Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/820
Titre: | Modélisation des équilibres de phases à pressions élevées par les réseaux de neurones artificiels |
Auteur(s): | Si Moussa, Chérif Derriche, Ratiba, Directeur de thèse |
Mots-clés: | Réseau de neurones artificiels Equilibre liquide vapeur Fluide supercritique Equations d’état Densité du solvant |
Date de publication: | 2010 |
Résumé: | Dans ce travail nous avons appliqué la modélisation neuronale aux données expérimentales de la littérature dans le but de développer et de valider des modèles pour la corrélation et la prédiction des équilibres liquide vapeur à pressions élevées et de la solubilité de composés pharmaceutiques dans le dioxyde de carbone supercritique. Pour la recherche de la topologie du réseau de neurones optimal nous avons adopté la stratégie d’essai et erreur (trial and error), suggérée par plusieurs auteurs comme étant la stratégie la plus raisonnable, avec deux critères d’arrêt : vérification d’une fonction de performance (d’erreur) fixée à priori et la capacité de généralisation du réseau de neurones. En plus de l’excellente corrélation des données expérimentales, les trois modèles neuronaux utilisés pour le calcul de l’équilibre liquide vapeur de trois systèmes de mélanges binaires {(i) : dioxyde de carbone avec six esters ; (ii) : azote avec trois alcanes ; (iii) : diéthyle carbonate avec trois cétones plus 1,4-dioxane avec deux cycloalcanes et benzène} ont montré une très bonne capacité (prédictive) d’interpolation et même d’extrapolation dans certains cas. La comparaison des erreurs de prédictions des modèles neuronaux optimisés pour les systèmes à pressions élevées (systèmes (i) et (ii)) avec celles de certaines équations d’état cubiques (Peng Robinson, Soave Redlich Kwong, Patel Teja Valderrama) même l’équation d’état à fondement théorique (PC-SAFT) à montré l’avantage des modèles neuronaux. Pour le système (iii) à basse pression la comparaison des erreurs de prédiction du modèle neuronal avec celles des modèles de coefficient d’activité (Wilson, NRTL, UNIQUAC, et ASOG) a aussi montré une nette supériorité du modèle neuronal. En ce qui concerne la modélisation de la solubilité de solutés solides dans le dioxyde de carbone supercritique, les trois modèles neuronaux utilisés pour le calcul de la solubilité des composés pharmaceutiques de trois systèmes de mélanges binaires {(i) : quatre anti-inflammatoires non stéroïdiens; (ii) : onze composés d’activité thérapeutiques différentes (sept anti-inflammatoires non stéroïdiens, deux anti-HIV et deux anti-cancers) ; (iii) : cinq statines}, ont aussi montré une très bonne corrélations des données expérimentales. Nous avons comparé ces modèles avec plusieurs équations d’état cubiques combinées avec plusieurs règles de mélange et un certain nombre de modèles basés sur la densité du solvant où les prédictions des modèles neuronaux sont nettement meilleures. L’approche neuronale utilisée dans ce travail s’avère très efficace pour les calculs des équilibres de phases d’une manière simple, fiable et robuste. Elle constitue ainsi une alternative crédible aux modèles classiques du moins pour le non expert dans le choix du modèle approprié pour un mélange dans un domaine de pression et de température donnés. |
Description: | Thèse de Doctorat : Génie Chimique : Alger, École Nationale Polytechnique : 2010 |
URI/URL: | http://repository.enp.edu.dz/xmlui/handle/123456789/820 |
Collection(s) : | Département Génie Chimique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
SI MOUSSA.Cherif.pdf | D000110 | 6.45 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.