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:صخلم

.لاودلاليدعتةينقتواريتلوفةينقت:براقملاريغلالماكتلاليوحتىلعايئدبمنادمتعتريدقتلاوسايقللنيتقيرطمدقن،ةحورطالاهذهيف
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جئاتنىلعلوصحلاوشيوشتلانمةيلاخلاتالاحلالمشلةاونلاةريغتملالاودلانمةديدجةلئاعءانبلالخنميلضافتلااريتلوفسايقميف

ةيداعةيلضافتتالداعمريدقتوسايقىلعاهرابتخاويلضافتلاطرشلافيفختوةيئاوشعلاةلدعملالاودلانمادًيدجاعًوناضًئاحرتقن.ةدعاو

مدختسن،ارًيخٔا.ةئملاب5هردقىصقٔأاطخىلعانلصحتثيح،ةشوشملاتالاحلاوشيوشتلانمةيلاخلاتالاحلانملكيفةطيسبو

ةدعاقمادختسابمثايًليلحتدلوملامدلاطغضبًالؤالسيكدنيوةقيرطوينايرشلامدلاقفدتسايقلريدقتلاودلاليدعتىلعةمئاقلاةقيرطلا

.تانايبةيساسحاهلالخنمجتنتسنيتلاتانايب

٠ةلدعملاةلادلاةقيرط,يبراقتريغسايقم,اريتلوفسايقم:ةلادتاملك

Résumé:

Dans ce travail, nous présentons deux méthodes non-asymptotiques d’estimation basées

sur les transformations intégrales: les approches Volterra et les fonctions modulatrices.

Nous expliquons la conception et reproduisons à la fois l’observateur Volterra robuste

d’un signal sinusoïdal biaisé et le différenciateur Volterra. Nous construisons une nouvelle

famille de fonctions de noyaux bivariées et l’adaptons au différenciateur Volterra, afin

d’étendre l’approche au scénario avec bruit et d’obtenir des résultats prometteurs. Nous

proposons également un nouveau type de fonctions pseudo-modulatrices qui prennent des

valeurs aléatoires, éliminant ainsi la condition de dérivabilité, et nous les testons sur une

simple estimation d’un paramètre d’une ODE. Nous obtenons une erreur maximale de 5%

indépendamment de la présence de bruits. . Enfin, à titre d’application des techniques

étudiées, nous utilisons les fonctions modulatrice pour estimer le débit sanguin artériel et

le paramètre Windkessel à deux éléments, d’abord en se basant sur la pression artérielle

obtenue analytiquement, puis celle issue d’une base de données, ce qui permet de souligner

la grande sensibilité de la méthode aux données utilisées.

Mots clés: Estimateurs non-asymptotiques, Observateur de Volterra, Estimation via les

fonctions modulatrices.



Abstract:

In this work, we present two non-asymptotic integration transform based estimation meth-

ods: the Volterra and modulating functions approaches. We explain the design and re-

produce both of the robust Volterra observer of a biased sinusoidal signal and Volterra

differentiator. We contribute to the Volterra differentiator by constructing a novel bi-

variate kernel functions family in order to extend the approach to the noisy scenario and

obtain promising results. We also propose a novel type of pseudo-modulating functions

that are randomized, relax the differentiability condition and test them on a simple ODE

parameter estimation in both noise-free and noisy cases where we obtain a maximum error

of 5%. At last, we use the modulating functions based method to estimate the arterial

blood flow and Windkessel 2-Element parameter first with analytically generated blood

pressure and then using a database and conclude by underlying the data-sensitivity of the

method.

Key words: Non-asymptotic estimators, Volterra observers, Modulating functions based

method.
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General introduction

Motivation
Accurate knowlegde of the parameters of a system’s model and its states is crucial to solve

many control theory problems. However, in practice it is often difficult to measure these

parameters and states. This can be due to the inexistence of sensors, the lack of their

liability or simply because such a direct observation would cost too much. Fortunately,

there exists methods to get these information indirectly via mathematical estimation tech-

niques and state observers.

By definition, a state observer is meant to be a replica of the system with one or two

additional terms that are precisely chosen in order to make the state estimation dynam-

ics converge. The first observer was introduced by Kalman and Bucy [30],[31], and the

concept was generalized by Luenberger for deterministic linear systems. [40] From this

point, observers and estimators were widely developed and studied. The concept was

generalized on different class of non-linear systems and many applications have seen the

light ever since. Today, observers and estimators are considered numerical sensors and

are used in different fields.

The first estimators were designed in order to give asymptotical convergence only. This

means that theoretically, it would take an infinite amount of time for the difference be-

tween the real parameter and the estimated one to vanish, which is sufficient for many

applications. However, the evolution of technology has shown the limits of such an asymp-

totical convergence in several applications, where finite time convergence is needed. [49],

[66], [13]

In this thesis, we will introduce in details the concept of finite time convergence, adapt it

11



12 General introduction

to estimation theory and explore examples of finite time observers and estimators. Our

main focus will be the Volterra approach and the method based on modulating functions.

Aims and Objectives
The first goal of this thesis is to have a better understanding of finite time convergence in

general and finite time estimation techniques in particular. We will go through the details

of such estimators by explaining the theory behind their concepts and giving clear steps

for their design. We will also highlight their drawbacks and advantages. Our main focus,

however, will be finite time estimators that are induced by integral transforms such as the

Volterra observer and modulating function estimation methods. While such methods are

often praised for their fast convergence and robustness, we will see that such qualifications

highly depend on tuning parameters that can sometimes be difficult to find.

Description of the work
In chapter 2, we will begin by introducing the concept of a finite time observer. We will do

so, by recalling the basic Lyapunov definitions of asymptotic convergence and by defining

the finite time convergence in a specific framework. We will compare both concepts in

order to highlight the difference between them. We will, then, have a quick glance at

existing finite time observers, their advantages and their drawbacks before focusing on

the Volterra and modulating function based methods.

In chapter 3, we will present an observer that combines both second order sliding mode

and Volterra integral approach [51]. It is the Volterra observer that estimates the am-

plitude, frequency and phase of a given biased sinusoidal signal. This first estimation

method will enable us to present the main Volterra definitions and explain the concept

behind this technique. We will also highlight the steps for designing such cascading ob-

servers and provide extensive numerical examples.

Then, and once acquainted with the Volterra concept, we will present the Volterra dif-

ferentiator in chapter 4. This differentiator was first introduced in [35] around a specific

kernel function. Our main contribution will be the generalization of this idea for any ker-
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nel function that satisfies specific conditions. Taking these conditions into consideration,

we will construct our own kernel function family and develop the differentiator around

it. We will then make a comparison between both methods and highlight their main

characteristics.

In chapter 5, we will introduce another similar approach for estimation which is based

on monovariate modulating functions. We will first define a modulating function, present

the existing types of modulating functions and explain the estimation approach. Once

familiar with the technique, we propose to extend the definition of the modulating func-

tion by trying out a new type: randomized pseudo-modulating functions. This is to have a

better understanding of the modulating functions effect and importance in an estimation

problem. We will provide numerical simulations to illustrate this.

At last, and in order to illustrate the practical effectiveness of such methods, we propose

to tackle a real life estimation problem, in chapter 6: the estimation of the arterial blood

flow using the modulating function technique. We will briefly explain how the the cardiac

cycle functions and how to model it using the Windkessel electric analogy. This simple,

but effective example, will enable us to highlight the parameters’ tuning issues that come

with the modulating function estimation based method.



Chapter 1

Finite time convergence
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1.1 Introduction
This chapter recalls the several definitions of stability in the sens of Lyapunov and in-

troduces a definition of the finite time stability in a framework that tackles the non-

uniqueness of the solutions problem as it was done in [8]. Our goal is to give a brief but

clear understanding of the difference between standard asymptotical convergence and the

non-asymptotical one, with the mathematical and practical implications of these two con-

cepts. We will then give examples of finite time observers from the literature, highlighting

their advantages, drawbacks and challenges.

1.2 Lyapunov stability
In [41], the concept of stability is first introduced as a motion problem. Indeed, the

author considers a nominal motion x˚(t, t0, x0) of a dynamic system and studies wether

it is possible to choose initial values x0 and t0 in order for this motion to stay bounded

by limits given in advance. Therefore, the author studies small perturbations around the

initial conditions. If they imply small deviations of perturbed motions from x˚(t, t0, x0)

then the nominal motions are called stable [55].

Let us consider the following dynamic system:

ẋ(t) = f(x, t), t ą 0, (1.1)

where x P Ď RN . and f : ˆ R+ Ñ RN is continuous on an open neighborhood D of

the origin and is locally Lipschitz on D ´ t0u, f(0, t) = 0 @t. Thus, @x0 P D ´ t0u, the

solution of (1.1) is unique and the origin is an equilibrium point.

Definition 1 (L-stability): [32] The origin of system (1.1) is said to be L-stable or

Lyapunov stable if: @ε P R+, @t0 P R+, Dδ = δ(ε, t0) P R+ such that:

}x (t0)} ă δ ñ }x(t)} ă ε, @t ě t0 ě 0. (1.2)
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If the origin does not satisfy this condition then it is said unstable.

Definition 2 (Uniform L-stability): [32] The origin of system (1.1) is said to be

uniformly stable if : @ε ą 0, Dδ = δ(ε) ą 0, independant of t0 such that (1.2) is satisfied.

Definition 3 (A-stability): [32] The origin of system (1.1) is said to be locally A-stable

or locally asymptotically stable if it is L-stable and asymptotically attractive and there is

a positive constant c = c (t0) such that x(t) Ñ 0 as t Ñ 8, @}x(t0)} ă c.

Definition 4 (Uniform A-stability): [32] The origin of system (1.1) is said to be

uniformly A-stable or uniformly asymptotically stable if it is uniformly stable and there

is a positive constant c, independent of t0, such that: @}x(t0)} ă c, x(t) Ñ 0 as t Ñ 8,

uniformly in t0, for each η ą 0, there is T = T (η) ą 0 such that:

}x(t)} ă η, @t ě t0 + T (η), @ }x (t0)} ă c (1.3)

Definition 5 (E-stability): [32] [14] The origin of system (1.1) is said to be exponen-

tially stable if: Dc, k and such that:

}x(t)} ď k }x (t0)} e
´λ(t´t0), @ }x (t0)} ă c (1.4)

.

In the previous definitions, for simplicity, we have only tackled the stability of the origin

of the dynamic system (1.1) but these definitions remain correct for any stability problem

for a non-trivial solution x˚(t, t˚, x˚
0) and can be generalized by using the variable change

y = x ´ x˚.

For most dynamic system, control and observation problems, E-stability of an equilibrium

is difficult to prove and we consider A-stability as a sufficient condition.
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1.3 Finite time stability
The first available technique for feedback stabilization and observation lead to closed loop

systems with Lipschitzien dynamics that are, at best, asymptotically stable. This means

that the solutions with initial conditions in the origin’s neighborhood do not necessarily

converge exactly to the origin in infinite time. Indeed, finite time convergence cannot be

established in presence of a Lipschitz condition, thus compromising the assumption on

the uniqueness of the solution. In [8], this problem is well addressed, where a definition

of finite time stability of such dynamic systems that are continuous with non-Lipschitzian

right hand sides is proposed.

Definition 6 (Finite time stability) [9] The origin of 1.1 is said to be a finite time

equilibrium if there exists an open neighborhood N Ď D of the origin and a function

T : N Ñ [0,+8[ called the settling time, such that:

1. limx0Ñ0 T (x0) = 0,

2. @x0 P N ´t0u, the solution x(t, to, x0) is uniquely defined on [0, T (x0)[, x(t, to, x0) ‰

0, t P [0, T (x0)[ and limtÑT (x0) x(t, to, x0) = 0,

3. @ε ą 0 such that B(ε) P N , Dδ ą 0 such that if x0 P B(δ) ´ t0u, then x(t, to, x0) P

B(ε), t P [0, T (x0)[.

Note that finite time stability is sometimes referred to as non-asymptotical stability [9].

Definition 7 (Fixed time stability) [54] The origin of system (1.1) is said to be a

fixed time equilibrium if:

1. it is finite time stable,

2. DM ą 0 such that @x0 P N ´ t0u we have T (x0) ă M .

If N = R, then the origin is said globally finite time stable (resp. fixed time stable).
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Note that in this section our goal is only to recall and explain these definitions, ex-

tensive methods on how to prove this type of stability for dynamic systems can be found

in [9] and [8].

1.4 Examples of finite time observers

1.4.1 Sliding mode observer

The concept of sliding mode was first introduced for control and stabilization of dynamic

systems. The idea is to drive the trajectory of the system into a desired curve or a line

in space that is called the sliding surface and let it remain thereafter. The advantages of

sliding mode control include robustness, finite time convergence and reduced-order com-

pensated dynamics [60]. In [15], the authors present a tutorial on how to extend this

concept to solve observation problems.

We will here briefly introduce the main ideas behind the design of a sliding mode observer

on a simple linear system, further details can be found in [15] and [60].

Let us consider the following linear dynamic time invariant system:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t), t ą 0.

(1.5)

The observer proposed is similar to the Luenberger one [40],[39] but the linear innovative

term is replaced by a sign function that is discontinuous by definition:

˙̂x(t) = Ax̂(t) +Bu(t) + Lsign(y(t) ´ Cx̂(t)), (1.6)

The sliding surface here is y(t) ´ Cx̂(t) = 0, and the gain matrix L here is the degree of

freedom. It must be chosen such that system (1.5) remains on that manifold.

The sliding mode observer is designed step by step by dividing the system into many sub-

systems. In this case, by using linear transformation of state variables and then chosing

the parameters of the matrix L by applying the method of equivalent control [15].
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This algorithm with the same idea of applying the equivalent control method is also gen-

eralized for nonlinear systems. The difference is that the observer will depend on the

control in the case of nonlinear systems [26].

Chattering phenomenon

The main problem that occurs with this observer is the chattering phenomenon. It is

a zigzag motion along the manifold caused by the high frequency motion on the sliding

surface. Chattering comes inherently with the discontinuity of the sign function and

especially when the frequency of the switching mode is high. One way of dealing with

the chattering problem is to introduce the equivalent innovative term by using a low pass

filter that is designed such that it allows for the slow component of motion to pass but it

eliminates the high frequency component caused by the presence of nonidealities [63].

But this filter cannot found for every system. Another way to deal with this problem is to

smoothen the sign function and replace it by a sigmoid. [61] [65] However this may alter

the finite time convergence property of this observer in presence of disturbances [60].

1.4.2 Super-Twisting observer

Directly inspired by the discountinous and finite time converging sliding mode observer,

the authors in [18] designed an observer for a special class of nonlinear systems with un-

known inputs and called it the Super Twisting observer.

Let us here discuss the SISO case. We consider the SISO nonlinear system in triangular

observable form:

ẋ1 = x2,

ẋ2 = x3,

...

ẋN´1 = xN ,

ẋN = α(x) + β(x)ω,

y = x1,

(1.7)
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where the state vector is x =

[
x1 x2 ¨ ¨ ¨ xN

]J

P RN , y is the output vector, ω P R

is an unknown input α(x) and β(x) are bounded smooth scalar functions. Dependencies

on the time variable t are omitted for simplicity.

Assumptions:

1. @i P t1, ..., Nu, Ddi P R such that |xi(t)| ă di @t ą 0,

2. |ω(t)| ă K1, |ω̇(t)| ă K 1
1,

3. |α(t)| ă K2, |α̇(t)| ă K 1
2,

4. |α(t)| ă K3, |α̇(t)| ă K 1
3,

where Kj and K 1
j are known positive scalars.

The observer proposed for this system is the following:



˙̂x1 = x̃2 + λ1 |e1|
1/2 sign (e1) ,

˙̃x2 = α1 sign (e1) ,

˙̂x2 = E1

[
x̃3 + λ2 |e2|

1/2 sign (e2)
]
,

˙̃x3 = E1α2 sign (e2) ,

˙̂x3 = E2

[
x̃4 + λ3 |e3|

1/2 sign (e3)
]
,

...

˙̃xn´1 = En´3αn´2 sign (en´2) ,

˙̂xn´1 = En´2

[
x̃n + λn´1 |en´1|

1/2 sign (en´1)
]
,

˙̃xn = En´2αn´1 sign (en´1) ,

˙̂xn = En´1

[
θ̃ + λn |en|

1/2 sign (en)
]
,

˙̂
θ = En´1αn sign (en) ,

(1.8)

where ei = x̃i´x̂i @i = t1, ¨ ¨ ¨ Nu, x̃1 = x1, the observer’s output is the vector [x̃1, ¨ ¨ ¨ , x̃N , θ̃],

αi and λi are the observer’s gains.

Ei are scalar functions such that @i = t1, ¨ ¨ ¨ Nu:

Ei = 1 if |ej| ď ε, @j ď i, otherwise Ei = 0. (1.9)
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Which means that Ei are activation terms that only activate when the ith error dynamic

converges. This leads to a step by step algorithm to design this observer (N ´ 1 steps in

total). At each step, the observers gains are carefully chosen, obeing to certain inequali-

ties in order to achieve the finite time convergence.

At last the unknown input ω(t) can be easily approximated by inverting β(x) in (1.7).

More details on the behavior of the dynamics error, the conditions on the gains and the

generalization to the MIMO case can be found in [18]. The first drawback of this observer

is that it is restrained to the class of systems (1.7). This obsever is designed in such a

way that the equivalent outputs are injected in a smooth and continuous way without

using a low pass filter like it is done for a classical sliding mode observer. The authors

of [18] claim that this observer is less exposed to the chattering phenomenon. However,

as it is stated in [62], the structure of the super twisting algorithm implies two sources

for the chattering phenomenon: one from the discontinuous function and another from

the non-Lipschitzian function with infinite derivative at the origin. A comparative study

and behavior analysis between the standard sliding mode observer and the supertwisting

algorithm concludes that the chattering’s amplitude for the supertwisting observer is ac-

tually higher than in the conventional sliding mode observer when the system is exposed

to a disturbance.

1.4.3 Global finite-time high-gain observer

The observers seen previously all rely on discontinuous functions. The goal now is to

obtain a smooth and continuous observer that converges in finite time. One observer that

can satisfy these conditions is the High-gain observer (see [23]). A first approach was

proposed in [58], where the authors proved the existence of a semi-global and finite time

high gain observer for non linear systems with a single output that are uniformly observ-

able and globally Lipschitzian. In [42], the authors extended this observer and obtained

a global result. In this section, we will only discuss the results, all the proofs and theory

behind this observer can be found in [42], [45] and [24].

Let us consider the following system:
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ẋ1 = x2 +
m
ÿ

j=1

g1,j(x1)uj,

ẋ2 = x3 +
m
ÿ

j=1

g2,j(x1, x2)uj,

...

ẋN´1 = xN +
m
ÿ

j=1

gN´1,j(x1, . . . , xN´1)uj,

ẋN = ϕ(x) +
m
ÿ

j=1

gN,j(x)uj,

y = x1 = Cx,

(1.10)

where the state vector is x =

[
x1 x2 ¨ ¨ ¨ xN

]J

P Ď RN , y P R the measured

output vector, u =

[
u1 ¨ ¨ ¨ um

]
P Rm, C =

[
1 0 ¨ ¨ ¨ 0

]
, φ and gi,j i =

t1, ¨ ¨ ¨ Nu j == t1, ¨ ¨ ¨ mu are continuous globally Lipschitz (l-Lipschitz) functions with

null initial conditions, i.e: φ(0) = 0, gi,j = 0 and we assume Du0 P R such that: }u}8 ď u0.

Theorem 1: [42] Considering the system (1.10): D0 ă θ˚ ă 8 and Dε ą 0 such that:

@θ ą θ˚ and @α P]1 ´ ε, 1[ the system (1.10) admits the following observer:



˙̂x1 = x̂2 + k1 (re1uα1 + ρe1) +
řm

j=1 g1,j(x̂1)uj,

˙̂x2 = x̂3 + k2 (re1uα2 + ρe1) +
řm

j=1 g2,j(x̂1, x̂2)uj,

...

˙̂xn = kn (re1u
αn + ρe1) + ϕ(x̂) +

řm
j=1 gn,j(x̂)uj,

(1.11)

where e1 = x1 ´ x̂1, ρ = 1
2
(n2θ2/3S1 + 1), and S1 = max1ďi,jďn |S8(1)i,j| . |S

´1
8 (1)j,1|,

the gains K = [k1, . . . , kn]
J = S´1

8 (θ)CJ and the powers alphai are given by: αi =

iα ´ (i ´ 1), i = 1, . . . , n, α P
]
1 ´ 1

n
, 1
[
.

This observer was also extended for a class of nonlinear systems with non-Lipschitz con-

ditions by introducing a new gain update law [36].
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1.4.4 Integral based estimation methods

Integral based estimation methods are another kind of estimators that have been widely

investigated in the literature since the fifties, when the concept was first introduced in

[59]. These methods transform the observation problems from a space to another, using

specific functions that can be referred to as kernels, method function, modulating func-

tions... etc. Since these methods generally imply integration, they are known for their

robustness in presence of disturbances as the integration dampens the noise. They are

also famous for giving fast and finite convergence.

In the next chapters, we will address these methods in details.

1.5 Conclusion
In general, finite fime convergence is prefered to the asymptotical one. However, the

non-Lipschtizien condition of the nonasymptotic convergence highly restrains its use. A

rigorous framework to tackle this kind of convergence was set in [8]. This has lead to an

abundont work in the litterature to solve observation and estimation problems in a finite

time. The most famous tool to do so is the sliding mode observer (see [63] and[15]) but the

discountinuity of its output injections causes the chattering phenomenon [61]. Generaliza-

tion of the sliding mode observer were made on different classes of systems, for example:

the supertwisting observer that tackles a class of nonlinear system with unknown inputs

[18]. The main problem with this last observer is that it amplifies the chattering phe-

nomenon when the system is exposed to a disturbance [62]. The high gain observer, which

is originally asymptotic, has also been improved to give a non-asymptotical convergences

for certain class of systems (see [45], [42], [24], [58] and [36]). Another tool is the integral

based estimation method that rely on kernels to transform the observation from a space

to another. This precise type of methods will be widely investigated in the next chapters.



Chapter 2

Volterra estimation of a biased

sinusoidal signal
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2.1 Introduction
In this chapter, we will introduce the general Volterra approach through one particular

problem: the estimation of the amplitude, frequency and phase (AFP) of a biased si-

nusoidal signal. This problem is well known and there exists an abundont work in the

literature to solve it. However, most of the estimation or identification tools used are

often only asymptotically stable, which is not enough for certain applications. We will

first recall some prerequisite definitions needed, define and explain the Volterra approach

in general. We will then focus on the AFP estimation problem, develop and explain the

steps of the estimation method proposed in [51]. Finally, we will present numerical sim-

ulations with a sensitive analysis of this observer and discuss the results.

2.2 Definitions and prerequisites
Definition 1 (Hilbert Space): [22] A Hilbert Space is an inner product space that

can be real or complex, and that is complete with respect to the inner product’s norm.

To illustrate this definition one can consider the Euclidian space that is the most famous

Hilbert Space. The Euclidian space is a three dimention real space R3 and its inner prod-

uct is the dot product.

Definition 2 (Hilbert-Schmidt kernel): [22] A Hilbert-Schmidt (HS) is a function

k : Γ ˆ Γ Ñ C such that:
ż

Ω

ż

Ω

|k(x, y)|2 dx dy ă 8 (2.1)

where Γ is an opend and connected set in a the Rn Euclidean space.

Definition 4 (Leibniz Integral Rule): [57] Let us consider the continuous and con-

tinuously differentiable function f(x, t). a(x) and b(x) are differentiable functions of x,
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we have:

d

dx

(
ż b(x)

a(x)

f(x, t) dt

)
= f

(
x, b(x)

)
¨
d

dx
b(x)´f

(
x, a(x)

)
¨
d

dx
a(x)+

ż b(x)

a(x)

B

Bx
f(x, t) dt, (2.2)

where a(x) ă 8/, b(x) ă 8. If a(x) and b(x) are constant functions, this formula becomes:

d
dx

ż b

a

f(x, t)dt =
ż b

a

B

Bx
f(x, t)dt (2.3)

Definition 5 (Volterra Integral): [27] Let u(t) P R, @t ą 0, be an Nth-order differ-

entiable signal. Given a Hilbert-Schmidt (HS) kernel function K(., .), in two variables.

The Volterra integral operator induced by the kernel function is

[VKu](t) ,

t
ż

0

K(t, τ)u(τ)dτ, t P R+. (2.4)

Lemma 1: [52] For a given i P N, consider a signal u(.) P L2(R) (the Hilbert space of

locally square integrable functions) that admits its derivative and a HS kernel function

K(., .), admitting the ith derivative with respect to the second argument. Then, it holds

that:

[VKu
(i)](t) =

i´1
ÿ

j=0

(´1)i´j´1u(j)(t)K(i´j´1)(t, t) +
i´1
ÿ

j=0

(´1)i´ju(j)(0)K(i´j´1)(t, 0)

+ (´1)i[VK(i)u](t).

(2.5)

Definition 6 (Ith order non-asymmptotic kernel): [52] A HS kernelK(., .) is called

an ith order non-asymptotic kernel function if it is at least (i ´ 1)th order differentiable

with respect to the second argument, and it verifies the condition:

K(j)(t, 0) = 0, @j P t0, 1, ..., i ´ 1u. (2.6)

Lemma 2 [52] For a given i P N, consider a signal u(.) P L2(R) that admits its derivative

and a ith order non-asymptotic HS kernel function K(., .), admitting the ith derivative
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with respect to the second argument. Then, it holds that:

[VKu
(i)](t) =

i´1
ÿ

j=0

(´1)i´j´1u(j)(t)K(i´j´1)(t, t) + (´1)i[VK(i)u](t). (2.7)

2.3 The AFP Volterra observer

2.3.1 Position of the problem

Let us now consider the following biased sinusoidal signal:

y(t) = A0 + A˚ sin(v(t)), v̇(t) = ω˚, v0 = φ, t ě 0, (2.8)

where A0 P R+ is the unknown bias, A˚ P R+ is the unknown amplitude, ω˚ is the angular

frequency and φ is the initial phase shift.

The objective is to estimate the amplitude, frequency and phase of this signal with only

measurements y(t).

General construction of the Volterra observer

System Volterra Estimator
u(t) y(t)

d(t)

y(t) + d(t) ŷ(t)

Figure 2.1: Block diagram of the Volterra observer

The observer works in an open loop and doesn’t require feedback. Therefore, the system

can be considered as a black box and the input are unknown. The only data needed is

the output y(t).
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2.3.2 Frequency observer

Proposition: The frequency squared Ω(t) = ω2(t) can be observed using the following

adaptation law:

Ω̂(t) =

$

’

&

’

%

γ2(t)
´1
(
ηΩ(t) + L1

a

|RΩ(t)| sign (RΩ(t)) ´ Ω̂(t)γ̇2(t) + γ̇1(t)
)
, if γ2(t) ě δε

0, otherwise

η̇Ω(t) = L2 sign (RΩ(t)) , ηΩ(0) = 0,

RΩ(t) = γ1(t) ´ γ2(t)Ω̂(t).

(2.9)

Where Ω̂(0) ą 0 is chosen aribitrarly. The strictly postive gains L1 and L2 are set by the

designer, and δε is a strictly postive value that depends on the activation time set by the

designer (see [51]) and the signals γ1(t) and γ2(t) are defined next.

Proof: It is noticeable that (2.8) is generated by a linear dynamical system modeled by

the following ODE:

y(3)(t) = ´Ω˚y(1)(t), where Ω˚ = ω˚2, t ě 0. (2.10)

Now, we introduce the Volterra integral operator. The linear property of this operator

gives: [
VKy

(3)
]
(t) = ´Ω˚

[
VKy

(1)
]
(t). (2.11)

Considering (2.7), for i = 1 we have:

[
VKy

(1)
]
(t) = y(t)K(t, t) ´ [VK(1)y] (t). (2.12)

Let us now replace K with one of its derivatives with respect to the second argument

K(j), and y by its ith derivative. (2.12) implies that:

[
VK(j)y(i+1)

]
(t) = y(i)(t)K(j)(t, t) ´

[
VK(j+1)y(i)

]
(t). (2.13)

Using this last result on both sides of (2.11) and after some algebra, we obtain:
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[VK(3)y] (t) ´ K(2)(t, t)y(t) +K(1)(t, t)y(1)(t) ´ K(t, t)y(2)(t)

+Ω˚ ([VK(1)y] (t) ´ K(t, t)y(t)) = 0.
(2.14)

Let us remmember now that the kernel function K is a degree of freedom that we chose

in this method, which means that this function and its derivatives can be computed. Ω˚

is a parameter to be estimated and we suppose to have the measurement y(t). Only the

Volterra transformed signals and the signal’s derivatives are unknown. Therefore, the idea

is to estimate these signals. But first, we need to introduce the ith order non-asymptotical

kernel function that we will use.

The authors in [51] proposed the following exponential bivariate kernel functions family:

Fh(t, τ) = e´ωh(t´τ)(1 ´ e´ω̄τ )N , where ωh ą 0 ω̄ ą 0, N P N. (2.15)

In this particular case, N = 3 and h = t1, 2, 3u.

Using this kernel function family, equation (2.14) becomes:

[
V
F

(3)
h
y
]
(t) ´ F

(2)
h (t, t)y(t) + F

(1)
h (t, t)y(1)(t) ´ Fh(t, t)y

(2)(t)

+Ω˚

([
V
F

(1)
h
y
]
(t) ´ Fh(t, t)y(t)

)
= 0, h = 1, 2, 3.

(2.16)

The authors then proposed the introduction of the following auxiliary signals in order to

simplify the writings:

κa,h(t) ,
[
V
F

(3)
h
y
]
(t) ´ F

(2)
h (t, t)y(t),

κb,h(t) , F
(1)
h (t, t), κc,h(t) , ´Fh(t, t),

κd,h(t) ,
[
V
F

(1)
h
y
]
(t) ´ Fh(t, t)y(t), @h = 1, 2, 3.

(2.17)

Replacing the signals (2.17) in (2.16) we obtain a system of 3 equations. Exploiting the

fact that κc,1(t) = κc,2(t) = κc,3(t) and with some algebra we will obtain the following:

κa,1 (κb,3 ´ κb,2) + κa,2 (κb,1 ´ κb,3) + κa,3 (κb,2 ´ κb,1)

+Ω˚ (κd,1 (κb,3 ´ κb,2) + κd,2 (κb,1 ´ κb,3) + κd,3 (κb,2 ´ κb,1)) = 0.
(2.18)
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This leads to the following system:

κ1(t) = ´Ω˚κ2(t), (2.19)

where

κ1(t) =

[
κa,1 κa,2 κa,3

]
F

(1)
3 (t, t) ´ F

(1)
2 (t, t)

F
(1)
1 (t, t) ´ F

(1)
3 (t, t)

F
(1)
2 (t, t) ´ F

(1)
1 (t, t)

 , κ2(t) =
[
κd,1 κd,2 κd,3

]
F

(1)
3 (t, t) ´ F

(1)
2 (t, t)

F
(1)
1 (t, t) ´ F

(1)
3 (t, t)

F
(1)
2 (t, t) ´ F

(1)
1 (t, t)

 .
(2.20)

Let us consider the following ξh(t) , [V
F

(i)
h
y](t) where i = t1, 2, 3u. Applying the Leibniz

integral rule (2.3) to the definition of the Volterra integral (2.4) we obtain:

ξ̇h(t) = F
(i)
h y(t) +

t
ż

0

B

Bt
Fh(t, τ)y(τ)dτ,

= F
(i)
h y(t) ´ ω̄

t
ż

0

Fh(t, τ)y(τ)dτ,

= F
(i)
h y(t) ´ ω̄ξh(t), t ě 0.

(2.21)

Considering the state vector ξ(t), we get the following time varying dynamic system:

ξ̇(t) = Gξ(t) + E(t)y(t), t ě 0,

ξ(0) = 0.

(2.22)

where:
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ξ(t)=



[V
F

(1)
1
y](t)

[V
F

(3)
1
y](t)

[V
F

(1)
2
y](t)

[V
F

(3)
2
y](t)

[V
F

(1)
3
y](t)

[V
F

(3)
3
y](t)


, G=



´ω1 0 0 0 0 0

0 ´ω1 0 0 0 0

0 0 ´ω2 0 0 0

0 0 0 ´ω2 0 0

0 0 0 0 ´ω3 0

0 0 0 0 0 ´ω3


, E(t)=



F
(1)
1 (t, t)

F
(3)
1 (t, t)

F
(1)
2 (t, t)

F
(3)
2 (t, t)

F
(1)
3 (t, t)

F
(3)
3 (t, t)


.

(2.23)

Since G is a Hurwitz matrix, the origin of this LTVI system converges.

Thus, κa,h, κd,h can be deduced

κa,h(t) = ξ2h(t) ´ F
(2)
h (t, t)y(t),

κd,h(t) = ξ2h´1(t) ´ Fh(t, t)y(t), t ě 0.

(2.24)

where h = t1, 2, 3u.

Now that κ1(t) and κ2(t) can be estimated in (2.19), we can construct a second order

sliding mode observer to estimate the frequency. To do so, we tranform the absolute

value of (2.19) using another kernel function Kg(t, τ) = e´g(t´τ) where g ą 0. We obtain:

Ω˚
[
VKg |κ2(t)|

]
(t) =

[
VKg |κ1(t)|

]
(t) (2.25)

Using the same reasoning as in (2.21), the authors define γi(t) ,
[
VKg |κi(t)|

]
(t), i = 1, 2,

and have:
γ̇1(t) = |κ1(t)| ´ gγ1(t), γ1(0) = 0,

γ̇2(t) = |κ2(t)| ´ gγ2(t), γ2(0) = 0.
(2.26)

At last, we obtain the observer in (2.26).
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2.3.3 Amplitude estimation

Proposition: The following second order sliding mode observer is proposed to estimate

the amplitude:

˙̂
A(t) =

$

’

&

’

%

γA2(t)
´1
(
ηA(t) + L3

a

|RA(t)| sign (RA(t)) ´ Â(t)γ̇A2(t) + γ̇A1(t)
)

@t ą tε + T̄Ω,

0, otherwise,

η̇A(t) = L4 sign (RA(t)) ,

(2.27)

where L3 and L4 are strictly positive real tuning gains that are set by the designer.

Proof: In order to estimate the amplitude, the authors propose another dynamic linear

system to generate the signal (2.8), this is the novel ODE considered:

Ω˚y(1)(t)2 + y(2)(t)2 = A˚2Ω˚2. (2.28)

We apply the Volterra operator to both sides with the kernel functionKga(t, τ) = e´ga(t´τ), ga P

R+: [
VKga

b

Ω˚y(1)(t)2 + y(2)(t)2
]
(t) = A˚

[
KKga

Ω˚
]
(t). (2.29)

Based on this last equation, a time varyin residual signal is introduced:

RA(t) ,

[
VKga

b

Ω̂(t)(ŷ(1)(t))2 + (ŷ(2)(t))2
]
(t) ´ Â(t)

[
VKgΩ̂(t)

]
(t) = γA1(t)

´Â(t)γA2(t), @t ě tε + T̄Ω

(2.30)

where TΩ is the upper bound of the finite convergence time of the observer in (2.26) and

tε is the activation time set by the designer.

Notice that the first and second derivatives of the signal’s intervene in this residual. The

authors in [51] proposed to estimate the derivatives by first defining the signal ρh (Ω˚, t) =

κa,h(t)+Ω˚κd,h(t), h = 1, 2, 3. From (2.16) we can estimate the derivatives through these

identities:
$

’

&

’

%

y(1)(t) = F1(t,t)ρh(Ω
˚,t)´Fh(t,t)ρ1(Ω

˚,t)

F
(1)
1 (t,t)Fh(t,t)´F1(t,t)F

(1)
h (t,t)

,

y(2)(t) =
F

(1)
1 (t,t)ρh(Ω

˚,t)´F
(1)
h (t,t)ρ1(Ω˚,t)

F
(1)
1 (t,t)Fh(t,t)´F1(t,t)F

(1)
h (t,t)

.
(2.31)
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The well posness of these expressions for h ‰ 1 is proved in [51].

Once the derivatives can be estimated, we introduce the following system:

γ̇A1(t) = ψ(t)

(
b

Ω̂(ŷ(1)(t))2 + (ŷ(2)(t))2 ´ gaγA1(t)

)
, γA1(0) = 0,

γ̇A2(t) = ψ(t)
(
Ω̂(t) ´ gaγA2(t)

)
, γA2(0) = 0,

(2.32)

where ψ(t) is a switching signal such that:

ψ(t) =

$

’

&

’

%

1, if t ě tε + TΩ,

0, otherwise.
(2.33)

2.3.4 Phase estimation

At last, the phase of the signal (2.8) is the argurment of a complex number and it can be

deduced from:

ϑ̂(t) = ∠[ω̂(t)ŷ(1)(t) ´ jŷ(2)(t)], @t ě tε + T̄Ω. (2.34)
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2.4 Numerical simulations

2.4.1 Constant amplitude and frequency:

Noise-free scenario:

Figure 2.2: Amplitude, frequency and phase estimation of the unbiased signal y1(t)

Let us begin with a simple introduction example where we consider the following unbi-

ased sinusoidal signal: y1(t) = 3 sin(5t + π
4
), and propose to use the Volterra observer to

estimate the amplitude, frequency and phase of this signal and reconstruct it.

As it has been stated in [51], Euler’s discretization is sufficient to obtain accurate results
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with a sampling time of Ts = 10´4s. We first take ω̄ = 2.5, ω = [1 2 3] and set the

observers gains at L1 = 30, L2 = 2, L3 = 300 and L5 = 5. We also consider g = ga = 25,

and set the frequency’s squared initial condition Ω(0) =
?
5 and δε = 10´4 and TΩ = 0, 7s.

Figure 2.3: Estimation errors of y1(t)

This exemple confirms the fast convergence and accuracy of the AFP Volterra observer

as figure (2.2) shows. In order to illustrate this accuracy quantitavely, we computed the

relative errors of the amplitude and frequency and absolute errors of the phase and signal.

The two latter signals vanish periodically which will lead the relative error to tend to high

values and this does not translate the estimation’s accuracy, which is why the absolute

error is preferred in this case. The results are shown in figure (2.3). All errors have the

same magnitude of 10´3. However, notice that : @t ď t0 where t0 = 1s, the errors are

higher and this translates to the transitional phase.
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Noisy scenario:

Now let us consider the same signal as previously but with a bias such that the measure-

ment is ym1(t) = y1(t) + d1(t), where d1(t) is an additive normally distributed signal in

[´0.25 0.25]. We compute the estimation with the same parameters as in the noise-free

scenario.

Figure 2.4: Amplitude, frequency and phase estimation of the biased signal ym1(t)

Figure 2.5: Reconstructed signal based on the biased signal ym1(t)

The observer’s performance remains accurate as the fast and finite convergence is still
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Figure 2.6: Estimation errors of ym1(t)

established for amplitude, frequency and phase. From the reconstructed signal, it is

noticeable that the method has no affect on the noise: it neither amplifies nor reduces

it. Figure (2.6) shows that the errors magnitude have increased. As it became about

3% for amplitude and frequency and about 5% and 7% for the phase and the signal’s

reconstruction respectively.

2.4.2 Varying amplitude and constant frequency:

Noise-free scenario

Let us now consider the following signal : y2(t) = A(t) sin(5t + π
4
), where the amplitude

A(t) is time dependant such that:

A(t) =

$

’

’

’

’

&

’

’

’

’

%

10 @ t ă 2,

12 @ 2 ď t ă 5,

6 otherwise.

(2.35)

With this exemple, we aim at testing the proposed observer with the tuning parameters

as suggested in [51]. Figure (2.7) shows that the estimation’s inaccuracy is proportionnaly

dependant on the variation value. It is noticeable that a 20% sudden rise of the amplitude
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does not considerably affect the observer, whereas a sudden and considerable variation of

the amplitude (until 50% of the initial value) will affect both frequency and amplitude

estimations, as the convergence is not instantaneous and needs more time to stabilize,

about 5s in this case. Which is considered relatively long. Figure (2.8) illustrate this

phenomenon as it is noticeable that the relative error of both the amplitude and frequency

suddenly rise to about 50% at t = 5s, when the amplitude drops. These errors only become

negligeable at t = 10s.

Figure 2.7: Amplitude, frequency, phase and signal estimation of the unbiased signal y2(t)



2.4. Numerical simulations 39

Figure 2.8: Esimation errors of y2(t)

Noisy scenario

We consider the same previous signal y2(t) with an additive uniformly distributed noisy

bias d2(t) P [´1.5 1.5], such that: ym2(t) = y2(t) + d2(t). Keeping the observer’s

parameter the same, we estimate the amplitude, frequency and phase of the signal before

reconstructing it as it is shown in figure (2.9). Compared to the unbiased signal, estimation

of ym2(t) leads to noisy disturbed parameters. However, we need to keep in mind that

the tuning parameters of the Volterra observer were kept relatively low as in the first

example. We conjecture that increasing certain parameters can lead to better results. A

conjecture we will explore more in the next and last example.
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Figure 2.9: Amplitude, frequency, phase estimation and signal estimation of ym2(t)
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Figure 2.10: Estimation errors of ym2(t)

2.4.3 Varying amplitude and frequency

Noise-free scenario:

Let us now consider the following signal biased: y3(t) = A0(t) + A(t) sin(2πf(t) + π
3
)

where:

A(t) =

$

’

&

’

%

10 @ t ă 2,

12 otherwise,
A0(t) =

$

’

&

’

%

1 @ t ă 2,

0.8 otherwise,
f(t) =

$

’

&

’

%

20 @ t ă 2,

22 otherwise.
(2.36)

In this particular example, the bias is not a randomized noise but a constant unknown.

Both frequency and amplitude vary together. In order to estimate them, we replace the

tuning parameters with higher ones as in [51].

Thus, the tuning parameters of the volterra kernel functions are ω̄ = 60, ω = [50 80 100],

g = 30, ga = 100 and δε = 3ˆ10´4. We set the second order sliding mode observer with the

gains: L1 = 2 ˆ 104, L2 = 20, L3 = 105 and L4 = 50. We keep the Euler discreditezation

method with a sampling time of Ts = 10´4s.
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Figure 2.11: Amplitude, frequency, phase estimation and reconstructed signal of the
unbiased signal y3(t)
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Figure 2.12: Estimation errors of y3(t)

Figure (2.11) shows that a sudden change of the amplitude and frequency references does

not always imply a peak phenomenon as we have previously seen. With the adequate

parameters the convergence takes a relatively short time (about 0.1s) and it is achieved

smoothly. We can however notice that the reconstructed signal is shifted from the true

y3(t) because the estimation does not take into account the bias A0(t) and simply ignores

it. This is also apparent in (2.12) where the absolute error of the signal’s estimation

evolves around 1 when t ă 2sand around 0.8 when t ą 2s. These values represent the

bias A0(t).

Noisy scenario:

Let us now consider the previous signal with another bias that is randomized, such that

ym3(t) = y3(t) + d3(t), where d3(t) P [´1.5 1.5]. As it is apparent in both figures (2.13)

and (2.14) this additional disturbance affects the estimation in a moderate way as the

amplitude and frequency’s estimations errors both remain within the same magnitude as

in the noise-free scenario. However. since this observer does not reduce the noise, both

curves are clearly less smooth. This is especially apparent in the reconstructed signal’s

absolute error graph that is noisy.
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Figure 2.13: Amplitude, frequency, phase and signal estimation of the biased signal ym3(t)
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Figure 2.14: Estimation errors of ym3(t)

2.5 Conclusion
The work in [51] focuses on the AFP problem and construct an observer to estimate the

parameters of a sinusoidal signal. This work can be devided into several steps in order to

understand the idea behind it where first step is to find a linear dynamic system that can

generate the sinusoidal signal of interest. The authors, then, propose to transform the

system into the Volterra space with a carefully chosen kernel function. The estimation

of the states of the linear dynamic system is quite simple because of the properties of

the Volterra operator. These properties are put such that the parameters to be estimated

remain the same after the transformation to the Volterra space. This means that a reverse

transformation is not needed to obtain the desired parameters, which considerably reduces

the numerical issues of the method. At last, the authors introduce an adaptive law based

on a second order sliding mode to estimate the signal’s frequency, amplitude and the

phase is subsequently deducted. The numerical simulations confirm the robustness of the

observer when adequate tuning parameters can be found.



Chapter 3

The Volterra differentiator
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3.1 Introduction
In this chapter we will introduce a novel approach to estimate the N first derivatives of

a known signal based on the Volterra integral. This approach was first presented in [35]

where it is essentially developed around bivariate kernel functions of the Fourier type (i.e:

exponential). The authors discuss both the noise-free and noisy scenarios and conclude

that the proposed method is only effective in the noise-free case because they observe a

noise amplification that gets worse with differential degree increase.

Throughout this chapter, we will first conjecture an explanation of this phenomenon by

observing the behavior of the chosen bivariate kernel function. Then, we will contribute

by constructing a novel bivariate kernel function based on the Jacobi monovariate modu-

lating function (see [20]) and adapt the Volterra integral to it. We will study the effect of

this change on both the noise-free and noisy scenarios via a sensitive analysis and discuss

the results of the numerical simulations.

3.2 Exponential bivariate non-asymptotical kernel func-

tions
As we have seen in the previous chapter, the entire Volterra approach relies on the kernel

functions family chosen to transform the signal into the Volterra space. The most used

one is the exponential bivariate functions family (see [52], [50], [12], [35], [34] and [51]).

The exponential bivariate non-asymptotical kernel functions were constructed similarly

to the monovariate Fourier modulating functions (see chapter 5 and [20]) taking into

consideration several conditions of the convergence of the approach.

Let us now explore the following exponential kernel family:

Kh(t, τ) = e´ωh(t´τ)(1 ´ e´ω̄τ )N , @(t, τ) P R2
+, (3.1)
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where h = t1, 2, ¨ ¨ ¨ , Nu, ω̄ P R+ and ωh P R+.

Exploiting Newton’s binomial, (3.1) can be written as follows:

Kh(t, τ) = e´ωht
N
ÿ

q=0

(´1)q
(
N

q

)
e(ωh´qω̄)τ , (3.2)

thus, the kernel’s derivative with respect to the second argument is denoted:

K
(i)
h (t, τ) = e´ωht

N
ÿ

q=0

(´1)q
(
N

q

)
(ωh ´ qω̄)ie(ωh´qω̄)τ . (3.3)

It is important to know that in the Volterra observation approach, the second argument

τ is only used as a tool to satisfy the theoritical conditions. In practice, the design of

the observer requires only the monovariate functions Kh(t, t) and K
(i)
h (t, t), which are

obtained as follows when replacing τ = t:

Kh(t, t) = (1 ´ e´w̄τ )N ,

K
(i)
h (t, t) =

N
ÿ

q=0

(´1)q
(
N

q

)
(ωh ´ qω̄)ie´qω̄t.

(3.4)

Notice that in a single exponential kernel family, the function does not depend on ωh, i.e:

Kh(t, t) = Kk(t, t) = K(t, t), @h, k = t0, 1, ..., Nu.
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Figure 3.1: Exponential bivariate non-asymptotical kernel functions and their three
derivatives behaviour for ω = [10, 20, 30]

Figure (3.1) shows the shape of an exponential kernel family with ω̄ = 2.5. We can notice

that after a certain t0, the kernel and its derivative can encompass the whole signal. This

means that this type of kernel function does not need to be localized and adapted to

each signal, which generalizes the approach. We can also notice that the function and its

derivatives do not share the same magnitude, and this difference increases with increasing

the value of wh.
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3.3 Polynomial bivariate non-asymptotical kernel func-

tion
The main idea behind this contribution is to exploit the polynomial shape of the Jacobi

monovariate modulating function (see Chapter 5 and [20]) in order to construct a novel

bivariate non-asymptotival kernel functions family with the adequate conditions for the

Volterra estimation approach.

Taking into consideration all theoritical conditions, we propose the following bivariate

non-asymptotic kernel functions family:

Kh(t, τ) = (T ´ t)ω̄τωh , @(t, τ) P R2
+, (3.5)

where ωh P R+ are the forgetting factors such that ωh ě N, @h = t0, 1, 2, ¨ ¨ ¨ , Nu and

ω̄ P R+. T is a positive constant that represents the time boundary, i.e. t ă T .

The ith derivative with respect to the second argument is given by:

K
(i)
h (t, τ) = ωi

h(T ´ t)ω̄τωh´i, (3.6)

thus for τ = t we have:,

K
(i)
h (t, t) = ωi

h(T ´ t)ω̄tωh´i, (3.7)

@i P t0, 1, ¨ ¨ ¨ , N ´ 1u.

We compute some examples of these novel polynomial bivariate kernel functions and their

three first derivatives to observe their evolution for T = 20s, ω̄ = 5, with a sampling time

Ts = 10´4 in figure (3.2), where we can notice that the magnitude of the functions depends

on the value of wh instead of the degree of the derivatives. This is the first difference with

the exponential kernel functions family. In this case, increasing ωh increases the kernel’s

magnitude, so one must be careful when using different kernels in a computational method

because some functions can be neglected relatively to others and this may cause numerical

problems.

The second difference is the general shape of these functions as the polynomial kernel
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functions do not capture all the information present in the signal in the same way. Notice,

for example, how the peak of each curve moves to the left of the plot when the derivative’s

order increases. This particularity can be used in order to increase the robustness of the

method in presence of disturbances by localizing the peak in the useful information region,

filtering then all disturbances.

Figure 3.2: Polynomial bivariate non-asymptotical kernel function and its three deriva-
tives behaviour for ω = [11, 12, 13]

3.4 Normalization
Both types of the previous kernel functions can reach very high values, which is numer-

ically challenging to compute. In order to avoid this problem, we propose to normalize

the kernel functions Kh(t, t) in order to keep them in a computable range.

Normalizing a function means dividing it by a known constant. This constant can be

either the maximum of the function or its energy.

Consider a family of kernel functions Kh(t, t), its normalized form is:

Kh,norm(t, t) = µKh(t, t) (3.8)

where µ = max(Kh(t, t)) or µ =
ş8

0
|Kh(t)|

2dt.

Both types of normalization can be applied, depending on the signal.
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3.5 Volterra differentiator’s construction

3.5.1 State observer

The idea behind this approach is to construct a linear time invarient dynamic system

where the state vector is composed of the signal’s derivatives and the output is the signal.

Thus, let us consider the Taylor series expansion of y(t) at t = 0:

y(t) =
8
ÿ

i=0

y(i)(0)

i!
ti. (3.9)

The truncated approximation of the Taylor expansion is:

yN(t) = yN(0) + y
(1)
N (0)t+

y
(2)
N (0)

2!
t2 + ¨ ¨ ¨ +

y
(N´1)
N (0)

(N ´ 1)!
tN´1, (3.10)

where we assume y(N)
N (t) = 0.

Thus, the signal yN(t) is generated by the following linear time invarient system:

ẋ(t) = Ax(t),

y(t) = cx(t), t P R+,

(3.11)

where

A =



0 1 0 ¨ ¨ ¨ 0

0 0 1
. . . ...

... ... . . . . . . 0

0 0 ¨ ¨ ¨ 0 1

0 0 ¨ ¨ ¨ 0 0


P RNˆN ,

c =

[
1 0 ¨ ¨ ¨ 0

]
P RN ,

(3.12)

with the state vector x(t) =
[
yN(t), y

(1)
N (t), ¨ ¨ ¨ , y

(i)
N (t), y

(N´1)
N (t)

]T
.

The system (3.11) is obviously completely observable. The (N´1) first derivatives deriva-

tives of y(t) can be estimated by replacing yN(t) by y(t).
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The observer proposed is the Luenberger’s original form, which is a direct copy of the

system as shown bellow:

˙̂x(t) = Ax̂(t),

ŷ(t) = cx̂(t), t P R+.

(3.13)

The couple (A, c) being completely observable, we can proceed to the next steps.

3.5.2 Volterra estimator

Introduction to the Volterra estimation technique

The idea behind the Volterra estimator is to map the output signal y(t) and its derivatives

into a transformation space introduced by the Volterra integral. And just like with the

modulating function methods (see Chapter 5), there exists a class of kernel functions that

will make the initial conditions on the signal and its derivatives vanish.

The ith derivative of y(t) induced by the Volterra operator is given below using (2.5):

[VKh
y(i)](t) =

i´1
ÿ

j=0

(´1)i´j´1y(j)(t)K
(i´j´1)
h (t, t) +

i´1
ÿ

j=0

(´1)i´jy(j)(0)K
(i´j´1)
h (t, 0)

+ (´1)i[V
K

(i)
h
y](t), i P t1, ¨ ¨ ¨ , N ´ 1u.

(3.14)

Exploiting the non-asymptotic property of the kernel function (2.6) we obtain:

[VKh
y(i)](t) =

i´1
ÿ

j=0

(´1)i´j´1y(j)(t)K
(i´j´1)
h (t, t) + (´1)i[V

K
(i)
h
y](t). (3.15)

For i = N and recalling the assumption that yN(t) = 0 @t P R+:

[VKh
y(N)](t) = y(N´1)(t)Kh(t, t), (3.16)
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which according to (3.14) is equivalent to:

(´1)(N´1)[V
K

(N)
h
y](t) =

N´1
ÿ

j=0

(´1)N´j´1y(j)(t)K
(N´j´1)
h (t, t)

=
N´1
ÿ

j=0

(´1)N´j´1K
(N´j´1)
h (t, t)x̂j(t).

(3.17)

Thus, the derivatives estimation problem is transformed into the following algebraic sys-

tem:

v(t) = Γ(t)x̂(t), (3.18)

where

v(t) = (´1)N´1

[
[V

K
(N)
0
y](t) [V

K
(N)
1
y](t) ¨ ¨ ¨ [V

K
(N)
N´1

y](t)

]T
,

and

Γ(t) =



(´1)N´1K
(N´1)
0 (t, t) (´1)N´2K

(N´2)
0 (t, t) ¨ ¨ ¨ K0(t, t)

(´1)N´1K
(N´1)
1 (t, t) (´1)N´2K

(N´2)
1 (t, t) ¨ ¨ ¨ K1(t, t)

... ... ... ...

(´1)N´1K
(N´1)
N´1 (t, t) (´1)N´2K

(N´2)
N´1 (t, t) ¨ ¨ ¨ KN´1(t, t)


.

The transformation matrix Γ(t) is not data sensitive, it depends only on the kernel func-

tion and its derivatives. Since, the kernel function here is considered a degree of freedom,

it is constructed in order for this matrix to be invertible @t ą 0. Once this condition is

satisfied, the inverse transformation can be made in order to estimate x̂(t) as follows:

x̂(t) = Γ´1(t)v(t), @t ą 0, (3.19)

where v(t) is estimated by a linear time varient dynamic system that we will define next.

Estimating the derivatives in the Volterra space

The goal now is to estimate the image of the derivatives estimations transformed into the

Volterra space i.e v(t).

Let us consider the definition of the Volterra transformation of the signal y(t) induced by
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K
(N)
h (t, τ), recalling (2.4):

[V
K

(N)
h
y](t) =

t
ż

0

K
(N)
h (t, τ)y(τ)dτ, t P R+.

Consider ξh(t) , [V
K

(N)
h
y](t). Applying the Leibniz integral rule (2.3) to differentiate the

previous integral with respect to the time variable, we obtain:

ξ̇h(t) = K
(N)
h y(t) +

t
ż

0

B

Bt
Kh(t, τ)y(τ)dτ.

Then, the bivariate non-asymptotic kernel functions must be chosen such that the follow-

ing condition is satisfied:

t
ż

0

B

Bt
Kh(t, τ)y(τ)dτ = gh(t)ξh(t), gh(t) ă 0, @t ě 0. (3.20)

For ξ(t) =
[
ξ0(t) ξ1(t) ¨ ¨ ¨ ξN´1(t)

]T
we obtain the following LTV dynamic system:

ξ̇(t) = G(t)ξ(t) + E(t)y(t),

ξ(0) = 0,

(3.21)

where G(t) = diag(gh(t)) P RNˆN and E(t) =

[
K

(N)
0 (t, t) ¨ ¨ ¨ K

(N)
N´1(t, t)

]T
.

The satisfaction of the (3.20) implies that the matrix G(t) is hurwitz t ě 0. Therefore, the

LTV system (3.21) is stable and converges. Since v(t) = (´1)N´1ξ(t), it is now possible

to estimate it.
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3.5.3 Exponential kernel function

In [35], the authors exploited the exponential bivariate non-asymptotical kernel functions

as defined in (3.1) for this differentiator. The observer is design such that:

x̂(t) = Γ´1
1 (t)v1(t), (3.22)

where:

Γ1(t) =



(´1)N´1
N
ř

q=0

(´1)q
(
N
q

)
(ω0 ´ qω̄)N´1e´qω̄t ¨ ¨ ¨ (1 ´ e´ω̄τ )N

(´1)N´1
N
ř

q=0

(´1)q
(
N
q

)
(ω1 ´ qω̄)N´1e´qω̄t ¨ ¨ ¨ (1 ´ e´ω̄τ )

... ... ...

(´1)N´1
N
ř

q=0

(´1)q
(
N
q

)
(ωN´1 ´ qω̄)N´1e´qω̄t ¨ ¨ ¨ (1 ´ e´ω̄τ )N


, (3.23)

and v1(t) = (´1)N´1ξ1(t) and ξ1(t) is estimated using:

ξ̇1(t) = G1(t)ξ1(t) + E1(t)y(t),

ξ1(0) = 0,

(3.24)

where :

G1(t) =



´ω0 0 ¨ ¨ ¨ 0

0 ´ω1
. . . ...

... . . . . . . 0

0 ¨ ¨ ¨ 0 ´ωN´1


, E1(t) =



N
ř

q=0

(´1)q
(
N
q

)
(ω0 ´ qω̄)Ne´qω̄t

N
ř

q=0

(´1)q
(
N
q

)
(ω1 ´ qω̄)Ne´qω̄t

...
N
ř

q=0

(´1)q
(
N
q

)
(ωN´1 ´ qω̄)Ne´qω̄t


.

(3.25)

Γ1(t) is invertible for different values wh ą 0, @t ą 0. [35]

Moreover, G1(t) is clearly hurwitz and the LTV (3.24) converges.
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3.5.4 Polynomial kernel function

We propose to recreate the precedent differentiator with the novel polynomial bivariate

non-asymptotical kernel functions family as it is defined in (3.5). The observer is designed

such that:

x̂(t) = Γ´1
2 (t)v2(t), (3.26)

where:

Γ2(t) = (T ´ t)ω̄



(´1)N´1ωN´1
0 tω0´N´1 (´1)N´2ωN´2

0 tω0´N´2 ¨ ¨ ¨ tω0

(´1)N´1ωN´1
1 tω1´N´1 (´1)N´2ωN´2

1 tω1´N´2 ¨ ¨ ¨ tω1

... ... ... ...

(´1)N´1ωN´1
N´1t

ωN´1´N´1 (´1)N´2ωN´2
N´1t

ωN´1´N´2 ¨ ¨ ¨ tωN´1


.

(3.27)

and v2(t) = (´1)N´1ξ2(t) and ξ2(t) is estimated using:

ξ̇2(t) = G2(t)ξ1(t) + E2(t)y(t),

ξ2(0) = 0,

(3.28)

where :

G2(t) =



´ ω̄
T´t

0 ¨ ¨ ¨ 0

0 ´ ω̄
T´t

. . . ...
... . . . . . . 0

0 ¨ ¨ ¨ 0 ´ ω̄
T´t


, E2(t) =



ωN
0 (T ´ t)ω̄tω0´N

ωN
1 (T ´ t)ω̄tω1´N

...

ωN
N´1(T ´ t)ω̄tω0´N+1


. (3.29)

Similarly, Γ2(t)’s rows and lines are obviously linearly independent @t ą 0 which means

that Γ2(t) is invertible. G2(t) is hurwitz and the LTV (3.28) converges @t ă T .
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3.6 Numerical simulations
In this section we will perform a sensitive analysis of the differentiator using both of the

previous methods in order to point out the numerical problems that one can encounter

and to highlight the effect of the tuning parameters. For all of the simulations above, we

use Euler’s discretization with a sampling time of Ts = 10´3s. We also use the following

absolute error definition εx = |x(t) ´ x̂(t)|.

3.6.1 Sensitive analysis using exponential kernel functions

First derivative estimation (N=2)

Figure 3.3: Activation time effect on the peaking phenomenon

In this first example we consider the following unbiased signal: y1(t) = 5t + sin(t), and

propose to estimate it and its first derivative for ω̄ = 2.5 and different pairs of ωh. We

have previously stated that for Γ1(t) to be invertible the time variable t had to be strictly

positive i.e: t ě δε, δε P R˚
+. We call this δε the activation time.

Theoretically, any value of δε should be acceptable. However, small value of the acti-

vation time imply high values of Γ´1
1 (t) which results in a peaking phenomenon. This
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phenomenon is illustrated in figure (3.3) where we have put δε = 0.5s on the right esti-

mation instead of δε = 2s as in the left estimation. Indeed, the difference between both

estimations is very important as a high peak can induce several issues in practice. To

our knowledge, there is still no systematic way in the literature to choose the activation

time. Therefore, we consider it as another tuning parameter that we pick according to the

signal measurement, the pair of wh, and the forgetting factor ω̄ as all these factors play

a role in the phenomenon. The left side of figure (3.3) shows that the signal’s estimate

is easily reached for all pairs of ωh. On the other hand, the first derivative estimation is

best for ω = [10, 20]. In figure (3.4) we consider the previous signal biased with an addi-

tive disturbance d1(t) normally distributed in [´3, 3]. The signal is accurately estimated

whereas the derivatives estimations are noisy. Notice that the higher the values of ωh, the

higher the noise is.

Figure 3.4: First derivative estimation based on noisy measurement with exponential
kernel (N = 2)
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Second derivative estimation (N = 3)

Figure 3.5: Second derivative estimation with exponential kernel (N = 3)

Let us now consider the following signal: y2(t) = 4 sin(t) + 0.5 sin(5t), and propose to es-

timate it and its first two derivatives using the exponential kernel, with ω̄ = 2.5, varying

the triplet ωh.

Figure (3.5) shows the estimations and their absolute errors. We can arrive o the same

conclusions as in [35] where it is stated that increasing the values of wh increases the

estimation accuracy of the algorithm. In our example, we can see that the worst triplet is

[6, 12 , 18] and the best one is [30, 60 , 90]. The second conclusion is that the higher the

degree of the derivation is, the less accurate the estimation is. Indeed, this appears in the

change of the magnitude’s absolute error (10´1 for the signal, 100 for the first derivative

and 101 for the second). Therefore, high degrees of derivation require high values of ωh.

In figure (3.6), we have added to the signal y2(t) an additive noise d2(t) normally dis-

tributed in [´0.25, 0.25]. The figure shows that the noise is amplified in the derivatives

estimations, as they completely loose their previous accuracy. The magnitudes of the

estimation’s error becomes 101 and 102 for the first and second derivatives respectively.

We also notice that higher values of the triplet of ωh amplify the noise most.
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Figure 3.6: Second derivative estimation based on noisy measurement with exponential
kernel (N = 3)

Third derivative estimation (N=4)

In figure (3.7), we propose to estimate the previous signal’s y2(t) three first derivatives

with different quadruplets of ωh in order to further confirm the previous results. This

figure illustrates the gradual loss of accuracy with the increase of the degree’s derivative

estimation. Notice that the quadruplet w = [25, 50, 75, 100] gives the best results.

Figure (3.8) illustrate the noisy scenario where the magnitude of the third derivative’s

absolute error is of 104, which makes the estimation completely useless as it is considered

as noise only.

We can conjecture that this amplification is due to the shape of the exponential kernel

function, as the kernel’s final gain gets higher when ωh increases. In the noise-free scenario,

this increase helps the estimation as it makes it more accurate but in the noisy scenario,

it amplifies the noise and risks to make the estimation useless. In order to deal with this

problem, we can normalize the exponential kernel function or simply change its type. The

first proposition is ill advised as it leads to numerical problems and we will explore the

second option in the next subsection.
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Figure 3.7: Third derivative estimation with exponential kernel (N = 4)

Figure 3.8: Third derivative estimation based on noisy measurement with exponential
kernel (N = 4)
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3.6.2 Sensitive analysis using the polynomial kernel function

First derivative estimation (N=2):

We consider the following signal y3(t) = 4 cos(2t) + 1, and estimate its first derivative

using the Volterra differentiator with bivariate polynomial kernel function family that has

the following parameters: δε = 1s, T = 150s ω̄ = 5, and vary pairs of ωh in figure (3.9).

It is worth to mention that ω̄ is also an important tuning parameter that has been chosen

to such a value after several computations.

Our main goal was to find a pattern between the kernel’s parameters ωh in order to

choose them adequately but such a pattern could not be found in practice. Indeed, the

shape of the polynomial kernel transforms the problem of the tuning parameters choice

into a localization problem, i.e: the polynomial kernel functions must be localized such

that they do not annul the useful information. Which is a more difficult task then when

dealing with an exponential kernel where increasing the forgetting factors increases the

gains which amplify the whole signal and consequently results in better estimations.

Figure 3.9: First derivative estimation with the polynomial kernel (N = 2)
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Figure 3.10: First derivative estimation with the polynomial kernel based on noisy mea-
surements (N = 2)

In this particular case, for example, we can see that the error is minimal for low values of

the ωh but this difference is only apparent up to a certain time t0. This can be explained

by numerical issues related to the conditioning of Γ2(t), which can be settled by imposing

a bigger activation time δε. Indeed, the activation time depends on the norm of ω: the

higher the norm of the vector is, the higher the peak phenomenon is, which imposes a

relatively high activation time δε.

Let us also mention that when the values ωh increase into a certain magnitude (up to

230 for this example), a numerical problem appears: the conditioning of the matrix Γ2(t)

as defined in (3.27). High degrees of the polynomial kernel family make this matrix ill-

conditioned and its computation, unreliable. This particular numerical problem restrain

the range of the values of ωh that can be chosen since it becomes numerically impossible

to compute the estimation up to certain ωh.

Figure (3.10) shows the noisy scenario where the signal y3(t) is disturbed by an additive

noise d3(t) that is normally distributed in [´0.4, 0.4]. We notice that the noise of the

derivative estimation is amplified when using high values of ωh. This amplification fades

away with time and is important for any t ă t0 where the value of t0 depends on the
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parameters. Thus, the activation time should be around this t0, which confirms that the

higher the values of ωh, the higher the activation time should be.

Second derivative estimation (N=3):

Figure 3.11: Second derivative estimation with the polynomial kernel based (N = 3)

We, now, estimate the signal : y4(t) = 4 cos(0.2t) + sin(2t), and its two first derivatives

with the following parameters of the polynomial kernel function : T = 240s, ω̄ = 5 and

δε = 5s, varying ωh, in figure (3.11).

This example clearly shows the limitations of this approach. Indeed, we can notice a

peaking phenomenon in the second derivative estimation and this peak gets higher with

high values of ωh. Until t = 8s, it is noticeable that high values of ωh induce a bigger

error. But for t ě 8s, this gets reversed and the absolute estimation error induced by

smaller ωh is the highest. We can also notice that for this example, the absolute error

range increases with the degree of the derivative and the derivative estimation error is

quite important due to the inadequate set of tuning parameters.

We then considered the noisy scenario, where the signal y4(t) is disturbed by an additive

noise normally distributed in [´0.5, 0.5]. The results are shown in figure (3.12). We can

notice that, on the contrary of the exponential kernel case, the noise is not amplified
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but damped with time. This is due to the shape of the polynomial kernel function that

enables it to have the same magnitude as its derivatives, which is not the case for the

exponential kernel function.

Figure 3.12: Second derivative estimation with the polynomial kernel based on noisy
measurements (N = 3)

Third derivative estimation (N=4):

Figures (3.13) and (3.14) show a comparison between the estimation of the first four

derivatives of the signal y4(t) first with the exponential kernel function with the following

parameters: ω̄ = 2.5, ω = [20, 40, 60, 80]. Second, with the polynomial one where ¯ω = 5,

ω = [41, 42, 43, 44] and T = 240s. With δε = 5s.

In figure (3.13) the measurements are not biased by any noise. In this case we can see

that the exponential kernel function gives more reliable results than the polynomial kernel

and is therefor more efficient for each estimate.
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Figure 3.13: Comparing both kernels for third derivative estimation in the noise-free
scenario (N = 4)

In the noisy scenario, it is important to mention that the original measurements are only

biased by a relatively small noise d4(t) that is normally distributed in [´0.2, 0.2].

Figure (3.14) shows how the exponential kernel function amplify this noise for all the

derivatives estimation and this amplification gets more important when the differential

degree rises. The polynomial kernel function, on the other hand, does not amplify the

noise and behaves similarly as in the noise-free scenario. This difference when adding a

disturbance can be explained by the shape of both of these kernels.
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Figure 3.14: Comparing both kernels for third derivative estimation based on noisy mea-
surements (N = 4)

3.7 Conclusion
In this chapter, we have confirmed that the exponential kernel functions family should

be used in the Volterra differentiator only in the noise-free scenario where it gives fast

convergence with accurate estimations [33]. A clear pattern between its parameters was

found: the higher the parameters are, the better the accuracy is. This is especially im-

portant when high derivatives degrees come in hand where the estimation can loose its

precision.The main problem with this method is that it lacks robustness. Indeed, in the

noisy scenario, a relatively small additive noise is amplified in the derivatives estimations

and makes the results useless.

In order to overcome this problem, we proposed a novel bivariate kernel functions family

that is polynomial and constructed the Volterra differentiator around it. The polynomial

kernel functions shapes prevents it to amplify the noise, which shows good potential in

increasing the method’s robustness.

However. this type of kernel comes with two main problems. The first one being the lack

of a clear pattern when choosing the tuning parameters that compose the kernel. These
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parameters are crucial for the estimation accuracy highly relies on them. Therefore, fu-

ture work should focus on finding a method to choose them. One idea, for example, is

to use a metaheuristic optimization algorithm to obtain ωh and ω̄ with a criteria that

minimizes the estimation error. The second problem is purely numerical and revolves

around the transformation matrix Γ2(t) that is often ill-posed which induces errors in its

inverse computation, resulting in unreliable results. One approach to overcome this issue

is to over-saturate the transformation by adding more kernel functions to the estimation,

transforming Γ2(t) into an m ˆ n matrix and solving the estimation problem by using a

least square algorithm, thus killing the invertibility problem. Another one is to investi-

gate the properties of Γ2(t) and its invertibility in general, extract constrains for its well

conditioning and impose those conditions on the kernel function.



Chapter 4

Modulating functions based method
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4.1 Introduction
The modulating functions based method has a long history in the literature, with the a

first appearance in 1957 [59], where the author, inspired by Laplace and Fourier transfor-

mations, proposed to use an integral transformation based on a weight function that he

called method function, in order to identify high-order nonlinear dynamic systems. Since

then, many have proven an interest in the concept and the method has seen many vari-

ations [56]. Today, the modulating functions based method (MFBM) is mainly used to

estimate the parameters of PDEs ([2] and [3]) and fractional order PDEs ([29], [37], [5]

and [6]) because the method offers the elimination of the initial conditions. Indeed, the

definition of modulating functions (MF) revolves around the annihilation of the function

and its derivatives on the borders, in order to cancel initial conditions on the signals’

derivatives. This has lead to the construction of different types of modulating functions,

the most common ones being Fourier (exponential), Jacobi (polynomial), sinusoidal MF,

Hartley MF [20]. However, there are no systematic method for choosing a particular

modulating function over another, because theoretically any function that satisfies those

conditions should give acceptable results.

In this chapter, we propose to verify this last assertion by introducing a novel type of

modulating functions that satisfies the conditions on the borders and is randomized in

between. This work aspires to a better understanding of the importance of the modu-

lating functions structure by also relaxing the differentiability and continuity conditions.

We focus on estimating the parameters of simple ODEs by MFBM to illustrate the idea.

4.2 Principle of the modulating functions based method
Before explaining the principle of modulating functions based method, we first need to

define what a modulating function is and then introduce the most important tool that

makes this estimation method possible: the generalized integration by parts.

Definition 1 (modulating function) [56] A function φ P Ci([a, b]), defined over [a, b],

is called a modulating function of order i with i P N˚ if:
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φ(j)(a) = φ(j)(b) = 0, @j = t0, 1, ..., i ´ 1u. (4.1)

Lemma 1 (Generalized integration by parts) [4] Let f P Cl(R) and g P Cm(R),

where l,m P N˚ with m ď l. Then, for any interval [a, b] Ă R, we have:

ż b

a

g(t)f (l)(t)dt = (´1)m
ż b

a

g(m)(t)f (l´m)(t)dt+
m´1
ÿ

k=0

(´1)k
[
g(k)(t)f (l´1´k)(t)

]t=b

t=a
. (4.2)

The proof of this lemma is rather simple for it can be obtained by an enumerative induc-

tive reasoning with successive integration by parts.

The principle of the modulating function based method relies on the combination of

the Lemma 1 with Definition 1 .

Suppose we have a system that requires y(i)(t), the ith order derivative of observation

variable y(t). With an nth order modulating function φ(t) defined on the interval [0, T ],

with n ě i, we can reduce the observation variable’s derivative order by exploiting the

modulating functions characteristics and the generalized integration by parts lemma as

follows:
ż T

0

φ(t)y(i)(t)dt = (´1)i
ż T

0

φ(i)(t)y(t)dt. (4.3)

The modulating function φ(t) being a degree of freedom, its ith derivative can be com-

puted.

Advantages of the modulating functions based method: The MFBM addresses

some a recurrent problems in estimation and therefore presents considerable advantages

as it:

1. shifts the derivatives from the signal to the modulating functions, which are ana-

lytically known,

2. transforms the problem into a simple linear algebraic system that can be solved

either by an inverse transformation (for square systems) or least square (for any

rectangular system),
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3. does not require the system’s initial conditions, as the method gets rid off them

thanks to the modulating functions properties at the borders,

4. is considered robust to external disturbances induced on the measurements as the

integration dampens the noise.

4.3 Generalization of the modulating functions based

method

4.3.1 Constant parameters estimation

Let us consider the following differential equation: [17]

n
ÿ

i=0

ai
diy(t)

dti
=

m
ÿ

i=0

bi
diu(t)

dti
, n > m, (4.4)

where y(t) is the output, u(t) the input and ai, bi are the unknown system parameters to

be estimated that are constant in R. Without loss of generality, we assume a0 = 1.

Step 1: multiply (4.4) by a modulating function φh(t) P Cm+n+1([0, T ]):

n
ÿ

i=0

aiφh(τ)
diy(τ)

dτ i
dτ =

m
ÿ

i=0

biφh(τ)
dtu(τ)

dτ i
dτ. (4.5)

Step 2: integrate (4.5) over the interval [0, T ]:

n
ÿ

i=0

ai

ż T

0

φh(τ)
diy(τ)

dτ i
dτ =

m
ÿ

i=0

bi

ż T

0

φh(τ)
dtu(τ)

dτ i
dτ. (4.6)

Step 3: using the the generalized integration by parts lemma (4.2), equation (4.6) becomes:

n
ÿ

i=0

(´1)iai

ż T

0

diφh(τ)

dτ i
y(τ)dτ =

m
ÿ

i=0

(´1)ibi

ż T

0

diφh(τ)

dτ i
u(τ)dτ. (4.7)

We now define the following signals:

ỹ
(i)
h (T ) = (´1)i

ż T

0

diφh(τ)

dτ i
y(τ)dτ, ũ

(i)
h (T ) = (´1)i

ż T

0

diφh(τ)

dτ i
u(τ)dτ. (4.8)
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Assuming both input and output signals are known, ỹ(i)h (T ) and ũ(i)h (T ) can be computed

using numerical integration methods such as the trapezoidal, simpson 1
3
, simpson 3

8
... etc.

Step 4: rearranging (4.7) and using (4.8), we obtain:

m
ÿ

i=0

biũ
(i)
h (T ) ´

n
ÿ

i=1

aiỹ
(i)
h (T ) = ỹh(T ). (4.9)

For h = t0, ¨ ¨ ¨ , Ku where K ě m + n + 1, we can construct the following algebraic

system:

A(T )θ̂ = B(t), (4.10)

where:

A(T ) =



ũ0(T ) ¨ ¨ ¨ ũ
(m)
0 (T ) ´ỹ

(1)
0 (T ) ¨ ¨ ¨ ỹ

(n)
0 (T )

ũ1(T ) ¨ ¨ ¨ ũ
(m)
1 (T ) ´ỹ

(1)
1 (T ) ¨ ¨ ¨ ´ỹ

(n)
1 (T )

... ¨ ¨ ¨
... ... ¨ ¨ ¨

...

ũK(T ) ¨ ¨ ¨ ũ
(m)
K (T ) ´ỹ

(1)
K (T ) ¨ ¨ ¨ ´ỹ

(n)
K (T )


P R(K+1)ˆ(m+n+1), (4.11)

and

B(T ) =



ỹ0(T )

ỹ1(T )

...

ỹK(T )


P RK+1, θ̂ =



b̂0
...

b̂m

â1
...

ân


P Rm+n+1. (4.12)

Notice that when K = m + n, the algebraic system (4.10) becomes square. We then,

choose the modulating functions such that A(T ) has linearly independent rows and the

parameters can be estimated as follows:

θ̂ = A´1(T )B(T ). (4.13)

However, in practice we generally choose K ą m + n. In this case, we solve (4.10) using



4.4. Existing types of modulating functions 75

least square and we have:

θ̂ = (A(T )JA(T ))´1A(T )JB(T ). (4.14)

4.3.2 Time-varying parameters estimation

The modulating function based method is also used for the time varying parameters

scenario where the varying parameters are projected in a known basis. We will, then,

need to estimate the coefficients of the chosen basis which transforms the problem and

brings it back into a constant parameter estimation.

Let us go back, for example, to the differential equation (4.4) and consider that the

parameters ai(t) are time varying. We do the projection of ai(t) in the space that is

spanned by a set of known basis functions tβj(t)u
V
j=1, as follows:

ai(t) =
V

ÿ

j=1

ξj,iβj,i(t), (4.15)

where the coefficients tξju
V
i=1 , V P N˚ are the unknown parameters projections that need

to be estimated. We just need to replace ai by (4.15) in (4.4) and repeat the same steps

as previously to obtain the algebraic system.

4.4 Existing types of modulating functions
Any differentiable monovariate function satisfying the condition (4.1) is a modulating

function and can theoritically be used to identify a parameter. Therefore, there exists

numerous types of modulating functions in the literature. In this section we will only

recall some examples.

4.4.1 Sinusoidal modulating functions

The sinusoidal modulating function is the first modulating function ever constructed in

[59] where it was presented as a method function.

φh(t) = sinh(
π

T
t), @t P [0, T ], (4.16)
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where T P R˚
+ and h P N˚, φh P Cn([0, T ]), n ě h.

Figure 4.1: Sinusoidal modulating functions for n = 6

4.4.2 Hartley modulating functions

This type of modulating functions was introduced in [47] in order to identify a class of

nonlinear continuous-time system. It is defined as follows:

φh(t) =
n

ÿ

j=0

(´1)j
(
n

j

)
cas
(
(n+ h ´ j)

2π

T
t

)
, @t P [0, T ], (4.17)

where cas(x) = cos(x) + sin(x), T P R˚
+, h P N˚, φh P Cn([0, T ]), and n ě h.

Figure 4.2: Hartley modulating functions for n = 6
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4.4.3 Fourier modulating functions

This type of functions is presented in [48] where the periodicity of the exponential function

ejx = cos(x)+j sin(x) is exploited in order to construct the following modulating functions:

[20]

φh(t) = e´jαh(e´j 2π
T

t
´1)K , @t P [0, T ], (4.18)

where α is a tuning parameter, T P R˚
+, h P N˚, φh P Cn([0, T ]), and n ě h.

Figure 4.3: Fourier modulating functions for α = 1, K = 10, and n = 6

4.4.4 Jacobi modulating functions

This type of modulating functions is a combination of Jacobi polynomial functions that

vanish at the borders. [20] They are defined as follows:

φh(t) = th1(T ´ t)h2 , @t P [0, T ], (4.19)

T P R˚
+, h P N˚, φh P Cn([0, T ]), n ě h and h1, h2 ě n.
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Figure 4.4: Jacobi modulating functions for n = 6

Notice how the magnitude of this type of functions can rise to very high values that can

cause numerical problems in practice. In order to overcome these latter, we normalize

these functions as in (3.8) by dividing each one by its energy.

Figure 4.5: Normalized Jacobi modulating functions for n = 6

4.5 Randomized pseudo modulating functions
In this section, we will relax the differentiability condition of the modulating functions

and propose novel pseudo-modulating functions that only satisfy the conditions on the

border. This work’s aim is to analyze the behavior of the method numerically when loca-

tion and differentiability are ignored. Numerical simulations will be presented in the next

chapter.



4.5. Randomized pseudo modulating functions 79

4.5.1 Uniformly distributed random pseudo modulating func-

tions

φi(t) =

$

’

&

’

%

random([α, β]) if 0 ă t ă T,

0 otherwise,
(4.20)

where α ă β are real values, i = t1, ..., Nu, and random is a function that generates

random values uniformly distributed around [α, β].

Theoretically, this function is not continuous and therefore not differentiable on [0, T ] as

it is illustrated in figure (4.5.1). Therefore, we will not use it to shift the derivatives.

Figure 4.6: Uniformly distributed random modulating functions

4.5.2 Normally distributed random pseudo modulating functions

φi(t) =

$

’

&

’

%

1
σ

?
2π

e´
(t´µ)2

2σ2 if 0 ă t ă T,

0 otherwise,
(4.21)

where σ and µ are the standard deviation and the mean and are randomly chosen in [0 1]

and [0 T ].
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Figure 4.7: Normally distributed random modulating functions

4.6 Numerical simulations
In this section, we will consider the simple case of a homogeneous linear differential

equation of the first order:

y(1)(t) + ay(t) = 0, t P [0, T ], (4.22)

where a is real constant that represents the missing parameter to be estimated.

We construct the algebraic system using the modulating functions method and imple-

ment the randomized modulating functions in both the noise-free and noisy cases. In

order to make a fair comparison between the approaches, we will consider the absolute

error εa = |â ´ a|.

In order to test the randomized pseudo-modulating functions, we will assume that we

have measurements of both the signal and its derivatives.

4.6.1 Noise-free scenario

Let us consider the following solution to (4.22) :

y(t) = 2e´10t, @t P [0 T ], (4.23)
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so the parameter to be identified is a = 10.

In figures (4.8) and (4.9), we have estimated the parameter a using two different types of

random modulating functions and the absolute errors of both methods. The simulation

were computed for different numbers of modulating functions (from 1 to 30) and for a

sampling time Ts = 10´4s. The pseudo-random modulating functions effectiveness are

compared to the standard Jacobi modulating functions.

Figure 4.8: Estimating a with uniformly distributed pseudo-modulating functions
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Figure 4.9: Estimating a with normally distributed pseudo-modulating functions

Both pseudo-modulating functions and standard Jacobi polynomial modulating functions

give similar results as their error’s range is the same, about 10´13. However, and in a

general view, we notice that the randomized pseudo-modulating functions give better

results than the standard polynomial Jacobi functions. This can be explained by the

fact that the randomized pseudo-modulating functions can encompass more important

information since they are mode distributed in space.

The figures also show that increasing the number of the pseudo-modulating functions

of the method has no effect on the results, as the variations we notice are due to the

randomized aspect of the method. Indeed, the simplicity of this example exempt it from

numerical irregularities. Therefore, it is advised to stick to the minimal number of pseudo-

modulating functions in order to ease the computations.

4.6.2 Noisy scenario

Let us now consider the previous signal in (4.23) with an additive uniformly distributed

noise in [´0, 05 0, 05] as it is shown in figure (4.10). Figures (4.11) and (4.12) show

the constant parameter estimation using the two random pseudo-modulating functions

effectiveness compared to the classical Jacobi modulating function.
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Figure 4.10: Measured signal in the noisy scenario

Figure 4.11: Parameter estimation in the noisy scenario with uniformly distributed
pseudo-MFs
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Figure 4.12: Parameter estimation in the noisy scenario with normally distributed pseudo-
MFs

In the noisy scenario, the estimation’s absolute error rises to a range of 10´1 for all types

of modulating functions considered. The pseudo-modulating functions accuracies are still

similar, but not necessarily better than the standard Jacobi modulating functions, de-

pending on the number of modulating functions used. However, for N = 1, N = 2 and

N = 3 both pseudo-modulating functions give better results than Jacobi as their errors

do not surpass 4%, while the Jacobi MF has an 8% for N = 3.

We can also notice that, like in the noise-free case, increasing the number of modulating

functions do not necessarily give better results. Therefore, sticking to a low number of

modulating functions is still preferable.

The accuracy of this estimation is due to the integration of the measurements along with

the modulating function as the integration is known for dampening the noise.

4.7 Conclusion
The modulating functions based method is an integral estimation approach that leads to a

time invariant estimation through a constructed algebraic system. The general algorithm
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is well known and used but one of the main problems with this method is the choice of the

modulating functions family itself. Indeed, when systems get complicated, the existing

types of modulating functions may fail to give proper results even though they obey to

all theoretical conditions.

In this chapter, we suggested to verify these theoretical conditions importance by keeping

the annihilation of the functions on the borders and relaxing the differentiability condi-

tion. We proposed a novel type of modulating functions that only vanish at the borders

and are randomized in between. We have applied these pseudo-modulating functions on

a simple ODE using two types of randomization: uniform and normal and compared

both results. We can conclude that the pseudo-modulating function based method works

both in the noise-free and noisy scenarios. The number of pseudo-modulating functions

used is irrelevant for simple estimations and the method’s accuracy depends only on the

continuous aspect of the pseudo-modulating functions and their projection in space.



Chapter 5

Estimation of the arterial blood flow

and the Windkessel parameter
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5.1 Introduction
In this chapter, we will illustrate the importance of finite time estimation methods by

applying the modulating functions based method on a real life problem that is crucial in

both physiology and bio-engineering: the estimation of the arterial blood flow through

the arterial network. Generally, the tools to estimate the blood flow are too invasive and

ill advised, and the non-invasive ones are considered to be, either too complex, heavy to

compute or expensive. Which is why the authors in [4], suggested an alternative to these

methods by using a simple 0-D mathematical model of the arterial network: the two-

element Windkessel . They also proposed to estimate the parameters of this model using

modulating functions. Our goal throughout this work is to exploit this particular example

in order to illustrate the advantages and limitations of the modulating functions method.

In order to do so, we will briefly explain the basics of the cardiac cycle, go through the

two-element Windkessel model and explain the steps to construct the algebraic system to

estimate the parameters of interest. At last, we will provide a sensitive analysis for this

estimation problem through numerical simulations and discuss the results.

5.2 Aortic blood flow and the Windkessel effect

5.2.1 Cardiac cycle phases

The aorta is the largest artery in the human body. It starts at the heart’s left ventricle

and extends to the abdomen in smaller branches that are called arteries. Figure (5.1) can

be also found here. The cardiac cycle goes through 2 main phases : [11]

1. The ventricular diastole: it occurs after the relaxation of the ventricle where

the the oxygenated blood is pushed into the atria. During this phase, the blood

pressure is at its lowest and it is known as diastolic pressure.

2. The systole: it follows directly the diastole, where the ventricles ejects the blood

out through the aorta. During this phase, the blood pressure reaches its maximum

value and it is known as systolic pressure.

https://thephysiologist.org/study-materials/the-cardiac-cycle-and-cardiac-output/
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Figure 5.1: Cardiac cycle [11]

5.2.2 The two-element Windkessel model description

The Windkessel model was introduced in the 19th century by the physiologist Otto Frank,

where he first described the mechanics of the heart with a hydraulic analogy. In this

analogy, the heart is a water pump and the abdomen a chamber. He also suggested

another analogy, that we will use later on to represent this phenomenon: the electrical

circuits analogy.

In the electric analogy, the Windkessel model considers the following:

1. the electrical voltage represents the arterial blood pressure,

2. the current represents the blood flow,

3. the cables represent the arteries,

4. Arterial Compliance and Peripheral Resistance are modeled as a capacitor and a

resistor, respectively [11].

5. the cardiac cycle starts at systole,

6. the period of the systole Ts is 2
5
th of the period of the cardiac cycle Tc.

Figure (5.2) illustrates the analogy where Qa(t) is the input arterial blood flow, Pa(t) the

blood pressure, Rp the peripheral resistance and C the arterial compliance. [4]
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Figure 5.2: Electric equivalence of the hearts mechanisms [4]

Proposition: The Windkessel two elements model can be described by the following

differential equation:

Fin(t) = τ
dPa(t)

dt
+ Pa(t), (5.1)

where we want to estimate Fin(t) = RpQa and τ = RpC. We suppose that the pressure

Pa(t) is known. The steps to obtain this equation can be found in [4].

5.3 Solving the estimation problem using modulating

functions
In this section, we will explain the steps to construct the algebraic system for solving the

estimation problem in system (5.1).

First, we need to project the time varying parameters to be estimated in known basis

functions tβi(t)u
V
i=1:

Fin(t) =
V

ÿ

i=1

ξiβi(t), (5.2)

where tξiu
V
i=1 are the projection of the blood flow in the space and the unknown coefficients

to be estimated.

Replacing (5.2) in (5.1), we obtain the ODE:

V
ÿ

i=1

ξiβi(t) = τ
dPa(t)

dt
+ Pa(t). (5.3)
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Next, we multiply this last equation by a set of N modulating function family φh(t) and

integrate over a time interval [0, T ]:

V
ÿ

i=1

ξi

ż T

0

φh(t)βi(t)dt = τ

ż T

0

φh(t)
dPa(t)

dt
dt+

ż T

0

φh(t)Pa(t)dt. (5.4)

Now, we use the results of the generalized integration by parts lemma (4.2) to shift the

blood pressure derivative to the modulating function and use the vanishing property at

the borders to obtain:

V
ÿ

i=1

ξi

ż T

0

φh(t)βi(t)dt+ τ

ż T

0

Pa(t)
dφh(t)

dt
dt =

ż T

0

φh(t)Pa(t)dt. (5.5)

At last, we construct the linear system for multiple modulating functions:

Aθ = b, (5.6)

where

A=



şT

0
φ1(t)β1(t)dt

şT

0
φ1(t)β2(t)dt ¨ ¨ ¨

şT

0
φ1(t)βV (t)dt

şT

0
Pa(t)

dφ1(t)
dt

dt
şT

0
φ2(t)β1(t)dt

şT

0
φ2(t)β2(t)dt ¨ ¨ ¨

şT

0
φ2(t)βV (t)dt

şT

0
Pa(t)

dφ2(t)
dt

dt

... ... ¨ ¨ ¨
... ...

şT

0
φN(t)β1(t)dt

şT

0
φN(t)β2(t)dt ¨ ¨ ¨

şT

0
φ1(t)βV (t)dt

şT

0
Pa(t)

dφN (t)
dt

dt


PRNˆ(V+1),

b =



şT

0
φ1(t)Pa(t)dt

şT

0
φ2(t)Pa(t)dt

...
şT

0
φN(t)Pa(t)dt


P RN , θ =



ξ1

xi2
...

ξV

τ


P RV+1. (5.7)

We solve this linear system using the least square method.
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5.4 Analytical solutions of the 2-Element Windkessel

model
In order to test the modulating functions method on system (5.1), we need to generate the

input Pa(t) and know the blood flow Fin(t) and Windkessel parameter τ in advance for

comparing the estimation results with the real parameters. We can do this either by using

an existing data base (e.g. [64]) or by using the analytical solutions of the Windkessel

model.

In this work, we propose to use both approaches. Therefore, we will now present the

analytical solutions to generate these signals.

5.4.1 Blood flow analytical solution

As it is presented in [11], the blood flow in the aorta acts like a sinusoidal wave. Therefore,

it can be modeled as follows:

Qa,anal(t) = Qa,0 sin
(
π ˚

mod (t, Tc)

Ts

)
(5.8)

where Tc is the period of the cardiac cycle, Ts, the period of the systole, the function

mod(x1, x2) is the remainder of x1 divided by x2.

Qin,0 is the maximum blood flow during the systole and according to [11] its value is of

424.1mL.

5.4.2 Blood pressure analytical solution

Systolic phase

For simplification, we reduce equation (5.1) to:

dPa(t)

dt
+
Pa(t)

CRp

= Qa(t). (5.9)
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Equation (5.9) is an inhomogeneous equation of the first order, its solution is:

Pa(t) = c1e
´t

RpC +
´e

t
CRp TsQa,0R

(
CπRp cos

(
πt
Ts

)
´ Ts sin

(
πt
Ts

))
T 2
s + C2π2R2

p

, (5.10)

with

c1 = Pss +
Qa,0TsRp[CπRp]

T 2
s + C2 ˚ π2 ˚ R2

p

, (5.11)

where Pss is the blood pressure at the start of the systolic cycle.

Further details can be found in [11].

Diastolic phase

In the diastolic phase, equation (5.9) becomes the following homogeneous first order dif-

ferential equation:
dPa(t)

dt
+
Pa(t)

CRp

= 0. (5.12)

The solution of this equation is trivial:

Pa(t) = Psd e´ t
RpC , (5.13)

where Psd is the blood pressure at the beginning of the diastolic phase.

5.5 Numerical simulations
The main purpose of this application is to highlight the characteristics of the modulating

functions based method. Therefore, we will first perform a sensitive analysis of the method

on this particular system, varying the main features of the method that may alter the

results: the nature of the modulating functions, the number of the modulating functions

and number of basis functions. We will use the analytical Windkessel model to generate

the needed data and then try the set of parameters obtained on real measurements from

the data base in [64].

In all of the above, we will consider the estimation of the blood flow in one cardiac cycle

only (i.e: one systole and one diastole).
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In this section, we consider the following relative errors:

εξ =
}Fin(t) ´

řV
i=1 ξ̂iβi(t)}

}Fin(t)}
ˆ 100,

ετ = |
τ ´ τ̂

τ
| ˆ 100.

(5.14)

5.5.1 Estimation via analytically generated data

Figure 5.3: Performance of the estimation algorithm for different types of modulating
functions

The first parameter that we need to settle is the nature of the modulating function.

Figure (5.3) illustrates the behavior of the algorithm for different types of modulating

functions. We have computed this considering the standard Jacobi basis functions (see

[19]), the number of basis: V = 9 and N = 10.
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This figure shows that, from all of the considered types of modulating functions com-

puted, only the Jacobi MF can be a candidate to solving this estimation, as all other

modulating functions completely diverge. This divergence can be explained by the shapes

of the modulating functions considered. Indeed, as we have previously seen in chapter 5,

the Fourier, sinusoidal and Hartley modulating functions all peak at the middle of their

time interval. Whereas in this case, the blood pressure peaks at the systole that happens

in the first 2
5
th of the cardiac cycle. This means that only the Jacobi MF is designed such

that it can encompass the input measurements.

5.5.2 Modulating functions number

In figure (5.4), we have computed the estimation algorithm for V = 9, using the Jacobi

MF and varying the number of modulating functions. We notice, here, that both relative

errors reach their minimum for N = 11, where εξ « 20% and ετ « 2%. This preliminary

result is promising enough for the estimation of the blood flow, especially considering the

fact that this algorithm does not take more than 10s to compute.

Figure 5.4: Performance of the estimation algorithm for different numbers of Jacobi MF
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We also notice that the estimation algorithm starts diverging when N increases. This di-

vergence can be explained by the ill-poisoning of the matrix A as defined in (5.3). Indeed,

since this matrix is data-driven, it is very sensitive numerically and in this particular

case, it is sensitive to the number of modulating functions. Throughout the numerical

computing, we have noticed that the reciprocal conditioning number highly decreases to

a range of 10´10 when N ą 14, which makes the estimation results unreliable. Therefore

we need to be very careful to this particular factor when computing this method as it can

considerably alter the results.

Figure 5.5: Performance of the estimation algorithm for different numbers of the Jacobi
basis functions

Figure (5.5) confirms that the best number of basis functions for this estimation is 9.

However, there does not seem to be any theoretical evidence to back this assertion up.

Finally, we have set that the best set for this estimation algorithm is 11 Jacobi modulating

functions with 9 Jacobi basis functions.
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5.5.3 Estimation via a real data set

The database in [64] is an in-silico data set that reproduces the major hemodynamic

signals such as the blood pressure and the blood flow as they are in-vivo. We select one

virtual healthy subject from this database and use his blood pressure to estimate the

arterial blood flow and the Windkessel parameter. Figure (5.6) shows the results that we

get when using the MF estimation algorithm with N = 11, V = 9 with Jacobi modulating

functions and standard Jacobi basis on this virtual subject. Clearly, this estimation is

inaccurate and unsatisfactory as the relative error of the blood flow estimation is of 120%.

This example illustrates perfectly the sensitiveness of this method as each system (each

subject in this case), needs a novel set of parameters for the estimation algorithm to

converge.

Figure 5.6: Blood flow estimation on a virtual subject with the MFBM parameters of the
analytical model

We have run a set of simulations and found out that for this patient, the best parameter

combination is : V = 10, N = 12 with Jacobi modulating functions and B-spline basis

functions (see [25]). The results of the simulation are shown in figure (5.7), where the

overall relative error degree of the blood flow estimation is about 34% which can be

considered as a good preliminary result. However, the estimation does not encounter the

real alteration and local variations of the real data. We also notice that the estimation
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starts diverging at the end of the interval which increases the overall error.

Figure 5.7: Blood flow estimation on a virtual subject with a novel set of the MFBM
parameters

5.6 Conclusion
Estimating the arterial blood flow and the Windkessel parameter with the modulating

functions based method is a very promising approach as it gives fast and finite convergence

with relatively low computing requirements and represents one of the few non-invasive

tools to do so [4]. However, this estimation algorithm still faces two main challenges: the

data-sensitivity and numerical instability of the method. Indeed, we have seen that the set

of modulating functions based method parameters that work on an analytically generated

data does not necessarily work on a real subject. This means that the estimation method

highly depends on the data, which may bring contradiction to the robustness claim. One

idea to solve this problem, is to exploit the Windkessel analytical model of the blood flow

by injecting it in the estimation algorithm. Estimating the blood flow will then imply

estimating the Windkessel analytical parameters instead of the coefficients of the basis

functions. Another way to improve the estimation results is to resort to the windowing

approach for real time estimation with a moving horizon as it has been done in [3]. As

for the numerical instability, future work should focus on using regularization methods to

fix the ill-posedness that may occur [28].



General conclusion

Finite time convergence is an important concept in estimation theory that was widely in-

vestigated in the literature. Since the introduction of the concept, new observers such as

the sliding mode [60], [63], [15] and supertwisting [18] were developed and old asymptotic

observers were improved in order to give non-asymptotic convergence, e.g.: the high gain

observer [10]. Throughout this work, we have investigated a novel kind of observation and

estimation techniques: the integral based methods. The general idea behind this approach

is to map the signal from a space to another via an integral transformation, estimate the

signals or parameters in the new space and go back to the regular time domain via an

inverse transformation if necessary.

The first approach that we have tackled is the Volterra technique [52],[50],[12],[33], as we

have introduced it by reproducing the cascading observers to estimate the amplitude, fre-

quency and phase of a biased sinusoidal signal [51]. This approach relies on transforming

the biased sinusoidal signal into the Volterra space and remaining thereafter to estimate

the parameters of interest using an adaptive second order sliding observer. We run a short

sensitive analysis on the parameters of this observer and distinguished its robustness via

the numerical simulations.

Next, and still using the Volterra approach, we investigated another problem: the Volterra

differentiator. We first reproduced and explained the existing work in [35], that revolves

around the existing exponential kernel functions family and we arrived to the same con-

clusions about the none effectiveness of this method in the noisy scenario. In order to

overcome this issue, we conjectured an explanation of the phenomenon by addressing the

shape of the exponential kernel functions family and suggested a novel family of kernel
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functions: the polynomial kernel functions. We adapted the differentiator around this

new kernel and run a set of numerical simulations to test its effectiveness. During which,

we noticed difficulty in finding the right set of parameters for this novel kernel family.

However, we have also noticed that this kernel family prevented the amplification of the

noise and showed good potential in increasing the differentiator’s robustness. Therefore,

our future work will focus on finding a pattern for choosing these parameters. For ex-

ample, a meta-heuristic algorithm for finding the optimal parameters with respect to a

specific criteria would be a good candidate to over this issue in our future work.

After the Volterra approach, we introduced another integral transformation based tech-

nique that is very similar: the modulating functions based method [38],[37],[46],[5],[20].

This method’s main idea revolves around the definition of modulating functions which

are differentiable functions that vanish, with their derivatives, at the considered borders.

Throughout our work, we suggested to verify these theoretical conditions importance by

introducing a novel type of pseudo-modulating functions. These pseudo-MF relax the dif-

ferentiability condition and keep the vanishing borders property, with a particularity: they

are randomized in between. We have tried these pseudo-MF for a simple ODE parameter

estimation and concluded the effectiveness of the estimation approach in both noise-free

and noisy scenarios. As a future work, these pseudo-modulating functions should be

tested on higher order systems in order to have a better understanding of their possible

limitations.

At last, we have performed an application of these integral based estimation methods

on a real estimation problem in the bio-engineering field: the estimation of the arterial

blood flow. We reproduced the work done in [4] by considering the Windkessel 2-Element

electric analogy in modeling one cardiac cycle and used the modulating functions based

method to estimate the parameters of interest. This example illustrated perfectly the

highlights and drawbacks of the MFBF as we have witnessed its fast and finite conver-

gence but we have also seen that a small change in the input data requires a whole new

set of the method’s parameter in order to obtain a satisfactory convergence. One way

of overcoming this issue might be rearranging the estimation algorithm by exploiting the
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Windkessel analytical model [11]. Another way might be the moving horizon method that

reduces the estimation window and theoretically results in better estimation accuracy [3].

We have also encountered numerical instability issues with most of the methods tested, as

the ill-posedness of the problems induced by integral based methods is a major drawback

that should be well investigated in future, by using regularization methods [28].
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