

 , x∗7,8 =


V +
ref1
V −ref2
I−ref

 , x∗8,6 =


V +
ref1
V −ref2
I+
ref

 ,

x∗6,8 =


V −ref1
V +
ref2
I−ref

 , x∗3,7 =


V −ref1
V +
ref2
I+
ref

 , x∗4,8 =


V −ref1
V −ref2
I+
ref

 ;

The dwell time in each discrete mode is given by :

t∗8,7 = t∗8,6 = t∗8,4 = (α− 2
3)T

t∗2,1 = t∗3,1 = t∗5,1 = (1− α)T ;

Transitions between two successive stages are constrained by the following condition : transi-
tion from mode qi in stage k to mode qj in stage k+ 1 is possible only if mode qi is common
discrete mode between the two stages and qj is the successor mode of qi in the stage k + 1.
The corresponding guard conditions of these transitions, denoted Gss(Ti,j), depend only on
the reference load current value as below :

Gss(T5,1) = Gs(T2,1) = Gs(T3,1) = {Iref ∈ [0, Imax] : iref ≤ Imax
3 }

Gss(T2,4) = Gs(T3,7) = Gs(T5,6) = {Iref ∈ [0, Imax] : iref > Imax
3 }

Gss(T4,8) = Gs(T7,8) = Gs(T6,8) = {Iref ∈ [0, Imax] : iref > 2Imax
3 }

Gss(T6,2) = Gs(T4,3) = Gs(T7,5) = {Iref ∈ [0, Imax] : iref ≤ 2Imax
3 }

Transient state controller

The transitory state controller is based on the following three steps :

Step 1 : We start by charging (discharging) the closest capacitor to the input voltage (vc2) until
it reaches its reference value (vref2 = 2E/3). Then, we commute to the second step.
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These selected discrete modes for this purpose are mode q4 and mode q5. This choice
allows the convergence of vc2 trajectory to vref2 without modifying the other capacitor
voltage (vc1 trajectory is constant and equal to its initial value). In this step the guards
are :

Gt(T4,2) = {x ∈ X : (vc2 ≤ Vref2) ∧ (vc1 ≥ Vref1)}
Gt(T4,7) = {x ∈ X : (vc2 ≤ Vref2) ∧ (vc1 < Vref1)}
Gt(T4,2) = {x ∈ X : (vc2 ≥ Vref2) ∧ (vc1 < Vref1)}
Gt(T4,2) = {x ∈ X : (vc2 ≥ Vref2) ∧ (vc1 ≥ Vref1)}

where Gt(Ti,j) corresponds to transitions guard conditions in transient state automaton.

Step 2 : In this second step, we charge (discharge) the voltage across the first capacitor C1 until
it reaches its reference value Vref1 keeping the floating voltage vc2 constant and equal
to its initial value in step one, i.e, vc2 = Vref2 . Hence, the discrete mode used in this
case are q2 and q7.

Gt(T2,1) = {x ∈ X : (vc1 ≤ Vref1) ∧ (iL ≥ Iref )}
Gt(T2,8) = {x ∈ X : (vc1 ≤ Vref1) ∧ (iL < Iref )}
Gt(T7,8) = {x ∈ X : (vc1 ≥ Vref1) ∧ (iL < Iref )}
Gt(T7,1) = {x ∈ X : (vc1 ≥ Vref1) ∧ (iL ≥ Iref )}

Step 3 : Finally, once the floating capacitor voltages reach their references, this third step
concerns the load current. Indeed, to reach the reference current while the floating
voltages are keeping constants and equal to their reference, one can use modes q1 and
q8. Once the trajectories of the states of the converter reach their reference in the
transient state, the control strategy needs to commute to the steady state controller.

Gts(T1,2) = {x ∈ X : (iL ≤ Iref ) ∧ (iref ≤ Imax
3 )}

Gts(T1,4) = {x ∈ X : (iL ≤ Iref ) ∧ ( Imax
3 < Iref ≤ 2Imax

3 )}
Gts(T1,7) = {x ∈ X : (iL ≤ Iref ) ∧ (2Imax

3 < Iref ≤ Imax)}
Gts(T8,2) = {x ∈ X : (iL ≥ Iref ) ∧ (iref ≤ Imax

3 )}
Gts(T8,4) = {x ∈ X : (iL ≥ Iref ) ∧ ( Imax

3 < Iref ≤ 2Imax
3 )}

Gts(T8,7) = {x ∈ X : (iL ≥ Iref ) ∧ (2Imax
3 < Iref ≤ Imax)}

where Gts(Ti,j) corresponds to transition guard conditions from transient state to steady
state automaton.
The final element in the construction of the hybrid automaton control is given by :

Init = (Init(q4)× q4) ∪ (Init(q5)× q5) (2.28)

where :

Init(q4) = {x ∈ X : vc2 ≤ Vref2}
Init(q5) = {x ∈ X : vc2 > Vref2}
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2.6.3 Binary control of the 3-cell converter

It is proved using Lyapunov function in [47] that under the control law,

u3 = 1−f(iL−Iref )
2

uj = 1+g(Aj)
2 , j = 1, 2.

(2.29)

where

f(iL − Iref ) =


1 if iL − Iref > 0
−1 if iL − Iref < 0

sign(A2) if iL − Iref = 0
(2.30)

and

g(Aj) =


1 if Aj > 0
−1 if Aj < 0

−sign(Aj−1) if Aj = 0
j = 1, 2, (2.31)

with
Aj = −(iL − Iref )vcj + (vcj − vcjref

)iL, j = 1, 2. (2.32)

Applying this control law, the 3-cell converter supplies the load a current iL that tracks
the reference current Iref and ensure an equilibrated distribution of the capacitor floating
voltages. Indeed, the author used the following Lyapunov candidate function to prove the
convergence of state variables of the converter to their references.

V (vcj , iL) = 1
2(iL − Iref )2 + 1

2

2∑
j=1

Cj(vcj − Vcjref
)2. (2.33)

2.6.4 Stabilization of 3-cell converter modes using LMI formalism

An other approach for the control of the 3-cell converter has been proposed in [58]. The
authors developed a unified approach to a practical stabilization for piecewise affine systems
and then applied respectively to buck-boost converter and 3-cell converter. The approach is
based on quadratic stabilization using Lyapunov theory, and the problem is formulated by
solving a linear matrix inequality system. The approach assign for each mode i a quadratic
region defined as :

Σi = {z ∈ Rn+1, zTQiz ≥ 0}, i = 1, ..., 8; (2.34)

where Qi ∈ R(n+1)×(n+1), z ∈ Rn+1 is the augmented state vector. Furthermore, the author
proposes a Lyapunov function of the form V (z) = zTPz, with P is a symmetric positive
definite matrix of the form

P1 =
[

2P αP

αTP 0

]
, (2.35)

and where α ∈ Rn and P ∈ Rn×n. The stabilizing control strategy is based on the maximum
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descent control switching strategy, i.e., the activated mode is defined by the sub system that
has the highest decrease of Lyapunov function V (z). Then, the subscript of the mode to be
activated is given by :

σ(z) = argmini∈{1,...,8}{V̇i(z)} (2.36)

and where V̇i(z) = zT (ATi P +AiP )z.

2.7 Conclusion

This chapter is devoted to a 3-cell converter. We have introduced the advantages that of-
fered by a such structure compared with the classical converter. These advantages are fun-
damentally focussed on improvement of the output signal quality, in term of reducing the
total harmonic distorsion and the ripples of the output signal in one hand, and reducing
the constraint in tension across the switches in other hand, which allows the use of medium
power semi-conductor instead of high power semi conductor in the classical converter. We
have also introduced different model of the 3-cell converter ; mainly, the instantaneous and
hybrid models, while fully justifiable since their use along of this thesis. Also, we have given
an overview of different control strategy that are presented in different works. Finally, we
presented some of control strategies that we thought interesting.
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Chapter 3
Observability analysis and sliding mode
observer for a 3-cell converter
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Introduction

3.1 Introduction

This chapter is dedicated to analyzing the observability of the floating capacitor voltages
of the 3-cell converter and their reconstruction using an observer. The 3-cell converter is a
switching system, it consists of eight modes, each mode is represented by an LTI model. The
observability property for each mode is not guaranteed using classical Kalman observability
criterion. But it does not imply the unobservability of the system. Indeed, the observability
property of hybrid systems is analyzed along the hybrid time trajectory. For that, two ap-
proaches are introduced to analyze the observability of the 3-cell converter. In the second
part of the current chapter, a sliding mode observer is designed to estimate the observable
components of the converter, and the reconstruction of the floating voltages is performed
exploiting the properties of the estimations provided by the observer.

3.2 An overview on observer of hybrid systems

Observer design for switched continuous systems has been investigated thoroughly through
the two last decades, and different approaches have been proposed to estimate the continuous
and discrete state of switching systems. Although, the problem of the reconstruction both
continuous and discrete states seems very complex, the imposed assumptions become neces-
sary to simplify the issues. The authors in [46], deal with the estimation of the active mode of
switching systems assuming the prior-knowledge of the continuous states, they also assume
that the control input is discerning to make the discrete mode observable. While the authors
in [69] proposed switched observer to estimate both the continuous and the discrete states of
switched linear systems, assuming that all operating modes are detectable. The convergence
of the estimation errors is guaranteed if a feasibility solution to a linear matrix inequality is
ensured. In [70], the continuous and discrete state estimation is addressed for a class of nonli-
near switched systems, where the discrete part is governed by a petri net. The combination of
a super twisting second-order sliding mode and discrete unknown input observers based petri
net allows the reconstruction of both continuous and discrete states simultaneously. The au-
thors in [71], tackle the problem of observer design for switched systems using a non-smooth
optimization approach. They assume neither the continuous states nor the discrete states
are known. Then, an observer is designed to estimate the continuous state without requiring
estimation of the discrete state. The key idea of the proposed method consists of minimizing
a non-smooth `2-norm based weighted cost function. A high order sliding mode observer for
linear autonomous switched systems with unknown input is addressed in [72]and [73]. The
authors give first, the necessary conditions for the reconstruction of the switching signal.
Indeed, they assume that the system is strongly detectable for each operation mode. A high
order sliding mode observer is then designed to estimate the continuous state. After that, a
discrete observer is designed to estimate the switching signal, assuming that the weakly unob-
servable subspace included on the unobservable subspace for each mode. The authors follow
with the unknown input identification using the designed continuous state observer. In [74],
a robust observer has been proposed capable to estimate the continuous and discrete state in
the presence of unknown inputs for linear switched systems with unstable internal dynamics.
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In [75], the authors addressed the problem of reconstruction of the switching signal under the
availability of free-noise continuous state measurement for a certain class of nonlinear uncer-
tain switched systems. The approach is based on a second-order sliding mode observer. The
efficiency of the proposed approach is guaranteed for a small uncertainty term and is applied
experimentally to a three tanks system. The authors in [22] give a methodology of designing
a hybrid observer to reconstruct the discrete and the continuous states from the knowledge of
both continuous and discrete outputs. It consists of two parts ; a location observer that iden-
tifies the active plant, while the continuous observer produces an estimate of the evolution
of the continuous states. The authors assume that all modes of the hybrid system are obser-
vable to guarantee the exponential convergence of the estimation error. A second-order sliding
mode observer is proposed for nonlinear switched systems with jumps in [76] and applied to
a mechanical system in [77]. In [78], the problem of a switched observer, for linear switched
system with jump using multiple Lyapunov functions and dwell time switching, is formulated
as a linear matrix inequality problem. It is shown also, that if the dwell time is large enough,
the active mode can be reconstructed correctly, hence the estimation continuous error tends
to zero. The authors in [79] deal with the designing of a dynamical observer for hybrid system.
However, in the case where the hybrid system is not current-location observable, the authors
show that the discrete state can be correctly identified, this may be achieved by processing
the continuous inputs and output of the hybrid system to obtain more additional informa-
tions for the discrete state identification. For this purpose, they introduced an other system
called transition detector. It processes the continuous input and output of the system to ge-
nerate additional signal referred to as complementary discrete output, to be used as an extra
input to the discrete observer, and then identify the discrete state. The proposed approach is
applied experimentally to the automatic driveline of a car. The authors in [80], address the
designing of switched observers for switched linear systems with unknown inputs. After they
were proposed a change of coordinates that allows the decoupling of the unknown inputs, a
novel Lyapunov function is introduced to analyze the stabilization of continuous estimation
switched errors. Under some assumptions based on rank condition on system parameters and
the strong detectability of the hybrid system, they show that the estimation continuous error
is exponentially stable if a system of linear matrix inequality including the average minimum
dwell time constraints is feasible. Asynchronous interval observer for switched LPV systems
using multiple ISS 1-Lyapunov function is addressed in [81]. The switching law is assumed to
be uncontrollable but on line available. The authors show that the stability and the positivity
conditions of the switched interval error are expressed in terms of Linear Matrix Inequality,
which have been established using multiple ISS-Lyapunov function and average dwell time
concept. They show that the proposed observer can asymptotically estimate the lower and the
upper bounds of the state vector for any switching signal, with a dwell time sufficiently large.
The approach is then applied for the robust estimation of the vehicle lateral dynamics using
experimental data. In [39], a hybrid observer is designed for the most general case of hybrid
systems, assuming the determinability of the system. It is shown that the estimation error
decays exponentially even if the individual subsystems may not be observable. The proposed
strategy is based upon the idea of accumulating information from individual subsystems. In

1. ISS : Input State Stability
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this approach, the minimum dwell time is not required conversely to usual approach as in
[78], [80], [82] or [81], but the proposed approach requires persistent switching. The authors
in [82] addressed the problem of observer designing and input reconstruction for a class of
switched descriptor systems. First, they give away to transform the switched system descrip-
tor to a general switched system, then a reduced observer is designed to estimate the system
state without influencing by the unknown input. To reconstruct the unknown inputs, they
used a high order sliding mode to estimate the output derivatives. Noted that the minimum
dwell time is required for the convergence of the designed observers. In [83], the authors have
been proposed a multiple mode-observer for switched positive systems. The existence of mul-
tiple observers is related to the feasibility solution of the LMIs system. They show that the
estimation error converges exponentially. In the sequel, they have designed multiple output
feedback controller based on multiple mode-observers approach, such that the closed-loop
system is exponentially stable.

Many works treat the problem of observer design for the multi-cells converter. In [34], a
super twisting observer has been proposed to estimate the state variables of the converter.
The authors show that there exists a time constant less than the dwell time in each mode,
that guarantee the convergence of the observed states to their references. The authors in [2]
propose two types of observers to estimate the floating voltages and the dc-motor speed. The
first, based on a super twisting observer. It is shown that the fact there exists a constant time
less than the dwell time, the observer states tend to their references. However, the second
one based on adaptive observer, they use the Lyapunov theory to prove its convergence. In
[44] and [45], the super twisting observer is designed for a multi-cell converter that guarantee
the finite time convergence. In [5], an adaptive-gain second order sliding mode observer is
designed for the 3-cell converter. A comparative study with a Luenberger observer has been
presented under uncertainties. The carried out simulation results show the robustness of the
sliding mode observer. The authors in [30], propose a super twisting and adaptive observers
for the estimation of the floating voltages of the 3-cell converter. They show the convergence
of the two observers to their references after a time less than the dwell time for each mode.
The carried out simulation results show that the super twisting observer is more robust than
the adaptive observer respect to the resistance variation. The authors in [33], used a model
consisting of the load current and the output voltage of the 3-cell converter to design a finite
time sliding mode observer to reconstruct the floating voltages of the 3-cell converter. The
convergence of the estimated floating voltages can be achieved once the finite time stabili-
zation of the estimation error is guaranteed. The proof of the finite time convergence based
on Lyapunov theory using Lyapunov function introduced in [84] and [85]. They show that
the proposed observer could be seen as an extension of the classical super twisting observer
presented in [30]. Comparative simulations are presented in order to highlight the efficiency
of the proposed observer. A sliding mode observer based output-feedback for a 3-cell conver-
ter is proposed in [31]. The authors design a switching control strategy in closed loop using
an observer, i.e., the switching control strategy guarantees the observability of the floating
voltages and the convergence of the states to their references. The convergence is proved
using Lyapunov theory. In [86], experimental results of the floating voltage estimation of the

67



Observability of hybrid systems

3-cell converter using a sliding mode observer are presented. The strategy of the observation
is based on the switching between four different observers. The first and the second are used
respectively to estimate the floating voltages vc1 and vc2 of the 3-cell converter. The third
observer gives the estimation of both of vc1 and vc2 . Where the fourth one, the strategy
of observation stops the estimation until the control sequence changes, and other switching
observer will be activated. In [87], an interconnected observer is designed to estimate the
floating voltages of the 5-cell converter. The authors prove using the Lyapunov theory the
exponential convergence of the estimation error. Experimental results illustrate the effecti-
veness of the proposed observer. A hybrid observer has been proposed in [42]. The provided
estimation algorithm is based on the correction vector which can be seen as an approxima-
tion of the state estimation error. It is computed using accumulated partial state information
provided by a Luenberger observer for the estimation of the observable part. Noticing that
the observer strategy do not requires the minimum dwell time condition between two com-
mutations. The authors in [88] deal with the high gain observer for the multi-cell converter.
They establish sufficient conditions under which the capacitor voltages can be reconstructed
within appropriate specific switching sequence and not necessarily instantaneously. A high
gain observer is then designed for the two considered interconnected sub-models. The design
of the observer gains is based on the solution of the dynamic Lyapunov equation. Also, the
proof of the convergence is based on an appropriate selection of a Lyapunov function, and
for a specific switching sequence. Experimental results have been carried out and show the
efficiency of the proposed high gain observer to estimate the floating voltages of the 3-cell
converter.

3.3 Observability of hybrid systems

The current section is devoted to the observability of the floating voltages of the 3-cell conver-
ter. Two approaches are introduced, the Z{TN}-observability and the geometric approach. In
literature, the Z{TN}-observability is widely used to analyze the observability of the 3-cell
converter. While the geometric approach which is introduced in 2011 by Tanwani et al and
has been applied in [40], [41] for a known hybrid time trajectory.

3.3.1 Z{TN}-Observability approach

Z{TN}-Observability is introduced in [29] and is widely applied to analyze the hybrid ob-
servability of the multicellular converter. It checks the observability of a hybrid system for a
given hybrid time trajectory. Let us consider the following class of hybrid systems :

{
ẋ(t) = fqi(t, x(t), u(t))
y(t) = hqi(t, x(t), u(t));

(3.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, Q = {q1, ..., qN} is a finite
set of modes such that qi ∈ Q, i = 1, ..., N and fq : R×Rn×Rm −→ Rn is smooth function.
All dwell time intervals [ti,0, ti,1] between two commutations satisfying the minimum dwell
time 0 < τmin < ti,1−ti,0. We assume that some subsystems of (3.1) are not observable in term
of classical observability. For switched system, the concept of observability is strongly related
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to the dwell time and the switching sequence, thus it is important to recall the following
definition of hybrid time trajectory.

Definition 3.1 : A hybrid time trajectory is a finite or infinite sequence of intervals TN =
{Ii}Ni=1, such that

1. Ii = [ti,0, ti,1] for all 1 ≤ i < N

2. For all i < N , ti,1 = ti+1,0

3. t1,0 = tinitial and tN,1 = tend

Moreover, we define < TN > as the ordered list of qi associated to hybrid time trajectory
TN . In other words it means the ordered mode {...qj ...} with qj the current mode during the
interval Ij . Now, we are ready to define the concept of Z{TN}-Observability.

Definition 3.2 : Consider the system (3.1) and a variable z = Z(t, x, u). Let (t, x1(t), u1(t))
be a trajectory in U with a hybrid time trajectory TN and the ordered list of modes < TN >.
Suppose for any trajectory, (t, x2(t), u2(t)) in U with the same TN and < TN >, the equality

h(t, x1(t), u1(t)) = h(t, x2(t), u2(t)) (3.2)

implies
Z(t, x1(t), u1(t)) = Z(t, x2(t), u2(t)). (3.3)

Then we say that z = Z(t, ξ, u) is Z{TN}-observable along the trajectory (t, x1(t), u1(t)).

A straightforward application of the above definition implies the following theorem.

Theorem 3.1 : Consider the system (3.1) and a fixed hybrid time trajectory TN and
< TN >. Let U be an open set in time state-control space. Suppose that z = Z(t, x(t), u(t))
is always continuous under any admissible control input. Suppose there exists a sequence of
projections Pi, i = 1, ..., N , such that

1. given any 1 ≤ i ≤ N, PiZ(t, x, u) is Z-observable in U on the subinterval t ∈ [ti,0, ti,1[ ;

2. Rank[P T1 ...P TN ] = dim(Z) = nz ;

3. dP̄iZ(t,x(t),u(t))
dt = 0 for t ∈ [ti,0, ti,1[ and (t, x(t), u(t)) ∈ U . With P̄i is the complement

of Pi such that [P̄i
T
, P Ti ] has a full rank in Rnz×nz .

Then z = Z(t, x(t), u(t)) is Z{TN}-observable in U with respect to the hybrid time trajectory
TN and < TN >.

The first condition means that each element of the state vector is Z-observable within at
least one time interval. The second condition means that for an hybrid time trajectory TN
including time intervals, all the components of the Z are observable within it. The last
condition means that the unobservable components of the state vector in a time interval Ii,
must remain constant during this interval of time when another one is observable.
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Application to a three cell converter :

Note that the three cell converter model is a particular case of (3.1), then the application of the
previous theorem is possible. Using the theory of linear observability, it can be easily checked
that the rank of each observability matrix of each operating mode of the 3-cell converter is
less or equal to two, which means that at most two state variables are observable. Table (3.1)
shows the observable states in each operating mode. Where it can be seen that the capacitor
voltage vc1 is observable in modes q2 and q7. Whereas, the floating voltage vc2 is observable
in the modes q4 and q5. Also, the capacitor voltages vc1 and vc2 are not observable under
discrete control (u1, u2, u3) = (0, 0, 0) or (u1, u2, u3) = (1, 1, 1). It is worth noting that if
one of the floating voltages is observable in a mode, other floating voltage remains constant.
Noting also that the two floating voltages are not simultaneously observable.

qi [u1 u2 u3] Evolution of Vc1 Evolution of Vc2 Observable states

q1 [0 0 0] → → il
q2 [1 0 0] ↘ → il, vc1

q3 [0 1 0] ↗ ↘ il, (vc1 − vc2)
q4 [1 1 0] → ↘ il, vc2

q5 [0 0 1] → ↗ il, vc2

q6 [1 0 1] ↘ ↗ il, (vc2 − vc1)
q7 [1 1 1] ↗ → il, vc1

q8 [0 1 1] → → il

Table 3.1: Capacitor voltages evolution and observable states for each mode in function of ui, i =
1, 2, 3

Let then consider z = Z(t, x) = [vc1 , vc2 ]T . In time interval I1 we apply the the discrete
control (u1, u2, u3) = (1, 0, 0) (mode q2) and the control (u1, u2, u3) = (1, 1, 0) (mode q4) in
the time interval I2. We can verify easily that z = Z(t, x) = [vc1 , vc2 ]T is Z{TN}-observable
along such a trajectory. Let us define P1 = [1, 0] in time interval I1 and P2 = [0, 1] in time
interval I2. We have then according to theorem (3.1).

1. P1Z = vc1 and P2Z = vc2 . Which means that vc1 is Z-observable in I1 and vc2 is
Z-observable in I2 ;

2. Rank[P T1 P T2 ] = dim(Z) = 2 ;

3. and {
dP̄1Z
dt = dvc2

dt = 0, for t ∈ I1
dP̄2Z
dt = dvc1

dt = 0, for t ∈ I2

It is clear that as depicted by table (3.1), in the time interval I1 where the floating voltage vc1

is observable, vc2 remains constant. Inversely, in the time interval I2, where vc2 is observable
vc1 remains constant. Consequently, all conditions of theorem (3.1) are satisfied. Therefore,
Z(t, x) = [vc1 , vc2 ]T is Z{TN}-observable.
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3.3.2 Geometrical approach

This section is devoted to the observability analysis of hybrid systems using the geometrical
approach. First, we introduced the approach and applied it to the case of the analyzing the
observability of the floating voltages of the 3-cell converter. Let consider a hybrid system
given by the following state equations :

Σ :
{
ẋ(t) = Aqix(t) +Bqiu(t)
y(t) = Cqix(t), i = 1, ...,m.

(3.4)

We suppose :

- The switching commutation sequence is well known.

- No jump on states.

A very important characterization for the observability of switching systems, based on the
geometrical approach, was introduced by Tanwani et al [38]. It consists in finding the unobser-
vable subspace along the hybrid time trajectory. Let Nm

1 denotes the unobservability subspace
over the time interval [t0, tm) that includes switching at t0, t1, ..., tm. And let N i

i denotes the
unobservable subspace on the time interval [ti−1, ti), it is given by :

Γqi
qi

= ker{Oqi}, i = 1, ...,m. (3.5)

where Oqi represents the observability matrix of mode qi. It is given by

Oqi = Col[Cqi , CqiAqi , ..., CqiA
n−1
qi

], (3.6)

over the time interval [ti−1, tm), if more information can be obtained about the states, then
the unobservable subspace along the hybrid time trajectory Nm

i gets smaller as the difference
m − i increases. The unobservable subspace can be computed using a recursive algorithm
given in [38] as follows :

{
Γmm = ker{Om}
Γmqi

= ker{Oqi} ∩ e−AqiτqiΓmqi+1,
(3.7)

where τqi = tqi − tqi−1 is the dwell time.

Theorem 3.2 [38] : The linear hybrid system (3.4) is said to be [t0, tm−1)−observable if,
and only if the unobservable subspace along the hybrid time trajectory is restricted to zero,
i.e.,

Nm
1 = {0}, (3.8)

where Nm
1 represents the unobservable subspace for [t0, tm).

Application to a 3-cell converter :

The parameters of the 3-cell converter model are C1 = C2 = 40µF , R = 10Ω, L = 0.0005mH
and E = 30volts. The dwell time is taken τqi = 0.2069 second for all i = 1, ..., 8. Let then
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τ = τqi for (i = 1, ..., 8). Each mode is an LTI system, then the unobservable subspace N i
i for

each mode is :

N1
1 = ker{Oq1} = span{(−1 0 0)T , (0 −1 0)T }

N2
2 = ker{Oq2} = span{(0 1 0)T }

N3
3 = ker{Oq3} = span{(

√
2

2

√
2

2 0)T }
N4

4 = ker{Oq4} = span{(1 0 0)T }
N5

5 = ker{Oq5} = span{(1 0 0)T }
N6

6 = ker{Oq6} = span{(−
√

2
2 −

√
2

2 0)T }
N7

7 = ker{Oq7} = span{(0 −1 0)T }
N8

8 = ker{Oq8} = span{(−1 0 0)T , (0 −1 0)T }

(3.9)

We know that the observability analysis of the 3-cell converter depends on the control se-
quence. For this end, we apply the approach for two different switching sequences.

Example 1 : Let the ordered list be < TN >= {q7, q5, q6, q2, q4, q3}, which consists of six
modes (N = 6). Its corresponding hybrid time trajectory is T = {Ii}Ni=1, N = 6 . Before
analyzing the observability by the proposed approach, and according to table (3.1), one can
note that after one commutation from mode q7 to mode q5, i.e., in the time interval I1 and
I2, we observe all state variables. Since, from mode q7, we observe vc1 , and from mode q5 we
can observe vc2 . Knowing that vc1 remains constant during the time interval I1 corresponding
to mode q7. Then after one commutation we observe vc1 and vc2 . From this result, we can
deduce that the unobservability subspace N q5

q7 is restricted to zero after one commutation.
Now, using the proposed approach to obtain the same result. We have

N q5
q7 = ker{Oq7} ∩ e−A7τ7N q5

q5

we obtain

N q5
q7 = span{(0 −1 0)T } ∩ e−A7τ7N q5

q5 = {0}

Then the system becomes observable after one commutation.

Example 2 : Now, the considered ordered list is T = {q2, q8, q7, q5, q4, q3}, withN = 6.
According to table (3.1) and by analyzing each mode alone, we can observe all states after 3
commutations. From mode q2, we observe vc1 only. After the first commutation, the system
commute to mode q8, where vc1 and vc2 are not observable. From mode q7, we observe for
a second time vc1 . The third commutation, the system is brought to mode q5, where vc2 is
observable. Then we can observe vc1 and vc2 after 3 commutations. Using now the geometric
approach, we have after the first commutation, the unobservable subspace is

N q8
q2 = ker{Oq2} ∩ e−A2τ2N q8

q8 ,

then we obtain
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N q8
q2 = span{(0 1 0)T } ∩ e−A2τ2N q8

q8

N q8
q2 = span{(0 1 0)T } 6= {0}.

N q8
q2 is not equal to {0}. Then the system is not observable after the first commutation. The

commutation from q8 to q7 gives

N q7
q2 = ker{Oq2} ∩ e−A2τ2N q7

q8 ,

where
N q7
q8 = ker{Oq8} ∩ e−A8τ8N q7

q7 .

We have then

N q7
q2 = ker{Oq2} ∩ e−A2τ2(ker{Oq8} ∩ e−A8τ8N q7

q7 ).

we obtain
N q7
q2 = span{(0 1 0)T } ∩ span{(0 − 1 0)T }

N q7
q2 = span{(0 1 0)T } 6= {0}

N q7
q2 6= {0}, then the system is not observable. After the third commutation from mode q7 to

q5 we have :

N q5
q2 = ker{Oq2} ∩ e−A2τ2N q5

q8 ,

where
N q5
q8 = ker{Oq8} ∩ e−A8τ8N q5

q7 ,

and where
N q5
q7 = ker{Oq7} ∩ e−A7τ7N q5

q5 ,

then

N q5
q2 = ker{Oq2} ∩ e−A2τ2{ker{Oq8} ∩ e−A8τ8(ker{Oq7} ∩ e−A7τ7N q5

q5 )}).

We obtain then

N q5
q7 = span{(0 − 1 0)T } ∩ span{(1 0 0)T } = {0}

N q5
q8 = span{(−1 0 0)T , (0 − 1 0)T } ∩ span{0} = {0}

N q5
q2 = span{(0 1 0)T } ∩ span{0} = {0}.

The unobservable subspace N q5
q2 becomes zero after three commutations. Consequently, the

system is observable along the considered hybrid time trajectory.

3.4 Sliding mode observer design

Consider the non linear switched system described by the following equations
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{
ξ̇(t) = Aξ(t) + fσ(y(t), δ(t), t) +Bσδ(t)
y(t) = Cξ(t)

(3.10)

where ξ(t) ∈ Rn is the state vector, δ(t) ∈ Rm is the control input vector, y(t) ∈ Rp

is the output vector, σ(t) is the switching signal. fσ(y(t), u(t), t) is a nonlinear function
of the outputs and inputs assumed known over the time t. A, B and C are matrices of
appropriate dimensions. Consider the sliding mode observer for the system (3.10) described
by the following equations :


˙̂
ξ(t) = Aξ̂(t) + fσ(y(t), δ(t), t) +Bσδ(t) + L(y(t)− Cξ̂(t)) + S(ξ̂(t), y(t))
ŷ(t) = Cξ̂(t).

(3.11)

Where ξ̂(t) ∈ Rn is the estimated of the state vector ξ(t), ŷ(t) ∈ Rp is the estimated of the
output vector y(t), L is the observer gain matrix of appropriate dimension, and S(ξ̂(t), y(t))
is a sliding surface given by

S(ξ̂, y) =


P−1CTC
‖Ce(t)‖ e(t) if ‖Ce(t)‖ > ε

P−1CTC
ε e(t) if ‖Ce(t)‖ ≤ ε.

(3.12)

Where e(t) is the estimation error, ε > 0 is a real number, P is a symmetric positive definite
matrix and ‖Ce(t)‖ is the euclidian norm of Ce(t). More about this sliding surface can be
found in [89] and [90]. The aim of the design is to determine the observer gain matrix L and
the matrix P that defines the sliding surface and guarantee the finite time convergence of the
estimation error.

3.4.1 Application to a 3-cell converter

The main objective of this section is to reconstruct the floating voltages vc1 and vc2 of the
3-cell converter assuming that the only available measurement is the load current iL. The idea
is based on the estimation of a certain observable variable of the converter over all operating
mode. Then using its interesting properties, we reconstruct the floating voltages vc1 and vc2 .
Consider again the model of the 3-cell converter described by equations (2.12). The model
can be put in the form (3.10) by considering the following change of coordinates. The time
derivative of the load current is.

dil
dt

= −R
L
il −

1
L

(δ1vc1 + δ2vc2) + E

L
δ3. (3.13)

Where δ1 = u2−u1, δ2 = u3−u2 and δ3 = u3. Knowing that δi ∈ {0,−1, 1}, while ui ∈ {0, 1}
for i = 1, 2, 3. Let

ξ1 = δ1vc1 + δ2vc2 , (3.14)
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and
ξ2 = il. (3.15)

Indeed, ξ1 and ξ2 represent the observable states of the converter in each operating mode.
Thus, the dynamic of ξ1 and ξ2 describe the evolution of the observable subspace of the
3-cell converter. The change of coordinates (3.14) and (3.15) can be justified as follow. The
observable sub spaces of each operating mode are given by the orthogonal distribution of
each unobservable subspaces of the converter given by equations (3.9). Let then :

(N1
1 )⊥ = span{(0 0 1)T }

(N2
2 )⊥ = span{(0 0 1)T , (−1 0 0)T }

(N3
3 )⊥ = span{(0 0 1)T , (1 −1 0)T }

(N4
4 )⊥ = span{(0 0 1)T , (0 1 0)T }

(N5
5 )⊥ = span{(0 0 1)T , (0 −1 0)T }

(N6
6 )⊥ = span{(0 1 0)T , (−1 1 0)T }

(N7
7 )⊥ = span{(0 0 1)T , (1 0 0)T }

(N8
8 )⊥ = span{(0 0 1)T }

(3.16)

It is clear that at most two variables are observable in each mode. The load current is
available to measurement, thus, it is observable all times. This is justified by the belonging
of the distribution span{(0 0 1)T } = span{dx3} in all observable subspaces, which justify
equation (3.15). We can also notice that we can write all the second distributions of the
observable subspaces as a function of δ1 and δ2 as given by equation (3.14). Let then consider
the time derivatives of ξ1 and ξ2 that allow to obtain the following observable sub model.


ξ̇1(t) = ( 1

C1
δ2

1 + 1
C2
δ2

2)ξ2(t)
ξ̇2(t) = −R

L ξ2(t)− 1
Lξ1(t) + 1

Lδ3E

y(t) = ξ2(t)
(3.17)

The model (3.17) can be put in form of (3.10) such that ξ = [ξ1 ξ2]T is the observable state
vector of the 3-cell converter. y = ξ2 is the output of the sub model and it represents the load
current il. The different matrices are then

A =
[

0 0
− 1
L −R

L

]
, Bσ =

[
0

1
Lδ3

]
, C =

[
0 1

]
,

fσ(y(t), δ(t), t) =
[

( 1
C1
δ2

1 + 1
C2
δ2

2)ξ2(t)
0

]
.

Consider now the sliding mode observer as described by equations (3.11) designed for the
observable sub model of the 3-cell converter (3.17). Let e(t) = [e1(t) e2(t)]T the estimation
error vector, such that e1(t) = ξ1(t)− ξ̂1(t) and e2(t) = ξ2(t)− ξ̂2(t). Let ė(t) the dynamic of
the estimation error, it is equal to :

ė(t) = (A− LC)e(t)− S(ξ̂, y) (3.18)
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Proposition 3.1 :

Consider the observable sub model of the 3-cell converter (3.17) and the sliding mode observer
(3.11) with the sliding surface (3.12). If there exists observer gain matrix L and a positive
definite matrix Q that ensure the existence of a symmetric definite matrix P solution of the
following Linear Matrix Inequality

(A− LC)TP + P (A− LC) ≤ −Q, (3.19)

then the estimation error converge exponentially and the estimated floating voltages v̂c1 and
v̂c2 can be reconstructed respectively by :

v̂c1 = |ξ̂1| when δ2 = 0 and δ1 = {1,−1} (3.20)

v̂c2 = |ξ̂1| when δ1 = 0 and δ2 = {1,−1} (3.21)

Remark :

It is clear that the pair (A,C) is observable along hybrid time trajectory, this allowing to the
existence of a solution to LMI equation (3.19).

The stated proposition consists of two points. First, it gives the necessary and sufficient
condition to exponential convergence of the estimation error. The second part of the proposi-
tion announces how we can reconstruct the floating voltages v̂c1 and v̂c2 from the observable
state ξ̂. In the following proof, we treat the exponential convergence of the estimation error.
Whereas, the reconstruction of the voltages will be treated in the next section.

3.4.2 Proof of the exponential convergence

Consider the Lyapunov candidate function V (e(t)) = e(t)TPe(t). To guarantee the exponen-
tial convergence of the estimation error, the sufficient condition to ensure is V̇ ≤ −µV , where
µ > 0. The time derivative of V is

V̇ = eT [(A− LC)TP + P (A− LC)]e− 2eTPS(ξ̂, y) (3.22)

Two cases to be considered, ‖Ce‖ > ε and ‖Ce‖ ≤ ε according to the sliding surface (3.12).

1st case ‖Ce‖ > ε : Since ε > 0, the selected sliding surface from (3.12) is

S(x̂, y) = P−1CT (y − Cx̂)
‖Ce(t)‖ = P−1CT (y − Cx̂)

‖Ce‖
. (3.23)

by replacing the sliding surface (3.23) into equation (3.22), V̇ becomes

V̇ = eT [(A− LC)TP + P (A− LC)]e− 2‖Ce‖ (3.24)
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The last equation is obtained by taking into account eTCTCe = (Ce)T (Ce) = ‖Ce‖2. And
since ‖Ce‖ > ε > 0 and if the equation (3.19) holds for P > 0, we obtain

V̇ < −eTQe− 2ε < −eTQe < −λmin{Q}eT e (3.25)

where λmin{Q} is the minimum eigenvalue of the symmetric positive definite matrix Q. Also
we have

V = eTPe⇒ V ≤ λmax{P}eT e⇒ eT e ≥ 1
λmax{P}

V, (3.26)

with λmax{P} is the maximum eigenvalue of the symmetric positive definite matrix P . And
since λi{P} > 0 and λi{Q} > 0 (P > 0, Q > 0), then we have

V̇ ≤ −µ1V, (3.27)

with µ1 = λmin{Q}
λmax{P} > 0 Hence, the exponential convergence is guaranteed.

2nd case ‖Ce‖ ≤ ε : In this case, the sliding surface is

S(x̂, y) = P−1CT (y − Cx̂)
ε

. (3.28)

We obtain
V̇ = eT [(A− LC)TP + P (A− LC)]e− 2

ε
eTCTCe. (3.29)

If (3.19) holds for P > 0, then we can write

V̇ ≤ −eTQe− 2
ε
eTCTCe = eT [Q+ 2

ε
CTC]e, (3.30)

Then
V̇ ≤ −λmin{Q+ 2

ε
CTC}eT e, (3.31)

where λmin{Q + 2
εC

TC} is the minimum eigenvalue of the matrix Q + 2
εC

TC. By using
equation (3.26), we then obtain

V̇ ≤
−λmin{Q+ 2

εC
TC}

λmax{P}
V. (3.32)

Since λmin{Q+ 2
εC

TC} > 0 and λmax{P} > 0, then

V̇ ≤ −µ2V, (3.33)

with µ2 = λmin{Q+ 2
ε
CTC}

λmax{P} > 0

Consequently, the exponential convergence is demonstrated for the two cases.
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3.4.3 Reconstruction of vc1 and vc2

Now, the main question is how to reconstruct vc1 and vc2 from ξ̂1 and ξ̂2 ? Table (3.2) sum-
marizes the evolution of vc1 and vc2 and the observable states of the converter in each mode.

qi δ1 δ2 δ3 Evolution of Vc1 Evolution of Vc2 Observable states
q1 0 0 0 → → il
q2 −1 0 0 → ↗ il, vc1

q3 1 −1 0 ↗ ↘ il, (vc1 − vc2)
q4 0 −1 0 ↗ → il, vc2

q5 0 1 1 ↘ → il, vc2

q6 −1 1 1 ↘ ↗ il, (vc2 − vc1)
q7 1 0 1 → ↘ il, vc1

q8 0 0 1 → → il

Table 3.2: Capacitor voltages evolution and observable states for each mode in function of δi, i =
1, 2, 3.

We can notice from table (3.2), that vc1 is observable when δ2 = 0 and δ1 6= 0. This situation
is indicated by modes q2 and q7. In a same way, vc2 is observable when δ1 = 0 and δ2 6= 0,
and it is indicated by modes q4 and q5. Now, according to equation (3.14) and if ξ1 is well
estimated by the sliding mode observer (3.11), then we can write :

ξ̂1 = δ1v̂c1 + δ2v̂c2 (3.34)

Knowing that ξ̂1 > 0 for (δ1, δ2) = (1, 0) or (δ1, δ2) = (0, 1) and ξ̂1 < 0 for (δ1, δ2) = (−1, 0)
or (δ1, δ2) = (0,−1). Then we can reconstruct the floating voltages v̂c1 and v̂c2 respectively
by equations (3.20) and (3.21), knowing also that the state ξ is observable at any time.

3.4.4 Simulation results

In this section, simulation results have been carried out in order to highlight the performances
of the proposed sliding mode observer for a 3-cell converter model. The parameters are kept
as given in section (3.3.2). The control sequence is taken as considered in example 1 of section
(3.3.2). Thus, it satisfies the observability condition (3.8). Also, the control signals are phase
shifted by 2π/3. After linearization of equation (3.19) by considering Y = PL, and let Q = I2,
the obtaining solution using Matlab LMI control toolbox is :

P =
[

811.3153 40.3142
40.3142 811.3153

]
⇒ P−1 =

[
0.0012 −0.0001
−0.0001 0.0012

]

Y = 104
[
−1.2145
−8.0726

]
⇒ L = P−1Y

[
−10.04
−99.0013

]
The obtained simulation results are shown in figures (3.1)-(3.6). Note that ε = 0.01 has an
effect only in the simulation results and not in the resolution of equation (3.19). Figure (3.1)
depicts the real ξ1 = δ1vc1 + δ2vc2 and its estimation ξ̂1 given by the observer (3.11), where
it is shown the convergence of ξ̂1 to ξ1.
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Figure 3.1: Evolution of ξ1 and its estimate ξ̂1

Figure 3.2: Evolution of a-vc1 and its estimation v̂c1 , b- vc2 and
its estimation v̂c2
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The reconstructed floating voltages v̂c1 and v̂c2 are depicted respectively by figures (3.2.a) and
(3.2.b). Where the two floating voltages converge to their references vc1 and vc2 respectively.
Figure (3.3) represents a zoom of the estimated voltages in steady state, where we can show
the origin of estimation errors e1 = vc1 − v̂c1 and e2 = vc2 − v̂c2 depicted by figure (3.4.a) and
(3.4.b) respectively, where we can observe their convergence around zero.

Figure 3.3: Zoom of evolution of a-vc1 and its estimation v̂c1 , b-
vc2 and its estimation v̂c2 in steady state

Figure 3.4: Estimation errors e1 = vc1 − v̂c1 and e2 = vc2 − v̂c2

Indeed, figures (3.5) and (3.6) show respectively the reconstruction strategy of the floating
voltages v̂c1 and v̂c2 . Figure (3.5) depicts the estimated ξ̂1, the reconstructed floating voltage
v̂c1 and the control signal u2 in steady state. As enounced by the proposition (3.1) above,
the floating voltage vc1 can be reconstructed as v̂c1 = |ξ̂1| at the time interval where u2 = 0.
This is well represented by the figure (3.5), where we can see after reconstructing the voltage,
v̂c1 remains constant in time intervals where u2 = 1 or u2 = −1. While the real vc1 evolves
(increases or decreases) over the time, which explain the estimation errors depicted by figure
(3.4.a).
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Figure 3.5: Zoom of ξ̂1, v̂c1 and u2 in steady state clarifying the re-
construction strategy of v̂c2 .

In the same way, figure (3.6) depicts the estimated ξ̂1, the reconstructed floating voltage v̂c2

and the control signal u1 in steady state. The floating voltage vc2 can be reconstructed as
v̂c2 = |ξ̂1| at the time interval where u1 = 0. This is well represented by the figure (3.6),
where we can see after reconstructing the voltage, v̂c2 remains constant in time intervals
where u1 = 1 or u1 = −1. While the real vc1 evolves (increases or decreases) over the time,
which explain another time the estimation errors depicted by figure (3.4.b).

Figure 3.6: Zoom of ξ̂1, v̂c2 and u1 in steady state clarifying the re-
construction strategy of v̂c2

3.5 Conclusion

This chapter is devoted to the observability analysis and the observation of the floating vol-
tages of the 3-cell converter, assuming that the load current is the only available measurement.
The analysis of the observability of each mode in a classical sense amounts to computing the
rank of the observability matrix, this indicates that at most two variables can be observed
in each mode. But this does not imply the unobservability of the system. Indeed, the obser-
vability of a switching system is analyzed along a hybrid time trajectory. therefore, we have
presented two approaches for observability analysis. The Z{TN}-observability, which is wi-
dely used in the analysis of the observability of the floating voltages of the converter since its
introduction. The second is based on the calculation of the unobservable subspace. The latter
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was calculated for a well-chosen control sequence so that the floating voltages can be estima-
ted by an observer. The second part of this chapter is devoted to reconstructing the floating
voltages of the 3-cell converter. The idea is based on the designing of a sliding mode observer
for the observable subspace of the converter, then reconstructing the floating voltages from
an estimated variable provided by the observer. For that, a mathematical model describing
the dynamics of the observable subspace of the converter is determined. The model is written
then in a special form of switching nonlinear systems. The nonlinear part is described by a
function of the inputs and output of the system, that are assumed to be known. The second
step consists in designing a sliding mode observer to estimate the observable subspace. The
convergence of the estimation error is based using the Lyapunov theory. Indeed, the expo-
nential stabilization of the estimation error has been shown, and the observer parameters
are deduced from a LMI equation, where a solution is obvious. The reconstruction of the
floating voltages as announced by proposition 1 is then possible by exploiting the interesting
properties offered by the estimation variable. The carried out simulation results show the
efficiency of the proposed strategy to reconstruct the floating voltages of the converter.
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Introduction

4.1 Introduction

The first part of this chapter is devoted to a bibliographical study of different diagnosis
methods, namely, the methods based on physical redundancy and those based on analytical
redundancy. For each method, we present the carried out works as well as their advantages
and their drawbacks. While the second part of this chapter is devoted to the geometric
approach to fault diagnosis of non-linear systems to apply it for fault diagnosis of a three-cell
converter along of the next chapter. This approach was introduced by M. A. Masooumnia in
1986 [91] for linear systems, then generalized for nonlinear systems by C. De. Persis and A.
Isidori in 2000 [92]. This geometric approach is based on the computation of observable and
unobservable subspaces whose main objective is to decouple the system to dissociate the faults
between them. Indeed, the generation of a subspace sensitive to a set of faults and insensitive
to another set is constrained by sufficient and necessary geometric conditions related to the
observability co-distribution. If these conditions are checked, a residual generator can be
designed, thus solving the fundamental problem of residual generation. During this chapter,
we will expose the steps of this diagnosis approach, as well as for each step an illustrative
example is presented to better adapt to the relatively heavy calculations.

4.2 State of the art

The fault diagnosis domain has attracted the attention of several researchers over the world
in recent years due to its importance in industrial installations, hence several researches
have been developed over the years. Basically, the are two main methods for fault detection
and isolation, physical redundancy and analytical redundancy. The first is based on the
unavailability of mathematical model describing the behavior of the system. While the second
is based on the availability of mathematical model of the system.

4.2.1 Physical redundancy methods

In physical redundancy FDI methods, the sensitivity of sensors are set, adjusted or additional
sensors are installed, such that they are able to detect and isolate the faults.

Limit checking sensors for FDI : The most simple and frequently used for fault diagnosis
is the limit checking measured variable. In practice, plant measurements are compared to
preset limits that are called also thresholds. Exceeding the threshold indicates a fault situation
[51], [48]. Normally, there will be two levels of preset limits [53], exceeding the first one will
issue a warning, while exceeding the second triggers an alarm and an emergency reaction
should be taken. The thresholds are mostly selected based on experiences in the case of limit
checking of absolute values while it represent a compromise. This approach suffers from two
serious drawbacks [51]. 1- since the system variables may vary widely, the test thresholds need
to be set quite conservatively. 2- The effect of a single component fault may propagate to
many plant variables, triggering multitude of alarms and making isolation extremely difficult.
To overcome to these drawbacks, an approach based on trend checking is proposed. Indeed,
the first derivative of the monitoring variable is computed. If relatively, small thresholds are
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selected, an alarm can be obtained earlier than for the limit checking of absolute values.
Noted that the two strategies can be combined. Figure (4.1) shows an example of the two
strategies.

Figure 4.1: a- Limit checking method, b- Trend Limit checking method

Installing special sensor for FDI : Unlike the previous method, where measurements
are compared to their threshold limits, this method uses sensors with built-in limits (in-
tegrated limits) checking ability to determine anomalies or any other unusual values while
measurements are being taken [53]. Special sensors may measure some fault indicating the
physical quantity, such as sound, vibration, elongation, or heat, and this is extremely useful
for FDI if the type of faults that occur on the system are known or expected. In [93] and [94],
a comparative study between accelerometer and laser vibrometer measurement carried out
on universal motor of washing machines that exhibit faults localized mainly in the bearing,
is presented. The authors in [95] present an experimental study to early detection of the
presence of misalignment on support bearing of a motor by measuring the temperature of
the shaft coupling using a thermal imaging camera.

FDI using multiple sensors : In this approach, multiple sensors are installed onto the
system so that there will be more than one sensor to make the same measurement. Any
serious deviation between the measurements indicates a sensor fault. With only two parallel
sensors, fault isolation is not possible. The fault isolation needs at least three sensors. FDI
using multiple sensors approach involves extra hardware cost and extra weight, the latter
represents a serious drawback in aeronautic space applications [51]. The method has been
applied to a mechanical system as in [96]. More about sensor faults diagnosis advanced tech-
niques can be found in [97].

Other methods that do not use either hardware redundancy or analytical redundancy and
which are very interesting in the case where the system does not have a model, based only
on the input-output data of the system, we can cite :
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Principal Component Analysis (PCA) approach : PCA is a linear orthogonal projec-
tion technique that projects multidimensional observations represented in a space of dimen-
sion onto a subspace of lower dimension while maximizing the variance of the projections [98].
The main purpose of the transformation is to study the relationships between the data set.
It allows the identification of a structure of dependence between multivariate observations to
obtain a compact description of the information. Linear PCA is a tool for modeling linear
relationships between a set of variables representing the behavior of a studied process, where
only linear or quasi-linear dependencies between variables can be revealed. The identification
of the model is based on two stages : the first consists in estimating its parameters while
the second consists in determining its structure. Once the PCA model has been identified,
residuals can be generated by comparing the observed behavior to that given by the reference
PCA model. These residuals make it possible to detect and then locate all of the variables at
fault. The goal of the PCA is, therefore, to find a set of factors (components) that is smaller
than the original data set, and that can correctly describe the main trends. Since most of the
real processes are nonlinear, the application of classical PCA is not suitable. More advanced
PCA approaches can be found in [99] for Joint PCA or in [83] for Structured Joint PCA or
in [98].

Stochastic and statistical FDI : It is also called the generalized likelihood ratio ap-
proach, as mentioned by [53]. This method tests the residual for its statistical properties,
such as zero-mean gaussian white noise and covariance. When a fault occurs, the statistical
properties of residuals deviate from their nominal operation. Several works have applied this
approach to fault diagnosis of different systems one can cite [100], and [101]. Over the year, va-
rious improvements have been made to this approach and are combined with other approaches
as in [102], where the authors combine the statistical approach with neural networks.

Spectrum Analysis : Spectrum analysis of measurements may also be used for fault
detection and isolation. Most systems operate at a specified frequency spectrum under normal
operating conditions. However, any detected frequencies spectrum that does not correspond
to the operating frequency spectrum is an indication of the occurrence of faults. Moreover,
certain types of faults may have their own unique frequencies characteristics signature in the
spectrum, which facilitating fault isolation. The most popular signal processing algorithms
that have been widely used for FDI purposes are the Fourier Transform (FT) and the Wavelet
Transform (WT), which extract the frequency and time-frequency features from time-series
data [103]. The method has been applied to fault diagnosis of machinery components such as
gearbox [96], or for fault diagnosis of rolling element bearings [104], or as in [105] for diagnosis
of broken bar fault in induction machine, or for diagnosis of permanent synchronous motor
[106].

4.2.2 Analytical redundancy method

The major drawbacks of physical redundancy methods which use multiple sensors and actua-
tors are extra equipment that induces extra weight, maintenance cost, and more additional
space to accommodate the equipment, or for some constraints where the measurement is dif-
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ficult or almost infeasible. These drawbacks are overcome by analytical redundancy methods.
All that we need for FDI based analytical redundancy is a mathematical model that describes
the evolution of the system variables accurately, under observation. Generally, the analytical
redundancy methods are based on residual generators that generate a set of signals called
"residual signals". These residuals should be zero under fault-free conditions and it should be
nonzero if and only if there are faults that affect the system. Several approaches are proposed
in the literature using an analytical model, some of them are presented below :

Fault detection filter : Filters are used in a stochastic context for fault detection and
isolation of systems. Faults sensitive filters can be considered as particular observers, where for
each fault situation, their gains are set so that the residual vectors take a particular direction.
The first results concerning filters sensitive to faults are due to Beard (1971) and Johns
(1973), known also as Bear-Jones fault detection filter. It is considered one of the pioneering
methods that have inspired the directional residual concept [103]. The Bear-Jones approach
has inspired the geometrical approach to fault detection and isolation filter, introduced for
linear systems by M. A. Massoumnia 1986 [91] using the concept of unobservability subspace,
and has proved that the basic necessary and sufficient condition to a fundamental problem
of residual generation is the existence of an unobservability subspace. Later in 2000, C. De
Persis and A. Isidori [92], extended the Massoumia’s geometric approach to nonlinear systems
by introducing necessary and sufficient conditions for solving the problem of nonlinear FDI.
This approach will be detailed in current chapter and applied to fault detection and isolation
of the switch’s faults of the three cell converter in chapter five. Kalman Filter is another type
of filter that has been widely used for estimation and in fault diagnosis, especially in noisy
systems. Because of its simplicity and its effectiveness results, several applications for fault
diagnosis have been carried out using Kalman Filter and its derivatives. In [107], the authors
used a Kalman Filter (KF) fault detection and isolation to improve the security of the cyber-
physical system. In [108], Extended Kalman Filter (EKF) is designed to sensor incipient
fault detection and isolation of nuclear power plants. A Cubature Kalman Filter (CKF) has
been used to fault diagnosis of a railway suspension system in [109]. The authors in [110]
have proposed an algorithm to compute the optimal observer gains based fault detection
using the Zonotopic Kalman Filter(ZKF), and the approach has been applied to a quadruple
tank system. In [111], an Adaptive Unscented Kalman Filter (AUKF) has been used to fault
diagnosis of a nonlinear system and applied to a low earth orbit space vehicle planer model,
the obtained results have been compared to those obtained using respectively the UKF and
EKF. In [112], the nonlinear Kalman Filter is used for fault diagnosis of gas-turbine power
units.

Parameter estimation for FDI : This approach is based on the parameter estimation
under the assumption that the faults are reflected in the physical parameters of the system.
Hence, to identify the faults, the system parameters are estimated using well-known parame-
ter estimation techniques. The residuals in this approach are essentially the difference between
the online estimates of the system parameters and their corresponding values under free-fault
conditions. The parameter estimation approach was initially developed for linear systems due
to the availability of the linear parameter estimation techniques. The most known techniques
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are the least-squares and its multiple extensions. However, recent advances in nonlinear para-
meter estimation using Extended Kalman Filter (EKF) [113], or the Unscented Kalman Filter
(UKF) [114], or neural networks [115], have made it possible to use a parameter estimation
approach for FDI of nonlinear dynamic systems.

Parity space approach for FDI : This technique is based on the projection of the mo-
del’s equations in a particular space, called the parity space. Indeed, this technique is initially
based on the left multiplication of the output equation by a matrix W 1. The interpretation
of this multiplication is to eliminate the unknown states by a projection on W. Initially,
this method originates from the hardware redundancy used for fault detection and isolation
of fault sensors, then it was extended to diagnose the complete system (generalized parity
space). Some early contributions on parity space equation strategies can be found in [116],
[117] and [118]. Some authors have linked between the generation of residuals by parity space
and by state observer, and demonstrate a certain degree of equivalence. Massoumnia in [91]
was the first to speak of a correspondence between the two strategies. A comparison study
between the parity space and observer based-approaches is given in [48]. Recently, extensive
works of parity space approach for FDI are presented as in [119], where parity equation is
combined with support vector machine (SVM) classification algorithm to minimize the noise
effect on the generated residual signals, or as in [120], where the authors used the nonlinear
parameter varying (NLPV) parity equation for fault detection and isolation of wind farm. For
hybrid systems, the parity space approach is not yet well investigated sufficiently, the work of
[121] treats this issue. However, it should be noted that the parity space method is more sen-
sitive to measurement noise and process noise (or disturbance) compared to observer-based
methods, which are more robust to noise and disturbances due to their closed-loop structure
[103].

Observer based-approach for FDI : This approach consists of the reconstruction of the
system outputs from a subset of system measurements and defining residual as the difference
between the actual measurements and the output estimations provided by the observer. Since
the pioneering work of Kalman 1971, the observer’s theory has been improved increasingly,
and this for both linear and nonlinear systems [122], [123],[124]. Several types of observers
are proposed in the literature to fault diagnosis of different systems as sliding mode observer
[125], [126], adaptive observer [127], [128], or high gain observer [129].

Faults reconstruction : Besides detecting and isolating the faults, sometimes it is impor-
tant to estimate their occurrences. Hence, further analysis can be provided as the nature and
the magnitude that can measure the severity of faults. So, appropriate corrective actions can
be taken. This approach is very useful for incipient faults with slow drifts, which are known
to be very difficult to detect. Generally, fault reconstruction approach is based on using an
observer as in [130], [131], [132]. However, several other methods have been proposed to faults
reconstruction as in [133], where the authors used an improved PCA to reconstruct sensor

1. W is made up of vectors of Ker(CT ), hence it has the property of orthogonality with the output matrix
C
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faults in nuclear power plant, or in [134] where the authors proposed the use a statistical
based approach to fault reconstruction.

4.3 Geometric Approach to Fault Detection and Isolation

The most delicate task of a diagnostic procedure is to locate the origin of the fault, in another
way this indicates the fault isolation procedure. For the nonlinear systems, this task becomes
more and more delicate because of the nonlinearities as well as the strong coupling of the state
variables. The use of linearization methods around an operating point can lead to information
losses, and consequently false alarms that can be caused by the diagnostic procedure based on
the linear model. Thereby, the use of non-linear diagnostic methods becomes necessary and
essential. Among the robust diagnostic approaches, we can cite those which are based on faults
decoupling. This means partitioning the state space such that a subspace will be sensitive to
one fault and insensitive to other faults and disturbances in the ideal case, or will be sensitive
to a set of faults and insensitive to another set of faults, consequently this will decrease
the performances of the diagnostic procedure, especially in the case of simultaneous faults.
During the two last decades, the geometric approach proposed by C. De. Persis and A. Isidori
in [92], [135], has arisen from other methods, not only by its robustness but also by its power
that resides in its application for nonlinear systems. If necessary and sufficient conditions are
verified, then the decoupling of the system is systematic, so a solution to the FPRG problem
exists, i.e., the existence of a residual generator filter that allows the detection and isolation of
the fault. In this section, a geometric approach to fault detection and isolation of both linear
and nonlinear systems is presented (our attention will be focused on the nonlinear system).
The necessary and sufficient conditions for the existence of a solution to a Fundamental
Problem of Residual Generation (FPRG) that provided by this power approach is related
to the unobservability co-distribution (the dual of the observability co-distribution). The
computation of the observability co-distribution is given by a non-decreasing sequence that
will be presented. This observability co-distribution has several interesting properties that
allow the determination of a state and output diffeomorphisms which finalize a detection
and isolation filter synthesis, therefore solving the FPRG. We are particularly interested in
the work of M. A. Massoumnia [91], who was the first to introduce the geometric approach
for the diagnosis of linear systems, and also we are mainly interested in the work of C. De.
Persis and A. Isidori [92], [135] who generalized the linear approach of M. A. Massoumnia for
nonlinear systems. This later will be applied to fault detection and isolation of 3-cell converter
presented in next chapter. This approach is based on the observability codistribution that
allows to construct a change of coordinates resulting in a subspace decoupled from a set of
faults. A simple construction of an observer for the obtained subsystem can be considered as
a residual generator. In literature, several works have been presented applying this approach.
In [136], the authors designed a Luenberger observer to estimate the states of the obtained
system and generate residual signals, the method was applied to a VTOL air craft system.
In [137] a nonlinear adaptive observer was designed to accomplish the diagnosis procedure
for a ship propulsion system. A nonlinear observer designed for a class of nonlinear system
was proposed in [138] to detect and isolate actuator faults for induction motor drive. In [139],
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combination between sliding mode and high gain observers to generate residual signals was
applied to current sensor fault diagnosis in induction motor drives. In [50], the geometric
approach has been extended for nonlinear systems using a generalized output injection. This
approach has been applied to the fault diagnosis of stator short-circuit faults [140]. Recently,
a very interesting geometric approach has been proposed and applied to both discrete and
parametric fault diagnosis in a grid-connected inverter in [141].

4.3.1 Fondamental problem of residual generation for LTI system

Let the Linear Time Invariant (LTI) system described by the following equations :

{
ẋ(t) = Ax(t) +Bu(t) + Pw(t) + Ld(t)
y(t) = Cx(t),

(4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output
vector, w(t) ∈ Rq is the fault vector that their occurrence should be detected and isolated from
other faults and disturbances d(t) ∈ Rd. A, B and C are matrices of appropriate dimension.
P and L are respectively the effects of the fault w(t), and the disturbances and other faults
d(t). The Fondamental Problem of Residual Generation (FPRG) for the system (4.1) consists
on finding a residual generator of the form [137], [91], [92], [135] :

{
ż(t) = Fz(t) +Ku(t) + Ey(t)
r(t) = Jz(t) +Hy(t),

(4.2)

where z(t) ∈ Rñ is the state vector of the residual generator, and r(t) ∈ Rp̃ is the residual
vector. F, K, E, J and H are matrices of appropriate dimensions. The augmented system
obtained from the composition of (4.1) and (4.2) is described by :

{
ẋe(t) = Aexe(t) +Beue(t) + P ew(t)
r(t) = Cexe(t)

(4.3)

with

xe(t) =
(
x(t)
z(t)

)
, ue(t) =

(
u(t)
d(t)

)
, Ae =

(
A 0
EC F

)
, Be =

(
B L

K 0

)
,

P e =
(
P

0

)
, Ce =

(
HC J

)
Then the FPRG consists in synthesizing a residual generator of the form (4.2), and whose
the unknown matrices F, K, E, J and H will satisfy the following properties :

1- The transfer function matrix between ue(t) and r(t) given by Ce(sIn+ñ − Ae)−1Be is
identically zero.

2- The transfer function matrix between the fault w(t) and the residual r(t) must not be
zero.

3- The poles of Ce(sIn+ñ −Ae)−1 must be in negative real parts.
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The first condition ensures the robustness of the residual signal with respect to the distur-
bances and other faults d(t)and control input u(t), which is the most delicate task to satisfy,
and which makes it possible to avoid false alarms. While the second condition ensures the
detectability of the faults by the residual. The third condition ensures the stability of the
observable space of the augmented system (4.3) , i.e., ensure that the effect of the initial
conditions is not durable on the residuals. It is shown in [91] that the existence of a solution
to FPRG depends on a simple relation between the subspace containing the effect of fault that
we would like to detect and isolate and the minimal unobservability co-distribution which
contains the effect of other faults and disturbances. For linear LTI systems, the computation
of the unobservability co-distribution passes by two steps :

1- Consider the sequence of sub-spaces of Rn given by :

{
D0 = span{L}
Di+1 = D0 +A(Di ∩ ker{C}), i = 0, ..., n− 1

(4.4)

with the stop condition

Dp
∗ = Dn−1 (4.5)

2- Let the non decreasing sequence of dual sub-spaces of Rn :

{
Q0 = (Dp

∗)⊥ ∩ span{C}
Qi+1 = (Dp

∗)⊥ + (QiA+ span{C}), i = 0, ..., n
(4.6)

with the stop condition
Qp∗ = Qn−1 (4.7)

Thus, the minimal unobservability subspace that contains the disturbance and other faults
is given by

Qunob = (Qp∗)⊥ (4.8)

Note that (•)⊥ represent the orthogonal distribution of (•). Based on this generated co-
distribution, the existence of a solution to fundamental problem of residual generation can
be checked using the following theorem.

Theorem 4.1 [91] : Let consider the system (4.1). There exists a solution to fundamental
problem of residual generation if and only if

L ∩Qunob = 0 (4.9)

The above condition of the previous theorem is valid for the residual generator given by
(4.2). If this condition is verified, it is possible to determine a state transformation so as to
decompose the overall system into two subsystems, one of which is decoupled from the effect
of disturbances and other faults. It has been shown that this transformation is related to the
observability subspace (the observability distribution). This subsystem is defined as follows
[92] :
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{
ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t) + Pw(t)
y1(t) = C1x1(t)

(4.10)

and where the pair (A11, C1) is observable. Hence the design of a detection and isolation
filter for fault w(t) is immediate. Let consider the Luenberger observer for the system (4.10)
described by the following equations :

{
ż = A11z(t) +A12y2(t) +B1u(t) +G(C1z(t)− y1(t))
r(t) = C1z(t)− y1(t)

(4.11)

The matrix G is such that the eigenvalues of (A11 + GC1) are of negative real part. The
dynamic error is :

ė(t) = (A11 +GC1)e(t) + pw(t) (4.12)

and the residual signal can be considered as

r(t) = Ce(t) (4.13)

From (4.12), we can notice that if the system is in free fault situation and the eigenvalues
of (A11 + GC1) have negative real parts, then the error e(t) tends asymptotically to zero,
consequently r(t) tends to zero. However, if the system is affected by the fault w(t), the error
e(t) deviate from zero, consequently, also r(t) deviate from zero indicating the occurrence of
the fault. Thus, the filter (4.11) resolve the fundamental problem of residual generation for
LTI systems.

4.3.2 Fondamental problem of residual generation for nonlinear systems

The geometric approach to fault detection and isolation for nonlinear systems is recalled in
this section. This approach is introduced in [92], [135]. Consider the following faulty nonlinear
system  ẋ(t) = g0(x) +

m∑
i=1

gi(x)ui + pj(x)mj +
d∑

k=1,k 6=j
pk(x)mk

y(t) = h(x)
(4.14)

where x ∈ Rn is the state, u ∈ Rm is the input control and y ∈ Rp is the output. mj ∈ R is the
fault whose occurrence will be detected and isolated from other faults and unknown inputs
mk, (k = 1, ..., d with k 6= j) and gi(x), pj(x), (i = 0, ...,m), are smooth vector fields. It is
assumed that the fault mk is bounded, i.e., ||mk||p <∞(||.||p denotes the p-norm). The Local
Nonlinear Fundamental Problem of Residual Generation (l-NLFPRG) consists on designing
a filter of the form 

˙̃z(t) = g̃0(z̃, y) +
m∑
i=1

g̃i(z̃, y)ui

rj(t) = h̃j(z̃, y)
(4.15)

where z̃ ∈ Rñ is the state of the filter, u and y are respectively the input and the output of the
original system, rj ∈ R is the residual of the fault mj , and g̃j(z̃, y) (j = 0, ...,m) and h̃j(z̃, y)
are smooth vector fields such that the extended system obtained from the composition of
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(4.14) and (4.15) written in a compact form as ẋe = ge
0(xe) +

m∑
i=1

ge
i (xe)ui + pe(xe)mj +

d∑
k=1,k 6=j

pe
k(xe)mk,

rj = he(xe),
(4.16)

with xe =
(
x

z̃

)
, ge0(xe) =

(
g0(x)
g̃0(z̃, y)

)
, gei (xe) =

(
gi(x)
g̃i(z̃, y)

)
, pe(xe) =

(
pj(x)

0

)
, pek(xe) =(

pk(x)
0

)
, he(xe) = h̃(z, h(x)),

satisfied the following properties :

1. the residual rj is not affected by mk ∀ k 6= j but only affected by the fault mj .

2. lim‖rj(t, x0, z0, u1, ..., um,mj = 0,m1, ...,mk)‖ = 0, for any initial condition x0, z0 and
any set of admissible inputs ui, with k = 1, ..., d and k 6= j.

The first condition ensures the sensitivity of the residual rj to mj and its insensitivity to the
other faults, while the second condition ensures the stability of the residual.
From the model of the system (4.14), the first condition can be written geometrically as
follows :

span{p1, ..., pj−1, pj+1, ..., pd} ⊂ Qunob, (4.17)

and
span{pj} * Qunob, (4.18)

where Qunob represents the unobservability distribution, which contains ker(dh) and invariant
under gi, (i = 0, ...,m) and pk, (k = 1, ..., j − 1, j + 1, ...., d). It represents the minimal unob-
servability distribution containing span{p1, ..., pj−1, pj+1, ..., pd}. Its characterization plays an
important role in the filter design for the fault mj . The two following algorithms are used to
compute this distribution.

4.3.3 Conditioned invariant distribution

Consider system (4.14) with the distributions Pj = span{p1, ..., pj−1, pj+1, ..., pd} and L =
span{pj}. We consider the non-decreasing sequence of distributions defined as follows :

D
Pj

0 = P̄j

D
Pj

i+1 = D̄
Pj

i +
m∑
k=0

[
gk(x), D̄Pj

i ∩ ker(dh)
]
,

(4.19)

where D̄pj

i denotes the involutive closure of Dpj

i , and ker(dh) is the distribution annihilating
the differentials of the rows of the mapping h(x), and [, ] denotes the Lie brackets. Suppose
that there exists an integer k∗ ≤ n− 1 such that

Dk∗+1 = D̄k∗ . (4.20)

We set ΣPj = D̄k∗ . Then, ΣPj is involutive, contains Pj and is conditioned invariant.

Remark : The stop condition (4.20), which is related to the existence of an integer k∗, may
not be satisfied. In this case, the progress of the algorithm is stopped as soon as the number

93



Geometric Approach to Fault Detection and Isolation

of performed iterations is greater than the dimension of the system. Thus, the continuity
condition of this algorithm is related to the existence of an integer k∗ which can satisfy the
condition (4.20).
The conditioned invariant distribution ΣPj has some interesting properties summarized as
follow :

- ΣPj is involutive and it is conditioned invariant.
- ΣPj contains the effect of other faults and disturbances Pj(x) = span{p1, ..., pj−1, pj+1, ..., pd}.
- Any involutive distribution ∆ contains Pj(x) is conditioned invariant and satisfy ΣPj ⊂
∆.

- If the stop condition (4.20) is satisfied, then the distribution ΣPj is the minimal element
of the family of all involutive distributions which contains P (x).

- The stopped condition (4.20) will be satisfied if all generated distribution by the algo-
rithm (4.19) are nonsingular.

Academic example : Let consider the academic nonlinear system :
ẋ1 = x2

ẋ2 = x1x
2
4 − a1

1
x1

2 + a2u1 +m2

ẋ3 = x4

ẋ4 = −2x2x4
x1

+ a2
u2
x1

+ a2
m1
x1

(4.21)

with x ∈ R4 is the state vector, u ∈ R2 is the control input vector, a1 and a2 are known
parameters. Assume that the system is affected by a fault m1 on the second actuator and by
a disturbance m2. The aim objective is to design a filter that detect and isolate the fault m1

from the disturbance m2. A long of this section we follow the presented methodology step by
step until the design of the filter. First, we compute the conditioned invariant distribution.
The system (4.21) can be put in the nonlinear form as in (4.14) with :

g0(x) =


x1

x1x
2
4 − a1

1
x2

1

x4

−2x2x4
x1

 , G(x) =
(
g1(x) g2(x)

)
=


0 0
a2 0
0 0
0 a2

 ,

p1(x) =


0
0
0
a2
x1

 , p2(x) =


0
1
0
0

 .

Assume that the output vector is :

y(t) =


x1

x3

x4

 .
Let P a distribution spanned by the effect of the disturbance, i.e., P = span{p2(x)} =
span{(0 1 0 0)T }, its involutive closure is P = span{p2(x)} = span{(0 1 0 0)T }.
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The algorithm (4.19) is initialized then by the distribution D0 = P . Applying the algorithm
(4.19) for first iteration, we have :

D1 = D0 +
2∑
i=0

[gi, D0 ∩ ker{dh}] (4.22)

we have : ker{dh(x)} = span{(0 − 1 0 0)T }, then

D0 ∩ ker{dh} = span{(0 1 0 0)T }, (4.23)

thus

[
g0(x), D0 ∩ ker{dh}

]
= ∂(D0 ∩ ker{dh})

∂x
g0(x)− ∂g0(x)

∂x
(D0 ∩ ker{dh})

= −


0 1 0 0

x2
4 + a1

x4
1

0 0 2x1x4

0 0 0 1
2x2x4
x2

1
−2x4

x1
0 −2x2

x1




0
−1
0
0



=


1
0
0
−2x4

x1

 ,

also :

[
g1(x), D0 ∩ ker{dh}

]
= ∂(D0 ∩ ker{dh})

∂x
g1(x)− ∂g1(x)

∂x
(D0 ∩ ker{dh})

=
(

0 0 0 0
)T

, (4.24)

and

[
g2(x), D0 ∩ ker{dh}

]
= ∂(D0 ∩ ker{dh})

∂x
g2(x)− ∂g2(x)

∂x
(D0 ∩ ker{dh})

=
(

0 0 0 0
)T

, (4.25)

we obtain then
D1 = span{(0 1 0 0)T , (1 0 0 − 2x4

x1
)T }. (4.26)

Notice that D1 is not singular and the stopped condition is not yet satisfied since D1 6= D0.
Applying the algorithm (4.19) for second iteration. We have

D2 = D1 +
2∑
i=0

[gi, D1 ∩ ker{dh}], (4.27)

where D1 is the involutive closure of the distribution D1, it is equal to

D1 = D1 = span{(0 1 0 0)T , (1 0 0 − 2x4
x1

)T }, (4.28)
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thus
D1 ∩ ker{dh} = span{(0 1 0 0)T } (4.29)

Noticing that equation (4.29) is the same equation as in (4.23). Therefore, the rest of calcu-
lation is the same, consequently :

D2 = D1 = span{(0 1 0 0)T , (1 0 0 − 2x4
x1

)T }. (4.30)

Thus, the stop condition (4.20) is verified. Set then :

Σp∗ = D2 = span{(0 1 0 0)T , (1 0 0 − 2x4
x1

)T }. (4.31)

Which represents the minimal conditioned invariant distribution containing the effect of the
disturbance. Note that Σp∗ is nonsingular and involutive for any x1 6= 0. Then its orthogonal
codistribution is spanned by exact differentials and it can expressed as follow :

(Σp∗)⊥ = span{(0 0 1 0)T , (2x1x4 0 0 x2
1)T } = span{dx3, d(x2

1x4)}. (4.32)

Once the conditioned invariant distribution is computed, the next step is the computation of
the observability distribution, which is the subject of the next section.

4.3.4 Observability codistribution

The following algorithm determines the maximal observability distribution contained in Pj⊥

and the minimal unobservability codistribution that contains Pj . For this end, consider the
non-decreasing sequence of codistributions given as follow :

Q0 = (ΣPj )⊥ ∩ span{dh}

Qk+1 = (ΣPj )⊥ ∩ (
m∑
i=0

LgiQk + span{dh}). (4.33)

If there exists an integer, k∗ ≤ n− 1, such that Qk∗+1 = Qk∗ , ∀k > k∗. We set Qk∗ = Ω and
we denote this codistribution by

Ω = o.c.a((ΣPj )⊥), (4.34)

where o.c.a refers to the observability codistribution algorithm. The codistribution Ω =
o.c.a((ΣPj )⊥) represents the maximal observability codistribution contained in P⊥, i.e o.c.a((ΣPj )⊥) ⊂
P⊥. Its orthogonal distribution Ω⊥ = Qunob represents the minimal unobservability distribu-
tion. In nonlinear geometric approach, the residual rj(t) can be generated if the unobserva-
bility distribution Qunob satisfies the following necessary condition :

L = span{pj(x)} * Qunob. (4.35)

Properties of the observability codistribution : The observability codistribution has
some properties where are summarized as follow :

96



Geometric Approach to Fault Detection and Isolation

1- Suppose that all generated codistribution by the algorithm (4.33) are nonsingular, and
let Ω∗ = o.c.a((ΣPj )⊥), therefore :

Q0 = Ω∗ ∩ span{dh}

Qk+1 = Ω∗ ∩ (
m∑
i=0

LgiQk + span{dh}), (4.36)

consequently.

2- Let θ be any distribution. If θ is conditioned invariant, then Ω∗ = o.c.a(θ) it is.

3- A distribution ∆ is an unobservability distribution if its orthogonal codistribution is an
observability distribution.

4- For simplicity of computation, the following property can be used [92]

Qk+1 = θ ∩ (Qk +
m∑
i=0

LgiQk + span{dh}), (4.37)

where LgiQk represents the derivative of the codistribution Qk along of the vector field
gi, it is given by

LgiQk = (∂Q
T
k

∂x
gi)T +Qk

∂gi
∂x

(4.38)

5- If ΣPj is well defined and nonsingular, then o.c.a((ΣPj )⊥) represents the maximal obser-
vability codistribution (in sense of codistribution inclusion) which is spanned by exact
differentials and contained in P⊥j . Its orthogonal distribution represents the minimal
unobservability distribution. Let Q be :

Q = (o.c.a(ΣPj )⊥)⊥ (4.39)

6- Q represents the minimal involutive unobservability conditioned invariant and contains
the effect of the other faults and disturbance.

Example : Consider again the academic example introduced above. We have computed
its minimal involutive conditioned invariant distribution Σp∗ given by the equation (4.31),
and its orthogonal codistribution given by equation (4.32). Compute then the observability
codistribution using algorithm (4.33). At the first step, the algorithm is initialized by :

Q0 = (Σp∗)⊥ ∩ span{dh} = span{(0 0 1 0)T , (2x1x4 0 0 x2
1)T } (4.40)

thus

Q1 = (Σp∗)⊥ ∩
2∑
i=0

LgiQ0 + span{dh} (4.41)

using the property (4.37), we can write

Q1 = (Σp∗)⊥ ∩ (Q0 +
2∑
i=0

LgiQ0 + span{dh}) (4.42)
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we have

Q0+
2∑

i=0
LgiQ0+span{dh} = span{w01, w02, Lg0w01, Lg0w02, Lg1w01, Lg1w02, Lg2w01, Lg2w02},

(4.43)
with w01 = (0 0 1 0)T and w02 = (2x1x4 0 1 x2

1)T . Using equation (4.38), we obtain :

Lg0w01 = (0 0 0 1)T ,
Lg0w02 = (0 0 0 0)T ,
Lg1w01 = (0 0 0 0)T ,
Lg1w02 = (0 0 0 0)T ,
Lg2w01 = (0 0 0 0)T ,
Lg2w02 = (2a2x1 0 0 0)T ,

(4.44)

we obtain then

Q0+
2∑
i=0

LgiQ0 = span{(0 0 1 0)T , (2x1x4 0 0 x2
1)T , (0 0 0 1)T , (2a2x1 0 0 0)T },

(4.45)
thus,

(Q0+
2∑
i=0

LgiQ0)+span{dh} = span{(0 0 1 0)T , (2x1x4 0 0 x2
1)T , (0 0 0 1)T , (1 0 0 0)T }.

(4.46)
Finally, we obtain

Q1 = span




0
0
1
0

 ,


2x1x4

0
0
x2

1




∩ span




0
0
1
0

 ,


2x1x4

0
0
x2

1

 ,


0
0
0
1

 ,


1
0
0
0




,

⇒ Q1 = span




0
0
1
0

 ,


2x1x4

0
0
x2

1




.

Noticing that Q1 = Q0 = (Σp∗)⊥, then the stop condition is verified. Hence, we can write :

Ω = o.c.a((Σp∗)⊥) = span{(0 0 1 0)T , (2x1x4 0 0 x2
1)T }, (4.47)

which represents the observability codistribution. Its orthogonal distribution represents the
unobservability distribution, it is given as follow :

Qunob = (o.c.a((Σp∗)⊥))⊥ = span{(0 1 0 0)T , (1 0 0 0)T } (4.48)
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4.3.5 Fault detection and isolation filter design

The last step of this diagnosis approach consists on the designing of a residual generator which
allows the detection and isolation of fault pj from other faults and disturbances pk, (k 6= j).
The method is based on the observability co-distribution Ω. Indeed, state and output diffeo-
morphisms can be determined, whose objective is to decouple a part of the state space from
the faults pk, (k 6= j), using an output injection computed from the output diffeomorphism.
The obtained sub-space is affected by the fault that we want to detect and isolate pj and
completely decoupled from other faults and disturbances pk, (k 6= j). In what follows the
methodology to be followed to obtain this subsystem [92], [136], [137].

Consider system (4.14) and its observability codistribution Ω satisfying (4.35). Let n1 denotes
the dimension of Ω and suppose that span{dh} is nonsingular. Let p−n2 (where p represents
the number of outputs) denotes the dimension of Ω ∩ span{dh} and suppose that there exists
a surjection ψ1 : Rp → Rp−n2 , such that

Ω ∩ span{dh} = span{d(ψ1oh)}. (4.49)

If we fix x0 ∈ X and y0 = h(x0). Then, there exists a selection matrix, H2 (i.e., a matrix in
which any row has all 0 entries but one, which is equal to 1), such that

ψ(y) =
(
ỹ1

ỹ2

)
=
(
ψ1(y)
H2y

)
(4.50)

is a local diffeomorphism at y0 in Rp. Choose a neighborhood U0 of x0 and a function
φ1 : U0 → Rn1 such that

Ω = span{dφ1} (4.51)

at any point of U0. Then, there exists a function φ3 : U0 → Rn−n1−n2 such that

φ(x) =

 x̃1

x̃2

x̃3

 =

 φ1(x)
H2h(x)
φ3(x)

 (4.52)

is a local diffeomorphism at x0 in X. In the new local coordinates defined by (4.50) and
(4.52), system (4.14) is described by equations of the form ([137])

˙̃x1 = f10(x̃1, x̃2) +
m∑

i=1
g1i(x̃1, x̃2)ui + l1,1(x̃1, x̃2, x̃3)mj

˙̃x2 = f20(x̃1, x̃2) +
m∑

i=1
g2i(x̃1, x̃2)ui +

∑d
i=1 l2,i(x̃1, x̃2, x̃3)mj

˙̃x3 = f30(x̃1, x̃2) +
m∑

i=1
g3i(x̃1, x̃2)ui +

∑d
i=1 l3,i(x̃1, x̃2, x̃3)mj

(4.53)

It is clear that the subsystem x̃1 is affected by the fault mj but decoupled from others. Thus,
the fault detection and isolation filter for the fault mj is reduced to a simple construction
of an observer for the subsystem x̃1. By doing the same procedure to isolate each fault mj ,
(j = 1, ..., d), we construct d filters that detect and isolate each one.
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Example : Follow with the previous example in order to design a residual generator that
detect and isolate the fault m1 from the disturbance m2 following the steps announced above.
The dimension of the observability codistribution is n1 = 2. We have :

Ω ∩ span{dh} = span




0
0
1
0

 ,


2x1x4

0
0
x2

1




∩ span




1
0
0
0

 ,


0
0
1
0

 ,


0
0
0
1




,

= span




0
0
1
0

 ,


2x1x4

0
0
x2

1




, (4.54)

thus, dim(Ω ∩ span{dh} = 2 = p− n2. Let Ψ1 : R4 → R2 such that the solution :

Ω ∩ span{dh} = span{d(Ψ1 ◦ h)}, (4.55)

gives :

Ψ1(h(x)) =
(

y2

y2
1y3

)
, (4.56)

and from equation (4.51), we obtain :

Φ(x) =
(

x3

x2
1x4

)
. (4.57)

Choose the selection matrix H2 = (1 0 0)T . Thus, the state diffeomorphism is :

x̃1 =
(

x3

x2
1x4

)
x̃2 = x1

x̃3 = x2

(4.58)

and the output diffeomorphism

ỹ1 =
(

y2

y2
1y3

)
ỹ2 = y1.

(4.59)

In the new coordinates defined by the state and the output diffeomorphism, the system can
be written as :
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˙̃x1 =
( ˙̃x11

˙̃x12

)
=

 x̃12
x̃2

2

a2x̃2u2 + a2x̃2m1


˙̃x2 = x̃3

˙̃x3 = a2
2
x̃3

2
− a1

x̃2
2

+ a2u1 +m2,

(4.60)

and the output in the new coordinates :

ỹ1 =
(
ỹ11

ỹ12

)
=
(
x̃11

x̃12

)
ỹ2 = x̃2.

(4.61)

Let the sub-system defined by the state x̃12{ ˙̃x12 = a2x̃2u2 + a2x̃2m1

ỹ2 = x̃2.
(4.62)

The sub-system defined by the equations (4.62) is affected by the fault m1 and completely
decoupled from the disturbance m2. As discussed above, a simple construction of an observer
can be used as a residual generator. In this case, consider a Luenberger observer as cited in
[92].

{
ż = a2y2u2 + k(y2 − z)
r = y2 − z,

(4.63)

with k > 0 is the observer gain. Let e(t) = x̃12−z be the estimation error. Its time derivative
is :

ė = −ke+ a2y2m2, (4.64)

The residual signal can be defined as r(t) = e(t). In the absence of the fault and after the
initialization error vanished, the residual tends to zero. But once the fault m1 affects the
system, the residual deviate from zero, indicating the presence of fault. Noticed that the
residual is never affected by the disturbance.

4.4 Conclusion

In this chapter, a state of art of different diagnosis methods is presented. There are two main
methods for fault detection and isolation in physical systems ; hardware redundancy and
analytical redundancy. This later is based on the availability of an accurate mathematical
model that describes the behavior of the system in a healthy situation as well as in a faulty
situation to avoid false alarms. For this, an appropriate choice of approach is essential for the
success of the diagnosis procedure. The choice is made on the geometrical approach which is
based on partitioning the state space on several sub-spaces according to the faults scenario.
This power approach has been the subject of the second part of this chapter. Where necessary
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and sufficient conditions to a fundamental problem of residual generation are presented, which
is related to a simple relation linked the distribution containing the fault effects that we want
to detect and isolate and the minimal unobservability distribution containing the disturbance
and other fault effects. To compute the observability co-distribution an algorithm is provided
and due to its interesting properties, a methodology to construct a residual generator for
fault detection and isolation is also presented. The next chapter is devoted to the application
of the geometrical approach to carry out fault detection and isolation procedure for the 3-cell
converter.

102



Chapter 5
Application to switch faults detection and
isolation of 3-cell converter
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Introduction

5.1 Introduction

Safety and reliability are crucial for the operation of power electronics converters. Indeed,
the continuous increase in the use of power converters in complex and sensitive industrial
plants and the emergence of complex control techniques make it necessary to ensure its
safety and reliability. Therefore, it becomes necessary to detect and isolate the faults in the
power converters to prevent the system from unacceptable abnormal behaviors before any
unexpected event, which can cause a lot of damage. In power electronics, we distinguish two
types of faults, parameter faults, and discrete faults. Parameter faults depend mainly on the
variation of certain parameters of the converter from their nominal values. Such faults are of
low dynamics and can often be detected before the breakdown of the converter. Capacitance
degradation of the 3-cell converter, due to multiple causes, such as high ambient temperature,
high humidity [8], and aging of the capacitance are some examples of parameters faults.
Discrete faults which include short and open-circuit of the converter cells are considered
as hard faults and lead to a breakdown of the component if the fault is not detected on
time. These faults are of high dynamics and are often difficult to handle to save the entire
component [9]. In this chapter, the geometric approach to nonlinear fault detection and
isolation is investigated to detect and isolate the discrete faults of the 3-cell converter. The
approach is based on the computational of the observability co-distribution for each situation
of faults, which leads to decoupling the system from a set of faults. An observer is then
designed to complete the fault diagnosis of the considered faults.

5.2 An overview on fault diagnosis of power converter

Model-based diagnosis methods require a faulty model of the power converters in order to
establish the detection and isolation procedure. Some works that treat this issues can be find
in [142], where the authors proposed a uniform modeling method for open-circuit faults in the
3-NPC converter and was validated experimentally. Or as in [141] where the faulty model of
the grid-connected converter is modeled as a nonlinear affine system. Using the recent theory
of switched systems, the authors in [143] and [6] proposed a model-inversion-based approach
for both linear and nonlinear switched systems, and provided conditions to uniquely recover
the faults. The method was applied to the detection and isolation of both continuous and
discrete faults of different switched electrical networks. Many approaches have been proposed
to fault diagnosis of such parameter and discrete faults of different types of converters. In
[144], a Luenberger observer is used for the detection and isolation of both parametric and
discrete faults in a buck converter. The faults are identified by an appropriate choice of the
filter gains. The same method was applied in [145] to AC-DC power converters. In [146],
the authors proposed an approach to estimate the unmeasurable states and the switching
signal of a networked switched systems by designing an event driven communication system
and constructing an event driven asynchronous filter. The estimation of the switching signal
can be used for the detection and isolation of the discrete faults. In [141], a very interesting
geometric approach has been proposed and applied to both discrete and parametric fault
diagnosis in a grid-connected inverter.

104



Modeling discrete faults in the three-cell converter

The p-cell converter consists of a series of p elementary cells of semiconductor devices that
operate in a switched mode. It is considered as a switched system composed by 2p discrete
modes generated by the state of the cells. For control purposes, the control sequence is
designed to ensure the voltage balancing and track the output current reference. In the
healthy situation, the control sequence and the states of the switches are equal, whereas in
discrete faulty mode, the expected control sequence and the state of the switches are different.
Consequently, the control objectives are not achieved and can damage the semiconductor
devices. Therefore, it is necessary to have reliable diagnosis tools to ensure good functioning
of the converter and to protect not only the electrical devices that are connected to it and avoid
the shutdown of the production, but also to protect the human operators around. In literature
the diagnosis of the 3-cell converter is not yet well investigated, some works are appeared
during the last decade. The diagnosis method proposed in [7] is based on comparison between
the measured and the estimated state using a robust second-order sliding mode observer.
Another approach based on the hybrid bond graph for each healthy and faulty situations has
been proposed by [147]. The Signal Signature Study localization (SSS) procedure is based on
analyzing the output voltage and the load current of the 3-cell converter for each considered
faulty situation. In [148], the author propose a centralized approach to fault detection and
isolation of the 3-cell converter. The authors in [149], proposed a decentralized approach for
both discrete and parameter faults of the 3-cell converter using several local hybrid diagnosers.
Recently, a scheme based on the use of unsupervised machine learning approach has been
proposed in [150] to fault detection and isolation of both simple and multiple stuck opened
and stuck closed of the switches of 3-cell converter.
In this chapter, we investigate the geometric approach presented in chapter four to detect
and isolate switch faults of the three-cell converter. These type of faults are considered as
discrete faults. Model-based fault detection and isolation approaches need a mathematical
model to describe the effect of the discrete faults on the system. To this end, we develop
a switched faulty model for the three-cell converter. By assuming measured state variables
and non-simultaneous appearance of faults, an observability co-distribution is computed for
the discrete faults subset. Based on this co-distribution and the corresponding subsystems,
a residual generator based on Luenberger observer is then designed for each faulty situation.
In the case where the load current is the unique available measurement, we provide a robust
sliding mode observer to estimate the other state variables in finite-time. Sliding-mode-based
residual generators are then proposed. Several simulation results are carried out to show
the effectiveness of the proposed sliding-mode-based residual generators. Furthermore, the
robustness is further illustrated against measurement noise, resistance uncertainty, and capa-
citor’s degradation. A comparison between the two proposed types of residual generators is
then carried out to distinguish which of the two residual generators is suitable for a reliable
diagnostic procedure for the 3-cell converter.

5.3 Modeling discrete faults in the three-cell converter

Let consider the 3-cell converter depicted by figure (2.3). It consists of three elementary cells
connected in series. Each elementary cell consists of a pair of two switches. The two switches

105



Modeling discrete faults in the three-cell converter

are always in opposite states, i.e., if the upper switch is opened (or closed) then the lower
switch is closed (or opened). Since the switches work in commutation mode, then they are
subject to the occurrence of faults. In this study, we are interesting on asymmetric faults that
can affect a cell of the converter. Figures (5.1) and (5.2) depicts these situations of faults.

Figure 5.1: Asymmetric
fault in switched cell uj = 1

Figure 5.2: Asymmetric
fault in switched cell uj = 0

Thus, two types of faults can occur in each cell. The first situation as depicted by figure (5.1),
the upper switch of jth cell remains closed, while the lower switch of the same cell remains
opened. We refer to this situation of fault as "uj stuck closed", j = 1, 2, 3. The occurrence
of this type of fault in the cell means that the value of uj = 1 permanently. Consequently,
the upper switch of the jth cell is permanently conducting, while the lower switch is non-
conducting. The second situation which is depicted by figure (5.2) and that we refer to "uj
stuck opened", the upper switch of jth cell remains opened, while the lower switch of the same
cell remains closed. In this case uj = 0 permanently after the occurrence of the fault. And
hence, the upper switch of the jth cell is permanently non-conducting, while the lower switch
is permanently conducting. In what follows, we will give a faulty model of the 3-cell converter
that takes into account the considered faults. Let consider the instantaneous nonlinear affine
model of 3-cell converter as described for p-cell converter given by equations (2.15), in absence
of faults and disturbances the model can be written :

g0(x) =

 0
0

−R
Lx3

 , g(x) =

 −
x3
C1

x3
C1

0
0 − x3

C2
x3
C2

x1
L

x2−x1
L

E−x2
L

 , (5.1)

where g(x) = [g1(x), g2(x), g3(x)] and x ∈ R3 is the state vector such that x1 = vc1, x2 = vc2

and x3 = il are, the voltage across the capacitors C1 and C2, and the load current, respectively,
u = [u1, u2, u3]T is the binary control input and E is the voltage source . For fault diagnosis
purposes, we suppose that all states are available for measurement or estimated in finite time
by a robust observer against the faults if some states are not measurable. In the case where
all states are measured, the output equation is

106



Functional analysis of the 3-cell converter in failure mode

h(x) =

 y1

y2

y3

 =

 x1

x2

x3

 (5.2)

In the healthy situation, the control sequence and the states of the switches are equal, whereas
in discrete faulty mode, the expected control sequence and the state of the switches are
different. Denote by ufj as the faulty value of the switch states for j = 1, 2, 3, and by mj the
fault that can affect uj . Then, the faulty model of three-cell converter becomes :

 ẋ = g0(x) +
3∑

i=1
gi(x)uf

i

y = h(x),
(5.3)

with
uf

j = 1⇒ mj =
{

0 if uj = 1
1 if uj = 0

j = 1, 2, 3, (5.4)

uf
j = 0⇒ mj =

{
0 if uj = 0
−1 if uj = 1

j = 1, 2, 3, (5.5)

From (5.4) and (5.5), the faulty value of each cell can be expressed as

uf
j = uj +mj , j = 1, 2, 3, (5.6)

where mj ∈ {0, 1,−1} represents the discrete fault of the cell j. If mj = 0, then ufj = uj

which correspond to ufj = uj and no fault occur in the cell j. However, if mj = 1 or mj = −1
this correspond to the occurrence of a fault in the cell j. For instance, if the control sequence
uj = 1, 1, 0, 1, 0 and ufj = 1, i.e., the cell jth stuck opened all the time, then mj = 0, 0, 1,
0, 1. Moreover, if ufj = 0, i.e., the jth cell stuck closed, then mj = −1, −1, 0, −1, 0. From
this analysis, the detection and the isolation of real fault ufj , (j = 1, 2, 3) is equivalent to the
detection and the isolation of mj , (j = 1, 3). The latter is given by

mj = uf
j − uj , (5.7)

Using (5.3) and (5.6), the faulty model of the three-cell converter can be described as :

 ẋ = g0(x) +
3∑

i=1
gi(x)ui +

3∑
i=1

gi(x)mi

y = h(x),
(5.8)

In the following section by using the model (5.8) in simulation environment, we analyze the
evolution of the floating voltages of the converter for all fault situations.

5.4 Functional analysis of the 3-cell converter in failure mode

Table (5.1) depicts the evolution of the floating voltages vc1 and vc2 and the load current
iL of the 3-cell converter in a healthy mode. This will be useful when analyzing the floating
voltages evolution in failure mode.
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operating modes q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1
vc1 → ↘ ↗ → → ↘ ↗ →

state evolution vc2 → → ↘ ↘ ↗ ↗ → →
iL ↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗

Table 5.1: Evolution of state variables of 3-cell converter in each operating mode in healthy mode.
→ : constant, ↗ : increase and ↘ : decrease.

u1 stuck closed : When a fault occurs causing the first cell stuck closed, the number of
operating modes in failure mode will be reduced to a four modes despite of eight. According
to table (5.2), the set of operating modes and as depicted by hybrid automaton in figure (5.3)
is Qu1=1 = {q2, q4, q6, q8}.

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 1 1 1 1 1 1 1 1

cell states u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

failure mode q2 q2 q4 q4 q6 q6 q8 q8

Table 5.2: Operating modes when u1 stuck closed.

Figure 5.3: Hybrid trajectory in failure mode u1
stuck closed (in red color)

Figure 5.4: vc1 and vc2 in failure mode u1
stuck closed

According to table (5.1), by analyzing the evolution of the floating voltage vc1 over the
operating modes in failure situation, we can notice that vc1 is either it remains constant,
either it decreases over time. Thus, The floating voltage vc1 has a trend to decrease in this
faulty mode. Furthermore, the dynamic equation of the vc1 in this faulty situation is v̇c1 =
1
C1

(u2 − 1)iL
The load current evolves on the interval [Imin, Imax], and assuming that Imin ≥ 0, therefore,
iL > 0 over the time. Thus, ∀u2 ∈ {0, 1}, v̇c1 ≤ 0, which explains the gradually decreasing
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of vc1 as depicted by figure (5.4) . However, the dynamic equation of the floating voltage vc2

is v̇c2 = 1
C2

(u3 − u2)iL. v̇c2 can be less or greater than zero according to u2 and u3, then it
depends on the applied control law. Figure (5.4) shows the evolution of vc2 , where it increase
until it reaches a certain value without reaching E.

u2 stuck closed : The appearance of fault causing the cell two remains closed, reduced the
number of operating modes to Q = {q3, q4, q7, q8} as reported in table (5.3).

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 1 1 1 1 1 1 1 1
u3 0 0 0 0 1 1 1 1

failure mode q3 q4 q3 q4 q7 q8 q7 q8

Table 5.3: Operating modes in failure mode of the first switching cell (u2 stuck closed).

The hybrid automaton in this faulty case is depicted by figure (5.5). The dynamic equation
of vc1 in this situation is v̇c1 = 1

C1
(1− u1)iL, and since iL ≥ 0, ∀u1 ∈ {0, 1}, v̇c1 ≥ 0, i.e., vc1

is increasing over the times to stabilize to an other value greater than Vcref1 = 10volts. From
a practical point of view, this can be explained by the presence of modes q3 and q7 that offer
the possibility to increase the voltage vc1 , and the total absence of modes that decrease the
voltage.

Figure 5.5: Hybrid trajectory in failure mode u2
stuck closed (in red color)

Figure 5.6: vc1 and vc2 in failure mode u2
stuck closed

Whereas, the dynamic equation of vc2 is v̇c2 = 1
C2

(u3 − 1)iL. And ∀ u3 ∈ {0, 1}, v̇c2 ≤ 0,
which it means that vc2 decrease until it reaches the origin. This decreasing can be explained
by the presence of modes q3 and q4 that have trends to decrease the floating voltage vc2 .
Simulation results depicted in figure (5.6) show the evolution of the two floating voltages.

u3 stuck closed : In this case of fault, the operating set is reduced toQu3=1 = {q5, q6, q7, q8}
as reported by table (5.4), and depicted by the hybrid automaton given by figure (5.7). The
source voltage is abundantly connected to the floating capacitor C2. Consequently, C2 will be
charged until it reaches E = 30volts. This is explained by the presence of operating modes
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q5 and q6 that are trends to increase the voltage vc2 . The dynamic evolution of vc2 is given as
v̇c2 = 1

C2
(1− u2)iL. Hence, ∀ u2 ∈ {0, 1}, v̇c2 ≥ 0 over the time, hence, vc2 increase. Figure

(5.8) shows the evolution of the voltage vc2 in this case of fault.

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 0 0 1 1 0 0 1 1
u3 1 1 1 1 1 1 1 1

failure mode q5 q6 q7 q8 q5 q6 q7 q8

Table 5.4: Operating modes in failure mode of the third switching cell (u3 stuck closed).

Whereas, the dynamic equation of vc1 is v̇c1 = 1
C1

(u2 − u1)iL, its sign depends on u1 and u2.
Indeed, the floating voltage vc1 increases if the remaining modes containing on the hybrid
trajectory after the appearance of the fault, have the trends to elevate it. Otherwise, vc1

decreases. Simulation results depicted in figure (5.8) show the evolution of the floating voltages
vc1 .

Figure 5.7: Hybrid trajectory in failure mode u3
stuck closed (in red color)

Figure 5.8: vc1 and vc2 in failure mode u3
stuck closed

u1 stuck opened : The occurrence of a fault causing the cell one to remain opened (u1 stuck
opened) leads to the following set of operating modes Qu1=0 = {q1, q3, q5, q7} as indicated by
the table (5.5).

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 0 0 0 0 0 0 0 0

cell states u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

failure mode q1 q1 q3 q3 q5 q5 q7 q7

Table 5.5: Operating modes in failure mode of the first switching cell (u1 stuck opened).

From a practical point of view, the capacitor C1 is charging over the times and it can never
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discharging. The dynamic equation of its floating voltage is v̇c1 = 1
C1
u2iL. Therefore, ∀u2 ∈

{0, 1}, v̇c1 ≥ 0, which implies that vc1 increases until reaches the source voltage E = 30volts.
This is explained by the presence of modes q3 and q7 that offer the possibility to increase the
voltage vc1 . Whereas, the dynamic equation of the floating voltage vc2 is v̇c2 = 1

C2
(u3−u2)iL,

its sign depends on u2 and u3, it increases if the remaining modes in faulty situation have
trends to increase the voltage, otherwise it decreases. The simulation results shown in figure
(5.10) depicts the evolution of the floating voltages vc1 and vc2 .

Figure 5.9: Hybrid trajectory in failure mode u1
stuck opened (in red color)

Figure 5.10: vc1 and vc2 in failure mode u1
stuck opened

u2 stuck opened : Table (5.6) gives the operating modes in the case of occurrence of
fault causing the cell two to remain opened. The set of operating modes in this case is
Q = {q1, q2, q5, q6}. The hybrid automaton in this failure situation is given by figure (5.11).

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 1 1 1 1 1 1 1 1
u3 0 0 0 0 1 1 1 1

failure mode q1 q2 q1 q2 q5 q6 q5 q6

Table 5.6: Operating modes in failure mode of the second switching cell (u2 stuck opened).

Practically, in this failure mode, the capacitor C1 is discharging across the load R-L and
never it can be charged. Thus, vc1 decreases until it reaches zero. Its dynamic equation is
v̇c1 = − 1

C1
u1iL. And it is clear that v̇c1 ≤ 0, ∀u1 ∈ {0, 1}, which explains the decreasing

of vc1 . This is due essentially to the operation of the converter in modes q2 and q6 that offer
the possibility to decrease the voltage vc1 , and while q1 and q5 keep it constant. Figure (5.12)
shows effectively the decreasing of vc1 .
Whereas, the dynamic equation of vc2 is v̇c2 = 1

C2
u3iL. Thus, v̇c2 ≥ 0, ∀u3 ∈ {0, 1}. Which

explains its increasing until reaching the value of the source voltage E, as shown in figure
(5.12). This is can be explained by the presence of modes q5 and q6 that increase the voltage
vc2 .
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Figure 5.11: Hybrid trajectory in failure mode u2
stuck opened (in red color)

Figure 5.12: vc1 and vc2 in failure mode u2
stuck opened

u3 stuck opened : Table (5.7) gives the operating modes in the case of occurrence of
fault causing the cell three to remain opened. The set of operating modes is reduced to
Qu3=0 = {q1, q2, q3, q4}. The hybrid automaton in this failure situation is given in figure
(5.13).

healthy mode q1 q2 q3 q4 q5 q6 q7 q8
u1 0 1 0 1 0 1 0 1

cell states u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 0 0 0 0

failure mode q1 q2 q3 q4 q1 q2 q3 q4

Table 5.7: Operating modes in failure mode of the third switching cell (u3 stuck opened).

From point of view, once the cell three stuck opened, which means that the source energy E is
disconnected from the converter and no energy is provided to the converter. The stored energy
in capacitors C1 and C2 will be consumed by the load. Hence, vc1 and vc2 are discharging
over the time until reaching the origin.

Figure 5.13: Hybrid trajectory in failure mode u3
stuck opened (in red color)

Figure 5.14: vc1 and vc2 in failure mode u3
stuck opened

The dynamic equation of vc2 is v̇c2 = − 1
C2
u2iL. This later is less than zero ∀u2 ∈ {0, 1},

which explains the decreasing of the voltage vc2 . Simulation results depicted in figure (5.14)
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show the decreasing of the floating voltages vc1 and vc2 in this failure mode.

5.5 Application of the geometric approach to FDI of switched
faults of the three-cell converter

The ideal case to faults detection and isolation procedure is that each generated residual
signal is only affected by one fault, and each fault affects only one residual. Unfortunately, in
most diagnosis applications, this is not always possible due to the coupling of the model. In
the 3-cell converter, the ideal case is the isolation of one fault from two others, and generate 3
residuals, each one is sensitive only to one fault. Consequently, the isolation of instantaneous
faults can be possible. For that, the application of the geometrical approach does not give
a solution to a fundamental problem of residual generation, which means the non-existence
of an output injection that decouple a part of the system sensitive only to one fault and
insensitive to two others, and this is due to the non-satisfaction of the condition (4.35).
Later, the idea that we have suggested is the isolation of two faults from one, i.e., generating
residuals such that each residual is sensitive to two faults and insensitive to one fault. The
isolation conditions, in this case, are fulfilled, but the isolation of the instantaneous occurrence
of faults is not possible. For that, we proceed by decoupling a set of two faults from one. More
precisely, for the proposed application we generate three scalar residuals, each one detects
any faults from the set of faults whose the residual is sensitive. The isolation is ensured by
analyzing residuals vector (The three generated residuals) but assuming the occurrence of
only one fault. To this end, and to have decoupled structure from a set of faults, we define
three sets of faults : ∆1 = {m1(t),m3(t)}, ∆2 = {m2(t),m3(t)} and ∆3 = {m1(t),m2(t)}. We
will generate three residuals r1(t), r2(t) and r3(t), each one is affected only by a single set of
faults. The isolation of each discrete fault is carried out by analyzing the three residuals.

5.5.1 Decoupling faults

a- Isolation of m1(t),m3(t) from m2(t) : In order to obtain a sub-system sensitive to set
of faults ∆1 = {m1(t),m3(t)} and insensitive to fault m2(t), as a first step, we compute using
(4.19), the minimal conditioned invariant distribution

∑p2
∗ containing P = span{p2(x)}. Let :

P13 = span{g2(x)} = span{( 1
C1
x3 − 1

C2
x3

1
L(x2 − x1)T } , (5.9)

L = span{g1(x), g3(x)} = span



− 1
C1
x3

0
1
Lx1

 ,


0
1
C2
x3

1
L(E − x2)


 (5.10)

and we have
span{dh} = span{(1 0 0)T , (0 1 0)T , (0 0 1)T } (5.11)

⇒ ker{dh} = {0}. Hence, D̄P
i ∩ ker{dh} = 0 ⇒ [gk(x), D̄i ∩ ker{dh}] = {0},∀i, k. Conse-

quently, the algorithm (4.19) stop for k = 0, yielding
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ΣP13 = span{g2(x)} = span{( 1
C1
x3 − 1

C2
x3

1
L(x2 − x1))T }. (5.12)

which is trivially involutive. Applying (4.33) to compute the observability codistribution. The
orthogonal codistribution of ΣP13 is :

(
ΣP13

)⊥
= span




C1
C2

1
0

 ,


1
LC2

x1
1

LC1
x2

1
C1C2

x3


 . (5.13)

Notice that
(
ΣP13

)⊥
⊂ span{dh}. At the first step Q0 is given by

Q0 =
(
ΣP13

)⊥
∩ span{dh} =

(
ΣP13

)⊥
= span{w01, w02}. (5.14)

Then,

Q1 =
(
ΣP13

)⊥
∩
( 3∑
i=0

LgiQ0 + span{dh}
)

=
(
ΣP13

)⊥
∩
(
Q0 +

3∑
i=0

LgiQ0 + span{dh}
)
. (5.15)

We have Q0 + LgiQ0 = span{w01, w02, Lgiw01, Lgiw02}, i = 1, 2, 3, such that :

Lg0w01 = Lg2w01 = Lg1w02 = Lg2w02 = 0,
Lg1w01 =

(
0 0 − 1

C2

)
,

Lg3w01 =
(

0 0 1
C2

)
,

Lg0w02 =
(

0 0 − 2R
LC1C2

)
,

Lg3w02 =
(

0 0 E
LC1C2

)
.

Notice that all Lgiw0j ∈ span{dh}, for i = 1, ..., 3 and j = 1, 2. We conclude that Q1 = Q0.
Thus,

o.c.a

((
ΣP13

)⊥)
= span




C1
C2

1
0

 ,


1
LC2

x1
1

LC1
x2

1
C1C2

x3


 , (5.16)

which represents the observability codistribution. The fulfillment of the condition (4.35) can
be easily verified.

L = span {g1(x), g3(x)} *
(
oca

((
ΣP13

)⊥))⊥
. (5.17)

Therefore, A filter for the fault diagnosis exists. Let n1 = dim(oca((ΣP13)⊥)) = 2 and
(oca((ΣP13))⊥) ∩ span{dh} = (oca((ΣP13)⊥)). Hence, p − n2 = 2, where p = 3 represents
the number of outputs, yielding n2 = 1. Let ψ1 : R3 → R2 be a surjection that satisfies (4.49)
defined as follow
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ψ1(y) =
(

C1
C2
y1 + y2

1
2LC2

y2
1 + 1

2LC1
y2

2 + 1
2C1C2

y2
3

)
(5.18)

and, to satisfy (4.51), φ1 can be chosen such that

φ1(x) =
(

C1
C2
x1 + x2

1
2LC2

x2
1 + 1

2LC1
x2

2 + 1
2C1C2

x2
3
.

)
, (5.19)

and the selection matrix H2(1× 3) is

H2 =
(

1 0 0
)
. (5.20)

The output diffeomorphism and the state diffeomorphism are then, respectively,

ψ(y) =


ỹ1

ỹ2

ỹ3

 =
(
ψ1(y)
H2y

)

=


C1
C2
y1 + y2

1
2LC2

y2
1 + 1

2LC1
y2

2 + 1
2C1C2

y2
3

y1

 (5.21)

and

φ(x) =


x̃1

x̃2

x̃3

 =
(

φ1(x)
H2h(x)

)

=


C1
C2
x1 + x2

1
2LC2

x2
1 + 1

2LC1
x2

2 + 1
2C1C2

x2
3

x1

 . (5.22)

Since rank(dφdt ) = 3, φ3 is not needed to be added. Let then

z1 = C1
C2
x1 + x2. (5.23)

The time derivative of z1 gives

ż1 = x3
C2

(u3 − u1) + x3
C2

(m3 −m1). (5.24)

As expected, the above system is affected by the faults m1 and m3 and unaffected by the
fault m2. We therefore focus on it to design a residual generator that should be sensitive to
faults m1 and m3 and insensitive to fault m2.

b- Isolation of m2 and m3 from m1 : Using the same procedure as above to obtain a
sub-system sensitive to a set faults ∆2 = {m2(t),m3(t)}, and insensitive to a fault m1(t). Let

P23 = span{g1(x)} = span{(− 1
C1
x3 0 1

Lx1)T } (5.25)
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and

L = span




1
C1
x3

− 1
C2
x3

1
L(x2 − x1))

 ,


0
1
C2
x3

1
L(E − x2)


 . (5.26)

The corresponding conditioned invariant distribution is given by

ΣP23 = span{(− 1
C1
x3 0 1

Lx1)T } , (5.27)

and its orthogonal distribution is

(
ΣP23

)⊥
= span




0
1
0

 ,


1
Lx1

0
1
C1
x3


 . (5.28)

Hence

Q0 =
(
ΣP23

)⊥
∩ span{dh} =

(
ΣP23

)⊥
= span{w11, w12}. (5.29)

The obtained vector fields for i = 0, 1, 2, 3 are

Lg0w11 = Lg1w11 = Lg1w12 = 0,
Lg2w11 =

(
0 0 − 1

C2

)
,

Lg3w11 =
(

0 0 1
C2

)
,

Lg0w12 =
(

0 0 − 2R
LC1

x3
)
,

Lg2w12 =
(

0 1
LC1

x3
1

LC1
x2

)
,

Lg3w12 =
(

0 − 1
LC1

x3
1

LC1
(E − x2)

)
.

Finally the observability codistribution is given by

Ω = oca

((
ΣP23

)⊥)
= span




0
1
0

 ,


1
Lx1

0
1
C1
x3


 . (5.30)

The condition (4.35) is satisfied, i.e.,

L = span {g2(x), g3(x)} *
(
oca

((
ΣP23

)⊥))⊥
. (5.31)

As before, let n1 = dim(oca((Σp23
∗ )⊥)) = 2 and (oca((ΣP23))⊥)∩ span{dh} = (oca((ΣP23)⊥)).

Hence p−n2 = 2. Let ψ1 : R3 → R2 be a surjection that satisfies the condition (4.49) such as

ψ1(y) =
(

y2
1

2Ly
2
1 + 1

2C1
y2

3

)
. (5.32)

To satisfy condition (4.51), let the function φ1 be
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φ1(x) =
(

x2
1

2Lx
2
1 + 1

2C1
x2

3

)
. (5.33)

We can choose
H2 =

(
0 0 1

)
. (5.34)

The output and the state diffeomorphisms are respectively

ψ(y) =


ỹ1

ỹ2

ỹ3

 =
(
ψ1(y)
H2y

)
=


y2

1
2Ly

2
1 + 1

2C1
y2

3
y3

 , (5.35)

and

φ(x) =


x̃1

x̃2

x̃3

 =
(

φ1(x)
H2h(x)

)
=


x2

1
2Lx

2
1 + 1

2C1
x2

3
x3

 . (5.36)

Let
z2 = x2. (5.37)

Then,
ż2 = x3

C2
(u3 − u2) + x3

C2
(m3 −m2). (5.38)

As expected, the above system is affected by faults m2(t) and m3(t) and unaffected by fault
m1(t). Starting from this sub system to construct a residual generator affected by faultsm2(t)
and m3(t) and completely decoupled from the effect of the fault m1(t).

c- Isolation of m1 and m2 from m3 : We follow the same steps as before and is briefly
given below to obtain a sub-system sensitive to set faults ∆3 = {m1(t),m2(t)} and insensitive
to m3(t). Let

P12 = span{g3(x)} = span{(− 1
C1
x3 0 1

Lx1)T } (5.39)

and

L = span



− 1
C1
x3

0
1
Lx1

 ,


1
C1
x3

− 1
C2
x3

1
L(x2 − x1)


 . (5.40)

Then
ΣP12 = span{(0 − 1

C2
x3

1
L(E − x2))T } , (5.41)

its orthogonal distribution is

(
ΣP12

)⊥ = span


 1

0
0

 ,

 0
1
L (x2 − E)

1
C2
x3


 . (5.42)

Applying algorithm (4.33), at the first step Q0 is
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Q0 =
(
ΣP12

)⊥
∩ span{dh} =

(
ΣP12

)⊥
= span{w21, w22}, (5.43)

then

Q1 =
(
ΣP12

)⊥
∩
( 3∑
i=0

LgiQ0 + span{dh}
)

=
(
ΣP12

)⊥
∩
(
Q0 +

3∑
i=0

LgiQ0 + span{dh}
)
. (5.44)

We have Q0 + LgiQ0 = span{w21, w22, Lgiw21, Lgiw22}, i = 1, 2, 3, such that :

Lg0w21 = Lg3w21 = Lg3w22 = 0,
Lg1w21 =

(
0 0 − 1

C1

)
,

Lg2w21 =
(

0 0 1
C1

)
,

Lg0w22 =
(

0 0 − 2R
LC2

x3
)
,

Lg1w22 =
(

1
LC2

x3 0 1
LC1

x1
)
,

Lg2w22 =
(
− 1
LC2

x3 0 1
LC2

(E − x1)
)
.

Finally, the obtained observability codistribution is

Ω = oca

((
ΣP12

)⊥)
= span




1
0
0

 ,


0
1
L(x2 − E)

1
C2
x3


 . (5.45)

Its orthogonal distribution is the unobservability distribution. The fulfillment of the condition
(4.35) is satisfied and can be checked easily.

L = span {g1(x), g2(x)} *
(
oca

(
(Σp12
∗ )⊥

))⊥
. (5.46)

Thus, ψ1 and φ1 are respectively

ψ1(y) =
(

y1
1

2Ly
2
2 − E

L y2 + 1
2C2

y2
3

)
, (5.47)

and

φ1(x) =
(

x1
1

2Lx
2
2 − E

Lx2 + 1
2C2

x2
3

)
. (5.48)

We choose H2 =
(

0 0 1
)
. Then, the output and the state diffeomorphisms are respecti-

vely given by :

ψ(y) =


ỹ1

ỹ2

ỹ3

 =
(
ψ1(y)
H2y

)
=


y1

1
2Ly

2
2 − E

L y2 + 1
2C2

y2
3

y3

 , (5.49)
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and

φ(x) =
(

φ1(x)
H2h(x)

)
=


x1

1
2Lx

2
2 − E

Lx2 + 1
2C2

x2
3

x3

 . (5.50)

Let

z3 = x1, (5.51)

its time derivative is then,

ż3 = x3
C1

(u2 − u1) + x3
C1

(m2 −m1). (5.52)

As expected, the above system is affected by faults m1(t) and m2(t) and unaffected by fault
m3(t). Then it is a good departure point to construct a residual generator to detect and
isolate the faults m1(t) and m2(t).

5.5.2 Residual generator based Luenberger observer

a- Residual generator design sensitive to ∆1 = {m1(t),m3(t)} and insensitive to
m2(t) :

In the current section, we assume that all state variables of the three-cell converter are
available to measurement. Consider the following Luenberger observer as given by equation
(4.11) to estimate the state z1 of the decoupled subsystem (5.24).

RG1 :
{ ˙̃z1 = 1

C2
(u3 − u1)y3 + k1(C1

C2
y1 + y2 − z̃1)

r̃1 = C1
C2
y1 + y2 − z̃1.

(5.53)

The filter (5.53) is a residual generator sensitive to set of faults ∆1 = {m1(t),m3(t)} and
insensitive to m2(t), where k1 is the observer’s gain. Hence, the following properties can be
stated :

- The residual r̃1(t) is sensitive to faults m1(t) and m3(t) and is insensitive to fault m2(t).

- The residual signal r̃1(t) converges exponentially to zero in the absence of the faults.

The proof of these two properties is as follow. The time derivative of the residual signal r̃1 is

˙̃r1(t) = ż1 − ˙̃z1. (5.54)

From (5.24) and (5.53), we obtain

˙̃r1 = −k1r̃1 −
1
C2
y3m1 + 1

C2
y3m3, k1 ∈ R+. (5.55)

It is clear that the dynamic of r̃1 is sensitive to the set of faults ∆1 = {m1(t),m3(t)} and
insensitive to m2(t). in the presence of the error initialization and in the absence of faults, if
k1 > 0 then the residual r̃1 tends exponentially to zero.
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b- Residual generator design sensitive to ∆2 = {m2(t),m3(t)} and insensitive to
m1(t) :

Consider again the following Luenberger observer to estimate the state variable z2 of the
decoupled subsystem (5.38).

RG2 :
{ ˙̃z2 = 1

C2
(u3 − u2)y3 + k2(y2 − z̃2)

r̃2 = y2 − z̃2
(5.56)

The filter (5.56) is a residual generator sensitive to faults ∆2 = {m2(t),m3(t)} and insensitive
to m1(t) where k2 is the observer’s gain.The following properties can be stated.

- The residual r̃2(t) is sensitive to set of faults ∆2 = {m2(t),m3(t)} and it is insensitive
to fault m1(t).

- The residual signal r̃2(t) converges exponentially to zero in the absence of faults.

Indeed, the time derivative of the residual signal r̃2 is

˙̃r2 = −k2r̃2 −
1
C2
y3m2 + 1

C2
y3m3, k2 ∈ R+. (5.57)

It is clear from the above equation that the residual r̃2 is only sensitive to the set of faults
∆2 = {m2(t),m3(t)} and insensitive tom1. In the absence of the faults, this residual converges
exponentially to zero independently from the initial conditions since k2 > 0.

c- Residual generator design sensitive to ∆3 = {m1(t),m2(t)} and insensitive to
m3(t) :

Consider again the following Luenberger observer to estimate the state variable z3 of the
decoupled subsystem (5.52).

RG3 :
{ ˙̃z3 = 1

C1
(u2 − u1)y3 + k3(y1 − z̃3)

r̃3 = y1 − z̃3
(5.58)

The filter (5.58) is the residual generator sensitive to the set of faults ∆3 = {m1(t),m2(t)}
and insensitive to m3(t) where k3 > 0 is the observer’s gain. The two following properties
hold.

- The residual r̃3(t) is sensitive to fault m1 and m2 and is insensitive to fault m3.

- The residual signal r̃3(t) converges exponentially to zero in the absence of the faults.

The time derivative of the residual signal r̃3 is

˙̃r3 = −k3r̃3 −
1
C1
y3m1 + 1

C1
y3m2, k3 > 0. (5.59)

The dynamic of the residual r̃3 is affected by the faults m1 and m2 and it is completely
decoupled from the fault m3. In the absence of the faults and with k3 > 0, this residual
converges exponentially to zero independently from the initial conditions.
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5.5.3 Simulation results

In this section, simulation results of the studied system will be presented in order to validate
the proposed fault detection and isolation filters. Figure (5.15) depicts a synoptic diagram
of the diagnosis procedure based on Luenberger residual generator. Recalling that we have
assumed that all states of the converter are available to measurement. The parameters of the
model are C1 = C2 = 40µF , R = 131Ω and L = 1mH, the source voltage E = 30volts. The
residual generator gains are k1 = k2 = k3 = 150.

Figure 5.15: Synoptic diagram of the diagnostic procedure without observer

Figure (5.16) shows the applied control signals u1, u2 and u3 which are periodic with a period
of T = 5.10−4 second, the dwell time is then τ = T

6 . This sequence of control is chosen to
satisfy the observability condition of the three-cell converter.

Figure 5.16: Control signals u1, u2 and u3

Figures (5.17), (5.18) and (5.19) depict respectively the evolution of the load current iL and
the floating voltages vc1 and vc2 . Where we can see the convergence of floating voltages to
their references vc1ref

= E
3 = 10 volts and vc2ref

= 2E
3 = 20 volts.

Figures (5.20) and (5.21) show residual signals r̃1, r̃2 and r̃3 generated respectively by (5.53),
(5.56) and (5.58), in the case of the occurrence of the fault m1 in both situation u1 stuck
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Figure 5.17: Load current il

Figure 5.18: Floating voltage vc1

Figure 5.19: Floating voltage vc2
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closed and u1 stuck opened.

Figure 5.20: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u1
stuck closed

Figure 5.21: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u1
stuck opened

Where we can notice that before the fault occurs, all residuals tend to zero. At t = 0.2 second,
the fault m1 occurs, the residuals r̃1, r̃3 detect the occurrence of the fault m1. Whereas, the
residual signal r̃2 remains insensitive to the occurrence of the fault m1. This is prove our
analysis before.
Figures (5.22) and (5.23) show residual signals r̃1, r̃2 and r̃3 generated respectively by (5.53),
(5.56) and (5.58), in the case of the occurrence of the fault m2 in both situation u2 stuck
closed and u2 stuck opened. Where we can notice that before the fault occurs, all residuals
tend to zero. At t = 0.4 second, the fault m2 occurs, the residuals r̃1, r̃2 become sensitive to
a fault m2. While, residual signal r̃3 remains insensitive to the occurrence of the fault m2.
Figures (5.24) and (5.25) show residual signals r̃1, r̃2 and r̃3 generated respectively by (5.53),
(5.56) and (5.58), in the case of the occurrence of the fault m3 in both situation u3 stuck
closed and u3 stuck opened. Where we can notice that before the fault occurs, all residuals
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Figure 5.22: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u2
stuck closed

Figure 5.23: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u2
stuck opened

Figure 5.24: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u3
stuck closed
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Figure 5.25: Residual signals r̃1, r̃2 and r̃3 in the faulty mode u3 stuck opened

tend to zero. At t = 0.5 second, the fault m3 occurs, the residuals r̃2, r̃3 are sensitive to a
fault m3. While, residual signal r̃1 remains insensitive to the occurrence of the fault m2.

m1 m2 m3
r̃∗1 1 0 1
r̃∗2 0 1 1
r̃∗3 1 1 0

Table 5.8: Table of residual signatures generated by Luenberger observer

Table (5.8) summarizes the sensitivity of the residual signals to faults m1, m2 and m3. Note
that 1 means that the corresponding residual is sensitive to a corresponding fault and 0
means insensitive. We can conclude from this table that the occurrence of a single fault can
be isolated.

5.5.4 Residual generator based sliding mode observer

a- Sliding mode observer for states estimation of the 3-cell converter :

In previous section, we have assumed that all state variables of the three-cell converter are
measured. In the case where only the load current x3 = il is measured, an observer should be
designed to estimate the floating voltages in finite time. The state observability of three-cell
converter is studied in chapter three and as reported in [2], [33], [40], [41] and [151]. In the
following section, we design a sliding mode observer and from this observer we derive residual
generators for fault detection and isolation procedure. The considered sliding mode observer
to estimate the floating voltages of the three-cell converter x1 = vc1 and x2 = vc2 is given
under following form [7], [33] and [34].
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

˙̂x1 = 1
C1

(u2 − u1)x̂3 + α1(u2 − u1)sign(e3)
˙̂x2 = 1

C2
(u3 − u2)x̂3 + α2(u3 − u2)sign(e3)

˙̂x3 = −R
L x̂3 + E

Lu3 − 1
L(u2 − u1)x̂1 − 1

L(u3 − u2)x̂2

+λ1|u2− u1||e3|1/2sign(e3) + λ2|u3− u2||e3|1/2sign(e3)
ŷ3 = x̂3

(5.60)

where x̂1, x̂2 and x̂3 represent the estimated of floating capacitor voltages and the load cur-
rent respectively. e3 represents the output estimation error, i.e, e3 = y3 − ŷ3. The finite time
convergence of the estimation errors is proved in [33]. Now, based on the designed sliding
mode observer (5.60) and the previous analysis, we derive residual generators based sliding
mode for each subsystem given by equations (5.24), (5.38) and (5.52).

b- Residual generator design sensitive to ∆1 = {m1(t),m3(t)} and insensitive to
m2(t) :

Consider the model of the 3-cell converter (5.8), the sliding mode observer (5.60) and the
decoupled subsystem sensitive to faults m1 and m3 and insensitive to fault m2(t) given by
equation (5.24), then the following proposition can be stated.

Proposition 5.1 : Consider the model of the three-cell converter (5.8) and the sliding
mode observer given by (5.60). Then the following filter

RG4 :


˙̂z1 = 1

C2
(u3 − u1)ŷ3 + k1(C1

C2
x̂1 + x̂2 − ẑ1)

+ C1
C2α1(u2 − u1)sign(e3) + α2(u3 − u2)sign(e3)

r̂1 = C1
C2
x̂1 + x̂2 − ẑ1,

(5.61)

is a residual generator with the following properties :

- The residual r̂1 is sensitive to the set of faults ∆1 = {m1(t),m3(t)} and insensitive to
m2(t).

- The residual signal r̂1(t) converges exponentially to zero in the presence of initialization
error and in the absence of faults m1(t) and m3(t).

Proof : The derivative of the residual signal r̂1 is :

˙̂r1 = C1
C2

˙̂x1 + ˙̂x2 − ˙̂z1

= C1
C2
{ 1
C1

(u2 − u1)x̂3 + α1(u2 − u1)sign(e3)}
+ 1
C2

(u3 − u2)x̂3 + α2(u3 − u2)sign(e3)− 1
C2

(u3 − u1)ŷ3

−k1r̂1 − C1
C2α1(u2 − u1)sign(e3)− α2(u3 − u2)sign(e3),

(5.62)

then

˙̂r1 = −k1r̂1, k1 > 0. (5.63)

126



Application of the geometric approach to FDI of switched faults of the three-cell converter

It is clear that the residual signal r̂1 tends to zero once x1 and x2 are well estimated in the
absence of faults. When the faults occur, their effects on the residual r̂1 are carried by the
load current, and hence by x̂1 and x̂2. But the effect of the fault m2 on the subspace defined
by (5.61) is completely decoupled, due to the estimated output injection C1

C2
x̂1 + x̂2.

c- Residual generator design sensitive to ∆2 = {m2(t),m3(t)} and insensitive to
m1(t) :

Consider now the model of the 3-cell converter (5.8), the sliding mode observer (5.60) and
the decoupled subsystem sensitive to faults m2 and m3 and insensitive to fault m1(t) given
by equation (5.38), then the following proposition can be stated.

Proposition 5.2 : Consider the model of the three-cell converter (5.8) and the sliding
mode observer (5.60). Then the following filter

RG5 :
{ ˙̂z2 = 1

C2
(u3 − u2)ŷ3 + k2(x̂2 − ẑ2) + α2(u3 − u2)sign(e3)

r̂2 = x̂2 − ẑ2,
(5.64)

is a residual generator with the following properties :

— The residual r2 is sensitive to m2 and m3 and insensitive to m1.

— The residual signal r̂2 converges exponentially to zero in the presence of initialization
error. and in the absence of faults m2 and m3.

Proof : The derivative of the residual signal is :

˙̂r2 = ˙̂x2 − ˙̂z2

= 1
C2

(u3 − u2)x̂3 + α2(u3 − u2)sign(e3)
− 1

C2
(u3 − u2)ŷ3 − k2(x̂2 − ẑ2)− α2(u3 − u1)sign(e3),

(5.65)

we obtain

˙̂r2 = −k2r̂2, k2 > 0. (5.66)

Also, it is clear that the residual signal r̂2 tends to zero once x1 and x2 are well estimated in
the absence of faults.

d- Residual generator design sensitive to ∆3 = {m1(t),m2(t)} and insensitive to
m3(t) :

Consider again the model of the 3-cell converter (5.8), the sliding mode observer (5.60) and
the decoupled subsystem sensitive to faults m1 and m2 and insensitive to fault m3(t) given
by equation (5.52), then the following proposition can be stated.

Proposition 5.3 : Consider the model of the three-cell converter (5.8) and the sliding
mode observer (5.60). Then the following filter
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RG6 :
{ ˙̂z3 = 1

C1
(u2 − u1)ŷ3 + k3(x̂1 − ẑ3) + α1(u2 − u1)sign(e3)

r̂3 = x̂1 − ẑ3,
(5.67)

is a residual generator with the following properties :

- The residual r̂3 is sensitive to m1(t) and m2(t) and insensitive to m3(t).

- The residual signal r̂3(t) converges exponentially to zero in the presence of initialization
error and in the absence of faults m1(t) and m2(t).

Proof : The derivative of the residual signal is :

˙̂r3 = ˙̂x1 − ˙̂z3

= 1
C1

(u2 − u1)x̂3 + α1(u2 − u1)sign(e3)
− 1

C1
(u2 − u1)ŷ3 − k3(x̂1 − ẑ3)− α1(u2 − u1)sign(e3),

(5.68)

we obtain
˙̂r3 = −k3r̂3, k3 > 0. (5.69)

5.5.5 Simulation results

In this section, simulation results are carried out to show the effectiveness of the proposed
residual generator based sliding mode observers. Figure (5.26) depicts a synoptic diagram of
the proposed diagnosis procedure. Where, the different output injections are computed from
the estimated states of the converter. Sliding mode observer parameters are λ1 = 1500, λ2 =
1500, α1 = 3

4 , α2 = 3
4 and the residual generator gains are k1 = k2 = k3 = 150.

Figure 5.26: Synoptic diagram of the diagnostic procedure using sliding mode observer

Figure (5.27) depicts the obtained simulation results of the three-cell converter model (5.1)
and the sliding mode observer (5.60). The convergence of the estimated states is established
in finite time to their references x1ref = 10 volts and x2ref = 20 volts. Figure (5.28) shows
the estimation errors, e1 = x1− x̂1 and e2 = x1− x̂1, converge to zero in the absence of faults.
Figures (5.29) to (5.34) depict simulation results of residual signals r̂1, r̂2 and r̂3 based sliding
observer, generated by (5.61), (5.64) and (5.67). Where all residuals are equal to zero in the
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Figure 5.27: Floating voltages and their estimates a- x1 and x̂1,
b- x2 and x̂2

Figure 5.28: Estimation errors a- e1 = x1 − x̂1 and e2 = x2 − x̂2

Figure 5.29: r̂1, r̂2 and r̂3 based sliding mode residual generator
in the faulty mode u1 stuck closed
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Figure 5.30: r̂1, r̂2 and r̂3 based sliding mode residual generator
in the faulty mode u1 stuck opened

Figure 5.31: r̂1, r̂2 and r̂3 based sliding mode residual generator in
the faulty mode u2 stuck closed

absence of faults.
Figures (5.29) and (5.30) show respectively the obtained residual signals r̂1, r̂2 and r̂3 in the
case of the occurrence of the fault m1 causing u1 stuck closed and u1 stuck opened. Where,
before the occurrence of the fault m1 at t = 0.2 second, affects the residuals r̂1, r̂3 unlike the
residual r̂2 which remains equal to zero.
Figures (5.31) and (5.32) show respectively the obtained residual signals r̂1, r̂2 and r̂3 in the
case of the occurrence of the fault m2 causing u2 stuck closed and u2 stuck opened. Where,
before the occurrence of the fault m2 at time t = 0.4 second, affects the residuals r̂2, r̂3 unlike
the residual r̂1 which remains equal to zero.
Figures (5.33) and (5.34) show respectively the obtained residual signals r̂1, r̂2 and r̂3 in the
case of the occurrence of the fault m3 causing u3 stuck closed and u3 stuck opened. Where,
before the occurrence of the fault m3 at time t = 0.4 second, affects the residuals r̂1, r̂2 unlike
the residual r̂3 which remains equal zero all the time.
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Figure 5.32: r̂1, r̂2 and r̂3 based sliding mode residual generator in
the faulty mode u2 stuck opened

Figure 5.33: r̂1, r̂2 and r̂3 based sliding mode residual generator in
the faulty mode u3 stuck closed
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Figure 5.34: r̂1, r̂2 and r̂3 based sliding mode residual generator in
the faulty mode u3 stuck opened

m1 m2 m3
r̂∗1 1 0 1
r̂∗2 0 1 1
r̂∗3 1 1 0

Table 5.9: Table of residual signature based sliding mode observer

Table (5.9) summarizes the sensitivity of the residual signals to faults m1, m2 and m3. Note
that 1 means that the corresponding residual is sensitive to a corresponding fault and 0
means insensitive. We can conclude from this table that the occurrence of a single fault can
be isolated.

5.6 Uncertainties studies

Model-based FDI methods are based on a mathematical model. However, a precise and accu-
rate model of a real system cannot be obtained for several causes ; an unknown structure of
disturbances, different noise effects, and uncertain parameters due to component aging. FDI
methods that are able to handle these kind of uncertainties are referred to as robust. In order
to highlight the effectiveness of the proposed residual signals that avoid false alarms against
noises and parameter uncertainties, it is proposed to study the robustness of these residuals
respect to measurement noise, resistance noise and capacitors degradation. A comparison
between the robustness of the two strategies is then provided.

5.6.1 Robustness with respect to measurement noise

We test the robustness of the residual signals against measurement noise. For this end, we
introduce noises on all state variables for the first diagnostic strategy (all states are assumed to
be available to measurement). For the second diagnostic strategy using sliding mode observer,
we consider a measurement noise only on the load current assumed to be the only measured

132



Uncertainties studies

variable. The filter gains are k1 = k2 = k3 = 20. The faults occurs at t = 0.2 second for m1,
at t = 0.3 second for m2 and at t = 0.4 second for m3. The obtained simulation results are
depicted in figures (5.35), (5.36) and (5.37).
All the residuals generated by both Luenberger observer generator and sliding mode observer
generator are affected by measurement noise without loss of fault detection and isolation
performances. It is important to note that to avoid false alarms due to impulse noise, the
residual signals magnitude can be adjusted by modifying the filter gains ki, i = 1, 2, 3.

5.6.2 Robustness with respect to resistance uncertainty

It is important to have an insensitivity of the residuals against the parametric uncertainties
of the three-cell converter. According to, [149] the load resistance is the most disturbing
elements in three cell converter systems. Figure(5.38) depicts a fast load resistance variation
scenario used to test the robustness of the residual generators.
Figures (5.39) depicts the residual signals under resistance noise without the occurrence of
any fault. As it can be seen, all residuals are not affected by the noise effect. Hence, the
diagnosis performances are kept as it can be shown in figure (5.40) with the occurrence of
the fault m1 at t = 0.2s. This fact confirm that the residual generators (5.53), (5.56), (5.58),
(5.61), (5.64) and (5.67) are completely decoupled from the resistance R variations. Note that
in [149], the authors propose a statistical technique (Z-test) to overcome to the problem of
false alarms due to resistance variations on generated residual.

5.6.3 Robustness with respect to capacitors degradation

In energy conversion systems, capacitors are often subject to degradation of their capacitances
due to aging of the components. To show the robustness of the proposed residual signal against
capacitors degradation (soft fault), we assume as in [6] that the capacitors C1 and C2 are
described by a time varying capacitances,

C1(t) =
{
C1, if t < 0.3s
C1e

−(t−0.3), if t ≥ 0.3s
(5.70)

C2(t) =
{
C2, if t < 0.4s
C2e

−(t−0.3), if t ≥ 0.4s
(5.71)

The capacitor C1 starts degrading at t = 0.3s whereas the capacitor C2 starts degrading at
t = 0.4s. The degradation is assumed to be exponential as indicated by equations (5.70) and
(5.71). Simulation results are depicted by figures (5.41) and (5.42).
Figure (5.41) shows that the residual signals (r̃1, r̂1), (r̃2, r̂2) and (r̃3, r̂3) subject to capacitor
C1 degradation. We can notice :

1- The sensitivity of r̃1, r̃3 generated by Luenberger residual generator.

2- The insensitivity of r̃2 generated by Luenberger residual generator.

3- All residual signals r̂1, r̂2, r̂3 generated by sliding mode generator are insensitive to
capacitor C1 degradation.

Figure (5.42) depicts all residuals subject to capacitor C2 degradation. It can be seen
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Figure 5.35: Measurement noise effect on residual signals for uf
1 = 1

Figure 5.36: Measurement noise effect on residual signals for uf
2 = 1

Figure 5.37: Measurement noise effect on residual signals for uf
3 = 1
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Figure 5.38: Noise added to resistance of the converter

Figure 5.39: Resistance noise effect on residual signal without faults

Figure 5.40: Resistance noise effect on residual signal for uf
1 = 1 and

for k1 = k2 = k3 = 150
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Figure 5.41: C1 soft fault capacitor effect on residual signals

Figure 5.42: C2 soft fault capacitor effect on residual signals
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1- The sensitivity of r̃1, r̃2 generated by Luenberger residual generator.

2- The insensitivity of r̃3 generated by Luenberger residual generator.

3- All residual signals r̂1, r̂2, r̂3 generated by sliding mode generator are insensitive to
capacitor C2 degradation.

5.6.4 Discussion on robustness tests

After designing the residual generators by the two diagnostic strategies, we proceed to the
robustness tests against the multiple type of noises and uncertainties, namely, measurement
noise, resistance noise, and degradation of two capacitors. The results of the sensitivity of
the residual signals are summarized in Table (5.10), which represents the signature table of
all the residuals generated by the two diagnostic strategies.

1st diagnosis strategy 2nd diagnosis strategy

r̃∗1 r̃∗2 r̃∗3 r̂∗1 r̂∗2 r̂∗3

Faults
Fault m1 1 0 1 1 0 1
Fault m2 0 1 1 0 1 1
Fault m3 1 1 0 1 1 0

Uncertainties
Resistance noise 0 0 0 0 0 0
C1 degradation 1 0 1 0 0 0
C2 degradation 1 1 0 0 0 0

Measurement noises : All residual are sensitive without a loss of diagnosis performances

Table 5.10: Residual signature table with respect to faults and uncertainties

We can deduce from this table that the two diagnostic strategies give good results in terms
of detection and isolation of faults in the absence of different noises and uncertainties. In the
presence of measurement noises, all residuals generated by the two strategies are sensitive,
without the loss of detection and isolation performance, i.e., in the presence of this noise and
a fault, both procedures can locate the faulty cell of the converter as shown in figures (5.35),
(5.36) and (5.37). While, in the presence of resistance noise, the tests show that all residual
generated by the two strategies are insensitive. This is a very important performance to avoid
false alarms, as resistance is the most disturbing element of the converter. For the degradation
of the two capacitors, we can notice that the residuals generated based on the sliding mode
observers are insensitive. This is also a very important performance to avoid false alarms due
to the aging of the capacitors. Unlike the second strategy, some residuals generated by the
first diagnostic strategy are sensitive to the appearance of capacitor uncertainties. Indeed, the
degradation of the capacitor C1 generates a residual signature (r̃∗1 r̃∗2 r̃∗3) = (1 0 1), and
this is also the residual signature in the presence of the fault m1. The same thing for the de-
gradation of the capacitor C2, which generates a residual signature (r̃∗1 r̃∗2 r̃∗3) = (1 1 0)
which is the same residual signature in the presence of the fault m3. Therefore, false alarms
and confusions can be generated by Luenberger’s observer-based diagnostic procedure. As a
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conclusion, the sliding mode observer-based diagnostic procedure is best suited to accomplish
the task of detecting and isolating faults in the multicellular converter.

5.7 Conclusion

This chapter is devoted to the diagnosis of switch faults that are considered as discrete faults
of the multicellular converter. A state of art have been presented about carried out works
for the diagnosis of the converter. It seems that this is not sufficiently studied, especially for
the diagnosis of simultaneous faults. The application of the geometric approach presented in
chapter four, requires a fault model, for that we have presented a nonlinear model which takes
into account the discrete faults in the 3-cell converter. Using this model, functional analysis
has been presented for each fault situation. The application of the diagnosis approach to si-
multaneous switch faults detection and isolation of the converter is not possible, this is mainly
due to the non-satisfaction of the isolation condition, consequently, a subsystem sensitive to a
single fault and insensitive to the two others can not be obtained. To satisfy the conditions for
the existence of a solution to a fundamental problem of residual generation, we have proposed
to divide the faults into three subsets, each one contains two faults. In this case, isolation of
each fault set from another single fault is being possible, and a geometric solution has been
presented for each situation. Indeed, based on the observability co-distribution computed for
each situation, three residual generators have been designed for two different diagnostic stra-
tegies based on observers. In the first strategy, we have assumed that all state variables of
the converter are available to measurement, in this case, three residual generators based on
the Luenberger observer have been proposed. While the second strategy, we have assumed
that only the load current is available to measurement. In this case, a sliding mode observer
has been designed for estimating the floating voltages. Sliding mode residual generators have
been then proposed. The obtained simulation results in the absence of parametric uncertain-
ties and measurement noise show the efficiency of the two diagnostic strategies. While in the
presence of parametric uncertainties and measurement noise, the obtained simulations show
the efficiency of residual generators based on sliding modes, and this is mainly due to the
fact that sliding modes are known to be robust against parametric uncertainties.
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The works presented in this thesis concern the observability, observation, and diagnosis of
the 3-cell converter. Due to its switching behavior, the multicellular converter is considered
to be a hybrid system. However, several types of models have been developed, namely, the
average model, the harmonic model, the instantaneous model, and the hybrid model. The use
of one of them depends mainly on its application ; on control design, observability analysis,
observer design, or on fault diagnosis.
Observability is a very important characteristic in the designing of an observer-based control
system. The observability matrix of the hybrid model of the converter is never in full rank,
but it does not imply the unobservability of the system. New approaches have been introdu-
ced recently for the analysis of the observability of hybrid systems, namely ZTN -observability
which is introduced by [4] and the geometrical approach introduced by [6]. The latter is based
on the unobservable subspace along the hybrid time trajectory. Thus, the observability of the
3-cell converter is shown for a well-chosen control sequence, so that the floating voltages of
the 3-cell converter can be estimated by an observer. Exploiting the obtained results from
the observability analysis of the converter, a nonlinear switching model is obtained describing
the behavior of the observable subspace of the converter. The important properties of the
obtained observable sub-model are that it is observable along the hybrid time trajectory, and
its nonlinear part is a function of the inputs and the outputs assumed known, that substan-
tially simplified the issues of the observer design. The objective behind the determination of
the observable sub-model is the reconstruction of the floating voltages of the converter. The
idea is based on the designing of a sliding mode observer for the observable subspace of the
converter, then reconstructing the floating voltages from an estimated variable provided by
the observer. The convergence of the estimated variables to their references returns to the
exponential stabilization of the estimation error, which has demonstrated using the Lyapu-
nov formalism, and the issue is reformulated on the feasibility solution to the Linear Matrix
Inequality problem, which is evident due to the observability property of the pair (A, C)
along hybrid time trajectory. Consequently, the gain observer matrix and the sliding surface
parameters of the observer are deduced. The reconstruction of the floating voltages is then
evident from a variable estimated by the observer. The carried out simulation results show
the efficiency of the proposed strategy of the reconstruction of the capacitor floating voltages.

The second part of this thesis concerns the fault diagnosis of the converter. Indeed, the three
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cell converter operates in commutation mode, make it often subject to the switch faults. For
that, it is necessary to have reliable diagnostic tools to ensure the good functioning of the
converter and to protect not only the electrical devices that are connected to it and avoid the
shutdown of the production but also to protect the human operators around. The considered
fault affecting the converter cell is of type asymmetric, i.e., that causes the upper switch
stuck opened (closed) and the lower switch stuck closed (opened). The choice of diagnosis
approach is of paramount importance. We applied then the geometric approach which is ba-
sed on the availability of a mathematical model. Thus, the nonlinear instantaneous model
of the 3-cell converter is used since it is suitable for the chosen diagnostic approach. The
existence of a solution to a fundamental problem of residual generation (FPRG) is related
to the satisfaction of a necessary and sufficient condition, based on the unobservability co-
distribution. Unfortunately, the FPRG using the geometrical approach has not a solution
in the ideal case for faults isolation, i.e., generating three residuals, each one is sensitive to
only one fault and each fault affects only one residual. Thus, simultaneous fault detection
and isolation is not possible. This can be translated by the inexistence of an output injection
which makes it possible to obtain a sub-system sensitive to a single fault and insensitive to
two others. The idea that we have proposed, is to generate three residuals, each one sensitive
to two faults and insensitive to only one. In this case, the necessary and sufficient condition
to FPRG is checked, but the diagnosis performances are reduced to the occurrence of only
one fault. The application of the approach has allowed the obtaining of three subsystems,
each one being sensitive to two faults and completely decoupled from one fault. The fault
detection and isolation procedure is then performed for two different strategies. The first
assumes that all state variables of the converter model are available to measurement. Three
residual generators based on the Luenberger observer are then designed for the three obtained
subsystems. Whereas, the second strategy assumes that only the load current is available to
measurement. Therefore, a sliding mode observer is designed to estimate the capacitor floa-
ting voltages. Thus, three sliding mode residual generators are proposed for each situation
of faults. The convergence to zero of all generated residual signals is shown in the presence
of initialization errors, as well as their sensitivity to a set of two faults and their insensiti-
vity to a single fault. The carried out simulation results have shown the effectiveness of each
diagnostic strategy for fault detection and isolation in the absence of uncertainties, and each
blocking situation of the cell. Finally, to avoid false alarms, a robustness study is performed
for uncertainty parameters and the measurement noises, namely the measurement noise, the
resistance noise, and the capacitor’s degradation over time. The obtained simulation results
show the effectiveness of the residual generators based sliding mode observer and are more
suitable in the presence of these parameter uncertainties and noises. This is since the sliding
modes are known for their robustness to parametric uncertainties.

The work presented in this thesis has the potential to generate some future works that will
further improve the research results either on observation or in fault diagnosis of the multi-
cellular converter.

- The observable model of the 3-cell converter introduced in chapter three offers some
interesting properties, and it is not yet sufficiently investigated. Indeed, this model can
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be written as a hybrid LTI model, and the fact that all its modes are observable, other
types of observation strategies can be applied, mainly those based on LMI strategies.
Also, the reconstruction of the operating mode can be very interesting way for fault
diagnosis using this model.

- The generalization of the diagnostic study using the geometric approach for n-cell
converter can be very interesting. Indeed, the form of the output injections for a conver-
ter with n cells can be generalized, and can then be deduced directly for any p-cell
converter.

- Simultaneous fault detection and isolation of the faulty cell of the 3-cell converter can
enhance significantly the proposed diagnosis strategies proposed in the current work.

- To complete the diagnosis procedure, the insertion of a fault tolerant control (FTC)
can also be a very interesting way to remedial to the occurrence of faults.

- Finally, the real implementation of the observation and the two fault diagnosis strategies
can be a very interesting way to validate all obtained simulation results.
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Annexe A
Notions on Differential Geometry

Let consider an affine nonlinear system of the form ẋ(t) = f(x) +
m∑
i=1

gi(x)ui

y(t) = h(x)
(A.1)

where x ∈ Rn is the state, u ∈ Rm is the input control and y ∈ Rp is the output. f , g and h
are smooth vector of appropriate dimensions.

Lie derivative :

The Lie derivative of the function h along f , often written as Lfh(x) is given by

Lfh(x) = ∂h(x)
∂x

f(x) (A.2)

repeated use of this operation is possible, thus by tacking the derivative of h first along of
vector field f and then along of vector field g defines the new function as

LgLfh(x) = ∂(Lfh(x))
∂x

g(x). (A.3)

If h being differentiated k times along f , the notation Lkf is used ; it is given by

Lkfh(x) =
∂(Lk−1

f h(x))
∂x

f(x), (A.4)

with L0
fh(x) = h(x).

Lie Bracket :

The Lie bracket of two vector fields f and g is the new smooth vector field v defined as :

v = [f, g] = ∂g

∂x
f − ∂f

∂x
g, (A.5)

with ∂g
∂x and ∂f

∂x denoted the Jacobian matrices of the mapping g and f respectively. Of
course, repeated bracketing of vector field g with the same vector field f is possible, and

154



in order to avoid a notation [f, [, ..., [f, g]]], that could generate confusion, it is preferable to
define such an operation recursively, as

adkf = [f, adk−1
f g], (A.6)

for any k ≥ 1, and where ad0
fg(x) = g(x).

Co-vector derivative :

Let w1, ..., wn be smooth real valued function of real variables x1, ..., xn, and consider the row
vector (w1(x1, ..., xn), w2(x1, ..., xn), ..., wn(x1, ..., xn)), then the derivative of the co-vector
along of the vector field f is given as :

Lfw(x) = fT (x)(∂w
T (x)
∂x

)T + w(x)∂f
∂x
. (A.7)

Distribution of vector field :

A distribution is an application that assigns each point x ∈ X, a set of vector fields f1, ..., fd

that span a vector space, denoted as :

∆(x) = spanf1, ..., fd. (A.8)

- Let ∆1 and ∆2 be distributions, then ∆1 + ∆2 is defined by tacking pointwise the sum of
the subspaces ∆1(x) and ∆2(x), namely,

(∆1 +∆2)(x) = ∆1(x) +∆2(x) (A.9)

- The intersection ∆1 ∩∆2 is defined as :

(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x) (A.10)

- A distribution ∆1 contains ∆2, and is written ∆2 ⊂ ∆1 if ∆2(x) ⊂ ∆1(x) for all x.

- A vector field f belongs to a distribution ∆, and is written f ∈ ∆, if f(x) ∈ ∆(x) for all x.
- The dimension of a distribution at a point x is the dimension of the subspace Delta(x).
- A singular distribution is a distribution of variable dimension.

Involutive distribution :

A distribution ∆ is involutive if the Lie Bracket [τ1, τ2] of any pair of vector field τ1 and τ2

belonging to ∆ is a vector field belongs to ∆, i.e., if

τ1 ∈ ∆, τ2 ∈ ∆2 ⇒ [τ1, τ2] ∈ ∆. (A.11)

-The distribution ∆ is nonsingular if and only if it is involutive. If ∆ is not involutive, we can
defined its involutive closure.
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- The involutive closure distribution of a distribution ∆, noted ∆ is the smallest involutive
distribution containing ∆. Noted that ∆ can be constructed from the iterated Lie Bracket of
vector field f1, ..., fd.
- A distribution is conditioned invariant, if it satisfies the following condition :

[f,∆ ∩ kerdh] ∈ ∆. (A.12)

- The codistribution of the distribution ∆, noted ∆⊥ id defined as :

∆⊥ = {w∗(x) ∈ (Rn)∗;< w∗(x), v(x) >= 0,∀v ∈ ∆} (A.13)
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