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Abstract

 ملخص

 القرار صنع ٌملكون القدرة على المستقلٌن المركبات/ العملاء من مجموعة أنها على تعاونً )ن م م/ن م ع(ملاءالع متعدد مانظ/ متعددة مركبات مانظ وصف ٌمكن

 هذه تبحث. الوكلاء بٌن المشتركة المعلومات ا علىضوأٌ استشعارهم على بناءً ( المجموعة سلوكٌات أي) وجماعً مشترك هدف إلى وتسعى معًا تعمل التً و

 الاستقرار حٌث من تعاونً بشكل معٌنة مهمة إنجاز عند الروبوتات لنظام المكتسب الكلً الأداء لتعظٌم التحكم نظر وجهة من والتقنٌات الأسالٌب فً الأطروحة

 مسار تتبع أثناء ، بالشبكة المتصلة المركبات من لمجموعة الوقت متغٌر تشكٌل لتتبع تعاونٌة تحكم وحدات تصمٌم هو الرئٌسً الهدف. التتبع ودقة والسرعة والقوة

 وتقنٌة الافتراضً الهٌكل نهج ، السلوك على القائمة الطرٌقة مثل الكلاسٌكٌة )ن م م( التحكم مناهج فً بعمق دراسة و تم ، الابحاث السابقة فً. للتكوٌن مرجعً

 من لمجموعة مصمم تحكم قانون إلى التوافق( بروتوكول أو) أسلوب ٌشٌر. التوافق تقنٌات إطار فً موحدة الأسالٌب هذه أن ثبت فقد ذلك، ومع. التابع - القائد

 .متغٌر تشكٌل فً التحكم إلى الإجماع مشاكل تمدٌد تم(. لإحداثٌاتا مثل) الأهمٌة ذات المتغٌرات بعض فً اتفاق إلى للتوصل( خطٌة بدٌنامٌات ٌتمٌزون) العملاء

 معلومات تبادل ضمان فً الرئٌسٌة المساهمة كانت. بالشبكة المتصل )ن م م( لنظام الموزعة )ت م ز( تتبع تحكم وحدات تصمٌم على نركز ، الرسالة هذه فً

 بالاعتماد )ن م م( استقرار دراسة تمت. الشبكة ٌةاتصال مثل العملٌة الافتراضات تخفٌف تم ، ذلك إلى بالإضافة. )ن م م(د أفرا بٌن والمقلصة الموزعة الشبكة

  .طائرات رباعٌة المحركات أنظمة على هاتطبٌق مع المقترحة التطورات تخمٌنات لتأكٌد العددٌة المحاكاة عملٌات توفٌر تم لٌابونوف. نظرٌة على

طائرات رباعٌة   ، التوافق تقنٌات ، التشكٌل مراقبة ، المتعددة عملاءال أنظمة ، لٌابونوف نظرٌة ، البٌانً الرسم نظرٌة ، التعاونً التحكم :المفتاحيةالكلمات 

 .المتنقل الروبوتات ، المحركات

Résumé  

Un Système Multi-Véhicules/Multi-Agents SMV/SMAs coopératif peut être caractérisé comme un groupe d'agents/véhicules 

autonomes ayant la capacité de prise de décision, opérant ensemble et cherchant un objectif commun et de manière collectif 

(c'est-à-dire à travers des comportements en groupe) en fonction de leurs perceptions et les informations partagées entre les 

agents. Cette thèse étudie les méthodes et les techniques du point de vue commande pour maximiser les performances 

globales acquises d'un système robotique lors de l'accomplissement en coopération d'une tâche donnée en termes de stabilité, 

de robustesse, de rapidité et de précision. L'objectif principal est de concevoir des contrôleurs coopératifs de suivi de 

formation variant dans le temps pour un groupe de véhicules connectés en réseau, tout en suivant une trajectoire de référence 

de formation. Dans la littérature, les approches de commande des SMV classiques ont été profondément étudiées, telle que la 

méthode basée sur le comportement, l'approche de la structure virtuelle et la technique leader-suiveur. Cependant, ces 

méthodes se sont avérées unifiées dans le cadre des techniques de consensus. La technique de consensus (ou protocole) fait 

référence à une loi de contrôle conçue pour qu'un groupe d'agents (caractérisé par une dynamique linéaire) parvienne à un 

accord sur un variable d'intérêt (comme par exemple les états ou les vitesses). Les problèmes de consensus ont été étendus à 

un contrôle de formation de SMV. Dans cette thèse, nous nous concentrons sur la conception de contrôleurs de suivi TVF 

distribués pour un MVS interconnectés en réseau. La principale contribution a été d'assurer un échange d'informations de 

réseau distribué et réduit entre les individus de SMV. De plus, des hypothèses pratiques ont été assouplies telles que la 

connectivité du réseau. La stabilité du SMV a été étudiée en s'appuyant sur la théorie de Lyapunov. Des simulations 

numériques ont été fournies pour confirmer les conjectures des développements proposés avec une application sur systèmes 

multi-Quadrotors. 

Mots-clés: Commande coopérative, Théorie des graphes, Théorie de Lyapunov, Systèmes multi-agents, Suivi de formation, 

Techniques de consensus, Quadrotors, Robots mobiles. 

Abstract  

A cooperative Multi-Vehicles Systems/Multi-Agent Systems MVS/MASs can be characterized as a group of decision-

making autonomous agents/vehicles operating together and seeking a common and collective objective (i.e., group behaviors) 

based on their sensed information and the shared inter-agents information. This thesis investigates the methods and 

techniques from a control point of view to maximize the overall gained performance of a robots-system when accomplishing 

cooperatively a given task in terms of stability, robustness, speed and tracking accuracy. The main objective is to design 

cooperative Time Varying Formation Tracking controllers for a group of networked vehicles, while tracking a formation 

reference trajectory. In the literature, classical MVS control approaches have been deeply investigated such as, behavioral 

based method, virtual structure approach and leader-Follower technique. However, these methods have been shown to be 

unified within the framework of Consensus techniques. Consensus technique (or protocol) refers to a control law designed for 

a group of agents (featured by a linear dynamics) to reach an agreement in some variable of interest (i.e., States). The 

consensus problems have been extended to a MVS formation control. In this thesis, we focus into designing distributed TVF 

tracking controllers for a networked MVS. The main contribution was into ensuring a distributed and a reduced network 

information exchange among the MVS individuals. In addition, practical assumptions have been relaxed such as the 

connectivity of the network. The MVS stability has been studied relying on Lyapunov theory. Numerical simulations have 

been provided to confirm the conjectures of the proposed developments with an application to multi-Quadrotors systems. 

Key-words: Cooperative control, Graph theory, Lyapunov theory, Multi-Agents Systems, Formation tracking, Consensus 

techniques, Quadrotors, Mobile robots. 
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Chapter 1. Introduction and state of the art on systems cooperative control

1.1 Introduction

O n the past two decades, rapid advances in miniaturizing of computing, commu-

nication, sensing, and actuation have made it feasible to deploy a large number

of autonomous vehicles or agents to work cooperatively to accomplish civilian and

military missions. Thus, compared to a single complex vehicle/agent, multi-vehicles

system has the capability to significantly improve the operational effectiveness, re-

duce the costs, and provide additional degrees of redundancy. Having multiple au-

tonomous agents to work together efficiently to achieve collective group behaviors

is usually referred to as cooperative control of multi-agent (MASs) or multi-vehicle

systems (MVSs). Due to its potential applications in various areas such as satellite for-

mation flying, distributed computing, robotics, surveillance and reconnaissance sys-

tems, electric power systems, cooperative attack of multiple missiles, and intelligent

transportation systems, cooperative control of multi-agent (multi-vehicle) systems has

received compelling attention from various scientific communities, especially the sys-

tems and control community.

For a cooperative control problem, the main task is to design appropriate con-

trollers to achieve the desired group objective. Due to the large number of agents,

the spatial distribution of actuators, limited sensing capability of sensors, and short

wireless communication ranges, it is considered too expensive or even infeasible in

practice to implement centralized controllers. Thus, distributed control, depending

only on local information of the agents and their neighbors, appears to be a promis-

ing tool for handling multi-agent systems.

Designing appropriate distributed controllers is generally a challenging task, es-

pecially for multi-agent systems with complex dynamics, due to the interconnected

effect of the agent dynamics, the interaction graph among agents, and the cooperative

control laws.

In this thesis we address typical study of the cooperative control problems of

MASs/MVS including,

(i) UAV-UGVs coordination and robustness with nonlinear vehicle dynamics sub-

jected to unknown external disturbance under centralised control architecture.
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1.2. Motivations

(ii) Output based feedback Time-Varying Formation control and Distributed Tracking

of MASs/MVSs with general linear agent dynamics based on the consensus tracking

framework. The focus on this part is into relaxing some requirements on the commu-

nication topology among the agents to achieve the overall system stability and render

the proposed formation control more suitable and more applicable in real conditions.

Furthermore, the proposed formation control is designed in sort to reduce the net-

work information exchange-rate among the MASs, which result in a light interaction

burden and decrease the used computing resources. In addition, the effect of the

interaction or the communication topology among the networked agents on the con-

vergence rate is further studied.

The study is conducted for large-scale MASs/MVSs, from centralized control archi-

tecture to a fully distributed one, from formation stabilisation to formation tracking

under Leader-Followers control structure, from undirected communication topology

to directed one, and from a leader whose control input is zero to a leader whose

control input is nonzero and unknown.

1.2 Motivations

A] What is a MAS/MRS:

An agent is a computable entity with the ability of communication, collaboration

and adaptability, which can take flexible and independent actions to achieve the tasks

by interaction with the environment. Roughly talking, it denotes a dynamical system

which can be a ground or underwater vehicle, an aircraft, a satellite, a smart sensor

with microprocessors, and so on.

In some literature, multi-agent systems are also called multi-vehicle systems (MVS)

or multi-robot systems (MRS), with efforts to avoid causing confusion with the multi-

agent systems in computer science. The multi-agent systems concerned in this thesis

and in the robotics, systems and control community are quite different from those

in the computer science community, regarding the meanings, the objectives, and the

commonly used tools, even though they share the same name. Therefore, hereafter we
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denote by agent a physical vehicle/robot that is featured by certain dynamics. Thus,

each agent is equipped with a micro-controller or processor, sensors, actuators, and

with the capability to communicate with other agents (e.g., transceivers). Therefore,

the theories proposed for MASs can be applied to the MVSs/MRSs of which the

types are ground, aerial or underwater vehicles. Those vehicles are usually featured

by nonlinear dynamics and may need to be linearized to adopt the proposed theories

in relation with the MAS theory such as the consensus techniques.

Currently, multi-agent system (MAS) has become one of core concepts in Artificial

Intelligent (AI) area, and has been applied to research of Distributed AI. A MAS can

be seen as a group of complex distributed intelligent vehicles. The characters of MAS

contain: (1) Each agent has limited information resources and problem solving abil-

ity; (2) Global control is inexistent in MAS system; (3) Knowledge and data may be

continuous of discrete; (4) Computing is executed in asynchronous mode. Actually,

a multi-vehicles system approximately can be treated as MAS, in which each vehicle

can be treated as a intelligent and autonomous agent with the ability to deal with

local tasks and the ability to coordinate with neighbouring agents.

B] Why cooperative control of MAS/MVS:

Over the past two decades, the researches on Multi-Agent (Multi-Robot) Systems

(MASs, MRSs) control and coordination have attracted considerable attention from

different fields. In particular with the rapid advances of communication, sensing and

embedded techniques. This is due to the broad applications a MASs offer such as,

surveillance, transportation, cooperative construction, search and rescue and forest

fire-monitoring [3,4]. Among the aspects related to the MASs, the cooperative control

problems have attracted the attention of scientists. This is because of its essential role

for the coordination of systems consisting of multiple robots/agents.

The distributed cooperative control of a MVS/MAS can be characterized as a

group of decision-making autonomous agents/vehicles operating together and seek-

ing a common and collective objective (i.e., group behaviours) based on their sensed

information and the shared inter-agents information. Here cooperative refers to a

close relationship among all vehicles in the group where information sharing plays
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Agents dynamics 

Inter-agents interaction Cooperative control Laws 

Figure 1.1: Configuration of a MASs.

a central role. If there is no inter-agents communication or information sharing (ex-

changing) through form example a wireless network, we denote the cooperative con-

trol in this case as decentralized. Given a group objective, the cooperative control

problem of MASs is mainly composed of three components, namely, the agent dy-

namics, the interactions among the agents, and the cooperative control laws required

to achieve the group objective. The configuration of these three components is de-

picted in Fig. 1.1. The selection of the cooperative control laws depends on the agent

dynamics and the interaction topology. The interplay of these three components gen-

erally renders the design of the control cooperative laws troublesome, especially for

the case with complex agent dynamics. For different scenarios, the dynamics of the

employed agents may also be different (i.e., first integrator, second integrator, general

linear dynamics). For MASs concerned by the systems and control community are

generally dynamically decoupled from each other, which implies the necessity of co-

operation in terms of information exchange between the agents to achieve collective

behavior. Specifically, each agent needs to receive information from other agents via

a direct sensing or communication network. The interaction (information exchange)

topology among the agents is usually represented as a graph.

Broadly speaking, a distributed MVSs/MASs coordination/control algorithm has

to satisfy four different constraints for it to be useful, namely it must be (i) local in

the sense that individual vehicles can only act on information it has available to it,

i.e., through sensing or active communications, this is sometimes referred to as "dis-

tributed"; (ii) scalable the algorithms executed by the individual robots cannot depend

on the size of the entire team for instance, sometimes referred to as "decentralized";
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Figure 1.2: Laboratory and real-world cooperative control examples.

(iii) safe, as vehicles are physical agents deployed in the real world, they must be safe

both relative to collisions with each other and relative to the environment; and (iv)

emergent in the sense that global properties (e.g., give example) should emerge from

the local interaction rules, preferably in a provable manner and not predefined[4].

The motivation for cooperative control of MASs can be summarized as follows:

1. The deployment of cooperative group of robots to accomplish a mission yields

greater benefits comparing to a single robot performing solo mission in terms of,

power, reliability, efficiency, and accuracy.

2. It is much cheaper to build some robots/vehicles that have limited function than a

single powerful robot/vehicle.

3. Multiple robots/vehicles can solve problems faster than only one and increase ro-

bustness through redundancy.

4. Some missions can not be accomplished with a single robot.

C] Why fully distributed control:

The overall control architecture of MASs/MRSs has a significant influence on the ro-

bustness and scalability of the whole system. The most common control architectures

or structure of MASs are[5, 6],
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1. Centralized control architecture: this architecture control is based on the assump-

tion that a unique central station (i.e., control unit) is available and sufficiently power-

ful to manage the whole information about environment and to calculate the control

inputs for the whole group of vehicles (i.e., decomposes and assigns tasks through

plan algorithm and optimize algorithm, organizes vehicles to complete tasks by send-

ing commands). This architecture has the advantage that all information is collected

by a single unit. However, obviously this model has disadvantages in flexibility, inte-

grality, expandability and fault tolerance.

In the other hand, in decentralized control architecture, the action of each robot is

based only on local sensing information. Meaning, each agent has its own control unit,

and there are no central units. The method exhibits robustness, scalability and par-

allel processing yielding high computation gain. however, the method suffers of the

inability to achieve a group optimal performance at all times, since each robot/agent

cannot predict the group behaviour, because it has only limited and incomplete infor-

mation of the other individuals.

2. Hierarchical: This architecture is directly inspired by the military command pro-

tocol, where it is recommended for certain applications. It is based on the idea that

some robots can command, like leaders (i.e., supervisors), that is, a small group of

robots. Once more, as in centralized architectures, the problem with this approach

lies in the case of the failure of supervisors.

3. Hybrid structure: This architecture is a compromise between the centralized archi-

tecture and the decentralized architecture. In particular, it is based on the idea that

one or more high-level supervisors affect the tasks, lower-level resources and robots

in the hierarchy using the local information to accomplish predefined tasks.

4. Distributed architecture: In the contrary to centralized architecture, the distributed

architecture does not require a central station for control. In addition, no global infor-

mation is required for the implementation of the local agents-controller.

The distributed control architecture has many advantages in achieving cooperative

group performances, especially with low operational costs, less system requirements,

high robustness, strong adaptability, and flexible scalability, therefore has been widely
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𝐶𝑖  control unit 𝑖 
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Figure 1.3: Comparison between the different MAS/MRS control architectures, (a) centralized, (b)

decentralized and (c) distributed.

appreciated. However, theses advantages come at the cost of becoming far more com-

plex in structuring, organization the MAS/MRS and in designing local controllers.

It is further worth to note that the decentralized architecture is a subset of the

distributed architecture. The main difference is that in the latter, the individuals can

exchange locally states and control parameters with their neighbours, whereas, in the

decentralized method the vehicles are not interacting locally through communication.

Remark 1.1 It is worth mentioning that both the centralized and distributed control archi-

tectures are the most adopted and are considered to be practical depending on the situations

and conditions of the real applications. For example, the centralized control structure may

come more adequate for controlling a few number of slow dynamics UGVs operating in free-

obstacles environment. However, the distributed method is believed more promising due to

many inevitable physical constraints such as limited resources and energy, short wireless com-

munication ranges, narrow bandwidths, and large sizes/number of vehicles to manage and to

control. Thus, distributed control structure, depending only on local information of the agents

and their neighbours, appears to be a promising tool for handling MRSs/MRSs. Therefore, in

this thesis, the centralized method is adopted in Chapter-2 and 3, while the focus is relatively

more on the distributed tracking feature in rest of the thesis.

In the literature, many distributed controllers designed in the existing works such as

[7–9], cannot apply to large-scale systems. In other words, the designed controller in

the aforementioned works are not fully distributed. This is because the controllers
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design requires the knowledge of some global information of the system like, (i)

the knowledge of the Laplacian matrix L of the communication topology, e.g. the

minimum eigenvalue of L, or (ii) the total number of the robots/agents. Therefore,

designing the control protocol with the fully distributed property is important, vital

for practical applications and challenging.

D] Why Time Varying Formation TVF tracking

Among the branches/problems related to the cooperative control of MASs/MRSs

such as consensus control, flocking, formation control, containment control, coopera-

tive synchronization; the formation control is considered as one of the most important

issues and an interesting and very active research topic. This is due to its main role for

the success of any task executed by a MRSs that requires synchronized motion control

[3]. In addition, formation control is applied to numerous areas and wide range of

applications such as, target enclosing, sensor networks, cooperative surveillance, load

transportation and localization [10–13].

A TVF tracking refers to the ability of MRS to change its formation shapes (i.e. ge-

ometric relations between robots) in certain circumstances, while tracking a reference

trajectory and keep being stable simultaneously. The formation shape changing can

be required for many reasons such as,

1. Covering large parts of an area, wherein specific applications relating to environment-

mapping, the ability of a MRS to spread out and to gather is essential.

2. Avoiding obstacles during the formation motion is critical for the MRS, where it is a

practical way for the MRS to change the shape of the formation when facing obstacles

to avoid collision.

3. Tracking and enclosing a target, where a group of robots needs to adjust the for-

mation shape in such a way to track and surround a target for protection purposes,

for instance.

E] Why heterogeneous MASs

In the literature, the first works related to MASs/MRSs dealt with the large scale of

homogeneous agents/vehicles, called swarms which obtain inspiration from biologi-
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cal societies (particularly ants, bees, fishes and birds) to develop similar behaviors to

accomplish impressive group tasks (see Fig. 1.4). In such swarm systems, individual

agents/robots are usually unaware of the actions of other robots, other than informa-

tion on proximity. In contrast, heterogeneous agents/robots in which team members

may vary significantly in their, (i) types or the operating environment (ground, aerial,

underwater robots), (ii) behaviour and dynamics, (iii) size and cognition, (iv) capa-

bilities, gain an increasing researchers attention more and more since the last decade.

The motivation to investigate heterogeneity can be three folds[5],

1. From designing aspect, with heterogeneity, different robots can have different ca-

pabilities (boardability, mobility, energy autonomy, field of view) and a complemen-

tarity to finish a cooperative task with less cost (e.g., localization, reconnaissance and

surveillance task by aerial-ground robots).

2. From engineering aspect, sometimes it is too difficult do equip the same robots with

all the necessary calculating, sensing and executing equipments to finish a specific co-

operative task. Therefore, robots in team can have different functionality resulting in

an increase of the achievable performance(See Fig. 1.5).

3. It is nearly impossible to build a truly homogeneous systems in reality.

1.3 Overview on MAS/MRS Formation Control

1.3.1 Formation Control approaches

The motion control of MRS has received considerable attention from researchers in

the robotic community. In literature, the MRS/MAS motion control is mainly based

on three approaches. The most common one is, (i) leader-follower, in which some

robots are assigned as leaders while the rest of the formation robots are considered

followers. Each follower is controlled in order to maintain with its leader a given con-

figuration, while the leader tracks a predefined reference trajectory. This approach

presents the advantages of simplicity and efficiency. However, the main drawbacks

are in error propagation, non self-organization formation, and when one of the leaders

fails to track its trajectory, its follower robots fail too [14]. To overcome these limita-
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Figure 1.4: Examples of swarm from nature.

Common goal to achieve 
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Figure 1.5: An example of an heterogeneous system consisting of two quadrotors with different ca-

pabilities (one equipped with optic-detection system and the second with launch-fillet system), where

the UGV is charged for recovering the intruder target. The whole system is charged for surveillance,

detection and neutralizing intruded targets.
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tions, other alternative solutions are proposed by implementing leader reassignment

technique or by adopting a strategy based on a virtual leader [15]. Another control

approach is, (ii) the virtual structure model, where the leader is virtual and the sys-

tem is considered as a virtual rigid body with a fixed geometric model describing

the spacial relationship among robots [16]. Therefore, the leader never fails and the

stability of the whole system is not depending on the leader. The third motion control

approach is, (iii) behavioural-based method, in which we assign to each robot/agent

some desired local interactional sub-behaviours (i.e., robot-robot spacing, obstacle

avoidance, goal-achieving), and the combination of these sub-behaviours results in a

robot final behaviour [17]. The method exhibits the advantages of decentralization

aspect, scalability, robustness, and easy implementation. However, the method re-

quires high computations gain. The aforementioned MRS/MAS control approaches

can be unified within the general framework of the consensus-based methods or con-

cept[18]. The consensus techniques/protocols are based on the idea where all the

vehicles update individually their information state relying on their local sensing and

the exchanged neighbour’s information states. As a result, the entire vehicles final

information state converges to a common value. Therefore, an agreement is reached

by all the agents/robots on certain variables of interest (e.g., states or a function of

states). The states could represent vehicle headings positions or outputs, estimates

of sensor readings in a sensor network, oscillation frequencies in a oscillators-group,

and so on.

1.3.2 Sate of art on MASs/MRSs Formation Control

Centralized and Distributed cooperative control has been researched for decades, par-

ticularly in control community. The motivation has been stated clearly in Section-1.2.

Many research branches relating to cooperative control field have appeared such as,

formation control [19], cooperative synchronization [20], consensus control [21], con-

tainment control [22] and UAV-UGVs coordination [23]. In this thesis, the main focus

is attributed to the consensus control, formation control, and in particular to the TVF

tracking of a MVSs.
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Many frameworks have been reported in TVF tracking of UGVs group assisted

by a UAV. In [24], the authors have considered a cooperative maneuver among a

UAV-UGVs system, where the UGVs are guided by the UAV for obstacles avoidance

purposes. In [25], a coherent TVF control of heterogeneous multi-agent system was

considered. Lyapunov theory and synchronization method were used to design a

decentralized controller to stabilize the swarming of UAV-UVGs system. In [26], a

vision-based control method was presented for the guidance of a set of UGVs to

reach a desired formation. The UVGs control relies on multiple cameras-equipped

UAV as a control unit. In [27], a self-assembling of UGVs formation assisted by UAV

was proposed, where the UAV uses the environment views to control and supervise

the morphology formation of UGVs. In [28], a leader-follower based approach was

presented for heterogeneous UAV-UGV system control. The controller is based on

kinematic models and relies on a centralized structure. Similar to [28], the authors

in [29] proposed a virtual structure based approach to control a line formation of

UGVs guided by a quadrotor. The method is based on kinematic models too. In

[23], an improved expert PID target tracking control algorithm was proposed for the

UAVs-UGVs system yielding an improvement of the system stability.

Almost all the frameworks mentioned above did not consider the dynamical mod-

els of the heterogeneous MRS. Furthermore, the handled formation shapes are specific

forms such as (circle, line, rectangle,...,etc.). However, in practical applications, track-

ing free formation shapes by MRS is very practical, without losing the system stability.

In [30] an operator named Elliptic Fourier Descriptors (EFDs) has been used for shape

modeling and robots path planning. Image processing and computer vision are ba-

sically the fields that use the EFDs, where free-form shapes (i.e., closed contours)

could be represented in digital images. In [30], the parametric and implicit models

of the desired formation shape have been used to design the robots convergence con-

troller. However, the controller is valid only for robots featured by first integrator

model. Dynamic EFDs have been introduced in [31], and a formation controller has

been derived to maintain a group of holonomic robots on a dynamic 2D curve. In our

previous work [2], we extended the method proposed in [31] to design a controller for
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3D planar formations shapes tracking using an extended dynamic version of EFDs.

It has been shown that many existing formation control approaches such as leader-

follower, behavioural and virtual structure approach can be unified within the general

framework of consensus control [18]. The consensus problem has been extensively

studied for different continuous or discrete dynamics node under fixed or switching

topologies. Then it is extended to formation control based consensus with first order

dynamics node[32], second order dynamics [33, 34] and general linear dynamics [20,

35, 36]. The difference between formation control and consensus control is that in

consensus control, an agreement among the agents in term of some variable of interest

(i.e., states) has to be reached. While in formation control, a desired configuration is

required to be achieved by the agents, thus constraints on the desired formation are

to consider.

In general context, depending on whether the formation has a reference trajectory

or not, formation control can be categorized into two sub-branches. Firstly, the for-

mation stabilization (leaderless), that refers to design protocols for a MASs to only

achieve a desired geometric shape. Secondly, the distributed formation tracking or

leader-follower formation tracking. In this latter, the followers agents seek achieving

TVF configuration while tracking the trajectory of the real/virtual leader [6]. The

algorithm design in formation tracking is more challenging and difficult. However,

it provides high level applications such as target enclosing [10, 37]. The formation

control consists on designing algorithms for a group of networked agents with on-

board sensing. Moreover, interaction capacities are considered to reach and maintain

a desired (fixed or time-varying) configuration autonomously, while keep being stable

[3, 6].

Many interesting frameworks within the context of Time-Varying Formation (TVF)

control of MASs featured by general linear dynamics and based consensus control

framework have been achieved. In [35,38,39], TVF control of networked MASs relying

on relative state exchanging is proposed. In this case, the authors assume the inter-

action topology to be undirected and some global information such as the smallest

eigenvalue of the Laplacian matrix are required. In [8], successful implementation of
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TVF stabilization for high order general linear MASs under directed topology is pre-

sented. However, in this latter, the communication network is assumed to be strongly

connected. Furthermore, the proposed protocol is not distributed and is based on

relative-state exchange. The protocol is said to be fully distributed when it is not de-

pendant to any kind of global information such as the global number of agents or the

structure of the interaction topology. This property is necessary and vital for practical

applications.

In [36, 40], an interesting distributed TVF stabilisation is presented, however, it is

valid only for undirected graphs. Note that undirected graphs implies bidirectional

information exchange, therefore, more communicating resources are needed, which is

less suitable assumption in real applications. In [41,42], the authors have extended the

proposed protocol in [36, 40] to directed graphs. However, the control protocol is still

based on relative full-state exchange and deal only with TVF stabilization. In some ap-

plications, only partial system states are measurable, thus, implementing distributed

relative-output measurement based TVF control is more interesting and practical. In

[43], distributed adaptive TVF stabilization based on relative output-feedback is pro-

posed. However, it is valid only for graphs being undirected. The latter protocol has

been extended to TVF stabilization (leaderless) under directed interaction topology

in [44, 45]. However, some constraints are assumed such as full rank of observation

matrix B, and some extra conditions on the desired TVF are to be satisfied. More-

over, the interaction topology is assumed to be strongly directed rather than to have

a spanning tree, which is a mild condition that implies less network communication

links.

All the above works have dealt only with TVF stabilization (leaderless). In [46–

48], distributed TVF tracking implementations for high order MASs have been made.

However, some assumptions have been imposed. Firstly, the leader’s input is assumed

to be zero and only undirected interaction topology is considered. This is considered

as restrictive, in the sense limited classes of formation trajectories can be generated

with leader of zero control input. Secondly, the leader’s input is assumed known to

all the followers with bidirectional information exchange. Thus, implies an increase
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of communicating resources and may make the control less robust.

1.4 The structure of the thesis

As stated previously, the focus of this thesis is the development and analysis of coop-

erative and adaptive TVF tracking algorithms for a formation of agents/vehicles (ex.,

UGVs and UAVs). Besides the present introduction chapter, the thesis is developed

in three additional chapters.

Chapter 2 is devoted to construct an analytical frame of the branch UAV-UGVs sys-

tem control and coordination. As such, the aim is to develop and design a tracking

control for the UGVs (i.e., two-wheeled mobile robot) group assisted by a UAV (i.e.,

quadrotor) which acts as an eye in the sky or a leader. Consequently, it is natural

to opt for the leader-followers control approach. The cooperative control of UAV-

UGVs system in this chapter is investigated under centralized control structure (the

UAV plays the role of central component). The main aims are to design cooperative

tracking controller to improve the coordination and the flexibility on the choice of

the desired UGVs-formation shapes, to provide a closed loop dynamics stability anal-

ysis and enhancing the robustness property of the cooperative control face external

disturbances and unmodelled dynamics. In this chapter the UAV-UGVs system con-

trol is studied from a control point of view, where the complete dynamical models

of the vehicles of (i.e., UAV, UGVs) are considered under the assumption of perma-

nent communication-links among the UGVs and the UAV. As a result, the distributed

property isn’t under scope in this chapter. The desired formation shape is modelled

by using the EFDs tool and the implicit polynomial functions.

Chapter 3 is devoted to present a formation cooperative control for a group of ho-

mogeneous UAVs (i.e., quadrotor) to achieve a deployment behaviour. We expand

the 2D-EFDs formation based control method presented in [31, 49] to design deploy-

ment control of a UAVs (i.e., quadorors) group based 3D-EFDs model. The proposed

deployment control is based on virtual structure control approach consists of converg-

ing the quadrotors to a planar 3D contour defined by the EFDs and the correspondent
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implicit function. The particularity of the proposed formation lies in the ability of

tracking 3D planar free-form formation shapes relying only on the knowledge of their

EFDs parameters.

Chapter 4 presents a unified framework of distributed output TVF tracking control

design for homogeneous Linear Time Invariant (LTI) MASs based on an observer view-

point and relying on consensus region approach to design distributed cooperative control

laws. The formation vehicles are viewed as agents equipped with on-board-sensors,

local communicating capabilities and featured by linear dynamics. The interaction

(i.e., communication) among the agents (i.e., vehicles) is modelled using graph theory

tools (eg., Laplacian and Adjacency matrices,...,etc.). The opted control structure of

the MASs/MVSs is Leader-Follower. The analysis is presented from undirected inter-

action topology to a directed one, and from a leader with zero control input to a one

with unknown and bounded control input.

The analysis in chapter-4 is conducted in order to derive a description as global as

possible of the closed loop dynamics stability induced by the proposed protocols by

using the Lyapunov theory. As a consequence, a quantitative and qualitative descrip-

tion of the advantages (contributions brought) given by these algorithms are given

comparing with the previous frameworks in the literature. The proposed algorithms

are designed in a fully distributed fashion (see Section-4.4). Thus, each agent (vehi-

cle) is able to implement local controller without using any global information relating

the interaction topology such as the smallest eigenvalue of the Laplacian matrix or the

global number of agents. Further, the proposed algorithms are designed in order to

reduce the overall network information exchange among the agents. Thus, the agents

exchange locally their outputs vectors rather than the agent state vector. In addition,

an analysis of the effect of the communication graph on the MASs convergence rate

is provided. Finally, the designed cooperative tracking controllers (protocols) were

applied to a group of UAVs (i.e., quadrotors).
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Chapter-III Chapter-II Chapter-IV 

UAV-UGVs coordination 

and Robust TVF Tracking 

- Heterogeneous systems. 

- Centralized control structure. 

- The robust control design considers the systems 

nonlinear dynamics. 

- The proposed control satisfies the Flexibility and 

Robustness features face unknown external disturbances. 

Deployment control 

of UAVs formation 

Distributed TVF 

Tracking 

- Homogeneous systems. 

- Fully distributed control structure. 

- Systems are featured by general linear dynamics. 

- The control design is based on Consensus tracking 

Framework.  

- The proposed controllers allow reduced information 

exchange 

- Leader-Followers control approach. 

The leader’s input is zero The leader’s input is nonzero 

Figure 1.6: Organization of the thesis.

1.5 Main contributions

The main contribution of this thesis can be summarized in two parts as follows,

1] In the UAV-UGVs cooperation control branch (Chapter-2), the focus in this part

of the thesis was into improving the flexibility and the robustness of the UAV-UGVs

cooperative control, as such,

• A novel deployment controller for the UGVs based on the kinematic model is

proposed. In which, the nonholonomic constraints are considered. The key idea

is in using the estimated implicit representation of the desired formation as a

potential function to generate the UGVs reference trajectories.

• A novel robust cascaded velocity-torque controller based on the UGV kinematic

and dynamic models is proposed to ensure the UGVs TVF-tracking. The key

feature of the controller design is first, in introducing a virtual auxiliary control

input to control indirectly the actual UGVs velocity vector. Next, we added a

switching term to the torque input, to compensate for the unknown external

disturbance and the unmodelled dynamics.

• A dynamic version of the EFDs tool to model the motion of the desired UGVs
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formation shape has been introduced. Thus, the dynamics of the formation is

considered in the TVF tracking design.

2] In the second part of the thesis, the main challenge in formation control of a net-

worked MASs, is that the control algorithm design must be fully distributed. Thus,

the agent uses only the exchanged information from neighbours. Furthermore, it has

to be independent of any global information such as the global number of agents, or

the communication structure (eigenvalues of the Laplacian matrix). Moreover, some

assumptions and constraints on the interaction topology among agents need to be

relaxed, such as being undirected or (directed and strongly connected). This latter

fact may increase the network burden and the communicating resources compared to

directed topology containing a spanning tree. In other words, computation complex-

ity is proportional with the increase of the interconnection links among agents over

the network [50]. Another aspect to be considered when dealing with the formation

control is the size of exchanged information among agents that is required to be min-

imized as possible. Hence, relative-outputs feedback based formation control is more

suitable in real application than relative-states feedback based formation control. It is

worth noting that dealing with distributed formation tracking under leader-follower

schema is more challenging than formation stabilization (leaderless). In particular,

when the leader’s input is nonzero, unknown and its output measurement is avail-

able to at most a small subset of the followers.

The distributed formation control considering the above facts become very suit-

able, adaptive, flexible and promising for real applications in different situations. In

particular, when some physical constraints are inevitable such as, short and/or direc-

tional wireless communication ranges, limited resources and energy, communicating

interference, high number of systems and narrow bandwidths [6,50]. Hence, studying

the fully distributed output feedback formation control under directed topology hav-

ing a spanning tree (minimal communication links) ensuring: (i) reduced exchanged

information among agents and (ii) considering a leader with unknown nonzero input

is necessary, practical and vital. The contributions in this part are summarized as

follows,
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• Firstly, an adaptive and fully distributed TVF Tracking controller is proposed.

In this controller, the leader’s input is zero. Moreover, only one local observer

is designed for each agent to observe the synthesized network formation sig-

nal. Thus latter contains only the neighbouring output measurements and the

output of the distributed observer’s states. Thus, agents aren’t required to ex-

change the local observer states, which result on a less information exchange

among agents. In other words, the proposed protocol enables reduced network

information exchange. This is due to the fact that the size of the output system

signal is generally smaller than the size of state system. Furthermore, the TVFT

control design relies on the fact the leader’s output is known to only a subset

of followers (at least the rooted follower agent). These result in a mild require-

ments and make the controller more suitable for real applications and applicable

for large scale systems.

• Secondly, the first proposed controller is extended to the case where the leader’s

input is nonzero, bounded and unknown to all the agents. Partly inspired by

[51, 52], a discontinuous protocol is proposed. In which, the idea is to deal with

the leader’s nonzero input as an external disturbance that has to be compen-

sated. It is worth noting that no constraints are assumed on the agents dy-

namics such as assuming the observation matrix B to have full rank and some

extra-conditions on the desired TVF as in [53]. Thirdly, the tracking-error con-

vergence rate analysis of the MASs towards the desired formation is provided,

and then the proposed protocol has been applied to group of Quadrotors, by

using a feedback linearization technique to achieve distributed TVF tracking

scenario as an example of target enclosing and trajectory tracking application.
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Chapter 2. Parametric and implicit features based UAV-UGVs Time-Varying
Formation tracking: Dynamic Approach

2.1 Introduction

T he collaboration in MVSs offers valuable advantages comparing to the use of

a single robot when accomplishing complex tasks, and increases the capabil-

ities and the efficiency of execution. One of the promising research branches of

MVSs/MRSs is UAV-UGV control and coordination. The researches on UAVs- UGVs

control and coordination have attracted increasing attention. In particular with the

rapid advances of communication, sensing, and embedded techniques. This is due to

the broad and various applications of UAV-UGV coordination systems in both civil-

ian and military fields such as exploration, surveillance and inspection, rescue, and

environmental monitoring. The UAV-UGV coordination has demonstrated the capa-

bilities in providing effectiveness, robustness, reliability, and practical solutions to the

real-world that cannot be brought by other types of coordination.

Among the aspects relating to MRSs control, we consider in this chapter the time-

varying formation tracking of a UGVs group assisted by a UAV that acts as an eye in

the sky and as leader that decides the UGVs formation shape. The opted MRS motion

control is Leader-Follower. A TVF control refers to the ability of MRS to change its

formation shape (i.e. geometric relations between robots) in specific conditions, while

tracking a reference trajectory and preserving the whole system stability.

In this chapter, we consider two tasks to be accomplished by the UGVs-UAV sys-

tem. Firstly, UGVs will carry out the deployment task, which consists of forming an

initial free geometric configuration around the planar position of the quadrotor. In

the second task, the UVGs will track TVF shapes while tracking a formation refer-

ence trajectory. The UAV-UGVs system is studied from a control point of view, where

the complete dynamical models of the MRS are considered (i.e., heterogeneousness is

considered) and the assumption of permanent communicating-links among the UGVs

and the UAV is assumed in this chapter, thus the distributed property isn’t under

scope. The principal control aims are the flexibility in the choice of the formation

shapes through the use of the EFDs tool, and the MRS stability and robustness face

the external disturbance and the unmodelled-dynamics. We first present the EFDs

formation modeling tool, the complete dynamical models of the mobile robot and

38



2.2. UAV-UGVs system model

quadrotor are further developed. Then, we illustrate the UAV-UVGs system control

structure, followed by the design of the UGVs deployment control and the TVF track-

ing velocity-control designing. The UGVs formation robust torque-control design and

the stability analysis with some meaningful remarks are further detailed step by step.

Finally, the proposed formation controllers are validated through numerical simula-

tion and experimental results.

2.2 UAV-UGVs system model

The control designing of a UGVs formation assisted by UAV is more challenging than

the control of a homogeneous system. Because in the UAV-UGVs, each agent may

have different dynamics and constraints. In this section, we highlight this challenge.

Firstly it is described how to model parametrically a 2D time-varying formation shape

using the EFDs and its corresponding IPF. Secondly, the dynamical model of the UAV

(i.e., quadrotor) is presented, which will be considered as a flying leader of the ground

mobile robots formation. The UAV decides the desired formation shape as well as the

formation reference trajectory. Finally, the dynamical model of the UGV (i.e., two-

wheeled mobile robot) is briefly presented.

2.2.1 Parametric and Implicit Representation of planar curve

Elliptic Fourier Descriptors EFDs

The EFDs were originally introduced [54], where the authors proposed to use the

elliptical descriptors of a planar curve (i.e., contour) with Fourier descriptors repre-

sentation. Therefore, any free-form 2D curve is defined by EFDs as a sum of ellipses.

EFDs operate as a transformation featured by translation, rotation, and scale. Biol-

ogy and anatomy are the applications fields most relating to the use of EFDs Fig. 2.1.

[30, 55] show how to model a closed curve using the EFDs as,
x (δ) = a0 +

nh
∑

k=1
(Ak cos (kδ) + Bksin (kδ))

y (δ) = c0 +
nh
∑

k=1
(Ck cos (kδ) + Dksin (kδ))

(2.1)
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In (2.1) , k is an index and nh denotes the number of harmonics used to represent the

curve. a0 and c0 are the coordinates of the curve center, and A = [A1, . . . , Anh ]
T ∈

Rnh×1, B ∈ Rnh×1, C ∈ Rnh×1 and D ∈ Rnh×1 are vectors that represent the curve

descriptors. The number of harmonics defines the representation accuracy, where the

bigger is nh, the more accurate representation the curve is. x(δ) and y(δ) denote the

coordinates of the points forming the curve contour. These coordinates are expressed

as functions of a normalized parameter δ with δ ∈ [0, 2π]. For example, the EFDs

parameters of a circle are given as,

[
a0 c0

]T
=
[

x0 y0

]T
; A = Rc; B = 0; C = 0; D = Rc; nh = 1.

where (x0, y0) and Rc are respectively the coordinates of the center of the circle and

its radius.

It is further possible to estimate the EFDs vectors of any 2D closed curve defined

by a set of points, with coordinates denoted by (xi, yi) , i ∈ [1, Ms]. The EFDs vectors

are estimated as in [56], [31],



Ak =
1

Ms

Ms
∑

i=1
xicos (kδi) ; Bk =

1
Ms

Ms
∑

i=1
xisin (kδi)

Ck =
1

Ms

Ms
∑

i=1
yicos (kδi) ; Dk =

1
Ms

Ms
∑

i=1
yisin (kδi)

a0 = 1
Ms

Ms
∑

i=1
(xi); c0 = 1

Ms

Ms
∑

i=1
(yi) ; k ∈ {1, nh}

(2.2)

where Ms is the number of points that define the curve and δi = i2π/Ms. It is worth

noting that the precision of estimation is dependent to the choice of the number of

harmonics nh.

To show how EFDs can be very useful for defining and modeling any 2D curve,

Fig. 2.2 is depicted as an illustrative example, where the desired curve is defined

in a dotted-line on an acquired image for surveillance purposes. This curve can be

modeled using (2.2), and then reconstructed using (2.1). In virtual fashion, we can

represent and model any desired closed 2D curve based on this method increasing the

flexibility of the description. The authors in [31] proposed an approach to describe

40



2.2. UAV-UGVs system model

Robot (𝑥𝑗    𝑦𝑗) 

                        (a)                                                   (b) 

Figure 2.1: (a) Cell image, (b) reconstructed controur using EFDs (with 5 harmonics) [1].

𝑋𝑝 

𝑌𝑝 

(𝑎0  𝑐0)𝑇 

𝛿 = 0 

Figure 2.2: Example of a 2D closed curve reconstructed after modelling using EFDs from an acquired

image.

and to model the motion of a 2D free-form curve using dynamical EFDs as,

x (δ, t) = a0(t) +
nh
∑

k=1
(Ak(t) cos (kδ) + Bk(t)sin (kδ))

y (δ, t) = c0(t) +
nh
∑

k=1
(Ck(t) cos (kδ) + Dk(t)sin (kδ))

(2.3)

where A ∈ Rnh×1, B(t), C(t), and D(t) are time-varying vectors and they are referred

to as dynamical EFDs vectors and a0(t), c0(t), x, y, δ, nh are already defined in (2.1).

The parametric description (2.3) can be expressed as, x (δ, t)

y (δ, t)

 =

 a0(t)

c0(t)

+ EFDs(t) (2.4)

where EFDs ∈ R2 is a relative offset vector relating the points of the curve contour
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with the curve center coordinates. Dynamical EFDs will be used to model the time-

varying formation shape of a group of robots.

Implicit Polynomial Function (IPF) of a closed 2D curve

Further to the parametric representation (2.3), 2D curves could also be represented

using an IPF denoted by H(x, y) = 0. This implicit function of a closed curve is

derived by the implicitization of the EFDs vectors. In this study, the IPF is obtained

using the method detailed in [1]. The IPF that represents a closed curve modeled by

EFDs takes the form,

H (x, y) = ∑
0<i+j<dp

aijxiyj = 0 (2.5)

where aij are coefficients and dp is the polynomial degree with dp = 2nh [1]. For

example, the IPF of a circle is defined as H (x, y) = (x− x0)
2 + (y− y0)

2 − R2
c , where

(x0, y0) and Rc are respectively its center coordinates and radius. The IPF of the for-

mation shape can be considered as a potential fields function that could have control

purposes.

2.2.2 Dynamical Model of a quadrotor UAV

In this section, the dynamical model of a quadrotor used as the UAV is presented. This

latter is considered as a rigid body. Let Fw = (OW , XW , YW , ZW) be the global inertial

frame, and let Fq = (Oq, Xq, Yq, Zq) be the body-fixed frame. Let η = [ϕq, θq, ψq]T

describes the orientation of the quadrotor (Euler angles) and χq = [xq, yq, zq]T denotes

the position of its mass center with respect to the inertial frame.

A brief explanation of the classic process is given in order to derive the simplified

dynamical model [57, 58]. The structure and the propellers are rigid and symmetric.

The translational and rotational dynamics are expressed as,

Mqχ̈q = −diag(K f )χ̇q −Mqgez + uzRq
(

ϕq, θq, ψq
)

ez

IqẇB = −wB × IqwB + Ga + τq

(2.6)
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where ez = (0, 0, 1)T denotes the unit vector of ZW-axis, Rq is the rotation matrix from

the body frame to the inertial frame, Mq is the quadrotor mass, g is the gravitational

acceleration, uz is the total thrust and K f = [K f x, K f y, K f z]
T are the aerodynamic trans-

lation coefficients along the x, y and z axes respectively.

wB = [wBx, wBy, wBz]
T denotes the angular velocity, Iq = diag(Iq,x, Iq,y, Iq,z) is the diag-

onal inertia matrix, τq =
[
uφ, uθ, uψ

]T are moments due to propellers forces acting on

the quadrotor along the x, y and z body-fixed frame axes. Ga = [Jr θ̇qΩr, Jrφ̇qΩr, 0]T de-

notes the propellers gyroscopic effect with Ωr = −Ω1 + Ω2 −Ω3 + Ω4 is a mixture of

rotors speeds and Jr is the rotor inertia [57]. The quadrotor rates wB are transformed

into Euler angular rates η̇ by the following relation,

η̇ =


1 Sφqtanθq Cφq tan θq

0 Cφq −Sφq

0 Sφq /Cθq Cφq /Cθq

wB (2.7)

where S(.) and C(.) are abbreviations for sin(.) and cos(.) respectively. The dynamical

model of the quadrotor could be written using (2.6), (2.7) as follows,

χ̈q =


ẍq

ÿq

z̈q

 =


−K f x

Mq
ẋq + uz

ux
Mq

−K f y
Mq

ẏq + uz
uy
Mq

−K f z
Mq

żq − g + uz
Cθq Cφq

Mq

 (2.8)

η̈ =


ϕ̈q

θ̈q

ψ̈q

 =


θ̇qψ̇q

(
Iy−Iz

Ix

)
− Jr θ̇qΩr

Ix
+

uφ

Ix

φ̇qψ̇q

(
Iz−Ix

Iy

)
+

Jrφ̇qΩr
Iy

+ uθ
Iy

φ̇qθ̇q

(
Ix−Iy

Iz

)
+

uψ

Iz

 (2.9)

In (2.9), ux and uy are considered as virtual control inputs for xq and yq states, defined

as [58],

ux = Cψq Sθq Cφq + Sψq Sφq ; uy = Sψq Sθq Cφq − Cψq Sφq

The quadrotor control inputs uφ, uθ, uψ and uz are defined as,

uφ = b`[Ω2
3 −Ω2

4]; uθ = b`[Ω2
1 −Ω2

2]

uψ = σ[Ω2
1 + Ω2

2 −Ω2
3 −Ω2

4]; uz = ∑4
i=1 bΩ2

i
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Figure 2.3: Frames and parameters of a nonholonomic mobile robot.

where Ωi, i = [1, 4] being the ith propeller angular velocity, ` is the distance between

the motor and the quadrotor center, b and σ are the propeller aerodynamic lift and

drag coefficients respectively.

2.2.3 Dynamical Model of a Mobile robot UGV

A group of NR homogeneous UGVs (i.e., non-holonomic two-wheeled mobile robots)

is considered, where the generalized coordinates of each mobile robot are given by,

qj = [xj, yj, θj]
T (2.10)

where xj, yj, θj are respectively, the x, y coordinates, and the orientation of the jth

mobile robot. In Fig. 2.3, point c is the robot center of mass. The kinematic model of

the jth nonholnomic mobile robot is written as [59, 60],

q̇j =


ẋj

ẏj

θ̇j

 = STvj =


cos(θj) −djsin(θj)

sin(θj) djcos(θj)

0 1


 vj

wj

 (2.11)

where dj is the distance from the rear axle to the mass center of robot j, Lw is

the half distance between the left and right wheels, Rw is the robot wheel radius,

vj = [ vj wj ]
T with vj and wj are respectively the linear and the angular velocities

of the jth mobile robot.
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2.2. UAV-UGVs system model

A Nonholonomic mobile robot characterized by n generalized coordinates (qj1, ..., qjn),

having r control inputs and subject to m constraints described in detail in [60,61], and

mathematically after applying the transformation described in [60, 61] to eliminate

Lagrange multipliers yields the alternative dynamical model,

Mj
(
qj
)

v̇j + Vmj
(
qj, q̇j

)
vj + Fj(q̇j) + τdj = Bjτ j (2.12)

In (2.12), M ∈ Rr×r is a symmetric positive definite inertia matrix, Vmj ∈ Rr×r is

the centripetal and coriolis matrix, Fj ∈ Rr×1 is the friction vector, τdj ∈ Rr×1 repre-

sents unknown bounded disturbances including unstructured unmodeled dynamics,

and Bj ∈ Rr×r is the input matrix and vj ∈ Rr×1, τ j ∈ Rr×1 are respectively the veloc-

ity and the torque vectors. For the non-holonomic mobile robot described in Fig. 2.3.

The complete dynamical model is expressed as follows [60, 61],(
m + 2Iw

R2
w

)
v̇j −mcdj

(
wj
)2

+ Fj,1 + τdj,1 =
(τR,j+τL,j)

Rw(
I + 2L2

w
R2

w
Iw

)
ẇj + mcdjvjwj + Fj,2 + τdj,2 =

Lw(τR,j−τL,j)
Rw

(2.13)

where m = mc + 2mw is the total mass of the mobile robot, I = (Ic + mcd2
j + 2mwL2

w +

2Im) is the total equivalent inertia, mc is the robot mass without the driving wheels

and actuators (DC motors), mw is the mass of each driving wheel (with actuator), Ic is

the moment of inertia of the robot about the vertical axis through the center of mass,

Iw and Im are the moments of inertia of each driving wheel (with actuator) around

the wheel axis, and the moment of inertia of each driving wheel with a motor about

the wheel diameter, respectively. The matrices Mj, Vmj and Bj in (2.12) are obtained

from (2.13) as follows,

Mj =

 m + 2Iw
R2

w
0

0 I + 2L2
w

R2
w

Iw

 ; Vmj =

 0 −mcdjθ̇j

mcdjθ̇j 0

 ; Bj =
1

Rw

 1 1

Lw −Lw



Remark 2.1 Common to robotic systems, the skew-symmetric property that is defined as,

XT(Ṁj − 2Vmj)X = 0 for all vector X [62], is an important feature that will be used later in

the stability analysis section.
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The complete mobile robot behavior can be described by (2.11) and (2.12). Let

define the nonlinear feedback control input,

τ j = Bj
−1
[

Mjuj + Vmjvj + Fj

]
(2.14)

where uj ∈ R2×1 is an auxiliary input. Applying the control law (2.14) to (2.12) allows

the conversion of the dynamical control problem into the kinematic control problem

such that,  q̇j = STvj

v̇j = uj

(2.15)

where the matrix ST is defined in (2.11). The feedback control input (2.14) yields a

form of cascaded kinematic and dynamic linearization structure. Thus, the alternative

model (2.15) is convenient for the purpose of control.

2.3 The UAV-UGVs Control Structure

As depicted in Fig. 2.4, the MRS control scheme consists of two consecutive tasks.

Accordingly, two controllers have been proposed namely, deployment controller and

TVF tracking controller.

The first task is robots deployment control, which consists of converging a group

of mobile robots towards an initial formation shape (i.e., 2D curve) modeled by EFDs

and its corresponding IPF. The quadrotor will be located at the center of the forma-

tion, being the leader that produces the formation shape. This scenario has a number

of applications such as target enclosing and fire-monitoring.

In the second task (see Fig. 2.4), once the initial formation shape is completed, the

quadrotor will track a predefined reference trajectory, while each mobile robot will

generate and tack its own trajectory and simultaneously maintains a desired time-

varying formation shape. The desired shape is produced by the quadrotor depending

on the mission requirements, circumstances, and the changes occurring in the oper-

ating environment. For example, the quadrotor can use an onboard camera sensor
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Task-1: deployment 
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shape, 𝐸𝐹𝐷𝑠 (𝑡) 
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𝑿𝒒 𝒀𝒒 

R1 

𝑿𝒓 

𝒀𝒓 

R3 

Figure 2.4: Mobile Robots formation Control structure consisting of two tasks.

to acquire images from the operating environment, and then process these images to

define the adequate formation shape. Both the quadrotor path planning and the pro-

cess of the formation shape selection are not considered in this thesis. Thus, the EFDs

vectors relating to the desired formation shape and the quadrotor reference trajectory

are predefined.

Remark 2.2 The control of single mobile robot can be developed by considering only the

kinematic model (2.11), [59], resulting in a pseudo velocity control input that we denote

vc(t) = [ vc(t) wc (t)]T. However, the control performance of the mobile robot can be im-

proved by incorporating its dynamics on the controller design. Consequently, a control torque

τ j(t) can be designed to make the actual velocity v(t) follow the designed pseudo velocity

control input vc(t). Thus, in this section, we seek to expand the framework developed for

the control of a single mobile robot to the control of mobile robots formation based Leader-

Followers approach, where perfect velocity tracking assumption is removed. Therefore, we seek

to develop a robust formation torque-controller relying on velocity control input vc(t) in such

a way the formation desired behaviour is improved in terms of flexibility, tracking accuracy,

and robustness, in contrast with the case when perfect velocity assumption is assumed.
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2.4 Deployment Control (Kinematic Based Approach)

The control aim in this task is to find a smooth velocity-control input vjc(t), j ∈ [1, NR]

in such a way all the mobile robots converge to the initial desired formation shape,

based only on the knowledge of its IPF denoted by H(x, y). The idea is to use the IPF

to generate the robots reference trajectory leading to the desired shape perimeter. As

detailed in section-2.2, the position error function between the jth mobile robot and

the formation shape (i.e., 2D closed curve) is expressed using the IPF as,

ej
Form = H(xj, yj) (2.16)

where, (xj, yj) are the jth robot x and y coordinates, ej
Form is an algebraic distance

between the jth robot and the desired formation shape and H(x, y) is the IPF of the

desired shape. By using (2.16), when the robot is exactly on the curve, the error is

zero. While, the error is positive or negative if the robot is outside or inside the closed

curve respectively. We consider the reference trajectory for the jth mobile robot to be

defined as,

ẋjr = vjrcos(θjr); ẏjr = vjrsin(θjr); θ̇jr = wjr (2.17)

where xjr, yjr and θjr are the positions and orientation of a virtual reference robot,

mobile robot j seeks to follow. vjr(t) and wjr(t) are respectively its reference linear

and angular velocities. If xjr, yjr and θjr are continuously differentiable and bounded

when t→ ∞, and (ẋjr + ẏ2
jr) 6= 0 it can be shown that,

vjr

wjr

θjr

 =


ẋjr cos(θjr) + ẏjr sin(θjr)(

ÿjr ẋjr − ẍjrẏjr
)

/
(

ẋ2
jr + ẏ2

jr

)
tan−1 (ẏjr/ẋjr

)
 (2.18)

The reference trajectory of the mobile robot j is derived from (2.17) and (2.18),

during the deployment stage is depicted in Fig. 2.5.

Refer to Fig. 2.5, in the first step, the mobile robot is approached to point-mass particle

and exhibit the kinematic model given as, [ ẋj ẏj ]
T = Fa,j; Fa,j =

[
Fxj Fyj

]T
, where

Fxj and Fyj are the components of a virtual force. The 2D desired curve described by

the IPF produces an external potential field (see Fig. 2.7), yielding an attractive force
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Particle point 
under potentiel 
fields, Eq (22) 

ℋ(𝑥, 𝑦) 

     

𝐹𝑥,𝑗
𝐹𝑦,𝑗

 
𝑥𝑗,𝑟
𝑦𝑗,𝑟

 

Low-pass 
Filter 

   

Eq (2.18) 
  

𝑣𝑗,𝑟
𝑤𝑗,𝑟
𝜃𝑗,𝑟

 

𝑥𝑗
𝑦𝑗

 

Desired formation 
 shape 

Figure 2.5: Block diagram of reference trajectory derivation during the deployment task.
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Figure 2.6: Artificial attractive force exerted by the 2D curve on robots.

Fa,j being exerted on the robot. By integrating the virtual force, the robot reference

position (xjr, yjr) is obtained and smoothed out using a low-pass filter. Then, equation

(2.18) is used to calculate the corresponding reference velocities and orientation of the

virtual reference robot. Now, in the following, we explain how to derive the virtual

force Fa,j exerted by the 2D curve on the jth robot relying on Lyapunov theory. The

attractive force will be designed to force the error (2.16) to exponentially decrease,

ėj
Form = −λ1ej

Form (2.19)

where λ1 is a positive number. Substituting (2.16) into (2.19) yields,

Ḣ(xj, yj) = −λ1H(xj, yj) (2.20)

After deriving (2.16) with respect to time and substituting the particle model (i.e.,
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Figure 2.7: 3D plot of the IPF, H(x, y).

simple integrator model) (ẋj, ẏj)
T = (Fx,j, Fy,j)

T, yields,

(
Hx Hy

) Fx,j

Fy,j

 = −λ1H(xj, yj) (2.21)

The virtual force Fa,j = [Fx,j, Fy,j]
T is determined from (2.21) for the mobile robot j

relying on pseudo inverse operator as follows, Fx,j

Fy,j

 = −λ1
1∥∥∇H(xj, yj

)∥∥2H(xj, yj)

 Hx(xj, yj)

Hy(xj, yj)

 (2.22)

where Hx, and Hy are the partial derivatives of H(x, y) with respect to x and y re-

spectively and ∇H =
[
Hx Hy

]T
.

Once the reference trajectories of the mobile robots are derived, namely, [xjr, yjr, θjr,

vjr, wjr], j ∈ [1, NR], the tracking error system ej = [ex
j , ey

j , eθ
j ]

T of the jth mobile robot

can be expressed in the robot coordinate frame as,
ex

j

ey
j

eθ
j

 =


cos(θj) −sin(θj) 0

sin(θj) cos(θj) 0

0 0 1




xjr − xj

yjr − yj

θjr − θj

 (2.23)

Thus, the problem of controlling a mobile robots formation may be expressed as

the requirement to make the error dynamics of (2.23) globally asymptotically stable.
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By developing the first-order time derivative along (2.23), and using Lyapunov theory,

a smooth pseudo control-input vjc(t) that guarantee the asymptotic stability can be

selected as [59], vjc

wjc

 =

 vjr cos
(

eθ
j

)
+ Kxex

j

wjr +
(
vjr + Kv

)
Kyey

j +
(
vjr + Kv

)
Kθsin

(
eθ

j

)
 (2.24)

where Kx, Ky, Kv, and Kθ are properly selected positive gains. Comparing the velocity

controller proposed in [59] (equation 21) with (2.24), we find that the term Kv > 0 is

added to vjr, thus, we ensure that the asymptotic stability holds even when vjr = 0.

Remark 2.3 The followed method to generate the reference mobile robots trajectory leading

to guarantee H
(
xj, yj

)
→ 0, j ∈ (1, NR), as t → ∞ is different from the classic Artificial

Potential Fields (APFs) method, in the sense the controller is designed to converge the mobile

robots to a 2D closed curve rather than to converge them to a goal point. Thus, the potential

applications could be 2D obstacle avoidance, where the avoided obstacle curve can have any

shape rather than being a circle as presented in many previous works on obstacle avoidance

based APFs [17]. Thus, the mobile robots navigation space could be increased.

2.5 UGVs Time-Varying Formation Tracking Control

During the deployment task, the initial desired formation shape is reached by the

mobile robots using (2.24), where the leader (i.e., quadrotor) is located in the center

of the formation
[

xq yq

]T
=
[

a0 c0

]T
. In the second task, the aim is to design

a time-varying formation tracking controller enabling the mobile robots to maintain

the desired 2D curve, while tracking the formation reference trajectory (see Fig. 2.4).

First, we explain the process of generating the mobile robots reference trajectory re-

lying on the knowledge of the desired TVF shape (i.e., EFDs vectors) and the leader’s

coordinates. Depending on the location of each mobile robot on the desired curve,

each robot j forms an angle δj relative to the x-axis of the quadrotor coordinate frame

Fig. 2.8.

The EFDs dynamical representation (2.4) is used to define the desired position of the
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Figure 2.8: Location of the mobile robot j prior to start Task-2.

mobile robots within the time-varying desired curve. The reference trajectory of the

jth mobile robot, qjr = [xjr, yjr, θjr]
T comes from the leader’s output position [xq, yq]T,

yaw angle ψq and the desired time-varying EFDs,

qjr (t) =


xq(t)

yq(t)

θjr(t)

+ Rw
q

 EFDs(δj, t)

0

 (2.25)

where θjr = tan−1(ẏjr, ẋjr), Rw
q (t) is a rotational matrix relating the quadrotor x-y

coordinate frame to the world x-y coordinate frame (see Fig. 2.8),

Rw
q (t) =


cos(ψq) −sin(ψq) 0

sin(ψq) cos(ψq) 0

0 0 1

 (2.26)

From (2.4), we have EFDs
(
δj, t
)
=
[

ABj CDj

]T
∈ R2×1 denotes the desired

relative offset vector of the jth mobile robot with respect to the leader coordinates

given as,

EFDs(δj, t) =


n
∑

k=1
(Ak(t) cos

(
kδj
)
+ Bk(t)sin(kδj))

n
∑

k=1
(Ck(t) cos

(
kδj
)
+ Dk(t)sin(kδj))

(2.27)

where A(t) ∈ Rnh×1, B(t), C(t) and D(t) are the desired time-varying EFDs vectors

owing the same size. The desired orientation of each robot is defined in such a way
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that the mobile robot is always facing its desired position. Now, in the following, we

explain the design of the TVF tracking controller. In a single mobile robot control, a

steering control input vjc(t) is designed to solve three basic problems: path following,

point stabilization, and trajectory following such that lim
t→∞

(qjr − qj) = 0 and lim
t→∞

(vjc−

vj) = 0 [59]. If the mobile robot controller can successfully track a class of smooth

velocity control inputs, then all three problems can be solved with the same controller.

We will extend the stated three basic tracking control problems for a single mobile

robot to the proposed formation control based Leader-Followers model.

Definition 2.4 The mobile robots formation system is said to achieve the output TVF tracking

control if and only if for any given initial states qj(t = 0), vj(t = 0), j ∈ [1, NR] there exists

a control torque τ j , such as,


lim
t→∞

∥∥qj (t)− qjr (t)
∥∥ = 0

lim
t→∞

∥∥∥vj (t)− vjc (t)
∥∥∥ = 0

; j ∈ [1, NR] (2.28)

In this section, the aim is limited on finding a smooth control velocity input vjc =

f (ej, EFDs(δj, t), χ̇q, η̇q, j), in such a way lim
t→∞

(
qj (t)− qjr (t)

)
= 0, j = [1, 2, .., NR]. In

the next section (section-2.6), we focus on designing a robust torque-control input

τ j for each mobile robot with dynamic behaviour described by (2.11) and (2.12), so

that lim
t→∞

[vj (t)− vjc (t)] = 0. Achieving this for all the mobile robots j = 1, 2, . . . NR,

guarantees the mobile robots are tracking the formation reference trajectory, simul-

taneously, the formation is maintained and stabilized around the quadrotor planar

coordinates (xq, yq).

The formation time-varying tracking error expressed in the mobile robot frame

coordinate is written as in (2.23). The UGVs error dynamics system are determined

by differentiating (2.28), substituting (2.11), (2.25), and using trigonometric relations

yields,
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ėx
j =


−vj + vq cos

(
θj − ρq

)
+ wje

y
j

−ψ̇q

√(
ABj

)2
+
(
CDj

)2
sin
(

eθ
j + ψq + β1

)
+

√
.(

ABj
)2

+
.(

CDj
)2

cos
(

e
θj,ψq
j + β2

)

ėx
j =


−wjex

j + vq sin
(
θj − ρq

)
+ djwj

+ψ̇q

√(
ABj

)2
+
(
CDj

)2
cos

(
eθ

j + ψq + β1

)
+

√
.(

ABj
)2

+
.(

CDj
)2

sin
(

e
θj,ψq
j + β2

)
ėx

j =
{

θ̇jr − wj

(2.29)

In (2.29), vq =
√

ẋq + ẏq, ρq = tan−1 (ẏq, ẋq
)

and e
θj,ψq
j = (θj−ψq). Furthermore ˙(

ABj
)

and ˙(
CDj

)
are the derivatives of

(
ABj

)
and

(
CDj

)
. The parameters β1, β2 are defined

as,  β1

β2

 =

 tan−1(CDj, ABj)

tan−1( ˙CDj,
˙ABj)

 (2.30)

To stabilize dynamics error (2.29), the steering control input (2.31)-(2.33) is pro-

posed for mobile robot j to maintain the desired time-varying formation with respect

to the quadrotor coordinates and yaw angle (xq, yq, ψq), vjc = vq cos
(
θj − ρq

)
+ Kxex

j + ξvj

wjc = θ̇jr +
(
vq + Kv

)
Kyey

j +
(
vq + Kv

)
Kθsin

(
eθ

j

)
+ ξwj

(2.31)

where ξvj and ξwj are given as,

ξvj =


−ψ̇q

√
ABj

2
+ CDj

2
sin
(

eθ
j + ψq + β1

)
+

√
˙(

ABj
)2

+ ˙(
CDj

)2
sin
(

eθ
j + ψq + β2

) (2.32)

ξwj = −
∣∣∣ey

j

∣∣∣
1/Ky+

∣∣∣ey
j

∣∣∣dj

[
ψ̇q(dj +

√
ABj

2
+ CDj

2
)

+(vq + Kv)Kθdj +

√
.(

ABj
)2

+
.(

CDj
)2

+ Kv

] (2.33)

Remark 2.5 If we compare the proposed formation controller (2.31) with the robots deploy-

ment controller (2.24), we find that (2.32) and (2.33) are new terms. These new terms guar-

antee the stability of the overall mobile robots formation. Furthermore, the parameter Kv > 0
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is introduced to ensure that the asymptotic stability holds even when the quadrotor velocity

vq = 0.

Before we proceed the stability analysis, the following assumptions are needed,

Assumption 1. Each mobile robot in the formation is wirelessly connected to the quadrotor,

whose control inputs uz and τq are bounded ∀t > 0.

Assumption 2. The desired time-varying formation defined by the EFDs vectors (i.e., A(t),

B(t), C(t) and D(t)) as well as the leader’s state and its control inputs are communicated to

whole formation mobile robots.

Assumption 3. The vectors A(t), B(t), C(t) and D(t) used in (2.27) are continuous,

differentiable, and bounded. Furthermore, vq(t) and ψ̇q(t) are bounded ∀t > 0.

Assumption 4. The perfect velocity tracking hold such vj = vjc (this assumption will be

removed later).

Theorem 2.6 [49] Let a formation of NR nonholonomic mobile robots robots with dynamics

described by (2.11) and (2.12), owning n generalized coordinates qj, r actuators, and m

independent constraints, guided by a quadrotor satisfying (2.28). Let Assumption 1 − 4

hold. The jth mobile robot will be steered by a smooth velocity control input vjc given by

(2.31)-(2.33). Then, the origin ej = 0 consisting of the position and orientation error for the

mobile robots formation j = 1, ..., NR are asymptotically stable.

Proof of Theorem-2.6: Consider the following candidate Lyapunov function,

Qj =
1
2

(
(ex

j )
2 + (ey

j )
2
)
+

1− cos(eθ
j )

Ky
(2.34)

We can notice that Qj > 0 and Qj = 0 only if ej = 0. Thus, Qj is positive definite with

respect to ej. The time-derivative of (2.34) with the substitution of (2.31) and (2.32),
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yields,

Q̇j = −Kx

(
ex

j

)2
− djKy(vq + Kv)

(
ey

j

)2
−
(
vq + Kv

) Kθ

Ky
sin2

(
eθ

j

)

−dje
y
j


ψ̇q +

(
vq + Kv

)
Kθ sin

(
eθ

j

)
−

ψ̇q

dj

√
ABj

2
+ CDj

2 cos
(

eθ
j + ψq + β2

)
−

√
.

(ABj)
2
+

.

(CDj)
2

dj
sin
(

eθ
j + ψq + β2

)
+

Kv sin
(

eθ
j

)
dj


−ξwj

sin
(

eθ
j

)
Ky

+ ey
j dj



(2.35)

The equation (2.35) could be expressed as an inequality,

Q̇j 6 −Kx

(
ex

j

)2
− djKy

(
vq + Kv

) (
ey

j

)2
−
(
vq + Kv

) Kθ

Ky
sin2

(
eθ

j

)

+
∣∣∣ey

j

∣∣∣
ψ̇q

(
dj +

√
ABj

2
+ CDj

2
)
+
(
vq + Kv

)
Kθdj

+

√
.(

ABj
)2

+
.(

CDj
)2

+ Kv


+ξwj

[
1

Ky
+
∣∣∣ey

j

∣∣∣ dj

]
(2.36)

In (2.36), it is noticeable that the first three terms are negative whatever ej 6= 0. More-

over, when substituting (2.33) into the terms remaining in (2.36), yields,

∣∣∣ey
j

∣∣∣
 ψ̇q

(
dj +

√
ABj

2
+ CDj

2
)
+
(
vq + Kv

)
Kθdj

+

√
.(

ABj
)2

+
.(

CDj
)2

+ Kv


+ξwj

[
1

Ky
+
∣∣∣ey

j

∣∣∣ dj

]
6 0

(2.37)

Now, substituting (2.37) into (2.36) yields,

Q̇j 6

−Kx

(
ex

j

)2
− djKy

(
vq + Kv

) (
ey

j

)2

−
(
vq + Kv

) Kθ

Ky
sin2

(
eθ

j

)
 = Π 6 0 (2.38)

It is clear that Q̇j 6 0, yields that Qj is bounded |Qj| < ∞, and consequently ex
j , ey

j and

eθ
j are bounded too. Further, we have

∫ ∞
0 Πdt 6 Qj(∞)−Qj(0) has a finite limit since

Q̇j 6 0 and Qj(t) ≥ 0. And from (2.29) and assumption-3, we get
∥∥∥ej

∥∥∥ and
∥∥∥ėj

∥∥∥ are
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bounded, i.e., Π is uniformly continuous. As we have
∫ ∞

0 Πdt does not increase and

converge to some constant value, then by Barbalat’s Lemma [63], Π → 0 as t → ∞,

which implies from (2.38) that Π ≡ 0 ⇒ ej = [ ex
j ey

j eθ
j ]T = 0. Consequently, the

pseudo velocity control (2.31)-(2.33) guaranties that the error system (2.23) and (2.29)

is stable and ej → 0 as t→ ∞.

2.6 Robust Torque-Control (Backstepping-like Feedback

Linearization)

Hereafter, the Assumption-4 is invalid. The proposed UGVs TVF tracking control task

is based on robust cascaded velocity/torque control. In the previous section, a pseudo

velocity control input vjc(t), i.e., (2.31)-(2.33) was designed based on kinematic model.

The aim is to design a robust torque-control input τ j(t) for each mobile robot with

dynamic behavior described by (2.11) and (2.12), such that lim
t→∞

[
vj (t)− vjc (t)

]
= 0

(see Definition-2.4). Achieving this for j = 1, 2, ..., NR guarantees the mobile robots

are tracking the formation reference trajectory, and simultaneously the formation is

maintained and stabilized around the quadrotor coordinates (xq, yq). Before we start

presenting the torque-control design, let introduce the following assumption.

Assumption 5. The disturbance τ̄dj(t) =
[

τ̄dj,1(t) τ̄dj,2(t)
]T

is unknown and satisfies∣∣τ̄dj,i(t)
∣∣
abs ≤ τ̄d,Max,i, i = 1, 2, ∀t, where τ̄d,Max ∈ R2×1 is a vector with positive entries

denoting the disturbance upper-bound.

The jth mobile robot velocity tracking error is written as follows,

evjc = vjc − vj (2.39)

In order to write the jth mobile robot dynamics as a function of evjc and ėvjc, we add

and subtract Mj(qj)v̇jc and Vmj(qj)vjc to (2.12), yields,

Mj
(
qj
)

ėvjc = −Vmj
(
qj, q̇j

)
evjc − Bjτ j + f j

(
ε j
)
+ τ̄dj (2.40)

where f j
(
ε j
)

is given as,

f j
(
ε j
)
= Mj

(
qj
)

v̇jc + Vmj
(
qj, q̇j

)
vjc + Fj(vj) (2.41)
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where ε j = [χ̈q, χ̇q, η̈, η̇, qj, vj, ej, ėj]. The quadrotor dynamics will be brought to (2.40)

by the function f j
(
ε j
)

through the term v̇jc,

v̇jc = fvjc(χ̈q, χ̇q, η̈, η̇, qj, ej, ėj) (2.42)

From (2.31), (2.8), and (2.9), the quadrotor dynamics can be written in function of

τq, uz, η̇ and η. Substituting (2.8) and (2.9) into (2.42) results in the dynamics of the

quadrotor to become a part of v̇jc as,

v̇jc = fvjc(τq, uz, η̇, η, ej, ėj) (2.43)

The term v̇jc is bounded and constructible by the jth mobile robot relying on as-

sumptions 1 and 2. The function fvjc can be accurately approximated using a local

neural network. We define the auxiliary control input uj in (2.15) as,

uj = v̇jc + K4evjc (2.44)

where K4 ∈ R2×2 is a diagonal gain matrix, with positive constants. Now, we propose

the following robust torque-control input for the mobile robot j by substituting (2.44)

into (2.14) and adding a signum function,

τ j = Bj
−1
[

MjK4evjc + f j
(
ε j
)
− γ.sign(evjc)

]
(2.45)

where γ =
[

γ1 γ2

]T
∈ R2×1 is a vector with positive constants that satisfies

γi > τ̄d,Max,i, i = 1, 2 and the operator (.) refers to element by element matrix multi-

plication.

Substituting (2.45) into the dynamics of the jth mobile robot (2.12) and using (2.41)

produces the closed loop error dynamics shown in (2.46),

Mj ėvjc = −
(

MjK4 + Vmj
)

evjc + τ̄dj − γ.sign(evjc) (2.46)

A general TVF tracking control structure for an individual mobile robot j, j ∈

[1, ..., NR] is presented in Fig. 2.9.
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Eq.(27) 

Desired EFDs 
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𝜓𝑞,𝑟(𝑡) 

 

𝜉𝑥 𝑡

𝜉𝑦 𝑡
 

Figure 2.9: TVF tracking control design architecture of the jth UGV.

It is worth noting that the role of the leader-UAV is not only to provide its state

information [xq, yq, ψq] and the desired formation shape (i.e., EFDs vectors) for the

UGVs followers, but also in providing its dynamics information and its control inputs

χ̈q, χ̇q, η̈, η̇, τq, with τq = [uφ, uθ, uψ]T. The UGVs dynamics and particularly the UAV

dynamics have an important impact on the UGVs formation stability and tracking

accuracy, especially when the UAV exhibits high dynamics. In the following, we will

explain the UAV trajectory tracking control design.

It should be pointed out that The dynamic model of the quadrotor can be divided into

two subsystems. An under-actuated subsystem, which consists of the position x, y,

the roll and the pitch angles φ, θ dynamics. And a full actuated sub-system, which

consists of the altitude z and the yaw angle ψ dynamics. Thus, the quadrotor x, y

states are controlled by the φ, θ angles respectively, while the φ, θ states are controller

by the control inputs uφ, uθ respectively.

Refer to Fig. 2.10, the control strategy of the quadrotor system is divided into two

parts in cascade. The first control part is the altitude z and the yaw angle ψ control,

yielding the control inputs uz and uψ respectively.

The second control part will be designed for the under-actuated sub-system to control

in first step the quadrotor position x, y, yielding the virtual control input ux and uy

respectively (see Section-2.2.2). By using (2.47), the reference roll and pitch angles

φq,r, θq,r are obtained. In the second step, the φq,r, θq,r will feed-forward the roll and
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UAV 
(Quadrotor) 

𝜙𝑞 control bloc 
𝑢𝜙 

𝜃𝑞  control bloc 
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𝜃𝜓 control bloc 
𝑢𝜓 

𝑧𝑞control bloc 
𝑢𝑧 
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𝜙𝑞,𝑟 
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𝑦𝑞 control 
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𝑢𝑥 
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𝜉𝑥 𝑡 , 𝜉𝑦 𝑡  

𝜓𝑞(𝑡) 

Figure 2.10: UAV control system block diagram.

pitch control bloc to provide the control inputs uφ, uθ respectively.

φq,r = arcsin
[
ux sin(ψq)− uy cos(ψq)

]
θq,r = arcsin

[
ux cos(ψq) + uy sin(ψq)

cos(φq,r)

] (2.47)

All the quadrotor states are controlled by the simplest control law which is a PID

controller. However, other robust controllers may be selected. The PID-controller

takes many structures but the most common one has the following form,

uk = Kp

[
ek +

1
Ti

t
∫
0

ekdt + Td
dek
dt

]
(2.48)

where the subscript k refers to the state being controlled (i.e., x, y, z, φ, θ, and ψ), and

Kp, Ti, Td refer to the PID gains.

Remark 2.7 If we replace the UAV-leader with a UGV, basically, the same developments can

be applied to align the new UGVs-formation tracking controller with UGV-leader dynamics

under the following changes,

• In the formation deployment control (2.24), the control design will remain the same,

because it is not dependent to the leader dynamics. The control design in this stage

depends only on the IPF i.e., H (x, y).
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• In the formation tracking control based kinematic model (2.31)-(2.33), we replace [xq, yq, ψq]

by [xugv, yugv, θugv] in (2.25)-(2.26). Consequentially, after redeveloping the derivative

of the UGV formation tracking error (2.29), the parameters vq, ψq, ρq and e
(θj,ψq)

j in

(2.29) and (2.31)-(2.33) will be replaced by vugv, wugv, θugv and e
(θj,θugv)

j respectively.

The UGV-leader in this case has geometry as in Fig. 2.3, with behavior dynamics de-

scribed by (2.11) and (2.12). In addition, [xugv, yugv, θugv] and vugv, wugv denote the

leader-UGV generalized coordinates and its linear and angular velocities respectively.

• In the UGVs torque-control design based dynamic model (2.45), the dynamics infor-

mation of the leader-UGV (i.e., vugv, wugv, θugv, τugv) will be brought to the UGVs-

torque-control input through the term v̇jc = fvjc(vugv, wugv, τugv, ej, ėj) in (2.43). With

τugv denoting the UGV-leader torque control vector. As a result, (2.45) will be updated

accordingly.

Remark 2.8 In order to improve the UGVs formation stability and tracking accuracy, we can

take into consideration the overall UGVs formation tracking error when designing the UAV

control. Thus, we can feed-forward the UAV roll and pitch control blocs by the overall UGVs

formation tracking error ξx, ξy along the x and y axes respectively (refer to Fig. 2.10), with

ξx = ∑NR
j=1

[
ex

j

]2
and ξy = ∑NR

j=1

[
ey

j

]2
. As such, when the UGVs formation is drifting from

the desired shape, the terms ξx, ξy will take place and will drive slightly the UAV by affecting

uφ and uθ in such a way to minimize the values of ξx, ξy. However, this will come at the cost

of temporary shifting the UAV from tracking its reference trajectory. And when the UGVs

progressively regain their desired formation, the terms ξx, ξy would be decreasing so the UAV

will get back to accurately track its reference trajectory. The insertion of the UGVs formation

tracking error in the UAV control design yields a cross coupling between the UAV and the

UGVs, which will result in the necessity to provide the UAV stability analysis.
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Theorem 2.9 [49] Let K4 in (2.45) be a diagonal matrix with positive constants, γ ∈

R2×1 is vector that satisfies γ > τ̄d,Max, and suppose assumptions 1, 2, 3, 5 are valid. We

consider the pseudo velocity control-input vjc(t) for the jth mobile robot as defined by (2.31)-

(2.33). We apply the torque-control input given in (2.45) to the formation of mobile robots

j = 1, 2, . . . NR, with dynamics described by (2.12). Therefore, the position, orientation and

velocity tracking errors (ej and evjc, j = [1, 2, . . . NR]) are stable and ultimately bounded

around the origin.

Proof of Theorem-2.9: Let Q̃j be a Lyapunov candidate function defined as,

Q̃j = Qj +
1
2

eT
vjcMjevjc (2.49)

where Qj is already defined in (2.34). Q̃j ≥ 0 and Q̃j = 0 only if ej = 0 and evjc = 0.

Differentiating (2.49) with respect to time yields,

˙̃
Qj = Q̇j +

(
evjc

)T
Mj ėvjc +

1
2

(
evjc

)T
Ṁjevjc (2.50)

It has been shown that Q̇j 6 0 from the proof of Theorem-2.6. By substituting (2.46)

into (2.50) yields,

˙̃
Qj = Q̇j − eT

vjcMjK4evjc +
1
2

eT
vjc(Ṁj − 2Vmj)evjc

+eT
vjcτ̄dj(t)− eT

vjcγ.sign(evjc)

(2.51)

After applying the skew-symmetric property, given by XT
(

Ṁj − 2Vmj

)
X = 0, ∀X ∈ R2

[62], and relying on Assumption-5, (2.51) can be expressed as,

˙̃
Qj 6

Q̇j − eT
vjcMjK4evjc

−
∣∣∣eT

vjc

∣∣∣
abs

(γ− τ̄d,Max)

 = Π̃ 6 0 (2.52)

where |.|abs denotes the absolute value of some vector. Examining (2.52), it is obvious

that ˙̃
Qj 6 0 since Mj and K4 are definite positive matrices, and γ satisfies γi > τ̄d,Max,i,

i = 1, 2. Similar to the proof of Theorem-2.6, knowing that ˙̃
Qj 6 0, yields that Q̃j is

bounded
∥∥∥Q̃j

∥∥∥ ≤ ∞, and consequently ej and evjc are bounded too. In the other side,
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∫ ∞
0 Π̃dt 6 Q̃j(∞) − Q̃j(0) has a finite limit since ˙̃

Qj 6 0 and Q̃j(t) > 0, i.e., Π̃ is

uniformly continuous, by Barbalat’s lemma [63], Π̃ → 0 as t → ∞, which implies

from (2.52) that Π̃ ≡ 0 ⇒ [ ej evjc ]T = 0. Then, from (2.38) and (2.52), we get the

velocity tracking error evjc followed by the position and orientation tracking error ej

are uniformly stable. However, due to the signum term in (2.45), the tracking errors

evjc and ej will not exactly converge to zero, instead they will be ultimately bounded

and close to a neighbourhood of the origin, as it is demonstrated in simulation sec-

tion, and the ultimate bounds are dependent on the selected parameter γ, which in

its turn depends on the estimation of the disturbance upper-bound τ̄d,Max. Further,

we can replace the signum term in (2.45) by a saturation function in order to reduce

the chattering effect. However in that case, the system stability needs to be restudied.

2.7 Simulation and experimental results

Simulation result

In this section, simulation studies are conducted to show the results of applying the

proposed UAV-UGVs formation controls. The aim of the simulation results is, (i) to

confirm the theoretical conjecture and to show the effectiveness of the proposed de-

ployment and UGVs TVF tracking controllers, (ii) to highlight and to demonstrate

the improvement brought to UGVs formation in terms of stability, tracking accuracy

and robustness when UGVs dynamics and particularly UAV (dynamics and control

inputs) information are considered in the torque control design, in the presence of

unknown disturbance and unmodeled dynamics. The obtained simulation results

were carried out using three identical mobile robots guided by a quadrotor in Matlab

environment. The quadrotor’s trajectory planning and the process of producing the

desired formation shape are not within the scope of this chapter. Thus, the EFDs vec-

tors and the quadrotor’s reference trajectory (xq,r, yq,r, zq,r, ψq,r) are predefined. The

quadrotor is tracking its predefined reference trajectory using a PID controller (refer

to Fig. 2.10).
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To respond the simulation aims, two simulation cases were considered. In the case-1,

we used the controllers (2.24) and (2.31)-(2.33) with perfect velocity tracking assump-

tion (i.e., vj = vjc and v̇j = v̇jc) which means that the UGVs and the UAV dynamics

are ignored. In the case-2, the controllers (2.24), (2.31)-(2.33) and (2.45) are used, im-

plying that the UGVs and the UAV dynamics/control information are incorporated

in the UGVs torque-control design. The obtained results of case-2 are compared with

the ones of the case-1. In both cases, two tasks are performed by the UGVs formation

namely, deployment task and TVF tracking task.

Hereafter, the position states xj, yj and the heading θj are expressed in Meter and

Radian units respectively. The mobile robots initial posture are chosen as, q1 =[
−5.4 15.96 0

]T
, q2 =

[
4.76 30.71 0.05

]T
and q3 =

[
11.52 7.36 1.58

]T
. In

deployment task, we consider that the initial desired shape (i.e., EFDs vectors) are

given,

xq(t = 0) = 10m; yq(t = 0) = 20m; nh = 2

A1 =

 7

0.5

 ; B1 =

 3

0

 ; C1 =

 1

0.2

 ; D1 =

 7

1


The corresponding IPF denoted by H(x, y),

H(x, y) = 10−3x4 − 1/2600x3y− 9× 10−3x3 + 5× 10−4x2y2 − 0.026x2y

+0.39x2 − 10−4xy3 + 4× 10−3xy2 − 0.1xy− 0.57x + 2.5× 10−3y3 − 0.04y2

−1.8y + 27.3

The quadrotor’s mechanical parameters were taken from [58](Table.E). During the

Task-2, we suppose that the quadrotor reference trajectory is given as in Table 2.1,

and the formation shape is described by the desired time-varying EFDs vectors,

A2 (t) = A1; B2 (t) = B1 − 3sin(0.05tπ);

C2 (t) = C1 − sin(0.05tπ); D2 (t) = D1.

The following gains and parameters were utilized for the controllers,

Kx = 1.2; Ky = 1.2; Kθ = 1.5; Kv = 5; λ1 = 0.5;

K4 = 1.5× I2×2; Ms = 50; dt = 0.02s.
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Table 2.1: Quadrotor reference trajectory.

t ∈ [0, 4s] t ∈ [4, 16s] t ∈ [16, 20s]

xq,r(m) 10 + 5t 30 + 15cos(0.26t− 2.61) 30-5t

yq,r(m) 20 30 + 15sin(0.26t− 2.61) 50

zq,r(m) 5 7 6

ψq,r(Rad) 0 0.26t π

We used the following parameters of the mobile robots in the simulation, m =

15kg, I = 0.71kg.m2, Rw = 0.1m, Lw = 0.32m and dj = 0.05m. The added friction to

the mobile robots dynamics and the unknown external disturbance are given as,

τ̄dj = [ 0.7e−0.5t + δ0.3cos2t 0.3e−0.3δt + 0.12sin3t ]T

F̄j = [ δ0.1vj (1− δ)0.12wj ]
T; j ∈ [1, 3]

where δ is random umber between 0 and 1 with uniform distribution. We choose

γ = [ 1.15 0.435 ]T > τ̄d,Max. Fig. 2.11 depicts the obtained mobile robots trajecto-

ries during the deployment process followed by the TVF tracking task for the case-2,

using the formation controllers (2.24), (2.31)-(2.33), and (2.45). It can be seen that the

three mobile robots have successfully reached the initial desired 2D desired curve,

where the curve center (a0, c0) corresponds to the quadrotor’s initial coordinates

[xq(t = 0), yq(t = 0)]. After the deployment task was completed, the mobile robots

have tracked the quadrotor trajectory while maintaining the desired time-varying ge-

ometric shape.

In Fig. 2.12, we see the evolution of the IPF during the deployment task for each

mobile robot in case-2 using (2.24). The distance between the desired 2D curve and

each robot’ position is expressed by the IPF. It’s obvious that the IPFs are decreasing

exponentially during the robots convergence process towards the desired 2D curve

perimeter. The UAV-leader position and angles tracking errors [ex
q , ey

q , ez
q], [e

φ
q , eθ

q, eψ
q ]

and its corresponding control inputs τq = [uφ, uθ, uψ]T are depicted in Fig. 2.13. In

Fig. 2.14, we show the trajectory tracking errors of the three mobile robots along the

x-axis, the y-axis and the heading error for two the cases. The comparison shows that

the TVF is seemed to be greatly degraded and not maintained in case-1, where we
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Figure 2.11: Formation deployment and TVF tracking by three mobile robots (case-2 using (2.24),

(2.31)-(2.33), and (2.45) controllers.
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Figure 2.12: IPF H(xj, yj), j ∈ [1, 3] in the deployment task (case-2 using the controller (2.24).
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q ] respectively and the corre-

sponding control inputs τq = [uφ, uθ , uψ]T .

notice unsteady tracking-errors state, in contrast with the case-2, in which, the settling

time and the overshot decreased significantly and further the tracking-errors state are

bounded around zero. The comparison demonstrates the improvement brought to

the UGVs formation tracking behaviour in terms of smooth convergence and accurate

tracking, when considering the UGVs and the UAV dynamics and control inputs

information (i.e., case-2). The improvement can be explained further by the fact that

the control law (2.45) includes an inner velocity tracking-loop and a discontinuous

term introduced to attenuate the influence of the external disturbance. In Fig. 2.14(b),

the errors tend to decrease till becoming almost nil at time t = 4.9s, which corresponds

to the end of the deployment task. From t = 4.9s, we notice an increase of the

x-axis errors and the heading errors for the three robots, this is due to the robots

initial heading at the beginning of the second task (see Fig. 2.11), as well as the non-

holonomic constraints that prevent the robots from moving along y-axis, then quickly

the tracking-errors tend to almost a certain bound, so the time-varying formation is

nearly maintained.

In Table 2.2, a numerical comparison in terms of the tracking-error overshot and

the absolute tracking-error mean values along the x and y axes respectively is pro-

vided. It is straightforward to conclude that the UGVs formation tracking perfor-

mance in terms of accurate formation tracking, stability, and disturbance attenuation

have been significantly improved in case-2, compared with the case-1, which confirms

the theoretical conjecture and the effectiveness of the UGVs robust torque-control.
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Figure 2.14: Formation tracking errors, (a) Case-1 using (2.24), (2.31)-(2.33) controllers, (b) Case-2 using

(2.24), (2.31)-(2.33) and (2.45) controllers.

Fig. 2.15 and Fig. 2.16 show the actual velocity and the torque control inputs vj, τ j of

the three mobile robots respectively in case-2, where some oscillations are observed

due to the selection of the control gains and the effect of the signum term in τ j that

produces the chattering phenomenon.

Experimental result

In this section, the aim is to demonstrate experimentally the feasibility and the effec-

tiveness of the proposed deployment-controller (2.24) and the TVF tracking-controller

(2.31)-(2.33) respectively. The validation was carried out using a group of three mobile

robots type festo’s Robotino(R) [64], in an area of 4m× 6m. Motion capture system

(OptiTrack system) has been used to provide the positions and orientations of the

mobile robots with high precision. It consists of a set of 4 cameras model Primex13

able to track in 3D a cloud of points in the defined workspace. The festo’s Robotino is

an omnidirectional mobile platform with three drive units (three omni-wheels). How-
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Figure 2.15: Actual linear and angular velocities in Case-2 using (2.24), (2.31)-(2.33) and (2.45) con-

trollers.
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Figure 2.16: Applied torque control inputs (right and left wheel), in Case-2 using (2.24), (2.31)-(2.33)

and (2.45) controllers.

ever, in this experiment, the Robotino will be controlled as if it is a non-holonomic

mobile robot. Thus, a transformation between the three wheels angular velocities

(ϕ̇1, ϕ̇2, ϕ̇3) and the platform longitudinal and rotational velocities is used (2.53). As a

result, the Robotino will be controlled by its longitudinal and rotational velocities vx,

w respectively, ignoring its lateral velocity vy = 0 [65].


ϕ̇1

ϕ̇2

ϕ̇3

 =
1

Rw


−2 cos(π/6)

3 0 2 cos(π/6)
3

2 sin(π/6)
3 −2

3
2 sin(π/6)

3
1

3L
1

3L
1

3L


−1 

vx

vy

w

 (2.53)

In (2.53), Rw is the identical wheels radius and L is the distance between the Robotino

mass center and the wheel center[65].

The main control program runs on a ground station (PC), which communicates

with the three robots Robotino via a Wi-Fi link (Fig. 2.18). Where, an external Router
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Table 2.2: Comparison between the control performance obtained in case-1 and case-2 (TVF tracking

task).

Case− 1 Case− 2

R1 R2 R3 R1 R2 R3

ex
j (m) overshot 0.51 0.76 2.62 0.32 0.55 1.23

ey
j (m) overshot 0.18 0.93 0.31 -0.11 -0.05 0.23

Mean
[∣∣∣ex

j (t)
∣∣∣](m) 0.24 0.33 0.54 0.14 0.11 0.16

Mean
[∣∣∣ex

j (t)
∣∣∣](m) 0.24 0.33 0.54 0.14 0.11 0.16

Figure 2.17: Front view of Robotino with its geometry plan.

is configured as a point access, that initiates a Wi-Fi network. Each of the Robotinto

robots is equipped with an embedded PC and a WLAN interface set with a unique

IP address, which is configured to get integrating to the Wi-Fi initiated by the Router

in mode (Clients). In the other side, the ground control PC (central unit which runs

the control algorithms) is configured to connect to the initiated router Wi-Fi. Then,

specific functions of a Wi-Fi-library within C++ environment are used to handle the

communication network, sensory data, and the control inputs sent from the ground

PC to the three Robotino robots. The state information of the three Robotino is ob-

tained from the Optitrack processing unit and sent to the ground control PC via an

Ethernet port. In the case of poor communication, some UAV-UGVs connection links

may get sometimes broken along time, which may result in formation tracking degra-

dation, due to the fact of not receiving the leader’s information (i.e., state, dynamics
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and control inputs). As a solution, the UAV-UGVs formation tracking may be ex-

plored under the constraint of partial access to UAV-leader’s information (i.e., only

some UGVs have access to UAV’s information).

In the experiment, we used a virtual leader instead of a physical quadrotor due

to the limitation of the flight space and the requirement to perform the experiments

in the Optirack visual range, where its reference trajectory is predefined and shared

among the formation robots.

In the first experience, deployment task control using (2.24) is carried out using

three Robotino robots, where the initial desired EFDs vectors are given,

xL(t = 0) = 0.5; yL(t = 0) = 1.5; nh = 1.

Ã1 = [0.75] ; B̃1 = [0] ; C̃1 = [0] ; D̃1 = [0.75]

Kx = 1.5; Ky = 1.5; Kθ = 0.3; Kv = 0.9; λ1 = 0.2; Ms = 70; dt = 0.1s

Fig. 2.19 depicts the successful convergence process of the three robots Robotino to-

wards the 2D initial desired curve starting from their initial position. Fig. 2.20 shows

the evolution of the IPF of the three Robotino robots, where it can be seen that they

decrease to zero with some weak oscillations which confirm the convergence process

of the mobile robots. In Fig. 2.21, we see the tracking errors along the x, y axes and the

heading errors. Some oscillations are observed at the beginning of the convergence

while the error magnitude is bounded.

In the second experiment, three Robotino robots are used to validate the second

task (TVF tracking). Once the deployment task is realized, the three robots will track a

reference trajectory while maintaining a TVF shape. The leader’s reference trajectory

is given as in Table 2.3,

Table 2.3: Reference trajectory of the virtual leader.

t ∈ [0, 10s] t ∈ [10, 20s]

xL(m) 0.1t− 1 0.85 + 1.92cos(0.1πt)

yq,r(m) 20 30 + 15sin(0.26t− 2.61)

ψL(Rad) 0 0.1(t− 10)− π/6
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Figure 2.18: The experimental platform.

Figure 2.19: Convergence process of three Robotino robots (experiment-1).
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Figure 2.20: Evolution of the IPF of the three Robotino during the deployment task (experiment-1).
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Figure 2.21: Tracking errors of the three Robotino robots in experiment-1 (i.e., deployment task)
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Figure 2.22: TVF tracking by three Robotino robots (experiment-2).
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Figure 2.23: Tracking errors of the three Robotino robots in experiment-2.
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Figure 2.24: Velocity control-inputs of the three Robotino robots (experiment-2).

The used parameters, as well the EFDs vectors are given,

Ã2 (t) = Ã1 − 0.2sin(0.1πt); B̃2(t) = B̃2; C̃2 (t) = C̃1; D̃2 (t) = D̃1 + 0.3cos(0.1πt);

Kx = 8; Ky = 11; Kθ = 4; Kv = 0.8; dt = 0.1s.

Fig. 2.23 shows the tracking errors along the x and y axes as well as the heading errors,

where we can notice that errors magnitude is weak and limited, however, at t = 15.2s

we observe some errors increases due to the change of the heading reference trajectory.

Finally, in Fig. 2.24, the actual velocities control signals of the three Robotino robots

are shown, in which weak chattering effect is visible on the linear velocities signals

vj[m/s]; j = [1, 3]. This can bee explained by a backward and forward movements of

the robots, due to the difficulty on choosing the suitable control parameters Kx and

Ky during the experiment
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2.8 Conclusion

In this chapter, a UAV-UGVs control system is considered. In which two novel non-

linear controllers have been proposed for controlling a UGVs system led by a UAV.

Firstly, in deployment-task control, the key feature is to use the parametric repre-

sentation of the desired formation shape (i.e., EFDs vectors) and its corresponding

IPF. Thus, the formation shape dynamics are considered. The controller exhibits

flexibility, scalability and offers smooth convergence to any free formation shape.

Secondly, in the TVF tracking control, a combined robust velocity/torque controller

based Backstepping is proposed, for which the UGVs-formation flexibility and ro-

bustness have been improved face modeling errors and external disturbance. The key

idea is to introduce a virtual auxiliary control input uj through a nonlinear feedback,

and further adding a switching term function of the upper bound of the disturbance

to guarantee the mobile robots velocity tracking. Lyapunov theory is used to show

the stability and the boundedness of the UGVs formation tracking errors when us-

ing torque control-input. The effectiveness of the proposed controllers was demon-

strated through numerical simulation, in which the importance of inserting an inner

velocity-tracking loop is illustrated in the presence of modeling errors and external

disturbance. The simulation results revealed good performance in terms of smooth

convergence towards the desired TVF shape, accurate tracking, and further in terms

of robustness against disturbance. The UGVs-formation control using the proposed

pseudo velocity-control vjc is further validated experimentally using three robots type

festo’s Robotino(R). In the next chapter, we extend the EFDs tool to model and control

aerial-vehicles formation with application to quadrotors.
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3.1. Introduction

3.1 Introduction

I n this chapter, we introduce an extension of the approach presented in [31, 49],

where we propose a formation cooperative controller for a group of UAVs. We

expanded the 2D−EFDs formation model introduced in Chapter-II to model 3D for-

mation shapes. It is naturally to start first by designing the formation controller for

holonomic robots, where the kinematics and the complexity relating to the dynamical

models are relaxed. After that, we expand the developed controller to a group of UAV

(i.e., quadrotors). The designed formation controller aims to track 3D planar free-form

formation shapes. The UAVs formation is supposed to reach a predefined target and

eventually to switch gradually to new time-varying formation shapes. During this

process, the robots are coordinating among themselves by keeping a desired distance

between each other and ensure an appropriate dispatching in the formation pattern.

The chapter is organized as follows, the next section will be devoted for intro-

ducing the concept of the EFDs tool and the IPF for 3D parametrized curves. In

section−3, we explain the formation deployment control design for holonomics robots

followed by an extension to UAVs formation deployment control in section-4. Then,

in section−5, we showcase some simulation results to confirm the feasibility and the

effectiveness of the proposed controller.

3.2 Problem formulation

3.2.1 Dynamic 3D EFDs and its correspondent Implicit Function

The EFDs are an alternative representation of Fourier descriptors using elliptical de-

scription of the curves. Thus, the EFDs model uses planar free-form curves as a sum

of ellipses. EFDs are rotation, scale and translation invariant. The EFDs were used

to represent any time-invariant 2D planar closed curves [30, 55] (see section-2.2.1).

Similarly, from (2.1) we propose in the following to expand the 2D representation to
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a dynamic 3D one as,

x (δ, t) = a0(t) +
nh
∑

k=1
(Ak(t) cos (kδ) + Bk(t)sin (kδ))

y (δ, t) = c0(t) +
nh
∑

k=1
(Ck(t) cos (kδ) + Dk(t)sin (kδ))

z (δ, t) = e0(t) +
nh
∑

k=1
(Ek(t) cos (kδ) + Fk(t)sin (kδ))

(3.1)

where k, nh and δ are already defined in (2.1). x (δ), y (δ) and z (δ) are the Cartesian

coordinates of the points belonging to the curve, written as function of a normalized

parameter δ, with δ ∈ [0, 2π]. The point [a0(t), c0(t), e0(t)]T is the curve center and

A = [A1, . . . , Anh ]
T ∈ Rnh×1, B(t) ∈ Rnh×1, C(t) ∈ Rnh×1, D(t) ∈ Rnh×1, E(t) ∈ Rnh×1

and F(t) ∈ Rnh×1 are denoted the 3D curve descriptors (i.e. EFDs descriptors).

Remark 3.1 Notice that the representation (3.1) can be used in Leader-Follower based MVS

control approach, where the leader’s coordinates are the curve center [a0, c0, e0]
T and the fol-

lowers state-offset with respect to the leader’s position is given by the second term of x(δ, t),

y(δ, t) and z(δ, t) in (3.1). Furthermore, it is important to note that the curve shape generated

by (3.1) can be either a planar curve or a non-planar one. By using an arbitrary EFDs vectors

values, we usually obtain a non-planar curve. To get a free-form 3D planar curve, at first

we need to describe our desired curve in 2D frame using the 2D version of EFDs (2.1), then

by using a predefined matrix transformation T (see Fig. 3.1), i.e., including a rotation and

translation, we can describe this latter on the 3D frame,
x̃(δ, t)

ỹ(δ, t)

z̃(δ, t)

1

 = T.


x(δ, t)

y(δ, t)

0

1

 . (3.2)

where x̃(δ, t), ỹ(δ, t) and z̃(δ, t) are the 3D planar curve points coordinates. The parameters

of the latter 3D curve denoted ã0, c̃0, ẽ0, Ã, B̃, C̃, D̃, Ẽ and F̃ are deduced from (3.2) by

identification with (3.1).

The EFDs is a very interesting mathematical tool to form and to model with high

flexibility any dynamical planar 3D-curve. 3D-planar curves can also be represented
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𝑥 𝛿, 𝑡 , 𝑦 𝛿, 𝑡  , 𝛿 ∈ [0,2𝜋] 

Figure 3.1: Constructing a 3D parametrized planar curve.

using Implicit Polynomial Function IPF denoted by H (x, y, z). The IPF function of

a 3D planar curve is used to define an algebraic distance between any point in the

space and the curve surface. It can be used to find whether a point is inside or outside

the planar curve. This IPF function can be found by implicitization of the EFDs. In

this study, the IPF function of a 2D closed planar curve is obtained using the method

detailed in [1]. Similar to (2.5), the description of a 3D parametrized planar curve

with an IPF function takes the following form,

H (x, y, z) = ∑
0<i+j+k<dp

aijkxiyjzk = 0 (3.3)

where aijk are real coefficients and dp = 2nh is the degree of the polynomial function,

as detailed in [1].

The EFDs of a planar closed 3D-curve can be estimated similar to the method

explained in section-2.2.1 using an extended version of (2.2), [31, 56].

Example of EFDs estimation: Refer to Fig. 3.2, relying on 20 3D-coordinate points that

describe geometrically a 3D planar curve in blue color, the 3D−EFDs are estimated

using extended version of (2.2) with a selected number of harmonics of nh = 2. The

estimated EFDs are a0 = 61.9, c0 = 66.3, e0 = 20.1, A = [7.2,−0.1]T, B = [−19.3, 3.1]T,

C = [17.2, 0.4]T, D = [1.8, 0.1]T, E = [1.1, 0]T and F = [0.4, 0.1]T. The estimated EFDs-

vectors are then used to reconstruct the 3D curve in red color using (3.1). The IPF

function of the parametrized curve is too long to be carried on the thesis document.
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Figure 3.2: Example of EFDs-vectors estimation based on a set of points coordinates.

3.2.2 Holonomic robot model:

In this section, we consider the robot as a 3D mass point particle to rend the robots-

formation control problem more simplified. This latter assumption allows eliminating

the complexity related to the robots dynamics and its non-holonomic constraints (i.e.,

UAVs) from the analysis, and enables studying the efficiency and the feasibility of

the proposed formation control approach. We first present the robot kinematic model

and then we detail in the next section the formation control strategy. The ith robot in

the formation is featured by a first order integrator as follows,


ẋi = ux,i

ẏi = uy,i

żi = uz,i

(3.4)

where χi = (xi, yi, zi)
T, i ∈ [1, .., NR] and ẋi, ẏi, żi are the cartesian coordinates and the

their time-derivatives (i.e., velocities) of the ith robot respectively, with respect to the

world coordinate frame. ui = [ux,i, uy,i, uz,i]
T is its corresponding control input. It is

straightforward to see from (3.4) that the robot dynamic exhibits holonomic property.
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3.3. Formation control based IPFs and EFDs

3.3 Formation control based IPFs and EFDs

We focus in this section on expanding the formation controller proposed in [30] to

a 3D robots formation control. In [30], the formation controller is valid only for 2D

robots to achieve deployment process towards 2D planar curves.

Initially, we assume that NR 3D-holonomic robots group featured by dynamics as in

(3.4) are randomly positioned in the defined space. The proposed robots formation

control aims to converge the robots group towards the contour of a desired 3D planar

curve (i.e., geometric configuration) relying on the knowledge of the IPF that features

the desired 3D-curve. During this process, the robots are expected to avoid collision

between each other and to keep a certain coordination in the formation. Then, the

control input ui for the ith robot will be obtained by the sum of the sub-control com-

ponent designed for the deployment control denoted by uD
i and coordination control

input uC
i respectively,

ui =


ux,i

uy,i

uz,i

 = uD
i + uC

i ; i ∈ [1, NR] (3.5)

We can define a 3D desired formation shape for a group of 3D robots by many

ways depending on the task to be realized. It could be the perimeter of a friend UAV

or an enemy target to be encircled or supervised or the boundary of a considered

geographical area. This boundary (i.e., desired 3D curve) can be defined based on an

extracted and processed images provided by a UAV equipped by an onboard camera

for instance. The desired 3D formation shape (i.e., 3D curve) is in practice a sequence

of points coordinate. We use (2.2) to estimate its EFDs and the method detailed in [1]

to compute its IPF function.

3.3.1 Formation deployment control

Firstly, we focus on designing a formation controller that ensures moving the robots

to the desired 3D planar curve. As depicted in Fig. 3.3, the formation deployment

sub-control input uD
i is composed of two components, parallel input uDP

i and normal
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Figure 3.3: Illustrative diagram of the robots formation deployment control [2].

input uDN
i respectively,

uD
i = uDP

i + uDN
i (3.6)

The first control-input component uDP
i of (3.6) will be designed based on the frame-

work of [30] by using the IPF of the desired formation shape (i.e., desired planar

curve) as a potential function. This control input will ensure only the robot conver-

gence to the virtual 3D−curve which is parallel to the desired 3D−curve as it is shown

in Fig. 3.3.

The sub-control input uD
i will be designed in sort to minimize the following po-

tential function [2],

F (x, y, z) = H (x, y, z) +
1
2

λ2

∥∥∥DRP
i ~µ

∥∥∥2
(3.7)

where H (x, y, z) is the IPF, λ2 is a positive constant number and DRP
i is the normal

distance between the ith robot position and the plane that holds the desired 3D−curve

(see Fig. 3.3). ~µ is unitary vector that is normal to the surface holding the desired 3D-

curve.

The IPF function H (x, y, z) is adapted to find whether a point is on a curve or not.

It could be used to measure the distance between a point and a closed curve [30, 31].

The position error function between the ith robot and the 3D virtual planar curve is
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3.3. Formation control based IPFs and EFDs

given by the algebraic distance to the curve of the desired formation shape as,

evirt
i = H (xi, yi, zi) (3.8)

By using (3.8), if the robot is approximately on the virtual curve, the error is zero,

while it is negative when the robot is inside the virtual curve and positive when

outside. The sub-control input uDP
i is designed to force this error to decrease expo-

nentially based on Lyaponov theory, i.e.

Ḣ (xi, yi, zi) = −λ1H (xi, yi, zi) (3.9)

where λ1 is a positive constant number. Using chain rule of differentiation and sub-

stituting (3.4) in (3.9), we find,

(
Hx Hy Hz

)
uDP

x,i

uDP
y,i

uDP
z,i

 = −λ1H(xi, yi, zi) (3.10)

The parallel formation deployment sub-control input uDP
i for the ith robot can be

determined using pseudo inverse operator, namely
uDP

x,i

uDP
y,i

uDP
z,i

 = −λ1
1

‖∇xH (xi, yi, zi)‖2H(xj, yj, zj)


Hx(xi, yi, zi)

Hy(xi, yi, zi)

Hz(xi, yi, zi)

 (3.11)

where Hx, Hy and Hz are the partial derivatives of H (x, y, z) with respect to x, y and

z, and we have ∇xH = [ Hx Hy Hz ]T.

Now, back to (3.7), it is straightforward to derive the sub-control input uDN
i that

ensures moving the robots normally to the plane that contains the desired 3D curve

as [2],

uDN
i = −∇x

(
1
2

λ2

∥∥∥DRP
i ~µ

∥∥∥2
)
= −λ2DRP

i ~µ (3.12)

where λ2, DRP
i are already defined in (3.7), ~µ = Rplane

w ez with ez = [0, 0, 1]T is a unitary

vector expressed on word coordinate frame and Rplane
w is a rotation matrix relating the

world coordinates frame to the plane that contains the 3D desired curve (see Fig. 3.3).
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3.3.2 Formation coordination control

The robots are supposed to coordinate among themselves during the robots deployment-

process. Therefore, the robots must avoid collision each to other and ensuring a given

desired spacing between each robot and its neighbours, which enables also having a

certain distribution of the robots group in the achieved formation shape, which is the

control aim in this section. The coordination control input is designed as the sum of

virtual forces of linear springs exercised from each robot to its two nearest neighbours

as in Fig. 3.4.

The spring is proposed to have a normal length which is equal to the secure dis-

tance Ds. The produced force by the spring is linearly proportional to the difference

between the actual distance and the secure distance between the robots. The spring

produces a force directed from the ith robot to its two neighbours neighbours as fol-

lows, 
uC

x,i

uC
y,i

uC
z,i

 = Krr
(

Ds − Dij
)


xi − xj

yi − yj

zi − zj

+ Krr(Ds − Dik)


xi − xk

yi − yk

zi − zk

 (3.13)

where Krr is an adaptable spring constant. The desired coordination stiffness could be

obtained by tuning Krr. Therefore, Krr may take relatively grand values if the robots

are far away from the desired configuration, while it takes small values when the

robots are reaching the desired configuration. We have j and k the indices for the

robots that are the nearest two neighbours of ith robot. Dij and Dik are the current

𝑖𝑡ℎ robot  

𝑘𝑡ℎ robot  

𝑗𝑡ℎ robot  

 robot  

𝐷𝑖𝑘  

Closest neighbor 

𝐷𝑖𝑗   

𝐷𝑠  

Figure 3.4: Modelling of the coordination control.
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distances of the ith robot from the jth and kth robots respectively. [xj, yj, zj]
T and

[xk, yk, zk]
T are the position coordinates of the robots j and k respectively with respect

to the world coordinate frame. It is worth noting that is possible to set the number of

nearest neighbours greater than 2.

3.4 Extension to quadrotors formation control

In this section, we will expand the developed formation controller (3.6) to a quadrotors

formation. The dynamics of the quadrotor can be viewed as a double sub-dynamics in

cascade, such the rotational dynamics (inner-loop) which is fast and the translational

dynamics (outer-loop) which is slow.

The quadrotors formation control will be divided into two parts. The first control

part will be applied to the translational dynamics to drive the quadrotors to a desired

3D-planar curve, while tracking the curve center [a0(t), c0(t), e0(t)]T trajectory (viewed

as a virtual leader). The second control part concerns the angles tracking, where the

outputs of the first control-part will feed-forward the second control-part.

Recall that the control objective is to design a quadrotors formation-controller that

converges each agent towards the contour of the desired 3D planar curve. The non-

linear translational dynamics of a the quadrotor are given as in (2.8), (2.9). We de-

note χi = [xi, yi, zi]
T the position of the mass center of the quadrotor with respect

to the inertial frame and ηi = [ϕi, θi, ψi]
T the vector of Euler angles. Let uz,i and

τq,i = [uϕi , uθi , uψi ]
T be the total thrust and the torque control vector respectively. For

simplicity, we denote by qi = [χi, χ̇i, ηi, η̇i]
T the quadrotor state vector.

Since the equations in (2.8), (2.9) are nonlinear, the solution is difficult to be found

in closed form because of trigonometric functions related each other in no-elementary

way. For this reason, the linearization is performed on a simplified model called to

small oscillations [66]. This simplification is made by approximating the sine function

with its argument and the cosine function with unity. The approximation is valid

if the argument is small. Then, we linearize the translational dynamics around the
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equilibrium point q̄i = [χ̄i, 03×1, η̄i, 03×1]
T,

ẍi =
1

Mq
θi

ÿi = − 1
Mq

φi

z̈i =
uz,i
Mq

(3.14)

In (3.14), Mq is the quadrotor mass. The the translational dynamics of the quadro-

tor is approached to a double integrator one, i.e., χ̈ = ui, in order to reduce the com-

plexity of the formation controller design, however, the rotational dynamics remains

as described in (2.9).

It is known that the quadrotor is driven along x-axis, y-axis and z-axis by changing

the pitch and roll angles and the total thrust, thus, the control input is chosen to be

ui = [ 1
Mq

θi,− 1
Mq

φi,
uz,i
Mq

]T.

Similar to the followed steps resulting (3.11), the reference linear velocities of the

ith quadrotor are given,
ẋr

i

ẏr
i

żr
i

 = −λ1
1

‖∇xH (xi, yi, zi)‖2H(xj, yj, zj)


Hx(xi, yi, zi)

Hy(xi, yi, zi)

Hz(xi, yi, zi)

 (3.15)

Then, the reference quadrotors trajectory is obtained by integrating (3.15). Fur-

ther, PD-controller is used to track the reference linear velocities. Thus, the parallel

deployment sub-control uDP
i is given,

uDP
i = KP




xr
i

yr
i

zr
i

− χi

+ KD




ẋr
i

ẏr
i

żr
i

− χ̇i

 (3.16)

where KP and KD are selected positive gains. Now, the deployment control input

uD
i = uDC

i + uDN
i , with uDN

i is designed as in (3.12). Next, from (3.13), (3.14), and

knowing that ui = uD
i + uC

i = [ 1
Mq

θi,− 1
Mq

φi,
uz,i
Mq

]T, we can deduce the reference pitch

and roll signals as,

[θr
i , φr

i ]
T = Mq[ux,i,−uy,i]

T (3.17)

where ux,i and uy,i are the first and the second components of ui. Notice that the

yaw angle ψi is not considered in this study, since it doesn’t affect the translational
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Figure 3.5: Deployment control diagram of the quadrotors formation.

displacement of the quadrotors along the x and y axes. Thus, the yaw angle is as-

sumed constant and will be controlled separately. Finally, the reference roll and pitch

angles will be tracked through a PID controller to realize the deployment task by the

quadrotors.

3.5 Simulation results

In this section, simulations results are provided to show the feasibility and the ef-

fectiveness of the proposed deployment-controller (3.11), (3.12) and (3.13). The sim-

ulation results could be obtained with any desired 3D planar formation (i.e., EFDs

vectors) and any number of the robots. Two simulation examples are carried out in

Matlab environment. In Example-1, the agents are 3D holonomics robots featured by

first integrator model. The aim is to check the feasibility of the proposed formation

deployment control and coordination without considering the agents dynamics. In

Example-2, the proposed deployment controller is extended and applied to a group

of quadrotors.

Example-1: In this example, three robots are employed to see the performances of

the controller in formation deployment and coordination. The desired 3D−curve is
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Figure 3.6: Deployment process towards 3D−curve by three robots using (3.11), (3.12), and (3.13).

described by the following EFDs vectors,

A =
[

16.21 −0.89
]T

; B =
[

4.22 0.54
]T

; C
[
−2.39 −2.85

]T
;

D =
[

8.56 −1.74
]T

; E =
[

1.38 1.65
]T

; F =
[
−4.94 1

]T

The parameters used in the first simulation example, dt = 0.01, Ds = 25m, λ1 = 1.4

and λ2 = 1.1. The adaptable parameter Krr used is,

Krr =

 2, |H(xi, yi, zi)| < H0

6, |H(xi, yi, zi)| ≥ H0

where H0 = 15 is a threshold algebraic distance between the robot position and the

contour of the desired formation.

In Fig. 3.6, we can see a scenario in which three robots placed randomly in the

space, where the desired curve is represented using EFDs with nh = 2 harmonics and

an IPF function with a degree dp = 4. The robots under the control input (3.6) and

(3.13) are correctly and successfully achieving the desired 3D-curve.

Fig. 3.7 and Fig. 3.8 show the different control inputs acting on the robot−2 and

the corresponding IPF function of the three robots respectively. We see that the control

input (3.11) is acting on the robot−2 (chosen arbitrary among the three robots) in sort
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Figure 3.7: Control inputs of robot i = 2
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Figure 3.8: Variation of H(x, y, z) during the deployment precess ((Example-1)).

of decreasing its corresponding IPF function, which confirms the effectiveness and the

conjecture of the proposed controller based on Lyapunov theory. We can remark, that

the coordination control component is nil since the robots are too far each to other in

the realized formation.

Example-2: In this example, five (05) quadrotors are considered to achieve deploy-

ment behaviour relying on the proposed formation deployment. The quadrotrs are

featured by dynamical model described by (2.8) and (2.9). The quadrotors deploy-

ment control scheme is shown in Fig. 3.5. The desired 3D-planar curve is given by the

following EFDs vectors,

A =
[

16.21 2.89
]T

; B =
[

5.22 0.54
]T

; C
[
−2.39 −2

]T
;

D =
[

11.16 −1.74
]T

; E =
[
−1.38 −1.15

]T
; F =

[
6.44 −1

]T

The parameters used in Example-2 simulation are, dt = 0.01s, λ1 = 7 and λ2 = 1.6.
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Figure 3.9: Robots velocity inputs χ̇i = [ẋi, ẏi, żi]
T , i ∈ {1, 3}.

The adaptable parameter krr is given,

Krr =

 2, |H(xi, yi, zi)| < H0

6, |H(xi, yi, zi)| ≥ H0

where H0 = 200. Further we set, Krr = 3 and Ds = 5m in (3.13). The used qudaro-

tor’s mechanical and electrical parameters in simulation were taken from [58]. The

quadrotors initial positions and the Euler angles vectors given by, χi, ηi, with i ∈ [1, 5]

are set manually using the matlab function ginput.

In Fig. 3.10, we show snapshots from different angle-view of the quadrotors during

the the deployment precess towards the desired 3D-planar curve. It can be seen clearly

that the quadrotors have successfully converged to the contour of the 3D-planar curve.

Fig. 3.11 and Fig. 3.12 depict the obtained IPF of the four quadrotors over time

and the quadrotors tracking errors over time respectively. The decreasing behaviour

of the IPF H(x, y, z) is well observed. In addition, the state tracking errors along the

x, y and z axes followed by the Euler’s tracking errors are shown to converge to a

neighbourhood of the origin. These results confirm the conjecture of the proposed

control theory.

Fig. 3.13 illustrates the virtual forces acting on quadrotor-3, namely UDP
i , UDN

i ,

and UC
i , with i = 3. The sum of these forces yields the quadrotor’s reference trajec-

tory rate, i.e., χ̇r
i (t) leading to the planar 3D-curve as shown in Fig. 3.5. The quadrotrs

control inputs uz,i, uφ,i, uθ,i, uψ,i, i ∈ [1, 4], are depicted in Fig. 3.14. These control in-
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Figure 3.11: Variation of H(x, y, z) during the deployment process (Example-2).

puts are obtained through the PID control blocs. Despite the fact that the deployment

controller was fist designed for first-integrator based dynamic systems, it is important

to notice the feasibility as well as the validity of the proposed deployment controller

on systems having such a complex, coupled and nonlinear dynamics, i.e. quadrotors.

3.6 Conclusion

We have presented in this chapter a novel formation control of 3D holonomic robots

(i.e., deployment control) to track arbitrary desired time-varying 3D shapes (i.e., pla-

nar curves). We used an extension version of the 2D dynamic EFDs to model the

time-varying formation into 3D planar curve enabling more flexibility on the choice

91



Chapter 3. Quadrotors formation control based 3-dimentional dynamic EFDs

0 2 4 6 8

−10

0

10

time (s)

e x
,i
(m

)
=

x
r i
−
x
i

 

 

0 2 4 6 8

0

5

10

15

time (s)

e y
,i
(m

)
=

y
r i
−
y
i

 

 

0 2 4 6 8
−5

0

5

10

time (s)

e z
,i
(m

)
=

z
r i
−
z i

 

 

0 2 4 6 8
−1

−0.5

0

0.5

1

time (s)

e
φ
,i
(R

a
d
)
=

φ
r i
−
φ
i

 

 

0 2 4 6 8

−0.5

0

0.5

1

time (s)

e
θ
,i
(R

a
d
)
=

θ
r i
−

θ i

 

 

0 2 4 6 8

−1

−0.5

0

0.5

1
x 10−3

time (s)e
ψ
,i
(R

a
d
)
=

ψ
r i
−
ψ
i

 

 

Q1 Q2 Q3 Q4 Q5

Figure 3.12: The quadrotors tracking errors, χ̃i = χr
i − χi, η̃i = ηr

i − ηi, i = [1, 5] (Example-2).

0 2 4 6 8
−30

−20

−10

0

10

time (s)

U
x
,i
(N

),
i
=

3

 

 

UDP
x,3

UDN
x,3

UC
x,3

0 2 4 6 8
−60

−40

−20

0

time (s)

U
y
,i
(N

),
i
=

3

 

 

UDP
y,3

UDN
y,3

UC
y,3

0 2 4 6 8
−40

−20

0

20

time (s)

U
y
,i
(N

),
i
=

3

 

 

UDP
z,3

UDN
z,3

UC
z,3

Figure 3.13: The control forces UDP
i , UDN

i , and UC
i , of quadrotor i = 3 chosen arbitrary (Example-2).

92



3.6. Conclusion

0 2 4 6 8
0

5

10

time (s)

u
z
,i
(N

)

 

 

0 2 4 6 8

−0.2

0

0.2

time (s)

u
φ
,i
(N

.m
)

 

 

0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

time (s)

u
θ
,i
(N

.m
)

 

 

0 2 4 6 8

−5

0

5

x 10−3

time (s)
u
ψ
,i
(N

.m
)

 

 

Q1 Q2 Q3 Q4 Q5

Figure 3.14: The quadrotors control inputs uz,i, uφ,i, uθ,i, uψ,i, i ∈ [1, 5] (Example-2).

of the desired formation shape. The correspondent implicit function IPF was used as

a potential function to design the deployment controller. Next, the developed con-

troller was applied and extended to a quadrotors formation. In which, the formation

controller is divided into two cascade parts. In the first part, the proposed deploy-

ment control was used to control the translational dynamics based on the linearized

version of the quadrotor dynamical model, which yields the total thrust as well as the

reference roll and pitch angles. The second control part is PID Control, which has the

role of stabilizing the rotational dynamics. The obtained simulation results revealed

the feasibility of the method and the stability of the whole system for first-integrator

based dynamics systems, and then extend to second order nonlinear systems, i.e.,

quadrotors. In the next chapter, we will explore the distributed MASs formation

tracking control relying on consensus tracking framework, in which the communica-

tion among the agents/vehicles and the information-sharing play an important role

on the overall system performance and stability.
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4.1. Introduction

4.1 Introduction

A mong the research branches of the cooperative control, the formation control of

a MASs/MRSs is considered as an interesting and very active research topic.

This is due to its main role for the success of any potential task executed by a MRSs

[3]. Furthermore, formation control is applied to numerous areas and wide range of

applications such as, target enclosing, sensor networks, cooperative surveillance and

localization [10, 12, 13, 37].

In general context, depending on whether the formation has a reference trajectory

or not, formation control can be categorized into two sub-branches. Firstly, the forma-

tion stabilization (leaderless), that refers to design cooperative controllers for a MASs

to only achieve a desired geometric shape. Secondly, the distributed formation track-

ing or leader-follower formation tracking. In this latter, the followers agents seek

achieving TVF configuration while tracking the trajectory of the real/virtual leader

[6].The formation control consists on designing algorithms for a group of networked

agents with on-board sensing to achieve time-invariant or time-varying geometric

configuration among the agents (i.e., circle, square) autonomously, while keep being

stable[3, 6].

This chapter presents a unified framework of TVF control design for homogeneous

LTI MASs based on an observer viewpoint from undirected to directed topology,

and from a leader with zero control input to a one with unknown and bounded

control input. The followers can form a TVF shape which is specified by piecewise

continuously differential vectors. The leader’s trajectory (case of real leader), which is

available to only a subset of followers, is also time-varying. The agents are equipped

with on-board sensors and communicating capabilities (i.e., transceivers) to measure

and exchange the relative output measurements and the relative observer outputs

among themselves depending on the interaction topology structure.

In this chapter, we reveal the control design from the distributed observer-type

viewpoint. So all the controllers (i.e., protocols) are fully distributed. Hence, no

global information (i.e., neither the total number of the agents nor the smallest posi-

tive eigenvalue of the Laplacian matrix) are required in the design of the controllers.
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In addition, we deal in this study with time-varying formation and agents featured by

general linear dynamics, which is more general compared with many existing studies

conducted for particular types of systems dynamics and invariant-formation such as,

first order dynamics [32, 67], second order dynamics [33, 34, 68] and time-invariant

formation tracking with general linear dynamics [69]. Finally, the conducted studies

on TVF tracking in this chapter rely only on the knowledge of the agents dynamics

(agents have identical dynamics), the relative output measurements yi − yj, the inter-

nal observer relative-outputs vi − vj and the leader relative-output yi − y0. Therefore,

TVF tracking based relative outputs is more applicable in real industry than the states

one as in [8, 41]. This is due to the fact that some system states may be unavailable or

inaccessible in reality.

First, useful mathematical preliminaries, Lemmas, and terminologies on graph

theory are first reviewed in the following of this section. Next, Section-4.2 reveals

the mathematical framework of the consensus control protocols for LTI MASs, which

represents the background of the TVF tracking problem. In Section-4.3, Definitions

and problem statement are presented. In Section-4.4, the TVF tracking problem is

developed and solved step by step under the assumption of a leader whose control

input is zero. Next, in Section-4.5, the TVF tracking problem is solved considering

a leader with nonzero control input. Finally, numerical simulation are provided in

Section-4.6 to verify and to confirm the conjecture of the developed TVF tracking

controllers.

4.1.1 Notation

The following notions will be used throughout this chapter. Rn×m and Rn denote the

n×m real matrix space and n−dimentional Euclidean vector space, respectively. Let

diag (a1, . . . , an) be a diagonal matrix with (a1, . . . , an) being the diagonal entries. Let

0n and 1n be the all−zero and all−one column vectors in Rn. In is used to represent

the identity matrix in Rn×n. Let the superscript T be the transpose for a matrix. A

Matrix G is Hurwitz (or stable) if all its eigenvalues have strictly negative real parts.

We denote G > 0 if the matrix G is symmetric and positive definite. For a symmetric
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matrix A, we denote by λmin(A) and λmax(A) the minimal and maximal (real part)

eigenvalues of matrix A, respectively and ||x|| as the 2-norm of a vector x.

4.1.2 Graph theory and mathematical preliminaries

Some useful preliminaries and concepts of graph theory are presented on the fol-

lowing. A team of agents interacts with each other via communication or sensing

networks (i.e., exchanging information locally) to achieve collective objectives. It is

convenient to model the information exchanges among agents by directed or undi-

rected graphs.

The information exchange among a networked linear multi-agent system is de-

scribed by a weighted graph G(V , E ,A) that represents the connections between

agents, where V = {1, · · · , N} and E ⊆ V ×V denoting the node-set and the edge-set

respectively. We denote by A =
[
aij
]
∈ RN×N the weighted adjacency matrix defined

as aij > 0 if there exists an edge (j, i) ∈ E , and aij = 0 otherwise. An edge (i, j) ∈ E

where i is a parent node and j is a child node, means that agent j can receive infor-

mation from agent i, but not necessary conversely and agent i is neighbour of agent

i. The set of the neighbours of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E}, whose

cardinality is called the in-degree of node i. Thus, the incidence matrix D ∈ RN×N

of a graph is a diagonal matrix with positive entries representing the in-degree of all

the nodes. A graph is defined as being balanced when it has the same number of in-

going and outgoing edges for all the nodes. The Laplacian matrix L =
[
lij
]
∈ RN×N

associated with the graph G is defined as,
lii = ∑

i 6=j
aij,

lij = −aij, i 6= j
(4.1)

The Laplacian matrix L can be further defined as L = D − A. The graph is said

undirected if the following property is satisfied, (i, j) ∈ E implies (j, i) ∈ E , ∀i, j ∈ V .

Otherwise, the graph is directed (or digraph). A directed path is a sequence of or-

dered edges of the form (i1, i2), (i3, i4), . . . , (ik−1, ik), where ip ∈ V , p = {1, · · · , k}.
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Figure 4.1: An illustrative example of different types of graphs.

If there exists a directed path from every node to every other node, the digraph (di-

rected graph) is called strongly connected [32],[70]. Thus, any undirected graph is

connected. A directed spanning tree of a digraph is a directed tree formed by graph

edges that connects all the nodes of the graph. It is said that a digraph contains a

directed spanning tree if there exists at least one node called root-node such that there

exists a directed path from this latter to all other nodes. A digraph is strongly con-

nected, implies the existence of at least a directed spanning tree, but not necessary

conversely. A digraph being strongly connected is stronger condition than having a

directed spanning tree.

The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is described by A⊗ B

is defined as, [20],

A⊗ B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB


The Kronecker product satisfies the following properties,

A⊗ (B + C) = A⊗ B + A⊗ C

(A⊗ B) (C⊗ D) = (AC)⊗ (BD)

(A⊗ B)T =
(

AT ⊗ BT)
(A⊗ B)−1 =

(
A−1 ⊗ B−1)

where the matrices are assumed to be compatible for multiplication.
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Definition 4.1 A square matrix L =
[
lij
]
∈ Rn×n is called a singular (non-singular)

M−matrix, if all its off-diagonal elements are non-negative (positive) and all eigenvalues of L

have non-negative (positive) real parts [21].

The following properties (conditions) are equivalent for the nonsingular M−matrices. Let

L =
[
lij
]
∈ Rn×n be a nonsingular M−matrix, then,

1. The leading principal minors of L are all positive.

2. The eigenvalues of L have positive real parts.

3. L−1 exists and has nonnegative elements.

4. There exist vectors w, v > 0 such that the matrices Lv, LTw are both positive definite.

5. [L]x = 0, x ∈ Rn implies that x = 0.

The M-matrices and their properties are important in the analysis of graphs and are

used in the MASs stability analysis due to the fact that the graph Laplacian matrix

L = D−Awhich model the interaction among the agents (i.e., information exchange)

is an M−matrix.

Example: For the graphs depicted in Fig. 4.1, we compute the corresponding Lapla-

cian matrices as,

La =


1 −2 −4 −3

1 −1 −5 −5

−2 −2 −2 −3

−10 −8 −4 −4

 ;Lb =


1 −2 −4 −3

1 −1 −5 −5

−2 −2 −2 −3

−10 −8 −4 −4



Lc =


1 −2 −4 −3

1 −1 −5 −5

−2 −2 −2 −3

−10 −8 −4 −4

 ;Ld =


1 −2 −4 −3

1 −1 −5 −5

−2 −2 −2 −3

−10 −8 −4 −4


From the definition of the Laplacian matrix and also the above example, it is easy to

see that L is diagonally dominant and has nonnegative diagonal entries. Since L has

zero row sums, 0 is an eigenvalue of Lwith an associated eigenvector 14. According to
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Gershgorin’s disc theorem [71], all nonzero eigenvalues of L are located within a disk

in the complex plane centred at dmax and having radius of dmax, where dmax denotes

the maximum in-degree of all nodes. According to the definition of M−matrix in the

last subsection, we know that the Laplacian matrix L is a singular M−matrix.

4.1.3 Stability theory and technical tools

The following lemmas are keys to our development and stability analysis in the next

sections.

Lemma 4.2 [21,72]: For a non-singular M-matrix L̃1 ∈ RN×N, there exists a positive diago-

nal matrix G = diag{g1, . . . , gN}, such that GL̃1 + L̃T
1 G > λ0 IN > 0 where [g1, . . . , gN]

T =

L̃−1
1 1N and λ0 > 0 is the smallest eigenvalue of GL̃1 + L̃T

1 G.

Lemma 4.3 (Young’s Inequality) [73]: Let p and q be positive real numbers satisfying 1/
p +

1/
q = 1, the following inequality holds for nonnegative real numbers a and b as, ab ≤ ap

p + bq

q .

Lemma 4.4 [20, 51]: If a directed graph G contains a directed spanning tree, then zero is a

simple eigenvalue with 1 as right eigenvector of the associated Laplacian matrix L. Further-

more, the rest of the eigenvalues are positive real parts.

Lemma 4.5 Consider the autonomous system,

ẋ = f (x) (4.2)

where f : D → Rn is a locally Lipschitz map from a domain D ∈ Rn into Rn. Suppose that

x0 = 0 is an equilibrium point of (4.2). Let V : Rn → R be a continuously differentiable

function such that V(x0 = 0) = 0 and V(x) > 0, ∀x 6= 0, V(x) is radially unbounded (i.e.,

V(x) → ∞ as ‖x‖ → ∞), and V̇ < 0, ∀x 6= 0. Then, x0 = 0 is globally asymptotically

stable[63].

Lemma 4.6 LaSalle Invariance Principle [74] Let Ω ⊂ D be a compact set that is posi-

tively invariant with respect to (4.2). Let V : D → R be a continuously differentiable function

such that, V̇ 6 0 in Ω. Let E be the set of all points in where V̇ = 0 and M be the largest

invariant set in E. Then, every solution starting in Ω approaches M as t→ ∞.
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Note that in many applications the construction of V(x) will guarantee the existence

of a set Ω. In particular, if Ωc = x ∈ Rn : V(x) 6 c is bounded and V̇(x) 6 0, then we

can choose Ω = Ωc.

Lemma 4.7 Barbalat’s Lemma [63] If the differentiable function f (t) has finite limit as

t→ ∞, and ḟ (t) is uniformly continuous, then ḟ (t)→ 0 as t→ ∞.

A simple sufficient condition for a differentiable function to be uniformly continuous

is that its derivative is bounded. The Lemma-4.7 can be stated differently as, if the

function ḟ (t) is uniformly continuous R+ → R, and
∫ +∞

0 ḟ (τ)dτ, exists and finite,

then, lim
t→∞

ḟ (t) = 0.

4.2 Overview on MASs consensus control

It has been shown that many existing formation control approaches such as leader-

follower, behavioural and virtual structure approach can be unified within the general

framework of consensus control [18]. The consensus problem has been extensively

studied for different continuous or discrete dynamics node under fixed or switching

topologies. The difference between formation control and consensus control of a

MASs is that in consensus control, an agreement among the agents in term of some

variable of interest (i.e., states) has to be reached, while in formation control, a desired

geometric configuration is required to be achieved by the agents. In other words, the

MASs formations can be achieved through reaching consensus on the center point of

the formation. Thus, the MASs formation control is an extension of a MASs consensus

control.

In this section we present a general overview of the main frameworks on consensus

control as it represents the basis of the distributed output TVF tracking of MASs

in the next sections. Consensus means that a team of agents reaches an agreement

on a common value by interacting with each other via a sensing or communication

network. For the consensus control problem, the main task is to design appropriate

distributed controllers, usually called consensus protocols, based on local information

of neighboring agents to achieve consensus.
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Two pioneer papers on consensus control are [75] and [71]. A theoretical expla-

nation was provided in [75] for the alignment behavior observed in the Vicsek model

[76] and a general framework of the consensus problem for networks of integrators

was proposed in [71]. Since then, the consensus problem has been extensively studied

by numerous researchers from various perspectives (i.e., the type of node dynamics,

the type of the exchanged data, the distribution property, and the type of the commu-

nication graph).

The consensus control was developed for first order dynamics node i.e., ẋ = u

[32, 71], second order dynamics, i.e., ẍ = u, [33], high-order integrator dynamics, i.e.,

x(n) = u [77] and for GLS dynamics[20], where the node’s dynamics is described as

in (4.4).

The consensus problem neither the TVF tracking of MASs with each node being

a GLS dynamics is more challenging than the other types of node’s dynamics. The

importance of studying consensus for general linear MASs lies in at least two aspects.

First, the general linear agents are more representative, which contain the first-order,

second-order, and high-order integrators as special cases. Second, consensus of gen-

eral linear MASs can be regarded as local consensus of nonlinear MASs, and it paves

a way for studying more complex MASs, e.g., systems subject to different types of

uncertainties.

Mathematically, the distributed consensus problem for MASs featured by (4.4)

with neighbouring relative-state exchanging can be stated as follows, the consensus

problem is solved for MASs featured by (4.4) under fixed directed interaction topology if for any

given agents initial states xi (0) , i ∈ [1, N], the following limits hold, lim
t→∞
||xi (t)− xj (t) || =

0; i, j ∈ [1, N]. Thus, the static consensus protocol (i.e., control law) that solves the

aforementioned consensus problem is given as [20],

ui = cK
N

∑
j=1

aij(xi − xj), i = 1, ..., N, (4.3)

where xi, ui, refer to the state and control input of agent i (see (4.4)), c > 0 ∈ R is

called the (constant) coupling gain or weight, K ∈ Rp×n is the feedback gain matrix,

and aij is the (i, j)-th entry of the adjacency matrix A associated with the graph G
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among the agents. Note that the condition for reaching consensus depends on three

correlated factors: (i) the agent dynamics, (ii) the design parameters of the consensus

protocol, (iii) and the nonzero eigenvalues of the Laplacian matrix L of the communi-

cation graph [20]. Reader can refer to [20] for the stability analysis and the sufficient

conditions for reaching the consensus problem with relative state feedback and also

for relative output-feedback cases under fixed directed graphs. In [78, 79], the state-

feedback consensus problem is studied and solved in fully distributed fashion under

Leader-Follower scheme, where the agent’s protocol construction does not depend on

the knowledge of the eigenvalues of the Lapalcian matrix. The frameworks [78, 79]

were extended to the case of output-feedback consensus control [51], where sufficient

conditions for consensus to be reached were derived in fully distributed fashion.

4.3 Definitions and problem statement

Consider a MASs consisting of (N + 1) identical agents (one Leader and N followers)

with time-continuous general Linear Time-Invariant (LTI) dynamics that could be re-

garded as the linearized model of a nonlinear systems. The dynamics of the i-th agent

is given,

ẋi (t) = Axi (t) + Bui (t) ,

yi (t) = Cxi (t) , i ∈ [0, N]
(4.4)

In (4.4), xi = [xi1, . . . , xin]
T ∈ Rn, ui ∈ Rp and yi ∈ Rq are the i-th agent’s state vector,

control input and measured output, respectively. A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n

are constant matrices.

Without loss of generality, the agents in (4.4) indexed by 1, . . . , N are the followers

and the agent indexed by 0 is the leader, whose role is to decide the whole system

moves. The leader receives no information from followers and its measured output is

available to only a subset of followers.

Definition 4.8 The desired geometric TVF shape to be maintained by the identical homoge-

neous N followers is described by a relative offset vector h (t) =
[
hT

i (t), . . . , hT
N(t)

]T ∈ RnN,

where hi(t) ∈ Rn being a piecewise continuously differentiable and compatible with agent
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dynamics given in (4.4) for i ∈ [1, N],

ḣi (t) = Ahi (t) + Bui,r (t) , i ∈ [1, N] (4.5)

where ui,r(t) ∈ Rp is a free reference input for generating hi (t), the relative offset or

coordinate of follower i with respect to the leader. The desired TVF format can be

written as,

ḣi (t) = (A + BKh) hi (t) , i ∈ [1, N] (4.6)

where Kh ∈ Rp×n can be a constant or a time-varying matrix. The gain matrix Kh

provides the freedom to design any desired TVF shape while satisfying compatibility

with agent’s dynamics. The TVF form (4.6) gives the ability to provide rotation,

translation and scalability operations by appropriate chose of Kh. The importance

of this formation form lies on the flexibility and applicability in many scenarios and

contexts such as target-enclosing and obstacles avoidance.

Remark 4.9 To explain the Desired TVF shape, an illustrative example is given in Fig. 4.2.

First, in Fig. 4.2(a), the agent labelled i is required to maintain a time-varying relative state

vector hi(t) relative to the leader state x0(t), and as a result, all the follower agents maintain

a specific shape (i.e, in this example a hexagon form) around the leader while tracking its

trajectory. Secondly, in figure Fig. 4.2(b), the followers form an hexagon shape while tracking

the leader simultaneously. Thus, Chi(t) represent in this case the relative output offset of agent

i relative to the leader. As a result, each agent reference trajectory comes from y0(t) + Chi(t).

Definition 4.10 The multi-agent system MASs described in (4.4) is said to achieve the out-

put TVF tracking control if for any given initial states xi (0) , i ∈ [0, N], the following limits

hold,

lim
t→∞
||yi (t)− y0 (t)− Chi (t) || = 0, i = [1, ..., N] (4.7)

It can be seen from Definition-4.10, that the goal behind the TVF tracking problem

based L-F approach is to ensure that the followers achieve an agreement on leader’s

output y0 (t), and simultaneously each follower keeps a desired relative offset Chi (t)

with respect to y0 (t). As a result, the desired formation shape denoted by h(t) is
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Figure 4.2: An illustrative example of the desired TVF shape.

achieved. It is worth noting that selecting
N
∑

i=1
hi (t) = 0, implies the leader will lie

inside the desired TVF which corresponds to target enclosing and trajectory tracking

problem providing that the leader is real and has nonzero control input. Moreover, in

the case where h(t) ≡ 0, the TVF tracking problem becomes the Consensus tracking

problem [20].

Example 4.11 The desired TVF format: We show in this example how the desired TVF

shape changes over time through simulation. Let consider a MASs consisting of a leader

labelled by 0 and 6 followers labelled from 1 to 6. Now, let the state vector of agent follower i

be xi =
[

xT
i,1, . . . , xT

i,4

]T
∈ R4. The identical agents dynamics is supposed to be defined by the

following matrices A and B,

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 ; B =


0 0

0 0

1 0

0 1


We choose C =

[
I2 02

]
.

Inspired by [48, 80], the desired formation shape h(t) will be constructed by three

parameters that are: the formation shape h̄, the formation scale r(t) and the formation
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rotating frequency around its center ω̄(t). For the agent i, i ∈ [1, 6], the offset h̄i =

[h̄i1, ..., h̄i6]
T can be defined as,

h̄i =



r sin(ω̄t + (i− 1)π/3)− r cos(ω̄t + (i− 1)π/3)

2r sin(ω̄t + (i− 1)π/3)

rω̄[cos(ω̄t + (i− 1)π/3) + sin(ω̄t + (i− 1)π/3)]

2rω̄ cos(ω̄t + (i− 1)π/3)

Now, different formation shapes (i.e. parallelogram, circle, triangle,...) could be de-

signed as a combination of h̄i. Let h(t) to be designed as,

h(t) =

[
h̄T

1 , h̄T
1 +h̄T

3
2 , h̄T

3 , h̄T
4 , h̄T

4 +h̄T
6

2 , h̄T
6

]T
, 0 ≤ t ≤ 15[

h̄T
1 , h̄T

1 +h̄T
3

2 , h̄T
3 , h̄T

3 +h̄T
5

2 , h̄T
5 , h̄T

1 +h̄T
5

2

]T
, 15 < t ≤ 30[

h̄T
1 , h̄T

2 , h̄T
3 , h̄T

4 , h̄T
6 , h̄T

6
]T, 30 < t ≤ 45

From the description of h(t), the desired formation shape is a triangle as t ∈ [0s, 15s],

then a parallelogram shape as t ∈ [15s, 30s] and as hexagons shape when t ∈ [30s, 45s].

We set ω̄(t) = 0.15, and we set r(t) as,

r (t) =

 3, t ≤ 15

3 + 3e−0.18(t−15), t > 15

By setting r(t) time-varying and ω̄(t) 6= 0, the formation shape will rotate around

the leader and change scale over time. The above facts offer high flexibility on the

choice of the desired MASs formation as shown in Fig. 4.3. It can be checked that

the formation constraint (4.5) is satisfied with uh,i (t) = Khhi(t). Thus, using (4.6) and

knowing A and B, the matrix Kh is found to be,

Kh =

 −ω̄2 0 0 0

0 −ω̄2 0 0



4.4 Distributed TVF tracking with zero leader input

It is naturally to start first in section-4.4.1 solving the output-feedback TVF tracking

problem for MASs with a leader whose control input is zero, and further with an
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Figure 4.3: An illustrative example of TVF changing mechanism.

undirected interaction topology (i.e., undirected graph), in which the agents are ex-

changing the relative output measurements bidirectionally, which is mathematically

less challenging. Moreover, this assumption (i.e., undirected graph among the agents)

is a strong requirement and may be not feasible in permanence in real application, due

to the movements of the agents during the TVF. In addition, it implies an increase of

the utilized communicating resources. In section-4.4.2, we consider the directed graph

case with full access to leader’s measured output, which is relatively less challeng-

ing. The fact that all the follower agents have knowledge of the leader’s control input

render the formation stability-analysis easier to demonstrate. In the other side, the

graph among the agents is required to be directed rather than undirected, hence, less

communication resources are utilized compared to the undirected graphs. After that,

in section-4.4.3, we treat the case when the followers have partial access to leader’s

output and the interaction topology is supposed to be directed and required only to

have a spanning tree. Hence, the communication-links number among the agents will

be reduced compared to the case when the digraph is being strongly connected. The
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above controllers are valid only for a leader whose control input is zero, which is a

severe constraint and less practical in real applications.

As detailed previously, the whole networked MASs is consisting of (N + 1) homoge-

neous LTI agents (N followers and one leader) of a general linear dynamics described

as in (4.4). Physically, the followers are supposed to be equipped with wireless capa-

bilities (i.e., transceivers) of certain range, enabling them to exchange their measured

outputs and other signals via the communication topology.

Without loss of generality, the agents in (4.4) indexed by 1, . . . , N are the followers

and the agent indexed by 0 is the leader, whose role is to decide the whole system

moves. The leader receives no information from followers and its measured output is

available to only a subset of followers.

In the following, we denote by A ∈ R(N+1)×(N+1) and L ∈ R(N+1)×(N+1) the Adja-

cency matrix and the Laplacian matrix respectively, associated with the communica-

tion graph G among the whole system. Because the node indexed by 0 is the leader

which has no neighbors, A and L can be partitioned as,

A =

 0 01×N

Ã2 Ã1

 ;L =

 0 01×N

L̃2 L̃1

 (4.8)

In the above equation (4.8), L̃2 ∈ RN×1. L̃1 ∈ RN×N is representing the Lapalcian

matrix associated to the subgraph G̃1 among the followers. By the definition of Lapla-

cian matrix, it is straightforward to see that L̃2 = −Ã2, where Ã2 = [ai0] , i ∈ [1, N]

defines whether a follower receives information from the leader if ai0 > 0 and doesn’t

receive information if ai0 = 0.

Assumption 4.12 The pair (A, B) is stabilizable.

Assumption 4.13 The pair (A, C) is detectable.

Its worth noting that the stabilizability and detectability of a LTI system are less strong

requirements compared to the controllability and observability. Thus, the above as-

sumptions are reasonable and suitable for physical systems.

The desired TVF shape information h(t) is presented in Section-4.3. In order

to reach the TVF control, a variety of protocols based on absolute or relative states
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4.4. Distributed TVF tracking with zero leader input

have been proposed, e.g., in [34], [36]. For instance, a TVF protocol based on abso-

lute/relative state information of neighboring agents is given in [36] as,

ui(t) = K1xi(t) + K2

N

∑
j=1

cij(t)aij
[
(xi(t)− xj(t))− (hi(t)− hj(t))

]
(4.9)

However, the state information xi(t) and xj(t) in (4.9) may not be always available

in most practical applications. Whereas, the output information, (i.e., yi(t) and yj(t))

is usually accessible all the time. Hence, the output-based adaptive observer-type

protocols are studied in this chapter. Furthermore, we deal particularly with the

problem of reducing the exchanged information among the networked agents when

designing the cooperative controller.

4.4.1 Undirected output TVF tracking

Assumption 4.14 The communication subgraph G̃1 among followers is undirected with the

its corresponding adjacency matrix Ã1 and Laplacian matrix L̃1. The graph G of the whole

system contains a spanning tree with the adjacency matrix A and Laplacian matrix L

In this sub-section, we deal first with the case when the leader’s input control is

zero (u0(t) = 0), which means that the leader could be a virtual one. This assumption

is common in previous work [46], [47]. However, it imposes severe limitations on the

desired formation trajectory generated from the equation ẋ0 (t) = Ax0 (t). This is

due to the fact that the matrix A is unchangeable. We assume that the interaction

topology is time-invariant. Let recall the Definition-4.10. The objective is to develop a

fully distributed protocol for the followers in order to reach and maintain a TVF shape

defined as in Definition-4.8, while simultaneously tracking the leader’s trajectory. It

is assumed that each agent exchanges the relative outputs, rather than the relative

states, of its neighbors with respect to itself via the undirected communication graph.

The term (t) is omitted in the following for writing convenience, and each follower

can get access to the relative output measurements as,

yij = yi − yj, yi0 = yi − y0, {i, j} ∈ [1, N] (4.10)
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Inspired by the proposed edge-based adaptive consensus control given in [78], an

extension to the edge-based adaptive TVF tracking control is given as follows [81],

[48],

ui = Khhi + Kvi

v̇i = (A + BK) vi + F

[
N
∑

j=1
aijcij

(
c̄ij − yij

)
+ ai0ci (c̄i − yi0)

]
ċij = kijaij

(
c̄ij − yij

)TΓ
(
c̄ij − yij

)
ċi = kiai0(c̄i − yi0)

TΓ (c̄i − yi0) , i ∈ [1, N]

(4.11)

where the terms c̄ij and c̄i are given as,

c̄i = C (vi + hi) , c̄ij = c̄i − c̄j (4.12)

In (4.11), vi ∈ Rn is the distributed observer state (the protocol internal state) intro-

duced to estimate the TVF tracking error x̃i defined in (4.13), yij and yi0 are already

defined in (4.10), kij = k ji, ki are positive constants, aij is the (i, j)−th entry of the

adjacency matrix Ã1, cij(t) denotes the time-varying coupling weight between the fol-

lower i and j satisfying cij(0) = cji(0) > 0, while ci(t) > 0 denotes the time-varying

coupling weight between follower i and the leader. K ∈ Rp×n, F ∈ Rn×q, Γ ∈ Rq×q are

feedback gain matrices what will be determined later, while the gain matrix Kh char-

acterize the desired TVF shape (see (4.6)). ai0 is the i−th entry of Ã2 which satisfies

ai0 > 0 if follower i can get information from leader, otherwise ai0 = 0.

Remark 4.15 The TVF tracking control (4.11) dynamically updates the coupling weights

cij(t) and ci(t) for each edge (i.e., each communication link), thus, the controller is not de-

pendant to any global information such as the total number of agents or the minimal positive

eigenvalue of the Laplacian matrix L as in [35], [82], [38] and [8]. Therefore, the controller is

fully distributed and applicable to a large scale multi-agents system. However, this is valid for

only undirected interaction topologies among followers.

From Definition-4.10, let define the TVF tracking error x̃i ∈ Rn for each follower-agent

as,

x̃i = (xi − x0 − hi) , i = [1, · · · , N] (4.13)
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As we included an observer vi ∈ Rn in (4.11) to estimate the TVF tracking error of

each follower, the observer-estimating error ei ∈ Rn could be defined as,

ei = (x̃i − vi) , i = [1, . . . , N] (4.14)

The following theorem presents a result of designing an observer based adaptive

protocol (see definition-4.10) for solving the Leader-Follower TVF tracking problem

under undirected interaction topology.

Theorem 4.16 [48], [81] The fully distributed TVF tracking problem is solved with As-

sumptions 4.12, 4.13 and 4.14 under the protocol (4.11) if (A + BK) is Hurwitz, Γ = I and

F = −PCT, where P−1 > 0 is a solution to the following LMI:

P−1A + ATP−1 − 2CTC < 0 (4.15)

Furthermore, the coupling weights cij(t), ci(t), {i, j} ∈ [1, N] converge to some finite steady-

state value.

Proof of Theorem-4.16: From (4.7) and (4.13), we have (yi − y0 − Chi) = Cx̃i, thus,

from Definition-4.10, the goal is to prove that lim
t→∞

x̃i = 0, i = [1, ..., N]. The formation

tracking error dynamics ˙̃xi is derived from (4.4) and (4.6) as,

˙̃xi = Ax̃i + BKvi (4.16)

Now, we substitute (4.16) in (4.11) yields,

ėi = Aei + FC

[
N
∑

j=1
aijcij

(
ei − ej

)
+ ai0ciei

]
ċij = kijaij

(
ei − ej

)TCTΓC
(
ei − ej

)
ċi = kiai0(ei)

TCTΓCei

(4.17)

Let consider the Lyapunov candidate function,

V1 =
N

∑
i=1

ei
TP−1ei +

N

∑
i=1

N

∑
j=1,i 6=j

(
cij − α

)2

2kij
+

N

∑
i=1

(ci − α)2

ki
(4.18)
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The parameter α is a constant to be determined later. The time derivative of V1 con-

sidering the dynamics ėi in (4.17),

V̇1 = 2
N
∑

i=1
(ci − α) ai0ei

TCTΓCei + 2
N
∑

i=1
ei

TP−1FC

[
N
∑

j=1
aijcij

(
ei − ej

)
+ ai0ciei

]
+2

N
∑

i=1
ei

TP−1ei +
N
∑

i=1

N
∑

j=1,i 6=j

(
cij − α

)
aij
(
ei − ej

)TCTΓC
(
ei − ej

)
.

(4.19)

Because of kij = k ji, cij(0) = cji(0) and aij = aji due to the property of undirected

graph among followers (see Assumption-4.14) with the matrix Γ being symmetric, it

follows from protocol (4.11) that cij(t) = cji(t), ∀t ≥ 0. Then, the following equality

holds,
N
∑

i=1

N
∑

j=1,i 6=j

(
cij − α

)
aij
(
ei − ej

)TCTΓC
(
ei − ej

)
=

2
N
∑

i=1

N
∑

j=1,i 6=j

(
cij − α

)
aijei

TCTΓC
(
ei − ej

) (4.20)

Now, let substitute F = −P−1CT, Γ = I and (4.20) in (4.19) yields,

V̇1 =
N
∑

i=1
ei

T (P−1A + ATP−1) ei − 2α
N
∑

i=1
ai0ei

TCTCei

−2α
N
∑

i=1

N
∑

j=1,i 6=j
aijei

TCTC
(
ei − ej

)
= eT

[
IN ⊗

(
P−1A + ATP−1)− 2αL̂1 ⊗ CTC

]
e

(4.21)

where L̂1 = L̃1 +D, with L̃1 being the Laplacian matrix corresponding to the sub-

graph G̃1 among followers, D = diag
{
Ã2

}
= diag {a10, . . . , aN0} and e = [eT

1 , . . . , eT
N]

T ∈

RNn×1. It is clear that D > 0 with at least one diagonal entry being positive since at

least one follower gets information from the leader (see Assumption-4.14). Then, L̂1

is positive-definite matrix [78], [79]. Now, let U ∈ RN×N be a unitary matrix such that

UTL̂1U = Λ ∆
= diag{λ1, . . . , λN} with λi, i ∈ [1, . . . , N] being the eigenvalues of L̂1.

Define ẽ ∆
=
[
ẽT

1 , . . . , ẽT
N
]
=
(
UT ⊗ In

)
e. It follows from (4.21) that,

V̇1 = ẽT [IN ⊗
(

P−1A + ATP−1)− 2αΛ⊗ CTC
]

ẽ

=
N
∑

i=1
ẽT

i
(

P−1A + ATP−1 − 2αλiCTC
)

ẽi
(4.22)

Let choose the constant α sufficiently large such that αλi ≥ 1, i ∈ [1, . . . , N]. Then it
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follows from (4.22) that,

V̇1 ≤
N

∑
i=1

ẽT
i

(
P−1A + ATP−1 − 2CTC

)
ẽi ≤ 0 (4.23)

The inequality obtained in (4.23) comes form the LMI (4.15). Since V̇1 ≤ 0, so we

conclude that V(t) is bounded and so are cij(t), ci(t). Moreover, from (4.11) and Γ = I

it follows that ċij(t) > 0, ċi(t) > 0, thus each coupling weight cij(t), ci(t) increases

monotonically and converges to some finite value as t→ ∞. In the other side, V1 ≡ 0

means that ẽ = 0, and so e = 0, since ẽ =
(
UT ⊗ In

)
e. By LaSalle’s Invariance

principle [74], it turns out that lim
t→∞

e(t) = 0 implies v(t) → x̃(t) as t → ∞. Now, let

substitute (4.14) into (4.16) yields,

˙̃xi = (A + BK) x̃i − BKei (4.24)

We now that (A + BK) is Hurwitz from Theorem-4.16 and lim
t→∞

ei = 0, i = [1, ..., N], it

is straightforward to conclude that lim
t→∞

x̃i = 0, i = [1, ..., N]. The proof is completed.

4.4.2 Directed output TVF tracking with full access to leader

Assumption 4.17 The graph G among the whole system (N followers and a leader) contains

a directed spanning tree where the leader is acting as the root node.

It is important to notice that under Assumption-4.17 the matrix L̃1 is non-singular

M−matrix [21,72], which means L̃1 satisfies the following property, if L̃1X = 0, ∀X ∈

RN implies X = 0 (see Definition-4.1).

Similar to section-4.4.1, each follower receives a weighted combination of relative

outputs between itself and its neighbours via the directed communication graph. Fur-

thermore, all the followers have access to the leader’s measured output ai0 > 0, i =

[1, ..., N] whose input is zero u0 = 0, differently from the case of section-4.4.1, where

only a subset of followers have access to leaders’ output and the graph among the

followers is undirected. Due to the fact that the graph G in this section is assumed di-

rected, the property cij = cji, namely aij = aji does no more match in the convergence

proof. In the following, the parameters cij and ci in (4.11) will be replaced by a one
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parameter ci(t) > 0 that will be denoted the time-varying coupling weight associated

to the i − th follower agent (or node). The protocol given in (4.11) will be modified

based on the above finding as,

ui = Khhi + Kvi

v̇i = (A + BK) vi + F (ci + µi)

[
N
∑

j=1
aij
(
c̄ij − yij

)
+ ai0 (c̄i − yi0)

]
ċi = (c̄i − yi0)

TΓ (c̄i − yi0) , i ∈ [1, N]
(4.25)

where ci (0) > 0, with c̄i, c̄ij, yij, yi0 defined in (4.10) and (4.12), and µi(ei) is a smooth

function of ei(t) that we will determine later. The rest of parameters are the same as

in (4.11).

Theorem 4.18 [81], [80] The fully distributed TVF tracking problem is solved with As-

sumptions 4.12, 4.13 and 4.17 under the protocol (4.25) if (A + BK) is Hurwitz, Γ = I and

F = −PCT, and µi = eiP−1ei where P−1 > 0 is a solution to the LMI (4.15). Furthermore,

the coupling weights ci(t), {i} ∈ [1, N] converge to some finite steady-state value.

Proof of Theorem-4.18: Similar to the proof of Theorem-4.16, we have to prove that

lim
t→∞

ei = 0 which implies vi → x̃i, i = [1, ..., N], then from (4.24) ˙̃xi = (A + BK) x̃i −

BKei we get lim
t→∞

x̃i = 0 as the matrix (A + BK) is Hurwitz. Let substitute (4.24) into

(4.25) yields,

ėi = Aei + FC (ci + µi)

(
N
∑

j=1
l̃ijei + ai0ei

)
ċi = eT

i CΓCei

(4.26)

where l̃ij are the entries of L̃1. Let define the following Lyapunov candidate function,

V2 =
1
2

N

∑
i=1

gi (2ci + µi) µi +
1
2

N

∑
i=1

gi(ci − α)2 (4.27)

In (4.27), gi > 0, i = [1, N] and α are positive constants that will be determined later.

It results from ci (0) > 0 and ċi (t) > 0 that ci (t) > 0, ∀t ≥ 0. Moreover, we have

by definition µi(t) > 0, thus we get V2 is positive definite. Let now, compute its
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derivative along time,

V̇2 =
N

∑
i=1

[gi (2ci + µi) µ̇i + giµi ċi + gi (ci − α) ċi] (4.28)

Let ĉ = [c1, . . . , cN]
T, µ̂ = [µ1, . . . , µN]

T and D = diag{a10, . . . , aN0}. We rewrite (4.28)

in compact form using Kronecker product,

V̇2 = eT

 G (ĉ + µ̂)⊗
(

P−1A + ATP−1)+ (ĉ + µ̂)
(

GL̂1 + L̂T
1 G
)
(ĉ + µ̂)

⊗P−1FC + G (ĉ + µ̂− αI)⊗ CTΓC

 e (4.29)

where e = [e1, . . . , eN]
T and L̂1 = L̃1 +D with L̃1 is the Laplacian matrix that corre-

spond to the subgraph G̃1 among followers agents. All the eigenvalues of the matrix

L̂1 are positive real parts since the whole graph G̃ satisfy Assumption-4.17 and D > 0

implying that L̂1 is non-singular M-matrix [21,72]. Relying on the above finding, and

using Lemma-4.2, there exist G = diag {g1, . . . , gN} > 0 such that GL̂1 + L̂T
1 G ≥ λ0 I

where λ0 is the smallest eigenvalue of GL̂1 + L̂T
1 G. Using this result and F = −PCT,

Γ = I, (4.29) turns in the following inequality,

V̇2 ≤ eT

 G (ĉ + µ̂)⊗
(

P−1A + ATP−1)− λ0(ĉ + µ̂)2

⊗CTC + G (ĉ + µ̂− αI)⊗ CTC

 e (4.30)

In the other side, by using Lemma-4.3, yields the following inequality,

eT
[

G (ĉ + µ̂)⊗ CTC
]

e ≤ eT
[(

λ0

2
(ĉ + µ̂)2 +

G2

2λ0

)
⊗ CTC

]
e (4.31)

Now, substituting (4.31) into (4.30) yields,

V̇2 ≤ eT

 G (ĉ + µ̂)⊗
(

P−1A + ATP−1)
−
(

λ0
2 (ĉ + µ̂)2 − G2

2λ0
+ αG

)
⊗ CTC

 e (4.32)

We choose α ≥ max
i∈[1,N]

5gi√
2λ0

into (4.33) and using the LMI (4.15) yields,

V̇2 ≤ eT
[

G (ĉ + µ̂)⊗
(

P−1A + ATP−1 − 2CTC
)]

e ≤ 0 (4.33)

Since V̇2 ≤ 0, then V2 and ci(t) are bounded. Each coupling weight ci(t) increases

monotonically and converges to some finite value finally. Similar to the proof of
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Theorem-4.16, V2 ≡ 0 is equivalent to e = 0. By LaSalle’s Invariance principle [74], it

turns out that lim
t→∞

e(t) = 0, implying v(t) → x̃(t) as t → ∞. As we have (A + BK) is

Hurwitz, it follows from (4.24) that lim
t→∞

x̃i = 0, i = [1, N]. The proof is completed.

Remark 4.19 It is important to highlight in protocol (4.25) that each follower agent exchange

with its neighbours the relative measurement [(yi−Chi)− (yj−Chj)] of a cardinal q and the

relative observer state (vi− vj) of cardinal n. Moreover, all the followers require the knowledge

of their relative output measurement with the leader yi0 = yi − y0. The above finding result

in stringent communication constraint and increase the communication burden heavily.

4.4.3 Directed output TVF tracking with partial access to leader and

reduced information exchange

In this section, the goal is to solve the Leader-Follower output TVF tracking problem

with partial access to leader’s output whose input is zero and satisfying reduced

network information exchange among the agents. We assume that the interaction

topology is time-invariant. We propose the following distributed protocol [83],

ui = Khhi + Kvi

v̇i = (A + BK) vi + F(ci + µi)

ċi = π̃T
i Γπ̃i, i ∈ [1, N]

π̃i (4.34)

where K, F, Γ are feedback matrices defined in (4.11) and (4.25) to be determined

later. Kh is defined in (4.6). vi ∈ Rn is a distributed observer (the i−th agent internal

protocol state) introduced to estimate the formation tracking error x̃i. ci(t) is the

adaptive coupling weight associated to the i-th agent with ci(0) > 0, and µi($i) to

be determined later, is a smooth and monotonically increasing function with regard

to signal $i. π̃i(t) is the only available network information for the i−th agent from

its neighbours, synthesized as a single signal, containing the neighbouring output

measurements yj and desired output offset Chj, the neighbouring distributed observer

outputs Cvj and eventually the leader’s output y0 if agent i has access to leader,

π̃i = v̄i − ȳi (4.35)
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where v̄i and ȳi are the available network measurement and the neighbouring network

protocol outputs respectively,

v̄i =
N

∑
j=1

aijC
(
vi − vj

)
+ ai0Cvi (4.36)

ȳi =
N

∑
j=1

aij
(
(yi + Chi)−

(
yj + Chj

))
+ ai0 (yi − y0 + Chi) (4.37)

The term ai0 satisfies ai0 > 0 if the i-th agent can get information from the leader and

ai0 = 0 otherwise. Note in (4.37) that it is valid to write
N
∑

j=1
aij ≡ ∑

j∈Ni

aij.

Remark 4.20 It is important to note from (4.34) and (4.35), that the i-th agent receives from

each j neighbour agent only a vector of cardinal p and further, it has been shown that only a

subset of followers can receive the leader’s measured output via the term ai0.

Let define the following signal,

$i =
N

∑
j=1

aij
(
vi − vj

)
+ ai0vi −

N

∑
j=1

aij
(
x̃i − x̃j

)
− ai0x̃i (4.38)

It can be verified that C$i = v̄i − ȳi. We denote v =
[
vT

1 , ..., vT
N
]T, x̃ =

[
x̃T

i , ..., x̃T
N
]T,

v = [vT
1 , ..., vT

N]
T, ȳ =

[
ȳT

1 , . . . , ȳT
N
]T and $ =

[
$T

1 , .., $T
N
]T, then by using the Kronecker

product we have,  v̄ =
[
L̃1 ⊗ C

]
v

ȳ =
[
L̃1 ⊗ C

]
x̃

(4.39)

where L̃1 is defined in (4.8), and since C$i = v̄i − ȳi then, from (4.39) we have

[IN ⊗ C] $ =
(
L̃1 ⊗ C

)
(v− x̃), therefore we obtain,

$ =
(
L̃1 ⊗ In

)
(v− x̃) (4.40)

In (4.40), notice that $ = 0 implies that v = x̃ since we have L̃1 is a non-singular

M−matrix.
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Algorithm 4.21 the following steps show that the application of the distributed adaptive pro-

tocol (4.34) on the MASs defined in (4.4) to solve the output TVF Tracking problem under

reduced network information exchange and partial access to leader’s output:

• Step-1): choosing a desired formation shape described by h(t), in such a way

being compatible with the agents dynamics by satisfying (4.6), therefore a matrix

Kh could be extracted. The matrix Kh expands the feasible desired TVF shape,

where the formation shape becomes Time-Invariant if A + BKh = 0.

• Step-2): choose a feedback matrix K is such away A + BK is Hurwitz. The

existence of the matrix K relies on Assumption-4.12.

• Step-3):choose the matrices Γ = Iq and F = −Q−1CT, where the matrix Q ∈ Rn×n

satisfies the following Linear Matrix Inequality LMI,

W = QA + ATQ− 2CTC < 0 (4.41)

In (4.41), Q is symmetric positive definite matrix (Q > 0). It is important to

note that the existence of the matrix Q, solution of the LMI (4.41), relies on

Assumption-4.13, as it is demonstrated in [20].

• Step-4):choose µi = $T
i Q$i, where C$i = π̃i = v̄i − ȳi. Note that µi, i = [1, N] is a

positive scalar.

The proposed Leader-Followers TVF tracking protocol (4.34) is illustrated in diagram

form in Fig. 4.4.

Theorem 4.22 [83] Based on Algorithm-4.21, the protocol (4.34) solves in a fully dis-

tributed fashion, the output-feedback TVF Tracking problem under Assumptions (4.12),

(4.13) and (4.17), satisfying reduced network information exchange and partial access to

leader’s measured output. In addition, the leader’s input is assumed zero and the coupling

weight ci(t) = $T
i CTΓC$i, i = [1, . . . N] converge to a finite-steady value.

Proof of Theorem-4.22: To prove that the protocol given in (4.34) solves the output
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The desired TVF 
shape 𝒉𝒊(𝒕) 

The communication graph (Digraph that has a spanning tree) 

Vehicle-
Agent 𝒊 

Input  
𝒖𝒊(𝒕) 

Protocol observer 
dynamics 𝒗 𝒊(𝒕) 

The network information signal 𝝅 𝒊(𝒕) 𝐶ℎ𝑖(𝑡) 

Leader agent 0 Neighbouring agents 𝑗, 𝑗 ∈ 𝒩𝑖  

𝑎0𝑖𝐶𝑦0(𝑡) 𝑦𝑗(𝑡) 

 𝒅𝒕 

𝐶𝑣𝑖(𝑡) 

𝐶ℎ𝑗(𝑡) 

𝑣 𝑖(t) ℎ𝑖(𝑡) 

𝐶𝑣𝑗(𝑡) 

𝑦𝑖(𝑡) 

𝑦𝑖(𝑡) 

𝜋 𝑖(𝑡) 

𝐾ℎℎ𝑖(𝑡) 

Local observer 
dynamics 𝒘 𝒊(𝒕) 

𝑤𝑖(𝑡) 𝜋 𝑖(𝑡) 

Figure 4.4: Bloc diagram of the proposed TVF tracking protocol (4.34).

TVFT problem defined in (see Definition-4.10), we have to demonstrate the following

two implications (i), (ii) as,

lim
t→∞

$ = 0⇒ (v− x̃)→ 0, (i)

lim
t→∞

v = 0, (ii)

⇒ lim
t→∞

x̃ → 0

. Using (4.4), (4.6), (4.38) and (4.34), the derivative of x̃i and $i are written as,
˙̃xi = Ax̃i + BKvi, i = [1, . . . N]

$̇i = A$i + FC

(
N
∑

j=1
l̃ij(cj + µj)$j + ai0(ci + µi)$i

)
(4.42)

where l̃ij are the entries of L̃1. Therefore, from (4.39), (4.40), we can rewrite (4.42) in a

compact form as follows,
$̇ =

(
L̃1 ⊗ In

)
(v̇− ˙̃xi)

v̇ = [IN ⊗ (A + BK)] v + [(ĉ + µ̂)⊗ FC] $

˙̃x = [IN ⊗ A] x̃ + [IN ⊗ BK] v

(4.43)

where ĉ = diag {c1, . . . , cN} and µ̂ = diag {µ1, . . . , µN} having positive entries. Then,

it is straightforward to check from (4.43) that,

$̇ =
[

IN ⊗ A + L̃1 (ĉ + µ̂)⊗ FC
]

$ (4.44)
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Let V3 be a candidate Lyapunov function defined as,

V3(t) =
1
2

N

∑
i=1

gi (2ci + µi) µi +
1
2

N

∑
i=1

gidi
2 (4.45)

In (4.45), gi > 0, i = [1, . . . , N] could be chosen such as [g1, . . . , gN]
T = L̃−1

1 1N (see

Lemma-4.2), di = ci − δ with δ > 0 is a constant that will be determined later. Let

d̂ = diag {d1, . . . , dN}. In the other side, from (4.34), ċi(t) ≥ 0, ci(0) > 0, then ci(t) >

0, ∀t ≥ 0. Noting further from Algorithm-4.21, µi = $T
i Q$i ≥ 0, then we have V3(t) is

positive definite function with respect to d̂ and $. The derivative of V3(t) with respect

to time,

V̇3(t) =
N

∑
i=1

gi (ci + µi) µ̇i +
N

∑
i=1

gi (ci + µi − δ) ċi (4.46)

By substituting µi, ċi = $T
i CTΓC$i and µ̇i = 2$i

TP$̇i from (4.34), (4.42) into (4.46), we

get,

V̇3 (t) =
N
∑

i=1
gi (ci + µi) 2$T

i Q[A$i +
N
∑

j=1
l̃ijFC

(
cj + µj

)
$j + ai0FC (ci + µi) $i]

+
N
∑

i=1
gi (ci + µi − δ) $T

i CTΓC$i.
(4.47)

We have 2$T
i PA$i = $T

i PA$i + $T
i ATP$i, then rewrite (4.47) in compact form,

V̇3 (t) = $T

 G (ĉ + µ̂)⊗
(
QA + ATQ

)
+ (ĉ + µ̂) 2GL̃1 (ĉ + µ̂)⊗QFC

+G (ĉ + µ̂− δIN)⊗ CTΓC

 $ (4.48)

It holds that,

$T
(
(ĉ + µ̂)

[
2GL̃1

]
(ĉ + µ̂)⊗ PFC

)
$ = $T

(
(ĉ + µ̂)

[
GL̃1 + L̃T

1 G
]
(ĉ + µ̂)⊗ PFC

)
$,

then substituting F = −Q−1CT, Γ = Iq and using Lemma-4.2, yields the following

inequality,

V̇3 (t) ≤ $T[G (ĉ + µ̂)⊗
(
QA + ATQ

)
−λ0(ĉ + µ̂)2 ⊗ CTC + G (ĉ + µ̂− δIN)⊗ CTC]$

(4.49)

where λ0 > 0 and G > 0 are defined in Lemma-4.2. Now, we use Lemma-4.3 with

a =
√

λ0 (ĉ + µ̂), b = G√
λ0

and p = q = 2, yields

$T
[

G (ĉ + µ̂)⊗ CTC
]

$ ≤ $T

[(
λ0(ĉ + µ̂)2

2
+

G2

2λ0

)
⊗ CTC

]
$ (4.50)
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We substitute (4.50) into (4.49),

V̇3 (t) ≤ $T
[

G (ĉ + µ̂)⊗
(

QA + ATQ
)
−
(

λ0

2
(ĉ + µ̂)2 − G2

2λ0
+ δG

)
⊗ CTC

]
$ (4.51)

In (4.51), we know that a + b ≥ 2
√

ab, ∀a, b ∈ R+, then by choosing δ ≥
(

5gs
2λ0

)
; gs =

Max {gi, i ∈ [1, . . . , N]} we get,

V̇3 (t) ≤ $T [G (ĉ + µ̂)⊗W ] $ ≤ 0 (4.52)

where the matrix W < 0 is given in (4.41), yields that V3 (t) is bounded, and conse-

quently, $i and ci are bounded too. Given the fact that ċi (t) ≥ 0, it is straightforward

to conclude that ci (t) , i ∈ [1, . . . , N] increase monotonically and converge to final val-

ues. In the other side, when V̇1 (t) ≡ 0 implies that $ = 0. Therefore, relying on

LaSalle’s Invariance Principle [74], $ converge asymptotically to zero, lim
t→∞

$→ 0, (i).

It remains now to prove that lim
t→∞

v = 0. From the second line of (4.34), we have

π̃i = C$i and we know (A + BK) is Hurwitz, and as we got lim
t→∞

$ → 0, we obtain

that, lim
t→∞

vi = 0, (ii), thus lim
t→∞

x̃i → 0, i ∈ [1, . . . , N], that is the TVF tracking problem

4.22 is solved with protocol (4.34).

Remark 4.23 It is worth noting in Step-4 of Algorithm-4.21, that the construction of µi

requires the observation of the signal $i based on the only available network signal π̃i =

v̄i − ȳi = C$i. Thus, a local observer wi is introduced to estimate $i.

The dynamics of wi is expressed as,

ẇi = Awi + Bui − BKhhi + F [Cwi − π̃i] (4.53)

Now, we have to prove that wi → $i as t → ∞. Let define the local observation error

w̃i = wi − $i, and let w = [wT
1 , ..., wT

N]
T, thus the closed loop dynamics of w̃i can be

written from (4.43) and (4.53) in compact form using the Kronecker product as,

˙̃w = [IN ⊗ (A + FC)] w̃ + (IN ⊗ BK) v−
[

L̃1 (ĉ + µ̂)⊗ FC
]

$ (4.54)

The goal is to prove that w̃ → 0 as t → ∞. It follows from the LMI (4.41) with

F = −Q−1CT that,

(A + FC)TQ + Q (A + FC) = ATQ + QA− 2CTC < 0 (4.55)
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Consequently, the matrix (A + FC) is Hurwitz. In the other side, it has been found

before that lim
t→∞

$→ 0 and lim
t→∞

v = 0, therefore, from (4.54), we have w̃→ 0⇒ wi → $i

as t→ ∞.

Remark 4.24 It is worth noting that no global information is required on the construction of

protocol (4.34), such as (the smallest eigenvalue of the Laplacian matrix or the total number

of agents) resulting on a fully distributed formation controller. In contrast to [48] where the

proposed protocol is valid only for undirected interaction topologies, our proposed protocol

deals with directed topologies. Furthermore, the design of the desired formation shape is simple

and does not require further feasibility-conditions compared to [42, 44] where matrix B is

required to be of full rank. An important aspect of protocol (4.34), is the reduced information

exchange property, where each agent exchanges with its neighbours only the outputs Cvj, Chj,

yj of cardinal q (which is in general lower than the state vector cardinal n). In [44] and [53], the

protocol implementation requires either to exchange neighbouring states xj, or the local state

observation wj. In [42, 45] the distributed and local observers outputs Cvj, Cwj are needed to

implement the protocol, while in our proposed protocol (4.34), the local observers outputs are

not need in the protocol implementation. In addition, we deal in our work with Leader-follower

formation tracking where the communication topology is required to have a directed spanning

tree rooted by the leader, while the frameworks in [44, 45] deal with formation stabilization

(i.e., Leaderless) which is less challenging task, and further the communication topology is

assumed to be strongly connected, which is a severe condition compared to the requirement

of the existence of a directed spanning tree. Based on the the above facts, and in contrast to

the mentioned frameworks, the proposed protocol (4.34) is more practical in real applications,

exhibits a light interaction burden, and yields a reduction of the network information exchange

among the networked agents.
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4.5 Distributed TVF tracking under bounded/unknown

leader’s input

In the previous section (Sec.4.4.3), the TVF tracking problem is solved under reduced

network information exchange but with the assumption of a leader with zero control

input. This imposes severe limitation on the leader’s movement, and therefore to

the formation trajectory. In real applications, the final formation trajectory among

MASs needs to be regulated. In this section, the leader’s input is nonzero, bounded

and unknown. Thus, the leader is real and able to implement any actions control

(trajectories). This is more challenging than the case of zero control input u0 (t) = 0.

In addition, u0 (t) will not be accessible to any follower.

Assumption 4.25 the control input of the leader is considered unknown and satisfies, ||u0 (t) || <

e0, with e0 being a positive constant scalar.

To solve the output TVFT problem for Leader-Follower MASs consisting of N

followers and one leader under Assumption-4.25 in a fully distributed fashion, we

expand the protocol (4.34) to the following protocol [83],

ui = Khhi + Kvi − αX
(

BTSζi
)

v̇i = (A + BK) vi + F (ci + µi) π̃i − αB
[
X
(

BTSζi
)
−X

(
BTP$i

)]
ċi = π̃T

i Γπ̃i, i ∈ [1, N]

(4.56)

where S ∈ Rn×n > 0, α is positive scalar that will be determined later, ci(0) ≥ 1, the

signal ζi, i = [1 . . . N] and the nonlinear function X (.) are defined as,

ζi =
N

∑
j=1

aij
[
(xi − hi)−

(
xj − hj

)]
+ ai0 (xi − x0 − hi) (4.57)

X (z) =

 z
‖z‖ , i f → z 6= 0,

0, i f → z = 0
(4.58)

The rest of the parameters in (4.56) are the same as in (4.34). We present the following

Theorem to solve the directed output TVFT problem for a Leader-Follower MASs

with a real leader whose input is unknown and bounded.
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Remark 4.26 comparing the protocol (4.34) with protocol (4.56), it can be seen that two new

terms on the form of switching (discontinuous) function have been added to ui and vi to com-

pensate the non-zero leader’s input, thus u0(t) is viewed as an external perturbation. The

design of protocol (4.56) is partly inspired from [51],[52].

The proposed Leader-Followers TVF tracking protocol (4.56) is illustrated in diagram

form in Fig. 4.5.

The desired TVF 
shape 𝒉𝒊(𝒕) 

The communication graph (Digraph that has a spanning tree) 

Vehicle- 
Agent 𝒊 

Input  
𝒖𝒊(𝒕) 

Adaptive observer 
dynamics 𝒗 𝒊(𝒕) 

The network information signal 𝝅 𝒊(𝒕) 𝐶ℎ𝑖(𝑡) 

Leader 0 Neighbouring agents 𝑗, 𝑗 ∈ 𝒩𝑖  

𝑦0(𝑡) 𝑦𝑗(𝑡) 

 𝒅𝒕 

𝑣𝑖(𝑡) 

𝐶ℎ𝑗(𝑡) 

𝑣 𝑖(t) ℎ𝑖(𝑡) 

𝐶𝑣𝑗(𝑡) 

𝑦𝑖(𝑡) 

𝑦𝑖(𝑡) 

𝜋 𝑖(𝑡) 

ℎ𝑖(𝑡) 

Local observer 
dynamics 𝒘 𝒊(𝒕) 

𝑤𝑖(𝑡) Switching term 
Switching  

term 

𝜁𝑖(𝑡) 

Figure 4.5: Bloc diagram of the proposed L-F TVF tracking protocol (4.56).

Theorem 4.27 [83] The output-feedback TVFT problem can be solved using the fully dis-

tributed discontinuous protocol (4.56) under assumptions (4.12), (4.13), (4.17) and (4.25);

where the parameters K, F, Γ and µi are designed as in Theorem-4.22, with α ≥ e0 and

Q > 0, S > 0 are respectively solutions to the LMI (4.41) and the following LMI respec-

tively,

W = S (A + BK) + (A + BK)TS < 0 (4.59)

Furthermore, the coupling weights ci(t), i = [1, ..., N] ultimately converge to some finite

values with ci(0) ≥ 1.
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Proof of Theorem-4.27: Recall the protocol (4.56), we let Yi = BTSζi and Ỹi = BTP$i

yields,

ui = Khhi + Kvi − αX (Yi)

v̇i =

 (A + BK) vi + F (ci + µi) π̃

−αB
[
X (Yi)−X

(
Ỹi
)]

ċi = π̃T
i Γπ̃i, i ∈ [1, N]

(4.60)

From (4.57), we denote ζ =
[
ζT

1 , . . . , ζT
N
]
, then we can write in compact form,

ζ =
[
L̃1 ⊗ In

]
x̃ (4.61)

The goal is to prove that ζ → 0⇒ x̃ → 0 as t→ ∞, since the matrix L̃1 is non-singular

M-Matrix.

First, let rewrite in compact form the signals $̇ and ζ̇ by differentiating with respect

to time, the signals $ and ζ from (4.40) and (4.61) respectively as,

$̇ =
[

IN ⊗ A + L̃1 (ĉ + µ̂)⊗ FC
]

$−
(
L̃1 ⊗ B

) (
αX

(
Ỹ
)
− 1N ⊗ u0

)
(4.62)

ζ̇ = [IN ⊗ (A + BK)] ζ + (IN ⊗ BK) $−
(
L̃1 ⊗ B

)
[αX (Y) + 1N ⊗ u0] (4.63)

where, Y =
[
YT

1 , . . . ,YT
N
]T, and Ỹ =

[
ỸT

1 , . . . , ỸT
N
]T and X (Y) =

[
X (Y1)

T, . . . ,X (YN)
T
]T

.

Let define the following candidate Lyapunov function,

V4(t) =
N

∑
i=1

ζT
i Sζi + γV3(t) (4.64)

where γ > 0 is a positive constant to be determined later and V3(t) is defined in

(4.45). It is straightforward to conclude that V4(t) is a positive definite with respect to

d̂, $ and ζ.

We want to prove that V̇4 (t) ≤ 0, ∀t > 0. Firstly, following the same steps as in the

proof of Theorem-4.22 to compute the derivative of V3(t) yields,

V̇3 (t) ≤ $T [G (ĉ + µ̂)⊗W] $ + Λ.

Λ = −2$T
[

G (ĉ + µ̂) L̃1 ⊗ PB
] [
−1N ⊗ u0+αX

(
Ỹ
)] (4.65)
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Note that W is defined in (4.41). Now, let simplify Λ. Based on the Laplacian matrix

properties L̃11N = −L̃2 and Ã2 = −L̃2, yields L̃11N = Ã2. By using the above result

and relying on assumption-(4.25), we can write the first term of Λ as,

2$T
[

G (ĉ + µ̂) L̃1 ⊗ PB
]
(1N ⊗ u0(t))

=
N
∑

i=1

[
2gi (ci + µi) $T

i PBai0u0(t)
]

≤
N
∑

i=1
2gi (ci + µi)

∥∥BTP$i
∥∥ ai0e0.

(4.66)

Furthermore, using the switching function given in (4.58), useful properties can be

found [51],

$T
i PBX

(
Ỹi
)
= $T

i PB BT P$i

‖BT P$i‖ =
∥∥BTP$i

∥∥
$T

i PBX
(
Ỹj
)
≤
∥∥$T

i PB
∥∥ ∥∥∥∥ BT P$j

‖BT P$i‖

∥∥∥∥ =
∥∥BTP$i

∥∥
Then, knowing that aij ≥ 0, the second term of Λ can be developed using the above

properties as,

−2$T [G (ĉ + µ̂) L1 ⊗ PB] αX
(
Ỹ
)

= −2
N
∑

i=1

{
gi (ci + µi) α$T

i PB
[
ai0X (BTP$i)+

N
∑

j=1
aij
(
X (BTP$i)−X (BTP$j)

)] }

≤ −2
N

∑
i=1

gi (ci + µi)
∥∥∥BTP$i

∥∥∥ ai0α (4.67)

Based on the obtained developments (4.66), (4.67) and the fact that α ≥ e0 (see

theorem-4.27), the term Λ in (4.65) satisfies,

Λ ≤ 0 (4.68)

Consequently, becauseW < 0 in (4.41), V̇3 (t) satisfies,

V̇3 (t) ≤ $T [G (ĉ + µ̂)⊗W ] $ ≤ 0 (4.69)

Similar to the proof of Theorem-4.22, V3 (t), $i and µi are bounded. Knowing that

ċi(t) ≥ 0, so ci(t), i = [1, N] increase and converge to some finite values. We have

V̇3 (t) ≡ 0 implies that $ = 0. Therefore, by LaSalle Invariance Principle [74], lim
t→∞

V̇1 (t)→

126



4.5. Distributed TVF tracking under bounded/unknown leader’s input

0, implies lim
t→∞

$→ 0.

Now, recalling that the goal is to prove that ζ → 0 ⇒ x̃ → 0 as t → ∞. Based on

(4.57) and (4.63), let compute the derivative of V4 (t) in (4.64),

V̇4(t) =

 ζT(IN ⊗W)ζ + 2ζT(IN ⊗ SBK)$

+Λ2 + γV̇3(t)

Λ2 = −2ζT(L̃1 ⊗ SB)(αX (Y) + 1N ⊗ u0(t))

(4.70)

where W < 0 is defined in (4.59). Similar to the developments made with Λ in (4.66)

and (4.67), we can deduce that the two terms of Λ2 satisfy,

−2ζT(L̃1 ⊗ SB)(1N ⊗ u0(t)) ≤ 2
N
∑

i=1
ai0
∥∥BTSζi

∥∥e0

−2ζT(L̃1 ⊗ SB)(αX (Y)) ≤ −2
N
∑

i=1
ai0
∥∥BTSζi

∥∥α

Hence, Λ2 satisfies,

Λ2 ≤ 0 (4.71)

In the other side, the second term of V̇4(t) can be developed using Lemma-4.3 as,

2ζT(IN ⊗ SBK)$ ≤


1
2 ζT[IN ⊗ (−W)]ζ

+2λmax(KT BTSSBK)
λmin(−W)

$T$

Now, we substitute (4.69), (4.71) and the above obtained inequality in (4.70) yields,

V̇4 ≤


1
2 ζT(IN ⊗W)ζ + 2λmax(KT BTSSBK)

λmin(−W)
$T$

−γ$T [G (ĉ + µ̂)⊗ (−W)] $
(4.72)

We know that µi(t) ≥ 0, ci(t) ≥ 1, ∀t ≥ 0 (see theorem-4.27), thus, the following

inequality holds (ĉ + µ̂) ≥ IN. Hence, we wan write,

$T [G (ĉ + µ̂)⊗ (−W)] $ ≥ λmin(G)λmin(−W)$T$,

We substitute the above inequality in (4.72) and let choose γ ≥ 2λmax(KT BTSSBK)
λmin(−W)λmin(G)λmin(−W)

≥

0 yields,

V̇4(t) ≤
1
2

ζT(IN ⊗W)ζ ≤ 0, (4.73)
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For brevity, the analysis of V̇4(t) is similar to V̇3(t) in (4.52) and (4.69). Thus, it is

valid to write lim
t→∞

ζ(t) → 0, which implies that lim
t→∞

x̃(t) → 0 from (4.61) as L̃1 is a

non-singular M−matrix, that is the proof is completed.

Remark 4.28 In protocol (4.34), the TVF tracking convergence rate is depending on the ones

of the observers vi (4.34) and wi in (4.53); which in its turn depends on the choice of the

matrices K and F. It result that the TVFT convergence rate depends on the smallest real part

of eigenvalues of A + BK and A + FC.

In the other side, the examination of the derivative of the Lyapunov function (4.52),

V̇3 (t) ≤ $T [G (ĉ + µ̂)⊗W ] $ ≤ 0, shows that the interaction topology among the agents has

an effect on the convergence rate of the MASs towards the desired TVF, through the positive

diagonal matrix G = diag[g1, ..., gN] defined in lemma-4.2 by [g1, . . . , gN]
T = L̃1

−1
1N.

Thus, we know from (4.8) that L̃1 depends on Ã1 and Ã2, which implies that the Lyapunov

function decreasing speed V̇3(t) depends on the Laplacian matrix among the MASs L̃1 and the

vector Ã2 that defines the agents having access to leader’s output. This is because µi = $T
i Q$i,

ci(t) = $T
i CTΓC$i and the matrix W in (4.41) is constant. The same conclusion is valid for

the controller (4.56) as we have in (4.64), V4(t) =
N
∑

i=1
ζT

i Sζi + γV3(t). In other words, the

larger are the components of G (depending on the choice of Ã1 and Ã2), the faster is the

convergence rate of $i towards zero, implying the convergence rate of the MASs TVFT error

to decrease faster towards zero relying on (4.52). Furthermore, the protocols (4.34) and (4.56)

remain valid for a MASs to achieve TVF tracking under switching interaction topologies as

long the assumption-4.17 remains satisfied.

4.6 Simulations results

In this section, we will show three examples to demonstrate the conjecture of the the-

oretical results. In Example-, we show the effectiveness of the fully distributed adap-

tive TVF tracking controller given in (4.34) under leader-follower scheme, where the

leader’s input is zero. Then, in Example-2, we show the application of the fully dis-

tributed TVF tracking controller given in (4.56) for a group of networked quadrotors

to achieve successfully the desired TVF while tracking a target of unknown control
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Figure 4.6: Directed interaction topology among agents, (a) example-1 and (b) example-2.

input (i.e., target enclosing behaviour). Finally, in Example-3, we evaluate the validity

of the proposed MASs protocols under time-varying interaction topology, and further

we analyse the effect of the control input delay and the output measurement delay on

the MASs performance and stability.

Example-1:

we consider a networked MASs consisting of nine (09) agents with third order dy-

namics described as in (4.4),

A =


0 −1 1

0 0 0.5

−1 −1 0

 , B =


0 0

0 1

1 0


We let C = [I2, 02×1]. It is clear that (A, B, C) is stabilizable and detectable. We

consider the agent labelled by 0 the leader and the agents labelled by 1 to 8 the

followers. The interaction topology among agents is described by the graph given in

Fig. 4.6 a. It can be verified that the interaction topology is not strongly connected.

Furthermore, it contains a directed spanning tree, where the leader acts as the root

node satisfying assumption-(4.17). Moreover, the leader’s output is only accessible

to agent 1. The desired TVF shape is given as h (t) =
[
hT

1 (t) , . . . , hT
8 (t)

]T, with
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Figure 4.7: The MASs States in 3-D space.

hi (t) , i ∈ [1, 8] is chosen as,

hi (t) =


2 sin

(
ω̄t + (i−1)π

4

)
− 2 cos

(
ω̄t + (i−1)π

4

)
−2 cos

(
ω̄t + (i−1)π

4

)
2 sin

(
ω̄t + (i−1)π

4

)


It can be verified that
8
∑

i=1
hi (t) = 0, which means that the leader will lie inside the

desired formation. We set ω̄ (t) = 1 in h(t), we can check that the formation con-

straint (4.5) is satisfied with uh,i (t) = Khhi(t) and the matrix Kh is found to be

Kh = [1, 0, 0; 0, 0, 0.5]T. The formation reference trajectory comes from the leader’s

state. Since the leader’s input u0(t) is zero in this example, means the leader state

x0(t) is solution of ẋ0 (t) = Ax0(t). To get (A + BK) Hurwitz, let assign the fol-

lowing eigenvalues, [−1.5,−1.5,−2.5], thus the matrix K can be obtained using pole

placement technique. By solving the LMI (4.41), the matrices Q and F are found to
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Figure 4.8: The TVF Tracking error x̃i(t) = (xi − x0 − hi), i = [1, ..., 8].

be,

K =

 −0.8750 2.2500 −2.7500

1.8750 −2.7500 0.7500

 ; Q =


1.3644 0.3548 −0.3861

0.3548 1.9571 −0.5141

−0.3861 −0.5141 1.6998



F =


−0.8030 0.1061

0.1061 −0.5691

−0.1503 −0.1480


The MASs initial states are set as, xi (0) = [−3 + 0.3 (i− η), 2 − 0.8 (i + η), −1 +

0.5(i + η)]T, i ∈ [1, 8] with η a random number between 0 and 1, and the leader’s

initial state is set x0 (0) = [0.6, 0.4, 0.2]T. We set ci(0) = 0.5, i ∈ [1, 8]

The state trajectories of the MASs in 3-D space are depicted in Fig. 4.7. In Fig. 4.8,

the TVF tracking errors x̃i = xi − x0 − hi of the followers are shown to converge

to zero which implies that the output TVFT problem is solved. The Fig. 4.9 and

Fig. 4.10 show the distributed observer state vi and the local observer tracking error

w̃i respectively, where it can be seen that its converge to zero. In Fig. 4.11, we see
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Figure 4.9: Distributed observer state vi(t), i = [1, ..., 8].

the convergence of the adaptive coupling weight to some final steady-value, which

confirms the conjecture of the obtained theoretical results. Finally, in Fig. 4.12, we

show the developed control inputs of the six agents.

Example-2:

In this example, we consider a MASs of six (06) Unmanned Aerial Vehicles (quadro-

tors) and a target (i.e., quadrotor) labelled by zero. Each UAV’s state vector consists

of a position coordinates in global frame, attitude angles (roll, pitch, yaw) and their

derivatives as xq,i = [Xi, Yi, Zi, Ẋi, Ẏi, Żi]
T, ξq,i =

[
ϕi, θi, ψi, ϕ̇i, θ̇i, ψ̇i

]T, i ∈ [1, 6] respec-

tively.

The dynamics of the quadrotor can be viewed as a double sub-dynamics in cascade,

the rotational dynamics (inner-loop) which is fast and the translational dynamics

(outer-loop) which is slow. The control strategy of the networked quadrotors system

is divided into two parts. The first part involves the proposed TVF tracking protocol
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Figure 4.10: Local observer tracking errors w̃i(t) = wi(t)− $i(t), i = [1, ..., 8].
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Figure 4.12: Control inputs ui(t), , i = [1, ..., 8].

(4.56) and will be applied to the translational dynamics to drive the quadrotors to a

desired formation while tracking the target trajectory (viewed as a leader). The sec-

ond control part concern the angles control, where the outputs of the first control-part

will feed-forward the second control-part. The translational dynamics of a quadrotor

is described by the non-linear equations given in (2.9), [84]. For reading convenience,

we rewrite it here,

Ẍi =

(−K f x

Mq

)
Ẋi +

ux,i

Mq
Fi

Ÿi =

(−K f y

Mq

)
Ẏi +

uy,i

Mq
Fi

Z̈i =

(−K f z

Mq

)
Żi − g +

cos ϕi cos θi

Mq
Fi

(4.74)

where Mq and Fi represent the quadrotor mass and the total thrust respectively, the

rest of the parameters are defined in Section-2.2.2. The terms ux,i, uy,i are given as,

ux,i = cosφicosψisinθi + sinφisinψi

uy,i = cosφisinψisinθi − sinφisinψi

Since the attitude angles are weakly varying around zero, we can approximate

cos φi sin θi ≈ 1 for the altitude dynamics, thus the control of Zi is trivial. It is feasible

to assume that the attitude angles are fast stabilized due to their fast dynamics, thus,

we can write φi ≈ φr
i , θi ≈ θr

i , ψi ≈ ψr
i [84]. Furthermore, in this work, the forma-

tion tracking begins after the altitude dynamics is stabilized, hence, it is possible to

approximate Fi ≈ Mqg/cosφicosθi during the formation. Let neglect the aerodynamic
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friction forces, and we choose the yaw angle to be constant (ψi = 0). Consequently,

the simplified translational dynamics of the quadrotor could be rewritten as [84],

Ẍi = (tan θr
i )g

Ÿi =
−tan φr

i
cos θr

i
g

Z̈i =
Fi

Mq

(4.75)

Now, we know that the quadrotor is driven along x-axis and y-axis by changing the

pitch and roll angles. Thus, to transform the nonlinear model (4.74) to a double

integrator model, we can choose,

θr
i = tan−1

(
ux,i
g

)
φr

i = tan−1

−uy,i cos
(

tan−1 Ux,i
g

)
g


ψr

i = 0

(4.76)

where ux,i, uy,i are virtual auxiliary control inputs satisfying,

Ẍi = ux,i, Ÿi = uy,i (4.77)

In this work, the TVFT controller (4.56) will be applied to the (X, Y) quadrotors coor-

dinates and their derivatives (Ẋ, Ẏ), while the Z and Ż states will be controlled apart

using a PID controller. Thus, we denote by xi = [Xi, Yi, Ẋi, Ẏi]
T and ui =

[
ux,i, uy,i

]T

the state vector and the control input vector of the translation dynamics for each

quadrotor along x-axis and y-axis, respectively. It is worth reminding that the transla-

tional TVF tracking control input ui ∈ R2×1 is a feed-forward via (4.76) for the attitude

controller, that is chosen to be a classical PID controller. From (4.77), the x− y linear

translational state model of each quadrotor can be written as in (4.4) with,

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 ; B =


0 0

0 0

1 0

0 1


We choose C =

[
I2 02

]
.
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Remark 4.29 the followed strategy to linearize the nonlinear translational model is more

appropriate and involves less linearization errors than the direct linearization approach based

on first-order Taylor approximation.

The interaction topology among the quadrotor is given in Fig. 4.6 (b), where the

agent labelled by zero is the target (viewed as a leader) whose dynamics is supposed

to be as in (4.4), and it’s control input is unknown and bounded. We can verify that

(A, B, C) is stabilizable and detectable. We can check that the interaction topology

satisfies assumption-(4.17).

The desired formation shape h(t) will be constructed by three parameters that are:

the formation shape h̄, the formation scale r(t) and the formation rotating frequency

around its center ω̄(t). For the quadrotor i, i ∈ [1, 6], the h̄i = [h̄i1, ..., h̄i6]
T can be

defined as,

h̄i =



r sin(ω̄t + (i− 1)π/3)− r cos(ω̄t + (i− 1)π/3)

2r sin(ω̄t + (i− 1)π/3)

rω̄[cos(ω̄t + (i− 1)π/3) + sin(ω̄t + (i− 1)π/3)]

2rω̄ cos(ω̄t + (i− 1)π/3)

Now, different formation shapes (i.e. parallelogram, circle, triangle,...) could be de-

signed as a combination of h̄i. Let h(t) to be designed as,

h(t) =

[
h̄T

1 , h̄T
1 +h̄T

3
2 , h̄T

3 , h̄T
4 , h̄T

4 +h̄T
6

2 , h̄T
6

]T
, 0 ≤ t ≤ 15[

h̄T
1 , h̄T

1 +h̄T
3

2 , h̄T
3 , h̄T

3 +h̄T
5

2 , h̄T
5 , h̄T

1 +h̄T
5

2

]T
, 15 < t ≤ 30[

h̄T
1 , h̄T

2 , h̄T
3 , h̄T

4 , h̄T
6 , h̄T

6
]T, 30 < t ≤ 45

From the description of h(t), the desired formation shape is a triangle as t ∈ [0s, 15s],

then a parallelogram shape as t ∈ [15s, 30s] and as hexagons shape when t ∈ [30s, 45s].

We set ω̄(t) = 0.15, and we set r(t) as,

r (t) =

 3, t ≤ 15

3 + 3e−0.18(t−15), t > 15

It can be checked that the formation constraint (4.5) is satisfied with uh,i (t) = Khhi(t),
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thus the matrix Kh is found to be,

K =

 −1.60 0 −2.60 0

0 −1.60 0 −2.60



P =


0.6684 0 −0.6684 1

0 0.6684 0 −0.6684

−0.6684 0 2.0051 0

0 −0.6684 0 2.0051



S =


42.8006 0 13.0449 0

0 42.8006 0 13.0449

13.0449 0 16.5852 0

0 13.0449 0 16.5852

 ; F =


−2.2443 0

0 −2.2443

−0.7481 0

0 −0.7481


We set the initial state vectors of quadrotors as xq,i (0) = [−2η + 2i(−1)i, −3η +

2i(−1)i, 0.5 − η, 0, 0, 0]T, ξq,i (0) = [0.2η, 0.1η, η − 0.5, 0, 0, 0]T and ci (0) = 1 + 1.5η,

i ∈ [1, 6] with η being a random number with uniform distribution between 0 and 1.

The target initial state is set to, xq,0 (0) = [3, 4, 10, 0, 0, 0]T, and assume that the target’s

control input is defined as u0 (t) = [ 2
50 , 3

50 −
1

10 e−0.2t, 1
100 −

1
100 sin(2πt

30 )]T. Thus, we

have ‖u0(t)‖ ≤ e0 = 0.075. Then, we choose α in (4.56) as α = 0.08 ≥ e0.

The used qudarotor’s mechanical and electrical parameters in simulation were taken

from [58]. It is worth to remind that the derived quadrotor’s control inputs relying

on (4.56) and the feedback-linearised model (4.77) will be applied to the nonlinear

quadrotors model.

Let now analyse the obtained simulation results. In Fig. 4.13, we show the position

snapshots of quadrotors during formation achieving at different time instants, where

it can be seen that the quadrotros are tracking the target while maintaining time-

varying formation with different shapes. Fig. 4.14 illustrates the quadrotors TVF

Tracking errors along the x-axis and y-axis x̃i = xi − x0 − hi, and the tracking errors

along the z-axis Z̃i = Zi − Zr
i , while Fig. 4.16 shows the angles tracking errors ξ̃i =

ξi− ξr
i , i ∈ [1, 6], where it can be seen that it tends to zero. In Fig. 4.15 and Fig. 4.17, the

distributed observer states and the dynamic coupling weights are shown respectively,

in which, it is obvious that the coupling weights converge to a finite values. Finally,
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Figure 4.13: Position snapshots of the quadrotors achieving TVF and tracking the target trajectory

(example-2).

we show in Fig. 4.18 and Fig. 4.19 the translational sub-system control inputs ui(t), i ∈

[1, 6] resulted from the TVF Tracking controller (4.56) and the obtained quadrotors

torques τφ,i, τθ,i, τψ,i, with the total thrust Fi, i = [1, .., 6] respectively.

It is important to notice that the TVF Tracking errors in Fig. 4.13 are bounded and

lie in a neighbourhood of the origin. This is due to the fact that the target’s control

input is viewed as an external disturbance. Hence, the controller (4.56) is designed

in sort to reduce its effect requiring the knowledge of the upper layer of the target’s

input magnitude e0. This is considered as shortcoming that needs to be dealt with.

Moreover, the chattering effect might be resulted due to the presence of discontinuous

term in (4.56), thus, a widely common method to reduce this effect is by replacing

the nonlinear function (4.58) with smooth approximated function [51]. However, the

MASs stability needs to be restudied.
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Figure 4.14: TVF tracking errors x̃i(m) = xi − x0 − hi, i ∈ [1, ..., 6], (Example-2).
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Figure 4.15: The distributed observer state vi(t), i ∈ [1, ..., 6], (Example-2).
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Figure 4.16: The quadrotors angles tracking errors ξ̃i(rad) = ξi − ξr
i , i ∈ [1, ..., 6], (Example-2).
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Figure 4.17: The adaptive coupling weight ci(t), i ∈ [1, ..., 6], (Example-2).
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Figure 4.18: The MASs virtual control inputs (4.56), ui(t), i ∈ [1, 6], (Example-2).

Example-3:

In this example, we consider the same MASs of Example-2 that consists of six (06)

quadrotors and a target (i.e., quadrotor) labelled by zero. We keep the same control

approach opted in the previous example. The aim in this example is to examine the

validity of the proposed TVF tracking controller (i.e., (4.56)) in the case of switching

communication graphs (i.e., scenario-1) and further to analyse the effect of the output

measurement delays and the control input delays on the MASs stability (i.e., scenario-

2).

As stated in Example-2, the qudrotor control strategy is divided into two cascaded

parts. In part-1, the TVF tracking control (4.56) is applied to the x, y states dynamics,

yielding the virtual control inputs ux,i, uy,i. These later signals will feed-forward the

Euler angles control blocs (part-2).

In scenario-1, we suppose that the output delay and the control input delay are

zero. In addition, we suppose that the interaction topology among the quadrotors

agents is time-varying, given in Fig. 4.20, which means that some communication

links among the agents may get broken and others get created over time, depending

on the inter-agents distance. The desired formation shape h(t) to be achieved
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Figure 4.19: The quadrotors control inputs, Fq,i, τφ,i, τθ,i, τψ,i, i ∈ [1, 6], (Example-2).

is the same as in Example-2. We keep the same control design parameters (i.e., K,

P, S, F, u0(t), α) as in Example-2. Refer to Fig. 4.20, note that interaction topology

among the quadrotors is time-varying and contains a directed spanning tree rooted

by agent 1, except during the time-interval [30, 40s], where the graph doesn’t satisfy

the assumption-4.17. We can notice in Fig. 4.20-d, that the agents 3,5 do not receive

information from the rest of the team.

In Fig. 4.21 and Fig. 4.22, we show the quadrotors tracking errors along the x-

axis and y-axis x̃i = xi − x0 − hi, and the Euler angles tracking errors ξ̃i = ξi − ξr
i ,
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Figure 4.20: The sequence of the interaction topologies among the MASs (Example-3).
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Figure 4.21: The quadrotors tracking errors x̃i(m) = xi − x0 − hi, i ∈ [1, ..., 6] in Example-3 (scenario-1).
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Figure 4.22: The Euler angles tracking errors ξ̃i(rad) = ξi − ξr
i , i ∈ [1, ..., 6] in Example-3 (scenario-1).

i ∈ [1, 6] respectively. It can be seen that the quadrotors are tracking correctly the

formation shape during the time-interval [0, 30s] despite the fact that the communi-

cation graph is time-varying and satisfying assumption-4.17. However, starting from

the time instant t = 30s, we observe that the x, y tracking errors magnitude of agents

3,5,6 are not in the neighbourhood of the origin, which means that the agreement on

the leader output y0(t) and the formation shape h(t) is not achieved over time. This

result promotes to the study and analysis of the MASs formation tracking in the case

of switching graphs.

In scenario-2, we keep a fixed communication graph (Fig. 4.6-b), and we suppose that

each agent i is subjected to an output measurement delay yj(t − tnet), j ∈ [1, N] of
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Figure 4.23: The quadrotors tracking errors x̃i(m) = xi − x0 − hi, i ∈ [1, ..., 6] in Example-3 (scenario-2).

tnet = 250ms during the time-interval[0, 30s], and suppose further that the quadrotors

are subjected to a control input delay ui(t − tc), i ∈ [1, N] of tc = 90ms during the

time-interval [30, 45s]. We keep the same control parameters as in Example-2.

In Fig. 4.23 and Fig. 4.24, we show the quadrotors tracking errors along the x-axis

and y-axis x̃i = xi − x0 − hi and the Euler angles tracking errors ξ̃i = ξi − ξr
i , i ∈ [1, 6]

respectively. It is noticeable that the MASs formation is degraded during the time-

interval [0, 30s], and starting from t = 30s, oscillations are observed due to the effect

of the input delay, which cause the MASs to get into the instability neighbourhood

over time.

Fig. 4.25 and Fig. 4.26 show the virtual control inputs ui,1, ui,2, i = [1, 6] and the

quadrotors control inputs respectively. We can observe the chattering phenomena in

ui,1, ui,2 which provokes the same result into the quadrotors control inputs τφ,i, τθ,i.

The obtained result promote to the study and analysis of the MASs tracking control

under the constraints of input and output delays.
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Figure 4.24: The Euler angles tracking errors ξ̃i(rad) = ξi − ξr
i , i ∈ [1, ..., 6] in Example-3 (scenario-2).

4.7 Conclusion

In this chapter, we addressed the fully distributed output TVF Tracking problem for

MASs featured by general linear dynamics, under time-invariant interaction topol-

ogy. The MASs is considered as Leader-Follower model. The study was conducted

from undirected interaction topology to directed topology, and from a leader whose

control input is zero u0(t) = 0 to a leader with u0(t) different from 0, bounded and

unknown to all the agents. The leader’s output y0(t) is required to be known to only

a subset of followers. In addition, the implementation of each agent local-controller

requires receiving the relative measurable output information (yi − yj) and the rela-

tive protocol observer-output (Cvi − Cvj) instead of the full states vectors (xi − xj),

(vi− vj). Furthermore, it can be seen that the proposed control design doesn’t require

exchanging the state of the local-observer w(t), which yields a significant reduction

of the network data-exchanging comparing with previous frameworks. According to

the leader’s input, two controllers were proposed, and accordingly two contributions

were provided in this chapter on the TVF tracking framework corresponding to the

case when the leader’s input is zero and the case when the it is nonzero, bounded

and unknown to all the followers agents,

• Firstly, a distributed algorithm is provided with clear steps to design the TVF

Tracking controller satisfying reduced network information exchange among the
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Figure 4.25: The quadrotors virtual control inputs (4.77), ui1(t), ui2(t), i ∈ [1, 6], in Example-3 (scenario-

2).

agents. In which the interaction topology among the agents is directed contain-

ing a spanning tree rooted by the leader whose control input is zero.

• Secondly, we extended the above controller to the case where the leader’s con-

trol input in nonzero, unknown and bounded. The controller design relies on

adaptive observer-type and disturbance rejection technique.

• Thirdly, we analysed the effect of the interaction topology structure on the

tracking-error convergence rate. The MASs stability is analysed based on Lya-

punov theory.

• Finally, simulation results were provided to demonstrate the effectiveness of the

proposed controllers on target enclosing scenario by a group of UAVs (Quadro-

tors).
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Figure 4.26: The quadrotors control inputs, Fq,i, τφ,i, τθ,i, i ∈ [1, 6], Example-3 (scenario-2).
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GENERAL CONCLUSION

T he main focus of this thesis was into developing and to designing cooperative

control laws for MVSs, in particular in the branch of UAV-UVGs coordination

control and the TVF tracking control of networked MASs. The objective is to improve

the overall system performance in terms of robustness, distributed property, forma-

tion flexibility, network data exchanging-rate, and further to relax some requirements

on the interaction topology among the networked MASs.

This thesis has mainly focuses on the following two aspects:

1. In the branch of UAV-UVGs formation and coordination control, the aim was

into designing robust nonlinear control laws for the UGVs to realize two behaviours,

namely, deployment and formation tracking. The UAV acts as leader whose role is to

define the formation shape and the formation trajectory. The UGVs-formation shape

was modelled using EFDs tool and its corresponding IPF. Thus, a novel deployment

control was proposed, in which the estimated IPF is used as potential function to

generate the UGVs reference trajectories. In the TVF tracking control, a combined ro-

bust velocity/torque controller based Backsteeping is proposed, for which the UGVs-

formation flexibility and robustness have been improved face modeling errors and

external disturbance. The key idea is to introduce a virtual control input through

a nonlinear feedback, and further by adding a switching term function of the up-

per bound of the disturbance to guarantee the mobile robots velocity tracking. The

simulation results revealed good performance in terms smooth convergence towards
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the desired TVF shape, accurate tracking, and further in terms of robustness against

unknown disturbance. An experimental validation is further provided using three

mobile robots type festo’s Robotino(R).

2. In the branch of TVF tracking of networked MASs, the aim was into designing fully

distributed cooperative control laws that provide several contributions such as, (i) re-

laxing the constraints on the interaction topology among the agents, where it is not re-

quired to be strongly connected, instead it needs just to have a directed spanning tree,

which is a mild requirement in real applications, (ii) the proposed control laws are

valid for the case of switching communication graphs as long as the assumption-4.17

still satisfied, (iii) the implementation of each agent local-controller, requires receiv-

ing the relative neighbouring outputs measurement and the relative protocol-observer

outputs rather then the full relative states vectors, and doesn’t require receiving the

neighbouring local-observer state as in many frameworks, which yields a significant

reduction of the network information exchanging. The opted MASs control structure

is Leader-Followers. The proposed TVF tracking protocols are valid for a leader whose

control input is zero and extended to the case of real leader whose control input is

bounded and unknown. The MASs control design relies on adaptive observer-type

and on disturbance rejection techniques to deal with the nonzero leader control in-

put. The analysis in this chapter was conducted in order to derive a description as

global as possible of the errors closed loop dynamics stability induced by the pro-

posed protocols by using the Lyapunov theory. The analysis of the effect of the MASs

communication-graph on the convergence rate is provided. Finally, a target enclosing

and trajectory tracking by a group of quadrotors is illustrated as an application of the

proposed MASs protocols.

However, there remain potentially new findings in the area of cooperative control

of networked MASs that can still be explored. These can be summarized as follows:

• Extend the current study to the case of switching (i.e., time-varying) directed

communication graph that does not satisfy in permanence the assumption-4.17

(i.e., the existence of a directed spanning tree). As such, the MASs commu-

nication graph can be weakly connected during certain time-intervals, and the
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designed MASs protocol would be more suitable and more applicable in real

conditions.

• Pointing out attention most to the study of heterogeneous MASs rather then the

homogeneous MASs, where the heterogeneousness may lie in the agents/vehicles

dynamics or in its operating environment (UAV, UGV, UWV), which will yield

an important functional complementarity in real applications. However the con-

trol design becomes difficult and more challenging, in particular when consid-

ering input/output delays constraints.

• Extend the current study to design distributed MASs controllers under the con-

straints of external unknown disturbance, constant or time-varying control input

delay and output measurements delay. Thus, because we believe that their effect

may have a huge impact on the system stability and the MASs performance.

• The Artificial Intelligence (AI) becomes every where in our life. We believe

that combining the new findings of this research-area into the area of MASs

cooperative control may provide potentials solutions to handle some issues and

constraints such as, input/output delays. As an example, equipping each agent

with the AI-ability (by using deep reinforcement learning method) may promote

to design an intelligent TVF tracking protocols for a MASs.

• Implementing the results in this thesis to real experiments in laboratory is im-

portant. During this thesis researches, a laboratory-made MVSs platform, con-

sisting of a quadrotor and two balancing/unicycle mobile robots was realized

based on Arduino board units, where the communication task is carried out us-

ing ESP8266 WiFi-devices. As such, it is possible to measure the network data

exchanging-rate, the input and output delays with high accuracy, as we have

access to low-level control loops.
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