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École Nationale Polytechnique (ENP)
10, Avenue des Frères Oudek, Hassen Badi, BP. 182, 16200 El Harrach, Alger, Algérie

www.enp.edu.dz





�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q


K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
ù


ÒÊªË@

�
IjJ. Ë @ ð ú



ÍAªË@ Õæ



Êª

�
JË @

�
èP@ 	Pð

Ministery of Higher Education and Scientific Research
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Résumé— La prédiction des crises d’épilepsie est un problème difficile qui consiste à mettre en évidence
le début d’une crise à l’aide de signaux d’électroencéphalogramme (EEG), soit par un neurologue
expérimenté, soit automatiquement à l’aide de techniques d’apprentissage machine. Dans ce travail,
nous allons tirer profit des progrès récents des techniques d’apprentissage profond et proposer deux
architectures. La première est basée sur un réseau neuronal convolutif unidimensionnel (1-D CNN)
qui apprend les représentations hiérarchiques de l’EEG, sans étapes de prétraitement. La seconde est
basée sur un réseau convolutif récurrent à long terme (LRCN), il a la capacité d’apprendre différentes
représentations de la structure spatio-temporelle du signal EEG. Les résultats expérimentaux démontrent
la fiabilité des modèles en obtenant une moyenne de la fonction efficacité du récepteur (ROC) de 0,848
pour le modèle 1-D CNN, et de 0,873 pour le modèle LRCN.

Mots-clés : EEG, Prédiction de la crise d’épilepsie, Apprentissage approfondie, CNN, LSTM.

Abstract— Epileptic seizure prediction is a challenging problem which consists in identifying a seizure
onset using electroencephalogram (EEG) signals, either by an experienced neurologist or automatically
using machine learning techniques. In this work, we will take advantage from recent advances of deep
learning techniques and propose two architectures. The first model is based on one dimensional convo-
lutional neural network (1-D CNN) architecture that learns hierarchical representations of EEG with no
preprocessing steps. The second model is based on long term recurrent convolutional network (LRCN)
which has the capacity to learn different representations of the spatiotemporal structure of EEG signal.
Experimental results demonstrate the reliability of the models by achieving a mean Area Under Curve
(AUC) Receiver Operating Characteristics (ROC) of 0.848 for 1-D CNN model, and 0.873 for LRCN model.
Index-terms : EEG, Epileptic seizure prediction, Deep Learning, CNN, LSTM.
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Introduction

Epilepsy Epilepsy is a common brain disorder that, according to the World Health Organization
(WHO), affects around 50 million people around the world, making it one of the most common
neurological diseases globally [1]. In Algeria, it was estimated to have 400.000 people with
epilepsy between children and adults [2]. Epilepsy is characterized by recurrent, unprovoked
seizures. Seizures are the result of a transient and unexpected electrical disturbance of the brain
and excessive neuronal discharge of the electrical activity of the brain. They can vary from
the shortest failure of attention to intense and extended convulsions. They can also range in
frequency from less than 1 per year to several per day.

Epilepsy is a source of constant anxiety for patients due to the unexpected onset of seizures
involving the triggering of manifestations of which they lose consciousness. Moreover, people
with epilepsy tend to have physical issues such as break and injuries related to seizures, which
decrease the patient’s quality of life. In addition, epileptic patients can have reduced access to
educational opportunities, a withholding of the opportunity to obtain a driving license, barriers
to enter particular occupations, and reduced access to health and life insurance. Currently there
is no cure for epilepsy. Many patients’ seizures can be controlled, but not cured, with medication.
Up to two-thirds of people living with epilepsy could become seizure free with appropriate use
of antiseizure medicines [1].

People that remain unresponsive to available medication, may become candidates for surgical
intervention. This situation is called drug-resistant epilepsy (DRE) and people suffering of this
situation are forced to deal with it in everyday life [3]. Of those unresponsive to anticonvulsant
medication, 7% to 8% may profit from epilepsy surgery. However, about 25% of people with
epilepsy will continue to experience seizures even with the best available treatment [4]. Besides,
for those responsive to medication, many antiepileptic medicines have significant side effects
that have a negative impact on quality of life. Consequently, the prediction of epileptic seizures
would greatly contribute to improving the quality of life of epileptic patients.

EEG Electroencephalography (EEG) is the electrical recording of the oscillations of potential
generated by brain sources. The first EEG recordings were obtained in 1929, but it remains
one of the principal techniques for extracting information from the human brain for research
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and clinical purposes. It is considered as the most powerful diagnostic and analytical tool of
epilepsy. Neuroscientists have found that the brain activity of epileptic patients, based on the
EEG recordings, can be classified into four different states: preictal, which is defined as the time
duration prior to seizure, ictal state (during the seizure), postictal state that is related to the period
after seizure and finally the interictal state which refers to the time between seizures. As the
project objective is to build a seizure prediction system, the key challenge is to discriminate
between the preictal and interictal brain states [5].

Machine Learning Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that covers
its statistical part. While AI is the ability of machines to mimic human brain, the aim of machine
learning is to understand the structure of data and fit that data into models that can be used for
further prediction. The term machine learning was invented by Arthur Samuel in 1959, an American
computer scientist that expressed that ”ML gives computers the ability to learn without being
explicitly programmed”. In 1997, Tom M. Mitchell provides a formal definition: ”A computer
program is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E”.
Machine learning differs from traditional programming paradigms in that it can learn from data
without relying on rules-based programming.

ML techniques can resolve multiple tasks in different domains such as regression, classifi-
cation, clustering, dimension reduction, anomaly detection, density estimation, recommender
systems and many others. Thus, these tasks fit with a wide variety of applications like object de-
tection, face recognition, speech recognition, machine translation, spam email detector, robotics
and so on [6], [7].

Machine Learning and Epilepsy In the case of epilepsy, machine learning can be very beneficial
if it solves the problem of epileptic seizure prediction. Epileptic seizure prediction algorithms ,
coupled with surveillance systems, make it possible to envisage three major applications. First,
during long-term hospitalized patient EEG recordings, the implementation of a warning system
that allows the medical staff to see the onset of a seizure. Secondly, the creation of a mobile device
warning the patient of an incoming seizure. By being alerted by a notification, the person has the
time to put himself in safety before the start of the seizure in order to avoid dangerous situations.
The device can also warn someone else who take care of this patient. In this application, we do
not avoid the actual problem (seizure), but it is very valuable to minimize damages. Finally, in the
longer term, an anticipation system of seizures coupled with an implantable therapeutic device
responds to the control of the seizures by means of implanted stimulators [8]. Neurostimulation
is an acceptable way of treating seizures in people with drug-resistant epilepsy. It’s usually
considered in people who are not appropriate for epilepsy surgery or when surgery is not helpful
[9].
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Our work During the last decade, many classical machine learning algorithms (i.e. non-deep
learning algorithms) have been proposed for the seizure prediction problem. Since EEG signals
are different across patients because of the change in seizure type and location , most seizure
prediction methods are as a result patient-specific. These algorithms acquire a diverse range of
EEG feature extraction, selection, and classification techniques. However, the principal disadvan-
tage of these methods is the excessive use of manually extracted features. Thus, it is challenging
to determine the most discriminative features that best represent each class. In newer tendency,
deep learning based seizure prediction algorithms are used, which combine the feature extrac-
tion and classification stages into a single automated framework. The aim of this project is to
develop an automatic feature learning using deep learning based algorithms that can be applied
for all patients with minimum feature engineering and preprocessing.

The main contributions of our work can be summarized as follows:

• Propose a 1-D Convolutional Neural Network (CNN) architecture that can learn different
representations of iEEG (intracranial EEG) data efficiently.

• Propose a second architecture based on Long-term Recurrent Convolutional Network (LRCN),
with its proper method to pre-process raw EEG data into a form suitable for this model.

• Use testing method, that proves the robustness of the proposed algorithms over different
seizures, for performance evaluation and comparison of results.

Organization This dissertation is organized as follows:

• Chapter I provides a background on the context of epileptic seizure prediction, EEG signals
and closed-loop systems. It gives an overview of the basic components of DNNs as well as
a review of the literature.

• Chapter II describes software and hardware tools used in this project such as dataset, ex-
plory data analysis, preprocessing and cross-validation scheme.

• Chapter III presents the proposed models,explains the implementation of the project and
all related technical details. Finally, it shows the results, makes some comments and draws
the conclusions.

• The conclusion lays out a brief summary of what this dissertation is about. In addition, it
explores the challenges that we faced during implementation. It also explores contributions
that could be made in future works.
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Chapter 1

Background

1.1 Introduction

The aim of this chapter is to provide the reader with the fundamental concepts that are related
to the project. We will start by defining Epilepsy as a neurological disorder characterized by
epileptic seizures and presenting its types. Then, we will discuss the Electroencephalography
(EEG) signals, its characteristics, acquisition schemes and related analysis techniques. This allows
us to make the relation between EEG signals and epileptic seizure. Since epileptic seizures arise
inside the brain, one primary tool that specialist use in order to diagnose epilepsy is EEG. As
our project goal is to predict seizures based on EEG data analysis, we will present two notions
that may be confused seizure detection and seizure prediction and show the difference between
them. This enables us to introduce the problem definition, where the seizure prediction problem
can be treated as a binary classification problem. Classification is the process of predicting the
target associated with each sample in the data. Classification task is done usually using Machine
Learning (ML) algorithms through a supervised learning approach. However, classical ML-
based algorithms used complex handcraft patient-specific feature engineering due to the high
complexity of EEG signals. Therefore, we tend to use Deep Learning (DL) models with minimum
signal processing treatment. A deep learning review is presented to allow the reader understand
the basics of this field and apply them to the problem, starting from the single artificial neuron
and the biological analogy to feed-forward, Convolutional Neural Network (CNN) and finally
Recurrent Neural Network (RNN). Finally, we proceed to present the state-of-the-art DL-based
approaches for Epileptic Seizures (ES) prediction.
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1.2 Epilepsy

1.2.1 Definition of Seizure and Epilepsy

The International League Against Epilepsy (ILAE) established both conceptual and operational
definitions for seizures and epilepsy.

• Conceptual definitions [10]

– An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnor-
mal excessive or synchronous neuronal activity in the brain.

– Epilepsy is a disorder of the brain characterized by an enduring predisposition to gen-
erate epileptic seizures, and by the neurobiologic, cognitive, psychological, and social
consequences of this condition. The definition of epilepsy requires the occurrence of
at least one epileptic seizure.

• Operational (practical) clinical definition of epilepsy [11]

– Epilepsy is a disease of the brain defined by any of the following conditions:

∗ At least two unprovoked (or reflex) seizures occurring > 24h apart

∗ One unprovoked (or reflex) seizure and a probability of further seizures similar to
the general recurrence risk (at least 60 ) after two unprovoked seizures, occurring
over the next 10 years

∗ Diagnosis of an epilepsy syndrome

As a word, seizure derives from the Greek meaning to take hold. Modern popular terminology
uses the word seizure for any sudden and severe event (for example, ”he had a heart seizure”).
Many physical or psychological sudden events, some of them not even pathological, all resemble
epileptic seizures in some ways. To emphasize this usage, typically, we will refer to an epileptic
seizure or ES

1.2.2 Seizure Types and Classification

Classification of a seizure begins with historical elicitation or observation of certain symptoms
and signs (sometimes referred to as semiology of seizure) that are known to be associated with
common seizures. The key symptoms and signs cannot be matched in one-to-one relationships
with seizure types because some symptoms appear in more than one seizure type. Conversely, a
seizure type often associates with multiple symptoms.
In 2017, the ILAE released a new seizure classification system that includes both a basic and
expanded version [12]. The expanded version provides more subcategories for more detailed
characterization of the seizures.
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ILAE 2017 Basic Classification of Seizures Types

Figure 1.1 shows the basic classification. Seizures are first categorized by type of onset. Focal-
onset seizures are defined as ”originating within networks limited to one hemisphere. They may
be discretely localized or more widely distributed. Focal seizures may originate in sub-cortical
structures. Generalized from onset seizures are defined as originating at some point within, and
rapidly engaging, bilaterally distributed networks. A seizure of unknown onset may still evi-
dence certain defining motor or non-motor characteristics. With further information or further
observed seizures, a reclassification of unknown onset seizures into focal or generalized onset cat-
egories may become possible. Therefore, ”unknown onset” is not a characteristic of the seizure,
but a convenient placeholder for our ignorance. Further classification is optional. Focal seizures
may be further classified by level of awareness (aware vs. impaired awareness) and/or motor vs.
non-motor onset. Awareness pertains to knowledge of self and environment during a seizure.
Generalized onset seizures are divided into motor and non-motor (absence) seizures. Level of
awareness is not used as a classifier for generalized seizures, since the large majority (although
not all) of generalized seizures are associated with impaired awareness. Seizures of unknown
onset can be categorized as motor, including tonic-clonic, non-motor, or unclassified. The term
unclassified comprises both seizures with patterns that do not fit into the other categories or
seizures presenting insufficient information to allow categorization.

Figure 1.1: ILAE 2017 Basic seizure classification [12]

ILAE 2017 Expanded Classification of Seizures Types

The expanded classification (Fig 1.2) provides another level of seizure names, built on the frame-
work of the basic classification. A focal seizure can be classified as focal aware or focal impaired
awareness. Focal aware or impaired awareness seizures can optionally be classified by adding
one of the motor onset or non-motor onset terms below, reflecting the earliest prominent sign or
symptom other than awareness.
The classification of generalized onset seizures is similar to that of the 1981 classification, with
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addition of a few new types. Awareness usually is impaired with generalized onset seizures,
so level of awareness is not used as a classifier for these seizures. The main subdivision is into
motor and non-motor (absence) seizure types. The terms ”motor” and ”non-motor” are present
in order to allow characterization of generalized onset motor or non-motor seizures about which
nothing else can be said, but ”motor” and ”non-motor” may be omitted if the seizure name is
unambiguous, for example, ”generalized tonic seizure”. The word ”generalized” can be omitted
for seizures such as absence that present only with generalized onset.

Figure 1.2: ILAE 2017 Expanded seizure classification [12]

1.3 EEG

1.3.1 What is EEG

Electroencephalography (EEG) is a measurement of potentials that reflect the electrical activity
of the human brain. It is readily available test that provides evidence of how the brain func-
tions over time. The EEG is widely used by physicians and scientists to study brain functions
and to diagnose neurological disorders. The study of the brain’s electrical activity, through the
EEG records, is one of the most important tools for diagnoses of neurological diseases, such
as epilepsy, brain tumours, head injury, sleep disorders, dementia and monitoring the depth of
anaesthesia during surgery [13]. It is also helpful for the treatment of abnormalities, behavioural
disturbances (e.g, Autism), attention disorders, learning problems and language delay.
The first EEG recording machine was introduced to the world by Hans Berger in 1929. Berger,
who was a neuropsychiarist from the University of Jena in Germany, used the German term ”elek-
trenkephalogramm” to describe the graphical representations of the electric currents generated in
the brain. He suggested that brain currents changed depending upon the functional status of the
brain, such as, sleep, anaesthesia and epilepsy. This was a revolutionary idea that helped create
a new branch of medical science called neurophysiology.
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1.3.2 EEG Acquisition System

During the acquisition phase of EEG, a number of small disks called electrodes are placed in dif-
ferent locations on the surface of the scalp with temporary glues. Each electrode is connected to
an amplifier (one amplifier per pair of electrodes) and an EEG recording machine. Finally, the
electrical signals from the brain are converted into wavy lines on a computer screen to record
the results.Figure 1.3 presents an example of how electrodes are placed on the scalp during the
recording of EEG signals and EEG signals are displayed on a computer screen [14].
The electrodes detect tiny electrical charges that result from the activity of the brain cells. The
charges are amplified and appear as a graph on a computer screen, or as a recording that may
be printed out on paper. An expert then interprets the reading. EEG recordings, depending on
their use can have from 1 to 256 electrodes recorded in parallel. This is called multi-channel EEG
recordings. One pair of electrodes usually makes up a channel. Each channel produces a signal
during an EEG recording.

Figure 1.3: An illustration of EEG recording [14]

There are two types of EEGs, depending on where the signal is taken in the head: scalp or in-
tracranial. For the scalp EEG, small electrodes are placed on the scalp with good mechanical and
electrical contact. Special electrodes implanted in the brain during surgery result in intracranial
EEG. On the other hand, the EEG measured directly from the cortical surface using subdu-
ral electrodes is called the electrocorticogram (ECoG). The amplitude of an EEG signal typically
ranges from 1 to 100 uV in normal adult, and it is approximately 10-20 mV when measured with
subdural electrodes.
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1.3.3 Placement of electrodes

The question of how to place the electrodes is important, because different lobes of cerebral are
responsible for processing different types of activities. The standard method for the scalp elec-
trode localization is the international 10-20 electrode system. The ”10” and ”20” represent actual
distances between neighbouring electrodes are either 10 or 20 of the total front-back or right-left
of the skull.
The positions are determined by the following two points; nasion, which is the point between the
forehead and the nose, level with the eyes, and inon which is the bony prominence at the base
skull on the mid-line at the back of the head.
Figure 1.4 presents the electrode position on the brain according to the international 10-20 sys-
tem. Each location uses a letter to identify the lobe and a number to identify the hemisphere
location. The letters F, T, C, P and O stand for Frontal, Temporal, Central, Parietal and Occipital,
respectively. A ”z” refers to an electrode placed on the middle. Even numbers refer to electrode
positions on the right hemisphere, whereas odd numbers refer to those on the left hemisphere.

Figure 1.4: The international 10-20 electrode placement system

1.3.4 Common EEG montages

Since an EEG voltage signal represents the voltages at two electrodes, the display of the EEG for
the reading EEG machine may be set up in several ways. The placement of electrodes is referred
to as a montage. The EEG can be monitored with the following montages:

Bipolar montage

One pair of electrodes usually makes up a channel. Each channel (waveform) represents the
difference between two adjacent electrodes. The entire montage consists of a series of these
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channels[15]. For example, we present a diagram of bipolar montage in Fig 1.5, where the
channel ”Fp1-F3” represents the difference in the voltage between the Fp1 electrode and the F3
electrode. The next channel in the montage, ”F3-C3”, represents the voltage difference between
F3 and C3, and so on, through the entire array of electrodes.

Figure 1.5: An illustration of the bipolar montage [15]

Referential montage

Each channel represents the difference between a certain electrode and a designed reference
electrode [15]. In Fig 1.6, electrode A2 is considered as the reference electrode. There is no
standard position for this reference. It is, however, at a different position than the ”recording”
electrodes. Mid-line positions are often used because they do not amplify the signal in one
hemisphere versus the other. Another popular reference is ”linked ears”, which is a physical or
mathematical average of electrodes attached to both earlobes and mastoids.

Figure 1.6: An illustration of the referential montage [15]

Average reference montage

The outputs of all of the amplifiers are summed and averaged, and this averaged signal is used
as the common reference fro each channel. An illustration of the average reference montage is
given by Fig 1.7
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Figure 1.7: An illustration of the average referential montage [15]

1.3.5 Fundamental of EEG Waves

Since the beginnings of EEG, the study of different brain oscillations and their relationship with
different brain functions has attracted the attention of researchers. The brain oscillations are cat-
egorized in frequency bands and related with different brain states or functions. In this section,
a brief description of EEG frequency bands is provided. A typical example of EEG waves can be
seen in Fig 1.8

Figure 1.8: EEG signal and corresponding bands

Delta Waves (Up to 4 Hz)

EEG delta waves are high-amplitude brain waves and are associated with deep sleep stages. The
delta waves are also associated with different brain functions other than deep sleep, e.g, high
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frontal delta waves in awake subjects are associated with cortical plasticity. Delta bands are
reported as prominent brain waves in cognitive processing especially in event related studies.

Theta Waves (4-8 Hz)

Theta waves are observed in the drowsy state and more common in children than adults. In the
awake adult, without doing any attention/cognitive activity , high theta activity is considered
abnormal and associated with different brain disorders, e.g, high frontal theta is linked with
non-response to antidepressant treatment in depression patients. However, high theta activity
plays a significant role in intentional processing and working memory.

Alpha Waves (8-13 Hz)

Alpha waves can be observed spontaneously in normal adults during wakefulness and in relax
state, especially when there is no mental activity. During the eye-closed condition, alpha waves
are prominent at parietal locations. Attentional processing or cognitive tasks attenuate the alpha
waves. Alpha waves are subdivided into lower alpha and upper alpha. It has been observed that
alpha activity changes with load during retention of working memory. In addition, individual
alpha peak frequency is an indicator of general intelligence factor.

Beta Waves (13-25 Hz)

Beta waves have lower amplitudes than alpha , delta and theta waves. Traditionally, beta waves
are subdivided into low beta and high beta. The frontal and central regions of the brain are
location where enhanced beta waves can be observed during activeness, anxious thinking, and
deep concentration.

Gamma Waves (above 25 Hz)

Gamma waves are fast oscillations and are usually found during conscious perception. Due to
small amplitude and high contamination by muscle artifacts, gamma waves are underestimated
and not widely studied as compared to other slow brain waves. High gamma activity at temporal
locations is associated with memory processes. Research studies reported that gamma activity
is involved in attention ,working memory, and long term processes. Gamma activity is also
involved in psychiatric disorders such as schizophrenia, hallucination, Alzheimer’s disease, and
epilepsy.
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1.3.6 EEG Analysis Techniques

EEG analysis methods can be classified into the time domain methods, frequency domain meth-
ods, time-frequency domain methods, and linear or non-linear methods [16].

Time domain methods

EEG recordings are non-stationary and non-linear functions of time. Linear prediction is a time-
domain method in which the output is calculated from the input and earlier outputs. Principal
component analysis (PCA), linear discriminant analysis (LDA) and independent component analysis
(ICA) are widely used unsupervised time-domain methods to summarize EEG data. PCA is
used to transform the high-dimensional data to a low-dimensional data while ICA decomposes
high-dimensional data into linear statistically independent components. In EEG data analysis,
ICA is most used to remove artifacts. Whereas, LDA is used to reduce dimensions of feature sets
by finding linear combinations of feature vectors.

Frequency domain methods

During an epileptic seizure, there is a sudden change in the frequency of EEG signals, which
is measurable by applying frequency-domain methods, e.g, using Fourier Transform (FT). One
can used either parametric or non-parametric methods to estimate the power spectrum using FT.
Welch (a non-parametric) method, a modified version of widely used periodogram method, is
generally used for the estimation of Power Spectrum Density (PSD). But this has a disadvantage
of spectral leakage and is overcome by employing parametric methods. Parametric methods
provide better frequency resolution by assuming the EEG signal is stationary random process.
Moving Average (MA), Auto-regressive (AR) and Auto-Regressive Moving Average (ARMA) are
commonly applied parametric methods.

Time-frequency domain methods

Above mentioned time-domain and frequency-domain methods have limitations of providing
exact frequencies involved in a particular time instant and the information of time moment
respectively. To overcome these limitations, Wavelet Transform (WT), a time-frequency based
analysis technique, is widely used to obtain multi-resolution decomposed sub-band signals by
passing the EEG signal through filter bank.

Non-linear methods

Non-linear analysis methods are applied to detect the coupling among harmonics in signal’s
spectrum. High Order Spectra (HOS), various measures of entropy e.g, Approximate Entropy (ApEn);
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Kolmogorov entropy; Sample entropy, along with the Hurst exponent, Largest Laypunov Exponent (LLE)
are widely used non-linear parameters for EEG analysis. Entropy and LLE are commonly used
as features for epilepsy classification.

1.4 EEG and Epileptic Seizures

ES are related to the electrical activity of the brain. therefore, EEG is the most effective way
to determine the epileptogenic cortex. Since EEG can detect any abnormal brain activity, it is
mainly used for epilepsy diagnosis and seizure analysis. Figure 1.9 show the EEG signal of a
patient that has experienced a seizure. It is evident that a seizure can be visually distinguished
from a normal brain signal [17]

Figure 1.9: Example of normal and seizure EEG recording [17]

1.4.1 EEG in Epilepsy Diagnosis

Epilepsy may develop because of any abnormality in brain wiring, an imbalance of nerve signal-
ing chemicals called neurotransmitters, or some combination of these factors. Figure 1.10 show
an image of abnormal electrical impulses during a seizure. Neurons normally generate electro-
chemical impulses that act on other neurons, glands, and muscles to produce human thoughts,
feelings and action. In epilepsy, the normal pattern of neuronal activity becomes disturbed,
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causing strange sensations, emotions and behaviours [18]. EEG is an essential component for the

Figure 1.10: An illustration of abnormal electrical impulses during a seizure

diagnosis and analysis of epilepsy [19]. EEG continues to play a central research role in the diag-
nosis and management of patients with seizure disorders. One of the main reasons behind this is
a convenient and relatively inexpensive way to demonstrate the physiological manifestations of
abnormal cortical excitability that underlies epilepsy. The seizure can encompass a discrete part
of the brain partial or the complete cerebral mass generalized.

1.4.2 EEG Signal Analysis for Epilepsy

The recorded EEG represents electrical activity produced by firing of neuron within the brain
along the scalp. When epilepsy is present, seizure activity will appear as rapid spiking waves on
the EEG. Epileptic activity can create clear abnormalities on a standard EEG. Epilepsy leaves its
signature in the EEG signals [20]. EEG signals recorded, before and during a seizure, contains
characteristics that can be used to identify the different stages of an epileptic seizure, and the
pre- and post-seizure periods. These stages are briefly described bellow [21]:

1. Pre-ictal State: A pre-ictal state becoms apparent during a said time period before the
occurrence of a seizure and does not occur at the rest of the times. It might not necessarily
be visually apparent. However, it will reflect changes in the underlying signals and would
be predictive of seizures within a specific range of values. For a pre-ictal state to be of use
clinically in a warning system, it has to be detected early enough so that the time under
false warning is minimised.

2. Ictal and Interictal State: The ictal state is a change in EEG signals during a seizure and
interictal is the stage between two following seizure onsets. For the same person, the
number of epileptogenic neurons, cortical region, and the span of seizure can be altered.
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3. Post-Ictal State: This state is after the occurrence of a seizure.

The wave pattern may hold valuable information about brain activity. Experienced neurolo-
gists can detect disorders by visually observing the EEG signals. However, this procedure is
time-consuming and is prone to faulty detection due to high temporal and spatial aspects of
the dynamic non-linear EEG data. Therefore, computerized techniques, EEG signal parameters
extraction, and analysis can be profoundly beneficial in the diagnostics.

1.5 Seizure Detection and Prediction

Seizure anticipation (or warning) can be classified into two broad categories:

• Seizure detection: in which the goal is to use EEG data to identify seizure onset, which
typically occurs a few seconds in advance of the observed behavioral changes or during the
period of early clinical manifestation of focal motor changes or loss of patient awareness.

• Seizure prediction: in which the aim is to detect preictal changes in the EEG signal that
typically occur minutes to hours in advance of an impending epileptic seizure.

In seizure detection, since the aim of these algorithms is causally identify an ictal state, the
statistical robustness of early detection algorithms is very high [22], [23]. The practical utility of
these schemes in the development of an online seizure abatement strategy depends critically on
the few seconds of time between the detection of an EEG seizure and its actual manifestation in
patients in terms of behavioral changes.
In seizure prediction, the effectiveness of seizure prediction techniques tends to be lower in terms
of statistical robustness. This is because the time horizon of these methods ranges from minutes
to hours in advance of an impending seizure and because the preictal state is not well-defined
state across multiple seizures and across different patients.

1.6 Problem Formulation

The EEG can be conceptualized as a series of numerical values (voltages) over time and space
(gathered from multiple electrodes). Such a series is called a multivariate time series. Before
introducing the problem formulation, let us go through some formal definitions [24].

Definition 1 A univariate time series X = [x1, x2, ..., xT] is an ordered set of real values. The length of
X is equal to the number of real values T.

Definition 2 An M-dimensional multivariate time series, X = [X1, X2, ..., XM] consists of M different
univariate time series with Xi ∈ RT

27



Then a seizure prediction methodology can be defined as follows, a preictal duration is pre-
selected to categorize EEG signals in preictal and interictal states and a binary classifier is trained
to exploit differences between the two states. The ictal segments cannot contribute to seizure pre-
diction and are discarded from the analysis; including postictal segments, if they are considered
as a separate state. Therefore the problem can be treated as a Time Series Classification (TSC).
Let us see another formal definition [24]:

Definition 3 A dataset D = (X1, Y1), (X2, Y2), ..., (XN , YN) is a collection of pairs (Xi, Yi) where Xi

could either be a univariate or multivariate time series with Yi as its corresponding one-hot label vector.
For a dataset containing K classes, the one-hot label vector Yi is a vector of length K where each element
j ∈ [1, K] is equal to 1 if the class of Xi is j and 0 otherwise.

The task of TSC in our case consists of training a classifier (binary classifier) on a dataset D
in order to map the space of possible inputs (preictal or interictal segments) to a probability
distribution over the class variable values (preictal or interictal states). A general framework for
TSC is depicted in Fig 1.11, where K is equal to 2 in our problem.

Figure 1.11: A unified framework for time series classification [24]

As the final goal of a seizure prediction system is to raise an alarm in advance of the seizure
onset, it is not trivial to show how this system should be evaluated. A perfect prediction method
indicates the exact point in time when a seizure occurs. In practical applications, a predictor
anticipates a duration of the high probability of occurrence of seizure. The uncertainty can be
considered by use of the Seizure Occurrence Period (SOP), which defined as a time duration in
which there is a possibility of seizure. In addition, to permit intervention, a minimum window
of time between the alarm raised by the prediction method and the beginning of SOP is essential.
This window is called the Seizure Prediction Horizon (SPH). Note that the definition of SOP and
SPH used in this work was proposed in [25] as these two parameters are not unifiedly defined in
the literature. In Fig 1.12 the concept of SPH and SOP is illustrated.
For a correct prediction, a seizure onset must be is after the SPH and within the SOP. Likewise, a
false alarm rises is when the prediction system returns a positive but there is no seizure occurring
during SOP. When an alarm rises, it will last until the end of the SOP. Regarding clinical use,
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Figure 1.12: Definition of a seizure occurrence period (SOP) and seizure prediction horizon (SPH)

SPH must be long enough to allow sufficient intervention or precautions. SPH is also called
intervention time. In contrast, SOP should be not too long to reduce the patient’s anxiety.
To recap, the epileptic seizure prediction problem consists of a binary classifier which assigns a
preictal/interictal label for each segment of EEG signals, and that given SPH and SOP. Thus, we
need to set a sufficient performance and quality check to compare different techniques. Then the
evaluation can be done for both segment-based and event-based:

Segment-based evaluation The classification given to a particular EEG segment can be placed
into one of four categories, where the positive class is attributed to the preictal state and the
negative class to the interictal state :

• True Positive (TP): an algorithm correctly classifies a preictal segment of an EEG as being
in the preictal state

• True Negative (TN): an algorithm correctly classifies an interictal segment of an EEG as
being in the interictal state

• False Positive (FP): an algorithm incorrectly classifies an interictal segment of an EEG as
being in the preictal state

• False Negative (FN): an algorithm incorrectly classifies a preictal segment of an EEG as
being in the interictal state

To estimate the prediction performance based on the definition above, the following metrics can
be defined as follows:

Sensitivity =
TP

TP + FN
(1.1)

Speci f icity =
TN

TN + FP
(1.2)

Event-based evaluation Osorio et al. proposed sensitivity and False Positive Rate (FPR) as
performance parameters of ES predictors [26]. Sensitivity is defined as the number of successfully
predicted seizures by detecting at least one preictal EEG segment and FPR declares the false
alarm generation rate as the number of false positives per hour of EEG recordings.
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1.7 Machine Learning for Epileptic Seizure Prediction

Machine Learning (ML) has revolutionized the seizure prediction field offering tools to address
the high complexity of EEG signals and allow multivariate analysis and feature spaces of higher
order to be easily evaluated to distinguish hidden preictal characteristics. Figure 1.13 shows the
classical ML methodology for the epilepsy prediction and also highlight the major difference
between the use of ML and DL technique. Basically one can give the raw data or minimally
processed data (i.e., without extraction of features from the raw data) to a DL model for pattern
learning [27]

Figure 1.13: Process of epilepsy prediction using EEG data and classification algorithm [27]

Signal Processing Noise and artifact identification is a crucial procedure in raw biomedical
signals. To reduce the influence of these artifacts in feature extraction, filtering of these artifacts
is needed. Multiple techniques have been employed for filtering e.g. band-pass filter, wavelet
filter, finite impulse response filter, and adaptive filter. This processing is also performed to
normalize the data to make it comparable with the recording of other patients. There are also
many data dropouts or corrupted data in the EEG recording due to limitations of implanted
electrodes which lead to the insignificant performance of algorithms. Due to muscle artifacts and
environmental noise, there also exist some outliers in data. The presence of these outliers badly
influences the extracted features.

Feature Extraction and Selection All prediction models need reliable features, well correlated
with preictal and interictal stages. One can categorize these features based on the number of
EEG channels as univariate (measures taken on each EEG channel separately) and multivariate
(measures taken on two or more EEG channels) features. Further categorization of each of these
is as linear or nonlinear features. Florian et al. compared the performance of univariate and
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bivariate measures containing both linear and non-linear strategies for ES prediction [28]. They
noted that while using univariate measures, preictal variations transpired 5-30 min before ES
onset. While bivariate measures performed better by capturing preictal changes at least 240 min
before an ES onset. Figure 1.14 shows some of the linear and nonlinear measures used in the
literature for ES prediction. Linear measures performed better or sometimes similar to nonlinear
measures.

Figure 1.14: Feature classification based on number of channels of EEG data

Classification Identification of preictal and interictal patterns from EEG data is carried out
using ML algorithms,e.g, Artificial Neural Network (ANN), k-means clustering, decision trees,
Support Vector Machine (SVM), and fuzzy logic. Mostly threshold-based on features values are
utilized to make conclusions. However, ML-based studies broadly focused on the extraction of
optimized features for prediction.
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1.8 Deep Learning Basics

Since we are not interested in using classical machine learning algorithms for this problem, we
will discuss the basics of deep learning models to get an intuition about how they work. Deep
learning is a subfield of machine learning concerned with algorithms inspired by the structure
and function of the brain. It takes the advantage of learning feature hierarchies where features
from higher levels of the hierarchy formed by the composition of lower level features. Its archi-
tecture is composed of multiple processing layers that allows it to learn representations of data
with multiple levels of abstraction.

1.8.1 Artificial Neural Networks

Artificial neural networks, or simply neural networks (NN), are a type of machine learning
models that are inspired by human neural networks. The structure of NN is similar to the one
of our brain, which has neurons and connections between them to transmit electrical impulses.
Each neuron is optimized to receive information from other neurons, process this information
in a unique way, and send its result to others cells. Relying on the functional behavior of the
biological neuron, we can define a computing unit that is referred to as the artificial neuron. The
artificial neuron is the basic unit of what is called neural networks. Mathematically, it can be
represented as a function that takes some number of inputs x1, x2, ..., xm, each of these inputs
have a corresponding weight w1, w2, ..., wm. The weighted sum of inputs plus the bias term form
the linear part of the transformation producing z, followed by the non-linear part producing the
output of the neuron y, which is the application of the activation function. The purpose of bias
is to actually shift your activation function to the left and to the right regardless of the inputs to
better fit the data.

z =
m

∑
i=1

wixi + b (1.3)

y = f (z) (1.4)

Figure 1.15 illustrates the concept of a single neuron. Many activation functions have been pro-
posed in the literature and will be discussed in next paragraphs. Note that in some cases, the
activation function may be linear (e.g. regression problems). Using linear algebra, we can rewrite
the two equation in a simple way. We can write the inputs x1, x2, ..., xm in a vector X and the
weight w1, w2, ..., wm in a vector W . To compute the output, we have to take the dot product of
the two vectors and then apply the non-linearity.

y = f (wTx + b) (1.5)
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Figure 1.15: Schematic for an artificial neuron

We can now move to understand the neural network architecture, as the idea of a neuron is basic
but essential. A simplified version of neural networks is represented as a layered organization
of neurons with connections to others neurons. The input layer is represented by the input data,
the output layer is the last one that process data and returns results of the entire model, while
all the layers in between are called hidden layers. These hidden layers transform the data from a
layer to another and send the processed information to the next layer. They are what makes the
network deep. This characteristic of the network is what popularised the term ”Deep Learning”
which is the field of study associated with everything related to ANNs. The following diagram
1.16 represents a typical network’s structure.

Figure 1.16: Neural Network with N hidden layers [29]
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1.8.2 Activation functions

As discussed above, the activation function is one the building blocks of neural networks. We
know that it the second transformation of each neuron after the linear part and it is a non-
linear function in order to help the model to learn complex patterns. If we use linear activation
functions in a deep neural network, no matter how deep our network is, it will be equivalent to
just a linear neural network with no hidden layers because those linear activation functions can
be combined to form another single linear function. In other words, A neural network without
an activation function is essentially just a linear regression model. Thus we use a non linear
transformation to the inputs of the neuron and this non-linearity in the network is introduced by
an activation function. In this section we will see the most common activation function:

Sigmoid function It is one of the most widely used non-linear activation functions. It has
been used for predicting probability based output and has been applied successfully in binary
classification problems. It is defined by :

f (x) =
1

1 + e−x (1.6)

The sigmoid function translate the input in range [−∞ + ∞] to the range [0, 1]. The function is
monotonically increasing and continuously differentiable. For small values of x, it is closer to 0.
Conversely, for the bigger is x, the closer is to one.

Figure 1.17: Graph of the Sigmoid function .

Tanh Tanh function uses a similar kind of S-shaped non-linearity like the sigmoid function,
but instead of ranging from 0 to 1, the output of tanh ranges from −1 to 1. It is defined by the
following equation:

f (x) =
ex − e−x

ex + e−x (1.7)

The graph of this function is represented in Figure 1.18.
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Figure 1.18: Graph of the tanh function.

ReLU The ReLU (Rectified Linear Unit) activation function performs a threshold operation to
each input element where values less than zero are set to zero and returns the identity output
otherwise.

f (x) = max(0, x) (1.8)

The main advantage of ReLU is the computation power is faster since it does not calculate expo-
nents and divisions, which makes it the neuron of choice for many tasks. Figure 1.19 shows the
output of a ReLU neuron as x varies:

Figure 1.19: Graph of the ReLU function.

Softmax activation function The Softmax activation function outputs a vector representing a
probability distribution over a set of mutually exclusive labels. It differs from other activation
functions that we have seen before because the output of each individual neuron in the layer
associated with it depends on the output of the rest of the neurons of the same layer. This
dependency is the result of the law of probability that requires the sum of all outputs to be equal
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to 1. This is achieved by normalizing z and setting the output of the neuron to:

yoi =
ezi

∑j ezj
(1.9)

A good prediction would have one of the entries of the output vector close to 1, whereas the
remaining entries are close to 0. Contrariwise, a bad prediction would have multiple possible
labels roughly equal to the same value. Therefore, Softmax is used specifically for the output
layer of the network.

1.8.3 Feed-forward Neural Networks

Deep feed-forward networks , also called feed-forward neural networks, or dense neural net-
works, are the core of deep learning models. The goal of a feed-forward network is to approx-
imate some function f . It defines a mapping y = f (x; ω) and learns the value of parameters ω

that result in the best function approximation. They are called feed-forward because informa-
tion only travels forward in the network (no loops), first through the input nodes, then through
the hidden nodes (if present), and finally through the output nodes. The network is also called
fully-connected because the output of each neuron in one layer is sent as input of each neuron in
the next layer, so there is a direct connection between all the neurons belonging to subsequent
layers. Figure 1.20 shows an example of a simple version of a feed-forward neural network with
one hidden layer, making visible the full interconnection between subsequent layers.

Figure 1.20: Example of dense neural network

In common notations, superscript [l] denotes the lth layer and subscript (k) or (j) denotes the
kth node (neuron) in a layer. Thus, between the jth neuron in the lth layer and the kth neuron in
the (l − 1)th layer, there is a connection that has a weight of w[l]

j,k associated with it. The general
activation formula for each neuron is bellow, where f [l] is the activation function of the lth layer:

a[l]j = f [l](∑
k

w[l]
j,ka[l−1]

k + b[l]j ) = f [l](z[l]j ) (1.10)
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Following these notations and using a vectorized implementation, the feed-forward steps for the
network represented in Fig 1.20 are the following equations (x is the input vector):

a[0] = x (1.11)

z[1] = W [1]a[0] + b[1] (1.12)

a[1] = f [1](z[1]) (1.13)

z[2] = W [2]a[1] + b[2] (1.14)

a[2] = f [2](z[2]) (1.15)

1.8.4 Cost Function

Given a data example formed by the pair (x(i), y(i)) where x(i) is the network’s input and y(i) is
the desired output, and suppose some values (for the moment) for weights and biases (w,b), we
can get the forward step using the equations above. The output of the network is the activation
of the last layer and it is called the predicted value of the model , denoted as ŷ or o for output. To
train the parameters w and b, we need to define a cost function as our goal is to get ŷ(i) equal to
y(i).
The loss function or error function measures the discrepancy between the prediction ŷ(i) and the
desired output ŷ(i). Loss function is a method of evaluating ”how well your algorithm models
your example”. If your prediction is far from the desired output, your loss function will output
a higher number. Conversely, if it is pretty good, you will get a lower number. Whereas, the cost
function is the average of the lost function of the entire training set.

”The cost function reduces all the various good and bad aspects of a possibly complex
system down to a single number, a scalar value, which allows candidate solutions to
be ranked and compared[30].”

Generally, cost and loss functions are synonymous and can be used interchangeably, however the
cost function can contain regularization terms (see subsection 1.8.7) in addition to loss function.

”The function we want to minimize or maximize is called the objective function or
criterion. When we are minimizing it, we may also call it the cost function, loss
function, or error function [31].”

Neural networks are trained using an optimization process that requires a cost function to calcu-
late the model error. Many types have been proposed for different models including regression
problems and classification problems (binary classification or multi-class classification).

Regression Problem A regression problem is a model that predicts a real-value quantity, where
the output layer is composed of one node with a linear activation unit. The very common cost
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function for this type is the Mean Square Error (MSE). It is defined as follows, where m is the
number of training examples:

MSE =
1
m

m

∑
i=1

( y(i) − ŷ(i)) 2 (1.16)

Binary Classification Problem In this case, the model is expected to classify an example as
belonging to one of two classes. The model’s output layer consists of one node with a sigmoid
activation unit. The cost function is called cross-entropy, and is defined as follows:

J(ω, b) =
1
m

m

∑
i=1

L( ŷ(i), y(i)) (1.17)

=
1
m

m

∑
i=1

[ y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))] (1.18)

Multi-class Classification Problem This is a problem where the model classifies an example
as belonging to one of more than two classes. The last layer is configured such as one node for
each class using the softmax activation function. It is just the extension of binary classification
problem. For most time, a multi-class cross-entropy loss is used as a cost function for this type.
We denote by C the number of classes, which the length of the one-hot encoded output vector y:

L( ŷ(i), y(i)) = −
C

∑
j=1

y(i)j logŷ(i)j (1.19)

J(ω, b) =
1
m

m

∑
i=1

L( ŷ(i), y(i)) (1.20)

1.8.5 Optimizers

We have seen in the last section that the cost function is a measure of the difference between
the actual output and the predicted one. Then our goal is to minimize the cost function by
finding the optimized value for weights and biases. The minimization process is insured by an
optimization algorithm. Optimization is a big part of machine learning. Almost every machine
learning algorithm has an optimization algorithm at it’s core.
For Optimization is an iterative process where parameters are updated at each step in order to
minimize the cost function. Many optimizers have been developed for deep learning’s training
such as Stochastic Gradient Descent [32], [33], [34], Adagrad Gradient Descent [35]. For this
project, the optimizer that has been used for all the models is the Adaptive Moment Estimation,
known as the Adam optimizer [36].
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Adam Optimizer Adam is one of the most popular and used optimizers in deep learning. It is
an extension to the well-known stochastic gradient descent algorithm. The algorithm was presented
in 2015 in a paper titled ”Adam: A Method for Stochastic Optimization”. It is based on two other
extensions of stochastic gradient descent:

• Adaptive Gradient Algorithm (AdaGrad) is an adaptive learning rate method. In Adagrad
we adopt the learning rate to the parameters. We perform larger updates for infrequent
parameters and smaller updates for frequent parameters.

• Root Mean Square Propagation (RMSprop) tries to resolve Adagrad’s radically dimin-
ishing learning rates by using a moving average of the squared gradient. It utilizes the
magnitude of the recent gradient descents to normalize the gradient.

Adam realizes the benefits of both AdaGrad and RMSProp. Instead of adapting the parameter
learning rates based on the average first moment (the mean) as in RMSProp, Adam also makes
use of the average of the second moments of the gradients. Therefore, this optimizer stores two
moments: the first moment mt (the mean), which is estimated as the exponentially decaying
average of past gradients, and the second moment vt, which is estimated as the exponentially
decaying average of past squared gradients. They are computed as follows:

mt = β1mt−1 + (1− β1)gt (1.21)

vt = β2vt−1 + (1− β2)g2
t (1.22)

where gt is the gradient, t the timestep and (β1, β2) are optimizer’s decay rates. Since mt and vt

are initialized as zero-vectors, we need to set a bias-correction:

m̂t =
mt

1− βt
1

(1.23)

v̂t =
vt

1− βt
2

(1.24)

Finally, the Adam update rule for model’s weights is the following formula:

θt = θt−1 − α.
m̂t√

v̂t + ε
(1.25)

where θ is the model parameters (weights and biases) and α is the learning rate. According to
the paper, the good default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.
Sebastian Ruder publishes a review of different variations of gradient descent optimization algo-
rithms [37]. In his section ”Which optimizer to use ?”, he recommends using Adam:

Insofar, RMSprop, Adadelta, and Adam are very similar algorithms that do well in
similar circumstances. [. . . ] its bias-correction helps Adam slightly outperform RM-

39



Sprop towards the end of optimization as gradients become sparser. Insofar, Adam
might be the best overall choice [37].

1.8.6 Neural Network’s training process

During this learning phase, the network learns by adjusting the parameters so as to be able to
predict the correct class label of input samples. The model parameters, in this case, refer to the
weights and biases of each layer. First of all, the parameters are initialized. Many initialization
schemes have been proposed in the literature [38] [39]. One common initializer that is used in
this project is called Xavier Initializer [40]. Then, the feed-forward neural network is used to
accept an input x and produce an output ŷ, information flows forward through the network as
explained in section (1.9.3). The input x provides the initial information that then propagates up
to the hidden units at each layer and finally produces ŷ. This is what is called forward propagation.
With these outputs ŷ, and knowing the actual value of the output y, the cost function can be
computed as described in section (1.9.4), which produces a scalar cost J(ω, b). After that, the
error measured by the cost function is propagated through each layer in reverse order to compute
the error contribution from each neuron’s connection, until it reaches the input layer. This step
allows the information from the cost to then flow backward through the network to compute the
gradient. This phase is called the back-propagation algorithm, often simply called backprop. The
model parameters are then updated by an optimizer algorithm such as Adam described above,
using the gradients.

Actually, back-propagation refers only to the method for computing the gradient,
while another algorithm, such as stochastic gradient descent, is used to perform learn-
ing using this gradient [31].

When all the weights and biases have been successfully updated, the whole process is repeated
for another incoming batch, until all the training dataset has been entirely traversed, in which
case, one epoch of training is achieved. The back-propagation algorithm represents the core of
the learning process of a neural network, since it is the procedure to update the model’s learnable
parameters. It uses the Chain Rule of calculus to compute the derivatives of the cost function with
respect to different neurons of each layer in an efficient way.
Training a neural network with back-propagation involves choosing a number of components
and hyperparameters:

• Cost function The function used to estimate the performance of a model with a specific set
of weights on examples from the training dataset.

• Weight Initialization The procedure by which the initial small random values are assigned
to model weights at the beginning of the training process.
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• Batch size The number of examples used to estimate the error gradient before updating the
model parameters.

• Learning Rate The amount that each model parameter is updated per cycle of the learning
algorithm.

• Epochs The number of complete passes through the training dataset before the training
process is terminated.

1.8.7 Regularization

The central challenge in ML as well as DL is that our algorithm must perform well on new, previ-
ously unseen inputs, not just those on which the model was trained. The ability to perform well
on unobserved inputs is called generalization. In the evaluation process of a machine learning
model, first we have access to the training error, the error measured on the training set. We try to
minimize this error as possible using an optimization algorithm. However, what separates ma-
chine learning from optimization is that we want the generalization error, also called the test error,
to be low as well. Deep learning models generally have a huge amount of parameters that leads
sometimes to the overfitting of training set. Overfitting occurs when the gap between the train-
ing error and test error is too large. To solve this problem, there exist several techniques called
regularization methods [41]. The regularization techniques used in this project are the dropout and
the early stopping.

Dropout Dropout is probably the most common regularization technique in the deep learning
era. According to Wikipedia [42], the term “dropout” refers to dropping out units (both hidden
and visible) in a neural network. By dropping a unit out, we mean temporarily removing it
from the network, along with all its incoming and outgoing connections. Thus, this unit is not
considered during a particular forward and backward pass [43].
Dropout regularization is a computationally cheap and a simple way to regularize a deep neural
network. During the training process, we go through each of the layers of the NN and set some
probability p of eliminating a node. The probability p represents the dropout rate, that is the
fraction of nodes to ignore. Figure 1.21 shows a dropout neural network model. The intuition
behind dropout is that the model can’t rely on any one feature, because if an essential neuron is
ignored, then it is not able to perform well. Thus, the model has to spread out weights. Dropout
forces a neural network to learn more robust features that are useful in conjunction with many
different random subsets of the other neurons. This technique randomly knocks out units in
your network, so it is as if on every iteration you are working with a smaller network which is
less prone to overfitting.
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Figure 1.21: Illustrated example of dropout [43]

Early Stopping The number of epochs is a training’s parameter that should be fixed as men-
tioned is section (1.9.6). Too many epochs can lead to overfitting of the training dataset, whereas
too few may result in an underfit model. Early stopping is a method that allows you to specify
an arbitrarily large number of training epochs and stop training once the model performance
stops improving on data outside of the training set. Figure 1.22 illustrates this behaviour.

Figure 1.22: Illustration of early stopping

This means we can obtain a model with better validation set error (and thus, hopefully better test
set error) by returning to the parameter setting at the point in time with the lowest validation set
error [44].
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1.8.8 Convolutional Neural Networks

Convolutional Neural Network (CNN), also known as ConvNet, are a class of deep, feed-forward
(not recurrent) artificial neural networks that are applied to analyzing data that has a known
grid-like topology. Examples include time series in 1-D, image data in 2-D, video data in 3-D. In
1995, the concept of Convolutional Neural Networks was introduced by Yann LeCun et al. [45].
The name “convolutional neural network” indicates that the network employs a mathematical
operation called convolution. CNN have been demonstrated very high performance on complex
computer vision and natural language processing tasks. They work very well on visual problems
such as image classification [46], object detection [47], [48], neural style transfer [49], [50]. The
CNN building blocks are convolution layer, pooling layer and fully-connected layer.

Convolution layer Convolutional layer is the major building blocks used in convolutional neu-
ral networks. It is used fundamentally for feature extraction. It is generally computed using a
linear part (convolution operation) followed by an activation function (non-linear part). A con-
volution is the simple application of a filter to an input that results in an activation. Repeated
application of the same filter to an input results in a map of activations called a feature map,
indicating the locations and strength of a detected feature in an input, such as an image.

Figure 1.23: An illustration of a convolution operation

Pooling Layer Another important element of a convolutional neural network is the pooling
layer. A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. The goal of a pooling layer is to subsample the input in order to
reduce its dimensionality. This has the effect of making the resulting down sampled feature maps
more robust to changes in the position of the feature in the image, referred to by the technical
phrase local translation invariance. Two common pooling methods are average pooling and max
pooling that summarize the average presence of a feature and the most activated presence of
a feature respectively. Figure 1.24 depicts an example of a matrix that get down-sampled by
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pooling its elements using either max pooling or average pooling:

Figure 1.24: Top-right: max pooling, bottom-right: average pooling.

Fully-connected Layer This layer forms the last block of the CNN architecture. This is essen-
tially a Fully connected Simple Neural Network, consisting of two or three hidden layers and an
output layer. It can be viewed as the final learning phase, which maps extracted visual features
to desired outputs. fully-connected layers are used to create final non-linear combinations of
features and for making predictions by the network. It is usually adaptive to classification/en-
coding tasks. Also, it is common to pass this layer through softmax to represent the confidence
of classification.

Figure 1.25: An illustration of a fully-connected layer

Batch Normalization Batch normalization is one of the reasons why deep learning has made
such outstanding progress in recent years. It has the effect of dramatically accelerating the
training process of a neural network, and in some cases improves the performance of the model
via a modest regularization effect. It solves a problem called internal covariate shift, which occurs
when there is a change in the input distribution of feature maps. This can cause the learning
algorithm to forever chase a moving target. Sergy Ioffe et al. [51] proposed this technique for
training very deep neural networks that standardizes the inputs to a layer for each mini-batch,
which has the effect of stabilizing the training process and reducing the number of learning
epochs. During training time, the batch normalization layer performs the following:
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1. Calculate the batch mean µB and batch variance σ2
B of the input tensor with m elements:

µB =
1
m

m

∑
i=1

xi

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2

2. Normalize the input tensor’s elements using the previously calculated batch statistics:

x̄i =
xi − µB√

σ2
B + ε

where ε is a small constant used to avoid division by zero (usually 10−5)

3. The output tensor elements of the layer are shifted and scaled versions of the input tensor
elements:

yi = γx̄i + β

γ and β are learned during training along with the other parameters of the model.

Putting it together Now that we know about the building blocks discussed in the above sub-
sections, we can hang them together to form a simple convolutional network. The way the layers
are connected to each other differs from a model to another depending on its use. Very common
architecture that is used for image classification task is the following, the input image go through
a series of convolutional layers, pooling layers, fully connected layers, and in the end, a softmax
function is applied to classify an object by delivering a probability vector. Figure 1.26 illustrates
a typical CNN architecture designed for images classification. It comprises a feature extraction
block composed of convolutional layers and a classification block that contains fully connected
layers.

Figure 1.26: Convolutional neural network architecture .
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1.8.9 Recurrent Neural Network

Recurrent Neural Network (RNN) are a type of neural networks for processing sequential data.
They are called recurrent not feed-forward because the outputs from previous time steps are fed
as input to the current time step. RNN have the advantage of processing sequences of variable
length. Many complex problems have been solved using RNN such as machine translation [52],
speech recognition [53], image captioning [54] and music generation [55].
RNN are very effective for time series classification and other sequence tasks because they have
”memory”. They can read inputs x〈t〉 (such as words) one at a time, and remember some infor-
mation/context through the hidden layer activations that get passed from one time-step to the
next. This allows a unidirectional RNN to take information from the past to process later inputs.
A bidirectional RNN can take context from both the past and the future. Figure 1.27 illustrates the
forward propagation for a simple recurrent neural network. At each time t, each neuron receives
both the input x〈t〉 as well as the entire layer’s output y〈t−1〉. In this example, the RNN model
has equal length for both inputs and outputs Tx = Ty, which is not necessary.

Figure 1.27: Basic RNN model

One of the most relevant features of recurrent neural networks is the the ability to handle arbi-
trary length inputs and outputs. This flexibility allows us to define a large variety of architectures
to solve different problems. Figure 1.30 shows general architectures used for various sequence
learning tasks. Note that for simplicity, we will continue presenting RNN models where Tx = Ty.

Figure 1.28: Different types of RNNs
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RNN Cell A recurrent neural network can be seen as the repeated use of a single cell. Figure
1.29 describes the operations for a single time-step of an RNN cell. The activation a〈t〉 that is
passed to the RNN from one time step to another is called a hidden state. Each cell takes two
inputs at each time step:

• a〈t−1〉 the hidden state from the previous cell.

• x〈t〉: The current time-step’s input data.

It has two outputs at each time step:

• A hidden state (a〈t〉)

• A prediction (y〈t〉)

The hidden state is computed with tanh activation using the following equation, where Waa and
Wax are weight matrices, and ba is a bias vector:

a〈t〉 = tanh(Waaa〈t−1〉 + Waxx〈t〉 + ba) (1.26)

The new hidden state a〈t〉 can be used for different connections depending on the model archi-
tecture. In this case, it is used to compute the output prediction as follows, where Wya is a weight
matrix and by is a bias vector:

ŷ〈t〉 = so f tmax(Wyaa〈t〉 + by) (1.27)

Figure 1.29: Basic RNN cell

RNN Network A recurrent neural network is a repetition of the RNN cell that we have just
discussed. If our input sequence of data is 10 time steps long, then we will re-use the RNN
cell 10 times. A very important characteristic of RNN models is that the weights and biases
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(Waa, ba, Wax, bx) are re-used each time step. Figure 1.30 depicts an illustration of a basic RNN
models, where the input sequence x = (x〈1〉, x〈2〉, ..., x〈Tx〉) is carried over Tx time steps. The
network outputs y = (y〈1〉, y〈2〉, ..., y〈Tx〉).

Figure 1.30: Basic RNN model

1.8.10 LSTM-based RNN

The standard RNN model presents some drawbacks. Fisrt, when the network is trained for
long sequences, it suffers from the vanishing [56] /exploding [57] gradient problems, leading to
convergence issues in the training procedure. Moreover, the RNN works best when each output
ŷ〈t〉 can be estimated using local context. Local context refers to information that is close to the
prediction’s time step t. We could consider the RNN to have a short-term memory, which is not
optimal when we need to predict events based on long sequence of time steps. To address these
problems, we introduce more complex model called Long Short-Term Memory (LSTM) network
[58]. The LSTM will be better able to remember a piece of information and keep it saved for
many timesteps.

LSTM cell Figure 1.31 shows the operations of an LSTM cell. While the standard RNN cell
contains only a single computational unit as shown in fig 1.29, the LSTM cell contains four
interacting blocks (or layers), each one have a well-defined purpose. These units are discussed
bellow:

• Forget gate Γ f The forget gate is a tensor containing values that are between 0 and 1. If a
unit in the forget gate has a value close to 0, the LSTM will forget the stored state in the
corresponding unit of the previous cell state c〈t−1〉. If a unit in the forget gate has a value
close to 1, the LSTM will mostly remember the corresponding value in the stored state
c〈t−1〉. It is computed as follows:

Γ
〈t〉
f = σ(W f [a〈t−1〉, x〈t〉] + b f )
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Figure 1.31: LSTM cell

• Candidate value c̃〈t〉 The candidate value is a tensor containing information from the cur-
rent time step that may be stored in the current cell state c〈t〉. Which parts of the candidate
value get passed on depends on the update gate. The candidate value is a tensor containing
values that range from -1 to 1 , and computed by the following equation:

c̃〈t〉 = tanh
(

Wc[a〈t−1〉, x〈t〉] + bc

)
(1.28)

• Update gate Γi We use the update gate to decide what aspects of the candidate c̃〈t〉 to add
to the cell state c〈t〉. The update gate decides what parts of a candidate tensor c̃〈t〉 are passed
onto the cell state c〈t〉. It is a tensor containing values between 0 and 1. When a unit in
the update gate is close to 1, it allows the value of the candidate c̃〈t〉 to be passed onto the
hidden state c〈t〉. When a unit in the update gate is close to 0, it prevents the corresponding
value in the candidate from being passed onto the hidden state. The update gate has the
following equation:

Γ
〈t〉
i = σ(Wi[a〈t−1〉, x〈t〉] + bi) (1.29)

• Cell state c〈t〉 The cell state is the memory that gets passed onto future time steps. The
new cell state c〈t〉 is a combination of the previous cell state and the candidate value. The
following equation is used to compute the cell state, where we denote by ∗ the element-wise
product :

c〈t〉 = Γ
〈t〉
f ∗ c〈t−1〉 + Γ

〈t〉
i ∗ c̃〈t〉 (1.30)

• Output gate Γo The output gate decides what gets sent as the prediction (output) of the
time step. It is like the other gates. It contains values that range from 0 to 1, computed by:

Γ
〈t〉
o = σ(Wo[a〈t−1〉, x〈t〉] + bo) (1.31)
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• Hidden state a〈t〉 The hidden state gets passed to the LSTM cell’s next time step. It is used
to determine the three gates (Γ f , Γu, Γo) of the next time step. The hidden state is also used
for the prediction y〈t〉. The hidden state’s equation is:

a〈t〉 = Γ
〈t〉
o ∗ tanh(c〈t〉) (1.32)

• Prediction y〈t〉pred The prediction in this use case is a classification, so we’ll use a softmax.
The equation is

y〈t〉pred = softmax(Wya〈t〉 + by) (1.33)

LSTM Network As discussed before in the basic RNN model, the LSTM neural network has
the form of a chain of repeating modules of LSTM cells. Using the above equations, the LSTM
model is able to preserve important information through time and understand which are the
essential inputs to keep and what to discard. Figure 1.32 represents a basic architecture of an
LSTM network, where always Tx = Ty.

Figure 1.32: LSTM Network

1.9 State-of-the-art DL-based approaches for ES Prediction

ML models for epileptic prediction apply heavily handcraft feature extraction and/or carefully
tailored feature engineering to each patient to achieve very high sensitivity and low false predic-
tion rate for a particular dataset. Features are derived from traditional signal processing methods,
which are given as input to a classification algorithm such as SVM to make prediction. Hence,
it is difficult to produce a generalized automatic system across different patients and different
datasets. On the other hand, DL algorithms proposed a generalized framework and patient-
specific seizure prediction systems, with more robust features. Table 1.1 represents a summary
of DL methods used for epileptic seizure prediction that have been proposed in the literature.
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Table 1.1: Summary of DL methods used for ES prediction

Year Ref
Predictive
characteristics

Database
EEG
Type

No. of
Patients

No. of Seizure
per Patient

Prediction
Time

Sensitivity

CNN

2017
Haider
et al. [59]

Wavelet Transform
MSSM
CHB-MIT

Scalp 47 2.78
8 min
6 min

87.8%

2018
Truong
et al. [60]

STFT
Freiburg
CHB-MIT
American Epilepsy Society

iEEG/
Scalp

28 humans
5 canines

Not mentioned 5 min
81.4%
81.2%
75%

2019
Ramy Hussain
et al. [61]

STFT
Melbourne seizure
prediction competition
dataset

iEEG 3 380 5 min 87.8%

LSTM

2018
Tsiouris
et al. [62]

Various time and
frequency features

CHB-MIT Scalp 24 7.7 15-120 min 99.28%

DCAE + Bi-LSTM

2019
Hisham
et al. [63]

Raw data CHB-MIT Scalp 8 5.37 1 hr 99.72%

1.10 Conclusion

This chapter presented general information regarding epileptic seizure prediction based on deep
learning using EEG signals. It gives the reader the required basics to understand the seizure
prediction systems, starting with epilepsy and EGG, and going through the problem formula-
tion, we gave also the basic foundations of deep learning. In addition, a review of the literature
has been presented. To recap, our goal is build a binary classifier based on deep learning mod-
els that accurately detect the preictal state in an EEG recording, and satisfy the state-of-the-art
performance with minimum preprocessing and feature extraction steps.
The next chapter will present all methods and materials that was used in this project.
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Chapter 2

Materials and Methods

2.1 Introduction

Machine learning strategies are ways of analysing a machine learning problems that will point
us in the direction to the most promising thing to do next. We need them because they allow us
to improve machine learning performance more efficiently by making the correct decision at the
right time. For example, should we train a bigger model or use regularization techniques if we
had a variance problem ?
In this chapter, we describe the environment in which the models were trained and justify the
strategies that were used. The chapter begins by a presentation of hardware tools available in
this project and needed software tools. Then, we presents the iEEE dataset from the American
Epilepsy Society Seizure Prediction Challenge. It is followed by a brief analyzing of the data
with some visual methods. Next, data reduction is proposed using resampling technique in
order to decrease the memory and computational resources. Furthermore, EEG clips are split
into small segment, with overlapping for the preictal state in order to overcome the imbalanced
classification problem. Finally, we will discuss the cross-validation technique used to evaluate
the models and the learning rate tuning using the TensorBoard toolkit.
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2.2 Tools

2.2.1 Hardware Tools

The only available hardware to use for training models in this project was my personal computer
ThinkPad T460s. It uses an Intel processor ”Intel R© CoreTM i5-6200U”. This processor contains
two cores (physical CPU) and four threads ( virtual CPU). It operates at the base frequency
of 2.30 GHz and maximum turbo frequency of 2.80 GHz. It also features 3 MB cache memory.
Ubuntu 18.04 has been used as the operating system for its flexibility in installing others packages.
Another important specification that need to be mentioned is the RAM memory, we only have 8
GB.

2.2.2 Software Tools

For software implementation, this subsection will present the most used tools. Essentially, we
used Python as our programming language combined with its data science and machine learning
libraries like NumPy, SciPy, Matplotlib, sklearn and TensorFlow. For readability and scalability,
we used modular programming paradigm. Each module contains related tasks in order to ac-
complish the full pipeline of seizure prediction. These modules are then called in the main
function. Figure 2.1 presents a list of python files and the number of code lines in each.

Figure 2.1: List of line counts in each python file

For the whole project, Figure 2.2 shows summary of code lines and comment lines.

Figure 2.2: Summary of source code

Python [64] The programming language that has been used along this project is Python v3.7.
Python is an interpreted, object-oriented, high-level programming language with dynamic typ-
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ing. The most advantage of python is that it is easy to learn, clear to read, and simple to write
in. Moreover, python is a general purpose programming language that is used in web develop-
ment (server side), mathematical computing and even embedded systems. In the last few years,
python is becoming the default choice and the most used in the field of data science.

NumPy [65] NumPy is an open source python library and a very powerful tool in scientific
computing. It is based on multidimensional arrays through matrix representation and functions
that operates on arrays. The array object called ndarray is up to 50x faster that traditional Python
list, where most low level operations are written in C. Numpy was used in all the project to
handle and manipulate EEG data;

SciPy [66] SciPy is an open source Python-based library, dedicated for scientific computing,
mathematics, engineering and science. It is a library that uses NumPy arrays as the basic data
structure and proposes modules for different tasks including signal processing, image processing
and calculus. It was used in the preprocessing step such as resampling.

Matplotlib [67] Matplotlib is a plotting library for creating 2-D plots that can be saved as fig-
ures. Its core module is called Pyplot which provides a MATLAB-like interface. Matplotlib is
designed to be as usable as MATLAB with the advantage of being free and open-source. All the
plots in this project have been created using this library.

Scikit-learn [68] Sklearn is the most common general machine learning library. It is built on
the library NumPy for high-performance linear algebra and array operations, and also uses SciPy
and Matplotlib libraries. It features various tools for machine learning related methods including
data preprocessing, feature extraction, feature selection, regression, classification and clustering.

TensorFlow [69] The deep learning framework that was used to build models is TensorFlow
V2.0.1. TensorFlow is an end-to-end open source platform and one of the most popular frame-
works. It lays out a full ecosystem of tools, libraries and community resources that ease building
machine learning models. TensorFlow has APIs available in many languages, but Python API is
the most complete and approved. It was first developed in 2015 by the deep learning artificial
intelligence research team at Google, Google Brain, and then released under the Apache License
2.0 on November 9, 2015. With the new release version 2.0 of TensorFlow, the high level neural
networks API ”Keras” has became the official API for building deep learning models. Keras was
originally a separate library from TensorFlow and designed for fast experimentation with deep
neural nets and is thus simpler [70]. This choice can be convinced by the fact that I master this
library.
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2.3 Dataset

In this project we consider the dataset from the “American Epilepsy Society Seizure Prediction
Challenge”, an international competition organized by National Institutes of Health, the Epilepsy
Foundation, and the American Epilepsy Society [71]. Its goal was to identify the best model for
discriminating preictal and interictal iEEG clips. The iEEG data for the competition was recorded
from 5 dogs with the naturally occurring epilepsy. EEG was sampled from 16 electrodes at 400
Hz, and recorded voltages were referenced to the group average. These recordings span multiple
months up to a year and contain up to a hundred seizures in some dogs. A seizure advisory
system, shown in Fig 2.3, is based on an implantable device (labeled as Figure 1A). It acquires
16 channels of iEEG (Figure 1B) and wirelessly transmits the data to personal advisory device,
which stores it on a flash drive and uploads weekly via the internet to a central data storage site
[72].

Figure 2.3: Seizure advisory system in canines with epilepsy [72]

Seizures are known to occur in clusters, which implies little benefit from forecasting follow-on
seizures. Thus, only leading seizures are included, defined as seizures occurring four hours
or more after another seizure. Interictal data segments were chosen randomly from the whole
iEEG recording so that they are at least at one week before and after any seizure, to avoid
contamination with preictal or postictal signals.
The dataset is organized into ten minute long clips of preictal and interictal activity. These clips
are grouped into one hour sequences ( each six 10-min clips form a sequence), and numbered
sequentially. Preictal data segments are provided covering one hour prior to seizure with a five
minute seizure horizon. (i.e. from 1:05 to 0:05 before seizure onset) as shown in Figure 2.4.
This pre-seizure horizon ensures that seizures could be predicted with enough warning to allow
administration of fast-acting medications.
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Figure 2.4: Example of iEEG signal (only 5 channels) showing 1 hour and 5-min before the seizure

2.4 Performance Evaluation

The required output was a probability of the preictal state for a given EEG segment. To evaluate
performance, organizers used a single evaluation metric called Area Under Curve (AUC).
The Receiver Operating Characteristics (ROC) graph is a technique for visualizing, organizing
and selecting classifiers based on their performance [73]. It is a two-dimensional graph in which
True Positive Rate (TPR) is plotted on the Y axis and False Positive Rate (FPR) is plotted on the
X axis for different thresholds of classification. A ROC graph depicts relative trade-offs between
benefits (true positives) and costs (false positives). The AUC is the area under the (ROC) curve.
It is a metric that ranges from 0 to 1. It can interpreted as the probability that a classifier ranks
a randomly chosen positive instance higher than a randomly chosen negative one. A random
classifier has an AUC of 0.5, whereas the maximum is 1 (see Fig. 2.5).

Figure 2.5: An example of a ROC curve

FPR and TPR are defined by the following equations where FP, FN, TP and TN were defined in
Chapter 1.

FPR =
FP

TN + FP
(2.1)

TPR =
TP

TP + FN
(2.2)
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2.5 Exploratory Data Analysis

In this section, we will start investigating the EEG data used in our project in order to get some
insights or discover hidden patterns or anomalies. This is not an extensive quantitative analysis
of the data, but it is recommended to have at least a look to the data before working on models.
Here’s an advice from Andrej Karpathy, the director of artificial intelligence and Autopilot Vision
at Tesla.

”The first step to training a neural net is to not touch any neural net code at all and
instead begin by thoroughly inspecting your data. This step is critical. I like to spend
copious amount of time (measured in units of hours) scanning through thousands of
examples, understanding their distribution and looking for patterns. [74]”

We start by a global view of the data, let us see the number of 10-min clips for each subject.
This allows us to see the data distribution over the two classes. Figure 2.6 show a bar plot that
presents the number of data clips in each state. It indicated clearly that the dataset is highly
imbalanced, where there is much more interictal clips than preictal ones. This may be justified
by the fact that a seizure is rare event compared to the baseline state. Thus, we have less access
to the preictal state.

Figure 2.6: A bar plot: the number of preictal/interictal data clips
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Table 2.1 presents a summary of the used dataset, where for each subject we give the number
of seizures, the number of preictal clips, the number of interictal clips and the proportion of
interictal clips compared to the preictal clips to demonstrate that the imbalanced aspect of the
data.

Table 2.1: Summary of EEG dataset

Dog No. of
seizures

Preictal
clips

Interictal
Clips

Imbalance
Ratio

Dog 1 4 24 480 1:20
Dog 2 7 42 504 1:12
Dog 3 12 72 1440 1:20
Dog 4 14 84 804 1:9.57
Dog 5 6 36 450 1:12.5

Next, as mentioned above, it is useful to visualize some examples to see visual differences if there
are. Figure 2.7 presents a visualisation of 10-min preictal clip, whereas Fig 2.8 shows a 10-min
interictal clip. The two clips belong to subject one, and clearly can be distinguished visually.

Figure 2.7: An illustration of dog 1’s preictal clip Figure 2.8: An illustration of dog 1’s interictal clip

As we discussed earlier, machine learning based algorithms focus on extracting features from
EEG signals. Some of these features are statistical such as mean and variance. Therefore, let’s
see if preictal and interictal clips are statistically different, and if the answer is yes, then we can
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use their statistical features to differentiate between them. The best tool to use in answering this
question is descriptive statistics, where we use boxplots to visualize these results. A boxplot
is a standardized way of displaying the distribution of data based on a five number summary
(minimum, first quartile (Q1), median, third quartile (Q3), and maximum). It can be interpreted
using the following quantities:

• Median the middle value of the dataset, represented by the horizontal line in the center of
the box

• Range the range describes the spread of the data, represented by the vertical distance
between the minimum and the maximum values

• Inetrquartile Range (IRQ) this is the box plot showing the middle 50% of scores (i.e., the
range between the first quartile and the third quartile).

Figure 2.9 shows a comparative boxplot for preictal and interictal iEEG data for subject 02. First,
we observe that the median values for all 16 channels for both preictal and interictal data are
around zero. Moreover, for all sensors, the range and interquartile range of the interictal clips are
greater than those of the preictal ones. In addition, we notice that both types display potential
outliers at both sides.

Figure 2.9: Boxplots of dog 2’s data
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Figure 2.10: Boxplots of dog 4’s data

Even with the fact that the preictal and interictal clips seem to have different variability for this
subject, which implicate that they are statistically different, we can not rely on these features as
they are subject-specific. Figure 2.10 depicts that the distribution of interictal and preictal data
for subject 4 are different from those found in subject 2, where the interquartile of preictal clips
is much greater than those of the interictal ones in all channels. Based on these observations
for different subjects, we suggest that there is no typical trend in our data and we conclude that
these features can be only significant for building patient-specific feature extraction algorithms,
which is far from our goal.

2.6 Data Reduction

As described in the previous section, our dataset had a total of 3936 EEG clips (3678 interictal and
258 preictal). Each clip has 10-min recording, sampled at the exact frequency of 399.61, which
gives 239766 timesteps (10min× 60sec× 399.609756097561Hz) for each clip. Reducing data size
will be beneficial for both memory and computational resources.
Figure 2.11 presents an example of the frequency spectra of interictal and preictal EEG clips,
where for each sub-figure, we draw the spectrum of one channel (blue for preictal and orange
for interictal) and a vertical line at f = 128 Hz. We can notice that, for both interictal and preictal
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Figure 2.11: Frequency spectra of interictal and preictal dog 1’s EEG signals collected by the 16 implanted electrodes

EEG, an important quantity of information is concentrated at low-frequency band (< 128Hz),
and almost there is no information at high-frequency band (> 128Hz). Note that we can choose
much less limit for low-frequency band but it is useful to add a secure region and insure that this
operation does not distort data. Also, for many acquisition systems in embeded systems used the
frequency of 256Hz. According to the Nyquist rule, we resample EEG data at 256Hz (2× 128Hz)
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instead of 400Hz.This operation is called down-sampling in the field of signal processing. Thus,
the data dimension is reduced by a factor of 1.5625 and that implies that the data storage is also
decreased by the same factor. Now each clip has 153600 timesteps (10min× 60sec× 256Hz).
To demonstrate the effect of this operation on EEG signal, we choose one channel for illustration
as shown in Fig. 2.12. Figure 2.12(a) shows the original univariate time series, Fig. 2.12(b) shows
its spectrum along the frequency range 0− 128Hz, Fig.2.12(c) shows the down-sampled version
in time domain and Fig.2.12(d) shows its frequency spectrum.

Figure 2.12: Time-series EEG signals and their corresponding spectra

2.7 Data Segmentation and Imbalanced Dataset

As seen previously , our dataset is heavily imbalanced. Consequently a classification algorithm
will perform well by just classifying all examples as interictal. Many strategies have been pro-
posed to attack this problem [75]. Imbalanced dataset classification techniques can be categorized
in four types:

• Data Sampling Algorithms They change the composition of the training dataset including
data oversampling, data undersampling and combined oversampling and undersampling.
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• Cost-Sensitive Algorithms They are modified versions of machine learning algorithms
designed to take the differing costs of misclassification into account when fitting the model
on the training dataset.

• One-Class Algorithms They used for outlier detection and anomaly detection can be used
for classification tasks.

• Probability Tuning Algorithms Predicted probabilities can be improved in two ways:
calibrating probabilities or tuning the classification threshold.

Figure 2.13: Interictal EEG segmentation Figure 2.14: Preictal EEG segmentation

Time-series segmentation is a method of time-series analysis, used mainly to partition the full
time series data into smaller segments. For interictal data, 10-min clips are divided into W − sec
length segments with no overlapping between adjacent segments, where W is the length of each
window in seconds as shown in Fig. 2.13. Whereas for preictal data, in order to overcome the
imbalanced classification problem, we generate more preictal segments by using overlapping
technique during training phase. In particular, we create extra preictal samples for training by
sliding a W-sec window along time axis at every step S-sec over preictal time-series EEG signals,
where W is the length of the window in seconds, and S is the stride length in seconds that can
be replaced by the overlapping window O (see Fig. 2.14). Those parameters (W,S) and can be
learned in the training process through grid search optimization, but due to the limitation in
computational resources they are set according to the most commonly used values.
Each segment is then considered as a training sample and takes the same label as the full clip for
both preictal and interictal EEG time series. A main advantage of this operation is that it outputs
a large number of labeled samples needed for training deep learning models. For example, let us
assume that (W = 1min,S = 30sec), this results into 10 non-overlapping 1-minute interictal EEG
samples, and 19 overlapping 1-minute preictal EEG samples; each sample has 15360 timesteps.
This results in an increase in the total number of training (interictal and preictal) EEG samples.
Thus this method belongs to minority-class data oversampling techniques.
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2.8 Cross Validation Technique

In Chapter 1, we made the distinction between the test error and the training error. The training
error is easily calculated by applying the algorithm to the observations used in the training set. In
contrast, we need a technique to get an unbiased estimate of the test error. Cross-validation (CV)
is one of the most widely used methods to produce robust measurements of model performance
known as model assessment. Many cross-validation techniques have been used, two of the most
common types are hold-out cross-validation and k-fold cross-validation [76], [77].
It is common in image classification tasks to use the hold-out method as a cross-validation tech-
nique. First, samples in the dataset are shuffled. Second, we split the dataset into a subset called
the training set, and another subset called the test set. Then, it is usual to have some hyper-
parameters to optimize such as the size of a filter or the number of units in a layer. Therefore,
we split the training set into a training subset and a validation set. The model is trained on the
training subset and the parameters that minimize error on the validation set are chosen. Finally,
the test dataset provides the benchmark standard for model evaluation.

Figure 2.15: Visualization of the data splits .

Two problems arise when we try to apply this method to our problem. First, the time series data
(EEG signals) is often strongly correlated along the time axis ( EEG data segments within the
same 10-min clip). The randomization will make it likely that for each sample in the test set,
many correlated samples exist in the training set. Second, the dataset provides a small number
of seizures and to ensure robustness and generalization of the proposed models we evaluate the
models on all seizures not only some of them as even seizures of the same subject are different
due to the non-stationarity nature of EEG signals. So, we used the Leave-one-out cross validation
(LOOCV) technique as the evaluation method for all of our proposed models. If a subject had
N seizures, (N − 1) seizures are involved in the training process, and the remaining one is used
for testing. The process is then repeated N times by changing the seizure under test, so that
all seizures were used for testing once and the samples related to the tested seizures are unseen
during the training. Interictal segments are also split into N parts while respecting the temporal
order, where (N − 1) parts were used for training and the remaining part were used for testing.
The performance for one subject is the average across N trials and the overall performance is
the average across all subjects. In addition, 80% of the training data is assigned to the training
set while 20% is assigned to the validation set (as a rule of thumb). This last split is done by
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carefully considering the temporal order. We use the validation set to monitor the loss function
on the validation set as the criteria for early stopping, where after each training epoch, the loss
is calculated with respects to the validation data to check if the network starts to over-fit the
training set. This process of early-stopping is used to avoid overfitting and was discussed earlier.

2.9 Hyper-parameters Optimization

Every deep learning model has a certain number of parameters that we need to define before
the training process, often called hyper-parameters. Hyper-parameters refers to parameters that
cannot be updated during the training of machine learning models. They can be categorized into
two groups: those used for training like the learning rate and the optimizer, and those used for
model design such as the number of neurons , filter size and the dropout rate. The process of
designing the ideal model architecture with an optimal hyper-parameter configuration is named
hyper-parameter tuning. Manual testing is a traditional way to tune hyper-parameters, the main
disadvantage of which is time-consuming, complex models and a large number of hyperparam-
eters. Consequently, this prompts an increased search for automatic optimization techniques
for hyper-parameters, called hyper-parameter optimization (HPO). Many hyper-parameter op-
timization techniques have been developed, the well-known of which are Grid Search, Random
Search and Bayesian search [78],[79].
The more hyperparameters that we need to tune, the slower the tuning process. Therefore, we
will only tune the learning rate as it is the most important parameter as mentioned bellow:

”The learning rate is perhaps the most important hyper-parameter. If you have time
to tune only one hyper-parameter, tune the learning rate” [31].

To do so, we used TensorBoard, a TensorFlow’s visualization toolkit for providing the measure-
ments and visualizations needed during the machine learning workflow such as tracking experi-
ment metrics like loss and accuracy, visualizing the model graph. Hyper-parameter Optimization
is insured by HParams, a dashboard in TensorBoard that provides several tools to help with the
process of identifying the best sets of hyper-parameters.
Figure 2.16, shows an example of using this tool. For simplicity, we use a grid search over the
search space [10−5− 10−1] to tune the learning rate. This will run experiments for each value and
presents the results in three different ways: the table view lists the runs, their hyperparameters,
and their metrics, the the parallel coordinates view shows each run as a line going through an axis
for each hyper-parameter and metric, the scatter plot view shows plots comparing each hyper-
parameter/metric with each metric.
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Figure 2.16: An illustration of HPO using TensorBoard

2.10 Conclusion

This chapter gave the reader the main strategies that were used to build and train the proposed
models. We have discovered the dataset, the evaluation metric as well as the evaluation process
by the LOOCV method.
We have also seen two of the building blocks of our algorithms; data reduction and data segmen-
tation. In the next chapter, we will move to the data preparation step needed to every model.
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Chapter 3

Implementation

3.1 Introduction

Recently, Deep Learning (DL) models have shown great capability in many practical applications.
State-of-the-art results have been achieved in a variety of problems such as image recognition,
object detection and text processing, by automatically learning features from the raw data. In
the era of big data, we tend to use an end-to-end deep learning approach, in which a lot of in-
termediate steps are bypassed and less hand-designing of components is needed. Moreover, DL
models have even surpassed human-level performance in several problems like online advertis-
ing, product recommendation and loan approval. These examples are learning from structured
data. In contrast, it is a bit harder for a machine to surpass human-level performance on natural
perception tasks like computer vision, voice and natural language processing [80].
Most common deep learning models are convolutional neural networks and recurrent neural
networks. A CNN network is generally composed of chain of convolution layers and pooling
layers interchangeably for extracting low-level spatial features in first layers to high-level features
in deep ones, followed by dense layers for prediction. Whereas, LSTM networks are more suitable
for sequence modeling in which the data is time ordering.
In this chapter, we present the two proposed models for classifying EEG segments into preictal
and interictal states as well as the data preparation steps for each model. The first model is 1-D
Convolutional Neural Network (CNN), whereas the second model takes the advantages of both
CNN and LSTM. We will present our findings and compare them to other works found in the
literature.
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3.2 Convolutional Neural Network Model

Convolutional Neural Networks have demonstrated high performance in visual related tasks and
are bridging the gap between the capabilities of humans and machines despite the fact that the
human visual system is fast and accurate. This is due to the ability of CNN to automatically
extract relevant spatial features that best represents the data from its raw form without any pre-
processing or human decision in selecting these features. Those models accept a two-dimensional
input representing an image’s pixels and color channels in a process called feature learning. This
motivates researchers to use these models for other applications than computer vision. In this
section, we propose a 1-D convolutional neural network to differentiate between preictal and
interictal segments. Note that CNNs work the same way whether they are 1-D, 2-D or 3-D. The
only difference is the structure of the input data and how the filter scan the data to produce the
feature maps.

3.2.1 Data Preparation

In the previous chapter, we have seen that EEG signals are split into small segments of length W,
and with overlapping O for preictal state. For this model, we choose W = 5− sec and O = 0.5,
which results in segments of 1280 time steps (5− sec× 256Hz). Since the acquisition system has
16 electrodes, thus there are a total of 16 variables for each time step. Each sample will have then
the shape [ 1280, 16] . The choice of W and O is done based on what we have seen in many other
works [63], [62]. Note that a large window leads to high-dimensional input data. Those numbers
can be tuned through the hyper-parameter optimization process as done in [81], but this need
more resources.
The 5 − sec segments form the input, as raw data with no feature engineering, of our model
and are used in the training process, in which the batch shape is [ samples, timesteps, f eatures] =
[ #samples, 1280, 16] . The model outputs a probability distribution over the two classes for each
segment. Please note that the training is subject-specific but the architecture is the same across
all subjects.

3.2.2 Architecture

Figure 3.1 presents the proposed 1-D CNN architecture. It consists of three convolution blocks.
Each basic block contains three operations: a convolution layer followed by a batch normalization
layer whose results is passed to a ReLU activation function. These three blocks acts as a feature
extractor. The output of the third convolution block is fed to the Global Average Pooling (GAP)
layer which averaged it over the whole time dimension. Finally, a sigmoid function is fully
connected to the GAP layer’s output.
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Figure 3.1: The proposed CNN architecture

The convolution layers are realized using 1-D kernels with a stride equal to 1 and a zero padding
to preserve the exact length of the time series after the three convolution blocks. The first con-
volution contains 128 filters with a kernel size equal to 8, the second convolution comprises 256
filters with a kernel size equal to 5, and the final convolutional layer composed of 128 filters, each
one with a length equal to 3.
This CNN do not include any local pooling operation, which means that the number of time
steps does not change through the three convolution blocks. In addition, we used a global
average pooling layer instead of a fully connected layer, which reduces the number of weights
[82]. This strategy is also used in the very common ResNet architecture [83] to prevent overfitting.
Therefore, this type of architectures are called fully convolutional neural networks.

3.2.3 Results

This model was trained and tested following the cross-validation method described earlier. For
each subject, the AUC is averaged across the N trials, where N is the number of seizures. Table
3.1 presents the results for each subject as well as the average. This model achieves testing area
under the operation characteristic curve (AUC) of 0.813 on average.

Table 3.1: Summary of CNN results

Subject No. of
seizures

Interictal Duration (h) Preictal Duration (h) AUC

Dog 1 4 80 4 0.651
Dog 2 7 84 7 0.933
Dog 3 12 240 12 0.930
Dog 4 14 134 14 0.772
Dog 5 6 75 6 0.958

Average 8.6 - - 0.848

69



3.3 Long-term Recurrent Convolutional Network Model

Since we are manipulating time series data, it is reasonable to use recurrent neural networks
either with basic RNN cells or LSTM cells. However, our multivariate data have also a spatial
structure and cannot be easily treated with standard LSTM. The major drawback of the Vanilla
LSTM in handling spatio-temporal data is that it has to flatten the inputs to 1-D vectors before
processing and, as a result, all the spatial information will be lost during the process. For more
details, return to section 1.8.9 where x〈t〉 the t time-step’s input data is 1-dimensional vector.
Therefore, we prefer to use a CNN-LSTM recurrent neural network. This type of architectures
was originally referred to as Long-term Recurrent Convolutional Network (LRCN) [84] . They
involve using CNN layers for feature extraction on spatial input data and then fed to an LSTM
network to support sequence modeling. They were developed for visual recognition and de-
scription tasks such as activity recognition, image captioning and video description. They are
appropriate for problems that have spatial structure in their input such as an image, as well as a
temporal structure such as the order of images in a video.

LRCNs are a class of models that is both spatially and temporally deep, and has the
flexibility to be applied to a variety of vision tasks involving sequential inputs and
outputs [84].

3.3.1 Data Preparation

The data preparation step for this model involves also EEG signals segmentation into small
sequences. The LRCN model will read sub-sequences of the main sequence in as blocks, extract
features from each block in a parallel way using the same CNN, then feed the LSTM network
with the features extracted from each block with time ordering. One approach to implementing
this model is to choose W = 1min and O = 0.75, which results in sequences of 15360 time steps
(60− sec× 256Hz). Each sequence of 1-min is split into 12 sub-sequences of 5− sec, and thus
each sub-sequence contains 1280 time steps (5− sec× 256Hz).
The spatial feature extraction for this model is done by a 2-D CNN. Therefore, we need to
transform each multivariate time series sub-sequence into image-like format. This was done by
a simple algorithm inspired from [85]. Raw signals are stacked row-by-row into a signal matrix
based on Algorithm 1. In the signal matrix, every channel signal has the chance to be adjacent
to every other channel, which enables CNN to extract hidden correlations between neighboring
channels. For the sake of simplicity, Figure 3.2 illustrates this process for the case where the
number of channels is Ns = 5. Figure 3.2(a) presents the raw signals that are fed to Algorithm
1 to produce the signal matrix that has 11 rows. Finally, we transform the signal matrix to a
gray-scale image by just considering the voltage values as the gray level (we only change the
software format). Thus, the signal image is interpreted as a gray-scale image that is passed to the
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CNN network.

Algorithm 1: Raw Signals −→ Signal Image
Notations:
• Signal Matrix (SM): a 2D array to store permutated raw signals.
• Signal Index String (SIS): a string to store signal indices, whose length is NSIS

input : Ns signal sequences stacked horizontally in a matrix RS, each signal has a
sequence label

output: SM
i← 1 ;
j← i + 1 ;
SM← RS(i) ;
SIS← ’i’ ;
NSIS ← 1;
while i 6= j do

if i 6= j then
j← 1 ;

else if ’ij’ 6⊂ SIS && ’ji’ 6⊂ SIS then
Append RS(j) to the bottom of SM ;
Append ’j’ to SIS ;
NSIS ← NSIS + 1 ;
i← j ;
j← i + 1 ;

else
j← j + 1 ;

// When Ns=5 as in Fig. 3.2, the final SIS is ’12345135241’ and NSIS = 11

Figure 3.2: Flowchart to generate an image-like format from time series data
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For our case, we have 16 channels for every sub-sequence and thus Algorithm 1 will produce an
image of size 114× 1280 pixels. We have split each sequence into 12 sub-sequences and thus the
number of steps in the LSTM network is 12 (number of LSTM cells is 12). The batch shape is then
[ samples, n steps, rows, columns, depth] = [ #samples, 12, 114, 1280, 1] , where depth is the number
of channels in the image, equals to 1 as it is gray-scale.

3.3.2 Architecture

The proposed architecture is presented in Fig. 3.3. It has a sequential input [ x〈1〉, x〈2〉, ..., x〈Tx〉] ,
each x〈t〉 is an image produced as described above, and a static output y that returns a probability
distribution over the two classes for each sequence. The number of sub-sequences Tx was chosen
to be 12 in the training phase as mentioned above, but it can be any other chosen number. It
can be also tuned through the hyper-parameter optimization process. This model works by
passing each image x〈t〉 through feature transformation using the 2D-CNN to produce a fixed-
length vector representation. These vectors are then passed into a recurrent sequence learning
module using the LSTM network. Each LSTM cell has 32 units. Finally, a fully connected layer
of 16 neurons is used to interpret the features extracted by the LSTM hidden layer, before a final
sigmoid layer is used to make predictions. Both the CNN and LSTM weigths are shared across
time, resulting in a representation that scales for an arbitrary length sequences.

Figure 3.3: Architecture of the proposed CNN-LSTM recurrent neural network

Figure 3.4 zooms in the CNN architecture to present its details. It is classical CNN composed of
three convolutional blocks. Each block consists of three operations: convolution layer, followed
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by a ReLU activation function that is fed to a MaxPooling layer. The output of the last block is
flattened to be passed as input to the LSTM cell. The convolution layers are realized using 2-D
kernels of size ( 3, 3) with a stride equal to ( 1, 1) and a zero padding. Each block has 16, 32, 32
filters respectively. MaxPooling layers have pool sizes of [ ( 2, 2) , ( 3, 3) , ( 4, 4) ] , and strides values
of [ ( 2, 2) , ( 2, 2) , ( 3, 3) ] , respectively

Figure 3.4: Architecture of the 2-D CNN

3.3.3 Results

Similar to the previous model, this second model was trained and tested in subject-specific way.
For each subject, we compute the mean of N trials, where N is the number of seizures. Table
3.2 presents the results for each subject as well as the average. This model achieves testing area
under the operation characteristic curve (AUC) of 0.873 on average.

Table 3.2: Summary of LCRN results

Subject No. of
seizures

Interictal Duration (h) Preictal Duration (h) AUC

Dog 1 4 80 4 0.603
Dog 2 7 84 7 0.999
Dog 3 12 240 12 0.962
Dog 4 14 134 14 0.803
Dog 5 6 75 6 0.999

Average 8.6 - - 0.873
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3.4 Discussion

First, we remind that the overall evaluation metric is the area under ROC (AUROC) as a single
score. This metric is very used in medical applications as it gives us the flexibility to make a
trade-off between the True Positive Rate (TPR) and False Positive Rate (FPR), such that changing
the threshold of classification will change the balance of predictions towards improving the TPR
at the expense of FPR, or the reverse case. Therefore, if the built model is deployed in a mobile
device, we will have the possibility to configure it paying more attention to the sensitivity or the
false prediction rate, or both of them. Another advantage that makes it a popular diagnostic tool
for classifiers on balanced and imbalanced binary prediction problems, as it is not biased to the
majority or minority class.

”ROC analysis does not have any bias toward models that perform well on the major-
ity class at the expense of the minority class—a property that is quite attractive when
dealing with imbalanced data” [86].

The first step in analysing our results is to compare the results given by the two models using
the AUC scores. Per-subject AUC scores of the two proposed models as well as the average AUC
are shown in Table 3.3.

Table 3.3: Per-subject AUC scores of the proposed models.

Subject Proposed Model 1 Proposed Model 2
(1-D CNN) (CNN-LSTM)

Dog 1 0.651 0.603
Dog 2 0.933 0.999
Dog 3 0.930 0.962
Dog 4 0.772 0.803
Dog 5 0.958 0.999

Average 0.848 0.873

We notice that the CNN-LSTM model outperforms the CNN model in all subjects except the
first one. In addition the AUC of the second model is slightly better the first model’s AUC with
a difference of 0.025. Thus, we argue that spatio-temporal characteristic of the second models
helps it to best model the data and get more meaningful features. Moreover, the two models do
not perform well on subject 1’s data, with AUCs of 0.651 , 0.603 respectively. More extensive
analysis should be done to explain the reasons. We should verify if its data come from the same
distribution as it can vary over time. A potential reason for that is that seizures were recorded at
time far away from each other. During this time, the patient may be influenced by medications.
Also, we recommend doing an advanced hyper-parameter optimization to find the ones that
improves performance. Figure 3.5 depicts a bar plot of the AUC scores obtained by the two
models as well as the average.
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Figure 3.5: Bar Plot: Per-subject and average AUC scores of the proposed models

For reasonable evaluation of our proposed methods, we compare our achieved experimental
results with previous works that have used the same dataset as shown in Table 3.4. Benjamin
H. Brinkmann et al. [87] use frequency correlations as well as univariate spectral power in
11 adjacent frequency bands as features of the iEEG data, which are fed to an Support Vector
Machine (SVM) classifier. The achieved mean area under the curve (AUC) was 0.72. Our two
models yields superior results.

Table 3.4: Benchmark of recent seizure prediction approaches and this work

Year Ref
Predictive
characteristics

Classification algorithm AUC

2015
B.Brinkmann
et al. [87]

Univariate and multivariate
frequency-related features

SVM 0.72

2016
Zisheng Zhang
et al. [88]

Spectral power features
Cross-correlation coefficients

AdBoost
RBF SVM
ANN

0.7603
0.8472
0.8884

2017
Yogatheesan Varatharajah
et al. [89]

Univariate spectral power in band (PIB)
Time domain correlations (TMCO)
Spectral coherence (SPCO)

ANN
SVM
RFC

0.83

2020 Ours Raw Data CNN 0.848
2020 Ours Raw Data CNN-LSTM 0.873
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In [87], Zisheng Zhang et al. proposed a seizure prediction algorithm based on a pipeline of three
steps. First, they extract two different feature sets, spectral features including relative spectral
powers and spectral power ratios and correlation features using cross-correlation coefficients.
The two feature sets are then subjected to feature selection independently by classification and
regression tree (CART). Three classifiers are used and tested on the selected features, which
include AdaBoost, radial basis function kernel support vector machine (RBF-SVM), and artificial
neural netwroks (ANN). The combined best results which use patient-specific feature sets achieve
a mean AUC of 0.7603, 0.8472, and 0.8884 for AdaBoost, SVM, and ANN, respectively. The ANN
model achieves better results than ours, but this work not only uses hand-crafted features but
also the feature selection is patient-specific which is not practical for real-life application (more
computational resources, latency, need domain-knowledge).
Yogatheesan Varatharajah et al. [89] computed three types of features to characterize EEG sig-
nals, univariate spectral power in band (PIB) features (1104-dimensional vector), time domain
correlations (TMCO) features (120-dimensional vector) and spectral coherence (SPCO) between
different pairs of channels (1820-dimensional vector). Then, they used PCA to maintain 90% of
the variance. They used three types of classification algorithms Artificial Neural Network (ANN),
Support Vector Machine (SVM) and Random Forest Classifier (RFC).They achieved an average
Area Under ROC curve of 0.83. Besides the fact that we got better performance, their algorithm
need to compute a large number of features.
In addition, we compare our results to those of the winning solutions in the ”American Epilepsy
Society Seizure Prediction Challenge” . The Receiver Operating Characteristics (ROC) Area Un-
der Curve (AUC) was the metric used for ranking various solutions. The winning team used
a blend of 11 models and more than 4000 hand-crafted iEEG features, and achieved an average
AUC of 0.839. It is, however impractical to use such a computationally-intensive process for
real-time applications. More, it needs a good level of signal processing domain-knowledge to
choose theses features. Our models obtain a slightly higher seizure prediction AUC score, but
with much faster in obtaining the results. Thus, it is more suitable.

Table 3.5: AUC scores for the proposed method and top finishing contestants in the competition.

Top 10 Competition Scores (2014) [71] Proposed Model 1 Proposed Model 2
min-max (CNN) (CNN-LSTM)

0.785-0.839 0.848 0.873
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3.5 Conclusion

Along this chapter, we presented the first model based on 1-D fully convolutional neural net-
work for both feature extraction and classification segments into preictal and interictal. The data
preparation and the evaluation results have been also presented. This model achieves a mean
AUC ROC of 0.848.
A second model that has been implemented, combines the advantages of CNN in spatial features
extraction and LSTM in sequence modeling., known as CNN-LSTM or Long-term Recurrent
Convolutional Network (LRCN) for consistency. This model is better than first one, on modelling
the sequential structure of the data, and improves the classification performance to a mean AUC
ROC of 0.873.
Finally, we have shown that our models achieve the state-of-the-art performance, with minimum
preprocessing and no manual feature extraction. For more robust evaluation, we suggests to
train and evaluate these models on a larger dataset.
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Conclusion

Seizure forecasting systems have the promise to help patients with epilepsy and improve their
quality of life. That would be beneficial especially with patients that have drug-resistant epilepsy.
The goal would be to create a wearable EEG device which would alert patients, family members,
and doctors to imminent seizures. This has the potential to enhance the safety of patients and
perhaps to allow some patients to take medications only when needed and not chronically. In
order for EEG-based seizure forecasting systems to work effectively, we initiated this project to
build a deep learning model that can detect the preictal state.

Along this project, we tried to exploit the advances in deep learning domain to build an efficient
model that can distinguish between preictal and interictal states. We have proposed a first model
based on Convolutional Neural Network (CNN) architecture that uses 1-D kernels. The CNN
model we proposed has an efficient fully convolutional network architecture that automatically
learns distinctive iEEG features. This model used the raw data without any preprocessing step
or feature extraction. A second model that has been proposed is based on Long-term Recurrent
Convolutional Network (LRCN), also called as CNN-LSTM for simplicity. It takes the advantages
of both Convolutional Neural Network and Long Short-Term Memory for better modeling of the
spatiotemporal structure of the EEG signals. Using Leave-One-Out cross-validation technique
to test the proposed models proves the robustness and generality of our models against varia-
tion across various seizure types. Our experimental results and the comparison with previous
work demonstrate that the proposed models are efficient and suitable for real-time application
of seizure prediction. This is by achieving a mean Area Under Curve (AUC) Receiver Operating
Characteristics (ROC) of 0.848 for the first model, and 0.873 for the second one.

Future work The implemented models in this dissertation showed some promising results.
However, they need to be extensively tested on bigger dataset for more fair evaluation, though
only a few iEEG datasets are available. For example, the EPILEPSIAE database that contains
more than 2500 epileptic seizures for 250 patients [90], but it is not open-source now. Moreover,
it would be interesting if we test these models on scalp EGG signals, which are more prone to
noise but easier to obtain.



Furthermore, it is encouraging to perform an advanced hyper-parameters optimization to find
those that suit well models. The length of the window, the amount of overlapping, the number
of sequential inputs and many other parameters have not been tuned. Thus, bad results of these
hyper-parameters can lead to low performance.

We should mention that it is strictly mandatory to have high performance computers to be able
to carry out these experiments as in our case very poor hardware was available. During the
training process, we faced a serious problem of slow computational speed as well as a very
limited memory where the data of one subject can not be uploaded once in the available memory.
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