
�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire
ù

ÒÊªË@

�
IjJ. Ë @ ð ú

ÍAªË@ Õæ

Êª

�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Electronics Engineering Department

Final Year Project Dissertation
in partial fulfilment of the requirements for:

Electronics Engineer’s Degree

Hybrid Deep Learning Based Speech Signal Separation

Authors:
BOUAOUNI Mohamed Yacine AIT ALI YAHIA Rayane

Presented and defended in July 11, 2021 before the members of jury:

President Mourad Adnane Prof. ENP, Algiers
Supervisor Adel Belouchrani Prof. ENP, Algiers
Examiner Sid-Ahmed Berrani PhD. ENP, Algiers

ENP 2021

École Nationale Polytechnique (ENP)
10, Avenue des Frères Oudek, Hassen Badi, BP. 182, 16200 El Harrach, Alger, Algérie

www.enp.edu.dz

�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire
ù

ÒÊªË@

�
IjJ. Ë @ ð ú

ÍAªË@ Õæ

Êª

�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Electronics Engineering Department

Final Year Project Dissertation
in partial fulfilment of the requirements for:

Electronics Engineer’s Degree

Hybrid Deep Learning Based Speech Signal Separation

Authors:
BOUAOUNI Mohamed Yacine AIT ALI YAHIA Rayane

Presented and defended in July 11, 2021 before the members of jury:

President Mourad Adnane Prof. ENP, Algiers
Supervisor Adel Belouchrani Prof. ENP, Algiers
Examiner Sid-Ahmed Berrani PhD. ENP, Algiers

ENP 2021

École Nationale Polytechnique (ENP)
10, Avenue des Frères Oudek, Hassen Badi, BP. 182, 16200 El Harrach, Alger, Algérie

www.enp.edu.dz

�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

République Algérienne Démocratique et Populaire
ù

ÒÊªË@

�
IjJ. Ë @ ð ú

ÍAªË@ Õæ

Êª

�
JË @

�
èP@ 	Pð

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique

Département d’Electronique

Mémoire de projet de fin d’études
pour l’obtention du diplôme:

Ingénieur d’état en Electronique

Apprentissage Profond Hybride Appliqué à la Séparation de
Signaux Audio

Auteurs:
BOUAOUNI Mohamed Yacine AIT ALI YAHIA Rayane

Présenté et soutenu publiquement le 11/07/2021 auprès des membres du jury:

Président Mourad Adnane Prof. ENP, Alger
Promoteur Adel Belouchrani Prof. ENP, Alger
Examinateur Sid-Ahmed Berrani PhD. ENP, Alger

ENP 2021

École Nationale Polytechnique (ENP)
10, Avenue des Frères Oudek, Hassen Badi, BP. 182, 16200 El Harrach, Alger, Algérie

www.enp.edu.dz

�
éK
YJ
Ê

�
®
�
JË @ I. J
ËA�

B@ Ð@Y

	
j

�
J�AK. AÓ @

,

�
é¢Ê

�
J
	
m×

�
èPA

�
�@

ú

	
¯

�
èXñk. ñÖÏ @

�
é

	
®Ê

�
J

	
jÖÏ @ PXA�ÖÏ @ YK
Ym�

�
' 	áÓ

	
àñº

�
J
�
K

�
éJ.ª�

�
éÊ¾

�
�Ó

�
Hñ�Ë@ PY�Ó É�

	
¯ YªK
 �

	
jÊÓ

h.
	
XñÒ

	
JË @ úÎ«

�
éÖ

ßA

�
®Ë @ I. J
ËA�

B@

	á�
K. ©Òj. ÊË
	á�

	
®Ê

�
J
	
m×

	á�
g.
	
XñÖ

	
ß hQ�

�
�
®

	
K , ÉÒªË@ @

	
Yë ú

	
¯ .

�
�J
ÒªË@ ÕÎª

�
JË @

�
HAJ
Ó

	PP@ñ
	

k Ð@Y
	

j
�
J�AK. ð

@ h.

	
XAÒ

	
JË @ úÎ«

�
éÖ

ßA

�
®Ë @

ú

	
¯ DNN �

é
�
®J
ÒªË@

�
éJ
�. �ªË@

�
éºJ.

�
�Ë@ð NMF 	á�
K. Èð

B@ H. ñÊ�

B@ l .

×YK
 . AÒîD
Ê¿
	áÓ

�
èXA

	
®
�
J�CË

�
éJ
�. �ªË@

�
HA¾J.

�
�Ë@ ©Ó (ú

æ
.
Ê�Ë@ Q�

	
«

�
é
	
¯ñ

	
®�ÖÏ @ ÉÓA«)

. NMF Ð@Y
	

j
�
J�AK. AëQK
Y

�
®
�
K Õç

�
' ú

�
æË @ I. �A¾ÖÏ @ /

	
J
¢Ë@

�
HA¢¢

	
m×

�
IK
Ym�

�
' �

�K
Q£ 	á«
�

H@PA
�

�B

@ É�
	
¯ DNN 	P 	QªK

�
IJ
k ,

	á�

�
JJ
ËA

�
J
�
JÓ

	á�

�
JÊgQÓ �YºÓ

i. î
	

DË @ YÒ
�
JªK
 . ÈA

	
gXB

@

�
HA

	
KAJ
K.

	áÓ
	á�

	
®Ê

�
J
	
m×

	á�
«ñ
	
K ©Ó ÉÓAª

�
J
�
K ú

�
æË @ð ,

�
ékðQ£

B@ è

	
Yë ú

	
¯

�
éJ

KA

�
®Ê

�
JË @ Q�

	
®

�
�

�
�Ë @

�
è 	Qêk.

@ úÍ@

	

à@Y
	
J
�
��

�
�

	á�

�
KPAÒªÓ Õç'
Y

�
®
�
K Õ

�
æK

AîD
.
K
PY

�
Kð ,

�
é
�
®J
Ô

« �
éºJ.

�
� 	áÓ

�
HA

�
®J.£ ú

	
¯ h.

	
XñÒ

	
JË @ úÎ«

�
éÖ

ßA

�
®Ë @

�
é
�
®K
Q¢ÊË

	á�
�j
�
JË @

�
éJ
Ó

	PP@ñ
	

k i
�
J
	
¯ 	áÓ

	
Ë

A
�
JK
 ñëð .

�
�ÒªK.

	

�
�º

�
JK
 h.

	
XñÖ

	
ß úÎ« ú

	
GA

�
JË @

. .
�

�J
ÒªË@ ÕÎª
�
JË @

�
HAJ

	
J
�
®
�
K Ð@Y

	
j

�
J�AK.

DNN , NMF ,
�

HAJ
Ó
	PP@ñ

	
mÌ'@ i

�
J
	
¯ ,

�
�J
Ô

« Õæ

Êª

�
K , ù

KA

�
®Ê

�
JË @ 	á

	
®

�
�

�
�
�
JË @ -

�
éJ
kA

�
J
	
®Ó

�
HAÒÊ¿

Résumé— La séparation de source audio est un problème complexe qui consiste à identifier les différentes
sources présentes dans un signal mixte, soit en utilisant des méthodes de modèle traditionnelles, soit à
l’aide d’algorithmes d’apprentissage profond. Dans ce travail, nous proposons deux paradigmes différents
pour la combinaison de méthodes basées sur des modèles (factorisation de matrice non négative) avec des
réseaux de neurones afin de tirer profit des deux. La première approche consiste à fusionnner la NMF et
le réseau de neurones profond, dans une pile constituée de deux étapes séquentielles, où le DNN améliore
la séparation des signaux en mettant à jour les spectrogrammes / gains estimés à l’aide de la NMF. Deux
architectures basées sur des autoencodeurs sont présentées dans cette thèse, qui acceptent deux types de
données d’entrée différents. La deuxième approche est basée sur le paradigme de déploiement profond,
qui consiste à déployer l’algorithme d’optimisation de la NMF, sur les couches d’un réseau de neurone
profond et à l’entraı̂ner en utilisant des techniques de Deep Learning.

Mots-clés : Apprentissage profond, NMF, DNN, Autoencodeurs, Algorithme de Déploiement Profond.

Abstract— Audio source separation is a challenging problem which consists of identifying the different
sources present in a mixed signal, either by using traditional model based methods or using deep learning
algorithms. In this work, we propose two different paradigms for combining model based methods (non-
negative matrix factorization) with neural networks to take advantage of both. The first approach fuses
the NMF and a deep neural network (DNN) in a two sequential stages stack, where the DNN enhances
the separation of the signals by updating the spectrograms/gains that were estimated using the NMF.
Two architectures based on autoencoders are presented in this thesis, that handle two different kind of
input data. The second approach is based on the deep unfolding paradigm. It consists of unrolling the
optimization algorithm of the model based method into layers of a deep network, and train it using deep
learning techniques.
Index-terms : Deep Learning, NMF, DNN, Autoencoders, Unfolding algorithm.

Acknowledgement

First and foremost, all our gratitude, and thanks go to Allah the whole powerful who gave us strength,
patience, courage, and willingness to develop this work.

We thank our promoter Adel Belouchrani, Professor at the National Polytechnic School, world leader
in signal processing, for having accepted to supervise us, and to have been present at all times for the per-
formance of this work. We also thank him for his continued encouragement and motivating, for his moral
support and his relevant remarks. We wish to express our sincere gratitude to him for his availability and
his advice which were invaluable to us in order to carry out this work successfully.

We would also like to thank Mr. Mourad Adnane, Professor at the National Polytechnic School, having
accepted to chair our jury, and Mr. Sid-Ahmed Berrani our examiner, for his interest in our work.

During these 3 years of dedication, Mr. Mourad Adnane and Mr. Sid-Ahmed Berrani have helped
us enormously, by their knowledge, their teachings, their availability, and their way of being. They have
always been attentive and have never hesitated to share their knowledge with disconcerting ease which
demonstrates their excellence.

Dedication

We would like to dedicate our work to our parents, brothers and sisters, who always helped us through-
out the entire educational pathway. They always stood alongside us during tough moments, offering us
their wholehearted support and elating words of encouragement.

We offer this dissertation to all our professors at the Electronics Department at Ecole Nationale Poly-
technique in particular Mr. Adel Belouchrani, Mr. Mourad Adnane, and Mr. Sid Ahmed Berrani, who
have been always supportive and available.

We also dedicate this project to our beloved ones Lynda Zemirline and Meriem Zanoun, Yana Fernani,
Malik Ait Ali Yahia, Omar Medjdoub, Younes Moussaoui, Youcef Aissaoui, Rabah Saadoun, Mechehed
Mokrane, Djelloul Bouida, Houssem Otmani, Khennas Mohamed Ibrahim, Soulaimane Saadi. All those
who have supported me throughout the process. We will always appreciate everything they have done.

Contents

List of Figures

Acronyms

Introduction 14

1 Background 18
1.1 Source separation . 19

1.1.1 General Process of Source Separation . 19
1.1.2 Categorization of source separation . 19
1.1.3 Source Separation Approaches . 20
1.1.4 Single Channel vs Multi-Channel . 20
1.1.5 Audio Source Separation . 20

1.2 Time Frequency Processing . 21
1.2.1 Time Frequency Analysis and Synthesis . 22
1.2.2 Problem Formulation in Time Frequency Domain 27

1.3 Model based and Data Driven approaches . 28
1.3.1 Model-Based Approach . 28
1.3.2 Data-Driven Approach . 29

1.4 Deep Learning . 32
1.4.1 Biological Neurons . 32
1.4.2 Perceptron . 33
1.4.3 Multi Layer Perceptron . 34
1.4.4 Backpropagation . 36
1.4.5 Rectified Linear Units . 38
1.4.6 Dropout . 39
1.4.7 Optimizers . 43
1.4.8 Network’s Initialization . 47

1.5 Deep Unfolding . 53

1.5.1 Unfolding principles . 53
1.5.2 Advantages of Unrolling Algorithms . 55

2 Materials and Methods 56
2.1 Dataset . 57
2.2 Software tools . 57

2.2.1 Programming language . 57
2.2.2 Libraries and Frameworks . 58
2.2.3 Google Colaboratory . 59

2.3 Data Preprocessing . 59
2.3.1 Normalization . 60
2.3.2 Sampling . 60
2.3.3 Filtering . 63

2.4 Performance Criteria . 64
2.4.1 Signal-to-Distortion Ratio . 65

3 Non Negative Matrix Factorization 66
3.1 Non Negative Matrix Factorization . 67

3.1.1 Beta-Divergence Loss . 67
3.1.2 Frobenius Norm . 69
3.1.3 Singular Value Decomposition . 69
3.1.4 Nonnegative Double Singular Value Decomposition 71
3.1.5 Multiplicative-Update Algorithm . 73

3.2 Learning Free and Supervised NMF . 74
3.2.1 Learning Free NMF . 74
3.2.2 Supervised Non Negative Matrix Factorization 75
3.2.3 Component Effect . 78
3.2.4 Masking . 79
3.2.5 Sparse Non Negative Matrix Factorization . 84

3.3 Results and Discussion . 85
3.3.1 Sparsity . 85
3.3.2 Masks . 87
3.3.3 Effect of every loss on the SDR . 90

4 Deep Learning Based Source Separation 93
4.1 Deep Neural Networks for Speech Separation. 94

4.1.1 Neural Network Architecture . 94
4.1.2 Filtering and Reconstruction . 98

4.1.3 Drawbacks of this approach . 98
4.2 Our contribution . 100

4.2.1 Autoencoders . 100
4.2.2 Adaptive Moment Estimation . 102
4.2.3 Deep Enhanced Sparse NMF . 103
4.2.4 Denoising Sparse NMF . 108
4.2.5 Denoising Autoencoder . 108

4.3 Results and Discussion . 110
4.3.1 Deep Enhanced Sparse NMF . 110
4.3.2 Denoising SNMF . 115

5 Deep Unfolding Based Source Separation 119
5.1 Introduction to Deep Recurrent NMF . 120
5.2 Statistical Model . 120
5.3 Inference Algorithm . 122

5.3.1 Iterative soft-thresholding algorithm (ISTA) 122
5.3.2 Warm Start ISTA . 123
5.3.3 Warm Start ISTA with memory . 125
5.3.4 Results . 126

5.4 Deep recurrent NMF . 127
5.4.1 Initialization . 128
5.4.2 Loss Function . 129

5.5 Results and Discussion . 130

Bibliography 141

List of Figures

1.1 Audio signal representations. 21
1.2 Two different signals in time domain that have the same representation in the

frequency domain [19]. 23
1.3 Pipeline of the conversion between time and time-frequency domain. 23
1.4 Short-time Fourier transform analysis [20]. 24
1.5 Synthesis process using inverse STFT. 26
1.6 Impact of the window size T on the frequency and time resolution. 27
1.7 Impact of the window shape on the frequency resolution and the artifacts. 28
1.8 Biological neuron. 32
1.9 Organization of neurons in the brain. 32
1.10 Perceptron’s diagram . 33
1.11 Architecture of a MLP . 34
1.12 Logistic function . 35
1.13 Architecture of an MLP with two inputs neurons, two hidden neurons, and two

output neurons . 37
1.14 Rectified Linear Unit . 39
1.15 Schema representing the dropout . 40
1.16 Diagram of a neural network model without dropout. 41
1.17 Dropout applied on the input of the neural network before the sum and activation. 42
1.18 Saddle point where the derivatives in two orthogonal directions are equal to zero

but the point is neither a local maximum nor a local minimum. 43
1.19 Comparison between batch, mini batch and stochastic gradient descent. 45
1.20 SGD code using Pytorch. 46
1.21 The effect of momentum on the SGD. 46
1.22 Activation value of each layer . 50
1.23 Basic Structure of a Restricted Boltzmann Machine 51
1.24 Unfolding an iterative algorithm into a K layers deep network. 54

2.1 Data preparation and preprocessing . 57

2.2 Effect of sampling on the signal . 61
2.3 Down-Sampling Steps . 62
2.4 Butterworth filter Amplitude Response . 64

3.1 Pipeline of learning free NMF. 74
3.2 Pipeline of NMF with pretrained weights. 75
3.3 NMF decomposition of the mixed signal spectrogram. 77
3.4 Itakura-Saito reconstruction loss for different numbers of NMF components. 78
3.5 Heatmap of Speech SDR (up) and music SDR (bottom) evaluated for different

numbers of speech and music components in the pretrained dictionary for values
of SMR -5 0 and 5. 79

3.6 SDR of the estimated speech signal for different values of sparsity parameter λ. . . 86
3.7 SDR of the estimated music signal for different values of sparsity parameter λ. . . . 86
3.8 SDR of the reconstructed speech signal for different values of the parameter p. . . . 87
3.9 SDR of the reconstructed music signal for different values of the parameter p. . . . 87
3.10 Speech spectrograms for a mask with p = 0.5 and p = 10. 88
3.11 Music Spectrograms for a mask with p = 0.5 and p = 10. 89
3.12 SDR of the estimated speech signal using SNMF for different losses. 91
3.13 SDR of the estimated music signal using SNMF for different losses. 91

4.1 Pipeline of the method. 95
4.2 Architecture of the DNN. 96
4.3 Proposed approaches based on autoencoder to improve the mixture separation . . . 100
4.4 Typical autoencoder architecture . 101
4.5 Pipeline of Deep Enhanced Sparse NMF. 104
4.6 AutoEncoder Architecture. 106
4.7 Evolution of the cost function of the AutoEncoder with and without bias. 107
4.8 Pipeline of Denoising Sparse NMF. 108
4.9 Denoising Autoencoder [60] . 109
4.10 Distribution of the activation of the first neuron for a DNN trained on scaled music

spectrograms. 112
4.11 Distribution of the activation of the first neuron for a DNN trained on unscaled

music spectrograms. 112
4.12 Global loss, classification loss and SDR of the speech signal for SMR = 5 using

DE-SNMF method. 114
4.13 Global loss, classification loss and SDR of the speech signal for SMR = -5 using

DE-SNMF method. 115

4.14 Global loss, classification loss and SDR of the speech signal for SMR = 0 using
DE-SNMF method. 115

4.15 Normalized Speech and Music SDR evolution over training loss for SMR = 5 117
4.16 Learning Curves and weights’ distributions using the denoising SNMF. 118

5.1 Deep Recurent NMF Steps . 120
5.2 SNMF Training pipeline to initialize WS-ISTA, and DR-NMF 121
5.3 Time-unrolled graph of ISTA and Warm Start ISTA. 124
5.4 Time-unrerolled graph of Warm Start ISTA with memory 125
5.5 Map between input signals SMR and estimated signals SMR. 126
5.6 DR-NMF architecture unfolded across time (Right) compared to the unfolded ar-

chitecture of the RNN (Left) [6] . 128
5.7 Unfolded network and its optimization problem. 129
5.8 Learning Curve and SDR speech and music evolution over DR-NMF training for

SMR=0. 132
5.9 Learning Curve and SDR speech and music evolution over DR-NMF training for

SMR=-5. 132
5.10 Learning Curve and SDR speech and music evolution over DR-NMF training for

SMR=5. 132

Acronyms

AdaGrad Adaptive Gradient Algorithm.

Adam adaptive moment estimation.

AE Autoencoder.

AI Artificial Intelligence.

ANN Artificial Neural Network.

DFT Discrete Fourier Transform.

DL Deep Learning.

DNNs Deep Neural Networks.

FT Fourier Transform.

GMM Gaussian Mixture Model.

IS Itakura-Saito.

ISTA Iterative Shrinkage and Thresholding Algorithm.

ISTFT Inverse Short-Time Fourier Transform.

KL Kullback-Leibler.

LBFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno.

LSTM Long Short Term Memory.

MAE Mean Absolute Error.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MSE Mean Square Error.

MU Multiplicative Update.

NMF Non-Negative Matrix Factorization.

NN Neural Network.

NNDSVD Non Negative Double Singular Value Decomposition.

PMF Probability Mass Function.

RBM Restricted Boltzmann Machine.

RELU Rectified Linear Unit.

RMSprop Root Mean Square Propagation.

RNN Recurrent Neural Network.

SDR Signal-to-Distortion Ratio.

SE Square Error.

SGD Stochastic Gradient Descent.

SIR Signal-to-Interference Ratio.

SMR Signal-to-Music Ratio.

SNMF Sparse Non-Negative Matrix Factorization.

SNR Signal-to-Noise Ratio.

STFT Short-Time Fourier Transform.

SVD Singular Value Decomposition.

TF Time frequency.

WSISTA Warm Start Iterative Shrinkage and Thresholding Algorithm.

Introduction

Source Separation Source separation is a subject of utmost importance because of the challenges
it presents, and the need for such analysis in today’s world. Simply said, source separation aims
to analyze a set of mixed signals, in order to recover each source signal from this mixture with
little or no information about the mixing process or the sources.Among the areas in which source
separation is applied, we will cite audio separation, with its applications to speech, music, and
environmental audio. Audio source separation has been a resounding success since the techno-
logical development, the emergence of devices equipped with one or more microphones, such as
smartphones, and hearing aids that require developing efficient audio processing algorithms to
offer a unique user experience.

Audio Pollution In addition, noise pollution encourages scientists to work on solutions based on
source separation. The term “noise pollution” refers to the effects caused by acoustic phenomena
(noises) that have consequences on people’s health, from temporary discomfort to more serious
disorders. According to a WHO study [1], noise is an underestimated threat that can cause
health problems both in the short and the long term, such as cardiovascular diseases, a drop in
productivity, and hearing loss. In addition, 80% of workers who work in a noisy environment
reported being nervously tired, which impacts business productivity and therefore potential eco-
nomic loss. Moreover, most hearing aids available at affordable prices suffer from the problem
of amplifying both the speech and the background noise, which makes the sounds distorted and
creates a whistling or buzzing. Some solutions have been proposed using a transmitter-receiver
device, but they limit the communication to only one single person at a time.

Deep learning Deep Learning (DL) is a branch of Artificial Intelligence (AI) that was inspired
by the biological brain. It allows tackling tasks that are too difficult to solve with fixed programs
designed by human beings. It has been widely recognized as the representative advances of
machine learning or artificial intelligence in general nowadays [2]. This can be attributed to the
recent development made by deep learning in a series of challenging applications. For instance,
in computer vision, DL algorithms improve the accuracy of face recognition to be higher than
99%, beating the human level [3]. In speech recognition and machine translation, deep learning

14

is approaching the performance level of an interpreter [4]. In audio separation and speech en-
hancement, deep learning almost manages to mimic the behavior of the auditory cortex to ignore
the surrounding noise. In the medical diagnosis, it has matched the level of senior professional
physicians [5]. Until now, it has been hard to find areas in which DL was not successful.
From a scientific point of view, deep learning is interesting because it helps to understand the
principles that underlie intelligence, such as the brain’s primary visual cortex that was an inspi-
ration for Convolutional Neural Network (CNN) .
Deep learning models are often called data-driven because they heavily rely on huge amounts of
data to learn the rules that govern the inputs. These models aim to solve non-linear input/output
mapping by providing a powerful framework for supervised, unsupervised, and semi-supervised
learning. This efficiency can be attributed to the ability of DL algorithms to automatically ex-
tract salient features that represent the data and model functions of increasing complexity. In
addition to its simple use and open source community, DL models provide unbeatable results
with computationally efficient operations that make them convenient to work with. However,
the dimensionality and their millions of parameters make it impossible to interpret the behavior
of these models. That’s why deep learning is considered a black box.

Our work In our thesis, we focused our solution on model-based and data-driven methods. We
propose two different paradigms for combining the best of both methods while avoiding their
drawbacks, to solve the audio source separation problem, more precisely on separating speech
from music audio under different constraints.

In fact, real-world speech signals are often polluted by interfering speakers, environmental
noise, music, or reverberation. These disturbances deteriorate speech quality and, in adverse sce-
narios, speech coherence, and clarity, but also automatic speech recognition performance. Source
separation is therefore required in such scenarios. Speaking about our developed approaches in
the subject, they demonstrated prompting results over the state of the art audio source separation
techniques. Furthermore, our methods may be as well performed on images and tensors which
may involve no time dimension. For example, in medical imaging that involves careful measure-
ments, artifacts can significantly degrade the accuracy of the measurement, our algorithms can
help remove undesired artifacts from the desired signal. Moreover, we can cite seismic moni-
toring that uses sensitive seismographs to determine the location, as well as other characteristics
of earthquakes, which can also be improved using our approaches. Besides, radar, which is a
multi-sensor system, can also be another application of our approaches for meteorology, air traf-
fic control, surveillance, and astronautics.

The richness of our thesis is characterized by the different perspectives from which we ap-

15

proached the problem. Our solutions consist of two different methods that aim to solve the
same problem of mixture separation. The main contributions of our work can be summarized as
follows:

• Propose a Deep Neural Network architecture that enhances the magnitude spectrum (time-
frequency domain) of each respective source estimated by the Sparse Non-Negative Matrix
Factorization (SNMF). This approach is characterized by a pretrained stage using an Un-
derComplete Autoencoder which was used to initialize the DNN.

• Propose an architecture based on a Denoising Autoencoder (Denoising-SNMF) that aims
to improve the gains/activations matrix (temporal domain) estimated by the Sparse Non-
negative Matrix Factorization (SNMF). Time series are known for being noise prone, the
denoising process of the Denoising Autoencoder helps undo this corruption, which im-
proves the mixture separation.

• Propose an improvement to the Warm start Iterative Shrinkage and Thresholding Algo-
rithm (WSISTA) used to solve the Non-negative Matrix Factorization (NMF) problem by
introducing a memory term to provide more smooth changes in the estimations.

• Improve the Deep Recurrent NMF that was proposed in [6]. This method is based on the
deep unfolding paradigm that encourages both the interpretability of the deep network
and its performances.

Organization This thesis is organized as follows:

• Chapter I provides a background on the context of speech source separation, time-frequency
processing, Deep Learning, and Deep Unfolding. It gives an overview of the basic use of
time-frequency tools, as well as the mechanism of Deep learning and Unrolling Algorithms.

• Chapter II describes the dataset used, the preprocessing techniques, the evaluation criteria,
and the software tools (libraries and environment).

• Chapter III presents a model-based method (NMF) widely used for single channel source
separation, over which we build our solutions. This chapter gives detailed explanations
about the mechanism that governs low-rank matrix decomposition, especially NMF, as well
as its variants, its training and validation process. Finally, it shows the results of such
techniques, and the impact of some factors on the separation process.

• Chapter IV presents the proposed methods based on Deep Learning, by explaining techni-
cal details related to both architectures, and the contributions we made over the paper we
inspired the work from. Finally, we show the results and their interpretations.

16

• Chapter V is without any doubt, the most exciting chapter we have worked on. It intro-
duces unfolding techniques that combine both advantages of the model-based and data-
driven methods. This chapter demonstrates how we unrolled the Iterative Shrinkage and
Thresholding Algorithm (ISTA) [7] into a network and trained it with back-propagation.
We then present the many contributions and changes we made over the original paper [6]
to adapt it to our problem. Finally, we conclude this study with the results obtained by this
technique.

17

Chapter 1

Background

1.1 Source separation

Source separation attracted the attention of scientists and researchers by its complexity and the
need of solving such a problem in a world where the signal is subject to different types of
noise and distortions in multiple fields such as the medical field, radars, and seismology where
accuracy and precision are required.

The source separation aims to analyze the mixture signal, in order to separate each source
component from other components. This problem can be formulated as follows:

s(t) =
M

∑
i=1

si(t) + n(t) (1.1)

si(t) : ith source signal of the overall mixture.
M : Total number of sources.
n(t) : Additive noise.
The approach to perform source separation follows a general processing scheme, described in
subsection 1.1.1.

1.1.1 General Process of Source Separation

A vast majority of approaches that are interested in the separation of mixture signals follow the
general process below:

• Convert the mixture signal s(t) from the time domain to the time-frequency domain.

• Estimate the parameter relative to time-frequency characteristics of each source defined
by their spectra, according to some criteria and constraint, for example, when using Non-
Negative Matrix Factorization NMF, we assume the resulting matrix to be non-negative.

• Application of spatial/spectral filtering in order to extract the complex-valued time-frequency
coefficients of the sources.

• Applying an inverse operation to switch from time-frequency domain to the temporal do-
main yielding source estimates s̃i(t)

1.1.2 Categorization of source separation

Because source separation can be handled differently depending on the information available
about the mixture signal as well as the clean signal of every source, source separation can be
defined by category:

19

• Blind: When no prior information and knowledge are available about the mixture, and/or
the source signals.

• Semi-blind: When general information is available about the mixture signal, and the mix-
ture process.

1.1.3 Source Separation Approaches

Tackling source separation problem depends on the prior information we have about the mixture
signal as described in 1.1.2, that’s why different approaches exist, which depend on the category
of the problem:

• Learning-Free: This kind of method does not rely on any kind of prior knowledge about
the mixture signal; in other words: when no training data is available. All parameters are
directly estimated from the signal mixture. For the algorithms that are Learning Free we
can cite Independant Component Analysis (ICA) or Learning-Free NMF.

• Supervised methods: Consist of training a model for each source from clean signals, in
order to separate the test mixture using the prior knowledge of each isolated source, such
as Trained-NMF.

• Separation based Training: This method based on Neural Networks, reformulates the
source separation problem into minimizing an objective function between the input and
the desired target.

1.1.4 Single Channel vs Multi-Channel

Assume that the observed signal is recorded using one or more microphones. By single channel,
we mean the output of one microphone, and it represented by a scalar s(t), while multi-channel
concerns the output of multiple microphones, represented by a C× 1 vector s(t) where C is the
number of microphones.

1.1.5 Audio Source Separation

The audio source separation stems from the ”Cocktail party problem” [8], where multiple people
talk at the same time. In fact, sounds from different sources in the party mix in the air before
arriving at the ear of the observant, constraining the auditory cortex [9] to focus on a single
speaker while ignoring the rest.
An ideal solution would be to imitate the auditory cortex in order to take the sound consisting of
the mixture of different sources, and somehow separate out the individual source signals. This
is known as the audio source separation problem.

20

Source Separation vs Enhancement

Cocktail party problem implies multiples speakers, causing interference, distortions, echo and
reverberations.
The source separation aims to extract one or more target source while trying to cancel signal
contamination such as interference and distortion. On the other hand, enhancement is mostly
used in the case where the target we want to isolate is speech, it also refers to the problem of
extracting one or more sources while canceling all types of distortion including reverberations
and echo that are not explicitly canceled by source separation.

Related Works

In term of the single-channel audio separation, many techniques were used to solve this problem.
For approaches that use training data, authors of [10], [11] used probabilistic models such as the
Gaussian Mixture Model (GMM), hidden Markov Model (HMM). Authors of [12]–[14] used low
level matrix approximation approach based on Non-Negative Matrix Factorization (NMF), using
non-negative training dictionaries, with different penalties and loss functions. A variant of NMF
was proposed by [15] that learned temporal dependencies using convolution. Other models
based on deep learning were proposed by [16] which approach the problem using a DNN to
enhance the estimated spectrum of NMF, Recurrent Neural Networks (RNN) were also used as
well as Long Short Term Memory (LSTM) [17], [18] for single-channel speech separation and
speech enhancement respectively. Modern technique in the intersection between model-based
and data-driven methods was also used, where authors of [6] proposed an unrolling algorithm
based on NMF combined with Deep Learning.

1.2 Time Frequency Processing

Audio signal processing has three main representations of the signals: time domain, frequency
domain, and time-frequency domain. Most of the audio processing algorithms are applied to the
time-frequency representation of the signals and not the raw audio data (temporal representa-
tion).

Audio Signal
Representations

Time frequency
domain

Time domain
(Time series)

Frequency domain
(Spectrum)

Figure 1.1: Audio signal representations.

21

• Time domain : Representation of the amplitude of the sound at each timestamp. It’s the
raw data that is collected with one or multiple microphones.

• Frequency domain : Representation of the signal as a function of frequency. The ”spec-
trum” of frequency components is the frequency-domain representation of the signal. The
conversion from the time domain to the frequency domain is done using transforms (e.g.
Fourier transform). This representation does not capture the variations over time.

• Time-frequency domain: Rather than encoding the signal in temporal domain or in the fre-
quency domain, this two-dimensional representation considers both the time and frequency
characteristics of the signal.

Why we need a TF representation?

Time-frequency representations have been widely used to solve separation and enhancement
problems.

The interest in this representation is due to the fact that most signals hold important features
in both the time and frequency domain. Also, Fourier analysis assumes that signals are infinite
in time or periodic. However, most signals change over time. Thus, the need for representing
the variations of the frequency characteristics over time (non-stationary signals). Moreover, the
natural sounds have a sparse distribution in the time-frequency domain, meaning there is less
overlap between the different sounds, which makes the separation task easier compared to the
time or frequency domain. Finally, different signals can have the same spectrum in the frequency
domain (Figure 1.2) and this makes the task of identifying sources tricky.

1.2.1 Time Frequency Analysis and Synthesis

The conversion of the raw temporal audio data to the time-frequency domain requires applying
some analysis methods. The most basic and commonly used method in audio processing is called
the Short Time Fourier Transform (STFT). At the end of the processing pipeline, reconstructing
the audio signal from the TF domain is done using a synthesis method which is the inverse
transform of the analysis method (e.g. Inverse STFT).

Short Time Fourier Transform

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed signal.
It provides the time-varying frequency information in local sections of the signal. This time-
frequency representation is the most used in audio processing because of its simplicity and low
computational complexity compared to other representations.

The STFT of a signal is computed as follows :

22

Figure 1.2: Two different signals in time domain that have the same representation in the frequency domain [19].

Original Signal
(Time domain)

Analysis
method
(STFT)

Separation
Algorithms and
Filtering (Time

frequency domain)

Synthesis
method
(ISTFT)

Reconstructed Signal
(Time domain)

Figure 1.3: Pipeline of the conversion between time and time-frequency domain.

1. Segmentation of the signal into frames with a fixed-length T. Its typical values in audio
processing fall between 10 ms to 120 ms. The different segments overlap to reduce the
artifacts in the boundaries. The common overlap values are between 50% - 75%.

Artifacts: Error or anomaly in the representation of a signal that is a result of digital signal
processing.

2. Windowing the signal with an appropriate window function. The motivation behind win-
dowing is to reduce the spectral leakage problem where the energy of one frequency com-
ponent leaks to the adjacent frequency bins. This problem is a result of applying the Fourier
transform on a short segment. The windowing in signal processing is a convolution op-
eration of the signal spectrum with the discrete Fourier transform of the window, and a
multiplication operation of the signal and the windows function which can be formulated

23

Figure 1.4: Short-time Fourier transform analysis [20].

as follow:

x(n, t) = x(t + t0 + n ·M) · ha(t), t ∈ {0, ..., T − 1}, n ∈ {0, ..., N − 1} (1.2)

N : Number of time frames.
T : Number of samples in a frame.
t0 : Position of the first sample of the first frame.
M : Number of samples between adjacent frames.
ha(t) : Window function.

3. Applying the Discrete Fourier Transform (TFD) on each windowed frame resulting in com-
plex values Short Time Fourier Transform coefficients.

x(n, f) =
T−1

∑
t=0

x(n, t) · e−j·2·π·t· f /F, f ∈ {0, ..., F− 1} (1.3)

F : The number of frequency bins.
f : Discrete frequency bin.

24

In general , the number of frequency bins is equal to the number of samples in a frame
F = T. Values of F larger than T can also be taken into account by applying zero padding
on x(n, t) as follows :

x(n, t) = 0, t ∈ {T, ..., F− 1} (1.4)

The frequencies f ∈ {0, ..., [F
2]} denotes the positive frequencies, and f ∈ {[F

2] + 1, ..., F− 1} the
negative ones. It should be noted that the STFT coefficients of the positive frequencies are the
complex conjugate of the coefficients of the negative frequencies. For this reason, most papers
often disregard the negative frequencies in their work.

Inverse Short Time Fourier Transform

After performing separation or enhancement algorithms on the STFT of the signal, an inverse
operation is needed to reconstruct the signal in the time domain from the modified spectrogram
Ŝ(n, f). In the case of STFT, this operation is called the Inverse Short Time Fourier Transform
(ISTFT).

Following is the synthesis process using the inverse STFT :

1. Convert the frames of the STFT to the time domain using the inverse discrete Fourier
transform (IDFT).

Ŝ(n, t) =
1
F
·

F−1

∑
f=0

Ŝ(n, f) · ej·2·π·t· f /F, t ∈ {0, ..., T − 1}. (1.5)

2. The filtering applied in the time-frequency domain to obtain the target signal can create
some artifacts, mostly in the frame boundaries. Attenuating these artifacts is done using
windowing with an appropriate window.

3. Sum the overlapped frames to get the estimated signal in the time domain ŝ(t)

ŝ(t) =
N−1

∑
n=0

x(n, t− t0 − n ·M) · hs(n, t− t0 − n ·M) (1.6)

hs : Synthesis window function.

Figure 1.5 illustrates the different steps in the synthesis process.
The analysis and synthesis windows should satisfy the perfect reconstruction property. Mean-

ing that for an unchanged STFT of the original signal Ŝ(n, f) = X̂(n, f), the estimated signal after
the synthesis should be equal to the original signal ŝ(t) = x(t). This property can be achieved by
taking the synthesis and analysis windows as follows :

25

Figure 1.5: Synthesis process using inverse STFT.

N−1

∑
n=0

ha(n, t− t0 − n ·M) · hs(n, t− t0 − n ·M) = 1 (1.7)

Time and frequency resolution trade-off

One of the most important properties to consider is the time and frequency resolution of a
representation. There is an uncertainty principle also called Heisenberg principle that holds for
a function and its Fourier transform that can be written for a function that has a normalized
energy as follows : (∫ ∞

−∞
t2| f (t)|2dt

)
︸ ︷︷ ︸

(1)

·
(∫ ∞

−∞
u2| f̂ (u)|2du

)
︸ ︷︷ ︸

(2)

≥ 1
16π2 (1.8)

Term (1): Measures the spread of the signal across time.
Term (2): Measures the spread of the signal across frequencies.

This principle tells us that the signal cannot have a sharp representation in both time and
frequency. This trade-off is controlled in the STFT by the choice of the window ha(t). A very
narrow window size (small T) implies a high temporal resolution because the window is very
localized. However, this means a very poor resolution in the frequency domain. The inverse can

26

be observed when taking a large window size T. Figure 1.6 illustrates the impact of the window
size on the resolution.

Figure 1.6: Impact of the window size T on the frequency and time resolution.

Another parameter that impacts the frequency resolution is the shape of the window. Bell-
shaped windows are widely used in signal processing for their capacity of attenuating artifacts.
However, they still have lower frequency resolution compared to rectangular windows. Figure
1.7 compares the frequency resolution of the STFT representation using two different windows:
Hanning and a rectangular window. We notice that the rectangular window has a more sharp
frequency representation (high resolution) but it suffers from artifacts (side lobes) that are due to
the discontinuity in the shape of the window and the convolution with Sinc. On the right side, a
Hanning window was used as an analysis window and we notice a strong attenuation of the side
lobes (artifacts) thanks to the bell smooth shape of Hanning. But, the frequency bands became
larger, meaning the frequency resolution is worsening.

1.2.2 Problem Formulation in Time Frequency Domain

The source separation problem can be formulated in the time frequency domain as follows:
Let Y(t, f) be the STFT of the mixture signal y(t) and (t,f) are the frame index and the fre-

quency index respectively.
Y(t, f) = S1(t, f) + S2(t, f) (1.9)

27

Figure 1.7: Impact of the window shape on the frequency resolution and the artifacts.

where S1(t, f) and S2(t, f) are the unknwon STFT of the two sources: speech and music.
The separation algorithms that will be presented in the next chapters are applied in the mag-
nitude spectrum domain. Therefore, the phase of the STFTs are ignored during the separation
phase and it will be considered at the end to reconstruct the audio signal. Hence, the magni-
tude spectrum of the mixture signal can be written as a sum of the magnitude spectrums of the
different sources present in the mixture.

|Y(t, f)| ≈ |S1(t, f)|+ |S2(t, f)| (1.10)

The purpose of our separation methods is to estimate the unknown magnitude spectrums
|S1(t, f)| and |S2(t, f)| using their mixture and the training data.

1.3 Model based and Data Driven approaches

1.3.1 Model-Based Approach

Model-driven AI, attempts to capture knowledge and derive decisions through explicit represen-
tation and rules. These traditional algorithms are usually highly interpretable because they are
developed via modeling the physical processes underlying the problem and/or capturing prior
domain knowledge.
Moreover, the identification of the limitations, thresholds and potential failure cases of designed
systems, is crucial in areas such as medical applications and autonomous driving where inter-
pretability plays a fundamental role.

28

Furthermore, Model-driven approaches are powerful because they rely on a deep understanding
of the system or process, and can benefit from scientifically established relationships. Models
can’t accommodate infinite complexity and generally must be simplified.

Minimal Example

For example, in a system recognition using the model-based method, a cat would be explicitly
represented as a four-legged animal, with two eyes, a nose and a mouth, with a relatively small
height. The model would look at the image, deconstruct it into lines and shapes and colours and
compare that against the set of rules we’ve supplied about how lines and shapes and colours
combine in the world to give us different animals.
To approach this recognition task, we could use the Scale-Invariant feature Transform (SIFT) [21],
which computes SIFT descriptors, that will characterize the visual content of the target image.
For example, two images of the same content would have a high probability of having the same
SIFT descriptors.

Advantages

• System-oriented approach is deterministic, which means that it does not include elements
of randomness, because it provides the necessary theoretical basis for examining the relative
importance of various factors that influence the output target.

• Highly interpretable.

• Problem domain-knowledge that results from the analytical expressions that describe the
phenomena and the different assumptions.

Drawbacks

• High cost of implementation.

• Difficult to apply on complex systems.

1.3.2 Data-Driven Approach

Current, tech-industry interest in artificial intelligence is almost entirely focused on data-driven
AI. The reasons are easy to understand

• Cheap data storage.

• Powerful computational resources (e.g. GPU).

• Advancements in neural net algorithms.

29

• Open source libraries and frameworks (e.g. Tensorflow, Pytorch).

• Availability of open and large datasets.

These three main causes have made it possible to extract huge value out of data. We can build
systems that can predict what will happen next based on what they’ve seen so far, very efficiently.
Their performances are even better than human being one’s, and model-based methods.
As cited before, the use of data as an alternative to physical knowledge has attracted more and
more interest throughout the years, since it is often cheaper and less time-consuming.
Deep neural networks provide surprising performance gains in many real-world problems in
signal and image processing. Despite these performances, the black-box nature of deep neural
networks is a hindrance to this kind of method.
This kind of approach attempts to automatically discover model information and incorporate the
data by optimizing model parameters that are gleaned from real-world training samples, learn-
ing the rule that maps input data to target data. Neural Networks generally adopt a hierarchical
architecture composed of many layers including a large number of parameters capable of learn-
ing complicated mappings, which are difficult to design explicitly. When training data is largely
available, this sufficient amount often enables deep networks to overcome model shortcomings,
especially when the underlying physical scenario is difficult to accurately define. They are im-
plemented very quickly, for example, convolutional neural networks that use convolution make
the process computationally efficient. In addition, the number of layers in a deep network is
usually much less than the number of iterations required in an iterative algorithm. Therefore,
deep learning methods have emerged to offer desirable computational benefits over state-of-the-
art approaches in many areas of signal processing, imaging, and vision.

It is therefore difficult to discover what is learned within networks by examining network param-
eters, which are usually high dimensional, and what are the roles of individual parameters. In
other words, general deep networks are difficult to interpret. It is well known that the practical
success of deep learning sometimes depends excessively on the quantity and quality of training
data available. In scenarios where training samples are not available, such as in medical imag-
ing, the performance of deep networks may deteriorate significantly. This deterioration can be
explained by the overfitting phenomena overffiting, where a data-driven model became super-
specialized, and therefore cannot generalize, consequently requiring a large amount of data to
get decent results.

Minimal Example

The question a data-driven is asking itself in a binary classification problem is:

” Given these data input, should my weights send a stronger signal to the cat or the dog?”

30

But whenever the data-driven method wants to adjust its parameter during the back-propagation
[22] in order to learn the distribution of a specific class, the model asked itself:

”Given a cat, which distribution of data should I expect?”

Advantages

• Simplicity of implementation.

• Low cost.

• Open source deep learning libraries and frameworks (e.g. Tensorflow, Pytorch) that enable
using hardware accelerators and parallel processing.

Drawbacks

• Brute Force technique making its parameters difficult to interpret, consequently, it’s strained
to define the failure of the model. Even though many research studies attempt to interpret
these methods such as interpreting the convolutional layers of Alexnet in [23], these meth-
ods are still far from being interpretable especially with their architecture that is going more
and more complex and deep.

• Needs a lot of data over a lot of iterations, to learn the rule that maps inputs data to targets.

31

1.4 Deep Learning

1.4.1 Biological Neurons

Before digging into neural networks, it is important to consider the authors inspirations who
originated the idea. Authors inspired their studies from the nervous system. The nervous system
is a net of neurons, where each neuron having a soma (buble containing the cell nucleus) and an
axon as illustrated in figure 1.8. Their synapses are between the neuron and the soma of another.
At every timestamp t, a neuron has some threshold, which excitation must exceed to initiate an
impulse. This, except for the fact and the time of its occurence, is determined by the neuron and
its neighbors, not by the excitation, meaning that neurons excitations depends upon structural
properties of the net. Authors of [24] presented a simplified computational model of how

Figure 1.8: Biological neuron.

biological neurons might work to perform complex computations. Thus individual biological
neurons seem to behave in a rather simple way, they are organized in a vast network of billions,
with each neuron typically connected to thousands of other neurons their models ‘neuron’ has
two states, on or off, it sums activation from other neurons, and it enters the on-state when
the sum of its inputs exceeds a threshold. Networks composed of such abstract “neurons” can
compute any finite logical expression. The architecture of biological neural networks is still the
subject of active research, but some parts of the brain have been mapped, and seem that neurons
are often organized in consecutive layers as shown in Figure 1.9.

Figure 1.9: Organization of neurons in the brain.

32

1.4.2 Perceptron

The perceptron is one of the simplest artificial neural network architectures [25], primarily used
for binary and multioutput classification. The perceptron consists of 4 parts:

• Input values or input layer.

• Weights and Bias.

• Net sum.

• Activation Function.

In summary, the perceptron is based on a threshold logic unit TLU, each input connection is
associated with a weight that will be used as a ponderation, this latter expressed the strength of
the particular node. In the other hand, the bias b allows to shift off the TLU curve up or down.

Figure 1.10: Perceptron’s diagram

The most common step function used in Perceptron is the heaviside function.

heaviside (z) =

{
0 if z < 0
1 if z ≥ 0

(1.11)

The TLU computes a weighted sum of its inputs then applies a step function,as shown below:

zW,b(X) = φ(w1x1 + w1x1 + · · ·+ wnxn + b) = φ(XW + b) (1.12)

33

X: input data feeded to the perceptron.
W: weight matrix of the perceptron.
b: bias of the model.
φ: TLU’s function.

A perceptron can also be composed of multiples TLUs, with each TLU connected to all the in-
puts, making a fully connected layer between the input nodes and the output layer. allowing the
perceptron to behave for example like a multi-output classifier. However, Perceptron networks
have several limitations:

• The output values of a perceptron can take on only one of two values (0 or 1) due to the
hard-limit transfer function, We can overcome this problem by introducing a new type of
artificial neuron called a sigmoid neuron [26], or using a non-linear activation function like
ReLU [27] which is defined latter in subsection 1.4.5.

• Perceptrons can only classify linearly separable sets of vectors [28]. If a straight line or a
plane can be drawn to separate the input vectors into their correct categories, the input
vectors are linearly separable. If the vectors are not linearly separable, learning will never
reach a point where all vectors are classified properly.

1.4.3 Multi Layer Perceptron

A Multilayer Perceptron is a finite acyclic graph, its nodes are neurons activated using the logistic
activation. The Multi-Layer Perceptron that was initially proposed by [29], is an improvement
over the Perceptron, composed of an input layer, one or more intermediate layers called hidden
layers, and an output layer. The connections that hop over several layers are called a shortcut, all
neurons of one layer are connected to all neurons of the next layer, while neurons of the same
layer are independents.

Figure 1.11: Architecture of a MLP

As we saw earlier, the Perceptron, calculates a discontinuous function which is a step function.

34

The Multi-Layer Perceptron, computes a smoothed variant of this using the logistic function often
called the sigmoid activation [30] illustrated in Figure 1.12, which has the characteristics below:

• Monotonically increasing.

• limz→∞ = 1

• limz→−∞ = 0

• sigmoid(z) = 1− sigmoid(−z)

• Continuous, and differentiable.

Figure 1.12: Logistic function

The (Heaviside) step function is typically only useful within single-layer Perceptron, in cases
where the input data is linearly separable. However, MLP stands out from perceptron because
they use function approximators and it can distinguish data that is not linearly separable thanks
to the logistic function. It is also important to note that MLP is trained using backpropagation
(which we’ll see in the next subsection), which requires the activation function to be differen-
tiable. That’s because backpropagation is used to update the network weights using the gradient
of the error. That said, The Heaviside step function is non-differentiable at x = 0 and its deriva-
tive is 0 elsewhere, meaning that it contains only a flat segment. It means that backpropagation
will fail to update weights because there will be no gradient to backpropagate (Gradient Descent
cannot move on a flat surface). The sigmoid or logistic function does not have this shortcoming
and this explains its usefulness as an activation function.

Effect of hidden Layer

The hidden layers extract data from one set of neurons (input layer) and provide the output to
another set of neurons (output layer). An Multi-Layer Perceptron with just one hidden layer can

35

theoretically model even the most complex functions, provided it has enough neurons. But for
complex problems, deep networks have a much higher parameter efficiency than shallow ones:
they can model complex functions using exponentially fewer neurons than shallow nets, allowing
them to reach much better performance with the same amount of training data. It also helps the
model to converge faster to a good solution, but it also improves their ability to generalize to
new datasets Simply said, the hidden layers, as they go deeper, capture all the minute details.
This results in discovering various relationships between different inputs. So, in theory, deeper
networks (more hidden layers) are more complex as they develop a more granular/detailed
representation of the data input.

1.4.4 Backpropagation

The backpropagation algorithm is probably the most fundamental building block in a neural
network. Authors of [22] proposed this algorithm to effectively train a neural network through
a method called chain rule. In simple terms, after each forward pass through a network, back-
propagation performs a backward pass while adjusting the model’s parameters represented by
its weights and biases. The method repeatedly adjusts the weights of the connections in the
network to minimize a measure of the difference between the actual output vector of the net and
the desired output vector. In simple words, backpropagation aims to minimize a cost function,
this can be as simple as MSE (mean squared error) or more complex like the cross-entropy, by
adjusting the network’s weights and biases. The level of adjustment is determined by the gradi-
ents of the cost function concerning those parameters. In other words, it can find out how each
connection weight and each bias term should be tweaked to reduce the error. Once it has these
gradients, it just performs a regular Gradient Descent step, and the whole process is repeated
until the network converges toward a solution. Let’s run through this algorithm in a bit more
detail:

• It handles one mini/stochastic/ batch at a time, and it goes through the full training set
multiple times. Each pass is called an epoch.

• The network computes the output of all the neurons for every layer for each batch. The
result is passed on to the next layer, and so on, until we get the output of the last layer, ie:
the output layer. This is the forward pass.

• Next, the algorithm measures the network’s output error by comparing the desired output
and the actual output of the network and returns some measure of the error.

• Then, it computes how much each output connection contributed to the error.

• Finally, the algorithm performs a Gradient Descent step to tweak all the connection weights
in the network, using the error gradients it just computed.

36

Minimal Example of Algorithm

In order to explain the mathematics behind the backpropagation algorithm, let’s study a minimal
example of a MLP with two inputs, two hidden neurons, two output neurons. Additionally, the
hidden and output neurons will include a bias, the architecture is illustrated in Figure 1.13

Figure 1.13: Architecture of an MLP with two inputs neurons, two hidden neurons, and two output neurons

As we said, before backpropagation aims to optimize weights and bias of the architecture,
let’s write down the equation (Eq. 1.13) which governs the model behavior.

Forward Pass

HW0,b1 = σ(XTW0 + b1) = σ(

[
h1

h2

]
=

[
w1 w2

w3 w4

] [
x1

x2

]
+ b1) (1.13a)

Where σ represents the logistic function we defined earlier in subsection 1.4.3, we repeat this
process for the output layer neurons, using the output from the hidden layer neurons as inputs.

YW1,b2 = σ(HTW1 + b2) = σ(

[
y1

y2

]
=

[
w5 w6

w7 w8

] [
h1

h2

]
+ b2) (1.13b)

Calculating the Total Error

The next step, is to calculate the error that each neuron contributes using the mean squared error
for example , and sum them up to get the total error.

Etotal = Ey1 + Ey2 =
1
2
(ytrue1 − y1)

2 +
1
2
(ytrue2 − y2)

2 (1.13c)

37

The 1
2 is included so that exponent is cancelled when we differentiate later on.

The backward Pass

Our goal now, is to propagate the error contribution on each neuron of the model by updating
its weights and eventually the bias of the architecture.

Output Layer

∂Etotal

∂W1,i
=

∂Etotal

∂yi

∂yi

∂(σyi)

∂(σyi)

∂W1,i
(1.13d)

To decrease the error, we then subtract this value from the current weight (optionally multiplied
by some learning rate η), and apply this for every weight of the matrix W1

W+
1,i = W1,i − η · ∂Etotal

∂W1,i
(1.13e)

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for weights of the matrix W0

∂Etotal

∂W0,i
=

∂Etotal

∂hi

∂hi

∂(σhi)

∂(σhi)

∂W0,i
(1.13f)

To decrease the mean squared error, we repeat the process using the gradient of the error

W+
0,i = W0,i − η · ∂Etotal

∂W0,i
(1.13g)

In summary, the backpropagation algorithm first makes a prediction (forward pass) and mea-
sures the error, then goes through each layer in reverse to measure the error contribution from
each connection (reverse pass), and finally, tweaks the connection weights to reduce the error
(Gradient Descent step).

1.4.5 Rectified Linear Units

One of the insights in the 2010 wrote by Glorot and Bengio [31] was that the problems with un-
stable gradients were in part due to a poor choice of activation function. Until then most people
had assumed that if Mother Nature had chosen to use roughly sigmoid activation functions in
biological neurons, they must be an excellent choice. But it turns out that other activation func-

38

tions behave much better in deep neural networks—in particular, the ReLU activation function,
because it does not saturate for positive values and because it is fast to compute. ReLU is an
activation function introduced in [27]. In 2011 , it was demonstrated to improve training of deep
neural networks. This non-linear function works by thresholding values at 0.

y = max(0, x). (1.14)

Simply put, it outputs 0 when x < 0, and conversely, it outputs a linear function when x ≥ 0 as
shown in Figure 1.14.

Note

It is important to initialize all the hidden layers connection weights randomly or using initializa-
tion strategy, or training will fail. For example, if you initialize all weights and biases to zero,
then all neurons in a given layer will be perfectly identical, and thus backpropagation will affect
them in the same way. If instead we randomly initialize the weights, we break the symmetry and
allow backpropagation to train a diverse team of neurons.

x
Figure 1.14: Rectified Linear Unit

1.4.6 Dropout

Deep neural networks contain multiple non-linear hidden layers and this makes them very ex-
pressive models that can learn very complicated relationships, requiring some sort of regulariza-
tion, which includes for example:

• Early stopping: stopping the training as soon as performance on a validation set starts to
get worse.

• L1 or L2 penalties to regularize model weights, by adding “absolute value of magnitude”
and “squared magnitude” respectively to the weights parameters of the model.

39

However, techniques exist such as Model Combination and Bagging that improve the perfor-
mance of machine learning methods. While the first works as multiple predictors that behaves
as a single predictor, Bagging trains multiple models on multiple subsets of the training data
Thus some training examples are not shown to a given model. With large neural networks,
those techniques might be expensive. The combination of models is efficient and practical only
when models learn different features from the data; extract different information from the input,
so these models should either be trained on different data or having different architectures to
express something different. Moreover, large networks require large amounts of training data,
making the training of multiple large networks difficult and computationally inefficient. Even if
one was able to train many different large networks, using them all at test time is infeasible in a
real-time application where quick response is more important than the application itself.
Dropout is a technique that addresses both these issues as cited in [32] which proposed a tech-
nique ”by training all sub-networks of a model that can be formed by removing non-output units
from an underlying base network.” Dropout refers to the probability p of a random neuron of the
model (excluding outputs neurons), being temporarily ignored during every training step. The
hyperparameter p is called the dropout rate and is typically set between 0.1 and 0.5. Dropout
prevents overfitting and provides a way of approximately combining exponentially many differ-
ent neural network architectures efficiently. It’s important to note, that dropout is used only in
the training stage of the neural network, and absent in the validation and test stage.

Figure 1.15: Schema representing the dropout

Probability mass Function

Probability mass function (PMF) is the probability distribution of a discrete random variable, and
provides the possible values and their associated probabilities that must be positive and sum up
to 1.

∑ pX (xi) = 1, with p (xi) > 0 (1.15)

Where X denotes the random variable, p(xi) denotes the probability of the event xi to occur.

40

Bernoulli Random Variables

A Bernoulli random variable can take only two values, 1 and 0. It takes on a 1 if an experiment
with probability p resulted in success and a 0 otherwise. If X is a Bernoulli random variable,
denoted X ∼ Bernoulli(p):
Probability mass function of X:

P(X = x) = px(1− p)1−x (1.16)

A random variable is then called a Bernoulli random variable if it has a PMF for p between 0 and
1.

Minimal Example of Dropout

In order to be concise, lets describe how the dropout operation occurs in neural network model.
Consider a neural network of L hidden layers with l ∈ {1...L}, let x denotes the vector of inputs
of layer l, and z[l+1]

i denotes the neuron i of the l + 1 layer, y[l+1]
i denoting the activation of the

latter neuron.w[l+1]
i and b[l+1]

i denotes respectively the weight matrix and the bias vector at the
l + 1 layer as shown in Figure 1.16.

Figure 1.16: Diagram of a neural network model without dropout.

z(l+1)
i = w(l+1)

i yl + b(l+1)
i ,

y(l+1)
i = σ

(
z(l+1)

i

)
where σ is any activation function.

41

With dropout, the feed-forward operation becomes (Figure 1.17):

γ
[l]
j ∼ Bernoulli(p)

x̃[l] = γ[l] � x[l]

z[l+1]
i = w[l+1]

i x̃l + b[l+1]
i

y[l+1]
i = σ

(
z[l+1]

i

)

Figure 1.17: Dropout applied on the input of the neural network before the sum and activation.

Here � denotes an element-wise product. For any layer l, γ(l) is a vector of independent
Bernoulli random variables each of which has probability p of being 1 or 0. Dropout uses inde-
pendent Bernoulli so that the dropout of a random neuron will not affect the other neuron. In
other words, it will not affect the probability of another event happening.

P{drop(xi) | drop(xj)} = P{drop(xi)}

γ(l) is then sampled and multiplied element-wise with the outputs of that layer, x(l), to create
the masked outputs x̃(i), which will be then used as input to the next layer. This process is applied
at each layer. For learning during the training stage, the derivatives of the loss function are back-
propagated only through the neurons that were not dropped that constituted the sub-network.
Finally, The resulting neural network is used without dropout for the inference.

42

1.4.7 Optimizers

Deep learning algorithms require optimization to find the set of learnable parameters Θ that
minimizes the cost function J(Θ) that represents the performances of the model in the training
phase.
The purpose of optimization in machine learning and deep learning, in particular, is different
from traditional optimization in mathematics where minimizing the cost function J is a goal in
and of itself. In Machine learning, we intend to improve a performance measure also called the
metrics M indirectly by training the model to reduce the cost function J.

Various research studies have been conducted to find algorithms and techniques that solve
many challenges in optimizing Deep Neural Networks such as vanishing and exploding gradi-
ents, local minima, and other flat region points such as saddle points.

Figure 1.18: Saddle point where the derivatives in two orthogonal directions are equal to zero but the point is neither a local
maximum nor a local minimum.

Stochastic, Batch and Mini batch

The cost function can be decomposed as a sum over the training samples. This results in 3
different approaches to estimate the cost function :

• Batch algorithms : Such as batch gradient descent use all the training data simultaneously
to estimate the cost function.

• Stochastic algorithms : In contrast to batch algorithms, stochastic algorithms process each
training sample at a time like the stochastic gradient descent.

• Mini batch algorithms : The most widely used optimization methods in Deep learning use
a number of samples more than one (Stochastic) and less than the training data size (Batch).
This type of methods combined the advantages of both stochastic and batch algorithms.

43

The choice of the batch size (number of samples in a mini batch) depends on some theoretical
factors and hardware setup. The following are the most significant ones :

1. Increasing the batch size gives a better estimate of the gradients because more training
samples are considered.

2. Small batch size have a regularization effect that can be attributed to the noise introduced
in the training process. This implies a better generalization ability. In [33], it has been
proved using empirical results that the stochastic gradient descent is expected to be at
least as accurate as well as faster than batch training. However, the stochastic methods are
the more likely to diverge, therefore, they require a small learning rate to maintain their
stability which will often result in a slow convergence.

3. Reducing the batch size implies more frequent updates of the parameters that will make
the training process slower.

4. Some specialized hardware devices have better results with a batch size equal to a power
of 2 (e.g. 16,32,64). In practice, the widely used batch size falls between 16 and 256.

5. In parallel processing, the samples of each batch will be processed in parallel. Therefore,
the size of the memory used will increase with the batch size. This point is a limiting factor
for choosing a batch size.

6. The batch size is highly dependent on the optimization algorithm. Some algorithms require
more samples because they are not robust to sampling errors. This is due to either the
difficulty of the approximation they try to perform or the inverse relationship between the
sampling error and the number of samples. As instance, second order methods that make
use of the second-order derivative Hessian matrix H to find the optima of an objective
function (e.g. Broyden, Fletcher, Goldfarb, and Shanno, or BFGS Algorithm). Such methods
estimates H (or its inverse) and computes updates such as H−1 · g where g is the gradient.
Even a very accurate estimate of the hessian matrix, if combined with poor errors of the
gradients can increase dramatically the errors in the term H−1 · g. In contrast, first order
methods like gradient descent do not suffer from this problem and are robust to sampling
errors, this means that even low batch sizes can give good estimates of the gradients.

7. It should be noted that in many practical situations the batch size will be a hyperparameter
to tune and its value will be determined empirically.

Shuffling

Another important technique to consider is shuffling the data before feeding it to the Deep learn-
ing model. The idea behind this technique is that in estimation theory combining independent

44

models can lead to better performances, an example of this is Bagging (bootstrap aggregation)
that reduces the variance of an estimate by averaging together multiple estimates. In optimizing
Deep models, we want unbiased estimates of the gradients, this requires the samples in the same
mini batch to be independent and randomly selected. However, shuffling the data is not allowed
in some cases when working with time series or text data because it will break the temporal
(structure) dependency.

Mini batch Gradient Descent

Mini batch is the version of Gradient descent algorithm that works with mini batch sampling. It
is known to have a faster convergence than classical gradient descent and a better estimate of the
gradient compared to stochastic gradient descent. Figure 1.19 illustrates the convergence of the
three algorithms. It should be noted that the random noise in the SGD behavior helps avoiding
local minimums.

Figure 1.19: Comparison between batch, mini batch and stochastic gradient descent.

Algorithm 1: Mini batch gradient descent update.
Input: Learning rate µ, x is the input, y is the target,L is the cost value, θ are the model

parameters, and m is the mini-batch size.
for Sample (xi, yi) from mini batch where xi is the input and yi is the target do

Gradient Estimate : ĝ ← 1
m∇θ ∑i L

(
f
(

x(i); θ
)

, y(i)
)

Update : θ+0 ← θ0 − µ · ĝ
end

The implementation of this algorithm is available in popular frameworks such as Pytorch and
Tensorflow. It can be used as follows:

45

1 from torch import optim

2 optim.SGD(model.parameters(), lr= 0.01)

3 # lr : Learning rate.

4 # model.parameters() : Parameters of the Deep Learning model.

Figure 1.20: SGD code using Pytorch.

Momentum

Momentum is a technique that makes use of exponentially weighed moving averages in order
to provide a better estimate of the gradients and reduce the noisy behavior of the stochastic
methods. It helps accelerating the stochastic gradient descent in the right direction by reducing
the noisy oscillations. Figure 1.21 illustrated the effect of momentum on the SGD algorithm.

Figure 1.21: The effect of momentum on the SGD.

The update of SGD with momentum is presented in equations 1.17. Where Eq. 1.17a is the
moving average of the gradients and Eq. 1.17b is the parameters’ update.

Vt = βVt−1 + (1− β)∇wL(W, X, y).

Θ = Θ− µ ·Vt

(1.17a)

(1.17b)

The hyperparameter β can take values between 0 and 1 but it is usually picked in the range
[0.9-0.99]. High values of β means giving more importance to the memory term, in other words,
taking more terms in the moving average.

Adaptative algorithms

The learning rate is one of the most important hyperparameters that can have a significant impact
on the performances of deep learning models. The momentum techniques attempts to improve
the traditional algorithms. But another problem raises : How can we fix the learning rate when
the objective function is more sensitive in some dimensions more than others. Some optimization
algorithms have been proposed as a solution to the problem of fixing the same learning rate for
all the parameters such as Adaptive Gradient Algorithm [34] and Root Mean Square Propagation
[35].

46

• Adaptive Gradient Algorithm (Adagrad) : Adapts the learning rate according to the in-
verse of the sum of old gradient values. Parameters with high derivatives will have their
learning rate decreased more than parameters with low derivatives. However this algo-
rithm is limited because of summing all the gradients from the beginning of the training
results often in vanishing the learning rate values.

• Root Mean Square Propagation (RMSprop) : Fixes the limitations of Adagrad by using an
adaptive learning rate that is adjusted according to the square of the gradients’ exponential
decaying moving average.

E
[
g2]

t = β · E
[
g2]

t−1 + (1− β)g2
t

Θt+1 = Θt −
η√

E [g2]t + ε
gt

(1.18a)

(1.18b)

The hyperparameter β controlls the history terms of the gradients and avoid taking into
account the values from the begining of the training as it is done in Adagrad. It is suggested
to have a default value of 0.9 .

1.4.8 Network’s Initialization

He Initialization

In section 1.4.4, we saw that the back-propagation algorithm proceeds in two phases, one forward
from the input layer to the output layer, and a back pass which propagates the gradient error in
the network layers to update the model parameters of each layer.
The problem with this process constituted of two phases, is that while the algorithm progresses
towards lower layers, gradients becomes lower and lower, consequently the update of the weights
will not happen because the gradient will vanish making the convergence of the model towards
a good solution difficult, if not impossible, this phenomena is called gradient vanishing. The
opposite can happen, making the gradient extremely large which makes the model diverges, but
this situation is often observed on recurrent networks, called gradient explode. In summary,
deep neural network suffer from gradient instability making the learning very hard, which was
the main reason why deep learning was abandoned.
Authors of [36] proposed a solution to solve this problem, by allowing the gradient flow to propa-
gate correctly through all layers to enhance the learning as well as allowing a faster convergence.
It also seems that the He initialization is specific to RELU activation. The idea is to bring the
variance of every output layers to approximately one. So Authors of [36] claims that the best
weight initialization strategy to a model that use RELU activation which is non-differentiable at

47

x = 0, is to initialize the weights randomly with a specific variance, such as:

Var(wl) =
2
N

(1.19)

The central idea of [36] is then to investigate the variance of the responses in each layer:

yl = Wlxl + bl (1.20)

Where Wl , xl , and bl represents respectively the weights, the inputs and the bias of the layer l. It
is also important to note that xl = f (yl−1) where f represents the ReLU activation.
Authors begin with some assumptions:

• Elements in Wl are mutually independents and share the same distribution.

• As cited in [37], authors assume that elements of xl are also mutually independent with
the same distribution.

• xl and Wl are independent of each other such xl ⊥ Wl , meaning that the occurence of Wl

does not affect the probability of xl and vice versa.

From these assumptions, we can write:

Var[yl] = nlVar[Wlxl] (1.21a)

= nlE{W2
l x2

l } −E{Wlxl}2 (1.21b)

= nlE{W2
l x2

l } −E{Wl}2E{xl}2 (1.21c)

Because we let Wl having zero mean:

E{Wl} = 0, and Var[Wl] = E{W2
l } (1.21d)

We can then write:

Var[yl] = nlE{Wlxl} (1.21e)

Where nl denotes the number of connections in the layer l

Because xl = max(0, yl−1), the expectation E{xl} is not equal to zero making E
[
x2

l

]
6= Var [xl].

The expectation of x2 is then defined as follow in terms of integrals:

E{x2
l } =

∫ +∞

−∞
max(0, yl)

2 p(yl)dyl (1.21f)

48

The negative part of y does not contribute to the integral:

E{x2
l } =

∫ +∞

0
y2

l p(yl)dyl (1.21g)

y2 is symmetric around 0, and p(y) is assumed to be symmetric around 0 :

E{xl
2} = 1

2

∫ +∞

−∞
y2

l p(yl)dyl (1.21h)

If we let wl−1 having a symmetric distribution around zero and bl−1 = 0, then yl−1 has a sym-
metric distribution around zero which implies E{yl−1} = 0, so we can write:

E [yl] = E [wlxl] = E [xl] E [wl] = 0 (1.21i)

E{x2
l } =

1
2

∫ +∞

−∞
(yl −E{yl})2 p(yl)dyl =

1
2
(yl −E{yl})2 (1.21j)

=
1
2

Var[yl] (1.21k)

From Eq.(1.21k), Eq.(1.21e) becomes:

Var[yl] =
nl

2
Var[Wl]Var[yl−1] (1.21l)

By Combining layer 1 to layer L:

Var (yL) = Var (y1)

(
L

∏
l=2

nl

2
Var (Wl)

)
(1.21m)

To prevent exploding or vanishing gradients problem, we expect variance at the input to be equal
to the variance at the output. It will happen only if each term inside the product = 1. ie:

nl

2
Var (Wl) = 1, ∀l. (1.21n)

Hence, we reach the previously mentioned formula, ie:

W ∼ N
(

0,
2
nl

)
(1.21o)

This leads to a zero-mean Gaussian distribution whose standard deviation σ2 is
√

2
nl

and b is
initialized with 0.

49

(a) With He Initialization (b) Without Initialization

Figure 1.22: Activation value of each layer

From Figure 1.22, we can clearly see that an uninitialized model suffers from gradient van-
ishing and saturation, preventing the model from learning salient and diverse features for each
layer. On the other hand, by limiting the variance of weights distribution to 1, He Initializa-
tion allows the model to learn noteworthy features across its layers by computing something
interesting, and prevent from excessive saturation of activation functions on one hand by letting
gradients propagate well, and avoid overly linear units.

Restricted Boltzmann Machine

Restricted Boltzmann Machine are artificial neural network that can learn a probability distribu-
tion over its set of inputs. This architecture was introduced in [38] by Geoffrey Hilton, and was
used for:

• Dimensionality reduction.

• Classification.

• Topic modeling.

RBM are shallow, two-layer neural nets, the first layer of the architecture is called the visible/in-
put layer, while the second layer is called the hidden layer like it is illustrated in Figure 1.23.
Meanwhile, the hidden layer is responsible to reconstruct the input data as close as possible by
tuning the connection weights and biases repeatedly.

50

Figure 1.23: Basic Structure of a Restricted Boltzmann Machine

Each unit in layers are called neuron-like or node. The nodes are connected to each other
across layers, but no two nodes of the same layer are linked, we can say that there is no intra-
layer communication; the neurons from the same layer are disconnected. Each visible node takes
a low-level feature from an item in the dataset to be learned. On the other hand, The hidden
layer is responsible to reconstruct the input data as close as possible by tuning the connection
weights and biases repeatedly (for example in an magnitude spectrum of 257 frequencies, we’ll
have 257 input nodes on the visible layer). At each node of the hidden layer, each v feed to the
visible layer is multiplied by a dedicated weight, the products are summed, added to a bias,
and activated. Each visible neuron represents a frequency feature with hypothetically Gaussian
distribution. The energy function of joint configuration for the two layers is then defined as:

E(v, h) = −
m

∑
i=1

bivi −
n

∑
j=1

ajhj −
m

∑
i=1

n

∑
j=1

vihjwij (1.22)

where vi and hj are the binary states at the visible neuron i and hidden neuron j respectively. bi

and aj are the corresponding biases of neurons, wij is the connection weight between them. Based
on the Boltzmann distribution and energy function, a joint probability for pair of the visible and
hidden layer is determined by:

p(v, h) =
1
Z

e−E(v,h) (1.23)

Where Z = ∑v,h e−E(v,h) denotes the normalization term.
Considering that the hidden neurons are conditional independents due to no connections be-
tween them, given visible vector v, the conditional probability of neuron hj being 1 can be ob-
tained as follows:

p
(
hj = 1 | v

)
= σ

(
aj + ∑

i
viwij

)
(1.24)

51

Similarly, given hidden vector h, the conditional probability of the visible neuron vi being 1 can
be determined by

p (vi = 1 | h) = σ

(
bi + ∑

j
hjwij

)
(1.25)

where σ(•) denotes the logistic sigmoid function.
Given the training dataset S =

{
s1, s2, . . . , sns

}
, where ns is the number of training samples,

the parameters of RBM are trained to fit the training samples by maximizing a log-likelihood
function, including connection weights w, biases a and b.

Training of the RBM

RBM learns to reconstruct data by themselves in an unsupervised fashion, making several for-
ward and backward passes between the visible layer and hidden layer. In the reconstruction
phase, the activation of hidden layer becomes the input in the backward pass. The activation
of hidden layer are multiplied by the same weights. The sum of those products is added to
a visible-layer bias at each visible node, and the output of those operations is a reconstruction
which approximates the original input. On the forward pass, an RBM uses inputs to make
predictions about node activation, or the probability of a given input v : p(h|v; w) but on its
backward pass, RBM estimate the probability of input v given activation h, which are weighted
with the same coefficients used in the forward pass : p(v|h, w), where w represents the weights
of the architecture.
The goal is then, to maximize the joint probability p(x, h) in order to maximize the probability of
event h occurring at the same time that event v occurs:

LS =
ns

∑
i=1

log p(v, h) (1.26a)

Simply said, we can define the parameters necessary for the gradient computation:

h = σ(WTv + b) (1.26b)

ṽ = σ(Wh + a) (1.26c)

h̃ = σ(WT ṽ + b) (1.26d)

the update rule of the RBM weights and biases of the architecture are usually described as follow:

wi,j ← wi,j + η
(

vh> − ṽh̃>
)

(1.26e)

bi ← bi + η (v− ṽ) (1.26f)

aj ← aj + η
(
h− h̃

)
(1.26g)

52

1.5 Deep Unfolding

The past decade has witnessed an unprecedented success of deep learning in many real-world
signal and image processing applications. Neural networks became the state of the art in pattern
recognition, computer vision, and speech processing. Despite their proven success and high per-
formances, deep learning algorithms suffer from the lack of interpretability provoked by their
black-box nature. In contrast, another set of methods that have been tremendously successful in
machine learning by incorporating problem domain-knowledge are the model-based methods,
but, at the expense of complexity.

Deep unfolding or algorithm unrolling is an emerging technique that was introduced in 2014
[39]. This direction knew increasing popularity in the last few years and it combines the advan-
tages of both deep learning and model-based methods. In this section, we explain the idea and
motivation behind deep unfolding, its advantages, and domain applications.

1.5.1 Unfolding principles

Deep unfolding is a paradigm that fuses a model-based method that relies on an iterative in-
ference algorithm and deep learning tools to solve a wide range of tasks in signal and image
processing with both high performances and better interpretability. In authors words [39], deep
unfolding can be defined as follows :

” [...] given a model-based approach that requires an iterative inference method, we unfold
the iterations into a layer-wise structure analogous to a neural network. ”

This means that for an iterative algorithm that has a fixed number of iterations K, the algo-
rithm will be unrolled into a deep network with K layers and the parameters of the model at
each iteration will be considered as the parameters of that layer.

Algorithm 2: Iterative algorithm example.
Input: Data sample x.
Input: Initial parameters Φ0.
for i = 1:K do

Update Φ(i) using Φ(i−1) and x.
end

This iterative algorithm can be unrolled into a neural network by considering the parameters
Φ(i) as the activation of each layer k and convert some of the parameters of the model Θ into
trainable parameters that are trained using deep learning techniques with a suitable objective
function and an optimizer (e.g Stochastic gradient descent) to solve the optimization problem.

Note: The parameters {Θ(1), ..., Θ(K)} are present in the original iterative algorithm as a single
vector of parameters and they are duplicated in the unfolded network into K vector of param-

53

Iteration 2
(Layer 2)

Iteration 1
(Layer 1)

Iteration K
(Layer K)

Input data X

Iterative
Algorithm

Input data X

Figure 1.24: Unfolding an iterative algorithm into a K layers deep network.

eters. For example, the Gaussian mixture model is a probabilistic model based method that as-
sumes the data is generated from a mixture of a finite number of gaussians with unknown mean
µ, covariance matrix Σ and weights of each Gaussian π. The estimation of these parameters is
done using an iterative algorithm called the expectation maximization algorithm (EM). The itera-
tions of EM can be unrolled and the learnable parameters Θ(i) are {µ(1)

n=1:N , ..., µ
(K)
n=1:N , Σ(1)

n=1:N , ..., Σ(K)
n=1:N}

where N is the number of gaussian mixtures and the activations of the unfolded network Φ are
the mixture weights of each iteration for each component n {π(1)

n=1:N , ..., π
(K)
n=1:N}.

Another model-based method that was unfolded in [39] and [6] is the non-negative matrix
factorization (NMF). The original NMF method is covered in in Chapter 3 and its unfolded
version in Chapter 5 of our report.

Finally, we summarize the steps of unfolding the inference algorithm of a model-based
method in the following :

1. Define a model (e.g. Gaussian Mixture Model) and its parameters (µn=1:N ,Σn=1:N ,πn=1:N ,
N is the number of mixtures).

2. Derive an iterative inference algorithm (e.g Expectation maximization algorithm) with a
fixed number of iterations K.

54

3. Unroll the iterations of the iterative algorithm into K layer network.

4. Define the parameters of the model that should be trained with backpropagation and du-
plicate them across layers.

5. Choose an appropriate loss function and optimizer.

6. Train the unrolled network like a neural network.

1.5.2 Advantages of Unrolling Algorithms

The motivation behind model-driven neural networks is to fuse principled algorithms that have
prior knowledge of the problem using handcrafted features (model based methods) with the
techniques used in deep learning. The purpose of this paradigm is to combine the best of both
worlds while avoiding their drawbacks.

Deep unfolding is a successful paradigm of model-driven neural networks that has the fol-
lowing advantages :

• Incorporating problem domain knowledge present in the logical and hand-crafted analyti-
cal expressions of the models into the neural networks design, instead of focusing on inten-
sive learning from the data. Consequently, unrolled algorithms have better generalization
performances because they already have prior information about the problem.

• The learnable parameters of the unfolded network corresponds to the model parameters
and regularization coefficients which makes it easier to interpret the network and overcome
the ”Black-Box” problem that conventional neural networks suffer from. Besides, a forward
pass through the network is nothing but running the iterative algorithm for a fixed number
of times.

• Classical signal and image processing algorithms have in general significantly fewer pa-
rameters than neural networks (NNs). Hence, their unfolded version is less complex than
NNs and requires less training data.

• Most iterative algorithms in signal and image processing have already an optimized hard-
ware implementation making it easy to derive an implementation for their unfolded net-
work. Moreover, these algorithms have low memory requirements compared to NNs. Deep
unfolding takes advantage of this which makes this paradigm the best candidate for edge
devices.

• Iterative methods suffer often from being too slow for a large number of applications.
Unfolding the iterations of these algorithms makes them much faster to be considered for
real-time applications.

55

Chapter 2

Materials and Methods

2.1 Dataset

The data we used is a collection of speech and music audio. The speech signal was issued from
a business conversation between men and women, without background noise or music. On
the other hand, the music audio provides piano pieces of multiple types (classical, pop ..) of
multiples artists.
In fact, having male as well as female speeches make the audio signal much more complex,
because of the variety of tones. Indeed, women speak at a higher pitch; about an octave (an
octave is simply a measure of distance between one note and another note that is double its
frequency) higher than men, while men’s voices are generally deeper. In addition, we considered
that having different types of songs from different artists would give us a robust algorithm by its
ability of generalization across multiples pianists, whatever their musical genre. This choice also
made the problem solving much more complex, but made it with more interesting and flexible
perspectives.
Figure 2.1 above, describes how we split the data between the training and validation set, as well
as the duration of each data used at each stage.

Training
 Dataset

Validation
Dataset

30 seconds

Pr
ep

ro
ce

ss
ing

Split the
Dataset

20 minutes
Training Stage

Inference and
Evaluation

Figure 2.1: Data preparation and preprocessing

2.2 Software tools

In this section, we describe the environment we use to develop our solutions among model-based
as well as the data-based method.

2.2.1 Programming language

For the implementation of the code solution, we use Python v3.7. In addition to be a high-level,
interpreted, and object-oriented language, Python is a general-purpose coding language, its main
strength lies in its readability, making the implementation session really easy, allowing students
and researchers to focus much more on the problem and its solution than the language syntax

57

and memory management.

2.2.2 Libraries and Frameworks

Python is suitable for data science and Machine Learning. In 2018, 66% of data scientists re-
ported using Python daily, making it the number one language for analytics professionals. In
fact, Python has a great support and an extensive selection of libraries and frameworks for visu-
alization, mathematical computing, and AI’s modeling, we can cite:

NumPy [40] NumPy is one of the most powerful Python libraries. The library is open-source
and mainly used for array computing, allowing to perform a number of mathematical operations
on arrays such as trigonometric, statistical, and algebraic routines. Furthermore, because of its
C implementation, NumPy arrays allow computing operations extremely fast, while keeping the
syntax clear ,simple to write, and to read.

SciPy [41] SciPy is an open source Python-based library, dedicated to scientific computing,
and mathematics. The basic data structure used by SciPy is NumPy arrays. We personally use
this library for its signal processing support, such as frequency re-sampling, filtering and time-
frequency representations such as Short Time Fourier Transform (STFT).

Matplotlib [42] Matplotlib is also an open-source Python library. It is the reference library
for visualization, it provides many different kinds of 2D and 3D plots that are very useful for
data analysis and machine learning tasks. Matplotlib offers flexibility and allows users to design
complex and explicit figures. All the plots in this project have been created using this library.

Scikit-learn [43] Sklearn is the reference tool for machine learning in Python. It is built on the
library NumPy for high-performance linear algebra and array operations. This library is used
to build machine learning models related to clustering, decomposition, and classification. We
personally used this library to use the NMF to separate our mixture signal. It should be noted
that Scikit-learn should not be used for reading the data, manipulating and summarizing it, as
there is better tool to do that like NumPy and Pandas.

Pytorch [44] The deep learning framework that was used to build models is Pytorch V1.9.0.
Pytorch is a Python package based on Torch, which is an open-source machine learning package
based on the programming language Lua. PyTorch has three main features:

• Tensor computation (like NumPy) with strong GPU acceleration, and an ease to use.

• Automatic differentiation for building and training neural networks.

58

• Build dynamic graph.

As a reminder, Python is convenient because it is easy to read and understand. PyTorch em-
phasizes flexibility and allows deep learning models to be expressed in idiomatic Python. Plus,
Pytorch is written in such an intuitive way that you can learn in seconds. In other words, think
about Numpy, but with strong GPU acceleration. In fact, most researchers in Machine Learn-
ing and Deep Learning prefer using Pytorch instead of Tensorflow, because it allows quick and
efficient implementation of the solution proposed, allowing researchers to focus much more on
the problem and its solution than in its software development. Moreover, PyTorch offers mod-
ularity, which enhances the ability to debug or see within the network, by supporting dynamic
computation graphs that allow changing how the network behaves on the fly.

2.2.3 Google Colaboratory

Google Colaboratory is a free cloud service that offers Jupyter Notebooks via remote servers. This
solution allows to write and run Python code in the browser. It offers three main advantages:

• No configuration required

• Access to GPUs and TPUs.

• Free.

In order to be precise, Google Colaboratory is a Platform as a Service (PAAS), that serves as a
platform for the development of the code to create cloud-based applications, allowing customers
to provision, instantiate, run, a computing platform and one or more applications, without the
complexity of building and maintaining the infrastructure typically associated with developing
and launching the application(s), allowing developers to create, develop, and package without
worrying about the environment or the hardware.
Personally, We use this service because Google’s Colaboratory (Colab) provides an enhanced
Jupyter notebook that saves the work automatically in Google Drive. Next, because we wanted
to completely focus on the problem solving. Moreover, we went for ”Colab” because it allowed
us to work on the same file, making it much easier to collaborate. Finally, whenever we had to
upload heavy libraries and files (audio files), the process was very quick because input/output
operations are very fast thanks to the PAAS type of Colab.

2.3 Data Preprocessing

Data preprocessing, broadly speaking, is anything did to data prior to inputting it into specific
machine learning model.

59

2.3.1 Normalization

In order to get all the data on the same scale, allowing the model to implicitly consider all features
equally in their representations, we choose to transform variables by scaling each of them to a
range of 0 to 1, usually known as min-max scaler.

x f ,t =
x f ,t − xmin

j

xmax
f − xmin

f
, (2.1)

x f ,t : the scaled input point at the timestamp t of the f th frequency.
xmax

f : the maximum value of the feature column x f .
xmin

f : the minimum value of the feature column x f .
One of the main reasons of choosing this particular scaler is that it guarantees that scaled value
will always be non negative, which respects the non-negativity constraint of the NMF.

2.3.2 Sampling

Shannon NyQuist Sampling Theorem

Suppose you have a signal that is oscillating representing continuous data, the Shannon Nyquist
Sampling Theorem answer the famous question:

“How fast have we to measure that signal to perfectly represent and reconstruct it, in order
word: to go from the continuous domain to the discrete domain without losing information.“

The theorem states that if you have a function and you want to ideally represent that function
you want to perfectly resolve all of its frequency content, meaning that you have to sample that
function at twice its highest frequency.

fmax <
fs

2
(2.2)

Where fmax represents the highest frequency of the signal which can be represented by the band-
width B, and fs is the sample rate frequency.
If the condition of Eq. 2.2 is not respected, aliasing phenomena occurs, consequently, it will affect
the signal reconstruction.

Aliasing Phenomena

To get an insight of this phenomena, we illustrate it on Figure 2.2 above.

60

Figure 2.2: Effect of sampling on the signal

We can also study the Fourier transform of the sampled discrete signal, and compare it to the
Fourier Transform of the continuous signal.
In order to get the discrete signal, we multiply the continuous signal by a Dirac comb s(t):

xs(t) = xa(t) · s(t) = xa(t) ·∑
n

δ(t− nT) (2.3a)

Since multiplication in the time domain is equivalent to convolution in the frequency domain,
we get:

Xs(jΩ) =
1

2π
Xa(jΩ) ∗ S(jΩ) (2.3b)

Where Ω is the highest frequency component of xa(t), knowing that the TF of s(t), is a periodic
impulse in the frequency domain:

S(jΩ) =
2π

T ∑
k

δ(Ω− k2π

T
) =

2π

T ∑
k

δ(Ω− kΩs) (2.3c)

We ends up with:

Xs(jΩ) =
1
T ∑

k
Xa(jΩ− kjΩs) (2.3d)

From Eq. 2.3d, the TF of the sampled signal is a superposition of infinitely many shifted copies
of the TF of the analog signal Xa(jΩ) resulting in repeated copies of this latter in integer mul-
tiple of Ωs, in both direction of the frequency axis. From this conclusion, we can say that if the
sampling rate is not greater than twice the Nyquist Frequency, the copies, when superimposed,
will overlap and higher frequencies will be aliased into the lower frequency range; consequently,

61

we wouldn’t be able to reconstruct the original signal from its samples by the use of a filter.

The wav audio we used is encoded at fs = 44Khz that is because humans can hear up to about
fmax = 20Khz, so by taking the highest frequency and double that, we get perfect fidelity recon-
struction, that is why audio signals are sampled at fs = 44Khz.

Down-Sampling

Down-sampling allows to make a digital audio signal smaller by lowering its sampling rate or
sample size (bits per sample). Down-sampling is used to decrease the bit rate when transmitting
over a limited bandwidth or to convert to a limited audio format which is the main cause of our
use of down-sampling. Furthermore, we used that technique in order to compare our methods
to what it was already done in the research field, where authors generally down-sampled their
audio signals to f = 16Khz to allow the model to extract general features from the signal in order
to make patterns much more obvious.
The figure 2.3 illustrates the process of down-sampling.

Low Pass
FIlter

Discard
values

Figure 2.3: Down-Sampling Steps

• First, when a digital signal is downsampled, it is necessary to apply a low pass filter to the
signal to reduce the signal’s bandwidth to less than the Nyquist rate of the new sample
rate; otherwise, aliasing will result, in other words, the low pass filter will help to get rid
of high frequency components that could alias.

• The discard block is an operation that will throw away all the values except integer multiple

62

of M, that produces the desired signal, it is like scaling the time axis by a factor of M.

In the frequency domain, the Short Fourier Transform (SFT) of the signal, goes from −π to
π, with an amplitude of 1

T . If we don’t use an anti-aliasing filter, frequency higher than the
frequency desired would alias back into the band of interest. Furthermore, the discarded block
when throwing away all the values that are not a multiple of M, will stretch the frequency band
of the signal, while compressing the signal in the time domain. Instead of ending the signal at
π
M , it will extend all the way out to π, this property can be illustrated in the form of an equation.

if y[n] = W[mn] , then Y
(

ejω
)
=

1
M

M−1

∑
m=0

W
(

ej(ω−m2π)/M
)

(2.4)

2.3.3 Filtering

Filters are one of the most essential operation used in signal processing. A filter in our case, is
a process that removes unwanted components or features from a transmitted signal. Most often,
this means removing some frequencies and not others to suppress interfering signals and reduce
background noise. Ideally, a filter will not add new frequencies to the input signal, nor will it
changes the component frequencies of that signal, but it will change the relative amplitudes of
the various frequency components and/or their phase relationships.

Butterworth Filter

Butterworth Filter is a low pass filter, which is defined by an amplitude response with the equa-
tion below:

|Hn(jω)| = 1√
1 +

(
ω
ωc

)2n
(2.5)

Where ωc represents the cut off frequency of the filter, and the factor quantity ω
ωx

is raised to the
exponent 2n, where n is called the filter order. If you have a high filter order, it become more like
a step function, while having a low filter order, this rolls off kind of smoothly as frequency goes
up, as it is shown in Figure 2.4:

63

Figure 2.4: Butterworth filter Amplitude Response

We apply the Butterworth Filter after the down-sampling in order to apply a denoising pro-
cess to the signal a second time. We set the cut off frequency at fc = 5Khz, because we notice
that frequencies equal or highest to fc represented less than 1% of frequencies presented in the
magnitude spectra of each source, this filtering in Data Science is a feature engineering that aims
to get rid of outliers because removing high-frequency noise allows the signal of interest to be
more compactly represented and enables more accurate analysis.

2.4 Performance Criteria

Measuring the results of a source separation approach is a challenging problem. Generally, there
are two main categories for evaluating the outputs of a source separation approach:

• Objective: objective measures rate separation quality by performing a set of calculations
that compare the output signals of a separation system to the ground truth isolated sources.

• Subjective: subjective measures involve having humans to give scores for the source sepa-
ration system’s output.

Objective and subjective measures both have benefits and drawbacks. Objective measures strug-
gle because there are many aspects of human perception that are extremely difficult to capture
by computational means alone. However, compared to subjective measures, they are much faster
and cheaper to obtain. On the other hand, subjective measures are expensive, time-consuming,

64

and subject to the variability of human raters, but they can be more reliable than objective mea-
sures because actual human listeners are involved in the evaluation process. In our study, we
choose the two approaches, with a focused on the objective measures using the Signal to Distor-
tion Ratio (SDR).
An estimate of a Source ŝi is assumed to actually be composed of four separate components
expressed by Equation 2.6.

ŝi = starget + einterf + enoise + eartif (2.6)

where starget is the original source, and einterf , enoise , and eartif are error terms for interference,
noise, and added artifacts, respectively. The actual calculations of these terms is quite complex,
so we refer the reader to the original paper for their exact calculation [45].

2.4.1 Signal-to-Distortion Ratio

The SDR is a widely used method for evaluating a source separation system’s output, and usually
considered to be an overall measure of how good a source sounds, the equation of this measures
is illustrated by Equation 2.7.

SDR = 10 log10

(∥∥starget
∥∥2

‖einterf + enoise + eartif ‖2

)
(2.7)

SDR was shown to be valid as a global performance measure in case we want to consider interfer-
ence, noise, and artifact at the same time, which is equivalent to give importance to the Signal-to-
Interference ratio (SIR), the Signal-to-Noise Ratio (SNR), as well as the Signal-to-Artifacts Ratio
(SAR) at the same time.

65

Chapter 3

Non Negative Matrix Factorization

3.1 Non Negative Matrix Factorization

Non negative Matrix Factorization is a Constrained Low-Rank Matrix Approximation algorithm,
that is used to decompose any non-negative matrix X ∈ DF×N into a non-negative basis vectors
matrix W ∈ DF×K and a non-negative gain matrix H ∈ DK×N

X ≈ X̃ = WH (3.1)

F: the total number of frequency of the spectrum.
N: the total number of sample.
The Non Negative Matrix Factorization is subject to the constraint that the approximating matrix
has a reduced rank, so that it enables to extract pertinent information from large data sets such
as:

rank(X̃) ≤ rank(X) (3.2)

In most cases, as cited before, k is usually chosen such that k � min(m, n) to respect the low
ranked approximation aspect of the algorithm that aims to obtain a pair factor (W, H) that can be
seen as a compressed form of the data in X. Another key characteristic of NMF is that it doesn’t
allow negative entries in W and H, to enable a non-subtractive combination of parts to form a
whole. Therefore, NMF faces some important challenges affecting the numerical minimization of
the problem, which includes the existence of local minimas due to the non-convexity of f (W, H),
where f is the Frobenius Norm (see subsection 3.1.2), because the Hessian of the function is
not positive semidefinite for W, H, and X, resulting in the lack of a unique solution which
can be easily seen by considering WDD−1H where D is an arbitrary diagonal matrix, for any
nonnegative invertible matrix.

3.1.1 Beta-Divergence Loss

In this section, we discuss the objective function used for finding W and H as an approximation
for the matrix X. Density Power Divergence is indexed by a single parameter β which controls
the trade-off between robustness and efficiency.

The β-Divergence was introduced by [46] who proposed a similarity loss for robust parameter
estimation. Also known as the contrast function, the β-Divergence is a function that establishes
the ”distance” of one probability distribution to one another.

Dβ(x | y) =

1

β(β−1)

(
xβ + (β− 1)yβ − βxyβ−1) β ∈ R\{0, 1}

x log x
y − x + y β = 1

x
y − log x

y − 1 β = 0

(3.3)

Reference [46] assumes β ≥ 1, but the definition domain can be extended to β ∈ N , as suggested

67

by [47].The limit cases β = 0 β = 1, correspond to the Itakura-Saito (IS) and Kullback-Leibler (KL)
divergences, respectively.

Kullback-Leibler Divergence

The KL divergence tells us how well the probability distribution Q approximates the probability
distribution P defined on the same probability space X by calculating the cross-entropy minus
the entropy.

DKL(P‖Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(3.4)

In other words, it is the expectation of the logarithmic difference between the probabilities P and
Q, where the expectation is taken using the probabilities P. Intuitively, you can think of that as
the statistical measure of how one distribution differs from another.

Itakura Saito Divergence

In Non-negative matrix factorization, the Itakura-Saito divergence can be used as a measure of
the quality of the factorization; this implies a meaningful statistical model of the components and
can be solved through an iterative method. Because it belongs to the β-Divergence family, the IS
divergence measures the difference between an original spectrum X and an approximation X̃ of
that spectrum that represents the reconstruction of the spectrum using NMF.

DIS(X‖X̃) = ∑
f ,n

(
X f ,n

X̃ f ,n
− log

X f ,n

X̃ f ,n
− 1

)
(3.5)

One of the unique properties of IS divergence is that it is scale invariant, meaning that low
energy components of X bear the same relative importance as high energy ones. This is relevant
to situations in which the coefficients of X have a large dynamic range.

DIS(λX|λX̃) = DIS(X‖X̃) (3.6)

The scale invariance of the IS divergence is relevant to the decomposition of audio spectrums,
which typically exhibit exponential power decrease along with frequency f and also usually
comprise low-power components such as note attacks performed on piano for example, together
with higher-power components such as tonal parts of sustained notes, making IS-divergence
suitable for speech-music separation.

68

3.1.2 Frobenius Norm

The Frobenius norm, also called the Euclidean norm is the matrix norm of an m× n matrix X
defined as the square root of the sum of the absolute squares of its elements, also equals to the
square root of the matrix trace.

‖E‖F ≡ ‖X−WH‖F ≡

√√√√ m

∑
i=1

n

∑
j=1

∣∣eij
∣∣2 ≡ √Tr (EEH).

Where EH is the conjugate transpose of E. Then, Non-Negative Matrix Factorization (NMF) aims
to factorize the non-negative n×m matrix X into two non-negative factor matrices W(n× k) and
H(k×m) such that :

min
W,H
‖X−WH‖F

3.1.3 Singular Value Decomposition

Singular Value Decomposition is a data reduction algorithm that helps reduce the data into
keys features to analyze and understand this data. The algorithm is based on a simple and
interpretable linear algebra, and it is also scalable; meaning that it can be applied in small as well
as large and massive datasets. Consider X a collection of column vectors:

X =

...

...
...

x1 x2 · · · xm
...

...
...

 (3.7)

SVD allows to take the matrix X and decompose it or represents it as the product of three other
matrices:

X =

...

...
...

u1 u2 · · · un
...

...
...

...
...

...

σ1

σ2
. . .

σm

0

...

...
...

v1 v2 · · · vm
...

...
...

>

= UΣV>

(n×m) = (n× n) (n×m) (m×m) = (m×m)

(3.8)

U and V matrix are called unitary / orthogonal matrix, and Σ diagonal matrix. With X ∈
IRn×m the matrix we want to approximate, U ∈ IRn×n the left-singular matrix of X, Σ ∈ IRn×m

the matrix of singular value, and V ∈ IRm×m the right-singular vectors of X . Columns of U are

69

hierarchically arranged so that ui is somehow more important than ui+1 and so on and so forth
in terms of their ability to describe the variance in the columns of X. Its also important to note
that U and V are unitary, which means that:

UT.U = V.VT = I, (3.9a)

VT.V = V.VT = I, (3.9b)

U columns are orthonormals means that they are orthogonals and unit length providing a com-
plete basis for all of our n dimensional vector space from the columns of the data. The same is
for V.

||
m−1

∑
j=0

ui,j|| = 1 (3.10a)

ui · uk = 0, with i 6= k (3.10b)

Σ is a diagonal matrix, non negative and hierarchically ordered, which means diagonal values
are ordered in a decreasing magnitude such as σ1 > σ2 > · · · > σm, this ordering carries with it
the ordering of the columns U and V as well.In summary, The relative importance of columns of
U and V are given by the corresponding singular value. For example, if some σ are small, we’re
going to be able to ignore them to chop them off and approximate the matrix X only in terms of
the first few dominant columns in U and columns of V and the dominant singular values σ. SVD
Decomposition is guaranted to exist, and its unique.Furthermore, we can say that U contains
information about the column space of X and V contains information about the row space of X,
and Σ is a diagonal matrix that tells you how important the various columns of U and V are,
hierarchically arranged.
In term of matrix approximation, there are only m linearly independent columns in X, meaning
that there is only m columns of U that are important in representing the data. The expansion of
the equation 3.8 is:

X = σ1u1 � v>1 + · · ·+ σmum � v>m (3.11)

� : outter product.
um : column of the matrix U.
vT

m : line of the matrix V>.
In summary, we decompose X into orthogonal basis U and V by writing this as a sum of

rank-one matrices that increasingly improve the approximation of X.In addition, even if U has
n columns, there are only m non-singular values.So we select only the first m columns of U, the
m × m block in Σ, this is often called the Economy SVD, assuming n >> m, meaning having
many more entries in each column than having columns.
Its also worth to add, that the low rank approximation problem is solved by SVD. The Eckart–Young–Mirsky

70

theorem states that the best approximation for X of rank m is given by the first r truncated sin-
gular value of the SVD decomposition such as r < m.

argmin||X− X̃|| = ŨΣ̃Ṽ> such as rank(X̃) = r and r < m (3.12)

3.1.4 Nonnegative Double Singular Value Decomposition

NNDSVD is a method that is used to initialize the nonnegative matrix factorization, that contains
no randomization which enhances the interpretability and the control over the initialization stage.
Due to the iterative nature of NMF algorithms, the initialization of the basis vectors and the
masks W, H respectively is an important component in the convergence of the optimization
algorithm. Its also important to state that traditional NMF uses random nonnegative initialization
for its pair factor W, H; which requires several instances of the algorithm using different random
initializations to select the best solution. It is also important to note that NMF suffers from
slow convergence that can make it quite expensive. NNDSVD is based on two SVD processes,
containing no randomization making the algorithm converge to the same solution every time.
Before going any further, we should underline what authors mean by calling NNDSVD a good
initialization strategy, they mean one that leads to rapid error reduction and faster convergence,
and one that leads to better overall error at convergence. Because NMF is a constrained low-rank
matrix approximation as cited in [48], the initialization strategy needs a low-rank factorization
scheme. NNDSVD depends on two properties concerning the behavior of unit rank matrices.
NNDSVD start from the basic property of the truncated matrix with rank r, that has the optimal
rank r approximation of X with respect to the Frobenius norm:

X =
r

∑
j=1

σjujv′j, (3.13)

where σ1 · · · σr > 0 are the nonzero singular values of X and u and v are the corresponding
left and right singular vectors respectively. Every pair factor σj, uj, vj that constitues a unit rank
matrix C(j) is approximated by its nonnegative part C(j)

+ . We show below the Lemma that is
essential for the elaboration of the solution:

Lemma 3.1.1 Lemma 1. Consider any matrix C ∈ Rm×n such that rank(C) = 1, and write C =

C+ − C−. Then rank (C+), rank (C−) ≤ 2.

The result tells us that if we zero out all negative values of a unit rank matrix, the resulting matrix
will have rank 2 at most, making the approximation of Cj possible with its nonnegative section
Cj
+. Furthermore, each matrix Cj can be written as the sum of two non-negative components:

C(j) = C(j)
+ − C(j)

−

71

C(j)
+ , C(j)

− being the positive and negative part of C(j) respectively.
Plus, the Perron-Frobenius theory that states that the leading eigenvalue is positive, guarantee
that the pair (W, H) is initialized using the non-negative left and right singular vectors corre-
sponding to the maximum singular value of the decomposition, meaning that the dominant
singular triplets u1, σ1, v1 can be used as initial vectors and rows to (W, H).
In summary, the main phases of this algorithm are as follow:

Step 1: Compute the largest r singular triplets of X (first SVD process).

Step 2: Initialize the first column and row vectors in W and H as the nonnegative dominant
singular vectors of X weighted by

√
σi

Step 3: Compute the positive section of each C(i) using the ”set to zero with small rank incre-
ment” property.

Step 4: Compute the largest r singular triplets of C(j)
+ (second SVD process).

Step 5: Initialize the kth columns and rows in W and H, for k = 2, · · · , r as the singular dominant

vectors of each C(j)
+ , weighted by the

√
σi

(
C(j)
+

)
and normalized.

Finally, the process of the NNDSVD can be processed as below:

72

Algorithm 3: NNDSVD Algorithm steps
Data:

Input: magnitude spectrum X ∈ Rm×n
+ , number of components k of the NMF, such as

k < min(m, n)
Output: Rank-k nonnegative doublets W ∈ Rm×k

+ , and H ∈ Rk×n
+

Compute the largest k singular triplets of X using Singular Value Decomposition:
[U,Σ,V] = SVD(X, k) ≈ ∑k−1

i=0 σiCi with Ci = uiv>i
Initialize the first column and row vectors in W and H as the nonnegative dominant

singular vectors of X weighted by
√

σi:
W[:, 0] =

√
σ1 ·U[:, 0]

H[0, :] =
√

σ1 ·V[:, 0]>

Compute the positive section of each Ci:
C+

i = ReLU(Ci, 0) = ∑k−1
i=0 u+

i v+i + u−i v−i
Compute the largest k singular triplets of C+

i with a second Singular Value
Decomposition Process:

[U
′
,,V

′
] = SVD(∑k−1

0 C+
i , k)

Initialize the jth columns and rows in W and H, for j = 1, . . . , k− 1 as the singular
dominant vectors knowing the Perron–Frobenius theory, of each C+

i , weighted by the
√

σi and normalized.
Loop: for i from 1 to k− 1:

W[:,i]← normalized(
√

σiU
′
i [:, 0]),

H[i,:] ← normalized(
√

σiV
′
i
>[:, 0]),

3.1.5 Multiplicative-Update Algorithm

To solve the equation 3.1 , the solution to find W and H require the minimization of the Itakura-
Saito (IS) Divergence cost function 3.1.1 that we used for our solution.

min
W ,H

DIS(V‖W H) (3.14)

This update approach exploits the fact that multiplying any two non-negative values produces
another non-negative value. This implies that if an element of either factor is assigned the value
zero, during the update it remains at zero. One interesting characteristics of this technique is

73

Figure 3.1: Pipeline of learning free NMF.

that it can be extended to a large number of cost functions.

H ← H�
WT

(
V

(WH)β+2

)
WT

(
1

(WH)β+1

)

W ← W�

(
V

(WH)β+2

)
HT(

1
(WH)β+1

)
HT

(3.15)

Where 1 is a matrix of ones with the same size of V, the operation � is an element-wise multi-
plication, and (.)2 are element-wise operations.The matrices W and H are initialized by positive
random numbers and then updated iteratively using 3.15. This algorithm includes a normal-
ization step at every iteration, which eliminates trivial scale indeterminacies, leaving the cost
function unchanged

3.2 Learning Free and Supervised NMF

3.2.1 Learning Free NMF

Learning Free NMF is used to decompose the mixture signal without any prior knowledge about
the sources that constitute the mixture. This latter is separated into sources without any training
stage. In this context, both of the basis vectors W and H are estimated from a mixture spectro-
gram. The drawback of this type of NMF is that it restricts the model to use only n components
for n sources,where each component will correspond to the basis vector of each sources. Further-
more, this operation will require performing permutation in order to select the appropriate basis
vector for each source.

74

3.2.2 Supervised Non Negative Matrix Factorization

In supervised learning, a model aims to learn a function that maps an input to an output. In our
application, training non negative matrix factorization for each isolated signal aims to find pre-
trained basis vectors that represents each respective source.These methods typically estimate a
separate set of basis vectors to represent each source. The basis vectors of all the sources are then
concatenated, and used to represent the mixture signal, we say then that we have prior knowledge
on the indexes of the components that represent a given source. The advantage of trained NMF
is that we can use as much as component as possible to modelize each source, making the basis
vectors much more complex, enabling them to express much more salient information about its
appropriate source, without the need of doing permutation operation

Figure 3.2: Pipeline of NMF with pretrained weights.

Trained Dictionnaries

Given a set of training data for speech and music signals, the STFT is computed for each source,
and the magnitude spectrogram S and M of speech and music signals are calculated, respectively.
Mathematically, we can express the process as follow: Take the isolated speech signal for example,
for which we want to represent its magnitude spectrum approximately as a set of basis vectors
Ws called speech dictionary and a mask matrix Hs formulated by the Constrained Low Rank
Matrix such as (same for piano signal) :

Strain ≈W sHs (3.16a)

Mtrain ≈WmHm (3.16b)

Basis vectors W and masks H of Eq. 3.16 are calculated using Multiplicative Update cited on
3.15 with respect to the objective function used in this context. In our case we used Itakura Saito

75

(IS) expressed by Eq.(3.5).
In other word, the aim of using pretrained NMF is to model the training data as a set of basis
vectors to represents the spectral characteristics for each source signal, resulting in a dictionary
expressing both characteristic of speech and music spectrum expressed by Eq.(3.17)

W = [W s Wm] (3.17)

Decomposition of the mixed signal

In the parameter estimation, the pretrained dictionaries B are kept fixed, and only their gains H
are estimated. Once the masks have been estimated, source can be separated from the mixture
by applying a mask, as explained in subsection 3.2.4. In the test stage, the estimation of gains
is done using the pretrained dictionaries found during the training of each basis vectors on each
speech, and music spectrum, respectively. Those latter, are freezed, aiming to extract appropriate
gains H

′
initialized with NNDSVD cited in 3.1.4, from the mixture with the prior knowledge of

the spectral characteristics of each source expressed by its basis vectors W (see figure 3.3).

H
′ ← H

′ �
WT

(
V

(WH′)2

)
WT

(
1

(WH′)1

)
(3.18)

with β = 0 because we’re minimizing the Itakura-Saito Divergence loss. Finally, the estimated
spectrogram of the speech signal is found by multiplying the bases matrix Ws with its corre-
sponding masks matrix H

′
s, the same process is done to estimate the spectrogram of the music

signal.

S̃ = W speechH
′
S (3.19a)

M̃ = WmusicH
′
M (3.19b)

Finally, the algorithm behind the pretrained NMF is illustrated in algorithm 4 as follow:

76

Algorithm 4: Pretrained NMF steps.
Training:

Input: magnitude spectrum of clean speech and clean music signals Strain, Mtrain,
Output: Trained Dictionnaries W s, Wm

Initialization: W s, Hs ← nndsvd(Strain) | Wm, Hm ← nndsvd(Mtrain)

Train: for k in K iterations:
Hs, Ws ← mu(Hs, Ws, Strain, β),
Hm, Wm ← mu(Hm, Wm,Mtrain,β),

Decomposition of the mixed signal using trained dictionnaries:
Input: Pretrained Dictionnaries W = [Ws Wm], Mixture Ymix.
Output: Gains of the mixture Hmix, estimated source spectrum S̃, M̃ such as

Ymix ≈ S̃ + M̃.
Initialization: Hm ← nndsvd(Ymix)

Train: for k in K iterations:
Hmix ← mu(Hmix, W, Ymix, β),
W freezed,

Estimation of source spectrum:
Hmix = [H

′
s H

′
m]

Ỹ ≈ [W s, Wm] Hmix

Source signals reconstruction and masks:
S̃ = (W s Hs)p

(W s Hs)p+(Wm Hm)p � Y

M̃ = (Wm Hm)p

(W s Hs)p+(Wm Hm)p � Y ,

77

3.2.3 Component Effect

The best number of basis vectors depends on the application, the signal type and dimension.
Hence, it is a design choice: Larger number of basis vectors may result in lower approximation
error, but may result in overtraining and/or a redundant set of basis and require more computa-
tion time as well. Thus, there is a desirable number of bases to be chosen for each source.

Figure 3.4 illustrates Itakura-Saito loss values for each pair of speech and music components.
The x and y axis represents the number of components used to train the speech and music dictio-
naries. It can be noticed that increasing the number of components has a good impact on the loss
function, the minimum value of the loss is obtained when using the maximum number of com-
ponents (64,64). Unfortunately, a good minimization of the loss function does not reflect a good
separation. This conclusion comes from observing the heatmaps in Figure 3.5 of the SDR for
the estimated speech and music signals for each pair of components. We notice that the optimal
number of speech components is equal to 24, while the optimal number of music components
depends on the SMR. For higher SMR values, the optimal number of the music components de-
creases because the power of the music becomes negligible compared to the speech power.

Note A high value of SDR in a heatmap corresponds to a light shade.

Figure 3.4: Itakura-Saito reconstruction loss for different numbers of NMF components.

78

Figure 3.5: Heatmap of Speech SDR (up) and music SDR (bottom) evaluated for different numbers of speech and music components
in the pretrained dictionary for values of SMR -5 0 and 5.

3.2.4 Masking

Masking, also known as filtering is an operation comes from a wide range of noise reduction
techniques, performed in the time frequency domain by applying a mask (filter) on the mixed
spectrogram to extract the different sources. To be more precise, masking is a multiplication
operation of each time frequency bin by a gain (attenuation factor) in order to reduce the noise
in speech enhancement or in other applications reduce the interference between signals.

Many research papers have been devoted to time frequency masking and they can be grouped
into two main approaches : Heuristic and formal. In formal methods, the masks are designed by
minimizing a cost function that in general has a trade off between noise reduction and speech
distortions. In other words, these methods show some difficulties handling the preservation of
speech harmonics and the noise removal. Among these methods : the Wiener filters [49] and
Binary masks [50].

79

Wiener Filter

One way of finding the time frequency mask w is by minimizing the mean square error (MSE)
between the target (clean signal) and its estimate ŝ1 = w ·Y, with Y being the spectrogram of the
mixed signal. The error can be formulated as follows :

wopt = argmin
w

E{‖s1 − w∗ ·Y‖2} (3.20)

wopt : Optimal single channel Wiener filter.
s1 : Clean signal.
Y : Mixed signal spectrogram.

E{‖s1 − w∗ ·Y‖2} = E{|s1|2}+ |w|2 ·E{|Y|2} − 2 · <[w∗ ·E{s∗1 ·Y}] (3.21)

First, we compute the phase of wopt and according to equation 3.21, the phase of w only affects
the last term −2 · <[w∗ ·E{s∗1 · Y}. Minimizing the MSE error requires the maximization of the
last term.

argmax[<[w∗ ·E{s∗1 ·Y}] =⇒ 6 wopt = 6 E{s∗1 ·Y} (3.22)

Considering the expression of the phase of w, Eq.(3.21) becomes :

E{‖s1 − w∗ ·Y‖2} = E{|s1|2}+ |w|2 ·E{|Y|2} − 2 · |w| · |E{s∗1 ·Y}| (3.23)

Finding the magnitude of w that minimizes the expression of MSE in equation (3.23) is done
by computing the first derivative of the MSE and its zeros:

∂E{‖s1 − w∗ ·Y‖2}
∂|w| = 2 · |wopt| ·E{|Y|2} − 2 · |E{s∗1 ·Y}| = 0 (3.24)

The solution of Eq.(3.24) is :

|wopt| =
|E{s∗1 ·Y}|

E{|Y|2} (3.25)

Combining the expression of the phase Eq.(3.22) and magnitude Eq.(3.25) we get :

wopt =
E{s∗1 ·Y}
E{|Y|2} (3.26)

In the case of two sources, we can write the mixed spectrogram as the sum of the spectrogram

80

of the sources :
Y = s1 + s2 (3.27)

Under the assumption that the sources are uncorrelated, the expression of E{s∗1 · Y} can be
written as :

E{s∗1 · s2} = 0 (3.28a)

E{s∗1 ·Y} = E{s∗1 · s1}+ E{s∗1 · s2} = E{s∗1 · s1} (3.28b)

From the other side and under the same assumptions E{|Y|2} becomes :

E{|Y|2} = E{|s1|2}+ E{|s2|2} (3.29)

The final expression of the optimal Wiener filter is :

wopt =
E{|s2

1|}
E{|s2

1|}+ E{|s2
2|}

(3.30)

This expression can be generalized when the mixed spectrogram is a linear combination of
sources with coefficients different than 1. For example : Y = u · s1 + v · s2. The optimal mask
expression becomes :

wopt =
u2 ·E{|s2

1|}
u2 ·E{|s2

1|}+ v2 ·E{|s2
2|}

(3.31)

This filter was used in the reconstruction of the sources in this paper [51] and in our work.

Generalized Wiener Filter

The parametric Wiener filter is a generalization of the Wiener filter that was presented in [52]. It
includes two parameters that are chosen empirically with no strong theoretical background about
the setting of these parameters. An example of using it on ”Image Power Spectrum Sparsity”
was introduced in [53]. This filter was improved in [54] by proposing a new cost function that
uses specific parameters to make a trade-off between the speech distortions and noise reduction.
The expression can be written as follows :

Hmask(t, f) =
[Pp

s]t, f

[Pp
s + Pp

n]t, f
(3.32)

Ps : Square of the magnitude spectrum as an estimate of the power spectral density.
Pn : Power spectral density of noise.

81

This mask is the optimal solution of the cost function that was introduced in [54]. It represents
the error between the estimated signal spectrogram and the clean signal spectrogram.

E = Ŝ− S (3.33a)

Ŵ = Hmask �Y (3.33b)

Y = S + N (3.33c)

E = H �Y− S = H � [S + N]− S (3.33d)

E = [H − 1]� S + H � N (3.33e)

Es = [H − 1]� S : Speech distortion term.
En = H � N : Noise distortion term.
In a giving time window, the power spectral densities of the speech and the noise can be

written as :

ds = E{E2
s } = |H − 1|2 � σ2

s (3.34a)

dn = E{E2
x} = |H|2 � σ2

n (3.34b)

The cost function that the mask should optimize, is the sum of the power spectral densities
of the speech and the noise distortions with the regularization parameter ρ.

argmin
H

J = dα
s + ρ · dα

n (3.35)

ρ : Weight factor between speech distortion and reduction.
α : Cost function sharpness.

Both the expressions (Eq.3.34a) and (Eq.3.34b) are convex with respect to H, this implies that
also the cost function 3.35 is convex which means only one H globally minimizes J. Finding
the mask that helps achieving this global minimum can be done by finding the zeros of the first
derivative of the cost function :

∂J
∂H∗

= 0 =⇒ ∂[|H − 1|2·α · σ2·α
s + ρ · H2·α · σ2·α

n]

∂H∗
= 0 (3.36a)

∂[[(H − 1) · (H − 1)∗]α · σ2·α
s + ρ · (H · H∗)α · σ2·α

n]

∂H∗
= 0 (3.36b)

82

(1− 1
H
)α · (1− 1

H∗
)α−1 + ρ · (σs

σn
)2·α = 0 (3.36c)

Considering ρ = µα Z = 1− 1
H and η = σ2

s
σ2

n

Zα · (Z∗)α−1 = −(µ

η
)α (3.37)

|Z|α · ej·α·φz · |Z|α−1 · e−j·(α−1)·φz = −|µ
η
|α (3.38)

|Z|2·α−1 · ej·φz = −|µ
η
|α (3.39)

From (Eq.3.39), we get the phase and the magnitude of the optimal Z:

ej·φz = −1 |Z| = |µ
η
| α

2·α−1 (3.40)

Now that we have the optimal solution Z, we can use the relationship between Z and H to
find the expression of the optimal mask Hopt in terms of the cost function we have.

Z = 1− 1
H

=⇒ H =
1

1− Z
(3.41)

Hopt =
1

1 + | µη |
α

2·α−1
(3.42)

Finally, the expression of the optimal mask can be rearranged :

p =
α

2 · α− 1
H =

ηp

ηp + µp =
σ

p
s

σ
p
s + µp · σp

n
(3.43)

This method has two degrees of freedom, the parameter p and µ (µ = ρ
1
α).

Other filters derived from the Wiener Filter have been proposed in the literature such as the
parameterized Wiener filter in [52].

Ŝ = (
σ2

s
σ2

s + k · σ2
n
)β ·Y (3.44)

β : Sharpness parameter.
k : Regularization parameter between noise reduction and speech distortions.
Y : Mixed spectrogram.

83

σs : Power spectral density of speech.
σn : Power spectral density of noise.

More details about other versions of the Wiener Filter can be found in [55], [54] and the
spectral masking and filtering chapter in the book [56].

3.2.5 Sparse Non Negative Matrix Factorization

Non-negative Matrix Factorization computes the decomposition of a matrix to a low rank matrix
subject to the constraint of non negativity. In contrast to PCA and ICA that do not restrict the
signs of W and H, NMF requires all entries of both matrices to be non-negative. What this means
is that the data is described by using additive components only. Furthermore, NMF is known for
providing sparse representation of the data.

Sparse coding is a representation learning method that aims to encode sparsely the input
data. In other words, this representation encodes much of the data using few ‘active’ components.

Even though NMF provides a sparse representation, the degree of sparsity remains uncon-
trolled because there is no parameter in the NMF algorithm that enables the control of this
property. Many articles proposed solutions to control the sparsity of the basis vectors W, the
gains H or both.

In [12] they introduced two parameters Sw and Sh that limits the sparseness of W and H
respectively. The loss function 3.45 is minimized under the optional constraints of sparsity 3.46

E(W, H) = ‖Y−W · H‖2 (3.45)

S(W) = SW (3.46a)

S(H) = SH (3.46b)

Another approach for introducing sparsity into the model was proposed in [57]. In this paper,
they have included the sparsity term in the cost function directly as follows:

E(W, H) = ‖X−W · H‖2 + λ ·∑ Hi,j
i,j

(3.47)

The expression of the cost function 3.47 is the one we considered in our implementation of
the Sparse Non-negative Matrix Factorization (SNMF).

Using the optimal number of components we found in section 3.2.3, we evaluate the impact
of the sparsity parameter on the separation results.

84

3.3 Results and Discussion

Supervised NMF was trained on 20 min of isolated speech and music signals, and tested on 30
seconds of mixed signal, with 8 basis vectors for speech, and 16 basis vectors for music, making
a trained dictionaries with a total of r = 24 components such as B ∈ IRF×r.

Algorithm Input SMR SDR SDR
(db) Speech Music

(S = 0) (db) (db)

Free −5 −4.0489 9.2173
Learning 0 4.9065 3.3932

NMF 5 9.1157 −21.215

Supervised −5 −2.98 10.498
NMF 0 4.0755 3.11
(8,16) 5 8.44 −6.4225

Supervised (p=2) −5 2.3702 12.065
NMF (p=1) 0 4.8368 2.6064

(p=0.1) 5 10.795 −8.7938

Table 3.1: Comparison between Free NMF and Supervised NMF in terms of SDR speech and music signal estimation.

The results presented in 3.1 show that Supervised NMF improves the mixture separation, mean-
ing that the training phase of the dictionaries W allows the NMF to have prior information about
the speech and the music features.

3.3.1 Sparsity

In this part, we evaluate the impact of the sparsity parameter λ on the quality of the reconstructed
signal and the distortions. It can be noticed from Figure 3.6 and 3.7 that the optimal λ for SMR
values -5, 0 and 5 is equal to λ = 100 for both speech and music.

85

Figure 3.6: SDR of the estimated speech signal for different values of sparsity parameter λ.

Figure 3.7: SDR of the estimated music signal for different values of sparsity parameter λ.

Table 3.2 illustrates the results of the NMF without sparsity compared to Sparse NMF with
the optimal parameter λopt.

SMR SDR SDR
Algorithm Mixed Speech Music

(dB) (dB) (dB)
−5 −7.74 8.99

NMF 0 0.18 1.07
5 8.44 −8.78
−5 1.63 12.25

Sparse NMF 0 6.22 3.54
5 11.80 −7.76

Table 3.2: Comparison between NMF and Sparse NMF in terms of SDR speech and music.

86

3.3.2 Masks

This section provides a study about the impact of the mask on the reconstructed signal distor-
tions and the relationship between the mask and the SMR. In section 3.2.4, we have seen the
following expression of the generalized Wiener Filter for each time frequency bin:

Hmask(t, f) =
[Pp

s]t, f

[Pp
s + Pp

n]t, f
(3.48)

Where Ps is the power spectral density of the speech and Pm is the power spectral density of
the music (interference). The choice of the parameter p is highly dependent on the SMR. As it
can be seen in Figure 3.8 and 3.9, high values of p have a positive effect on the reconstruction of
speech for zero and negative SMRs, while lower values exhibit good results for positive SMRs.

Figure 3.8: SDR of the reconstructed speech signal for different values of the parameter p.

Figure 3.9: SDR of the reconstructed music signal for different values of the parameter p.

To better understand the effect of the mask parameter p on the estimated sources spectro-
grams, we visualize the heatmap of estimated speech spectrograms using p = 0.5 and p =

10.After applying NMF algorithm and masking, we obtain the following spectrogram of speech
(see Figure 3.10).

87

(a) Clean Speech

(b) p = 0.5 (c) p=10

Figure 3.10: Speech spectrograms for a mask with p = 0.5 and p = 10.

On the other hand, Figure 3.11 shows that for small values of p (e.g. 0.5) the mask did not
eliminate well the time frequency bins that belong to the music signal from the estimated speech
spectrogram. While a higher value of p (e.g 10) better filters the music from the speech. However,
even if setting all the time frequency bins of the music to zero seems to be a good idea to reduce
the interference of the music in the speech, it increases the distortions in the speech signal. These
distortions can be observed in 3.10 (c) where some low frequencies are cancelled resulting in
discontinuities.

88

(a) Clean Music magnitude spectrogram

(b) p = 0.5 (c) p=10

Figure 3.11: Music Spectrograms for a mask with p = 0.5 and p = 10.

Therefore, for SMR = 0 where the power of the speech is approximately in the same propor-
tions as the power of music, the parameter p should have a values higher than 0.5 to filter better
the time frequency bins that contain music (or speech in the case of the music spectrogram), and
lower than 10 to avoid increasing distortions and having a mask that behaves like a binary filter.
A parameter p = 2 (Wiener Filter) provides the best trade-off.

Mask parameter for other SMRs

The Wiener filter (p = 2) allows a good trade-off between the suppression of the interference and
the reduction of the distortions. But when it comes to signals that have high difference in power
(e.g. SMR=5), the optimal parameter p becomes different from 2.

To better explain this, let’s consider a mixed signal with SMR = 5, and reformulate the ex-

89

pression of the speech mask (Eq.3.48) for each time frequency bin as follows :

Hmask(t, f) =
1

1 + [(Pm
Ps
)p]t, f

(3.49a)

‘
SMR = 5 =⇒ Ps � Pm =⇒ Ps

Pm
� 1 (3.49b)

• If p > 1 :

In time frequency bins (f , n) that contain speech :

p = 10∧ Ps

Pm
� 1 =⇒ 1

1 + (Pm
Ps
)p
≈ 1 (3.50)

∧: logical AND operator.
Hspeech ≈ 1 (3.51)

Hmusic(t, f) =
1

1 + [(Ps
Pm
)p]t, f

≈ 0 (3.52)

• If p < 1:
In this case the filter behaves less like a binary filter, and the power gap between the two
signals decreases. For example if the power of the speech is 10000 and the power of the
music is 100, considering a filter with p = 0.5 will change the factor between the speech
and the music in the mask (Ps

Pm
)p from 100 to 10 and this filter is far from being binary,

therefore it reduces the distortions.

3.3.3 Effect of every loss on the SDR

In this subsection, we studied the impact of every loss we introduced in 3.1, to observe their
impact on the speech and music separation.

90

Algorithm Input SMR SDR SDR
(p = 1) (db) Speech Music
(S = 0) (db) (db)

−5 −7.3575 10.141
KL Divergence 0 4.6571 2.9325

5 5.8678 −7.4583
−5 −6.31 11.21

Itakura Saito 0 3.06 2.85
5 9.33 −6.86
−5 −10.279 8.6207

Frobenius 0 2.4753 2.7561
5 5.8678 −7.4583

Table 3.3: Loss effects on the estimation of speech and music signal for different SMRs in terms of SDR.

Figure 3.13: SDR of the estimated music signal using SNMF for different losses.

91

From Figure 3.13 and Table 3.3, we can notice that SNMF which minimizes IS Divergence
better improves the SDR than using KL Divergence or Frobenius Norm. Something important
to note, is that IS Divergence, as cited in subsection 3.1.1, is scale invariant, and is the only
one of the β-Divergence function to have this property. It shows that IS Divergence gives the
same relative weight to small as well as large time-frequency bins of the magnitude spectrum
Xn meaning both low-power and high-power signal will be considered with the same relative
importance. In contrast, factorizations obtained with β > 0 such as the Frobenius Norm and
Kullback-Leibler Divergence, rely much more on the largest time-frequency bins, making the
estimation of the low-power components less precise. In conclusion, we can say that the scale
invariance of the IS divergence is appropriate to the decomposition of audio spectra and audio
separation, that cares as much about low-power components such as note attacks (piano), as
higher-power components such as tonal parts of sustained notes.

92

Chapter 4

Deep Learning Based Source Separation

4.1 Deep Neural Networks for Speech Separation.

A novel deep learning based source separation method was introduced in [16]. The purpose
of this method is to enhance the separation of the model based method ”non-negative matrix
factorization (NMF)” by adding a deep neural network (classifier) that checks the validity of the
estimated sources spectrograms and corrects these estimates. This approach is composed of 4
major steps that can be illustrated in Figure 4.1.

The method can be summarized in the following points:

• Training Phase :

1. Train the clean speech dictionary Ws using the NMF with the multiplicative update
algorithm (MU).

2. Train the clean music dictionary Wm using the NMF with the MU.

• Testing Phase:

1. Estimate the speech and music spectrums Ŝ = {Ŝ1, Ŝ2} using the test NMF from the
mixed signal spectrum.

2. Train the parameters W of the DNN using Restricted Boltzmann Machines (RBM) on
the normalized estimated sources magnitude spectrums Ŝ.

3. Train the DNN to classify frames of normalized Ŝ using the pretrained weights W.

4. Apply a Wiener filter and reconstruct the estimated signal in the time domain.

Ŝ1 =
(u · Ŝ1)

2

(u · Ŝ1)2 + (v · Ŝ2)2
�Y (4.1a)

Ŝ2 =
(v · Ŝ2)2

(u · Ŝ1)2 + (v · Ŝ2)2
�Y (4.1b)

Y : Complex spectrogram of the mixed signal.
u : Gain of source 1 (speech).
v : Gain of source 2 (music).
� : Element wise multiplication.

4.1.1 Neural Network Architecture

Authors of [16] used non-negative matrix factorization to model each source as non-negative
linear combination of its dictionary. However, this property -linear combination- can be very lim-
iting since the variability within sources spectrums can be better modeled using non-linearities

94

NMF
Test

DNN

Filtering and
Reconstruction

Training Phase

Train Speech
Train
NMF

Train
NMF

Trained W

RBM
Training

Train Music

STFT

STFT

Mixed
Signals

STFT

Testing Phase

Mixed
Spectrogram

Figure 4.1: Pipeline of the method.

according to the authors. Therefore, the paper proposes to use a DNN to model each source
in order to improve the separation. It was also mentioned that any other classifier can be used
to replace the neural network (NN), but it will probably not have performances as high as the NN.

The neural network used has 3 hidden layers with 100-50-200 hidden units in each hidden
layer respectively. The weights of the network are pretrained using Restricted Boltzmann Ma-
chines (RBM) [38]. The output layer has 2 neurons for classification, but in general, the output
layer dimension is equal to the number of sources. The output of the model is a one hot encoding,

95

meaning that the first source have the label ”10” and the second source ”01”. All the activation
functions used are sigmoids because of the RBM initialization, more details about the reasons of
such use of sigmoid can be found in [38].

x1

x2

x3

x4

x5

x6

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer
100

h
(1)
1

h
(1)
2

h
(1)
3

Hidden
layer
50

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

Hidden
layer
200

ŷ1

ŷ2

Output
layer

Figure 4.2: Architecture of the DNN.

Optimization Problem

The model is trained to classify the magnitude spectrums of the different sources, while keeping
their sum equal to mixed spectrum and respect the non-negativity constraints.

The mixed spectrum is written as a linear combination of the sources’ spectrum with the gain
coefficients u and v as follows :

Y = u · S1 + v · S2, u, v ∈ Rd (4.2)

d : Dimension of the spectrums (Number of frequencies).
The initialization of the gains u and v is done by dividing the L2 norm of Ŝ1 (respectively Ŝ2)

by the L2 of the mixed spectrum Y.

u0 =
‖Ŝ1‖2

‖Y‖2
v0 =

‖Ŝ2‖2

‖Y‖2
(4.3)

The objective function to optimize consists of :

• Classification error.

E(S1) = (1− f 1(S1))
2 + (f 2(S1))

2, (4.4a)

96

E(S2) = (f 1(S2))
2 + (1− f 2(S2))

2, (4.4b)

E(S1) : It is expected to be minimum when the speech is classified as [1,0].
E(S2) : It is expected to be minimum when the music is classified as [0,1].

• The energy of the least squares difference error between the mixed signal spectrum Y and
the linear combination of source spectra estimates.

SE(S1, S2, u, v, Y) = ||u · S1 + v · S2 −Y||2 (4.5)

• Non-negativity constraint.

Enn =
2

∑
i=1

min(Si, 0)2 + min(u, 0)2 + min(v, 0)2 (4.6)

The optimization problem can be formulated as follows:

(
Ŝ1, Ŝ2, û, v̂

)
= argmin
{S1,S2,u,v}

L (S1, S2, Y , u, v) , (4.7)

Where the loss function :

L(S1, S2) = E(S1) + E(S2) + λ · SE(S1, S2, u, v, Y) + β · Enn (4.8)

Optimizer

The optimizer used to solve this optimization problem is called L- Broyden, Fletcher, Goldfarb,
and Shanno (L-BFGS). It’s a second order optimization algorithm, meaning that it makes use
of the second-order derivative also called the Hessian matrix to find the local minimum of the
objective function. The advantage of using this algorithm is that the Hessian matrix can be used
to determine both the direction and the step size to move in order to change the input parame-
ters. The original BFGS algorithm has to store the inverse Hessian matrix which requires O(n2)

memory making it unsuitable for deep learning models that have a large amount of parameters.

Limited Memory BFGS or L-BFGS is an extension to BFGS algorithm that deals with the high
memory requirements problem. It assumes some simplifications about the Hessian matrix and
applies some approximations to avoid storing the whole inverse matrix.

97

4.1.2 Filtering and Reconstruction

After solving the optimization problem, a Wiener filter is applied to the spectral estimates to
improve the separation. The expressions of the new spectrum estimates take this form :

Ŝ1 =

(
ûŜ1
)2(

ûŜ1
)2

+
(
v̂Ŝ2
)2 � Y (4.9a)

Ŝ2 =

(
v̂Ŝ2
)2(

ûŜ1
)2

+
(
v̂Ŝ2
)2 � Y (4.9b)

� : Element wise multiplication.
û, v̂ : Estimates of the gains.

DNN Initialization

Authors of [16] used RBM in order to pre-train the DNN architecture ; as an initialization process
for the model in order to converge quickly. Specially, they used a stack of RBM to mimic the
DNN architecture. The RBM’s process described in subsection 1.4.8 remain the same, but with
the necessity of assembling multiple RBM together. Finally, They trained the RBM by feeding the
estimated magnitude spectra of each source sequentially, representing the visible layer, and so
on until the final layer composed of 2 nodes/neurons representing a compressed representation
of the imputed magnitude spectra.

4.1.3 Drawbacks of this approach

Although using a DNN to check the validity of the NMF estimated spectrums shows promis-
ing results in the original paper, it does come with some weaknesses that we have worked on
improving in the next sections. The following points summarize the drawbacks of this method.

• Using an RBM to initialize the DNN weights for each mixed signal is time consuming. A
better way would be to initialize the weights of the DNN only one time and use the same
pretrained weights for all the test mixed signals.

• The RBM makes the model limited to using sigmoid activation functions. While many
other activations can be considered to have a positive impact on the performances of the
model, especially when used in the hidden layers such as ReLU.

• RBMs are shallow (two-layer neural nets) and training all the weights of the DNN requires
training a stack of RBMs. In contrast, the AutoEncoders that are showing a great suc-
cess in the reconstruction and the compression (dimentionality reduction) can have a deep
architecture which can be better for initializing the weights of the model.

98

• The non-negativity constraint used Enn = ∑2
i=1 min(Si, 0)2 + min(u, 0)2 + min(v, 0)2 when

applied on normalized values gives a very small value that is negligible compared to the
other terms of the objective function, even with a high value of β because it is squared.

• The gain parameters u and v are time independent and do not adapt to the changes of the
proportions between the different signals across time.

• Using the optimizer (L-BFGS) to solve the optimization problem is very slow because it’s a
second order method and it requires computing an approximation of the inverse Hessian
matrix.

99

4.2 Our contribution

In this section, we proposed two approaches to improve the Signal to Distortion Ratio (SDR).
Both are based on autoencoders, that aim to enhance the mixture separation in two domains (see
figure 4.3):

• Change the magnitude spectrum s1 and s2 of the speech and music signal estimated by the
SNMF using the DE-SNMF in the time-frequency domain.

• Change the gains H estimated by the SNMF using the Denoising-SNMF in the temporal
domain.

Figure 4.3: Proposed approaches based on autoencoder to improve the mixture separation

4.2.1 Autoencoders

Autoencoders are special types of neural networks that learn to reconstruct input data from its
compressed version that hold meaningful representation through l ∈ {1..L} hidden layers. These
kind of architectures are composed of two symmetrical part, as shown in the figure 4.4 :

100

Figure 4.4: Typical autoencoder architecture

The encoder

The encoder part is responsible of encoding, representing the original input space X ∈ RNX×DX

in a smaller space h[l] ∈ RNX×D[l]
H with D[l]

H < DX where h[l] denotes the lth hidden layer, and D[l]
H

denotes its dimensionality, using an ascendant combination of layers. The final hidden encoding
layer is usually called bottleneck, because it forces the network to compress the data into what we
called a latent space. We use the encoder function (Eq. 4.10) to encode the input for the hidden
layer based on the visible layer’s vector xt:

h[l]
t = f (x[l])t) = σ

(
W[l]T

en x[l])t + b[l]
en

)
∈ RD[l]

H (4.10)

WhereD[l]
H is the dimensionality of the lth hidden layer’s vector, W[l]

en ∈ RD[l]
X ×D[l]

H is the weight

matrix of the encoder, b[l]
en ∈ RD[l]

H is the bias vector of the lth decoder layer.

The decoder

This part is responsible of decoding the latent representation, which aims to reconstruct the
original input space X̂ ∈ RNX×DX from its compressed representation. To reconstruct the data in
the reconstruction layer, we use Eq.(4.11) to decode the data in the hidden layer:

x̂[l]t = g(h[l]
t) = σ

(
W[l]

de
Th[l]

t + b[l]
de

)
∈ RD[l]

X (4.11)

In Eq.(4.11), W[l]
de ∈ RD[l]

X × D[l]
H and b[l]

de ∈ RD[l]
X are the weight matrix and bias vector of the

decoder, respectively, and x̂t is the reconstruction of the input xt at the t timestamp.

101

If an autoencoder succeeds in simply learning to reconstruct the input perfectly, then the ar-
chitecture didn’t learn useful representation. Instead, autoencoders are designed to be unable to
learn a perfect copy of the input. Therefore, they are restricted in ways that allow them to recon-
struct only approximately, and copy only the input that resembles the training data. Because the
model is forced to prioritize which aspects of the input should be copied, it often learns useful
properties of the data. This chapter presented autoencoders showing how the naive architectures
that were first defined for them evolved to powerful models with the core abilities to learn a
meaningful representation of the input and to model generative processes. To conclude, the goal
of autoencoders is to get a compressed and meaningful representation. We would like to have
a representation that is meaningful to us, and at the same time good for reconstruction. In that
trade off, it is important to find the architectures which serves all needs.

4.2.2 Adaptive Moment Estimation

Adaptive moment estimation known in the deep learning community as Adam is an optimiza-
tion algorithm that was introduced in [58] as an extension to stochastic gradient descent. This
algorithm combines the advantages of AdaGrad and RMSProp (section 1.4.7). Whereas RMSProp
uses an exponential moving average of the gradient, Adam also makes use of the average of the
second moments of the gradients (the uncentered variance). In other words, the algorithm com-
putes an exponential moving average of the gradient and the squared gradient. The decay rates
are controlled through the parameters β1 and β2.

A paper was published in 2016 titled ”An overview of gradient descent optimization algo-
rithms” [59] presents an overview of the most popular optimization algorithms in deep learning.
The paper in the section ”Which optimizer to choose?” mentioned that for sparse data, adaptive
learning rate methods are likely to achieve best performances. It is also noted that the use of the
second moments helps Adam slightly outperform RMSprop towards the end of optimization as
gradients become sparser.

mt = β1 ·mt−1 + (1− β1) · gt (4.12a)

vt = β2 · vt−1 + (1− β2) · g2
t (4.12b)

mt : Estimate of the first order moment (mean) of the gradients.
vt : Estimate of the second order moment (uncentered variance) of the gradients.

Note : vt is the estimate of the uncentered variance because the expression of the variance is
var(x) = E[x2]− (E[x])2 whereas the update of vt contains only the term g2

t without subtracting

102

the square of the mean of the gradients.

Initializing the moments vt and mt with zeros causes the gradients to be biased towards zero.
For an initial estimate m0, the first order moment m1 = β1 ·m0 + (1− β1) · g1 is highly dependent
on m0. Therefore, the first steps of the moving average is heavily biased towards the initial m0.
Avoiding this problem requires setting a bias-corrected moments estimate as follows :

m1 = β1 ·m0 + (1− β1) · g1 =⇒ m̂1 = g1 =
m1 − β1 ·m0

1− β1
(4.13)

Considering m0 = 0 makes the estimate of the moments as following:

m̂1 =
m1

1− β1
(4.14)

The general expression for each step t becomes :

m̂t =
mt

1− βt
1

(4.15a)

v̂t =
vt

1− βt
2

(4.15b)

Finally, the update rule of Adam algorithm is the formula 4.16

Θt = Θt−1 −
η√

v̂t + ε
· m̂t (4.16)

η : Learning rate.
ε : Constant empirically set to 10−8.
β1 and β2 : Parameters that have usually the default values of 0.9 and 0.999 for better results.

4.2.3 Deep Enhanced Sparse NMF

In this section, we propose a new approach based on deep learning to enhance the performances
of the Sparse NMF. The pipeline of this approach can be summarized as follows (Figure 4.5).

1. Estimate the magnitude spectrum of speech and music using Sparse NMF with pretrained
dictionary W and time frequency (e.g. Wiener Filter).

2. Train an autoencoder on speech and music spectrograms estimated by the Sparse NMF on
the training data that was used to obtain the pretrained dictionary W.

3. Use the encoder’s pretrained weights to initialize the Deep Neural Network (DNN) weights.

103

4. The DNN will update its weights as well as the input magnitude spectrograms of the speech
and music that were estimated by the SNMF.

W1,H1

W2,H2
SNMF

S2

S1
Masking Reconstruction

Enhanced S1

Enhanced S2
DNN

Encoder WeightsAE

Mixed Spectrum

Music
Spectrum

Speech
Spectrum

Estimated Speech

Pretrained
Dictionary

Estimated Music

Figure 4.5: Pipeline of Deep Enhanced Sparse NMF.

Architecture

The Neural Network contains hidden layers with 128-64-32-2 hidden units respectively. It’s main
purpose is to update the magnitude spectrogram of the speech and music predicted by the Sparse
NMF. The DNN learns to classify each sample of the two spectrograms into two classes (Speech
and music) and it is constrained to keep the magnitude spectrograms non-negative and their
sum must remain equal to the magnitude spectrogram of the mixed signal. Therefore the cost
function contains 3 terms :

• Classification error.

E(S1) = (1− f1(S1))
2 + (f2(S1))

2, (4.17a)

E(S2) = (f1(S2))
2 + (1− f2(S2))

2, (4.17b)

E(S1) : Classification error of the first source (Speech) where the error is minimized when
the DNN output is [1,0].
E(S2) : Classification error of the second source (Music) where the error is minimized when
the DNN output is [0,1].

• The Frobenius norm of the difference between the mixed signal magnitude spectrogram
and the sum of the estimated speech and music spectrogram.

SE(S1, S2, S) = ||S1 + S2 −Y||F (4.18)

104

• Non-negativity constraint.

Enn =
2

∑
i=1

min(Si, 0) (4.19)

The cost function can be written as follows :

L(S1, S2) = E(S1) + E(S2) + λ · SE(S1, S2, S) + β · Enn (4.20)

The parameters λ and β are regularization parameters that have a very high impact on the
performances of the model. Therefore, these two hyper-parameters should be considered in the
tuning process. Values of λ = 10 and β = 6 yield empirically to better results because they help
the model to achieve higher values of SDR in fewer epochs and offers a good trade off between
the non-negativity and the summation constraints.

The optimization problem consists of minimizing the cost function 4.21 with respect to the
model parameters W and the magnitude spectrograms S1 and S2 of the speech and the music.

{Ŝ1, Ŝ2, W} = argmin L(S1, S2)
S1,S2,W

(4.21)

The optimizer used to solve this problem is Adaptive Moment Estimation (Adam) that was
presented in subsection 4.2.2.

Undercomplete AutoEncoder

The AutoEncoder we used is undercomplete (dimension of the hidden layers is less than the
input dimension), symmetrical and has 3 hidden layers in its encoder and decoder. The number
of nodes in each hidden layer is 128-64-32-2-32-64-128 as shown in Figure 4.6. This autoencoder
is trained to reconstruct the magnitude spectrogram of speech and music estimated using the
Sparse NMF. The data that was used to train it is the same as the one used to get the pretraind
dictionary W of the SNMF.

The purpose behind using an undercomplete AutoEncoder is:

• Its ability to extract important features from the data due to its dimentionality reduction
properties. Therefore, we use it as a feature extractor to initialize our DNN (Classifier).

• It’s a better approach than training the Restritced Boltzman Machine (RBM) only on the test
data as they did in [16] because the AutoEncoder in our method is trained on the training
data (Bigger size than test data) and this will help the DNN to use the salient features
learned from the training data allow the model to learn the general distribution of the data.

105

• The AutoEncoder is only trained once. Which is an improvement in terms of time complex-
ity compared to [16].

Figure 4.6: AutoEncoder Architecture.

The training process of the AE is based on the optimization of the cost function (Eq.4.22)
that represents the Frobenius Norm of the difference between the reconstructed spectrogram of
the signal (speech or music) and the estimated spectrogram using the Sparse NMF (input of the
AutoEncoder).

L(S, Ŝ) = ‖S− Ŝ‖F (4.22)

Ŝ : Reconstruction of the spectrogram.
S : Spectrogram estimated by the SNMF.

Moreover, after trying many architectures and configurations, we concluded that the bias
term should not be considered in the AutoEncoder because the cost function of the AE did not
decrease (see Figure 4.7. Besides, We tried an architecture of AE that contains all the layers of
the DNN (including classification layer) and another architecture that does not include the last
layer. While the loss of the second AE seems to be less than the first, training all the layers seems
to have a good impact on the convergence of the DNN and for this reason we used the AE that
has a bottleneck layer dimension equal to 2.

106

Figure 4.7: Evolution of the cost function of the AutoEncoder with and without bias.

AE trained with only SMR = 0

We notice that the DNN model performed well for SMR = −5 and SMR = 0 but did not improve
the SDR for an input mixed signal with SMR = 5. This is due to the fact that for mixing the
signals in SMR = −5 we have multiplied the music signal by a scale factor and kept the speech
signal as it is. Therefore, the power of the speech signal in SMR= −5 and SMR = 0 is the same
and the difference is in the power of the music signal. This explains why the trained AE on
SMR = 0 gives also good performances for SMR = −5. However, for an input mixed signal with
SMR = 5, the speech signal was multiplied by a scale factor, this makes it different from the
speech signal used for training the AutoEncoder and this is the reason why it did not improve
the NMF SDR. Generalizing the results of mixed signals with SMR = 0 and −5 requires training
the AutoEncoder on different SMRs and Speech power or using a different kind of normalization
to set the speech signal to the same power as of the training data of the Auto Encoder. A solution
to this problem is described in section 4.3.1.

SMR SDR SDR
Algorithm Input Speech Music

(dB) (dB) (dB)
−5 0.82 12.58

Sparse NMF 0 5.98 3.44
5 8.71 −6.7
−5 2.5 12

DE-SNMF 0 6.99 3.41
5 8.67 −6.7

Table 4.1: Comparaison between DE-SNMF and SNMF.

107

4.2.4 Denoising Sparse NMF

In this section, we propose a second new approach based on deep learning to enhance mixture
separation did earlier by the Trained Sparse NMF. This method is characterized by its simplicity,
because it targets the noisy aspect of time series data. The pipeline of this approach can be
summarized as follows (Figure 4.5), and consists of 4 main steps:

1. Estimate the activations H using Sparse NMF with pretrained dictionary W.

2. Initialize weights of the autoencoder using He Initialization.

3. Train the denoising autoencoder on normalized activations H estimated by the Sparse NMF
during the test stage.

4. Use the disrupted activations H̃ to estimate the new magnitude spectrum of speech and
music source through masking operation after the model inference.

Figure 4.8: Pipeline of Denoising Sparse NMF.

4.2.5 Denoising Autoencoder

Denoising NMF takes advantages of the denoising autoencoder (DAE) to enhance the Signal to
Distortion Ratio (SDR). Whereas most of the autoencoders are interested in the compression of

108

the input in order to learn an undercomplete representation in order to capture the most salient
features of the training data, we used the Denoising Autoencoder as a robust architecture for
error correction. In this model, the input is disrupted by some noise using Dropout that we cited
in Section (1.4.6) and the denoising autoencoder is expected to reconstruct the clean version of
the input, as illustrated in Figure (4.9).

Figure 4.9: Denoising Autoencoder [60]

Traditionally, autoencoders minimize the reconstruction loss function Eq. 4.23:

L(x, g(f (x))) (4.23)

where L is a loss function penalizing f (g(x)) for being dissimilar from x, such as the L2 norm
of their difference. This encourages f ◦ g to learn to be merely an identity function if they have
the capacity to do so.
A denoising autoencoder instead minimizes Eq. 4.24:

L(x, g(f (x̃))) (4.24)

where x̃ is a copy of x that has been corrupted by some form of noise, that we created using
dropout that we introducted in subsection (1.4.6). We then constraint the Denoising autoencoder
to undo this corruption rather than simply copying their input, it will constrain the DAE to learn

109

the general distribution of the input, while learning to cancel noise present in the data. In
summary, in denoising autoencoders, the emphasis is on letting the encoder be resistant to some
perturbations of the input, in our case, to enhance the SDR by denoising the gains H of the Non
Negative Matrix Factorization (3.1) applied on the magnitude spectrum of the mixed signal.

The Architecture

The Neural Network contains 5 hidden layers with 40-20-10-20-40 hidden units respectively,
while the input and output layer contain as much as neurons as the number of components
used in SNMF. The main purpose of our algorithm is to reconstruct the masks or activations
H estimated by the Trained Sparse NMF in order to improve the Signal to Distorsion Ratio
(SDR). The DNN learns an encoding of the input data H constrained to extract only the salient
features from the input during the encoding phase, which enables a kind of data denoising which
enhances the quality of the mixture separation.

The optimization problem consists of minimizing the Mean Squared Error loss between the
activations H estimated by the SNMF, and the uncorrupted reconstruction of H̃ calculated during
the forward-pass, with respect to the model parameters.

MSE =
1
n

n−1

∑
i=0

(
Hi − H̃i

)2
(4.25)

Where n design the number of point, Hi the observed values, and H̃i represents the predicted/re-
constructed values. Furthermore, the optimizer used to solve this problem is Adaptive Moment
Estimation (Adam) that was presented in section 4.2.2 and also used in the Deep Enhanced Sparse
NMF 4.2.3.

4.3 Results and Discussion

4.3.1 Deep Enhanced Sparse NMF

Classification.

As presented in 4.2.3, the DE-SNMF method is based on a DNN that classifies the input spectro-
gram into a speech and music. The classification of the model is evaluated using the activations
of the two neurons that represent a one hot encoding (10 for speech and 01 for music). Table 4.2
and 4.3 summarizes the accuracy of the model for two different types of inputs:

• The music spectrogram is scaled with respect to the training music data of the AutoEncoder.

• The music spectrogram is not scaled.

110

SMR -5 0 5
Speech 100% 100% 97.88%
Music 100% 100% 43.18%

Table 4.2: Classification accuracy of speech and music without scaling music spectrogram.

SMR -5 0 5
Speech 100% 100% 98.76%
Music 100% 100% 84.09%

Table 4.3: Classification accuracy of speech and music with scaled music spectrogram.

The accuracy of the model is high for the different SMR values in the case of the unscaled
music spectrogram. However, we can observe a slighlty lower accuracy for speech in SMR = 5
and a very low accuracy (43.18 %) for the music. This is due to the fact that in SMR = 5 the music
signal have been attenuated to create the mixed signal.

Mixed =
1

scale
·music + speech (4.26)

This attenuation has caused perturbations to the model because the AutoEncoder was trained
on spectrograms of mixed signals with SMR = 0 and the spectrograms estimated using the Sparse
NMF did not lead to good results in terms of music SDR for SMR = 5. The estimated music spec-
trogram contains a lot of distortions that make the task of classifying the music spectrogram
harder. To solve this problem, we have scaled the music spectrogram estimated using the test
Sparse NMF with respect to the power of the music spectrogram used for training the AutoEn-
coder. In other words, we want to have the power of the test music to be approximately in the
same scale as the power of the music used in the training.

α =

∑
i,j
|M2|

∑
i,j
|Ŝ2|

(4.27a)

Ŝ2 = Ŝ2 · α (4.27b)

Ŝ2 : Spectrogram of music estimated using the test Sparse NMF.
M2 : Spectrogram of music used to train the AutoEncoder.
α : Scaling factor.

It can be noticed that scaling the music spectrogram highly impacts the classification of the
DNN model in a positive way and increases the accuracy of classifying the music spectrogram
for SMR = 5 from 43.18 % to 84.09 % while keeping a perfect accuracy for other SMR levels. A

111

more visual approach to understand this improvement is by visualizing the distribution of the
first neurone activation that in the best cases should always output a 1 for speech and 0 for music.
Figures 4.10 and 4.11 illustrates this distribution for a DNN trained on scaled and unscaled music
spectrograms respectively.

Figure 4.10: Distribution of the activation of the first neuron for a DNN trained on scaled music spectrograms.

Figure 4.11: Distribution of the activation of the first neuron for a DNN trained on unscaled music spectrograms.

112

Two main conclusions can be drawn from the distribution plots :

• The density function has higher values for scaled music spectrograms than unscaled music
spectrogram. For example, for SMR = -5 the density function of the speech activation
achieves 14000 counts for scaled music, while its value barely reaches 500 counts.

• For SMR = 5 the distribution of the music activations density function is flattened for an
unscaled music spactrogram. This means the model is confused to classify the music in
SMR = 5. However, scaling the music leads to a better distribution of the activations as
shown in Figure 4.10.

• Even though the accuracy of the model in SMR = -5 and SMR = 0 is the same for scaled
and unscaled music, The probability of a good classification (Activation of the neuron) is
higher when the DNN is trained on scaled music spectrograms.

Loss and Reconstruction

Updating the speech and music spectrograms using the DNN improved the separation and re-
duced the distortions that are present in the reconstructed signals. Table 4.4 summarizes the
results of the Sparse NMF with Wiener filter and our model DE-SNMF. Our proposed estimation
approach has increased significantly the speech SDR.

SMR SDR SDR
Algorithm Mixed Speech Music

(dB) (dB) (dB)
−5 −1.89 12.47

SNMF 0 6.22 3.54
5 10.49 −6.17
−5 3.56 12.07

DE-SNMF 0 7.04 3.48
5 12.97 -0.86

Table 4.4: DE-SNMF SDR results in dB evaluated for different input SMR values.

The results we have obtained using the DE-SNMF outperforms the results of the DNN pre-
sented in [51]. But since we did not use the same dataset, the comparison of the SDR results is
not very significant. Therefore, instead of comparing directly the SDR we compare the relative
improvement between the NMF and the DNN (Table 4.5). We conclude from the table that the
enhancement of the signal in our method surpasses the model in [51] for SMR = 5 and SMR =
-5 which means that our model leads to a better reconstruction even when the speech power is
very small compared to music. Finally, Figures 4.12, 4.14 and 4.13 represents the evolution of
the loss, the classification loss and the SDR overs the training epochs. We can notice that when

113

the global loss and the classification loss converges the SDR becomes more stables in a certain
value. Therefore, the criteria to stop the training depends on the decreasing factor of the speech
classification loss because it’s more linked to the SDR (see Figure 4.14). It’s important to note
that the model takes around 50 seconds to enhance the magnitude spectrogram of each source
estimed previously by the Trained SNMF.

SMR SDR SDR
Algorithm Mixed Speech Music

(dB) (dB) (dB)
−5 1.3 1.15

DNN of [51] 0 1.22 0.94
5 0.97 1.04
−5 5.42 1.04

DE-SNMF 0 0.82 −0.06
5 2.48 5.33

Table 4.5: DE-SNMF SDR results in dB evaluated for different input SMR values.

Figure 4.12: Global loss, classification loss and SDR of the speech signal for SMR = 5 using DE-SNMF method.

114

Figure 4.13: Global loss, classification loss and SDR of the speech signal for SMR = -5 using DE-SNMF method.

Figure 4.14: Global loss, classification loss and SDR of the speech signal for SMR = 0 using DE-SNMF method.

4.3.2 Denoising SNMF

We applied the Denoising-SNMF to separate speech and music signals from their mixture signal.
The proposed algorithm was applied on a collection of speech and piano data sampled at 44kHz
then down-sampled at 16kHz. For speech data, we used the training and testing male and female
speech conversation data from an Audio Book [61]. For music data, we downloaded piano music
from Youtube [62]. For the initialization of the NMF we used Nonnegative Double Singular Value
Decomposition (NNDSVD) [63] that respects the non negativity constraint of the NMF, we used
a dictionnary size of 24 and 48 to represent the speech and the music sources respectively. We
then used 20 minutes of both clean speech and clean piano music to train dictionnaries of SNMF,
and test the latter on a mixture of 30 seconds by updating only the masks H while keeping the

115

basis vectors W fixed. A test SNMF was used to obtain the activations H of the separation, with
a sparsity λ = 100.The Denoising SNMF was responsible of enhancing the SDR by applying
a denoising on the mask matrix H generated by the test SNMF. The number of nodes in each
hidden layer were 40-20-10-20-40 with 5 hidden layers, while the input layer was composed of
k = 72 neurons, equal to the total number of SNMF’s components. For the activation function,
we used the Rectified Linear Unit (ReLU) [27] at each layer including the output layer because it
respects the non negativity constraint of the problem, and is faster to compute than the sigmoid
function, while saturating less. For the initialization, the autoencoder was initialized using He
Initialization [36], we used 200 epochs for the training of the DAE with a batch size of m = 10
and a learning rate of η = 103, the model takes around 50 seconds to enhance the separation.
Performance measurements of the separation algorithm were done using the signal to distorition
radio (SDR) from the BSS Eval Matlab toolbox [64].

Algorithm Input SMR SDR SDR
(λ = 100) (db) Speech Music

(db) (db)
Sparse NMF −5 1.6278 12.253

0 6.1960 3.5360
5 10.487 −6.1668

Denoising −5 4.0737 13.033
SNMF 0 8.102 4.26

5 12.49 −5.71

Table 4.6: SDR in Db for estimated speech and music signal

The results presented in Table 4.6 represent the SDR for both estimated speech and music signal,
we can notice a great improvement in SDR, while performing better than regular and sparse
trained NMF, for all input speech-to-music ratio (SMR) values from -5 to 0 to 5 dB. The improve-
ment in the SDR is usually between 1 - 3 dB over SNMF using optimal filters, and as high as 6
dB compared to regular SNMF. Furthermore, from figure 4.15, we can notice that the SDR Ratio
of speech and music increased over the decreasing of the loss, in other word, we can say that the
model learned to separate the mixture.

116

Figure 4.15: Normalized Speech and Music SDR evolution over training loss for SMR = 5

On the other hand, From Figure 4.16a, we can observe that for every SMR, the reconstruction
loss is decreasing, meaning that the autoencoder is converging. Furthermore, from Figure 4.16b,
we can notice that the distribution of the input and the reconstruction are different. While the
input distribution is zero mean centered, the reconstructed input has less density around 0,
allowing to have a much more interesting distribution of values by its variance, we can say that
our architecture didn’t reconstruct perfectly the input.

117

(a) Learning Curve over different SMR (b) Distribution of the activation H before and after the
inference of the Denoising SNMF

Figure 4.16: Learning Curves and weights’ distributions using the denoising SNMF.

In fact, an autoencoder that reconstructs its inputs perfectly does not necessarily mean that
it is a good autoencoder, it is usually an over-complete autoencoder that has learned to copy its
inputs to the encoding layer. In other words, it would perfectly reconstruct its inputs without
actually learning any useful patterns in the data. This illustrates that a perfect reconstruction
does not guarantee that the autoencoder has learned something of interest. On the other hand,
if it produces very bad reconstruction, then it is undoubtedly a bad autoencoder.

118

Chapter 5

Deep Unfolding Based Source
Separation

5.1 Introduction to Deep Recurrent NMF

The second approach in our project is a method based on the Deep Unfolding techniques also
known as unrolling algorithms.

The speech separation using Deep Recurrent NMF (DR-NMF) is performed in 3 essential
steps that are presented in figure 5.1:

Statistical Model
(NMF)

Inference Algorithm
(ISTA)

Unfolded Deep
Network

Figure 5.1: Deep Recurent NMF Steps

The constructed recurrent Neural Network is a result of unfolding the inference algorithm
ISTA Of the Non negative Matrix Factorization. This method shows a better performance than
state of the art deep learning methods like LSTMs in generalisation and therefore DR-NMF is less
sensitive to overfitting and requires less data in the training process. Reducing the training data
will help at reducing the hardware requirements, time and cost of the training. Besides, building
the neural network from unfolding algorithm is highly interpretable compared to a standard
deep learning neural network that is considered as a black box.

5.2 Statistical Model

The Sparse Non negative Matrix Factorization [12] was used to decompose the magnitude spec-
trum into two non negative matrices W and H like it was done in previous sections.
Authors in [6] used the Frobenius Norm as an objective function, which is equivalent to fix
β = 2, minimized using MU optimizer described in subsection 3.1.5. They also trained the
dictionnaries differently from the Trained NMF we introduced in section 3.1, as it is illustrated
in Figure 5.2

120

NMF
Clean speech

magnitude
spectrum

NMF
noisy speech

magnitude
spectrum (Freeze)

Update only

Train NMF on clean
speech audio

Initialize Warm Start
ISTA, Unfolded

ISTA

Train SNMF on noisy
speech audio

S
ho

rt
TI

m
e

Fo
ur

ie
r T

ra
ns

fo
rm

 (
S

TF
T)

Multiplicative
Update
(MU)

Figure 5.2: SNMF Training pipeline to initialize WS-ISTA, and DR-NMF

The overall training procedure expressed by the Figure 5.2 above is described by the following
steps:

• Train clean speech dictionary W clean on clean speech signal using sparse NMF optimized
by Multiplicative Update (MU).

• Train the overall dictionary W = [W clean, Wnoise] on noisy speech signal, updating only the
noisy dictionary Wnoise while keeping clean dictionary W clean freezed.

• Use W to initialize weights of the Warm Start ISTA, and DR-NMF.

Authors in [6] emphasised on extracting speech from the noise only, without carrying about the
latter. Plus, we can say their pipeline is suited to situations where we don’t have access to dictio-
nary trained directly on clean music, or other type of considered noise, making their approach
convenient to speech enhancement. Indeed, they have trained their SNMF on the clean speech
signal then the mixture.

On the other hand, we focused our study on the separation of the speech from the music
source as well as extracting the music from the mixture, enhancing then the estimated spectrum
of each source. Furthermore, training NMF on clean music signal, allows to have a prior knowl-
edge on the music schema, expressed by its trained dictionary Wmusic. Moreover, we used the
IS-Divergence 3.1.1 that underlies previous work in the area of automatic music transcription
and single-channel audio source separation, thanks to its scale-invariant property.

121

5.3 Inference Algorithm

The optimization problem we need to solve is the minimization of a cost function that contains a
smooth term and a non-smooth term (LASSO).

LASSO [65] stands for Least Absolute Shrinkage and Selection Operator. It adds penalty term
to the cost function (regularization term). This term is the absolute sum of the coefficients of the
model. Higher values of coefficients penalize the cost function, causing the model to decrease
the values.

argmin
h≥0

Dβ(X||W · H) + λ · ‖H‖1 (5.1)

W : Dictionary matrix (Basis vectors).
H : Gain matrix.
Dβ(X||W · H) : β- Divergence loss between the signal spectrogram X and the reconstruction of
its non-negative decomposition X̂ = W · H across time and frequency.

Dβ(X||W · H) = ∑
t, f

Dβ(Xt, f ||X̂t, f) (5.2)

Authors in [6] use the β-Divergence function with β = 2 that represents the summed square
error between X and X̂. However, other values of β that corresponds to other losses like Kull-
back–Leibler and Itakura–Saito can be considered.

For β = 2, the objective function takes the following form :

argmin
h≥0

1
2
· ‖X−W · H‖2 + λ · ‖H‖1 (5.3)

5.3.1 Iterative soft-thresholding algorithm (ISTA)

To minimize the objective function 5.3 we used the Iterative soft-thresholding algorithm (ISTA)
instead of the usual Multiplicative Update (MU) algorithm 3.1.5. The motivation behind this
choice is that the multiplicative updates algorithm is slower than ISTA and the expressions of the
multiplicative update are quite challenging for the backpropagation of the unfolded model.

To assure the non-negativity of the gains matrix H the so f t function that has the following
expression was used in the original paper [6] :

softλ/α(zi) =
zi

|zi|
· ReLU(zi −

λ

α
, 0) (5.4)

122

Algorithm 5: Iterative soft-thresholding algorithm (ISTA).

Input: Dictionary W, Spectrogram X, Initial gains H(0)

Input: Step size 1
α , sparsity parameter λ, max ISTA iterations K

for k = 1 : K do
Z ←

(
I− 1

α WTW
)

H(k−1) + 1
α WTX

H(k) ← softλ/α(Z)
end
return H(K)

However, we noticed that the quotient zi
|zi | will always have a magnitude of 1 and a phase 0 or

π which makes a part of the gains negative. To avoid this problem we omitted this quotient. We
have also replaced the threshold parameter λ

α that controls the sparsity of the gains H with the
sparsity parameter λ. This allows us to link the sparsity to a single parameter λ instead of two
parameters. The expression of the soft function for each element of z becomes:

softλ(zi) = ReLU(zi − λ, 0) (5.5)

One of the limits of ISTA is that it does not consider the temporal dependencies between the
different frames. ISTA runs independently on each time frame, meaning for each column j of
the mixed spectrogram X, ISTA computes the column j of the gains matrix without taking into
account the other adjacent columns that have a potential correlation with the column j. To deal
with this, a slightly modified version of ISTA was proposed in [6].

5.3.2 Warm Start ISTA

Warm Start ISTA is a version of the ISTA algorithm that solves the NMF problem without ne-
glecting the temporal dependencies between the frames. It takes advantage of a ”Warm Start
Initialization” that consists of initializing the gain h at timestamp t and iteration k = 0 with the
gain of the last iteration K of the previous frame. This provides a good initialization of the gains
at each frame.

h(0)
t = h(K)

t−1 (5.6)

123

Algorithm 6: Warm Start Iterative soft-thresholding algorithm (WSISTA).

Input: Dictionary W, Spectrogram observation of X : x1:T, initial gains h(k)
0

Input: Step size 1
α , sparsity parameter λ, max WSISTA iterations K.

for t = 1: T do

h(0) ← h(K)
t−1

for k = 1 : K do

z ←
(
I− 1

α WTW
)

h(k−1)
t + 1

α WTxt

h(k)
t ← softλ/α(z)

end

end
return h(K)

Figure 5.3 illustrates the difference between the two algorithms using their time-unrolled
graph.

(a) ISTA (b) Warm Start ISTA

Figure 5.3: Time-unrolled graph of ISTA and Warm Start ISTA.

124

5.3.3 Warm Start ISTA with memory

Warm start ISTA considers only the gain h(K) of the previous frame. We propose in our work an
improved version that takes advantage of memory to compute the gains as it is shown in Figure
5.4.

Figure 5.4: Time-unrerolled graph of Warm Start ISTA with memory

The memory consists of a weighted moving average over the last N frames.

h(0)
t =

N
∑

i=1
γt−i,t · h(K)

t−i

N
∑

i=1
γt−i,t

(5.7)

γt−i,t : Weights of the moving average used to initialize gain ht.

Adding memory makes the algorithm takes full advantage of the temporal dependencies and
gives a better initial estimate of the gains at each frame. It also gives a smooth estimate of h since
it averages over the past frames.

125

Optimal Mask Feedback

We have seen earlier in chapter 3 that the SDR of the reconstruction is highly dependent on the
value of the parameter p used in the generalized Wiener Filter. Moreover, we noticed that the
optimal value of p depends on the SMR. To solve this problem, we propose an adaptive value of
p that depends on the SMR of the reconstructed signal.

1. Apply NMF using Warm start ISTA with memory.

2. Reconstruct the estimated speech and music signal with a default value p = 5 which is the
optimal value for an SMR equal to zero.

3. Compute the SMR of the estimated speech and music signals and map it to the correspond-
ing input SMR. There is a linear relationship between the two SMRs according to the graph
shown in Figure 5.5

4. Automatic selection of the new value of p according to the mapped SMR.

Figure 5.5: Map between input signals SMR and estimated signals SMR.

5.3.4 Results

We present in Table 5.2 the results of each improvement we made on the original algorithm
described in this section and its resulting Signal-to-Distortion Ratio (SDR). We can observe that
the memory term improves more the results of the music because it has more temporal depen-
dencies than the speech. Moreover, using the automatic optimal mask increases significantly the
results for both speech and music. We demonstrated in chapter 3 the effect of the mask on the
results of the NMF and the need to have an automatic method to choose the parameter p of the

126

mask. This solution we provided here can be considered to solve the problem of choosing the
mask manually or fixing its value and sacrificing the results.

SMR SDR SDR
Algorithm Input Speech Music

(db) (db) (db)
−5 0.41 11.19

Warm Start ISTA 0 5.7210 1.7425
5 10.436 −9.3511

Warm Start ISTA −5 0.21 11.69
with memory 0 6.5 2.25

(Our approach) 5 8.06 −7.85
Warm Start ISTA −5 2.58 11.70

with memory and optimal mask 0 6.5 2.25
(Our approach) 5 11.2 −7.94

Table 5.1: SDR in Db for estimated speech and music signal, using Warm start ISTA;

5.4 Deep recurrent NMF

In this section, we explain how we use Deep Unfolding to combine the Warm Start ISTA algo-
rithm with Deep Learning techniques to solve the NMF problem and improve the separation
results. As discussed in 1.5, unrolling algorithms helps developing efficient, high-performance
and interpretable networks that can be trained on limited datasets. Warm Start ISTA is a perfect
example of an iterative algorithm that can be unfolded across its K iterations. The resulting Deep
Network have the following characteristics :

• Each iteration of Warm start ISTA is considered as a layer of the network.

• While Warm start ISTA use a single fixed pretrained dictionary W (no update of W), DR-
NMF network uses the pretrained dictionary W to initialize the weights of the Neural
Network, therefore, each layer have its own weights W(k) that can be interpreted as the
basis vectors of each iteration. These weights are updated during the backpropagation of
the DR-NMF network.

• The activations of the neurons in each layer are the gains of the NMF for a specific warm
start ISTA iteration k.

• The number of neurons in each layer is equal to the number of components of the NMF.

127

• The difference between the Recurrent Neural Network (RNN) and DR-NMF from architec-
ture perspective lays in the presence of the input x in all the layers of the DR-NMF and the
sequential connections in RNN are within the same layer while the DR-NMF links the acti-
vation of the last layer with the input of the first layer. Figure 5.6 illustrates this difference
as well as the DR-NMF cell structure.

Figure 5.6: DR-NMF architecture unfolded across time (Right) compared to the unfolded architecture of the RNN (Left) [6]

5.4.1 Initialization

DR-NMF weights are initialized using the pretrained dictionaries of the NMF W. In the paper
[6] they initialized W with log(ε + W) and instead of optimizing W, they updated Ŵ and set the
model weights as follows :

W = exp(Ŵ) · diag−1(

√
∑

f
exp(Ŵ f ,:)2) (5.8)

128

Figure 5.7: Unfolded network and its optimization problem.

This expression is used in order to assure the non-negativity of the weights W after the
updates. However, according to our tests on our dataset, using exponential functions produces
many NaN values [66]. Besides, the expression 5.8 is computationally expensive and makes the
backpropagation slower. To solve the NaN problem and make the model train faster we have
used a ReLU function to update the weights.

W = ReLU(Ŵ) (5.9)

Therefore, the activation of each layer can be written as :

z←
(

I− 1
α

ReLU(Ŵ)
T

ReLU(Ŵ)

)
H(k−1) +

1
α

ReLU(Ŵ)
T

x (5.10a)

H(k) ← ReLU(z) (5.10b)

The unfolded network can be summarized in Figure. 5.7:

5.4.2 Loss Function

The objective function used by [6] was the Mean Squared Error applied between the true clean
spectrum Y and the estimated clean spectrum M̃ � X.

MSE (Y, qθ(X)) =
∑n

f ,t
(
Y f ,t − M̂ f ,tX f ,t

)2

n
(5.11)

129

The minimization of the MSE aims to maximize the signal-to-noise ratio SNR of magnitude
spectra in the time-frequency-domain. Furthermore, the MSE emphasized to back-propagate
gradients of larger error much more than small error because of the square operation, which
means that the larger error contribute much more than smaller error that are mitigated.

In our study, we have used the Mean Absolute Error (MAE) in order to consider both small
and large error in the minimization process, because we consider that trained dictionaries W =

[W speech, Wmusic] have already reached a satisfactory minima with respect to the NMF decompo-
sition, making smaller error as important as larger error, which allows smaller gradient as well
as larger gradient to flow in the back-propagation.

MAE (Y, qθ(X)) =
∑n

f ,t
∣∣Y f ,t − M̂ f ,tX f ,t

∣∣
n

(5.12)

5.5 Results and Discussion

We applied the Deep Recurrent NMF to separate speech and music from the mixture signal. The
proposed method was applied to a collection of speech and piano data sampled at 16kHz fre-
quency. For speech data, we used male and female speech conversation data from an AudioBook
[61]. For music data, we downloaded piano music from Youtube [62].

The basis vectors (weights of the unfolded network) are initialized with the pretrained dictio-
nary of the NMF W that consists of 16 and 48 components to represent the speech and the music
sources respectively. On the other hand, we propose to use the Nonnegative Double Singular
Value Decomposition NNDSVD [63] for the initialization of the first gain h0 instead of making
this gain a learnable parameter as they did in the paper [6].

The unfolded network is trained on 5 min of data by updating its weights (basis vectors). The
model is then tested on 30 seconds of mixed signal spectrum. During test time, the weights of
the model W are fixed, and only the activations (gains) H are updated just like the regular NMF.

Two baseline methods are compared to DR-NMF: SNMF using multiplicative update (MU)
with 200 iterations, which is used to initialize the DR-NMF networks, and Warm Start ISTA.

The DR-NMF networks achieve competitive separation performance as shown in table 5.2
compared to Sparse-NMF as well as DE-SNMF and Denoising NMF while keeping the inter-
pretability of the model possible and very fast execution time. The total number of layers used in
DR-NMF was equal to K = 5, we used a step size 1

α = 0.02, and a learning rate of η = 0.005 using
Stochastic Gradient Descent (SGD) that minimized the Mean Absolute Error (MAE) between the
clean speech spectrum and the reconstructed speech . In order to constraint both matrices W and
H to be positive, we used the Rectified Linear Unit (ReLU) [27] at each layer k, while adding
non-linearity to the model. We also used a mask value p = 2 to reconstruct the estimated signals.

130

Performance measurements of the separation algorithm were done using the signal to distortion
radio (SDR) from the BSS Eval Matlab toolbox [64].

Algorithm Input SMR SDR SDR
(db) Speech Music

(db) (db)

Trained −5 1.63 12.25
Sparse NMF 0 6.22 3.54

5 11.80 −7.76

Warm Start −5 0.41 11.19
ISTA 0 5.7210 1.7425

5 10.436 −9.3511

Deep Unfolded −5 4.3166 13.822
ISTA 0 8.1059 7.05
(dev) 5 13.523 2.15

Deep Unfolded −5 3.06 12.73
ISTA 0 6.44 4.03
(test) 5 12.45 1.08

Table 5.2: SDR in Db for estimated speech and music signal, using DR-NMF

It can be noticed that DR-NMF outperforms Sparse NMF, for the three values of SMR = (−5, 0, 5),
with a particular enhancement in the music estimated spectrum, with an improvement reaching
10dB for SMR = 5, 3.5dB for SMR = 0, and minimum of 1.5dB for SMR = −5. On the other hand,
the improvement of the speech signal is also observed, with a maximum of 3dB for SMR = 5, 2dB
for SMR = 0, and a minimum of 1.7dB for SMR = −5.

131

Figure 5.8: Learning Curve and SDR speech and music evolution over DR-NMF training for SMR=0.

Figure 5.9: Learning Curve and SDR speech and music evolution over DR-NMF training for SMR=-5.

Figure 5.10: Learning Curve and SDR speech and music evolution over DR-NMF training for SMR=5.

From Figures 5.8, 5.9 and 5.10, we can notice that while the objective function decreases,
the SDR of both the estimated speech and music signal increases. Plus, we can notice that the
DR-NMF is faster than other methods, needing less iterations with a minimum of 10 to 20 epochs
to converge toward a solution while enhancing speech and music signal better than SNMF.

132

Finally, the inference using the unfolded network consists of a forward propagation of the
mixed spectrum across the network. This process takes around 50 ms for estimating 1 second,
which is quite faster than using the first approach that we described in chapter 4, that takes up to
5 seconds for a mixed signal with a duration of 1 second. The fast execution time of the unfolded
network makes it a great choice for real time applications in source separation.

133

Conclusion

The research community witnessed a great success of the non-negative matrix factorization in
a wide variety of source separation applications especially audio signal processing. However,
deep neural networks (DNN) have demonstrated more promising performances in innumerable
applications of computer vision, pattern recognition, and speech processing at the expense of
interpretability. The study presented in this thesis puts the light on two different paradigms that
combine the model based methods like the non-negative matrix factorization and deep learning
methods : The sequential stack of the two methods and the deep unfolding.

The first approach fuses the NMF and a deep neural network in two sequential stages where
the DNN plays the role of a separation enhancer that updates the spectrograms that were esti-
mated using the NMF. We presented in chapter 4 two instances of this approach : Deep Enhanced
Sparse NMF and Denoising Sparse NMF. Both methods rely on the autoencoders (AE), but have
two different perspectives, while the DE-SNMF uses AE as a feature extractor to classify the
sources and acts directly on the sources spectrum, Denoising-SNMF takes advantage of a de-
noising autoencoder to enhance the gains estimated using the SNMF. The results we obtained
using our two methods are quite promising and demonstrated a great ability of improving the
spectra estimates of the SNMF by reducing the distortions in their different forms (interference,
artifacts). Besides, the two methods have outperformed the work presented in [16] that used the
same sequential two stages method, in terms of SDR improvement with respect to the NMF.

The second approach based on the deep unfolding paradigm has revealed the capacity to
outperform state of the art deep learning methods such LSTMs [6]. The original method was
proposed to extract only a single speech signal from the mixture. In our thesis, we propose
modifications to adapt this method to multi-source separation and extraction (speech and music)
and we improved the original architecture by changing the expressions of the network’s weights
to give more stability to the algorithm (avoid divergence) in our application. The experimental
results show that this method improves significantly the separation for both speech and music
compared to the Sparse NMF. In fact, the signal to distortions ratio of the SNMF spectra estimates
has increased by a value up 2.68 dB for the speech signal and up to 9.91 dB for the music signal
depending on the SMR value.

While both approaches led to outstanding results, the unfolded SNMF was able to estimate
the sources spectra with lower levels of distortions and its execution time is far less than the
first sequential approach making it a great choice for real time applications such as hearing aids.
The fast execution of this method can be attributed to the vectorization used in the feed forward
propagation through the network that takes less time than using the original iterative algorithm
ISTA.

We also propose an extension to the Warm Start ISTA to improve the initialization of the gains
at each frame by taking a weighted average of the previous gains which forms a memory term
that provides a smooth estimate of the gains. Furthermore, It allows to take advantage of the
temporal dependency of the spectra. This contribution helped the Warm Start ISTA algorithm to
gain up to 2 dB in terms of SDR.

Finally, we should mention that the proposed approaches have been implemented using Py-
torch V1.9.0, and the codes have been made available in Github repositories [67] and [68].

Future works The implemented models presented in this thesis demonstrated encouraging re-
sults. This work can be the object of various improvements in both the time-frequency represen-
tation of the signals and the separation techniques.

First, other types of time-frequency (TF) representations that use a fixed, nonlinear frequency
scale can be considered, because the amplitude of natural sounds in high frequencies and low
frequencies varies differently, an example of such representations are the Mel scale and the equiv-
alent rectangular bandwidth scale.

Next, variants of the separation’s algorithm can be examined, both about the model-based
method such as convolutive NMF, and the deep learning method such as LSTM, RNN, CNN
based autoencoders that capture the temporal dependencies of the input. We can also cite self-
attention mechanism that weighing the significance of each part of the input data providing
context to each point. It should be noted that, this mechanism encounters a great success in the
field of natural language processing (NLP) and computer vision, which can be then very promis-
ing in the field of source separation.

Finally, the concept of memory can be applied to the unrolling algorithm, by considering its
weights as learnable parameters of the unfolded network.

135

Bibliography

[1] World Health Organization (WHO), Audio pollution. [Online]. Available: https://www.
euro . who . int / en / health - topics / environment - and - health / noise / data - and -

statistics.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, May
2015. doi: 10.1038/nature14539.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recogni-
tion and clustering,” CoRR, vol. abs/1503.03832, 2015. arXiv: 1503.03832. [Online]. Avail-
able: http://arxiv.org/abs/1503.03832.

[4] H. Li, “Deep learning for natural language processing: Advantages and challenges,” Na-
tional Science Review, vol. 5, pp. 24–26, Jan. 2018. doi: 10.1093/nsr/nwx110.

[5] “Comparison of subjective assessment and precise quantitative assessment of lesion distri-
bution in diabetic retinopathy,” doi: doi:10.1001/jamaophthalmol.2018.0070.

[6] S. Wisdom, T. Powers, J. W. Pitton, and L. Atlas, “Deep recurrent NMF for speech sepa-
ration by unfolding iterative thresholding,” CoRR, vol. abs/1709.07124, 2017. arXiv: 1709.
07124. [Online]. Available: http://arxiv.org/abs/1709.07124.

[7] K. Gregor and Y. Lecun, “Learning fast approximations of sparse coding,” Aug. 2010.

[8] J. M. Kevin J.P Woods, “Schema learning for the cocktail party problem,” [Online]. Avail-
able: https://doi.org/10.1073/pnas.18016141151.

[9] “Auditory cortex,” [Online]. Available: https://en.wikipedia.org/wiki/Auditory_
cortex.

[10] T. Kristjansson, H. Attias, and J. Hershey, “Single microphone source separation using high
resolution signal reconstruction,” in 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 2, 2004, pp. ii–817. doi: 10.1109/ICASSP.2004.1326383.

[11] T. Virtanen, “Speech recognition using factorial hidden markov models for separation in
the feature space.,” Jan. 2006.

136

https://www.euro.who.int/en/health-topics/environment-and-health/noise/data-and-statistics
https://www.euro.who.int/en/health-topics/environment-and-health/noise/data-and-statistics
https://www.euro.who.int/en/health-topics/environment-and-health/noise/data-and-statistics
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://doi.org/10.1093/nsr/nwx110
https://doi.org/doi:10.1001/jamaophthalmol.2018.0070
https://arxiv.org/abs/1709.07124
https://arxiv.org/abs/1709.07124
http://arxiv.org/abs/1709.07124
https://doi.org/10.1073/pnas.1801614115 1
https://en.wikipedia.org/wiki/Auditory_cortex
https://en.wikipedia.org/wiki/Auditory_cortex
https://doi.org/10.1109/ICASSP.2004.1326383

[12] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” CoRR, vol. cs.LG/0408058,
2004. [Online]. Available: http://arxiv.org/abs/cs.LG/0408058.

[13] M. Schmidt and R. Olsson, “Single-channel speech separation using sparse non-negative
matrix factorization,” Jan. 2006.

[14] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the itakura-
saito divergence: With application to music analysis,” Neural Computation, vol. 21, no. 3,
pp. 793–830, 2009. doi: 10.1162/neco.2008.04-08-771.

[15] P. D. O’Grady and B. A. Pearlmutter, “Convolutive non-negative matrix factorisation with
a sparseness constraint,” in 2006 16th IEEE Signal Processing Society Workshop on Machine
Learning for Signal Processing, 2006, pp. 427–432. doi: 10.1109/MLSP.2006.275588.

[16] E. M. Grais, M. U. Sen, and H. Erdogan, “Deep neural networks for single channel source
separation,” CoRR, vol. abs/1311.2746, 2013. arXiv: 1311.2746. [Online]. Available: http:
//arxiv.org/abs/1311.2746.

[17] F. Weninger, J. Hershey, J. Le Roux, and B. Schuller, “Discriminatively trained recurrent
neural networks for single-channel speech separation,” 2014 IEEE Global Conference on
Signal and Information Processing, GlobalSIP 2014, pp. 577–581, Feb. 2015. doi: 10.1109/
GlobalSIP.2014.7032183.

[18] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J. Hershey, and B. Schuller,
“Speech enhancement with lstm recurrent neural networks and its application to noise-
robust asr,” vol. 9237, Aug. 2015, isbn: 978-3-319-22481-7. doi: 10.1007/978- 3- 319-
22482-4_11.

[19] A. Belouchrani, Analyse temps frequence, 2021.

[20] H. Jeon, Y. Jung, S. Lee, and Y. Jung, “Area-efficient short-time fourier transform processor
for time–frequency analysis of non-stationary signals,” Applied Sciences, vol. 10, p. 7208,
Oct. 2020. doi: 10.3390/app10207208.

[21] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol. 7, no. 5, p. 10 491, 2012,
revision #153939. doi: 10.4249/scholarpedia.10491.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations by Back-
propagating Errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. doi: 10.1038/323533a0.
[Online]. Available: http://www.nature.com/articles/323533a0.

[23] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
CoRR, vol. abs/1311.2901, 2013. arXiv: 1311.2901. [Online]. Available: http://arxiv.
org/abs/1311.2901.

137

http://arxiv.org/abs/cs.LG/0408058
https://doi.org/10.1162/neco.2008.04-08-771
https://doi.org/10.1109/MLSP.2006.275588
https://arxiv.org/abs/1311.2746
http://arxiv.org/abs/1311.2746
http://arxiv.org/abs/1311.2746
https://doi.org/10.1109/GlobalSIP.2014.7032183
https://doi.org/10.1109/GlobalSIP.2014.7032183
https://doi.org/10.1007/978-3-319-22482-4_11
https://doi.org/10.1007/978-3-319-22482-4_11
https://doi.org/10.3390/app10207208
https://doi.org/10.4249/scholarpedia.10491
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

[24] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activ-
ity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943. doi: 10.1007/
bf02478259.

[25] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organi-
zation in the brain,” Psychological Review, pp. 65–386, 1958.

[26] N. Kumar, “Sigmoid-neuron explained,” [Online]. Available: https://towardsdatascience.
com/sigmoid-neuron-deep-neural-networks-a4cd35b629d7.

[27] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. Douglas, and H. Seung, “Digital selection
and analogue amplification coexist in a cortex-inspired silicon circuit,” Nature, vol. 405,
pp. 947–51, Jul. 2000. doi: 10.1038/35016072.

[28] “Perceptron drawbacks,” [Online]. Available: http://matlab.izmiran.ru/help/toolbox/
nnet/percep11.html.

[29] D. E. Rumelhart and J. L. McClelland, “Learning internal representations by error propaga-
tion,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foun-
dations. 1987, pp. 318–362.

[30] “Logistic function,” [Online]. Available: https://en.wikipedia.org/wiki/Sigmoid_
function.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, Y. W. Teh and M. Titterington, Eds., ser. Proceedings of Machine Learning
Research, vol. 9, Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 249–256. [Online].
Available: http://proceedings.mlr.press/v9/glorot10a.html.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available: http : / / jmlr . org /
papers/v15/srivastava14a.html.

[33] D. Wilson and T. R. Martinez, “The general inefficiency of batch training for gradient
descent learning,” Neural Networks, vol. 16, no. 10, pp. 1429–1451, 2003, issn: 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(03)00138-2. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608003001382.

[34] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–2159, Jul.
2011.

[35] V. Bushaev, “Rmsprop,” [Online]. Available: https://towardsdatascience.com/understanding-
rmsprop-faster-neural-network-learning-62e116fcf29a.

138

https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://towardsdatascience.com/sigmoid-neuron-deep-neural-networks-a4cd35b629d7
https://towardsdatascience.com/sigmoid-neuron-deep-neural-networks-a4cd35b629d7
https://doi.org/10.1038/35016072
http://matlab.izmiran.ru/help/toolbox/nnet/percep11.html
http://matlab.izmiran.ru/help/toolbox/nnet/percep11.html
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function
http://proceedings.mlr.press/v9/glorot10a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a

[36] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, 2015. arXiv: 1502.01852 [cs.CV].

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, Y. W. Teh and M. Titterington, Eds., ser. Proceedings of Machine Learning
Research, vol. 9, Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 249–256. [Online].
Available: http://proceedings.mlr.press/v9/glorot10a.html.

[38] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collab-
orative filtering,” in Proceedings of the 24th International Conference on Machine Learning,
ser. ICML ’07, Corvalis, Oregon, USA: Association for Computing Machinery, 2007, 791–798,
isbn: 9781595937933. doi: 10.1145/1273496.1273596. [Online]. Available: https://doi.
org/10.1145/1273496.1273596.

[39] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-based inspiration of
novel deep architectures,” CoRR, vol. abs/1409.2574, 2014. arXiv: 1409 . 2574. [Online].
Available: http://arxiv.org/abs/1409.2574.

[40] Numpy, https://numpy.org/contribute/, [accessed 13-August-2020].

[41] Scipy, https://www.scipy.org/, [accessed 13-August-2020].

[42] Matplotlib, https://matplotlib.org/, [accessed 13-August-2020].

[43] Sckitlearn, https://scikit-learn.org/, [accessed 13-August-2020].

[44] Pytorch, https://pytorch.org/.

[45] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio source
separation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 4,
pp. 1462–1469, 2006, issn: 1558-7924. doi: 10.1109/TSA.2005.858005.

[46] A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, “Robust and efficient estimation by
minimising a density power divergence,” Biometrika, vol. 85, no. 3, pp. 549–559, 1998, issn:
00063444. [Online]. Available: http://www.jstor.org/stable/2337385.

[47] A. Cichocki, R. Zdunek, and S.-i. Amari, “Csiszár’s divergences for non-negative matrix
factorization: Family of new algorithms,” in Independent Component Analysis and Blind Signal
Separation, J. Rosca, D. Erdogmus, J. C. Prı́ncipe, and S. Haykin, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 32–39, isbn: 978-3-540-32631-1.

[48] G.-J. Song and M. K.-P. Ng, Nonnegative low rank matrix approximation for nonnegative matri-
ces, 2020. arXiv: 1912.06836 [math.OC].

139

https://arxiv.org/abs/1502.01852
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://arxiv.org/abs/1409.2574
http://arxiv.org/abs/1409.2574
https://numpy.org/contribute/
https://www.scipy.org/
https://matplotlib.org/
https://scikit-learn.org/
https://pytorch.org/
https://doi.org/10.1109/TSA.2005.858005
http://www.jstor.org/stable/2337385
https://arxiv.org/abs/1912.06836

[49] N. Madhu, A. Spriet, S. Jansen, R. Koning, and J. Wouters, “The potential for speech in-
telligibility improvement using the ideal binary mask and the ideal wiener filter in single
channel noise reduction systems: Application to auditory prostheses,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 21, no. 1, pp. 63–72, 2013. doi: 10.1109/TASL.
2012.2213248.

[50] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Robust automatic speech recogni-
tion with missing and unreliable acoustic data,” Speech Communication, vol. 34, no. 3,
pp. 267–285, 2001, issn: 0167-6393. doi: https://doi.org/10.1016/S0167- 6393(00)
00034-0. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167639300000340.

[51] E. M. Grais, M. U. Sen, and H. Erdogan, Deep neural networks for single channel source sepa-
ration, 2013. arXiv: 1311.2746 [cs.NE].

[52] J. Lim and A. Oppenheim, “Enhancement and bandwidth compression of noisy speech,”
Proceedings of the IEEE, vol. 67, no. 12, pp. 1586–1604, 1979. doi: 10.1109/PROC.1979.11540.

[53] N. J. Nyunt, Y. Sugiura, and T. Shimamura, “Parametric wiener filter with parameters
estimation on image power spectrum sparsity,” in 2017 6th International Conference on Infor-
matics, Electronics and Vision 2017 7th International Symposium in Computational Medical and
Health Technology (ICIEV-ISCMHT), 2017, pp. 1–6. doi: 10.1109/ICIEV.2017.8338580.

[54] R. A. Chiea, M. H. Costa, and G. Barrault, “New insights on the optimality of parameter-
ized wiener filters for speech enhancement applications,” Speech Communication, vol. 109,
pp. 46–54, 2019, issn: 0167-6393. doi: https://doi.org/10.1016/j.specom.2019.
03.005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167639318303194.

[55] M. Fontaine, A. Liutkus, L. Girin, and R. Badeau, “Explaining the Parameterized Wiener
Filter with Alpha-Stable Processes,” in WASPAA 2017 - IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, ser. Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New Paltz, New York, United States, Oct.
2017. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01548508.

[56] T. Gerkmann and E. Vincent, “Spectral masking and filtering,” in Audio Source Separation
and Speech Enhancement. John Wiley Sons, Ltd, 2018, ch. 5, pp. 65–85, isbn: 9781119279860.
doi: https://doi.org/10.1002/9781119279860.ch5. eprint: https://onlinelibrary.
wiley . com / doi / pdf / 10 . 1002 / 9781119279860 . ch5. [Online]. Available: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/9781119279860.ch5.

[57] M. Schmidt and R. Olsson, “Single-channel speech separation using sparse non-negative
matrix factorization,” Jan. 2006.

140

https://doi.org/10.1109/TASL.2012.2213248
https://doi.org/10.1109/TASL.2012.2213248
https://doi.org/https://doi.org/10.1016/S0167-6393(00)00034-0
https://doi.org/https://doi.org/10.1016/S0167-6393(00)00034-0
https://www.sciencedirect.com/science/article/pii/S0167639300000340
https://www.sciencedirect.com/science/article/pii/S0167639300000340
https://arxiv.org/abs/1311.2746
https://doi.org/10.1109/PROC.1979.11540
https://doi.org/10.1109/ICIEV.2017.8338580
https://doi.org/https://doi.org/10.1016/j.specom.2019.03.005
https://doi.org/https://doi.org/10.1016/j.specom.2019.03.005
https://www.sciencedirect.com/science/article/pii/S0167639318303194
https://www.sciencedirect.com/science/article/pii/S0167639318303194
https://hal.archives-ouvertes.fr/hal-01548508
https://doi.org/https://doi.org/10.1002/9781119279860.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119279860.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119279860.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119279860.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119279860.ch5

[58] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.6980
[cs.LG].

[59] S. Ruder, An overview of gradient descent optimization algorithms, 2017. arXiv: 1609.04747
[cs.LG].

[60] D. Bank, N. Koenigstein, and R. Giryes, Autoencoders, 2021. arXiv: 2003.05991 [cs.LG].

[61] S. L. channel, “Learn business english conversation for the office and workplace,” [Online].
Available: https://www.youtube.com/watch?v=k_ofXhe_tEY.

[62] Rousseau, “The most beautiful relaxing piano pieces (vol. 1),” [Online]. Available: https:
//www.youtube.com/watch?v=WJ3-F02-F_Y.

[63] H. Qiao, “New SVD based initialization strategy for non-negative matrix factorization,”
CoRR, vol. abs/1410.2786, 2014. arXiv: 1410.2786. [Online]. Available: http://arxiv.org/
abs/1410.2786.

[64] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio source
separation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 4,
pp. 1462–1469, 2006. doi: 10.1109/TSA.2005.858005.

[65] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996, issn: 00359246.
[Online]. Available: http://www.jstor.org/stable/2346178.

[66] “Explication of nan values,” [Online]. Available: https://en.wikipedia.org/wiki/NaN.

[67] Y. M. Bouaouni and R. Ait Ali Yahia, Audio source separation enhancement using Deep En-
hanced SNMF and Denoising SNMF, 2021. [Online]. Available: https : / / github . com /

yacinebouaouni/Deep-Learning-Based-Blind-Source-Separation.

[68] R. Ait Ali Yahia and Y. M. Bouaouni, Deep recurrent NMF for speech separation by unfolding
iterative thresholding, 2021. [Online]. Available: https://github.com/yacinebouaouni/
Deep-Unfolded-NMF-for-Speech-Source-Separation.

141

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/2003.05991
https://www.youtube.com/watch?v=k_ofXhe_tEY
https://www.youtube.com/watch?v=WJ3-F02-F_Y
https://www.youtube.com/watch?v=WJ3-F02-F_Y
https://arxiv.org/abs/1410.2786
http://arxiv.org/abs/1410.2786
http://arxiv.org/abs/1410.2786
https://doi.org/10.1109/TSA.2005.858005
http://www.jstor.org/stable/2346178
https://en.wikipedia.org/wiki/NaN
https://github.com/yacinebouaouni/Deep-Learning-Based-Blind-Source-Separation
https://github.com/yacinebouaouni/Deep-Learning-Based-Blind-Source-Separation
https://github.com/yacinebouaouni/Deep-Unfolded-NMF-for-Speech-Source-Separation
https://github.com/yacinebouaouni/Deep-Unfolded-NMF-for-Speech-Source-Separation

	List of Figures
	Acronyms
	 Introduction
	Background
	Source separation
	General Process of Source Separation
	Categorization of source separation
	Source Separation Approaches
	Single Channel vs Multi-Channel
	Audio Source Separation

	Time Frequency Processing
	Time Frequency Analysis and Synthesis
	Problem Formulation in Time Frequency Domain

	Model based and Data Driven approaches
	Model-Based Approach
	Data-Driven Approach

	Deep Learning
	Biological Neurons
	Perceptron
	Multi Layer Perceptron
	Backpropagation
	Rectified Linear Units
	Dropout
	Optimizers
	Network's Initialization

	Deep Unfolding
	Unfolding principles
	Advantages of Unrolling Algorithms

	Materials and Methods
	Dataset
	Software tools
	Programming language
	Libraries and Frameworks
	Google Colaboratory

	Data Preprocessing
	Normalization
	Sampling
	Filtering

	Performance Criteria
	Signal-to-Distortion Ratio

	Non Negative Matrix Factorization
	Non Negative Matrix Factorization
	Beta-Divergence Loss
	Frobenius Norm
	Singular Value Decomposition
	Nonnegative Double Singular Value Decomposition
	Multiplicative-Update Algorithm

	Learning Free and Supervised NMF
	Learning Free NMF
	Supervised Non Negative Matrix Factorization
	Component Effect
	Masking
	Sparse Non Negative Matrix Factorization

	Results and Discussion
	Sparsity
	Masks
	Effect of every loss on the SDR

	Deep Learning Based Source Separation
	Deep Neural Networks for Speech Separation.
	Neural Network Architecture
	Filtering and Reconstruction
	Drawbacks of this approach

	Our contribution
	Autoencoders
	Adaptive Moment Estimation
	Deep Enhanced Sparse NMF
	Denoising Sparse NMF
	Denoising Autoencoder

	Results and Discussion
	Deep Enhanced Sparse NMF
	 Denoising SNMF

	Deep Unfolding Based Source Separation
	Introduction to Deep Recurrent NMF
	Statistical Model
	Inference Algorithm
	Iterative soft-thresholding algorithm (ISTA)
	Warm Start ISTA
	Warm Start ISTA with memory
	Results

	Deep recurrent NMF
	Initialization
	Loss Function

	Results and Discussion

	Bibliography

