Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1778
Titre: Features extraction based on Schrödinger operator's spectrum for cognitive states classification
Auteur(s): Maoui, Mohamed
T. M. Laleg Kirati, Directeur de thèse
Larbes, Chérif, Directeur de thèse
Mots-clés: Lassifiers
Features
Cognitive states
Date de publication: 2018
Résumé: Training machine learning algorithms to classify cognitive states is a challenge that many biomedical researchers are dealing with nowadays, for the numerous medical advantages that this kind of research has in understanding many neurodegenerative diseases. However, it is important to feed these classifiers with high-quality features allowing us to obtain high classification performance of cognitive states. We propose in this work, a new signal analysis modality to extract features from some specific brain regions whose activations are triggered by two mental states, performed by different subjects. We explore the efficiency of the technique and its fundamental aspects.
Description: Mémoire de Projet de Fin d’Étude : Électronique : Alger, École Nationale Polytechnique : 2018
URI/URL: http://repository.enp.edu.dz/xmlui/handle/123456789/1778
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MAOUI.Mohamed.pdfPN005184.46 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.