Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1919
Titre: Deep neural networks optimization for embedded platforms
Auteur(s): Laouichi, Anouar
Berrani, Sid-Ahmed, Directeur de thèse
Yous, Hamza, Directeur de thèse
Mots-clés: Artificial intelligence
Deep Neural
Embedded Systems
Inference
Networks
Pruning
Quantization
Object detection
Pytorch
Date de publication: 2020
Résumé: This project deals with the optimization of Deep Neural Networks for efficientembedded inference. Network Pruning and Quantization techniques are implemented underthe PyTorch environment and benchmarked on ResNet50. The obtained results, consisting ofcompression and speed-up rates, successfully validate the feasibility and the effectiveness of theconcept. To show their practical potential, the two schemes have been applied on RetinaNetobject detector. Additionally, this work demonstrates that inference can be performed at theedge by reducing the model’s memory footprint and the processing time, resulting in reducedlatency and energy consumption as well as improved data security. Hence, new horizons ofapplications in embedded systems are opened up
Description: Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020
URI/URL: http://repository.enp.edu.dz/xmlui/handle/123456789/1919
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
LAOUICHI.Anouar_BENAOUDA.Abderrahim.pdfPN008206.28 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.