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Résumé

La séparation de source est une approche pour tirer les signaux individuels à partir d’une
mixture. la séparation de source se pose sur des faibles hypothèses sur les signaux et le
processus de mixage qui rend l’application efficace dans plusieurs situations. Les recherches
dans cette domaine ont donné naissance à une famille d’algorithmes connues sous le nom
de ”analyse des composants indépendant”. Ces algorithmes se divise en deux suivant le
modèle de signal. Dans cette thèse, le cadre mathématique des deux types a été donné et
les résultats expérimentaux ont été présentés.

Mots clés : séparation de sources, analyse des composants indépendants, traitement de
signal.

Abstract

Blind Source Separation (BSS) is a statistical approach to separating individual signals
from an observed mixture of a group of signals. BSS relies on only very weak assumptions
on the signals and the mixing process and this blindness enables the technique to be
used in a wide variety of situations. Research in the field of Blind Source Separation has
resulted in the development of a family of algorithms, known as Independent Component
Analysis (ICA) algorithms, that can reliably and efficiently achieve blind separation of
signals. There are two important problems that are generally considered: instantaneous
BSS and convolutive BSS. The difference between these two is based on the nature of
the signal mixing process. In this thesis, the mathematical foundations of both instanta-
neous and convolutive BSS are developed. Once this mathematical framework has been
established, the emphasis of the thesis moves to experimental results obtained with ICA
techniques.

Key words: blind source separation, Independent Component Analysis, signal process-
ing.
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Chapter 1

Introduction

There are zmany situations in the real world in which a number of independent signals are

mixed and interfere with one another. One obvious situation is in a noisy room, such as at a

cocktail party with many people talking, music playing in the background, glasses tinkling and

so on and all these acoustic signals arrive as a single waveform at a person’s ear (separating

voices from an environment such as this is called the “Cocktail Party Problem” and is discussed

further in chapter 2). Acoustic signal mixing is familiar in our day to day lives but there are many

other situations, some less familiar, in which it is important to separate independent signals from

mixtures. In all of these situations, Blind Source Separation is an important signal processing

technique (for brevity, Blind Source Separation will henceforth be referred to as BSS).

This thesis examines both the mathematical foundations of BSS techniques as well as ap-

plications of the techniques to real world signal processing problems. BSS is a very widely

applicable technique and although it was developed only relatively recently, it has grown into

an important branch of signal processing research. Figure 1.1 gives an indication of the “Cock-

tail Party Problem” situation that was a prime motivator research into the Veld of BSS. From the

Vgure it is clear that we obtain diUerent mixtures of the independent sources (in this case the

voices of diUerent speakers) at the microphones. The signal mixing model represented in Figure

1.1 is analogous to signal mixing in many other contexts and as a result BSS is relevant to many

signal separation problems.

A major goal of this thesis was to apply BSS in practical situations, and as a result of this goal

BSS was used to obtain experimental results for acoustic signal separation. Before discussing

experimental results, however, the concepts of BSS are discussed in some detail in the earlier

chapters. In the section below, an overview of this thesis is given.

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram illustrating basic setup required for BSS. We have a number of independent

sources (voices in this case) mixed at a number of diUerent sensors (microphones).

10



Chapter 2

Literature Review

Since its Vrst development nearly thirty years ago, Blind Source Separation has matured into

an important signal processing technique. The seminal research papers in the development of

Blind Source Separation are chronicled in this chapter and in discussing the signiVcance of these

papers a broad introduction to important concepts in Blind Source Separation is given.

2.1 Development of BSS

A critical distinction is drawn in BSS research between instantaneous and convolutive BSS

algorithms. The distinction is based primarily on the type of signal mixing being considered –

if mixing does not involve time delays then instantaneous BSS is used, otherwise convolutive

BSS is necessary. Instantaneous BSS is the more well-developed and widely applicable of the

two and the historical development of BSS as a research Veld began with the instantaneous

BSS. Convolutive BSS is an extension of instantaneous BSS that was developed more recently to

address some speciVc applications.

2.1.1 Instantaneous BSS

Blind Source Separation is a recent, and remarkable, chapter in the development of signal

processing. The Veld began at a neural networks conference in Utah in 1986 where Jutten and

Herault presented a paper entitled “Space or time adaptive signal processing by neural network

models” [1].

Many algorithms have been developed to perform separation, but prior to BSS major as-

sumptions were always required on the nature of the sources. Jutten and Herault’s technique

was revolutionary in that it did not require assumptions on the nature of the signals being sep-

arated. Despite this, however, their technique did not initially attract much attention. This is

11



CHAPTER 2. LITERATURE REVIEW

primarily because in the 1980s, neural network research focused on HopVeld networks and Jut-

ten and Herault’s work went largely unnoticed. It was only with a much clearer formulation of

BSS by Comon in 1994 [2] that BSS became a mainstream topic of research.

Algorithms developed to perform blind separation of sources were given the name Indepen-

dent Component Analysis (ICA) algorithms wheras BSS refers to the entire body of knowledge

relevant to blindly separating signals. Separation techniques were named ICA to highlight the

fact that independent components were being separated from mixtures of signals, but also to

emphasise a close link with the classical signal processing technique of Principal Component

Analysis (PCA). PCA can be used to separated mixtures of signals using decorrelation. A well-

known fact from elementary statistics is that for non-Gaussian signals, uncorrelated signals are

not necessarily independent. To decorrelate, it is only necessary to consider second-order statis-

tics, whereas independence requires higher order statistics. As a result, it is common to consider

ICA to be an extension of PCA that is able to separate non-Gaussian signals. This partly ex-

plains the late development of ICA as until fairly recently, Gaussian sources were assumed in

most signal processing research. Despite being limited to second-order statistics, PCA is still a

powerful technique and has many uses, including feature extraction and data compression [3].

Following Comon’s seminal paper, there was a rapid proliferation of ICA algorithms. Al-

gorithms were formulated based on a wide variety of principles, including mutual information,

maximum likelihood and higher order statistics, to name just a few of the more popular ap-

proaches. Despite such wide variety, all ICA algorithms are fundamentally similar. ICA algo-

rithms invariably obtain estimates of the independent signals by adopting a numerical approach

(e.g. gradient descent) to maximizing an “independence metric”, i.e. a measure of the signals’

independence. The main diUerence between diUerent ICA algorithms is in the metric that is

used.

On publication of their algorithm in 1995, Bell and Sejnowski’s [4] approach to ICA became

the most popular choice due to its simplicity and its favourable convergence properties. How-

ever, the algorithm involved matrix inversion which signiVcantly hindered eXciency. Amari

discovered an important improvement (using “natural” gradient descent, see [5]) to the algo-

rithm of Bell and Sejnowski which eliminated the matrix inversion. This gave a signiVcant

performance improvement and made ICA more practical for real world problems, especially in

separating large numbers of sources.

Another important ICA algorithm, called FastICA [6], was developed in 1997 by Oja and

Hyvärinen of the Helsinki University of Technology. It was shown to be a very good alter-

native to Bell and Sejnowski’s algorithm, and is probably currently the most widely used ICA

algorithm.

12



CHAPTER 2. LITERATURE REVIEW

2.1.2 Convolutive BSS

The approach to BSS discussed in Section 2.1.1 is based on an assumption that there are no

time delays involved in the mixing of independent signals. In some situations, however, the

instantaneous mixing model is inadequate. An obvious case in which it is necessary to account

for time delays in signal mixing is in the separation of speech signals recorded in a real envi-

ronment. Sound wave propagation is relatively slow and the waves are subject to reWections so

that time delays are introduced in the mixing process. To separate sources mixed in this way a

technique called convolutive Blind Source Separation was developed which extends the standard

instantaneous BSS model by treating signal mixing as a convolution, allowing time delays to be

accounted for.

The primary motivation for the development of convolutive ICA algorithms was to treat

the speech separation problem . This separation problem has been named the “Cocktail Party

Problem”. The name itself conjures the familiar image of a crowded, noisy room, but a room

in which people can still communicate since the human brain is eUective at isolating signals. It

has been an intriguing problem in signal processing and artiVcial intelligence to try to develop

algorithms to simulate this ability of the human brain. Convolutive BSS is one approach that

has shown some promise.

The Vrst solution to the convolutive BSS problem was developed by Bell and Sejnowski [4],

who proposed a feedforward neural network structure using FIR Vlters. This approach was im-

proved by Torkkola who employed a similar network, but with feedback structure [7]. Both of

these approaches are limited in their practicality, primarily because they involve computation-

ally expensive convolutions of long Vlters.

To overcome the shortcomings of these time domain algorithms, Smaragdis proposed moving

into the frequency domain [8]. Smaragdis realized that by moving to the frequency domain, the

problem of convolutive mixing simpliVes to instantaneous mixing allowing standard instanta-

neous ICA algorithms to be employed. It is clear that the frequency domain approach is superior

to the time domain algorithms proposed initially.

Convolutive ICA is generally required to separate audio mixtures recorded in real acoustic

environments. The promise of convolutive ICA has been demonstrated as an approach to solving

the real-world “Cocktail Party Problem”. The success of convolutive ICA in audio separation

has resulted in a number of practical applications of the technique, such as in voice recognition

systems [9] or in improving hearing aid technology [10]. In both of these applications, speech

signals are separated from contaminating noise sources to improve system performance.

13



Chapter 3

Instantaneous Blind Source Separation

Consider a situation in which we have a number of sources emitting signals which are interfer-

ing with one another. A familiar situation in which this occurs is a crowded room with many

people speaking at the same time. In this kind of situations, the mixed signals are often in-

comprehensible and it is of interest to separate the individual signals which is the goal of Blind

Source Separation.

3.1 Mathematical Description of Source Mixing

The Vrst step in deriving a solution to the source separation problem is to adequately model

source mixing. BSS can be applied to a collection of statistically independent sources which are

emitting signals that interfere with each other and the interfering signals are recorded using a

number of spatially separated sensors. For the purpose of clarity, the simplest case where the

number of sources is equal to the number of sensors is considered.

Suppose we have N statistically independent signals, si(t), i = 1, ..., N . We assume that

the sources themselves cannot be directly observed and that each signal, si(t), is a realization

of some Vxed probability distribution at each time point t. Also, suppose we observe these sig-

nals using N sensors, then we obtain a set of N observation signals xi(t), i = 1, ..., N that are

mixtures of the sources. A fundamental aspect of the mixing process is that the sensors must be

spatially separated so that each sensor records a diUerent mixture of the sources. With this spa-

tial separation assumption in mind, we can model the mixing process with matrix multiplication

as follows:

x(t) = As(t) (3.1)

where A ∈ <N×N is an unknown matrix called the mixing matrix and x(t), s(t) ∈ <N are

14
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the two vectors representing the observed signals and source signals respectively. Incidentally,

the justiVcation for the description of this signal processing technique as blind is that we have

no information on the mixing matrix, or even on the sources themselves.

The objective is to recover the original signals, si(t), from only the observed vector x(t). We

obtain estimates for the sources by Vrst obtaining the “unmixing matrix”W, where:

W = A−1 (3.2)

This enables an estimate, y(t), of the independent sources to be obtained:

y = Wx (3.3)

where the time index t has been omitted for notational simplicity.

The diagram in Figure 3.1 illustrates both the mixing and unmixing process involved in BSS.

The independent sources are mixed by the matrix A (which is unknown in this case). We seek to

obtain a vector y that approximates s by estimating the unmixing matrix W. If the estimate of

the unmixing matrix is accurate, we obtain a good approximation of the sources. It is important

to note that the formulation in Eq.(3.1) assumes instantaneous mixing; there are no time delays

involved in the mixing process. This model is inadequate in many situations and a more elabo-

rate model which can handle non-instantaneous mixing is presented in Chapter 4.

s1(t)

s2(t)

sN (t)

x1(t)

x2(t)

xN (t)

y1(t)

y2(t)

yN (t)

Signal mixing Signal separation

x(t) = As(t) y(t) = Wx(t)

Figure 3.1: Sources si have been linearly mixed by the unknown mixing matrix A and we esti-

mate the sources by estimating the unmixing matrixW
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3.2 Independent Component Analysis

Algorithms that perform Blind Source Separation are known as Independent Component

Analysis (ICA) algorithms. Intuitively, ICA involves estimating the linear transformation that

maximizes the independence of the signals. This linear transform is referred to as the unmixing

matrix, W. Since the original sources, si(t), were assumed to be independent, we know that

maximising the independence of the components of y from Eq.(3.3) we will obtain estimates of

the original sources.

Suppose the observation vector x is formed according to Eq.(3.1), that is, x is a linear combi-

nation of independent components. To estimate one of the independent components we consider

a linear combination of the xi terms. Let yi be one of the estimates, then we have:

yi = wTx (3.4)

The crucial point is that if w was one of the rows of the inverse of the mixing matrix, then

yi would actually be one of the original independent components. At this point, it is not clear

how we can determine such a vector w when we have no information about the mixing matrix

A. Independent Component Analysis has been developed to solve this problem.

ICA depends fundamentally on the independence of the original sources, si(t). The following
equation, derived from Eq.(3.4), illustrates this link:

yi = wTA s = zT s (3.5)

From this equation it is clear that yi is a linear combination of the independent components,

si(t).
The approach to Independent Component Analysis is to consider the “Gaussianity” of the

signals yi of Eq.(3.4). From the Central Limit Theorem we know that the distribution of a sum of

independent random variables approaches a Gaussian distribution [11]. From Eq.(3.4) it is clear

that the estimate yi is a sum of independent random variables, thus we expect its distribution

to be “more Gaussian” than the distribution of the independent components si. Assuming none

of the independent components are Gaussian distributed, we obtain the most “non-Gaussian”

distribution for yi when it is exactly one of the independent components si. As a result, by

choosing the vector w to maximize the non-Gaussianity of yi, we will obtain an estimate of

one of the independent components si. To proceed further we require a method of measuring

non-Gaussianity.

16
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Perhaps the most straightforward approach to measuring non-Gaussianity is kurtosis. Kur-

tosis is the fourth order cumulant [12] deVned by:

kurt(y) = E{y4} − 3(E{y2})2 (3.6)

It is discussed here because of its simplicity and importance in independent component anal-

ysis. The kurtosis of a Gaussian random variable is zero, and is non-zero for (almost) any

non-Gaussian random variable. As a result, by maximizing the absolute value of the kurto-

sis we can maximize non-Gaussianity. While kurtosis oUers a simple approach to measuring

non-Gaussianity, it has been established that it is not a robust mesure [12].

A more practical approach is to measure Gaussianity by calculating the entropy of the

sources since a Gaussian random variable has the greatest entropy of all random variables of

equal variance [12]. Entropy (or negentropy to be precise) is the fundamental independence

metric used in deriving the FastICA algorithm (see Section 3.5.1). Once an appropriate measure

of non-Gaussianity has been established (kurtosis and entropy are two possibilities) then this

measure can be used to deVne a cost function which when minimised yields the independent

components, si(t).

3.3 BSS Assumptions

Blind Source Separation is distinguished from other approaches to source separation in that it

requires relatively few assumptions on the sources and on the mixing process. The assumptions

essential to BSS are discussed here [12]:

1. The sources being considered are statistically independent

2. The independent components have non-Gaussian distribution

3. The mixing matrix is invertible

The Vrst assumption is fundamental to ICA. As discussed in Section 3.2, statistical indepen-

dence is the key feature that enables estimation of the independent components yi(t) from the

observations xi(t).
The second assumption is necessary because of the close link between Gaussianity and in-

dependence. It is impossible to separate Gaussian sources using the 3.2 framework described in

Section 3.2 because the sum of two or more Gaussian random variables is itself Gaussian [12],

and for this reason Gaussian sources are forbidden. This is not an overly restrictive assumption

as in practice most sources of interest are non-Gaussian.
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The third assumption is straightforward. If the mixing matrix is not invertible then clearly

the unmixing matrix we seek to estimate does not even exist. If these three assumptions are

satisVed, then it is possible to estimate the independent components modulo some trivial ambi-

guities. It is clear that these assumptions are not particularly restrictive and as a result we need

only very little information about the mixing process and about the sources themselves.

3.4 Preprocessing

Before examining speciVc ICA algorithms, it is instructive to discuss preprocessing steps that

are generally carried out before ICA.

3.4.1 Centering

A simple preprocessing step that is commonly performed is to “center” the observation vector

x by subtracting its mean vector m = E{x}. That is then we obtain the centered observation

vector, xc, as follows:

xc = x−m (3.7)

This step simpliVes ICA algorithms by allowing us to assume a zero mean.

Once the unmixing matrix has been estimated using the centered data, we can obtain the

actual estimates of the independent components as follows:

y = A−1(xc + m) (3.8)

From this point on, all observation vectors will be assumed centered.

3.4.2 Whitening

Another step which is very useful in practice is to pre-whiten the observation vector x.

Whitening involves linearly transforming the observation vector such that its components are

uncorrelated and have unit variance [12]. Let xw denote the whitened vector, then it satisVes the

following equation:

E{xwxT
w} = I (3.9)

whereE{xwxT
w} is the covariance matrix of xw. Also, since the ICA framework is insensitive

to the variances of the independent components, we can assume without loss of generality that

the source vector, s, is white, i.e. E{ssT} = I.
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A simple method to perform the whitening transformation is to use the eigenvalue decom-

position (EVD) [12] of x. That is, we decompose the covariance matrix of x as follows:

E{xxT} = VDVT (3.10)

where V is the matrix of eigenvectors of E{xxT}, and D is the diagonal matrix of eigenval-

ues, i.e. D = diag{λ1, λ2, ..., λn}.
The observation vector can be whitened by the following transformation:

E{xw} = D−1/2VTx (3.11)

We can conVrm that this yields a whitened vector xw:

E{xw} = D−1/2VT (E{xxT})VD−1/2

= D−1/2VT (VDVT )VD−1/2

= I

(3.12)

since VVT = I as the matrix of eigenvectors is orthogonal.

By pre-whitening the data, we transform the mixing matrix A into a new matrix Aw. The

usefulness of whitening is that the new mixing matrix is orthogonal, as shown by the following

chain of equations:

I = E{xwxT
w} = AwE{ssT}AT

w = AwIAT
w = AwAT

w (3.13)

An orthogonal matrix contains only n(n− 1)/2 degrees of freedom compared to n2 degrees

of freedom for an unconstrained matrix. As a result, pre-whitening the vector x eUectively

reduces the number of parameters that need to be estimated by ICA by about half. This is

a very useful step as whitening is a simple and eXcient process that signiVcantly reduces the

computational complexity of ICA.

From this point on all observation vectors will be assumed centered and whitened.

3.5 ICA Algorithms

In this section, two of the most important ICA algorithms are presented in some detail. Oja

and Hyvärinen’s FastICA algorithm [6] is presented in Section 3.5.1 and Bell and Sejnowski’s

information maximization algorithm in Section 3.5.2 These two algorithms are probably the

most widely used and they each illustrate the important principles of ICA.
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3.5.1 FastICA

This algorithm is based on using “non-Gaussianity” as a metric for independence. FastICA is

based on using entropy as a measure of non-Gaussianity. A fundamental result of information

theory is that a Gaussian random variable has the greatest entropy of all random variables of

equal variance. As a result, entropy can be used as a measure of non-Gaussianity. To be precise,

FastICA is not based on entropy, but rather on negentropy. Negentropy is a related concept

deVned by:

J(y) = H(ygauss)−H(y) (3.14)

where H(·) denotes the entropy of a random variable, J(·) denotes negentropy and ygauss

is a Gaussian random vector with the same covariance matrix as y. Negentropy is always non-

negative since H(ygauss) ≥ H(y).
FastICAmaximizes negentropy using Newton’s iterative method, for details of the derivation

of FastICA refer to [6]. The algorithm determines the unmixing matrix one column at a time,

with the update rule for each column deVned by:

w+ = E{xg(wTx)} − E{g′(wTx)}w (3.15)

The function g can be almost any non-quadratic function, but hyperbolic tangent functions

have been shown to behave well in practice [6].

3.5.2 Bell and Sejnowski

Bell and Sejnowski’s algorithm (henceforth referred to as the BS algorithm) is based on the

neural network principle of Information Maximization [4] but is essentially one of the family of

maximum-likelihood (ML) ICA algorithms. That is, independence is maximised by estimating

the unmixing matrix that maximises the probability of the observation vector x.

Based on Eq.(3.1), we can Vnd the probability density of the observation vector, x, in terms

of the density of s:

px(x) = |detW|ps(s) = |detW|
∏

i

pi(si) (3.16)

where W = A−1, and pi(si) denotes the density of the ith component of s. The second

equality in Eq.(3.16) follows because of the independence of the components of s.

Let us assume we have a vector wi that satisVes wT
i x = si. We can then rewrite Eq.(3.16) as:
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px(x) = |detW|
∏

i

pi(wT
i x) (3.17)

This expression can be used to deVne a likelihood for the unmixing matrix W since for a

given observation vector x we can determine the vector wi that maximises the likelihood that x

would be observed. Suppose we have T observations of x, then we can estimate the likelihood

of the unmixing matrix W with the log-likelihood expression:

logL(W) =
T∑

t=1

n∑
i=1

log pi(wT
i w(t)) + T log | detB| (3.18)

Bell and Sejnowski’s algorithm maximizes this likelihood expression by performing gradient

ascent. For details of the derivation of the BS algorithm see [4], but the actual algorithm is given

here:

∆W ∝
[
WT

]−1
+ E{g(Wx)xT} (3.19)

Technically this algorithm is only semi-blind because the derivation requires that the non-

linear activation function g must approximate the Cumulative distribution function (CDF) of s,

thus some assumptions must be made about the distribution of each independent component, si.

It is fortunate, however, that this algorithm is quite insensitive to the accuracy of this approxima-

tion and that in most cases of interest the independent components are Gaussian-like in nature.

Hyperbolic tangent and logistic functions are good approximations of the CDF of Gaussian-like

random variables and either can be used eUectively for gi.

3.6 Simple Illustrations of ICA

To clarify the concepts discussed in the preceding sections two simple illustrations of ICA are

presented here. The results presented below were obtained using the FastICA algorithm of Sec-

tion 3.5.1 but could equally well have been obtained from any of the numerous ICA algorithms

that have been published in the literature.

Separation of Two Signals

In this illustration two independent signals, s1 and s2, are generated. These signals are shown in

Figure 3.2. The independent components are then mixed according to Eq.(3.1) using an arbitrarily

chosen mixing matrix A, where
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A =
 −0.3784 0.8537

0.8600 0.5936

 (3.20)

The resulting signals from this mixing are shown in Figure 3.2. Finally, the mixtures x1 and

x2 are separated using ICA to obtain y1 and y2, shown in Figure 3.4. By comparing Figure 3.4 to

Figure 3.2 it is clear that the independent components have been estimated accurately and that

the independent components have been estimated without any knowledge of the components

themselves or the mixing process. This example also provides a clear illustration of the scaling

and permutation ambiguities. The amplitudes of the corresponding waveforms in Figures 3.2

and 3.4 are diUerent and the sawtooth waveform in Figure 3.4 has been reWected vertically with

respect to the sawtooth waveform in Figure 3.2. Thus the estimates of the independent compo-

nents are some multiple of the independent components of Figure 3.2, and in the case of s1, the

scaling factor is negative. The permutation ambiguity is also demonstrated as the order of the

independent components has been reversed between Figure 3.2 and Figure 3.4.

Figure 3.2: Independent components s1 and s2

Figure 3.3: Observed signals, x1 and x2, from an unknown linear mixture of unknown indepen-

dent components
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Figure 3.4: Estimates of independent components

Illustration of Statistical Independence in ICA

The previous example was a simple illustration of how ICA is used; we start with mixtures of

signals and use ICA to separate them. However, this gives no insight into the mechanics of ICA

and the close link with statistical independence. The statistical basis of ICA is illustrated more

clearly in this example.

We assume that the independent components can be modeled as realizations of some under-

lying statistical distribution at each time instant (e.g. a speech signal can be accurately modeled

as having a Laplacian distribution [13]). One way of visualizing ICA is that it estimates the

optimal linear transform to maximise the independence of the joint distribution of the signals

xi.

Suppose we have the joint probability distribution for the observed signals x1 and x2 shown

in Vgure 3.5. From the Vgure it is clear that the two signals are not statistically independent

because, for example, if x1 = 0 or 3 then x2 is totally determined. By applying ICA, we seek to

transform the data such that we obtain two independent components.

Figure 3.5: Joint density of observed signals x1 and x2 obtained from an unknown linear trans-

formation of the independent components
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The joint distribution resulting from applying ICA to x1 and x2 is shown in Vgure 3.6. This

is clearly the joint distribution of two independent, uniformly distributed random variables.

Independence can be intuitively conVrmed as each random variable is unconstrained regardless

of the value of the other random variable (this is not the case for x1 and x2). The uniformly

distributed random variables in Vgure 3.6 take values between 0 and -4, but due to the scaling

ambiguity, we do not know the range of the original independent components.

Figure 3.6: Joint density of estimates of independent components

The two examples in this section are simple but they illustrate both how ICA is used and the

statistical underpinnings of the process. The power of ICA is that an identical approach can be

used to address problems of much greater complexity.

3.7 conclusion

This chapter has introduced the fundamentals of Blind Source Separation. The mathematical

framework of the source mixing problem that BSS addresses was examined in some detail, as was

the general approach to solving BSS. As part of this discussion, some inherent ambiguities of the

BSS framework were examined as well as the two important preprocessing steps of centering

and whitening. Finally, speciVc details of the approach to solving the mixing problem were

presented and two important ICA algorithms were discussed in detail. The material covered in

this chapter is important not only to understand the algorithms used in this project to perform

BSS, but it also provides the necessary background.
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Chapter 4

Convolutive Blind Source Separation

The approaches to BSS presented in the previous chapter are robust and eXcient enough to

use in real world applications. However, they are limited to treating situations in which signals

are mixed with no time delays. This chapter presents an extension to the instantaneous ICA

framework of Chapter 3, called convolutive ICA, which enables separation of signals mixed

with time delays. Convolutive ICA is especially important when separating audio signals. In the

real world, it is rare to Vnd instantaneous mixtures of audio signals because of reWections. As

an illustration, consider the situation pictured in Vgure 4.1 which shows two audio sources and

two microphones in a room. The microphones record both the direct sounds and the reWections

oU the walls and each will involve a diUerent time delay and level of attenuation. This mixing

situation is described using a convolution.

4.1 Convolutive ICA Framework

The equation that describes the mixing process of Vgure 4.1 is the convolution:

xi(t) =
N∑

j=1

M∑
k=0

sj(t− k)aij(k) (4.1)

The above equation is the summation of the convolution of sources, sj with Vlters ai. The

Vlters are generally assumed to be Finite Impluse Response (FIR) Vlter and they model the acous-

tic environment for each source/sensor pair. This mixing process is more complicated than the

one considered in Chapter 3 and requires a more advanced approach to achieve separation.
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Figure 4.1: SimpliVed diagram of signal mixing in a real acoustic environment where s1 and s2

are sources and x1 and x2 are microphones

Using FIR linear algebra notation Eq.(4.1) can be rewritten more elegantly:

x(t) = A · s(t) (4.2)

The goal of convolutive BSS is to determine an unmixing FIR matrix,W, that will invert the

mixing process of Eq.(4.2). Considering only the case of two sources for simplicity, A can be

inverted analogously to standard linear algebra to yield the optimal unmixing FIR matrixW:

W = 1
a11 ∗ a22 − a12 ∗ a21

 a22 −a21

−a12 a11

 (4.3)

and the estimate y of the separated sources is given by:

y = W · x (4.4)

As in Chapter 3, the mixing FIR matrix is unknown so that statistical techniques must be

employed to estimate the unmixing FIR matrix.

4.2 Time Domain Approaches to Convolutive ICA

The Vrst approaches to addressing the convolutive BSS problem were algorithms that worked

purely in the time domain. Two important time domain approaches to convolutive ICA are the

feedforward network approach proposed by Bell and Sejnowski [4] and the feedback approach

of Torkkola [7]. Both approaches use networks with unmixing Vlters and the taps of the Vlters

are adapted using learning rules in order to approximate the ideal solution of Eq.(4.3).
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4.2.1 Feedforward Time Domain Network

Bell and Sejnowski’s feedforward network for the two-source convolutive BSS problem is

shown in Figure 4.2. The network contains four Vlters which are used to separate the signals

x1 and x2. The estimates of the separated signals are y1 and y2 and the non-linear output

function g is analogous to the CDF approximating non-linear function in Bell and Sejnowski’s

instantaneous ICA algorithm.

Figure 4.2: Feedforward convolutive ICA network. The wij blocks are the separating Vlters.

The network structure of Figure 4.2 is suggested by Eq.(4.3) and Eq.(4.4) since we will achieve

separation if the Vlters in Figure 4.2 match the Vlters in Eq.(4.3).

The Vlter taps are updated individually using the learning rule from Bell and Sejnowski’s

instantaneous BSS algorithm in order to maximise the independence of the outputs y1 and y2

based on the values of the non-linear functions g(y1) and g(y2)

4.2.2 Feedback Time Domain Network

Torkkola [7] showed that the feedforward network architecture of Section 4.2.1 is not ideal be-

cause thew11 andw22 Vlters enable temporal whitening of the input signals. Temporal whitening

is encouraged by the feedforward network structure because it increases signal independence,

but it is undesirable because it tends to highpass Vlter the signals and distort their spectral qual-

ity [7]. To avoid this problem, Torkkola proposed the feedback architecture shown in Figure

4.3 which only has cross Vlters (w12 and w21) and forces the direct Vlters w11 and w22 to scalar

values so that it is impossible for the network to temporally whiten the signals.

27



CHAPTER 4. CONVOLUTIVE BLIND SOURCE SEPARATION

Figure 4.3: Feedback convolutive ICA network with direct Vlters w11 and w22 forced to be scalars

to avoid temporal whitening.

The same update algorithm was employed by Torkkola as by Bell and Sejnowski, but the

feedback network structure resulted in superior separation and avoided distortion due to tempo-

ral whitening.

4.3 Frequency Domain Approach

The time domain algorithms of the previous section result in successful separation of convo-

lutively mixed signals. However, they are very ineXcient because they involve convolutions of

long Vlters (for audio separation problems Vlters may routinely need around 1000 taps to model

the acoustic environment). Smaragdis [8] proposed a more eXcient approach by working in

the frequency domain. By transforming the convolutive mixing problem into the frequency do-

main, Smaragdis realised that it would reduce to an instantaneous mixing BSS problem which

and treated using the methods of Chapter 3.

Smaragdis’ approach was to Vrst transform the observed mixtures into the frequency domain

using a Short-Time Fourier Transform (STFT) yielding a set of frequency bins for each signal.

Let uk(ω, t) denote time point t in frequency bin ω for the signal xk(t). The frequency bins

at each frequency ω are instantaneously mixed and an instantaneous ICA algorithm is used to

Vnd the unmixing matrix W for each bin. Once separated, the STFT is inverted to reconstruct

the separated signals in the time domain. Smaragdis’ procedure for frequency domain ICA is

illustrated in Vgure 4.4.
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Figure 4.4: Frequency domain ICA, the STFT bank transforms the mixed signals into the fre-

quency domain where they are separated using instantaneous ICA and then converted back into

the time domain using the ISTFT bank.

There are two major complications in implementing this convolutive framework:(1) instanta-

neous ICA algorithms must be modiVed to work with complex numbers and; (2) we must ensure

that each frequency bin separates to the same permutation. The Vrst issue is addressed in a pa-

per by Bingham and Hyvärinen [14] that extends the FastICA algorithm to work with complex

numbers. The second problem arises from the permutation ambiguity in BSS and as yet has no

robust solution. In instantaneous ICA the permutation ambiguity was of minor importance. In

Smaragdis’ approach, it is absolutely essential to keep the same permutation in frequency bin as

otherwise the signals remain mixed.

A simple approach to avoiding the permutation problem was suggested by Smaragdis: work

sequentially through the frequency bins using the converged value of W from the ith bin as the

initial value for the (i + 1)th bin. This heuristic encourages the unmixing matrices to converge

to the same permutation solution in each bin, but in general it is unreliable.

Davies and Mitianoudis [15] proposed a more eUective approach to solving the permutation

problem which relied on using time-domain information to identify the correct permutations.

SpeciVcally, Davies and Mitianoudis proposed using time domain data to determine the most

likely permutation of the instantaneous unmixing matrix W. In the 2 × 2 case, the technique

compares the likelihood of the unmixing matrix W with

 0 1
1 0

W at frequency bin ω to de-

termine which permutation matches the rest of the frequency bins more closely. The likelihood

of each permutation is determined by calculating the likelihood ratio (LR), given by:

LR = γ12γ21

γ11γ22
(4.5)

where
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γij =
T∑

t=1

|ui(t)|
βj(t)

(4.6)

The term βj(t) in γij provides the time domain information that is crucial in eliminating the

permutation problem, it is eUectively a time average over frequency and is given by:

βj(t) = 1
N

∑
ω

|uj(ω, t)| (4.7)

This technique enables eXcient separation, but unfortunately it is not easily extensible to

more than two signals.

4.4 Conclusion

This chapter introduced the concept of convolutive BSS. The most signiVcant application of

convolutive BSS is in separation of acoustic signals recorded in a real environment. Two time

domain approaches to convolutive BSS were presented in Section 4.2 but due to the long convo-

lutions involved in these procedures they are too ineXcient for practical use. A more eXcient

frequency domain algorithm was considered in Section 4.3.
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Chapter 5

Experimental Results for Signal Separation

In this chapter experimental results from both instantaneous and convolutive audio signal

separation using the ICA algorithms discussed in Chapters 3 and 4 are presented. The objectives

of this experimentation were to compare the eUectiveness of Bell and Sejnowski’s instantaneous

ICA algorithm with FastICA, show that Davies’ convolutive ICA algorithm is eUective in sep-

arating convolutive audio mixtures and demonstrate the inadequacy of instantaneous BSS in

dealing with convolutive audio mixtures.

5.1 Instantaneous Mixtures

In practical applications of instantaneous ICA the mixing matrix is unknown, but for the pur-

poses of algorithm assessment, in this section a number of signals were mixed using a known

mixing matrix, A. When the mixing matrix is known it is straightforward to assess the eUec-

tiveness of instantaneous ICA algorithms since for ideal separation the product matrix Q = WA

(where W is the unmixing matrix found through BSS) should be a permutation matrix. By

calculating how far Q deviates from being a permutation matrix it is possible to measure the

eUectiveness of the ICA algorithm under question.

Mutihac and Van Hulle [16] proposed the cross-talk error (CTE) as an index formeasuring

ICA separation based on comparing Q to a permutation matrix. CTE is deVned as:

CTE =
N∑

i=1

 N∑
j=1

|Qij|
max |Qi|

− 1
+

N∑
j=1

(
N∑

i=1

|Qij|
max |Qj|

− 1
)

(5.1)

CTE is used in to compare the eUectiveness of FastICA and BS in performing blind signal

separation.

A set of audio test signals were used in assessing the FastICA and BS algorithms. The signals

are described and plotted in the time domain in Figure 5.1.
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Siren Female news reader Classical music

Singing Foreign news reader

Figure 5.1: Time domain plots (5 seconds total) of instantaneous ICA test signals.

In order to reliably determine the separation eUectiveness of FastICA and Bell and Se-

jnowski’s maximum likelihood algorithm (henceforth referred to as the BS algorithm), sepa-

ration was performed 20 times for each algorithm and the CTE results were averaged. In each

case the signals of Figure 5.1 were mixed using a randomly generated 5 × 5 matrix. Figure 5.2

shows a typical set of mixtures.

Tables 6.2 and 6.3 summarise the results from applying FastICA and BS respectively to the

test mixtures. In order to use the BS algorithm a non-linear output function must be speciVed.

The BS algorithm is somewhat restricted in the nonlinear output functions that can be used

since, as explained in Section 3.6.2, the algorithm requires that the function approximately match

the CDF of the data being separated – a property suXciently satisVed by the function g(u) =
tanh(u) which was used throughout this experimentation. There is, however, greater Wexibility

with the learning rate parameter, L, in the BS algorithm and the results of Table 6.3 compares the

signal separation using BS with diUerent learning rate parameters. Note that in order to make

a meaningful comparison of algorithmic performance when varying learning rate, the number

of iterations was kept constant. In each case, BS was performed with 500,000 iterations (or 10

complete passes through the data) which, based on experience, is suXcient to enable reliable

convergence to a solution.
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Non-linearity Mean CTE

g1(u) = tanh(u) 0.274

g2(u) = u3 0.326

g3(u) = u exp(−u2/2) 0.315

Table 5.1: Comparison of mean crosstalk error using FastICA with diUerent non-linear functions.

Results were obtained by averaging results from 20 runs of the algorithm.

Learning rate Mean CTE

5.0× 10−5 0.565

1.0× 10−4 0.282

5.0× 10−4 0.463

1.0× 10−3 0.635

Table 5.2: Comparison of mean crosstalk error using diUerent learning rates and with g(u) =
tanh(u) in each case. Results were averaged for 20 runs of BS for each learning rate.

From the results in Tables 5.1 and 5.2, it is clear that varying the non-linearity in FastICA

and the learning rate in BS has a signiVcant impact on the quality of signal separation. Unlike in

BS there are no stringent requirements on the output function g that is used in FastICA, except

that is must be non-quadratic. As a result, a variety of functions can be used with FastICA

and the results from separating with FastICA with three of the most commonly used functions,

g(u) = tanh(u), g(u) = u3 and g(u) = u exp(−u2/2) are given in Table 5.2. In this case the

best separation results (CTE of 0.274) were obtained using the hyperbolic tangent function.

The results for the BS algorithm show a strong dependence on the learning rate parameter.

This is to be expected as L has a signiVcant eUect on the rate of convergence. With L too large

we get overshoot and poor convergence, and with L too small it takes a long time to converge to

a solution. From the results, we can see that an approximately optimal learning rate parameter

was L = 1.0× 10−4 for the separation problem considered in this section.

The results of this section demonstrated the eUectiveness of ICA in separating instanta-

neously mixed signals and showed there is only a small diUerence in performance between

FastICA and BS, with FastICA shown to perform slightly better.

5.2 Convolutive Mixtures

Convolutive ICA was performed using Davies’ frequency domain approach. It is more diXcult

to quantify the performance of frequency domain ICA algorithms as we do not have a simple
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analogue of CTE for the convolutive case. The results presented here are qualitative and based

on comparisons of spectrograms.

5.2.1 ArtiVcially mixed signals

Two 6.25 second speech signals, sampled at 8kHz, were used as test signals for analysis of algo-

rithm performance. The spectrograms of these signals are shown in Vgure 5.2. The signals of

Vgure 5.2 were convolutively mixed using the following mixing Vlters:

A11(z) = 1− 0.4z−25 − 0.2z−45

A12(z) = 0.4z−20 − 0.2z−28 + 0.1z−36

A21(z) = 0.3z−10 + 0.3z−22 + 0.1z−34

A22(z) = 1− 0.3z−20 + 0.2z−38

1

(5.2)

The maximum delay introduced by these Vlters was due to the z−45 Vlter tap, which at

8kHz is equivalent to 5.625ms. This delay is imperceptible to the ear, but is signiVcant when

performing separation as the mixing process can no longer be modeled as matrix multiplication,

as in Eq.(3.1).

Figure 5.2: Spectrograms of original source signals used in algorithm analysis. Source (a) is an

American male newsreader, and (b) is a female voice speaking in a foreign language.

The eUect of the non-linear function in FastICA has already been considered earlier in this

chapter, and for the purpose of this section, we will assume that g(u) = tanh(u) (a routine

assumption in the literature). Another parameter is the number of iterations, the number of iter-

ations will be held constant at 100 (which, based on experience, is ample to allow convergence).
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Comparing Instantaneous and Convolutive ICA for ArtiVcial Mixture

The results of separation are shown in the spectrograms of Vgure 5.3. FastICA yielded poor signal

separation (as expected since instantaneous ICA cannot handle time delays due to convolutive

mixing) and on listening to the output signals of the FastICA algorithm, signiVcant crosstalk

remained. On the other hand, with Davies’ convolutive ICA algorithm good separation was

achieved and crosstalk was almost inaudible.

Figure 5.3 conVrms that the signal estimate using convolutive ICA matches the original

source signal much more closely than the estimate using FastICA. The spectrogram in Figure

5.3.(c), obtained using Davies’ algorithm, is a superior estimate of the original source. In Vgure

5.3.(b) there is greater signal due to interference at high-frequency and between 1.0s and 1.5s

when there is a lull in the source signal.

Figure 5.3: Comparison of separation of convolutively mixed signals. The spectrogram of the

original source is shown in (a), and the spectrograms in (b) and (c) correspond to instantaneous

and convolutive ICA respectively.
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5.2.2 Separation of Signals in a Real Acoustic Environment

In this section, speech mixtures recorded in a real acoustic environment are processed using BSS

techniques. The primary goal is to demonstrate, from experimental evidence, that such signals

can, for the purposes of BSS, be considered convolutive mixtures.

The speech mixture that was used to evaluate separation performance on real acoustic mix-

tures was a recording of two males speaking simultaneously in a regularsized oXce. The sample

rate is 16kHz, the speakers were approximately 60cm from each other and both counted from one

to ten, one in English and the other in Spanish. In this situation the original (i.e. unmixed) sig-

nals are not available for comparison. As a result, to gauge the level of separation, spectrograms

of the unprocessed recordings are compared to the output signals from FastICA (instantaneous

ICA) and Davies’ algorithm (convolutive ICA) in Vgure 5.4. Both FastICA and Davies’ algorithm

were used with the optimal parameters: the non-linear function was g(u) = tanh(u), and using
100 iterations, 512 point Hanning windows and 50 % window overlap.

The results are shown in Vgure 5.4. The spectrogram in Vgure 5.4.(a) shows one of the two

original recordings in which both voices were clearly audible. Figure 5.4.(b) is very similar to

the original mixture of Figure 5.4.(a) which illustrates the poor performance of FastICA in this

case. The spectrograms in Vgure 5.4.(c) and Vgure 5.4.(d) show the two signals resulting from

convolutive ICA. It can be seen that the spectrogram in part (a) of the Vgure has been decom-

posed into parts (c) and (d) so that superpositioning (c) and (d) would give a good approximation

to the original signal. This pictorially illustrates the separation of the original mixture in Vgure

5.4.(a) into the two individual voices. These results indicate that instantaneous ICA is ineUective

for separating audio mixtures recorded in a real acoustic environment, whereas convolutive ICA

oUers an eUective approach which provides experimental veriVcation that real acoustic mixtures

are convolutive in nature.
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Figure 5.4: Comparison of spectrograms for real audio mixtures, (a) shows the spectrogram of

one of the two original recordings in which both voices are clearly audible, (b) shows one of the

spectrograms obtained using instantaneous ICA, and (c) and (d) show the two signals resulting

from convolutive ICA.

5.3 conclusion

The performance of instantaneous and convolutive ICA was compared in separating both an

artiVcially generated convolutive mixture (using known mixing Vlters) and a speech mixture

recorded in a real acoustic environment. In each case, convolutive ICA was shown to perform

signiVcantly better. Furthermore, the ineUectiveness of instantaneous ICA in separating the real

acoustic mixture provided experimental veriVcation of the well established result that mixtures

recorded in a real acoustic environment can be accurately modeled as convolutive. The eXcacy

of convolutive ICA in separating real acoustic mixtures suggests a number of practical applica-

tions of convolutive ICA, such as in improving hearing aid technology or in voice recognition

systems.
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Conclusion

This thesis has examined the topic of Blind Source Separation, focusing on both the mathemat-

ical foundations of BSS techniques as well as on some important signal processing applications.

The general mathematical framework for both instantaneous and convolutive ICA was de-

veloped in the early chapters. As well as discussing the signal mixing models and conceptual

background of various algorithms, the underlying assumptions and limitations of BSS techniques

were examined in some detail. The most important application of BSS considered in this thesis

was acoustic signal processing.

Experimental results from instantaneous and convolutive signal separation problems were

given in Chapter 5. The FastICA and BS instantaneous ICA algorithms were shown to be com-

parable in separating instantaneous audio mixtures (with FastICA performing slightly better).

The performance of convolutive ICA in separating convolutive audio mixtures was examined

by comparing separation performance using diUerent parameters. Also, by processing convolu-

tive audio mixtures using both instantaneous and convolutive ICA algorithms it was shown that

instantaneous ICA is insuXcient for sound sources. In particular, it was shown that convolu-

tive ICA is required to separate audio mixtures recorded in real acoustic environments (i.e. the

real-world “Cocktail Party Problem”).
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