Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1946
Titre: Hybrid features fusion for writer identification usingsingle handwritten words
Auteur(s): Kadem, Rayane
Rabehi, Yacine
Bouadjenek, Nesrine, Directeur de thèse
Mots-clés: Writer identification
Handwriting
MLOG
Hybrid features
CNN
Date de publication: 2020
Résumé: Handwriting as a part of behavioral biometrics has been proved to having the abilityto sufficiently differentiate any two individuals. Therefore, in this work, we proposea system for writer identification using single handwritten words. In this regard, wepropose, associated to Support Vector Machine (SVM) classifier, a hybrid features fusionthat combined features extracted from a new descriptor namely, Multiscale Local OrientedGradient (MLOG) and features generated from Convolutional Neural Network VGG-16.Two known approaches of writer identification were addressed: writer-dependent andwriter-independent. Experiments conducted on two standard datasets, showed satisfyingand very promising results
Description: Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020
URI/URL: http://repository.enp.edu.dz/xmlui/handle/123456789/1946
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
KADEM.Rayane_RABEHI.Yacine.pdfPN007205.74 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.