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1
INTRODUCTION

1.1 Context and motivations

The sun is humongous ball of hydrogen and helium that’s about 152.04 million km

away from earth. Its surface is constantly exploding, burning, reforming and exploding

again. And most importantly, emitting energy to the far reaches of the solar system, that

which we call "sunlight". Only a minuscule fraction of it reaches the surface of the earth,

which amount to 430 quintillion Joules/hour. That’s more than 410 quintillion consumed

yearly by humans on earth. An endless, clean and renewable source of energy is being

transmitted to earth since the dawn of time, and finally we are reaching a point we can

seize it. [25]

To seize any form of energy means converting it to electricity and storing it. Turning

sunlight into an electric current is done through photovoltaic conversion. PV conversion

imitates the natural process of photosynthesis using a semiconductor (mostly Silicium)

that capture the photons, thereby creating an electric imbalance in the cell which gener-

ates a current. Photovoltaic cells basic mechanism hasn’t changed since their invention

in 1954 although enhancements are being made up to this day like the addition of

perovskite crystals for increased efficiency[11]. We can also see an evolution in how they

are used, like concentrated solar plants that redirect sunlight to maximize light capture

thereby increasing yield and efficiency. Even with these advancements, we could ask

ourselves: why is solar irradiation still a secondary source of energy? The answer is that

energy storage remains a bottleneck for its advancement.
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CHAPTER 1. INTRODUCTION

Solar energy cannot be directly deployed on the electric grid because of the inconsis-

tency of solar ray intensity. It must first be stored electrochemically i.e. in rechargeable

batteries. Batteries come in all shapes and sizes, and each must be handled well to not

degrade. Some types of batteries are vulnerable to overcharging, others must never be

fully discharged or else they’ll stop being operational, so on and so forth. To avoid these

mistakes and keep the battery healthy, we must know the SoC (State of Charge).

Most mobile phones and all kinds of devices represent the state of charge as an

emptying tank. If a battery is analogous to a water tank, then the SoC is how full the

tank is relative to its capacity. SoC is a percentage which represents the level of charge

of a battery.

The saying "knowing is half the battle" holds true here since it is crucial to know the

state of charge at any given time when employing a battery powered electrical device, and

doubly so for solar power storage. A regulator is essential to a photovoltaic system, since

the energy output of the solar panels is unpredictable. And this electric regulator must

receive a good estimate of the SoC to achieve this. This thesis’ goal is to compare different

methods of estimating SoC and applying them to different solar battery technologies to

evaluate their viability.

1.2 Objectives

Through this thesis, we:

• Sleuth the available state of charge estimation literature and select suitable ones

for our purposes.

• Obtain different state of charge estimation results from different selected methods.

• Perform an error analysis and compare different state of charge estimation methods

in the context of solar energy storage.

• Compare two different battery technologies used for the purposes of solar energy

storage.

16



CHAPTER 1. INTRODUCTION

1.3 Organisation of the thesis

We start off by going over the state of the art in terms of SoC estimation and

solar battery technology in chapter 2. After a brief introduction to the concept of SoC

estimation, we go over the types of batteries used in photovoltaic storage nowadays.

Further in, we showcase SoC estimation methods from old to new but always relevant to

current day battery management systems.

In chapter 3, we present the selected SoC estimation methods. First are the Ampere-

Hour integral methods. They use the inherent relationship between the current and

charge of a battery to continuously estimate the state of charge. We present the basic

version and the improved version. Then comes the state filter known as the Kalman filter.

It is a prediction-correction estimator that uses a feedback control. It makes use of the

fact that the battery changes with the SoC and that the SoC is dependent on its previous

value. To use the Kalman filter for battery SoC estimation, we first have to simulate the

battery using an equivalent Thevenin model, meaning a generator, a resistor, and RC

cells connected in series. This model is only valid for the Lithium-ion battery. We use

this equivalent circuit to calculate the suiting Kalman filter parameters. We extend the

kalman filter with linearisation to account for the battery’s non-linearity. We then use

data driven learning models. First, a BNN (Backpropagation Neural Network) is taught

how to estimate the SoC with the voltage, current and temperature as features. For

less implementation complexity, we also used two statistical algorithms often utilized in

machine learning i.e. SVM and KNN which rely more on pure mathematical calculus

and operate by solving a specific optimization problem.

Chapter 4 is dedicated to our work methodology and implementation. To start with,

we explain the data acquisition methodology. We take care to showcase both batteries’

test bench characteristics in doing so. Afterwards, we explain and showcase the SoC

methods software implementation.

Chapter 5 concerns our resulting data, analysis and our conclusions. With our mea-

surements and results in order, we proceed to analyze the results of our SoC estimations.

To do so we perform quantitative analysis and qualitative analysis in both batteries’

cases and for each SoC estimation method. After a thorough examination of our results,

we validate the best SoC estimation method with a standalone PV cycle.

17
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2
STATE OF THE ART

2.1 Introduction

This chapter’s goal is to present an overview of battery state of charge estimation

research. First, we will explain what state of charge is and why it needs to be estimated.

Then we will showcase the battery technologies used in our thesis work and the differ-

ences in how they function, namely lithium-ion batteries and lead-acid batteries. Lastly,

we will have a rundown of the oft-used state of charge estimation algorithms, from those

that use direct physical measurements to learning algorithms and mathematical models.

This section will refer to the latest research in all kinds of battery applications from

different fields to gain a broad perspective on the state of charge estimation world of

research.

2.2 State of Charge Estimation

The state of charge is expressed as a percentage that indicates how much electric

charge is left to consume in a battery. A fully charged battery’s SoC equals 100%, while a

fully discharged battery has a SoC of 0%. It cannot be measured directly, so it must be

estimated using an online or offline method. Offline estimation means first collecting the

data then using it to find model parameters which will estimate SoC. Online methods

estimate the model as the process of charge or discharge is happening. Offline methods

like ampere hour counting are more accurate but they are drawn out, costly and overall

18



CHAPTER 2. STATE OF THE ART

impractical. That is why researchers have put a tremendous effort into developing online

SoC estimation methods

SoC means different things in different contexts. In electric vehicles for example, SoC

is equivalent to fuel gauge. It must take into account the drivers’ interpretation of its

value. While in a long-term energy storage context, SoC is primarily used to maintain

the battery for a long time and formulate a control strategy. These different needs make

the world of SoC estimation a vast one, with hundreds of papers on the topic.

State of charge estimation is a field as old as rechargeable batteries themselves,

therefore we can find all kinds of methods to model and observe it in all types of batteries.

However, depending on the type of battery and its use the accuracy of the estimation

methods may be completely different. Since the advent of solar energy exploitation is a

relatively recent field of study, there is yet to be a consensus for optimal storage methods.

Fortunately, a consensus has come about in the vast and long-lived world of energy

storage as to which methods are generally viable for a new battery application. It is by

judiciously testing these tried-and-true methods on new cases that a suitable approach

can be surmised and the understanding of its application can be expanded. Before an

experimental methodology can be established, a thorough understanding of the case is

needed. Meaning the type of battery, and the use for which the battery is intended.

2.3 Electrochemical Batteries

2.3.1 Definition

Electrochemical accumulators receive electrical energy and store it as potential

chemical energy which can then be converted to an electrical current. A photovoltaic

battery consists of several accumulators connected in series and/or in parallel to reach

the desired equivalent voltage. Batteries function thanks to the oxidation and reduction

of the electrodes, which manifest electrically in the charge and discharge of the battery.

The electrodes are submerged in a conducive solution to allow current flow. The batteries

are therefore categorized according to the materials of the cathodes and the solution.

The ox/red reactions change the electrodes’ composition, making them degrade over time.

This change reduces the battery’s efficiency, which is tantamount to its degradation.

In order to preserve batteries for more extended periods, batteries with particular

chemical compositions have been developed. These batteries can be recharged to restore

the electrodes. Lithium-ion and lead-acid batteries are two examples of rechargeable

19
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batteries.

2.3.2 Lithium-ion Batteries

Lithium-ion batteries are composed of a lithium-alloy metal oxide anode and a

graphite cathode. Between the two electrodes is an electrolyte separator in the middle

which permits the travel of ions. A symbiotic relationship between the two cathodes

grants this type of battery a long lifespan. This composition is illustrated in figure

2.1[38]:

Figure 2.1: Lithium-ion battery Diagram.

Lithium-ion batteries are used in a wide array of fields and quickly replacing older

technology like lead-acid. Portable electronics, electric vehicles, power backup are some of

the many areas which employ lithium-ion batteries. In solar energy storage lithium-ion

batteries tend to be more expensive due to the high voltages required for the task.
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Figure 2.2 is a graph which shows the evolution of the current and voltage during a

Lithium-ion battery charging cycle:

Figure 2.2: Lithium-ion battery charging stages.

A Lithium-ion battery is charged in two stages: a constant current stage (CC) followed

by a constant voltage stage (CV). In the constant current stage, the voltage increases

linearly until the maximum charge voltage is reached. It keeps this value while the

current decreases until a certain point when the battery is fully charged. The lithium-ion

can be discharged even below 30% SoC with little to no damage. The charging speed

is also about four times faster than lead-acid batteries. Innovations are a constant in

Lithium-ion batteries due to their prevalence, and they usually need SoC knowledge to

function.
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2.3.3 Lead-acid Batteries

Fig.2.3 is a diagram of a lead acid battery [21] :

Figure 2.3: Lead-acid battery Diagram

The lead-acid battery accumulator comprises lead electrodes submerged in an acidic

solution, usually sulfuric acid at around 1.3 density. The electrodes are composed of

parallel plates alternating between positive (Lead Dioxide) and negative (Lead) plates

as shown in figure 2.3. This distribution increases the battery capacity. These batteries

have been used for almost two centuries, they are made from low-cost materials which

makes them abundant in the market.

Lead-acid batteries are adapted to many different applications. The majority are used

in automobiles as starting, lighting and ignition power supply. Backup and emergency

power supply is another application for its ease of transport. They are also used as

propulsion batteries for smaller battery powered vehicles like electric scooters. Solar

energy storage primarily uses lead-acid batteries.
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Figure 2.4 represents the terminal voltage and current of a lead-acid battery during

charging.

Figure 2.4: Lead-acid battery charging stages

There are three stages to charging in this method: first is the constant current

charging phase. Aptly named, as can be seen. the current is constant while the voltage

steadily increases. When the SoC reaches about 70% the "topping charge" stage begins.

the battery continues charging at a lower current. This stage takes longer but is necessary

to keep the battery healthy long-term, and it finishes the 30% charging left to reach

saturation. The battery reaches full charge when the current is at a low level. The final

stage is the "float charge" which keeps the battery at full charge through compensating

for the self-discharge of the battery by reducing the voltage.
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2.4 SoC Estimation Methods

2.4.1 Book-Keeping Approach

Book-keeping is a term employed in financial matters. Just like an actuary keeps

track of money flow to infer the state of a business, an engineer can keep track of the

flow of current to infer the state of charge. Book-keeping in our context means to keep

track of the current of charge/discharge to deduce the SoC since the electric charge has

direct a relation to the current which is depicted in equation 2.1:

q =
∫

i(t)dt (2.1)

Seeing as this expression is an unshakable physical law, there is only really one valid

book-keeping method: the Ampere-hour integral method or more commonly known as

Coulomb Counting. This is by far the most commonly used SoC estimation method, it

can be found on devices all around you like mobile phones or various home appliances.

However that declaration comes with an asterisk since it is used together with other,

more case-specific methods. That is because it has drawbacks like the accumulation of

errors. Indeed, as is the case with its financial book keeping, one error in the books will

affect all the subsequent calculation. Improved Coulomb Counting algorithms have been

proposed [14] but it is mostly used as a reference to adequately estimate the state of

charge.

2.4.2 Direct Measurement

It is self-evident that the SoC will have a physical, measurable effect on the battery.

So, the first approach towards SoC estimation was to track the evolution of the SoC with

respect to a physical property. The SoC can be deduced by measuring said property. The

physical property can be the battery’s:

• Open Circuit Voltage: It has a proportional relationship with the SoC and is easily

measured. The relationship is linear in the case of the lead-acid battery, and it

is not for a Lithium-ion battery. Nevertheless, measuring the OCV at any given

point allows us to infer the corresponding SoC. However, many factors disallow

this simple method from being viable including the non-negligible amount of

time for the OCV to reach its steady state when discharging, the considerable

effect temperature has on the relationship, the low-variance phases in the SoC-
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OCV evolution... This method is a starting point from which more sophisticated

algorithms can sprout.

• Terminal Voltage : This method relies on the proportional relationship between

the SoC and the electromotive force of the battery, which translates to a linear

relationship between the SoC and the load voltage. The abrupt drop at the end of

the battery discharge induces significant errors in estimation. [30]

• Internal Impedance: It is a complex quantity that links the battery voltage with its

current. Its relation to the SoC can only be adequately represented by measuring it

at different frequencies and by applying different current values. The relationship

has also been found to be affected by temperature. Considering that all these

factors have raised the cost of implementing an online impedance-based approach,

it remains a well-performing and promising SoC estimation tool. Using a parameter

identification method in conjunction with this method can reduce the errors down

to 0.5%. [37]

2.4.3 Mathematical Models

The ideal that SoC estimation strives for is a simple mathematical algorithm like

Coulomb Counting but with added robustness against errors. To achieve this an effort has

been made to develop mathematical models that emulate the battery while outputting a

good SoC estimation.

Some models like the Shepherd model [27] or the Unnewehr model [26] use an explicit

expression of the battery’s terminal voltage as a function of SoC. The Nernst model [12]

is the most accurate of these. The Nernst equation 2.2 writes the terminal voltage as a

function of not only the SoC but also current of the battery :

Vt(SoC)=OCVmax −R0i− a
SoC

−bSoC+ c.ln(SoC)+d.ln(1−SoC) (2.2)

Where OCVmax is the open circuit voltage when the battery is fully charged, R0 is the

internal resistance of the battery, and a,b, c and d are factors to be determined through

a statistical regression algorithm using our measured data. This approach does not take

into account the hysteresis effect. A more detailed Vt(SoC) function can be established

via regression techniques.
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2.4.4 State Filters

State filters are an essential tool of control systems, and a control system needs an

accurate estimate of whatever informs its actions. Voltage regulators being control sys-

tems, state filters are useful for estimating SoC. To calculate its current state, the state

estimator uses previous estimates as an input in its calculations. This auto-regressive

model approach allows considerable improvement of state estimation and tighter bounds

for the values of the state. Of course, in our case the state in question is the SoC.

A recent example of a such filter is the H-infinity filter which uses weighted vector

norms to minimize the maximum possible value of its error, for this reason it is also

called the minmax filter. [5]

The particle filter is an analog of the Monte-Carlo method for Markov process, which

earned it the name of Sequential Monte Carlo method. It estimates the posterior distri-

bution of hidden states using the measurement process. It is a probabilistic method of

interest with promising results. [8]

Despite being one of the oldest examples of state filters, the highly adaptable Kalman

filter invented in 1960 [19] is still the most widely used in SoC estimation. It uses prior

and current state estimations to extrapolate hidden states of the system. It even updates

its own factors according to the changing output state. The Kalman filter uses a linear

function of the current state depending on the previous state. In the case of Battery SoC

estimation, the factors of the equation are matrixes. The elements of these matrixes are

calculated via the component values of an equivalent Thevenin model.

The following chart in Fig.2.5 represents the Kalman family of filters:
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Figure 2.5: Kalman Filters Chart

Many improvements have been made upon the Kalman filter (2.5). The Extended

Kalman Filter (EKF)[29] takes into account non-linear system model, while the Un-

scented Kalman Filter (UKF) [18] uses an unscented transformation to correct the model

when the system is so highly non-linear that the EKF performs poorly.

2.4.5 Machine Learning Algorithms

They are learning-based data-driven models. Compared to the previous categories,

this one is only in its infancy. That is why it has enjoyed a high level of enthusiasm and

fast development.

. These methods exploit the Coulomb Counting results to train a model to predict the

SoC value using parameters such as voltage and temperature. Amongst them are:

• Artificial Neural Networks: Since batteries are highly non-linear systems, math-

ematical models are hardly enough to simulate charge and discharge processes

despite the scientific community’s best efforts. ANNs are naturally non-linear

which makes them suitable for the task. Backpropagation Neural Networks and
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Recursive Neural Networks have both been used for SoC estimation with results

surpassing the Coulomb Counting method in accuracy. Different types of ANNs like

have also been used, like fuzzy neural networks [34] and like for all SoC estimation

methods, each type of ANN has its strengths and weaknesses. [17]

• Support Vector Machines: SVMs construct hyperplanes that cut through the data

which are close, under a set distance, to the regression line. Points that are on

the edge of the tolerated distance are called support points which ensure that our

predictions aren’t far from the real SoC value. [39]

• Genetic Algorithm: Developed in the 1960s by John Holland, genetic algorithms try

to mimic natural selection and biological evolution to solve optimization problems.

Mutations, crossover and various biological phenomena are included in the struc-

ture of the algorithm, then a randomization process takes place according to the

"survival of the fittest" principle. After each iteration a new "generation" is born

and the process can be repeated to improve the optimization. They’ve been used in

for SoC estimation and found to have good dynamic performance and robustness

[7].

Other methods such as K-Nearest Neighbors [32], extreme learning machines [15]

and deterministic observers [16] have been used for battery SoC estimation with varying

levels of success.

2.4.6 Hybrid Methods

Different SoC estimation methods yield different results of varying accuracy, with

each method having its own pros and cons. By combining different approaches when

possible, researchers are able to discover symbiotic relationships that compensate for

the fault of each one. [20, 22]
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2.5 Conclusion

Throughout this chapter, we’ve showcased the state of the art regarding battery

SoC estimation. After a brief overview of SoC estimation in general, we delved into the

relevant lithium technologies for solar energy storage, namely lead-acid natteries and

lithium-ion batteries. Showing our current understanding and briefly explaining the

latest in their applications and charging methods. Then we’ve gone over the current state

of SoC estimation, by categorizing and briefly describing the methods with which SoC is

estimated to this day. Some on the cutting edge of development e.g. Genetic Algorithms,

and some tried and true methods that are still being expanded upon to this day e.g.

Kalman filtering.
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3
DESCRIPTION OF SELECTED MODELS FOR SOC

ESTIMATION

3.1 Introduction

This chapter aims to pose the State of Charge Estimation problem for lithium-ion

and Lead-acid batteries. We give a rundown of the five chosen models and later used by

us in practice for that purpose. We attempt to explain the theory behind each modelling

to varying degrees of complexity while also elucidating the model’s approach to the

problematic.

Energy storage systems are widely used in photovoltaic systems (PV), power grids,

and electric vehicles. In PVs specifically, a storage system -usually comprised of several

battery cells connected in series or parallel- is necessary for safeguarding and ensuring

the operation at night. However, these batteries usually need an additional management

system to monitor their state, and make sure they do not function outside their safe

operating area. To that end, the battery management system (BMS) performs numerous

calculations and computes several variables related to the battery state. One significant

value is the battery State of Charge (SOC), representing the actual capacity expressed

as a percentage of the fully charged capacity. Unfortunately, it is amply delicate to have

a precise calculation of the SoC since it depends on parameters essentially tied to the

chemical state of the battery, which are very hard -if not impossible- to measure and trace

its evolution. To remedy that, we will attempt to select models and algorithms meant to
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estimate the SoC, using practically measurable parameters (Temperature, Voltage and

Current...etc.)

As discussed in the previous chapter, many SoC estimation models have been con-

ceived, each having its own advantages and disadvantages. In our case, we had to select

a set of models that would be compatible with the measurements carried out in the

experimental set up, and the two battery technologies used. In other words, we had to

choose models that would use measures related to the external brightness, the battery

temperature voltage and current of the battery, the load and the source (PV). The models

settled for were:

1. The Coulomb-counting method (for both Lithium-ion and Lead-acid batteries).

2. Modified Coulomb Counting (Lithium-ion / Lead-acid).

3. Extended Kalman filter (Lithium-ion).

4. Neural Networks (Lithium-ion / Lead-acid).

5. Machine Learning algorithms (Lithium-ion / Lead-acid):

a) Support Vector Machines

b) K-Nearest neighbors

3.2 Coulomb-counting

The Coulomb counting method measures the discharging current of a battery and

integrates it over time in order to estimate SoC [35], as given by:

SoC (t)= SoC (t0)−
∫ t

t0

η.τ. I (τ)
Qn

(3.1)

η : Efficinecy during charge and discharge operations.

Qn : Nominal Capacity

In case of discrete data separated by a sampling interval ∆t, the integration becomes

the cumulative summation of the previous states with the present fraction of the current

on nominal capacity:

SoCk+1 = SoCk −
η.∆t.Ik

Qn
(3.2)

Coulomb-counting presents many disadvantages, the major one being its dependency
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on the Battery’s efficiency (η) and nominal capacity (Qn) which -unlike their nature in

the equation- are not constants, and are actually influenced by the temperature and

current direction. Despite that, it is going to serve as a standard reference which we

attempt to approximate using the models that will follow.

Using the Coulomb counting estimation of the SoC as a reference is a common practice

in the field of State of Charge estimation, this is due to its simplicity of implementation

and the accuracy it offers without needing any data related to the chemistry of the battery.

However, its use is often limited to serving as a reference to tune other estimation models

in the testing phase (on PC), rather than being practically used in battery management

systems. Since the latter often have computing units with minimal accuracy, the errors

would accumulate with each step of the integration, leading to very erroneous results.

3.3 Modified Coulomb-counting

As previously explained, the Coulomb Counting’s dependence on a constant value

of the battery’s efficiency η (a parameter that varies in theory) is quite inconvenient.

In order to make the model more useful, η is assumed to be 1 for discharge and 98%

for charge instead of having one constant value for all scenarios. For what follows, this

variant of the Coulomb Counting will be referred to as the Modified Coulomb Counting

(MCC).

3.4 Extended Kalman Filter

3.4.1 The Original Formulation of The Kalman Filter

3.4.1.1 Classical Kalman Filter

What follows is a description of the original formulation of the filte as explained in

[36]. The Kalman filter addresses the general problem of estimating the state x ∈Rn of

a discrete-time controlled process that is governed by the linear stochastic difference

equation 3.3a with a measurement z ∈Rn related to xk as in 3.3b. These two equations

are called "the State Space" equations.

xk = Axk−1 +B uk +wk−1 (3.3a)

zk = Hxk +vk (3.3b)
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wk and vk are random independent variables that represent the process noise and

measurement noise (both assumed to be of white nature), Their probability distributions

are considered normal: p (w)∼ N (0,Q)

p (v)∼ N(0,R)
(3.4)

• Q is the process noise covariance and R is the measurement noise covariance.

• The subscript indicates the index of the sample in the time series, thus ‘k’ refers

to an actual state, whereas ‘k-1’ indicates a previous state. u ∈R l is the optional

control input.

• In practice, the matrices A, B, H, Q and R can vary with each step, but for now we

will assume they remain constant.

The Computational Origins of the Filter

PS: From this point onward the superscript ‘−’ will indicate that the estimate is in

its “à priori” stage, which means that it is expected to undergo a correction later. If there

is no superscript ‘−’, the estimate is in its corrected (or “à posteriori”) form. Let x̂−k ∈Rn

be the à priori estimate at step k, and x̂k ∈Rn the à posteriori estimate. Their respective

errors are defined as:

e−k = xk − x̂−k (3.5a)

ek = xk − x̂k (3.5b)

And their covariances are respectively:

P−
k = E[e−k e−k

T] (3.6a)

Pk = E[ek eT
k ] (3.6b)

The goal of the Kalman filter is to create an equation in which the à posteriori

estimate x̂−k is computed as a linear combination of the à priori estimate x̂−k and the

measurement residual (the residual is the difference between the actual measurement

zk and the ideal measurement prediction Hxk). In the implementations of the Kalman

filter, this is usually referred to as ‘The correction step’:

x̂k = x̂−k +K(zk −Hx̂−k ) (3.7)
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K (n x m) is the gain or blending factor (often called the Kalman gain). The purpose

of such a matrix is to create a corrected version of the estimate (x̂k) that is the closest

possible to the real state xk based on the à priori state. i.e. it means to minimize the à

posteriori error covariance ek as much as possible.

Analytically, to accomplish this minimization we substitute equation 3.7 into the

definition for ek 3.5b and then substitute that into the covariance definition 3.6b. We

then compute the corresponding expected value (E[ekeT
k ]), derive it with respect to K

and solve the null equation for K, we obtain:

Kk =
P−

k HT(
HP−

k HT +R
) (3.8)

Notice that: 
l im
Rk→0

Kk = H−1

l im
P−

k →0
Kk = 0

(3.9)

The Probabilistic Origins of the Filter

The Kalman filter conserves the first and second moments of the state probabil-

ity distribution, which means that the à posteriori state estimate is equal to the mean

(the first moment) of the state distribution and the à posteriori estimate error covariance

equation 3.6b reflects the variance of the state distribution (the second non-central

moment): E [xk]= x̂k

E
[
ek eT

k

]
= E

[
(xk − x̂k) (xk − x̂k)T

]
= Pk

(3.10)

The state distribution conditioned on all previous measurements zk (p(xk|zk)) is

considered normal if the conditions of equations 3.4 are satisfied:

p (xk| zk)∼ N
(
E [xk] ,E

[
(xk − x̂k) (xk − x̂k)T

])
= N(x̂k, Pk) (3.11)

The Kalman Filter Algorithm

The Kalman filter is a prediction-correction estimator that uses a feedback control.

We can group the equations governing the filter into two categories:
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• The time update equations (or predictor equations) to project forward in time

(compute the à priori estimates)

• The measurement update equations (or correction equations) to serve as feedback

(compute a corrected à posteriori estimate from the à priori one).

Time update/ Prediction equations:x̂−k = Ax̂k−1 +B uk

P−
k = A Pk−1AT +Q

(3.12)

Measurement update/ Correction equations:
Kk = P−

k HT
(
HP−

k HT +R
)−1

x̂k = x̂−k +K
(
zk −Hx̂−k

)
Pk = (I −KkH)P−

k

(3.13)

3.4.1.2 Extended Kalman Filter

The extended Kalman Filter is used when the process to be estimated and (or) the

measurement relationship to the process is non-linear. A Kalman filter that linearizes

about the current mean and covariance is referred to as an extended Kalman filter or

EKF.

In a similar fashion to how a Taylor series works, we can linearize the estimation

around the current estimate using the partial derivatives.

The process x and the measurement z are represented by non-linear stochastic

difference equations.

xk = f (xk−1, uk, wk) (3.14a)

zk = h (xk,vk) (3.14b)

Since the values of wk and vk are unknown in practice, we will define the approxi-

mate values of the state and measurement vectors (x̃k and z̃kresp.) which do not take

the noise terms into consideration as:

x̃k = f (x̂k−1, uk,0) (3.15a)

z̃k = h(x̃k,0) (3.15b)
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The Computational Origins of the Filter
First, we write new governing equations that linearize an estimate of x̃k and z̃k :

xk ≈ x̃k + A (xk−1 − x̂k−1)+W wk−1 (3.16a)

zk ≈ z̃k +H (xk − x̂k)+V vk−1 (3.16b)

Where :

• x̃k and z̃k are the approximate state and measurement vectors from equation 3.15a

and equation 3.15b

• A and W are the Jacobian matrices of partial derivatives of f with respect to x and

w respectively:

A[i, j] = ∂ f[i]
∂x[ j]

(x̂k−1, uk,0), W[i, j] = ∂ f[i]
∂W[ j]

(x̂k−1, uk,0)

• H and V are the Jacobian matrices of partial derivatives of h with respect to x and

v respectively:

H[i, j] = ∂h[i]
∂x[ j]

(x̂k−1, uk,0), V[i, j] = ∂h[i]
∂v[ j]

(x̂k−1, uk,0)

For simplicity in notation we will not use the subscript k with A , W , H , and V for

now.

Let the prediction error and the measurement residual be:

ẽxk = xk − x̃k (3.17a)

ẽzk = zk − z̃k (3.17b)

In practice we do not have access to xk but we do have access to zk. Using equations

3.17a and 3.17b , the governing equations for the error process can be expressed as:

ẽxk ≈ A (xk−1 − x̂k−1)+εk (3.18a)

ẽzk = Hẽxk +ηk (3.18b)

The random variables having approximately the following probability distributions
p(ẽxk )∼ N(0,E[ẽxk , ẽT

xk
])

p(εk)∼ N(0,WQkWT)

p(ηk)∼ N(0,V RkV T)

(3.19)
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Where εk and ηk represent new independent random variables having zero mean and

covariance matrices WQWT and VQV T .

Equation 3.18a and equation 3.18b are linear, closely resembling the difference and

measurement equations 3.3a and 3.3b from the discrete Kalman filter: This suggests the

idea of using ẽzk and a second Kalman filter to estimate ẽxk the same way we estimated

xk using zk in the regular Kalman algorithm. We can then obtain the à posteriori state

estimates for the original non-linear process using the estimate êk:

x̂k = x̃k + êk (3.20)

The Kalman Filter equation to estimate êk is:

êk = Kk ẽzk (3.21)

Substituting equation 3.21 into 3.20 and then projecting that into equation 3.17b we

obtain the measurement update (correction) equation:

x̂k = x̃k +Kk ẽzk

= x̃k +Kk (zk − z̃k)
(3.22)

Extended Kalman Filter Algorithm
We will revert to using the superscript ‘-’ notation and will refer by it to the

approximates (x̃k , z̃k ) that do not take noise into consideration (and must therefore be

corrected in the measurement update step). Moreover, we will add the subscript k to the

Jacobians A , W , H , and V , to indicate that they change with every time step.

Time update/ Prediction equations:Kk = P−
k HT

(
HP−

k HT +R
)−1

P−
k = (I −KkH)P−

k

(3.23)

Measurement update/ Correction equations:
Kk = P−

k HT
k

(
HkP−

k HT
k +VkRkV T

k

)−1

x̂k = x̂−k +Kk(zk −h(x̂−k ,0))

Pk = (I −KkHk)P−
k

(3.24)
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3.4.2 Formulation of The Kalman Filter for Battery SoC
Estimation

3.4.2.1 Battery modeling

To build the Kalman filter, first we need to model the battery with an equivalent

circuit model (ECM) in order to establish the state space equations governing the battery.

According to [10], The typical ECM for a Lithium-ion battery consists of:

• A voltage source, in this case the OCV (Open Circuit Voltage)

• A resistor in series R0 acts as an internal resistance for the battery and represents

contact resistance among the parts such as the electrode material, diaphragm

resistance and electrolyte.

• ‘n’ RC networks to reflect the dynamic characteristics such as the diffusion effect

and the polarization effect of the battery.

The model is based on the Thevenin’s theorem, where the entire circuit is replaced by a

voltage source (Thevenin voltage, which is the OCV), a resistor (Thevenin resistance)

and an impedance z represented by the RC cells.

P.S.: The number of RC networks determines the order of the model, choosing a higher

order model will indeed make the ECM more physically accurate, but will make the

determination of its parameters much more complex and unnecessarily lengthen the

simulations [10]. For our application, a first order Thevenin ECM is going to be used, as

shown in figure 3.1

3.4.2.2 Establishing the state-space equations for the equivalent circuit

Using Kirchhoff ’s relations:

V1 = R1ir = R1 (IL − ic)

C1.V 1 = q

=⇒ C1.
dV1

dt
= dq

dx
= ic

=⇒ V1 = R1

(
IL −C1.

dV1

dt

)
Finally:

dV1

dt
= IL

C1
− V1

R1.C1
(3.25)
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Figure 3.1: Thevenin Model Circuit

On the other hand:

Vt =OCV (SoC)− IL.R0 −V1 (3.26)

PS: OCV is dependent on the SoC (OCV = h(SoC)) where h is a non-linear function.

Let ‘X’ be the state vector of the system, ‘u’ the input vector and ‘z’ the output vec-

tor. X is set to be [V1, SoC], the current (IL) is the input ‘u’ and the terminal voltage Vt

is the output ‘y’. 

u = I L

z =Vt

X =
[

x1

x2

]
=

[
V1

SoC

]
The solution to equation 3.25 is the combination of the Zero-Input Response (ZIR) and

the Zero-State Response (ZSR) [24]:

The ZIR can be determined by setting the inputIL to ‘0’:

dV1

dt
=− V1

R1.C1

By integrating over an interval of 0 to t:∫
dV1

V1
=− 1

R1.C1

∫
d t

=⇒ V1 (t)= K e−
t

R1.C1
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With the initial condition being: V1 (t)=V1(0)

V ZIR
1 (t)=V1(0)e−

t
R1.C1 (3.27)

For the ZSR, the input is considered a constant IL and the initial state value is

considered zero (V1(0) =0), the equation becomes a first order ODE with a non-null right

side, it is solved by combining the homogeneous solution and a particular solution: For

the particular solution, it is clear that setting V1 as R1IL satisfies the equation:

V1,p (t)= R1IL

The homogeneous solution is found in a similar fashion to the ZIR, i.e.:

V1,h (t)= K ′ e−
t

R1.C1

Finally, the ZSR solution:

V1 (t)=V1,p (t)+V1,h (t)= R1IL +K ′ e−
t

R1.C1

All that remains is to find the value of the constant K’, which is done by using the ZSR

condition:
V1 (t = 0)= 0

=⇒ R1IL +K ′e−
0

R1.C1 = 0

=⇒ R1IL +K ′ = 0

=⇒ K ′ =−R1IL

V ZSR
1 (t)= R1IL(1− e−

t
R1.C1 ) (3.28)

Discretizing the ZIR and the ZSR respectively with a sampling interval of Ts gives:V ZIR
1,k+1 =V1,ke−

Ts
R1.C1

V ZSR
1,k+1 = R1IL,k(1− e−

Ts
R1.C1 )

(3.29)

The full voltage response is:

V1,k+1 =V1,ke−
Ts

R1.C1 +R1IL,k(1− e−
Ts

R1.C1 ) (3.30)

We can combine equation 3.2 and equation 3.30 in matrixial form to constitute the

state space model of the equivalent circuit :[
V1, k+1

SoCk+1

]
=

[
e−Ts/R1C1 0

0 1

][
V1, k

SoCk

]
+

[
R1(1− e−Ts/R1C1)

−η.Ts/Qn

]
I k +w k (3.31)
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Xk+1 =
[

e−Ts/R1C1 0

0 1

]
Xk +

[
R1(1− e−Ts/R1C1)

−η.Ts/Qn

]
u k +w k (3.32)

Let A and B be the two matrices:

A =
e−

Ts
R1C1 0

0 1

 , B =

R1

(
1− e−

Ts
R1C1

)
−η. Ts

Qn


Thus:

Xk+1 = A.Xk +B.u k +w k (3.33a)

Vt =OCV (SoC)− IL.R0 −V1 (3.33b)

Let H be the global non-linear function that links the state elements (SoC, V1)

and the input IL to the output Vt. For the sake of computational simplicity, we will

choose to keep the noise as a separate term from the non-linear function:

Xk+1 = A.Xk +B.u k +w k (3.34a)

y= H (Xk, uk)+vk (3.34b)

PS: There are three noticeable differences between the obtained state space
equations and the ones used in the original formulation of the extended Kalman
Filter:

• Unlike the original formulation, the first state space equation (equation
3.34a) is indeed linear, and only the measurement equation (equation
3.34b) ) has a non-linear function in it. This is by no means an anomaly;
the original formulation is a broad and general one, and it adapts differ-
ently to different cases.

• The measurement/output (in this case Vt) also depends on the input u (i.e
IL). Once we get to the linearization, this will not be a problem since the
Jacobian Matrix with respect to ‘u’ doesn’t affect the Algorithm.

• As mentioned before, the measurement noise vk is not included in the
non linear function H for the sake of simplicity

41



CHAPTER 3. DESCRIPTION OF SELECTED MODELS FOR SOC ESTIMATION

Equation 3.34b is linearized using first order Taylor series:

y= ∂H
∂X

δX + ∂H
∂u

δu

We set C and D to be the two matrices:{
C = ∂H

∂X
=

[
∂H
∂V1
∂H
∂SoC

]
=

[
−1

∂OCV
∂SoC

]
, D = ∂H

∂u
=−R0

Therefore:

y= C.δ X +D.δ u

By discretizing the previous equation, we obtain:

yk+1 = C.Xk +D.uk +vk

Ultimately, the state-space equations for the system are:Xk+1 = A.Xk +B.u k +w k

yk+1 = C.Xk +D.uk +vk
(3.35)


A =

e−
Ts

R1C1 0

0 1

 , B =

R1

(
1− e−

Ts
R1C1

)
−η. Ts

Qn


C =

[
−1

∂OCV
∂SoC

]
,= [−R0]

(3.36)

The steps of the Extended Kalman Filter can thus be summarized as follows [4]:

1. Initialization: X̂0 = X0

P̂0 = P0

2. Estimate next state based on equation 3.33a:

X̂−
k+1 = A.X̂−

k +B.u k +w k

3. Compute error covariance:

P−
k+1 = A.P−

k .AT +QP−
k+1 = A.P−

k .AT +Q

4. Compute the Kalman gain:

Kk+1 = P−
k+1. CT .[C.Pk− .CT +R]−1
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Figure 3.2: Deep Neural Networks’ Structure Diagram

5. Correction of the state estimation:

X̂k+1 = X̂−
k+1 +Kk+1[yk −C.X̂−

k+1]

6. Correction of the error covariance:

Pk = (I −KkC)P−
k

7. Loop back to step 2 for the next sample.

3.5 Artificial Neural-Networks

Artificial Neural Networks are a computational model composed of artificial neurons

(called Perceptrons), linked by weights that can be updated depending on the performance

parameters that evaluate the accuracy of the present prediction [1]. The basic neural

network is composed of three main layers, the first being the inputs layer, the middle

one is called the hidden layer (due to it being unrelated to the outside) and the last layer

produces outputs. A model of a basic neural network is displayed in 3.2

More complex neural networks contain more than a single hidden layer, and are the

basis of deep learning.

• X =


x1

x2
...

xn

 is the input vector.
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• Wk =


Wk1

Wk2
...

Wkn

 is the weights vector.

• bk is the bias term.

• uk is the linear combination of X, W and b: uk =W .X +b

• f(.) is the activation function (usually nonlinear).

• yk is the output vector.

The input vector consists of recorded/measured variables called ’features’, the latter

are passed to the hidden layers where they get multiplied by weights and summed

with the bias. At the end of the network the linear combination is passed through an

activation function producing an output (or prediction). A back propagation algorithm

is used in which the error of the current prediction (i.e., the difference between the

current output and the desired output) will influence the weights, the latter get updated

to accommodate the lack of accuracy and produce better predictions for the next step

(Epoch).

After the network had been trained and the weights have been fixed, the test phase

takes place: A portion of the data never seen before by the network is passed through

it to produce predictions, only this time there is no back-propagation or updating the

weights, because the test is meant to evaluate our pre-trained model. For that purpose, a

number of error metrics are taken into record to give an idea of the model’s ability to

work on new unseen data.

In our case, the input vector will contain the variables measured in the experimental

phase, i.e., the temperature, the discharge/charge current and the voltage. Whereas the

desired output is going to be the coulomb-counting state of charge. As for the choice of

training and testing data, several strategies will be discussed in the methods section.

3.6 Machine Learning algorithms

Machine learning is a broad term that can signify any algorithm that learns and

improves upon supplied data, the term encompasses even Artificial Neural Networks and

Deep Learning. However, in this section, by ‘machine learning algorithms’ we refer to

unique learning algorithms that deal with tabular data, and use computational statistics.
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It is worth noting that most of these algorithms are usually used for classification

problems rather than regression (Classification is the type of learning in which the model

attempts to predict a category (i.e., A discrete value), whereas regression is the process of

predicting a continuous variable). Consequentially, we had to select algorithms that had

a variant compatible with regression problems to comply with the nature of our objective

consisting of predicting the continuous value of SoC. The two algorithms settled for were:

3.6.1 Support Vector Machines (Support Vector Regressor)

Let X = [ x1 x2 . . . xn
T] be the training data and y= [ y1 y2 . . . yn]T the target

outputs. ε-SV regression attempts to find the prediction function f (x) that has at most a

deviation of ε from the true values yi, but must also be as flat as possible. In this section

we summarize the SVM regression’s principle described in Tutorial [33]

Linear Functions case
Linear functions follow the model:

f (x)= 〈w, x〉+b (3.37)

where 〈., .〉 is the dot product. In the basic linear case, the problem translates to finding

a linear margin (f(x)) that is exactly ‘ε ’ away from the regression line (the line which

passes by most of the observation points). This means that the points that are precisely

deviated by ε from the regression line are Support points on which the delimiter function

f(x)) leans, thus the name ‘Support Vectors’. This way we ensure that predictions given

by the linear function f(x) are only different by a small amount of ε to the true target

values.

Plus, we want f(x) to be as flat as possible so we must minimize the norm of the

weight’s matrix w; thus, the formulation of the optimization problem:

minimize
1
2
||w||2

Sub ject to

yi −〈w, x〉−b ≤ ε

〈w, x〉+b− yi ≤ ε

(3.38)

The latter is referred as a ‘convex optimization problem’

In order to increase the feasibility of the convex optimization problem, we may want

to tolerate some extra errors by introducing ‘slack variables’ (ξi, ξ∗i ) to the problem.
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Figure 3.3: Support Vectors and slack variables for SVR

However, this slack interval is going to cost us in terms of the flatness of f(x). This

trade-off is determined by the coefficient C, which translates how much we intend to

tolerate deviations greater than ε (high C for low tolerance and inversely):

minimize
1
2
||w||2 +C.

l∑
i=1

(ξi +ξ∗i )

Sub ject to


yi〈w, x〉−b ≤ ε+ξi

〈w, x〉+b− yi ≤ ε+ξ∗i
ξi,ξ∗i ≥ 0

(3.39)

The observations on and outside the epsilon band are “support vectors”. The slack

value is illustrated for one of the observations in figure 3.3. The solution to the op-

timization problem depends only on this restricted set of observations (the support

vectors).

Non Linear Functions
Elevating and adapting the linear situation to non-linear will necessitate two steps :

1. Dual Formulation of the problem:
A Lagrange function is constructed from the objective function and the constraints,

by introducing a dual set of variables.

L = 1
2
||w||2+C.

l∑
i=1

(
ξi +ξ∗i

)− l∑
i=1

(
ηi.ξi +η∗i . ξ∗i

)− l∑
i=1

αi(ε+ξi−yi+〈w, x〉+b)−
l∑

i=1
α∗

i (ε+ξi+yi+〈w, x〉−b)
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ηi , η∗i , αi , α∗
i re dual Lagrange multipliers and they have to satisfy positivity

constraints, i.e., ηi , η∗i , αi , α∗
i ≥ 0

By applying the saddle point condition which states that the partial derivatives of

L with respect to the primal variables w, b, ξ∗i ,ξ∗i , (∂L
∂x , ∂L

∂x , ∂L
∂x ) have to be nullified

for optimality, we obtain:

w =
l∑

i=1

(
αi +α∗

i
)
xi (3.40)

and therefore

f (x)=
l∑

i=1

(
αi +α∗

i
)〈xi, x〉+b (3.41)

The latter result is called the Support Vector expansion, i.e.. The weights ‘w’ can

be completely described as a linear combination of the training patterns xi. Even

when evaluating f(x) we need not compute w explicitly [13].

2. Kernel introduction:
Now since we reformulated the problem so that the weights (features) are described

as a linear combination of the inputs, the obvious idea to adapt the problem to

non-linearity is to map the inputs by a non-linear function φ, this way ‘w’ itself

becomes a linear combination of non-linear elements, making the whole function

f(x) non-linear. The mapped inputs φ(xi) constitute a new features space:

w =
l∑

i=1

(
αi −α∗

i
)
. φ(xi) (3.42)

In f(x) (equation 3.37), this translates to the dot product between φ(xi) and x. This

operation is represented as a kernel function k(xi,x) :

f (x)=
l∑

i=1

(
αi −α∗

i
)
.k (xi, x)+b (3.43)

In summary:

As figure 3.4 illustrates, the input samples are mapped into a feature space by a

map φ(xi) .Then dot products with x are computed. This corresponds to evaluating

kernel functions k(xi , x). Finally, the dot products are added up using the weights(
αi −α∗

i
)

. This, plus the constant term b yields the final prediction output. The

process described here is very similar to regression in a neural network, with the

difference, that in the SV case the weights in the input layer are a subset of the

training patterns.
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Figure 3.4: Summary of Support Vector Regression

ν-SVM
In regular SVR, it is quite delicate to determine ε à priori. A handy solution to this

problem came in the form of the ε-support vector regression (ε-SVR) variant of the

algorithm. In ε-SVR, ε is indirectly determined by the parameter ε , which represents

the upper limit of the percentage of error points (points outside the ε-tube) relatively

to all the points [3]. In other words, it decides how many support vectors we want to

consider with respect to the entirety of the points. However, unlike ε , ν does affect the

slack interval and must therefore be considered as a trade-off in the objective function.

The formulation of the problem becomes:

minimize
1
2
||w||2 +C.(νξ+ 1

l

l∑
i=1

(
ξi +ξ∗i

)
)

Sub ject to


yi −〈w, x〉−b ≤ ε+ξi

〈w, x〉+b− yi ≤ ε+ξ∗i
ξi,ξ∗i ≥ 0

(3.44)

3.6.2 K-nearest neighbors Regressor

KNN in regression is very similar to its classification counterpart. If X =
[
x1 x2 . . . xn

]T

is the training data and y=
[

y1 y2 . . . yn

]T
are the target outputs, the KNN classifier

will compute the distances between the current test point x (for which we want to predict
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the output) and every training point xi, i ∈ 1,2, ..,n and sort them :

ρ (x, x1)≤ ρ (x, x2)≤ . . .≤ ρ(x, xn)

Next, ‘k’ training points that have the closest distance to x will be chosen. Among

the labels of the k chosen points, the most frequent one is going to be selected as a final

prediction. This is called a vote process and it involves finding the mode among the k.

ŷ= mode(y1, y2, . . . , yk) (3.45)

In regression however, this last step is different. Since the target outputs are not

specific numbered categories, but are instead distinct real numbers, the notion of voting

doesn’t hold up. In order to decide on a prediction among the k chosen values, the KNN

regressor will compute the mean value of the k labels [6]:

ŷ= 1
k

k∑
1

yi (3.46)

There is no strict rule that determines the number of neighbors k that gives the best

results. In practice it is left as a parameter for the user to tune up in order to improve

the predictions. Nonetheless, a few important points must be taken into consideration

when setting the value of k.

Choosing a very small k will result in overfitting, whereas making k very big will

lead to selecting training points further than and more dissimilar to x, leading to highly

erroneous results. This is a case of Bias-Variance Tradeoff:

• if we choose a smaller k (for example k=1), we obtain a more flexible regressor

(i.e depending on the test point x, the one very closest neighbor to it will always

determine the output), thus the regressor is said to have a high variance and low

balance.

• Inversely, if k is very big (k=n for example), regardless of what the test point x is,

the output is always going to be the mean value of all the training labels. This is a

situation of low variance and high bias [6]. Consequentially, we have to choose a k

that is neither too small nor too big, and it is up to the user to find this sweet spot

of k through trial and error.
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3.7 Conclusion

In this chapter, we have seen how five different models approach the SoC estimation

problem in different manners. We also gave a theoretical description of each modelling to

showcase the contrast in complexity between them. On top of that, the section provides

enough information related to the algorithms for most of them to be implemented with

relative ease.
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4
METHODOLOGY AND IMPLEMENTATION

4.1 Introduction

This chapter is divided into 2 sections. The first section details the experimental

methodology with which the data was acquired. We explain the components of the

experimental set-up and the procedures followed for each battery. The second section

details the implementation of each SoC method. The software used and the computer

code will be showcased to explain how we’ve gone from theory to practice and estimated

the state of charge.

4.2 Methodology

4.2.1 General Methodology

Using the same photovoltaic array, charge and discharge processes have been per-

formed on both Lithium-ion and lead-acid batteries. Fig. 4.1 shows and overview of

the measurement chain to record voltage, current and temperature data during these

processes. The Renewable Energy Development Center (CDER) supported these experi-

ments.
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Figure 4.1: Experimental test bench

4.2.2 Lithium-ion Battery

The battery comprises 16 lithium-ion accumulators with an output of 3V DC. The

sixteen cells are divided into two eight-cell series batteries connected for an equivalent

24V DC lithium-ion PV battery with a capacity of 1280Wh and a nominal capacity of

53.33 Ah. Parallel to the battery is a battery regulator that controls the charge and dis-

charge. Speaking of, the charge and discharge processes are done separately. The battery

is charged ,while disconnected from any load, thanks to a PV array which consists of 5

solar panels connected in series of 150 Wp nominal power each, giving an overall nominal

power of 750 Wp. The nominal voltage is of course 24V while the maximum current is

25A. The charging process starts with the battery fully discharged (SoC=0%), and ends

when it is fully charged (SoC=100%). During discharge, the battery is disconnected from

the PV array and connected in parallel to a DC/AC inverter to guard it. The battery

discharges its current into 825W AC lamps. The discharging process starts with the

battery fully charged (SoC=100%), and ends when it is fully discharged (SoC=0%).

Data is acquired via voltage and current sensors connected to both the battery inputs
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and outputs as well as the photovoltaic generator,inverter and utility. The battery’s tem-

perature is measured with a type k thermocouple. All data is recorded in the data logging

system with a 1 minute step. Fig. 4.2 shows the synoptic diagram of the measurement

chain for the lithium-ion battery.

Figure 4.2: Lithium-ion battery experimental test bench schematic diagram.

4.2.3 Lead-Acid Battery

Two 250 Ah/12 VDC sealed gel lead-acid batteries we connected in series to obtain a

24 VDC lead-acid battery. The same 750 Wp PV array supplies this battery, connected

through a TS 45A battery charge controller used to protect the device from overcharging

and a BG 60A charge controller which prevents depth discharge. The controllers keep

the SoC in the 30%-90% range The charging current is supplied by the PV array while

the load comprises 20 220 W DC lamps. Charging can only begin when the battery is

considered fully discharged i.e. (SoC=30%) and the load is disconnected. Discharging can
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only begin when the battery is considered fully charged (SoC above 85%) and the PV

array is disconnected. Data is recorded via the same measurement chain for the Lithium-

ion battery. Only since lead-acid battery takes longer to charge and discharge, the time

step used is five minutes. Fig. 4.3[9] shows the synoptic diagram of the measurement

chain for the lead-acid battery.

Figure 4.3: Lead-acid battery experimental test bench schematic diagram.
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4.3 Implementation

4.3.1 Coulomb Counting and Modified Coulomb Counting

We can program the models simply by implementing the iterative calculus provided

by the discrete version of the Coulomb Counting equation (equation 3.2). For every step,

we take the SoC of the previous step and subtract from it the product of the present

steps’ current, sampling time and efficiency divided by the nominal capacity.

Such a calculation is easily implementable on Excel, which works perfectly for us

since the data is gathered in an excel file.

Reminder that one of the Coulomb-Counting’s weak points is the fact that the SoC

needs to be initialized for any charge or discharge. As explained before, the batteries

are assumed to be completely discharged at the beginning of the charging phase, and

completely charged at the beginning of discharge, therefore the SoC will be initialized to

0% for the first scenario and 100% for the second.

4.3.2 Extended Kalman Filter

The steps of the Extended Kalman Filter algorithm have already been established in

the previous chapter; we only need to implement them correctly using a programming

language. Any language that can perform basic mathematical computation and matrix

calculus can be used (thus C, Matlab, Python, etc are all candidates). In our case, the

algorithm was written in python, on a Jupyter platform.

Note that in the C matrix (3.36), the partial derivative ∂OCV
∂SoC is taken as the slope

of the graph OCV = f (SoCre f ). OCV being the measured voltage in absence of a load,

and SoC_re f being the Coulomb-Counting SoC. Figure 4.4 presents the piece of code

responsible for executing the Extended Kalman Algorithm.

4.3.3 Support Vector Machines and K-Nearest Neighbors

The optimal tool for using machine learning algorithms is the Sickit-Learn Library.

Scikit-Learn is a Python module pre-configured with a multitude of state-of-the-art

Machine learning algorithms in the form of a simplified high-level language [28]. The

package can be used by non-practitioners, and no intrinsic knowledge of the algorithms’

theoretical aspect is needed. Most of them can be called as functions and manipulated in

the span of a few lines.
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Figure 4.4: Implementation of the Extended Kalman Filter
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The Jupyter notebook is a web application that serves as a platform allowing us

to call libraries necessary for machine/deep learning and utilize them using python.

However, unlike machine learning algorithms, deep learning is quite demanding in

terms of resources and GPU. Luckily, the google colab application -which is a hosted

Jupyter notebook service- provides us with free access to remote computing resources

including GPUs while having a near-identical interface to that of a regular Jupyter

notebook. We used Google colab for implementing both machine learning and deep

learning models.

In implementing machine/deep learning models, we must first decide on which

features we are going to consider. In our case, we want to use the physical measurement

recorded through the experiments (i.e. Current, Voltage and Temperature) as learning

features. The target variable (or label) is the SoC.

The second most important part is deciding how the data is going to be split for

training and testing. Usually, the data is randomly shuffled before being divided into two

portions: p% for training and (1-p) % for testing (p > 1-p because more data should go

into training the model). However, proceeding this way means that only the test portion

is telling of the model’s performance, because the training portion has already been seen,

and is eventually going to be recognized to perfection since it was previously used for

learning. Usually, this is not an issue, but for our application, we want to be able to

compare the predictions of these two models (SVM and KNN) with those of the analytical

ones (Coulomb-Counting, MCC and Kalman), it is consequentially preferable to have a

prediction for every single sample of the data.

To achieve this, we perform a k-fold cross validation fitting for our model. K-fold

cross validation is a process in which the model is applied on the data ’k’ different times

(called ’k’ folds), but in each fold the train-test splitting is done differently. Figure 4.5

([31]) illustrates the concept with a 5-fold cross validation example. In every split, the

test fold is different than it is in the other splits, we can exploit that to record predictions

for every sample of the data-set by concatenating the test folds of all splits in one vector

(think of it as stacking the blue portions in the figure together), this way all the data is

swept through without any of it being part of a train set.

The cross_val_predict and the KFold functions provided by the sklearn.model_selection

package in sickit learn allows us to do this automatically, combining them produces a

vector containing predictions that are part of test sets corresponding to different splits

in a 5-fold cross validation.
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Figure 4.5: Illustration of the cross validation process

We used the ν-SVM variant of the SVM algorithm with an RBF kernel, a value of 1.0

for nu, 0.125 for gamma and 1.0 for C. Figure 4.6a shows the piece of code corresponding

to the SVM implementation. For KNN, we used the default parameters, fig 4.6b shows

the code corresponding to its implementation.

4.3.4 Neural Networks

Training Feed-Forward Neural networks necessitates another type of library, in

our case we used Pytorch. PyTorch is an optimized tensor library for deep learning

using GPUs and CPUs (https://pytorch.org/docs/stable/index.html). The procedure of

implementing elementary Neural networks is usually always the same: We first define

the network (by setting up the number of hidden layers, the number of inputs/outputs

and the activation functions), select a loss metric and an optimizer (for back-propagation),

fit the model on the training data while improving upon the errors and finally fitting the

trained model on the test data to get the predictions ad evaluate them.

We use the same approach while also applying k-fold cross validation on Neural
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(a) Nu-SVR regressor

(b) KNN regressor

Figure 4.6: Implementation of machine learning algorithms

Networks which is less simple than it is on KNN and SVM. This time we have to employ

the ’KFold’ function to produce ’k’ different splits (configurations), in each one, the data

is shuffled and then split in a different manner. KFold takes record of original order of

the data (before shuffling) by creating arrays containing the original indices, these will

be necessary to reset the predictions to their original order later on.

Fig.4.7 shows the feed-forward network set up. Fig.4.8 shows the preamble in which

we set the error-criterion, the optimizer and initialized some variables. The learning

phase is showcased in Fig.4.9.

Finally, the test data from all folds are gathered in one vector and then put back into
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Figure 4.7: Creation of the neural network structure

Figure 4.8: Selection of the optimizer and the error criterion
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Figure 4.9: Fitting the model on the training data and testing on the test-set

their original order using the indices array and a custom function we created, this is

illustrated in figure 4.10

Figure 4.10: Merging and saving the test predictions in addition to their respective indices
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4.4 Conclusion

In this chapter, we reviewed the methodology that was followed to achieve a desirable

data acquisition and processing for our project. First, we showcased the experimental

test-bench used to perform and record the different measurements for both battery

technologies, highlighting the differences and similarities between the procedures. Fol-

lowing that, we showcased the software side of things i.e. the implementation of the

aforementioned SoC estimation models. For each model we explained the logic behind

the coding and provided some snippets to support that.
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RESULTS AND DISCUSSION

5.1 Introduction

In this chapter, we will finally showcase the obtained results from each of the SoC

estimation methods used and analyse them. Past this introduction, this chapter is

divided into three sections: analysis for lithium-ion battery SoC estimation, analysis for

Lead-acid battery SoC estimation and a conclusion. Each analysis is performed on the

charge and discharge phases separately. Our analysis is thorough . One is a quantitative

analysis which consists of calculating the cumulative frequencies for each estimated SoC

and comparing them to the reference SoC, it gives a distribution of "closeness’ to the ideal

SoC. The other is a qualitative analysis. It includes calculating the RMSE (Root Mean

Square Erreur) and the MBE (Mean Bias Error) which indicate the overall accuracy of

the model. Using the RMSE, correlation and the standard deviation of each estimation

we draw a Taylor diagram to further illustrate the degree of correspondence between the

models and the reference SoC. After a thorough analysis and informed interpretation

of our indicators we come to a decision as to which SoC is most suited for the battery.

We proceed to validate the model on standalone PV cycles. These cycles include both

charge and discharge phases continuously. One where the consumption remains constant,

and the other where the consumption evolves inversely to the solar irradiance. This

validation tells us whether the model is viable in a real future potential application. We

repeat this process for the other battery technology and conclude the chapter.
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5.2 Lithium Battery

5.2.1 Charge

The following results concern the charging mode of the lithium-ion battery. Notice

that the charging period of the battery takes about 14 hours. Over the first 9 hours of

charging, corresponding to the first charging phase, the voltage gradually increases with

irradiation. During that time, the battery temperature grows with the charging current.

After 14 hours, the charging time maintains the battery voltage relatively constant by

reducing the charging current to its minimum value of about 300 mA.

The battery charging profile corresponding to the lithium battery has conceded over two

phases: constant current and constant voltage. The battery charge controller integrated

through the storage unit case study displays the battery charging profile. As shown in

Fig.5.1.

Figure 5.1: Lithium battery charging profile.

The following Fig.5.2 depicts the evolution of the five battery SoC estimation methods

considering the charging mode of the lithium battery. It is observed that most of the

models have identical convergence, except for the EKF model, which is considered far

from being taken into account during this phase.
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Figure 5.2: SoC modelling for lithium battery during charge mode.

Figure 5.3: Cumulative Frequency Vs relative error for lithium battery during charge mode..
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Table 5.1 presents numerical results of these cumulative frequencies achieved for RE

(%) within a range of 0 to ± 27%; during the charging mode period.

RE (± %) 0 3 6 9 12 15 18 21 24 27
SoCNN 41.85 78.03 88.70 93.12 95.61 97.72 98.30 98.68 100 100

SoCSV M 31.29 64.51 67.22 83.32 87.74 91.58 94.84 96 97.53 100
SoCK NN 42.24 71.42 83.32 89.47 93.50 96 97.72 98.68 99.07 100
SoCMCC 13.82 100 100 100 100 100 100 100 100 100
SoCEKF 5.56 24 25.34 27.26 28.99 30.52 32.06 33.98 79.86 100

Table 5.1: Comparative results of cumulative frequency distribution Vs. The relative error for charge mode
of lithium battery during cycle 1

It is noted that around 42% of the SoCK NN has a RE of ±0%, whereas the SoCMCC

has achieved all its data with RE less or equal to 3%, followed by the Neural network

model SoC, which acquired all its data with RE equal to 24%. Finally, 100% of the data

are recorded for the Kalman, SVM and KNN models, respectively, for 27% of error.

To enhance a practical selection for the lithium battery model operating SoC model

in the PV system. another analysis is provided. Table 5.2 offers further comparisons

between the five SoC models considering four cycles of charging mode based on statistical

errors.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SoCNN -6.28·10−6 0.00013 2.07·10−5 0.00046 1.68·10−5 0.00019 6.38·10−6 5.45·10−5

SoCSV M -5.88·10−6 0.00013 3.25·10−6 0.000072 -1.46·10−6 1.72·10−5 4.4 ·10−5 3.84 ·10−5

SoCK NN -8.64·10−6 0.00019 5.97·10−8 0.000001 0 0 0 0
SoCMCC -3.74·10−7 8.54·10−6 -1.8·10−6 0.00004 -0.00011 0.0013 -0.00017 0.0014
SoCEKF 7.01 ·10−5 0.0015 6.59 ·10−5 030014 1.68 10−5 0.00019 0.0015 0.013

Table 5.2: Statistical errors of lithium-ion battery during four cycles of charge mode

From table 5.2, the battery SoCK NN displays very low values of MBE and RMSE

during the four charging cycles compared with the remaining models to achieving

−8.64.10−6 of MBE and -0.00019 of RMSE during the first cycle. Afterwards, during the

second cycle, the battery SoCK NN reached 5.97 ·10−8 of MBE and -0.000001 of RMSE.

In addition, zero MBE and RMSE were realized during cycle 3 and cycle 4.
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Fig.5.4 depicts the Taylor diagram standard error for lithium battery during cycle 1

charge mode. We observe that SVM, KNN and NN have more or less the same standard

deviation as that of the reference (about 0.28) with varying correlations and RSME’s;

NN has the highest correlation (∼0.996) and the lowest RMSE (∼0.025), followed by

KNN with a lesser correlation and higher RMSE (0.992 and 0.04 respectively) and SVM

(0.99 RMSE and 0.05 correlation). On the other hand, Kalman and MCC have a lower

standard deviation than the latter three (about 0.275) but a very high correlation nearing

the value of 1 and an RMSE close to zero.

Figure 5.4: Taylor diagram standard error for lithium battery during charge mode..
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The previously obtained results suggest that the KNN model is the most suitable

for the lithium charging mode. To better highlight the battery SoCK NN model, another

quantitative analysis is provided for the lithium charging mode, considering four battery

cycles. As shown in Fig.5.5, the maximum data is within zero error for the four charging

cycles.

Figure 5.5: Data quantity Vs relative error based on SoCK NN for lithium battery during 04 cycles of
charge mode
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5.2.2 Discharge

Fig.5.6 shows a comparison of five SoC models during cycle 1 of the discharge mode. All

the simulated models present a good similarity to SoCre f except for the SoCSV M model

since it displays some fluctuations.

Figure 5.6: SoC modelling for lithium battery during discharge mode

As depicted in Fig. 5.6 the battery was considered as initially fully charged and not

connected to the PV array; the battery provides only an external utility of 825 W to

ensure the discharge process. The SoC during this mode is a linear function, which

decreases when the battery supplies the utility over time.

Fig.5.7 provides the cumulative frequency via the relative error percentage RE (%)

during discharge mode for lithium battery SoC evolution. Table 5.3 presents numerical

results of these cumulative frequencies achieved for RE (%) within a range of 0 to ±20%;

during the first cycle of discharging mode.
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RE (± %) 0 2 4 6 8 10 12 14 16 18 20
SoCNN 42.5 90 96.25 98.75 100 100 100 100 100 100 100

SoCSV M 15 33.75 52.5 66.25 73.75 82.5 91.25 96.25 96.25 100 100
SoCK NN 80 87.5 91.25 92.5 92.5 95 95 95 97.5 98.75 100
SoCMCC 1.25 75 88.75 93.75 97.5 97.5 97.5 100 100 100 100
SoCEKF 1.25 52.25 68.75 77.5 83.75 87.5 90 92.5 93.75 95 100

Table 5.3: Comparative results of cumulative frequency distribution Vs. The relative error for discharge
mode of lithium battery during cycle 1.

Figure 5.7: Cumulative Frequency Vs relative error for lithium battery during discharge mode.

It is noted that around 80% of the SoCK NN has a RE of ±0%, whereas the SoCMCC

and SoCEKF have only 1.25 % of data for the same error followed by SoCNN and SoCSV M

respectively, SoCNN achieved all its data with RE less or equal to 8%, followed by the

SoCSV M and SoCMCC, which acquired all its data with RE equal to 18%. Finally, 100%

of the data are recorded for the Kalman, and KNN models, respectively, for 27% of error.
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Fig.5.8 depicts Taylor diagram standard error for lithium battery during discharge

mode related to cycle 1. We observe that NN and KNN have the same standard deviation

as the reference (0.275) and a very low RMSE of 0.01 (High correlation). Kalman and

MCC are the opposite, they present a slightly lower standard deviation but their correla-

tion to the reference is higher (nearing the value of 1 with an RMSE close to 0). SVM on

the other hand has a much lower correlation to the reference (about 0.99 with a RMSE

of about 0.045) compared to the four others as well as a lower standard deviation of 0.25.

Figure 5.8: Taylor diagram standard error for lithium battery during discharge mode.
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To make a proper choice for the lithium battery operating SoC model in the PV system

another statistical analysis is provided based on MBE and RMSE errors as shown in

Table 5.4, describing further comparisons between the five SoC models considering four

cycles of discharging mode.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SoCNN 1.8·10−8 1.61·10−7 -1.58·10−6 1.3·10−5 6.59·10−6 0.00012 -1.42·10−6 3.65·10−5

SoCSV M 1.3·10−7 1.16·10−6 1.35·10−7 1.1·10−6 2.35·10−7 4.54·10−6 -5.81·10−7 1.49·10−5

SoCK NN 0 0 29·10−5 0.0026 6.59·10−6 0.00012 0 0
SoCMCC 1.46·10−6 1.3·10−5 1.52·10−6 1.3·10−5 6.47·10−6 0.00012 5.62·10−7 1.44·10−5

SoCEKF 0 0 0 0 0 0 0 0

Table 5.4: Statistical errors of lithium-ion battery during four cycles of discharge mode.

Based on table 5.4, the battery SoCEKF displays very low values of MBE and RMSE

during all four cycles compared with the remaining models to achieving 0 error of MBE

and RMSE, respectively. Afterwards, the battery SoCK NN reached 0 error of MBE and

RMSE. During cycle two and cycle four, respectively.

The previously obtained results suggest that the Kalman model is more suited for

lithium-ion discharging mode, followed closely by the KNN model. However, considering

the charging mode as well the KNN model is more suited for lithium-ion SoC estimation

overall.

To better highlight the battery SoCK NN model, another quantitative analysis is

provided for the lithium discharging mode, considering four battery cycles. As shown in

Fig. 5.9, the maximum data is within zero error for the four charging cycles.

Based on the aforementioned analysis, the battery SoCK NN model is more suited for

lithium battery manufacturers achieving less than 2.6·10−3(%) of MBE and RMSE errors.
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Figure 5.9: Data quantity Vs relative error based on SoCK NN for lithium battery during 04 cycles of
charge mode.

5.2.3 Validation

This section objective consists of validating the updated SoCK NN model in a real oper-

ating stand-alone PV system. The system consists of a PV array with a nominal power

of 750 Wp, a lithium-ion battery incorporated through the off-grid system with DC/AC

inverter and AC load. The model validation involved two different scenarios: the first one

depicts the system behaviour over two days in Fig. 5.10. We started the simulation with a

completely discharged battery, whereas for the second scenario, the model was tested over

three working days with a fully charged battery. Fig. 5.12 displays two typical days of

operation of the PV system under study, during which the PV current produced from the

daily solar irradiation Ipv, the charging battery current Ibat, and the load consumption

I load are reported, Fig.5.11 and Fig.5.13 show the battery SoCK NN evolution compared

to the SoCre f . A good fit between both estimation is shown during charge and discharge

modes.
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Figure 5.10: Battery current profile evolution with PV and load current in standealone PV system for
scenario 1.

Figure 5.11: Simulation of battery SoC for scenario 1.
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Figure 5.12: Battery current profile evolution with PV and load current in standalone PV system for
scenario 2.

Figure 5.13: Simulation of battery SoC for scenario 2.
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5.3 Lead-acid Batteries

5.3.1 Charge

The charging period of the battery spans four days. We notice that during the first

seven hours of charging, the voltage increases gradually with irradiation, this is called

the boosting phase. Note also that the battery temperature increases with the charging

current. After four days, the latter hits its minimum value of zero after which the battery

maintains a relatively constant voltage signaling the beginning of the floating phase.

The battery charging profile corresponding to the lead-acid battery was conducted in

two phases: Boost and Floating. The battery charge controller integrated through the

storage unit case study displays the battery charging profile. As shown in Fig. 5.14.

Figure 5.14: Lead-acid battery charging profile.

Fig. 5.15 shows the evolution of the four battery SoC models considering the charging

mode of the lead-acid battery. It is observed that most of the models have close conver-

gences to the reference.

Fig.5.16 provides the cumulative frequency via the relative error percentage RE

(%) during charge mode for lead-acid battery SoC. Table 5.5 presents the cumulative

frequencies achieved for RE within a range of 0 to ± 8%; during the charging mode.
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Figure 5.15: SoC modelling for lead-acid battery during charge mode

Figure 5.16: Cumulative Frequency Vs relative error for lead-acid during charge mode.
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RE (± %) 0 1 2 3 4 5 6 7 8
SoCNN 46.8 80.86 96.2 97.24 100 100 100 100 100

SoCSV M 82.94 96.20 100 100 100 100 100 100 100
SoCK NN 92.56 94.38 96.72 96.98 97.24 100 100 100 100
SoCMCC 0 5.46 47.32 69.42 100 100 100 100 100

Table 5.5: Comparative results of cumulative frequency distribution Vs. The relative error for charge mode
of lead-acid battery during cycle 1.

To enhance a practical selection for the lead-acid battery model operating SoC model

in the PV system. Another analysis is provided. In Table 5.6, further comparisons be-

tween the five SoC models considering four cycles of charging mode will be made based

on statistical errors.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SoCNN -5.33 ·10−6 0.0001 0 0 -4.68 ·10−5 0.001 -2.94 ·10−6 0.000049
SoCSV M 3.2 ·10−6 0.0063 8.34 ·10−8 0.000002 -2.72 ·10−7 0.000064 -2.56 ·10−6 0.000043
SoCK NN 1.56 ·10−5 0.0003 -2.64 ·10−5 0.00038 -6.01 ·10−5 0.0014 -1.84 ·10−6 0.000031
SoCMCC 1.43 ·10−5 0.0002 -2.62 ·10−5 0.00037 -6.04 ·10−6 0.00014 -1.75 ·10−6 0.000029

Table 5.6: Statistical errors of lead-acid battery during four cycles of charge mode

From table 5.6, the battery SoCNN displays very low values of MBE and RMSE dur-

ing the four charging cycles compared with the remaining models to achieving -5.33.10-6

of MBE and 0.0001 of RMSE respectively during the first cycle. During the second cycle,

SoCNN reaches zero MBE and zero RMSE. In addition, -4.68 ·10−5 MBE and -2.94·10−5

RMSE were realized during cycle 3 and -4.68·10−5 MBE, -2.94·10−6 RMSE during cycle

4.

We can notice that around 92% of the SoCK NN has a RE of ±0% but it only achieves

a perfect score on its data at 5% RE, whereas the SoCSV M has achieved all its data with

RE less or equal to 2%, followed by the MCC, which acquired all its data with RE equal

to 4%. NN on the other hand has 46.8% of the predictions at 0% RE and achieves perfect

score in under 3% RE.
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Fig.5.17 depicts the Taylor diagram standard error for lead-acid battery during charge

mode related to cycle 1. We notice that KNN, SVM, NN have more or less the same

standard deviation as the reference (0.175), however, of the three models SVM has the

highest correlation (0.997) with an RMSE of 0.005 followed by NN (0.992 correlation

and 0.01 RMSE) and finally KNN (0.97 correlation and 0.027 RMSE). MCC presents

a different behavior, it has a lower standard deviation compared to the previous three

(0.12) and an RMSE comparable to that of NN but with a slightly higher correlation to

the reference (that still doesn’t surpass that of SVM).

Figure 5.17: Taylor diagram standard error for lead-acid during charge mode
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The previously obtained results suggest that the battery SoCNN is more adequate

for the lead-acid charging mode. To better highlight the battery SoCNN model, another

quantitative analysis is provided for the lead-acid charging mode, considering four bat-

tery cycles. As shown in Fig.5, notice that the majority of the data is within zero error for

the four charging cycles.

Figure 5.18: Data quantity Vs relative error based on SoCNN for leadacid battery during 04 cycles of
charge mode
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5.3.2 Discharge

As shown in Fig.5.19, the battery was initially fully charged (with 100% SoC) and

disconnected from the PV array; the battery supplies an external load of only 220 W

to ensure the discharge process. The SoC during this mode is a linear function and

decreases as the battery supplies the utility over time.

Fig.5.19 show a comparison of four SoC models during cycle 1 of the discharge mode.

All the simulated models present a good compatibility with SoCre f , the SoCSV M model

shows some fluctuations at first but they disappear after a while.

Figure 5.19: SoC modelling for lead-acid battery during discharge mode

Fig.5.20 illustrates the cumulative frequency via the RE (%) during the discharge

mode for lead-acid battery. Table 5.7 presents numerical results of these cumulative

frequencies achieved for RE (%) within a range of 0 to ± 11%; during the first cycle of

discharging mode.
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Figure 5.20: Cumulative Frequency Vs relative error for lead-acide battery during discharge mode.

RE (± %) 0 1 2 3 4 5 6 7 8 9 10 11
SoCNN 89.76 95.54 97.34 97.24 97.58 97.58 100 100 100 100 100 100

SoCSV M 89.09 93.84 94.86 95.88 96.22 96.22 97.24 97.24 97.24 97.24 97.58 100
SoCK NN 85 93.16 93.5 94.18 95.2 96.22 96.9 97.58 100 100 100 100
SoCMCC 74.46 91.46 97.24 100 100 100 100 100 100 100 100 100

Table 5.7: Comparative results of cumulative frequency distribution Vs. The relative error for discharge
mode of lead acid battery during cycle 1

It is noted that around 89.76% of the SoCNN has a RE of ±0%, whereas the SoCMCC

has only 74.46% of data for the same error, followed by SoCSV M (89.09) and SoCK NN

(85) respectively, SoCMCC achieved all its data with RE less or equal to 3%, followed by

the SoCNN at 6% RE then SoCK NN at 8% and finally SoCSV M which acquired all its

data with RE equal to 11%.
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Fig.5.21 depicts the Taylor diagram standard error for lead-acid battery during

discharge mode related to cycle 1. We observe that all models have a standard deviation

equal to that of the reference (0.26). They only vary in terms of RMSE and correlation;

MCC and NN have a high correlation to the target point approaching the ideal value of 1

(and an RMSE approaching 0), SVM and KNN however seem to be located a bit further

away but close to each other, with a correlation of 0.998 and an RMSE of 0.015 for SVM

as well as a correlation of 0.997 for KNN (with 0.02 RMSE).

Figure 5.21: Taylor diagram standard error for lead-acid battery during discharge mode
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To improve a proper choice for the lead-acid battery model operating SoC model in

the PV system. another statistical analysis is provided based on MBE and RMSE errors

as shown in Table 5.8, describing further comparisons between the five SoC models

considering four cycles discharging mode.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SoCNN 1.08 ·10−8 0.00013 -6.26 ·10−7 0.00029 -2.71 ·10−7 0.000108 -5.75 ·10−7 0.00012
SoCSV M -7.97 ·10−7 0.013 2.05 ·10−7 0.000095 -4.33 ·10−5 0.0017 -1.95 ·10−7 0.000043
SoCK NN 7.80 ·10−4 0.013 0 0 -4.01 ·10−7 0.00016 -3.15 ·10−6 0.0007
SoCMCC 1.00 ·10−5 0.00017 1.10·10−6 0.00051 1.97 ·10−7 0.000078 3.57 ·10−8 0.000008

Table 5.8: Statistical errors of lead-acid battery during four cycles of charge mode.

Based on table 4, the SoCNN has the lowest MBE and RMSE for cycles 1 ( 1.08 ·10−8

and −6.26 ·10−7 respectively), the second lowest for cycle 3 and the third lowest values

for the two remaining cycles. SoCSV M has the second lowest values for cycles 1,2 and 4

but displays very a high MBE and RMSE during cycle 3. Moreover, the SoCK NN reaches

0 error of MBE and RMSE during cycle 2 but shows high values for the remaining cycles.

MCC on the other hand has very low error values for Cycle 3 and 4 but displays higher

values in the other two cycles.

The previously obtained results suggest that the battery SoCNN is more adequate

for the lead-acid charging mode. To better highlight the battery SoCNN model, another

quantitative analysis is provided for the lead-acid discharging mode, considering four

battery cycles. As shown in Fig.5.22, the majority of the data is centered around zero

error for the four charging cycles.

Based on the aforementioned analysis, the battery SoCNN model is more suited for

lead-acid battery manufacturers achieving less than 2.6 ·10−3(%) of MBE and RMSE

errors.
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Figure 5.22: Data quantity Vs relative error based on SoCNN for leadacid battery during 04 cycles of
charge mode.

5.3.3 Validation

This section’s objective consists of validating the updated SoCNN model in a real

operating stand-alone PV system. The system consists of a PV array with a nominal

power of 750 Wp, a lead-acid battery and DC load. The model validation involved two

different scenarios: the first one depicts an unfavorable scenario recorded in the span of

one day as displayed in Fig. 5.23 in which the consumption evolves inversely with the

solar irradiace (the simulation was started with a completely discharged battery). The

second scenario depicts a linear profile, which means the consumption I load remains

constant when the irradiance varies , the model was tested along two working days with

a fully charged battery (with an SoC of 65%).

Fig.5.25 displays two typical periods of operation of the PV system under study,

during which the PV current produced from the daily solar irradiation Ipv, the charging

battery current Ibat, and the load consumption I load are reported, Fig.5.24 and Fig.5.26

show the battery SoCNN evolution compared to the SoCre f . A good similarity between

the SoCNN and the reference SoC is observed during both charge and discharge modes.
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Figure 5.23: Battery current profile evolution with PV and load current in standalone PV system for
scenario 1.

Figure 5.24: Simulation of battery SoC for scenario 1.
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Figure 5.25: Battery current profile evolution with PV and load current in standalone PV system for
scenario 2.

Figure 5.26: Simulation of battery SoC for scenario 2
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5.4 Conclusion

In this chapter we’ve displayed the collected data, analysed the different SoC estimation

methods quantitatively and qualitatively, selected the optimal one and validated it in

different standalone PV cycles. We’ve gone through this process for a lead-acid battery

and lithium-ion battery. We’ve concluded that the K-Nearest Neigbours method is best

for the lithium-ion battery while the neural network model is best for the lead-acid

battery.
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6
CONCLUSION

In this thesis, we touched upon a variety of elements related to the state of charge

estimation problem. In chapter 2, we exposed a myriad of SoC estimation methods,

specifying the research that went into the field, as well as some recent innovations and

novel approaches to it.

The algorithm used in commercial battery management systems is Coulomb-Counting.

The model in itself is considered as a highly trusted method for SOC estimation but

presents a huge disadvantage in practice; it uses an integral (or cumulative summation)

in its formulation. This means that the model is only recommended when the arithmetic

units have sufficient accuracy and storing capability to prevent the errors from piling

up, which is often not the case for commercial BMS’s. The improvement we achieved

concerned the use of the Coulomb-Counting model as a mere reference to build, train

and optimize other algorithms that would finally produce results as trust-worthy as

those of the ideal Coulomb-Counting, while being more practically implementable into

Commercial BMS’s. In chapter 3, we selected a handful of those models that seemed the

most coherent with our objectives and endeavored in elucidating the theory behind each

one of them. The end goal being to deduce an appropriate way to implement them.

In chapter 4, we demonstrated our modus operandi exposing the experimental test-

bench used to measure and record the different measurements for the two battery

technologies. Afterwards, we fleshed out the strategy behind the implementation of the

five SoC algorithms, as well as the platforms and programming languages used.

The subsequent chapter 5 describes a detailed analysis we performed on the different
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results produced by the models. First, we represented the estimations in the form of

regular graphs, which showed a highly convergent behavior towards the reference from

most algorithms. This warranted the need of a more sophisticated way to distinguish

between their performances. We resorted to statistical metrics like the cumulative

frequencies of the relative errors along with the Mean Bias Error (MBE) and the Root

Mean Square Error (RMSE). To solidify our study even further, we also utilized the

Taylor Diagram, which is a graphical representation of three statistical metrics at once,

namely the Correlation, the RMSE and the standard deviation.

Taking all of that into account, we established that the optimal model for state of

charge estimation in lithium-Ion batteries is the K-Nearest Neighbors Regressor. The

model displayed a high predictive accuracy, an optimal standard deviation and the

majority of its predictions had relative errors close to 0%. KNN is inherently simple as an

algorithm (arguably the simplest model of the five) because it relies solely on a distance

calculus, combined with a comparison and a mean calculation, all of which necessitate

little computing power on hardware level.

For lead-acid batteries, the favored model was the Neural Network algorithm on both

charge and discharge modes. This time however, accuracy varied strongly amongst the

models throughout the 4 cycles. The reason we arbitrated in favor of NN was because of

its overall consistency (the other models would perform well on a couple of cycles but

show very poor estimations on the others).

To close off this enquiry, it was necessary to test the selected models on a validation

dataset. Two autonomous cycles portraying several charge-discharge phases were used

for the lithium-ion battery, the KNN model displayed high accuracy estimations for both

of them, proof of its strong predictive ability. In the case of lead-acid battery, we started

by validating on an unfavorable cycle presenting an irregular scenario in which the

current was forced to evolve inversely with the irradiance. Nevertheless, the NN model

still managed to provide highly accurate estimations. Subsequently, we validated the

model on a regular linear cycle which produced very precise predictions too.

In terms of real-life implementation of the two models and its feasibility, we must

reiterate that the KNN model (selected for lithium-Ion battery) is more practical to

realize on a regular Battery Management System, or a UPS (Uninterruptible Power

System) in general, due to the simplicity of its formulation as well as the limited number

of calculus it needs to perform. For the Neural Network algorithm however, more effort

and material might be needed because of its complexity and heavy weight. In [23] and

idea was proposed to implement Back Propagation neural networks by connecting a
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pc (capable of running the algorithm) to the battery management system through an

ethernet cable. Other works ([2]) have studied the use of Field Programmable Gate

Arrays (FPGA) in implementing said model.

In conclusion, this thesis presents a study of different models applied in estimating

the State of Charge for two different technologies of batteries. A comparative analysis

between the different estimations revealed the algorithms capable of achieving state

of the art predictions for each type. The retained models (namely K-Nearest Neighbors

for lithium-Ion Batteries and Neural Networks for Lead acid) have been tested for

accuracy on autonomous scenarios involving multiple charging/discharging phases. It

was concluded hat the two selected methods satisfied the statistic requirements of

performance and were deemed ready to be forwarded into the real-life implementation

discussion.
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Figure 1: Lithium-ion battery technical data.
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Figure 2: Lead-acid battery technical data.
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