UNIVERSITE D'ALGER ECOLE NATIONALE POLYTECHNIQUE

104

DEPARTEMENT GENIE CHIMIQUE

THESE DE FIN D'ETUDES

OPTIMISATION DE LA MARCHE
D'UNE RAFFINERIE
PAR PROGRAMMATION LINEAIRE

Ecole Nationale Polytechnique Alger

Thèse de fin d'études

Sujet: Optimisation de la marche d'une raffinerie par la programmation linéaire.

proposé par M. MORTAMET

étudié par DJEBIRI MOHAMMED

sous la direction de MM. BORHAM et MORTAMET

-=-=-

Année universitaire 1972 - 73

"QUE MES PARENTS, MES FRERES ET TOUTE MA FAMILLE
TROUVENT ICI L'EXPRESSION DE MA PROFONDE AFFECTION"

Qu'il me soit permis d'exprimer ma gratitude à tous les professeurs qui ont contribué à ma formation.

Mes remerciements à MM. BORHAM et MORTAMET pour l'aide et les conseils qu'ils m'ont prodigués tout au long de la réalisation du projet.

Je tiens enfin à remercier tous ceux qui m'ont aidé dans la réalisation et la frappe du projet en particulier M. FROBERT, de l'IAP, qui a bien voulu mettre à ma disposition certaines données sans lesquelles la présente étude aurait été impossible.

SOMMAIRE

Introduction

1ère partie : Notions sur la programmation linéaire.

2ème partie ; Le sous-programme IBM 1130 LP.MOSS

3ème partie : Notions sur le pétrole et le raffinage.

4ème partie : Etude de l'avant-projet .

5ème partie : Etude du projet.

Conclusion

INTRODUCTION

L'objet de cette étude est la détermination du programme optimum de production d'une raffinerie par la programmation linéaire.

La raffinerie prise pour modèle est celle d'ARZEW.

Ainsi, compte tenu des données sur les bruts et leurs prix, sur les rendements des différentes unités et les coûts de production, sur les spécifications des produits finis et intermédiaires ainsi que sur la consommation du marché algérien en différents produits, on essaiera de déterminer le programme optimum de production dans les 2 cas suivants

- 1°) La raffinerie traite du brut algérien et du brut irakien importé dont le résidu servira à la fabrication des quantités de bitumes nécessaires à la satisfaction du marché intérieur.
- 2°)La raffinerie traite uniquement du brut algérien et importe du résidu irakien qui servira à la fabrication des quantités de bitumes nécessaires à la consommation locale.

Le traitement du problème s'effectuera sur ordinateur. On utilisera à cet effet le sous-programme IBM 1130 LP.MOSS existant au centre de calcul de l'école.

L'utilisation du sous-programme LP.MOSS ne demande pas ou pratiquement pas de connaissances sur la programmation linéaire. Toutefois, sur les conseils et avec l'aide de M.MORTAMET, j'ai étudié les bases de la programmation linéaire pendant une quinzaine de jours. J'ai ensuite, pour me familiariser avec la mise en équation des programmes de raffinage et avec l'utilisation du LP.MOSS, résolu un avant-projet avant d'entammer la résolution du projet lui-même.

1è re PARTIE

NOTIONS

S U R

La PROGRAMMATION LINEAIRE

Avant d'aborder la résolution pratique du projet, il est nécessaire de donner une étude assez sommaire sur la programmation linéaire.

La programmation linéaire:

La programmation linéaire est une technique mathématique permettant de déterminer la meilleure solution possible d'un problème dont les données et les inconnues satisfont à une sé -rie d'équations et d'inéquations linéaires.

Elle a été formulée vers 1950 et connaît un développement rapide par suite de son application directe à la gestion scientifique des entreprises. Elle est notamment trés utilisée dans l'industrie du pétrole.

Essayons, au moyen d'un exemple, de présenter la programmation linéaire.

I Présentation de l'exemple:

Un restaurateur a constaté que sa clientèle préfè re les assortiments de coquillages et qu'il peut offrir indifféremment:
-des assiettes à 8DA contenant 5 oursins,2 praires et 1 huîtres.

- " 6DA " 3 " 3 "

Il dispose de :

30 oursins

24 praires

18 huîtres

Comment doit-il les disposer pour réaliser la recette maximale ?

La premiè re idée qui lui vient est évidemment de ne proposer que des assiettes du premier type, puisqu'elles lui rapportent davantage.

Il pourrait ainsi en préparer 6. Il utiliserait alors:

les 30 oursins

 $6 \times 2 = 12$ praires

 $6 \times 1 = 6 \text{hu2tres}$

et il encaisserait 6 x 8 = 48DA

Cependant, une autre répartition des assiettes ne rapporteraitelle pas plus d'argent ?

La réponse à cette question sera donnée par la programmation linéaire qui déterminera le programme optimum de préparation des assiettes.

Mise en équation. :

Soient x en y les quantités d'assiettes du lier et du le merype qui seront préparées.

On utilisera:

5x + 3y oursins

2x + 3y praires

x + 3y huîtres

et comme bien entendu on est limité par les disponibilités en coquillages, on écrira:

(1)5x + 3y ≤ 30

(2)2x + 3y 6 24

(3)x + 3y < 18.

La recette à rendre maximale s'écrit:

$$z = 8x + 6y$$

On obtient ainsi un système d'équation et d'inéquations du premier degré (linéaires). Ce genre de problème est appelé programme linëaire.

Il s'agira donc de déterminer x et y (positifs) pour rendre la recette z maximale avec les conditions (1), (2) et (3).

Résolution du problème:

Transformons les inéquations en équations au moy en de variables d'écart positives. On obtient:

$$5x + 3y + u = 30$$

 $2x + 3y + p = 24$

x + 3y + h = 18

Nous avons ici un système de 3équations à 5 inconnues.

Tirons par exemple u,p et h en fonction de x et y.

$$u = 30 - 5x - 3y$$
 (4)
 $p = 24 - 2x - 3y$ (5)
 $h = 18 - x - 3y$ (6)

On peut ainsi obtenir des valeurs pour u,p et h en donnant à x et y des valeurs positives.

Cependant, pour qu'une solution soit acceptable il faut que u,p et h obtenus soient positifs (c'est ce qu'on a posé au début). Il faut alors déterminer parmi l'infinite de solutions acceptables celle qui rendra maximale z=8x+6y.

Pour aboutir rapidement à la solution optimum d'un tel problème, un mathématicien américain, G.B. Dantzig, a mis au point un processus de calcul à qui on a donné le nom d'algorithme ou méthode du simplexe.

Cette méthode est applicable pourvu que l'on connaisse une solution acceptable quelconque (solution de départ).

Dans notre problème la solution acceptable de départ consistera à donner à x et y des valeurs nulles. on obtient:

$$u = 30$$

 $p = 24$ et $z = 8x + 6y = 0$
 $h = 18$

Cette solution de départ consiste donc à ne rien faire.

Or le problème posé est de déterminer le couple de valeurs x et y positives qui maximisentla recette z.

Faisons alors croître x (dont le coefficient dans z est le plus grand) et laissons y nul.

L'accroissement de x entraînera des variations de u,p et h conformément aux relations (4),(5) et (6). Cependant ces relations montrent que,y demeurant nul, et u,p et h ne pouvant être négatifs, la croissance de x est limitée à :

$$v_4 = 30/5 = 6$$
, $v_5 = 24/2 = 12$ $v_6 = 18/1 = 18$

La valeur maximale attribuable à x est donc 6.0 Elle correspond au plus faible rapport vi et annule la variable u .

Un nouveau programme est donc possible:

$$x = 6$$
 $y = 0$
 $u = 0$
 $p = 17$ avec $z = 8x + 6y = 48DA$
 $h = 12$

Cette solution acceptable est celle trouvée par le restaurateur intuit rement.

Essayons de voir si le restaurateur. n'aurait pas intérêt à préparer des assiettes du 2ème ty pe. Il doit alors necessairement préparer moins de 6 assiettes du 1ier type puisqu'il n'a que 30 oursins.

Exprimons la solution générale de notre systè me d'équations ainsi que la recette z en fonction de y et u qui ont une valeur nulle pour l'instant. On obtient:

$$x = 5 - 3/5 y - 1/5 u$$
 (7)
 $p = 12 - 9/5y + 2/5 u$ (8)
 $h = 12 - 12/5 y + 1/5 u$ (9)
 $z = 48 + 6/5 y - 8/5 u$ (10)

L'examen de la relation (10) permet de conclure que:

-la variable u , nulle pour l'instant, doit rester nulle car toute valeur non nulle de u (et donc positive) ferait décroître z.

-un accroîssement de y, nulle pour l'instant, est souhaitable car il ferait augmenter z .

Comme pour x , déterminons la valeur maximale que peut prendre y.

Puisque u doit rester nulle et que toutes les autres variables doivent être positives ou nulles, la valeur limite de y s'obtiendra à partir des relations (7), (8) et (9).

$$v_7 = 6.3/5 = 10$$
; $v_8 = 12.9/5 = 6.66$; $v_9 = 12.12/5 = 5$
La valeur maximum de y est donc 5. On obtient:

x	=	3	d'aprés	(7)
p	=	3	it	(8)
h	=	0	it .	(9)

La recette est alors , d'aprés (10) :

z = 48 + 6 = 54 DA

Elle est supérieure à celle de la solution précédente.

Pour examiner si cette recette peut encore être améliorée, exprimons la solution générale du système en fonction des variables u et h nulles pour l'instant. On obtient:

y = 5 + 1/12 u - 5/12 h	(11)
x = 3 - 1/4 u + 1/4h	(12)
p = 3 + 1/4 u + 3/4 h	(13)
z = 54 - 3/2 u - 1/2 h	(14)

La relation (14) montre que l'optimum est atteint.

En effet, si l'on donne aux variables u et h des valeurs non nulles, la recette ne pourra que décroître. On peut donc affirmer que la recette maximale réalisable est de 54 DA. Elle est obtenue en préparant:

x = 3 assiettes du premier type y = 5 " 2ème "

Discussion:

Nous avons, à chaque itération, fait jouer un rôle particulier à 2 des 5 variables et la solution générale a été exprimée en fonction des 2 variables particulières.

Nous avons ensuite supposé que les 2 variables étaient nulles et éxaminé s'il était intéressant de les faire croître. C'est le signe du coefficient de ces deux variables dans l'expression de la fonction économique z qui a permis de prendre une décision:

-accroîssement souhaitable si le coefficient est posi-

- acroissement déconseillé si le coefficient est (0 En particulier l'optimum a été déclaré atteint lorsque les coefficients des 2 variables ont été négatifs. Ce mode operatoire est général et constitue l'algorithme du simplexe.

Notion de côut marginal

Par definition on appelle cout marginal d'un bien l'augmentation minimale de dépense, par rapport à la solution optimale, qui résulterait de l'utilisation d'une unité supplémentaire de ce bien, lorsque le problème posé consiste à produire des biens au moindre cout.

On a exprimé la fonction économique ou recette z en fonction des variables u et h, qui étaient les seules nulles à l'optimum, et on a trouvé:

 $z = 54 - \frac{3}{2}u - \frac{1}{2}h$

Nous dirons :

- que la valeur marginale de la variable d'écart u est de 1,5DA -que celle de la variable h est de 0,5DA ou encore que la valeur marginale d'un oursin est de 1,5DA et que celle d'une huître est de 0,5DA.

Systématisation des calculs par méthode simplexe:

La première chose à faire , pour résoudre un programme linéaire par la méthode du simplexe, c'est de transformer les inégalités des contraintes en égalités par l'adjonction de variables d'écart positives.

On écrit ensuite la fonction économique sous la forme dite z - $f(x_I, p_i)$ =0

On dresse ensuite un tableau dans lequel onréservera une colonne pour le calcul des vi,une colonne pour indiquer le numéro des équations, une colonne pour les variables en base une colonne pour le second membre, et enfin une colonne pour

z et pour chacune des autres variables:

On recherche alors la colonne remplaçante qui correspond, dans le cas où le problème est la maximisation de z, au coefficient le plus négatif.

On recherche la ligne sortante qui correspond à celle dont le v_i est minimum. Le pivot sera à l'intersection de la colonne rentrante et de la ligne sortante.

On calcule ensuite les coef. du nouveau tableau comme suit:
-cas de la ligne sortante: Les nouveaux coefficients lont
donnés par:
nouveaux coef. = anciens coef. /pivot

-dans la colonne rentrante ne reste que le 1 qui remplace le pivot.

- Les autres coefficients du tableau s'obtiennent, en désignant par A' le nouveau coefficient, et par A l'ancien coefficient:

A' = A - BxC / pivot

EXEMPLE:
Reprenons l'exemple du restaurateur:

$$z - 8x - 6y = 0$$

 $5x + 3y + u = 30$
 $2x + 3y + p = 24$
 $x + 3y + h = 18$

les calculs sont consignés dans la page suivante.

A chaque itération, le pivot est noté avec un astérix

Calcul des v _i	И	V	t	Z	х	У	u	р	h
	0	Z	0-	-1 -	~ 8	- 6	-		9 5 2 -
30/5 = 6	1	 u	30		y	3	1		
24/2 =12	2	p	24		2	3	-	1	
18/1 =18	3	h	18		1	3			1
3 10 21 2	0	z	48 -	-1-		-6/5	8/5		
6:3/5 =10	1		6	•	1	3/5	1/5		
12:9/5=20/3 12:12/5=5	2	p h	12 12			9/5	-2/5 -1/5	1	1
	- 0	z	54 -	1-			3/2		- 1/2 -
	1		3		1		1/4		_1/4
	2	р	3				1/4		-3/4
	3	y	5			_ 1	1/h2	! 	5/12

Les calculs s'arrètent car on est arrivé à l'optimum.

On obtient:
$$z + 3/2u + 1/2h = 54$$

$$x + 1/4u - 1/4h = 3$$

$$p - 1/4u - 3/4h = 3$$

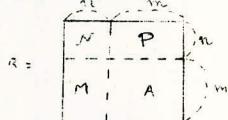
$$y - 1/12u + 5/12h = 5$$

Ces résultats sont conformes à ceux obtenus auparavant.

Application du calcul matriciel à la programation linéaire

I/ Rappel:

1°) Inversion d'une matrice partitionneé :


Soit R une matrice régulière pxp (avec p=n+m) partitionnée comme suit:

A est carrée mxm

N est carrée nxn

P est rectangulaire nxm

Il est rectangulaire mxn

Partitionnons son invers R-1 de la même façon que R, et appelons V, 7, et & les partitionshomologues . Effectuons le produit $R.R^{-1} = ||1||$ et identifions; on aura :

$$N \cdot V + P \cdot V = ||1||$$
 (1)
 $N \cdot T + P \cdot \alpha = ||0||$ (2)

$$N.T + P. \lambda = 000$$
 (2)

$$M \cdot V + A \cdot V = 11011 \tag{3}$$

$$\mathbb{N} \cdot \pi + \mathbb{A}, \ \exists = \| \mathbb{N} \| \tag{4}$$

D'où on tire :

$$\begin{array}{ll}
A = -A^{-1} \cdot N \cdot V \\
V = (M - P \cdot A^{-1} \cdot M)^{-1} \\
\alpha = A^{-1} - A^{-1} \cdot N \cdot \pi \\
T = A^{-1} \cdot P \cdot A^{-1}
\end{array}$$
(5)

Ces relations montrent qu'il suffit que l'inverse de A existe pour que l'invers de R existe.

Exemple: Soit R:

$$R = \begin{bmatrix} 1 & -p^{\mathbf{I}} \\ (H) & (P) \\ \hline 0 & - - \mathbf{I} \end{bmatrix} \quad R^{-1} = \begin{bmatrix} 1 & p^{\mathbf{I}} \cdot (A^{\mathbf{I}})^{-1} \\ (\nu) & (\pi) \\ \hline 0 & (A^{\mathbf{I}})^{-1} \end{bmatrix} \quad (\alpha)$$

En effet ,des relations (5) on tire :

$$\nu = 1$$
 car N=1 et N=0

$$a = (\Lambda^{\mathrm{I}})^{-1} \operatorname{car} \mathrm{M=0}$$

$$\pi = p^{\mathrm{I}} \cdot (\Lambda^{\mathrm{I}})^{-1} \operatorname{car} \mu = 1$$

2°) Inversion par multiplications succéssives: Soit A un matrice carrée mxm régulière ,dont l'inverse B=(A) ~1 est connue . La matrice A est formée des vecteurs A avec i EI. On se propose de trouver l'inversc B' de la matrice carrée A1 (mxm), déduite de A par substitution d'un vecteur A (à m composantes), au vecteur As qui était le v-ième vecteur de la matri

Cette matrice AI' est formée de vecteurs Ai'avec i'∈I'=¡I-s+r La matrice AI étant régulière , les vecteurs Ai qui la composent sont linéairement indépendants .

On démontre, en algèbre linéaire, que le vecteur Ar dont l'indice r & à I est nécessairement une combinaison linéaire des m vecteurs Ai. Soit Tr le vecteur expriment Ar en fonction des Ai. ()n a.

$$A^{\mathbf{r}} = A^{\mathbf{I}} \cdot T^{\mathbf{r}}$$
$$T^{\mathbf{r}} = (A^{\mathbf{I}})^{A} \cdot A^{\mathbf{r}}$$

Appelons T_{i}^{r} , les composantes du vecteur colonne T^{r} :

 $A^{r} = \sum_{i \in I} A^{i} \cdot T_{i}^{r}$ soit encore, e_{n} mettant en évidence le vecteur A^{s} (se I), qui doit être remplacé ; $\Lambda^{r} = \sum_{i} \Lambda^{i} \cdot T_{i}^{r} + \Lambda^{s} \cdot T_{s}^{r}$

Et si l'on suppose $T_s^r \neq 0$, on a :

 $A^{S}=1/T_{S}^{r} \cdot A^{r}-1/T_{S}^{r} \cdot \sum_{q \in E-S} A^{i} \cdot T_{i}^{r} \qquad (6)$ Soit encore ,en remarquant que les vecteurs qui interviennent dans (6) sont maintenant tous ceux dont lindice i' appartient à l'ensemble I'= {I-s+r}, c'est-à-dire ce sont les vecteurs de la matrice AI'

As A''.T'S A''.T'S (*)
Avec comme vecteur colonne T's, un vecteur dont les composantes sont : $T_i^s = T_i^r / T_s^r$ pour $i \in \{I - s\}$

 $T_i^s = 1/T_s^r$ pour i=r (c.à.d la v-ième composante) Comme le produit d'une matrice carrée mon quelconque par un vecteur unitaire g_(v)à m composantes dont le 1 est sur la v-ième ligne, donne la v-ième colonne de cotte matrice, il en résulte de la definition de AI et de la relation (x) que :

 $A_{\text{ppelons } G}^{\text{I}} \cdot \| g_{(1)} g_{(2)} \cdots g_{(v-1)} \| g_{(v+1)} \cdots g_{(m)} \|$

La relation (7) s'écrit alors : $A^{I} = A^{I'} \cdot G^{(v)}$

d'où:

La matrice inverse de $A^{\text{I'}}$ s'obtient en prémultipliant l'inverse de A^Ipar la matrice élémentaire G^(v).

Désignons par B^{i} une colonne quelconque de $B=(A^{I})^{-1}$, et par B^{i} celle de même pany $G : B' = (A^{I})^{-1}$. Les termes situés dans ces colonnes sur la A-ième ligne seradrespectivement Bi et B!

L'application des règlés dela multiplication matricielle montre qu'on obtient , pour les ternes de la colonne B'i:

-Sur la λ -ième ligne ($\lambda = \neq v$):

 $B_{\lambda}^{i} = B_{\lambda}^{i} + T_{\lambda}^{i} \cdot B_{\nu}^{i}$

- Sur la v-ième ligne :

 $B_{x}^{i} = T_{x}^{i} \cdot B_{x}^{i}$

soit enchre :

 $B_{x}^{i} = B_{x}^{i} + T_{x}^{s} \cdot B_{x}^{i} - B_{x}^{i}$

On aura alors la relation vectorielle:

 $B^{i} = B^{i} + T^{i} \cdot B^{i}_{v} - B^{i}_{v} \cdot E_{(v)}$

soit:

 $B^{i} = B^{i} + B^{i}_{v} \cdot (T^{i} - g_{(v)})$

Cette relation (9) est très pratique pour le calcul des coefficients de la nouvelle matrice inverse en fonction de ceux de l'ancienne .

Remarque: Cette méthode d'inversion est dite par multiplications successives car on peut obtenir l'inverse d'une matrice A en partant d'une matrice unité H et en remplaçant successivement tous sesvecteurs unntaires par les vecteurs Ai.

II/Méthode du tableau simplexe:

1°)Etude préliminaire:

Tout problème de programmation linéaire peut se mettre sous la forme matricielle suivante:

Naximiser z= p.x

sous les contraintes:

$$A. x = d \qquad (10)$$

où A est la matrice des contraintes

d est la matrice unicolonne des disponibilités ou vecteur second membre.

x est la matrice unicolonne des inconnues ou vecteur des variables.

p est la matrice uniligne des prix ou vecteur prix.

La matrice A étant une matrice rectangulaire, le système admet une infinité de solution.

Partitionnons la matrice A en deux sous matrices A^I etA^I. La scus matrice A^I est la matrice des coefficients; (en effet, en transformant les inéquations sous forme d'équations parl'adjonction de variables d'écart et en transcrivant le programme linéaire sous forme matricielle, on obtient la matrice A composée de la sous matrice carrée A^I des coefficients des variables initiales, et de la sous matrice A^I des coefficients des variables d'écart). On aura:

 $A = i | \Lambda^{T} \Lambda^{\tilde{T}} | i$

On aura de même pour x et p :

$$\mathbb{Z} = \left\| \begin{bmatrix} \mathbf{x}_{\bar{1}} \\ \mathbf{x}_{\bar{1}} \end{bmatrix} \right\|$$
 et $\mathbf{p} = \left\| \mathbf{p}^{\bar{1}} \right\| \mathbf{p}^{\bar{1}} \|$

La relation (46) s'écrit alors: $A \cdot \mathbf{x} = \mathbf{d} = \mathbf{A}^{\mathbf{I}} \cdot \mathbf{x}_{\mathbf{I}} + \mathbf{A}^{\mathbf{I}} \cdot \mathbf{x}_{\mathbf{I}}$ soit $\mathbf{A}^{\mathbf{I}} \cdot \mathbf{x}_{\mathbf{I}} = \mathbf{d} - \mathbf{A}^{\mathbf{I}} \cdot \mathbf{x}_{\mathbf{I}}$ (41)

 $\mathbf{x}_{\overline{1}}$ sont dits variables en base. $\mathbf{x}_{\overline{1}}$ sont dits variables hors base .

Résolution/:

Supposons la matrice A^{I} régulière.

Multiplions la relation (11) $par(A^{I})^{-1}$: $(A^{I})^{-1}$ A^{I} $\cdot x_{I} = (A^{I})^{-1}$ $(d - A^{I} \cdot x_{I})$

soit:

 $\mathbf{x}_{\underline{\mathbf{I}}} = (\mathbf{A}^{\underline{\mathbf{I}}})^{-1} \cdot (\mathbf{d} - \mathbf{A}^{\underline{\mathbf{I}}} \cdot \mathbf{x}_{\underline{\mathbf{I}}}) \qquad (12)$ en particulier si $\mathbf{x}_{\underline{\mathbf{I}}} = 0$: $\mathbf{x}_{\underline{\mathbf{I}}} = (\mathbf{A}^{\underline{\mathbf{I}}})^{-1} \cdot \mathbf{d}$

Cas de la fonction économique:

 $z = p \cdot x$

soit en utilisant la partition de p et x: $z = p^{I} \cdot x_{\bar{I}} + p^{\bar{I}} \cdot x_{\bar{I}}$ (15)

Remplaçons dans (13), $x_{\overline{I}}$ par sa valeur $z = p^{\overline{I}} \cdot (A^{\overline{I}})^{-1} \cdot (d - A^{\overline{I}} \cdot x_{\overline{I}}) + p^{\overline{I}} \cdot x_{\overline{I}}$ soit: $z = p^{\overline{I}} \cdot (A^{\overline{I}})^{-1} \cdot d + (p^{\overline{I}} - p^{\overline{I}} \cdot (A^{\overline{I}})^{-1} \cdot A^{\overline{I}}) \cdot x_{\overline{I}}$ (74)

Dans cette relation la fonction économique est exprimée sous la forme de deux termes:

-Le premier ne comporte que des coefficients connus (les prix associés aux variables de base, la matrice inverse des coefficients de base et le second membre).

-le second est le produit d'une matrive uniligne $c^{\bar{I}}=p^{\bar{I}}-p^{\bar{I}}\cdot(A^{\bar{I}})^{-1}$. $A^{\bar{I}}$ par le vecteur $x_{\bar{I}}$ des variables secondaires (hors base). C'est donc lui qui définit les variations de z en fonction des valeurs attribuées aux variables hors base. En particulier si on a $x_{\bar{I}}=0$, la relation (14) montre que z prend la valeur:

 $z_o = p^{\mathrm{I}} \cdot (A^{\mathrm{I}})^{-1} \cdot d = p^{\mathrm{I}} \cdot t_{\mathrm{I}}$ avec $t_{\mathrm{I}} = (A^{\mathrm{I}})^{-1} \cdot d$

Si les variables hors base ne sont pas toutes nulles, z prend une valeur différente de z. Comme les variables qui ne sont pas nulles ne peuvent être que positives, z pourra devenir:

⇒plus grand que z, si certains coefficients de la matrice c sont positifs (il suffira pour cela de donner des valeurs ; oritivos aux variables secondaires correspondants à ces coefficients).

-plus petit que z si cervains coefficients de c sont négatifs.

Par contre z ne pourra jamais dépasser z, si tous les coefficients de c sont négatifs. La solution correspondante est donc optimale sile problème consistait à maximiser la fonction économique.

De même z ne pourra jamais être inférieur à z si tous les coefficients de c sont positifs. Cette éventualité correspond donc à l'optimum dans le cas où il s'agit de minimiser z.

On retrouve ainsi directement les règles de la méthode du simplexe permettant, d'après les coefficients de la fonction économique, de reconnaître si l'optimum est atteint et, s'il ne l'est pas, de choisir la variable secondaire à rendre positive (pour la faire devenir variable de base). C'est pourquoi c sera appelée "matrice uniligne des coûts directeurs".

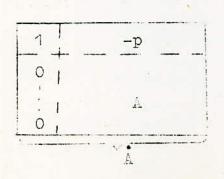
On remarque que, lorsque l'optimum est atteint, lescoefficients de la matrice c¹ représentent les variations de la fonction économique, au voisinage de l'optimum, consécutives à un accroise sement unitaire des variables hors base Lorsqu'un tel coefficient est associé à une variable d'écart il définit donc le coût marginal de cette variable d'ecart.

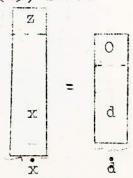
2°)Méthode pratique: a)Notation:

Un programme linéaire peut s'écrire sous 2 formes équivallentes: Forme habituelle : Forme Rand :

Maximiser z = p.x sous les conditions:

 $A \cdot x = d$


Maximiser z sous les conditions:


$$z - p \cdot x = 0$$

$$A \cdot x = d$$

$$x > 0$$
(15)

x>0 La représentation schématique de (15) sera:

Posons que :
$$p = \begin{bmatrix} 1 & 0 - - - - 0 \end{bmatrix}$$

Les matrices p,A, x et d ainsi définies sont dites matrices complétées. Le point au dessus des lettres rappelle qu'on a ajouté une ligne au dessus des matrices A, x, et d. Le même symbolisme est employé pour p , bien que cette fois-ci on ait ajouté une colonne à gauche de p .

En utilisant ces matrices complétées, le problème s'écrit:

Maximiser
$$z = \hat{p}.\hat{x}$$

sous les conditions: (16)
 $\hat{A}.\hat{x} = \hat{d}$
 $x > 0$

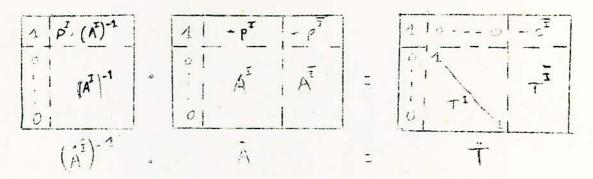
L'avantage do cette représentation est que le problème est mis sous sa forme habituelle.

La matrice À comporte m+1 lignes et p+1 colonnes.

Une base comportera donc m+1 vectours.

Nous conviendrons de placer constammant le vecteur correspondant à z dans la première colonne de A à laquelle nous affecterons l'indice "O" , soit A

Une base sera par conséquent un sous ensemble $\hat{I} = (0, I)$ La matrice de base sera: $\begin{bmatrix}
1 & -p^I \\
\hline
0 & A^I
\end{bmatrix}$


et son inverse a été calculée précédemment:

b) Résolution: Prémultiplions les deux membres de l'égalité (16) par $(\dot{\Lambda}^{\rm I})^{-1}$ On aura:

soit:
$$(\dot{A}^{\hat{I}})^{-1} \cdot \dot{A} \cdot \dot{x} = (\dot{A}^{\hat{I}})^{-1} \cdot \dot{d}$$

$$\dot{T} \cdot \dot{x} = \dot{t} \qquad (\dot{A}^{\hat{I}})^{-1} \cdot \dot{d}$$

Explicitons la structule de la matrice T en supposant la matrice Å partitionnée en Å $^{\hat{1}}$ et Å $^{\hat{1}}$. On aura:

Ceci est facile à mérifier en utilisant les règles de la multiplication matricielle.

Ainsi la matrice \hat{T} correspond bien au tableau simplexe habituel. Sa première ligne changée de signe, donne les coûts directeurs associés aux variables secondaires puisqu'elle est constituée par le vecteur ligne: $-\mathbf{c} = \|-\tilde{\mathbf{c}} - \mathbf{c}^{\tilde{\mathbf{c}}}\| = \|\mathbf{o} - \mathbf{c}^{\tilde{\mathbf{c}}}\|$ On retrouve ainsi la règle énoncée précédemment, à savoir que l'optimum est atteint lorsque tous les coefficients de la première ligne, relative à la fonction économique à maximiser, sont $\hat{\lambda}$ 0.

En effet, on a dans ce cas c^I (o, puisque cette ligne donne les composantes du vecteur -c, et on a vu qu'il en résultait que la solution correspondante était optimale.

Remarque Yout problème peut se mettre sous la forme consistant à maximiser la fonction économique.

En effet , minimiserp.x est "équivalent à maximiser -p.x .

III/Méthode de la matrice inverse de base:

1°)Algorithme:

Cette méthode, encore appelée full inverse, est utilisée aussi bien sur les ordinateurs que pour les calculs à la main. Elle consiste à utiliser, à chaque itération, la matrice inverse de base, $B=(\bar{A}^{\bar{1}})^{-1}$, pour calculer successivement:

... / ...

- a) le vecteur colone t = B.d donnant la solution.
- b) les coefficients Tg , en multipliant la première ligne do B soit B , par les vecteurs AJ qui ne sont pas dans la base (c.à.dotels que j \in I).

Si problème aété écrit sous la forme Maximiser z, la solution actuelle, correspondant à la base I, sera optimale si tous les coefficients \dot{T}_{o}^{J} sont >0, c'est à dire si tous les coûts directeurs (égaux aux \dot{T}_{o}^{3} changés de signe) sont $\leqslant 0$. Le pro $^{-1}$ me est alors résolu.

S'il n'en est pas ainsi, il faut poursuivre les itérations. Pour cela, on choisit l'un des coefficients $\dot{T}_0^{\rm J}$ (on prend en général le plus grand en valeur absolue) et on l'appelle (r youlant dire "rentrant")

c) le vecteur colonne Tr, en multipliant B par le vecteur d'indice"r" de la matrico À, soit Àr.

On compare ensuite, ligne par ligne, les composantes des vecteurs t et Tr, de façon à déterminer ? et l'indice "s" ("s" voulant dire "scrtant"):

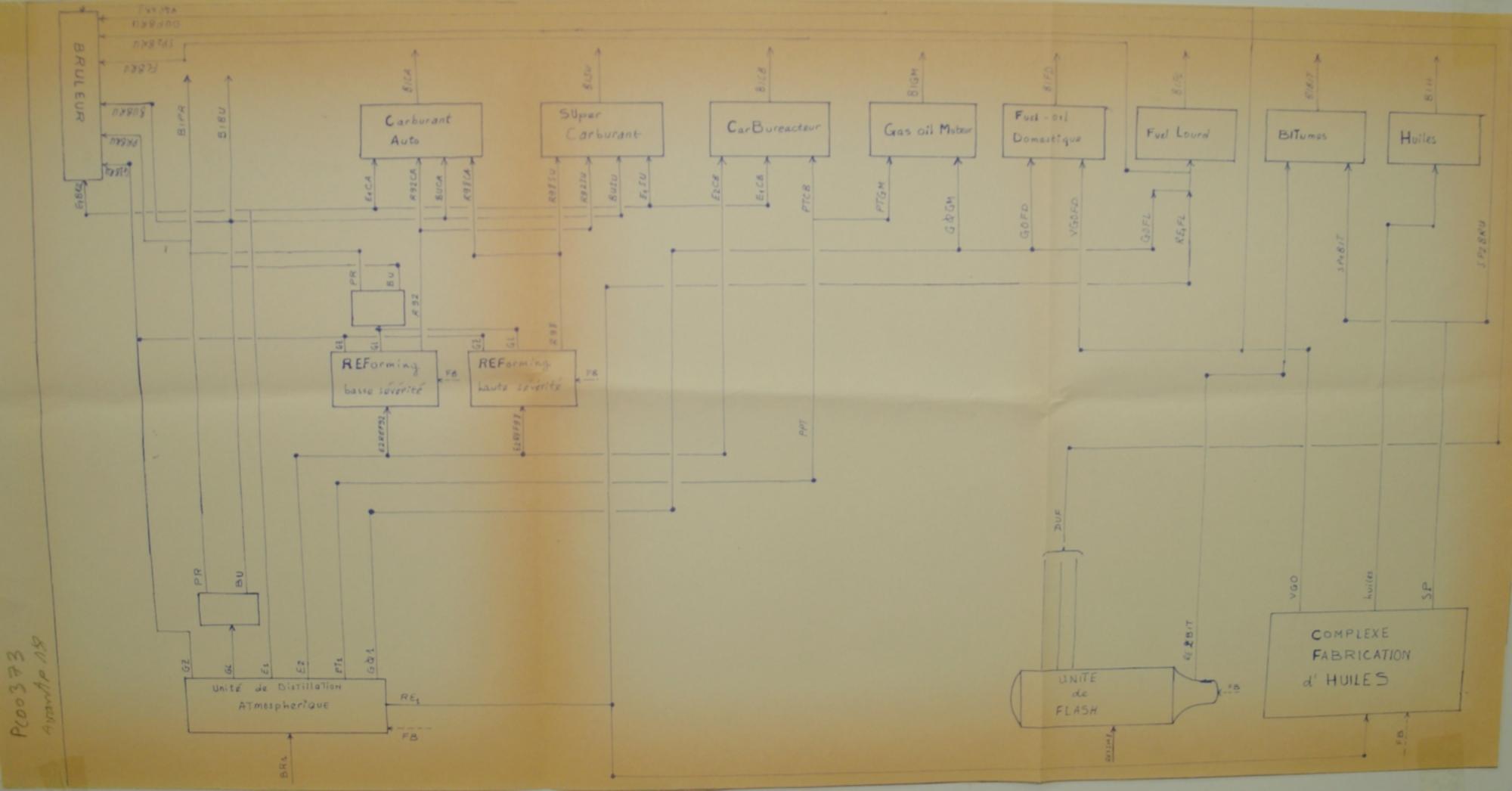
 $\hat{T} = \hat{T}_{S} / \hat{T}_{S}^{T} = \text{Min } \hat{T}_{A}^{T} / \hat{T}_{A}^{T} \text{ pour } \hat{T}_{A}^{T} > 0$

La ligne d'andice "s" étant déterminée, on note son repère (v-ième ligne) et le pivot Tr

d) Le vecteur colonne : s par application des formules établies dans la méthode d'inversion par multiplications successives.

Ses composantes seront:

-sur la v-ième ligne dont l'indice sera r à la prochaine itération:


$$\dot{\mathbf{T}}_{\mathbf{v}}^{\mathbf{s}} = \mathbf{T} \cdot \mathbf{r} = 1 / \dot{\mathbf{T}}_{\mathbf{s}}^{\mathbf{r}}$$

- sur les autres lignes;

T';= - Î' /Î'

On est maintenant en possession de tous les éléments permettant de déterminer la nouvelle matrice inverse de base, B', et du nouveau vecteur t' par application des relations $B' = (\hat{A}^{\hat{I}})^{-1} = G^{(v)}$, B

$$B' = (\hat{A}^{\dot{I}'})^{-1} = G^{(v)}, B$$

dans les que les la matri e élémentaire G^(v) s'obtient en remplacant le v-ième vecteur d'une matrice unitaire par le vecteur T' calculé précédemment.

Le calcul pratique de la matrice B' et de t' s'effectue en utilisant les relations établies dans les pages précédentes.

$$B^{,i} = B^{i} \div B^{i}_{v} \cdot (\dot{T}^{,s} - g_{(v)})$$

LorsqueB et t' sont déterminés, on effectue une nouvelle série de calcula auivent la méthode qui vient dêtre établie.

On commence par r'accurer que l'on a bien t'=B'.d.

On détermine ensuite les coefficients T' = 0 pour $j \in T'$ et ainsi de suite ...Les itérations se poursuivront jusqu'à l'obtention d'une base pour laquelle tous les coefficients $T^j = 0$ sont 0.

L'optimum est alors atteint.

La méthode est applicable pourvo que l'on connaisse su départ une matrice inverse de base.

Dans le cas converte prendre comme base de départ la solution évidente qui consiste à ne rien faire (en égalant les variables décart aux seconds membres), les calculs sont particulièrement simples puisque la matrice de base est unitaire et qu'il en est de même de son inverse B .

2°) Application numérique:

Reprenons l'éxemple du restaurateur mis sous la forme Rand:
Maximiser z

sous les conditions:
$$z - 8 \times ... 6y = 0$$

$$5x + 3y + u = 30$$

$$2x + 3y + p = 24$$

$$x + 5y + h = 18$$
soit , sous le forme matricielle:

La solution de départ évidente consiste à faire x=y=0. On a alone u=30; p=24; h=18; z=0.

La matrice initiale de base est donc:

¡i _ | Ao Au Ap Ah || Elle est unitaire.

Son inverse B(4) est aussi unitaire.

On peut donc effectuer la première itération qu'on présentera sous forme de tableau.

Pour différencier les itérations successives, on fera suivre les principaux symboles utilisés d'un chiffre entre parenthèses spécifiant le rang de l'itération considérée.

C'est ainsi que pour la première itération, on a: $\mathbb{B}_{(1)} = (\hat{\mathbb{A}}^{1})^{-1}, \ \dot{\mathbb{t}}_{(1)}, \ \dot{\mathbb{T}}_{(1)}$

et , pour la deuxième itération, TS) (qui remplacera la nolation T' utilisée dans la présentation de la méthode).

				3	(1)	÷(1)	± ^x (1)	des ^A	TU
		0	4	٤,	8	°(1)	-(1)	J.	
0	53	1				. 0	-8		8/5
4			1			30	-5.	6	1/5
	12		-	11	-	24-	2	12	-2/5
1	- in	-	-		11	18	1-1-	18	-1/5

Les coefficients T(1)0, soit -c^j, sont-6et -8 cer ils roviennent de la multiplication de première ligne de B(1) par AT:

La comparaison ligne par ligne des composantes de $\dot{t}_{(1)}$ $\dot{c}\dot{t}_{(1)}^{x}$ montre que le rapport minimal est 0=30/5=6. C'est donc la variable u ,appartenant à la ligne 1, qui joue le rôle de la variable d'indice "s" (sortante), tandis que la variable "x" joue le pôle de la variable d'indice "r" (rentrante).

Le pivot est T(1) 5. Il permet de déterminer les corposantes du vecteur ru (2) :

$$\dot{T}_{(2)x}^{u} = \dot{T}_{(2)1}^{u} = 1/\dot{T}_{(1)u}^{x} = 1/5 = 0,2$$

$$\dot{T}_{(2)\lambda}^{u} = \dot{T}_{(1)\lambda}^{x} / \dot{T}_{(1)u}^{x} = -\dot{T}_{(1)i}^{x} / 5 \quad \text{pour } i = 2,i,k.$$

Le vecteur $\dot{T}_{(2)}^u$ ainsi déterminé, est figuré en dernière colonne du tableau. Il permet de constituer la matrice élémentaire $\binom{1}{1}$

à partir d'une matrive unitaire dans laquelle le vecteur colonne correspondant à la variable sortante est remplacé par Tu(2).

Ainsi, à la deuxième itération , on aura comme matrice in-

verse de base: $B_{q} = G \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} \cdot B_{(1)}$

Le calcul de B(2), colonne par colonne ,s'effectue en appliquant les relations établies lors de la présentation de la méthode de la matrice inverse de base.

Comme tous les coefficients $B_{(1)1}^i$ sont nuls, à l'exeption d'un seul repéré, dans le tableau précédent, on aura:

$$B_{(2)}^{1} = B_{(1)}^{1} + \begin{vmatrix} 8/5 \\ -2/5 \\ -1/5 \end{vmatrix}$$
soit:
$$B_{(2)}^{1} = \begin{vmatrix} 0 \\ 1 \\ 0 \\ 0 \end{vmatrix} + \begin{vmatrix} 8/5 \\ -2/5 \\ -1/5 \end{vmatrix} = \begin{vmatrix} 8/5 \\ 1/5 \\ -2/5 \\ -1/5 \end{vmatrix}$$
De même on aura:
$$\frac{3/5}{-4/5} - \frac{4/5}{-2/5} - \frac{1}{5}$$
Soit:
$$t(2) = t(1) + 30 \cdot \begin{vmatrix} 3/5 \\ -2/5 \\ -1/5 \end{vmatrix}$$

$$t(2) = t(2) + \begin{vmatrix} 0 \\ 30 \\ 24 \\ 18 \end{vmatrix} + \begin{vmatrix} 48 \\ 6 \\ 12 \\ 12 \end{vmatrix}$$

On peut alors dresser le tableau correspondant à la deuxième itération. Bien entendu, la variable mentrante, soit x , qui était hors base, est en base maintenant et remplace la variable sortante, soit u, qui devient maintenant variable hors base.

On détermine alors la nouvelle variable rentrante en calculant les coefficients -cj(c'est à dire les coûts directeurs changés de signe, obtenus en effectuant le produit de la première ligne de la nouvelle matrice de base par les vecteurs colonnes des variables hors base ¿La variable rentrante sera celle pour laquelle ce produit est le plus négatif .

Ainsi, pour cette deuxième itération, les variables hors base sont u et y. Les produits donnant les -cj correspondant sont:

Pour la variable y:
$$\frac{-6}{3}$$
 = -6 +24/5 =- 6/5

Pour la variable u : $\frac{0}{1}$ = 8/5

C'est donc la variable y qui doit rentrer en base. On calculera donc le vecteur $T_{(2)}^{y} = B(2)$.

La tableau s'écrira alors:

i		B(2)				t ₍₂₎	Τ̈Υ(2)	calcul des	es $\dot{T}_{(3)}^{h}$
_		0	1	2	3	ļ			1/2
9	Z	1_	8/5			48	-6/5 3/5	10	+1/4
1	- X -		1/5			-43	9/5	60/9	
2	р —		-2/5	1		1 12	12/5*	A CONTRACTOR OF THE PARTY OF TH	5/12
,	h		-1/5	11		12	12/2		1 // 1-

Le calcul des vi montre que le pivot est fet que la variable sortante sera h . On calcule alors les composantes de Th (3) d'aprés les relations établies en bas de la page . Ce vecteur The est représenté en dernière colonne.

Il permet de constituer la matrice élémentaire G_{2}^{3} à partir d'une matrice unitaire 4 x 4 dont on remplace le vecteur unitaire, colonne repéré 3 (qui sera la quatrième colonne, puisque la première est repérée 0) par \dot{T}_{3}^{h} .

Ainsi à la troisième itération, on aura comme matrice inverse de base : $B_{(3)} = G_{(2)}^{(3)} \cdot B_{(2)}$

Le calcul de B₍₃₎ colonne par colonne, s'effectye de la même manière que précédemment, en utilisant les formules établies dans les pages précédentes. soit:

Le reste des calculs s'effectue de la nême manière que pour le tableau précédent. On obtient ainsi le tableau suivant:

		- M. 177.00.	В	(3)		[†] (3)	τ̂ ^u (3)	in The
			1	2	3		())	(2)
5	Z	1	1,5		0,5	54	1,5	0,5
i	X		1/4		-1/4	3	1/4	-1/4
2	р		-1/4	1	-3/4	3	-1/4	-3/4
73	У		- 1/12		5/12	5	-1/12	5/12

On vérifie bien qu'on a: $t_{(3)}^{=B}(3)$ ·d

Le calcul de T(3) et T(3) s'effectue de la même manière que précédemment, c.à.d en effectuant le produit de la matrice B(3) par les vecteurs colonne u et h. Comme les deux valeurs sont positives, on est donc à l'optimum et aucune variable ne peut par conséquent rentreren base. En effet, le tableau montre que les valeurs -c sont respectivement pour u et h, 1,5 et 0,5.

On voit anisi en utilisant la relation:

$$\dot{x}_i + (\Lambda^i)^{-1} \cdot \dot{\Lambda}^i \cdot x_i = (\Lambda^i)^i \dot{d}$$

soit encore:

$$\dot{x}_{i} + \dot{x}_{i}$$

On aura:

$$z + 1,5u + 0,5h = 54$$

$$x + 1/4u + 1/4h = 3$$

$$p - 1/4u - 3/4h = 3$$

$$y - 1/12u + 5/12h = 5$$

On retrouve annsi les relations obtenues lors de la résol tion par la méthode du simplexe.

Paramétrisation du second membre:

Dans tout ce qui a précédé, nous avons supposé que tous les coefficients qui interviennent étaient fixes.

Dans le cas où les coefficients sont variables en fonction d'un paramètre à , le problème est dit "paramétrique".

Envisageons ,ici le cas où les coefficients du second membre dépendent linéairement de λ soit: $d=\tilde{d}+\lambda \cdot d'$

Le problème de programmation linéaire s'écrit:

sous les contraintes:

$$A \cdot x = \tilde{d} + \lambda \cdot d'$$

Recherche d'une solution:

Supposons qu'il existe une base I; on aura alors:

$$\Lambda^{\tilde{\mathbf{I}}} \cdot \mathbf{x}_{\tilde{\mathbf{I}}} + \Lambda^{\tilde{\mathbf{I}}} \cdot \mathbf{x}_{\tilde{\mathbf{I}}} = \tilde{\mathbf{d}} + \lambda \cdot \mathbf{d}'$$

Multiplions $par(A^{I})^{-1}$ et tirons x_{I} :

$$\mathbf{x}_{\overline{\mathbf{I}}} = (\mathbf{A}^{\overline{\mathbf{I}}})^{-1} \cdot \left[(\bar{\mathbf{d}} + \lambda \cdot \bar{\mathbf{d}}) - \mathbf{A}^{\overline{\mathbf{I}}} \cdot \mathbf{x}_{\overline{\overline{\mathbf{I}}}} \right]$$

Posons:

$$\bar{x}_{T} = (A^{I})^{-1} \cdot (\bar{d} - A^{\bar{I}} \cdot x_{\bar{I}})$$

Soit: $\bar{x_I} = \bar{t} - \bar{T^I} \cdot x_{\bar{1}}$

$$x_T' = (A^I)^{-1} d'$$

Soit encore :

La solution donnant x_T devient alors:

$$x_{I} = \bar{x}_{I} + \lambda \cdot x_{I}$$

Cette relation montre que la solution générale du problème est une combinaison linéaire des vecteurs xT et xT.

- On voit que x_{I} représente la solution générale pour λ =0

- On voit aussi que x' est le produit de la matrice inverse de base par d' .

Quant à la fonction économique z =p.x =p.x =p.x + p.x.

s'écrit:

$$z=p^{\underline{I}}.(A^{\underline{I}})^{-1}.\overline{d} + [p^{\overline{I}}-p^{\underline{I}}.(A^{\underline{I}})^{-1}.A^{\overline{I}}].x_{\overline{I}} + \lambda.p^{\underline{I}}.(A^{\underline{I}})^{-1}.d!$$
 (*)

Posons:
$$z' = p^{I} \cdot (A^{I})^{-1} \cdot d' = p^{I} \cdot x'_{I} = p^{I} \cdot t'$$

et :
$$\bar{z}=p^{\bar{I}}\cdot(\Lambda^{\bar{I}})^{-1}\cdot\bar{d}+[p^{\bar{I}}-p^{\bar{I}}\cdot(\Lambda^{\bar{I}})^{-1}\cdot\Lambda^{\bar{I}}]\cdot x_{\bar{I}}$$

c'est à dire : $\bar{z} = p^{\bar{1}} \cdot \hat{t} + c^{\bar{1}} \cdot x_{\bar{1}}$

en utilisant la notation c pour désigner la sous-matriceligne des coûts directeurs:

ou:
$$c^{\overline{I}} = p^{\overline{I}} - p^{\overline{I}} \cdot (A^{\overline{I}})^{-1} \cdot A^{\overline{I}}$$

La relation (*) devient :

$$z = \bar{z} + \lambda \cdot z'$$

soit encore:
$$z = p^{\underline{I} \cdot (\overline{t} + \lambda \cdot t')} + c^{\overline{I}} x_{\underline{I}}$$

Cette relation montre qu'une solution de base du problème paramétrique, qui s'obtient en faisant x=0, sera maximale si:

$$c^{\overline{I}} = p^{\overline{I}} - p^{\overline{I}} \cdot T^{\overline{I}} = 0$$

En effet pour toute valeur \(\) du paramètre, z ne pourra croître au dessus de p. (t +).t') si l'on donne des valeurs positives aux variables hors base x, présentement nulles (avec jel).

La condition d'optimalité d'une solution de base du problème paramétrique, explicitée par la relation précédente, est donc indépendante du paramètre.

La solution o timale du problème paramétrique s'obtiendra à partir d'une solution optimale associée à une valeur particulière quelconque du paramètre.

On peut toujours se ramener au cas où cette valeur particulière est nulle en effectuant ,si besoin est ,un changement d'origine pour le paramètre.

2ème PART IE

PRESENT ATION et UTILISATION du
PROGRAMME IBM 1-130 LP. MOSS

// Le Sous programme IBM 1130 LP - MOSS //

Devant les difficultés qui se présentent lors de la résoluton des programmes linéaires, on a fait appel à l'informatique. Les ordinateurs permettent de contourner ces difficultés grâce à leur rapidité et à leur absence d'erreur de calcul.

Au centre de calcul de l'Ecole Mational Polytechnique existe le sous programme IBM: "4130 Linear Programming. Mathematical Optimization Subroutine System" (1130 LP.MOSS). C'est grace à ce sous programme qu'a pu être résolu le présent projet.

Présentation des données:

1º/ Equations:

Le LP-MOSS resoud un système d'équations mises sous la for-RV =CV1 + CV2 +...+CVN

Les équations doivent avoir une seule variable dans le membro de gauche, le coefficient de cette variable est 1,0.

Une variable ne peut apparaître dans le membre de gauche de plus d'une équation, mais elle peut apparaître dans le membre de droite de plusieurs équations.

Les équations d'un programme linéaire sont introduites sous forme de cartes , chaque carte précisant la relation entre la variable de gauche d'une équation et l'une des variables de droite. Une équation nécessite donc autant de cartes qu'il y a de termes dans le second membre (c.à.d le membre de droite).

Chaque carte a la figuration suivante: colonne, 5 à 12 : nom de la variable du membre de droite.

gauche. 15 à 22 : "

25 à 36 : coefficient numérique.

2º/ Contraintes :

Les limites assignées aux valeurs des différentes variables peuvent être de quatre types:

-limite supérieure ("upper bound" :UB)

-limite inférieure ("lower bound" : LB)
-valeur fixe ("fixed" : FX)
-pas de limite ("free" : FR)

L'ensemble des contraintes d'un problème reçoit un nom, et chaque limite est introduite par l'intermédiaire d'une carte ayant la configuration suivante:

-colonne 2 et 3: nature de la contrainte (UB, LB, FR ou FX)

-colonnes 5 at 12 : nom de l'ensemble des contraintes.

-colonne; 15 à 22: nom de la variable.

-colonnes 25 à 36: valeur numérique de la contrainte (rien dans le cas de FR)

3°/Introduction des données.Cartes de contrôle :

Pour être introduites dans l'ordinateur, les cartes contenant les équations et les contraintes doivent être précédées de deux cartes:

-la 1ère contient INFUT en colonne: 1 à5 et précise à l'ordinateur que l'on va introduire des données.

-la 2ème contient NAME en colonnes 1 à 4 et le nom que l'on donne au problème (Ex: PROGRAF) en colonnes 15 à 22.

Les cartes de données sont suivies d'une carte contenant ENDATA en colonne 1 à 6. Lorsque l'ordinateur a lu cette carte , l'énoncé du problème est enregisté sur disque.

Pour résoudre le problème ,il faut ensuite :

-une carte contenant MOVE en colonnes 1 à 4 qui appelle le problème.

-une carte contenant DATA en colonnes 5 à8 et le nom du problème à résoudre en colonnes 15 à 22.

-une carte contenant MINIMIZE (ou MAXIMIZE) en colonnes 5 à 12 et le nom de la variable à minimiser (ou maximiser), c.à.d la fonction économique comme par exemple FRAIS, en colonnes 15 à 22.

-une carte contenant BOUNDS en colonnes 5 à 10 et le nom de l'ensemble des contraintes à respecter en colonnes 15 à 22.

-une carte ENDATA terminant l'aprel des données.

-une carte contenant LFSOLUTION en colonnes 1à 10 demandant la solution du problème posé.

4°/Interprétation des résultats :

LP.MOSS imprime comme résultat :

- -dans la 1ère colonne (VARIABLE) figure la liste des variables du problème.
- -dans la 2ème colonne (TYPE) on voit si la valeur optimale de la variable est à sa limite inférieure(lewer limit LL) ou supérieure(upper limit UL) ou à une valeur intermédiaire B⁺).
- -dans la 3ème colonne (EMTRIES), on trouve le nombre d'éléments d'entée de chaque variable.
- -dans la 4ème colonne(SCLUTION`ACTIVITY) on lit la valeur optimale de la variable.
- -dans la 5ème et la 6ème colonne (UPPER BOUND , LOWER BOUND) on trouve les valeurs des limites imposées aux variables (à fin de vérification).
- -dans la 7ème colonne (CURTEMT COST) on trouve les coefficients de la fonction économique.
- -dans la dernière colonne (REDUCED COST): Lorsque dans un problème linéaure, le programme optimal fait prendre à une variable une valeur limite, il est évident que si cette limite était légèrement changée, la fonction économique serait légèrement améliorée. La colonne "REDUCED COST" donne les différentes valeurs de ces améliorations. Il faut noter que ces valeurs ne sont valables qu'au voisinage de l'optimum.

5°/Autres possibilités de LP.MOSS:

Les autres possibilités de LP.MOSS sont :

-L'analyse post-optimale et la paramétrisation qui indiquent les effets de changement des paramètres numériques du problème sur l'optimum.

-La possibilité de partir d'une solution de départ "avancée" pour la résolution d'un problème, ce qui réduit notablement le temps de calcul.

-LP.MOSS émet aussi des messages d'erreurs à la compilation et certains messages lorsque le problème n'admet pas de solution ou admet une solution infinie.

3ème PART IE

NOTIONS

sur

Le PETROLE et le RAFFINAGE

NOTIONS SUR LE PETROLE ET LE RAFFINAGE

I Pétroles bruts et produits pétroliers:

d'épuration.

1)Composition despétrolesbruts: Ce sont des produits présentant de larges variations dans leurs propriétésphysiques et chimiques. Ce sont généralement des liquides verts, marrons ou noirs et souvent fluorescents dont la masse volumique varie de 0,75 à 1,0 Kg/l et se situo le plus souvent entre 0,80 et 0,95 Kg/l. La viscosité varie également dans de larges proportions. La grande majorité des pétroles bruts ont des viscosités comprises entre 1 et 50 Cst à 20°C mais certains sont figés à cette température. Les pétroles sont essentiellement contitués par des hydrocarbures de différentes structures moléculaires, à l'exception des formes oléfiniques.Le rapport en masse carbone/hydrogène varie de 6à 8. Les pétroles contiennent en outre des éléments divers: Soufre, Azote, Oxygène sous différentes combinaisons, des composés organométalliques de Nickel, de Vanadium, de Fer, de l'eau ayant généralement solubilisé des chlorures de Na, Mg. Les hydrocarbures appartiennent aux trois familles principales: paraffiniques, naphtèniques et aromatiques. La répartition de ces hydrocarbures conditionnera les traitements et les rendements que subiront les coupes pétrolières. La présence des impuretés (Soufre, N2 ...) imposera les traitements

2°)Types de pétroles bruts:

Il est capital pour le rafineur qui doit traiter un neuveau pétrole brut de posséder des indications sur sa nature.

Les pétroles bruts sont communément désignés des appélations:

Bruts paraffiniques: Ils peu ou pratiquement pen d'asphaltes et constituent de bonnes sources pour la fabrication des kérosènes, gasoil et huiles.

Bruts naphtèniques: Ils contiennent à la fois des asphaltes, des paraffines et des naphtènes dans des proportions

parfois assez différentes. Les produits obtenus ont des caractères moins tranchés que les produits obtenus par traitement des pétroles bruts franchement paraffiniques ou naphtèniques.

Bruts asphaltiques: Ils ne renferment que très peu de paraffines. Le résidu de distillation est riche en hydrocarbures
aromatiques condensés. Les impuretés (S,O2,N2) peuvent se rencontrer à des concentrations relativement élevées. Les distillats légers et moyens sont riches en hydrocarbures naphtèniques. Ces bruts conviennent bien pour la fabrication d'essences d'indices d'octanes élevés et d'asphaltes.

IIRaffinage:

A) Géneralités sur le raffinage:

Les pétroles bruts ne peuvent être utilisés directement en dehors de cas très spéciaux tels que le brut algérien. Il y a lieu donc de les raffiner.

Les opérations de raffinage ont pour but de separer les différents produits que l'on peut extraire du pétrole brut et d'autre part de conférer à ces divers produits les caractéristiques requises pour leur utilisation.

B)Description succinte de l'industrie du raffinage

Le pétrole brut, acheminé des gisements à la raffinerie par navire pétroliers ou oléoducs, est stocké dans de très grands réservoirs de capacité de l'ordre de 30 000 & 100 000 m².

Après dessalage éventuel, il subit, quelque soit son origine, une première opèration de fractionnement par distillation produisant des coupes qui subiront à leur tour soit des opérations de transformation moléculaire, soit de nouvelles séparations physiques. La cascade de ces procédés qui transforment le pétrole brut en produits finis constitue le "schéma de fabrication".

1°) Dessalage:
DeL'eau contenant des sels (Na₂SO₄,CaSO₄,chlorures,...) est souvent assocé au pétrole brut sous forme de gouttelettes en suspension ou en émulsion . Lechlorure de magnésium, en par-

ticulier, s'hydrolyse à la distillation et provoque des corrosions et des encraisements. L'élimination de ces sels est essentielle pour maintenir des cycles d'opération normaux dans les fours, échangeurs, colonnes, Une concentration de 10 mg/l est un maximum admissible. Différents moyens (mécanique, chimique, électrique) sont utilisés pour éliminer les sels des pétroles bruts.

2°)Distillation atmosphérique ou topping:

C'est le procédé le plus important et le plus largement utilisé pour la séparation du pétrole brut en éssence,gas oil, et brut réduit(résidu atmosphérique). Cette unité de distillation primaire est utilisée à peu de différences prés pour tous les types de brut, mais il est possible, pour des raffineries importantes qui disposent de plusieurs colonnes, de les spécialiser: utilisation pour des bruts du moyen orient ou algérien dont la répartition en différent distillats peut justifier d'en modifier la géométrie, utilisation pour des bruts plus spéciaux tels que les bruts dits à bitumes, ou les bruts ayant une action corrosive soit par libération de H₂S et HCl, soit par la présence d'acides.

Le pétrole brut passe, après dessalage, àtravers un train d'échangeurs, puis dans un four avant d'êtreintroduit dans la première colonne de fractionnement par l'intermédiaire de la ligne de transfert dont la température est de l'ordre de 330 à 370°C suivant les installations et les pétroles traités.

Sur le plateau d'alimentation, la charge se sépare brutalement, par "flash" ou vaporisation brutale, en une phase liquide et une phase vapeur. Les vapeurs montent vers le haut de
colonne alors que les liquides rétrogradent vers le bas de la
tour. Les vapeurs ascendantes rencontrent le liquide de reflux
qui, provoquant un transfert de masse et de chaleur, "lave" ces
vapeurs et favorise le fractionnement. L'essence et les gaz
sont soutirés en tête de colonne tandis que les naphtas, kérosènes, gas oil sont obtenus dans les soutirages latéraux aprés
un suripping. Cette opération accentue le fractionnement entre

les coupes et règle le point d'éclair du kérosène. De la vapeur d'eau est admise en fond de tour afin de faciliter la vaporisation des constituants de haut point d'ébullition.

3% stabilisation:

C'est une opération qui permet la séparation de composés gazeux trés volatiles (C₁,C₂,C₃,C₄) des essences de réformage catalytique, et les hydrocarbures légers insaturés des essences de craquage catalytique.

La stabilisation s'éffectue dans des tours de fractionnement ayant 40à 50 plateaux et avec un taux de reflux élevé. Ces colonnes opèrent généralement sous des pressions comprises entre 5 et 15 bars,

4°/Distillation sous vide:

La séparation des fractions supérieures au gas oil demanderait, en distillation atmosphérique, des températures telles que des réactions de décomposition thermique (craquage) se produiraient immanquablement. Cette difficulté est levée en faisant fonctionner la colonne sous vide, avec parfois injection de vapeur d'eau, afin de réduire le point d'ébullition qui est directement relié à la pression absolue qui règne dans la colonne.

Le résidu atmosphérique est fractionné sous vide afin d'obtenir des bases visquuses qui serviront aux fabrications d'huiles ou qui seront des charges du craquage catalytique.

5°/Procédés de craquage:

Les procédés de craquage les plus utilisés sont:
a)Visbreaking(diminution de la viscosité par craquage):

Ce procédé est essentiellement un craquage thermique éffectué dans des conditions douces dans le but de réduire la viscosité des résidus de distillation,

Par réduction de la viscosité, cette opération réduit la quantité de distillat à ajouter au résidu pour lui permettre de se trouver dans les spécifications des fuels oils.

Les conditions sont pour la température 450 à 520°C et pour la pression de 4 à 20 bars à la sortie de la zone de

chauffage.L'opération fournit également un peu d'essence (5 à 8°/0) et du gas oil utilisé comme charge de craquage catalytique, fuel domestique ou diluant du résidu craqué. b)Conkéfaction:

C'est un craquage thermique relativement sévère qui convertit totalement les résidus lourds en gas, essence, gas oil et coke. Lafraction gas oil, représentant la plus forte proportion des produits formés, est utilisée comme charge du craquage catalytique ou comme fluxant du fuel oil.

Le coke obtenu est utilisé comme coke métallurgique etc... C)Craquage catalytique/:

Les procédés de craquage thermique ne pouvaient satisfaire à la demande croissante de carburants à haut indice d'octane. L'usage des catalyseurs dans l'industrie du pétrole fut suggéré en 1877 par Priedel et Crafts.

Les catalyseurs permettent de diminuer les températures et lespressions de réaction. Ils modifient le mécanisme de rupture des liaisons entre atomes de carbono et augmente la vites
Je transformation. Ils éliminent la majorité des réactions secondaires quiproduisent des gas, du coke etdes résidus lourds. Ils améliorent le rendement des essences en même temps que leurs qualités (nombre d'octane recherche entre 90 et 95). Le craquage catalytique permet d'augmenter les quantités de propylène, butylène, isobutane, trés utilisés en pétrochimie, et defournir des distillats dans la gamme 230-350°C utilisé pour le chauffage.

d)Steamcracking(craquage à la vapeur):

Ce type de con ge peut s'éffectuer sur des fractions aussi dissemblables que les gaz naturels ou liquéfiables, les essences légères de distillation, le gas oil ou même le pétrole brut lui-même.

Les réactions de steamcracking(déshydrogénation, polymérisation) conduisent à des gammes de produits d'autant plus larges que la charge du craquage est plus lourde.

6°/Réforming catalytique:

Ce procédé est devenu indispensable pour la fabrication des carburants modernes .Les essences parvenues de la distillation atmosphérique du pétrole brut, du craouage thermique, de la cokéfactionet du visbreaking ont un nombre d'octane relativement petit. par rapport aux essences automobiles dont le nombre d'octane est compris entre 90 et 100. Ladifférence est particulièrement sensible pour le naphta et c'est pour cette coupe que l'industrie a mis au point l'opération du réforming catalytique qui permet la transformation d'essence lourde à bas indice d'octane en un carburant plus volatil et d'indice d'octane trés amélioré. Le réforming catalytique n'a que peu d'action sur les coupes légères (35-80) qui sont transformées en essences à haut indice d'octane par alkylation et isomérisation. De plus le réforming catalytique est un procédé pour la fabrication d'aromatiques que l'on separe du réformat par extraction. Le réforming catalytique est employé sur les hydrocarbures dont le point d'ébullition est entre 80 et 200°C. Les catalyseurs sont en général platine-rhénium ou oxyde de molybdène.

7°/Hydroffinage:

Ce procédé est appliqué pour réduire la teneur en S,N2,02 airsi que les métaux. Ces composés posent des problèmes de pollution , de corrosion et de stabilité. Les réactions d'hydroffinage sont caractérisées par la rupture des liaisons C-S,C-N, C-O; N,S,etO sont éliminés sous forme de NH3, H2S,etH2O. L'élimination de ces composés et la saturation des oléfines réduisent les effets corrosifs et améliorent les propriétés et la stabilité des produits.

8°/Production des huiles lubriffiantes et des pæraffines: On utilise, pour la production des huiles lubrifiantes, la distillation sous vide du résidu atmosphérique. On obtient les produits suivant:

+=gas oil lourd, à la tête de la tour, qu'on peut mélanger à du gas oil pour obtenir du fuel oil domestique.

L'extraction s'effectue dans une colonne et on obtient en tête de colonne un raffinat mixte de nature paraffinique avec environ 20% de furfural et au fond on obtient l'extrait mixte avec environ 80% de furfural. On récupère ensuite le solvant par distillation sous vide suivie d'un stripping à la vapeur surchauffée pour l'élimination des dernières traces de furfural.

c)Déparaffinage:

Les distillats sous vide contiennent des hydrocarbures paraffiniques qui sont solides aux températures ambiantes. ILs forment des cristallins qui enserrent l'huile. Par séparation des hydrocarbures aromatiques, on concentre les hydrocarbures paraffiniques qui améliorent la viscosité mais augmentent le point de congélation.

Pour la séparation des hydrocarbures paraffiniques lourds, on utilise des solvants selectifs comme le mélange toluène-MEC. On refroidit le mélange lentement jusqu'à-25°C et par filtration on obtient:

- le filtrat contenant de l'huile diluée dans le solvant
- le gatsh (paraffine contenant une grande quantité d'huile allant de 25 à 30 %) qui se dépose sur le filtre.

Le solvant est récupéré des paraffines et du filtrat par distillation.

d)Traitements de finition:

Ils ont pour but d'éliminer les composés instables qui donnent une instabilité à la couleur des huiles et paraffines. Ce traitement s'effectue soit par H2, soit par l'argile.

8°/Les bitumes:

Ils sont produits à partir des résidus de distillation. Ces résidus sont d'autant plus aptes à être employés pour les bitumes qu'ils se rapprochent du type asphaltique.

Pour l'obtention des bitumes ,on pousse la distillation sous vide du résidu atmosphérique jusqu'à l'obtention d'un résidu ayant comme pénétration celle du bitume pur le plus fluide.Il sera ensuite facile de préparer les autres bitumes plus durs par addition de brai de déasphaltage dont le point de ramollisse -ment est de l'ordre de 60°C et la pénetration entre 10 et 20.

=trois distillats latéraux, avec des intervalles de distillation de 350-400, 400-450, 450-500, qui sont employés pour la fabrication des huiles lubrifiantes légères (spindles) et moyennes pour moteurs.

=Le résidu lourd, au fond de la tour, est employé pour la fabrication des huiles lourdes, huiles cylindres et bright stock.

L'obtention des huiles fait suite à différents traitements qu'on fait subir aux différents sous-produits de la distillation sous vide pour améliorer leurs propriétés.

a)Déasphaltage au propane du résidu sous vide;

le résidu de la distillation sous vide contient un mélange d'asphaltènes, de résines, de parffines et d'huiles. Les huiles ne doivent pas contenir d'asphaltènes (qui sont le résultat de la condensation des constituants aromatiques. Ils contiennent de 78 à 86% de carbone, 6 à 8% deH₂, le reste étant 0₂, et S; leur masse moléculaire est de l'ordre de 5000 à 6000. Ils sont insolubles dans l'ether de pétrolem, mais solubles dans le benzol) ni de résines (structures polycycliques insaturées.).

Le propane, qui a la propriété de précipiter l'asphaltène et la résine, et de dissoudre les hydrocarbures paraffiniques, est utilisé pour l'élimination des asphaltes et résidus.

b)Extraction des aromatiques:

Les distillats sous vide et l'huile desasphaltée contienment des hydrocarbures aromatiques. Ceux-ci ont une viscosité qui varie beaucoup avec la température (indice de viscosité trés bas); ils ont une stabilité thermique réduite et, par oxydation précipitent des dépots charbonneux. Pour les éliminer, on utilise des solvants sélectifs comme le furfural, le phénol ou le nitrobenzène. Le plus utilisé est le furfural dont le pouvoir solvant augmente avec la température et diminue avec l'augmentation de la masse moléculaire.

//SPECIFICATION DES PRODUITS FINIS //

Carburant auto:	
N.O minimum éthylé à 0,4%	91
densité maximum	0,765
tension de vapeur maximum Super carburant:	0,7Kg/cm ²
N.O minimum éthylé à 0,4%	98
densité maximum tension de vapeur maximum Gas oil et fuel oil domestique:	0,77 0,7Kg/cm ²
densité minimum	0,81
densité maximum	0,89
teneur en soufre maximum (% poids)	0,5
viscosité maximum à 20°C	9,50st
point de congêlation maximum	- 10°C
inflammabilité minimum pour le gas oil	56°C
Fuel lourd:	
teneur en suufre maximum (% poids)	4
viscosité, à 50°C , maximum	380 Cst

4ème PART IE

ET UDE de 1'A VANT-PROJET

// AVANT PROJET //

I/Définition des équipements:

- -Raffinerie pouvant traiter 2 bruts de qualité différente.
- 1 unité de distillation.
- 1 unité de réforming.
- Equipements de mélange pour essences, gas-oils, carburéac-

teurs et fuels lourds.			
II/Rendements sur unités:	Brut léger	Brut lourd	Symbole
Distillation_ rend. % volume	(BR1)	(BR2)	
Gaz (équiv. fuel) Gaz liquéfiés(C ₃ -C ₄) Ess.légère(C ₅ -90°C) Ess.loude (90-170°C) Pétrole (170-230°C) Gas-oil (230-370°C) Résidu (370°C +)	0,2 1,8 5,0 16,0 16,0 31,0 30,0	0,4 2,1 5,0 9,0 10,0 21,0 52,5	GZ GL E1 E2 PT (G01 et G02) RE1 et RE2
Reforming rend. % volume	Sev. 92	Sev. 98	
Gaz (équiv. fuel) Gaz liquéfiés	8,05 14,70	11,28 22,90	GZ GL
Réformat	77,25	65,82	R92 R98
	100,0	100,0	
Production simultanée pou	r 1 00m ³ de pla	tformat:	
Gaz(équiv. fuel) Gaz liquéfiés	10,41 19,04 29,45	17,11 34,79 51,90	GZ 6 L

III/Bilan de chauffe:

Les fours de la raffinerie peuvent brûler indifféremment du gaz, des GL, de l'essence légère et du fiel lourd. Consommations de combustible (directes et indirectes)

Distillation: 2% en vol. sur volume alimenté.

Réforming: sev.92 : 8% vol/alimentation

sev.98: 9% vol/alimentation

soit par rapport au réformats R92 et R98 :

sev.92: 10,356 %

sev. 98:13,671 %

IV/Qualité des bases produites:

TALKINATION COS	bases production.	
Essenses	Tension de vapeur	N.O éthylé
	g/cm ²	
E1	800	85
R92	400	98
R98	450	102
Gas-oil	Poids spécifique	Teneur en soufre
	g/cm ³	% poids
Pétrole	0,78	0,1
GO 1	0,83	0,05
GO 2	0,86	2,0
Fuel	Viscosité de	mélange
G 0 1	20	
GO 2	20	
RE 1	34	
ILL I	110	

V/Spécification des produits finis:

Carburant ordinaire et supercarburant: obtenus par mélange

de 3 bases: E1 + R 92 + R98

RE 2

Les spécifications à respecter sont:

.../...

	CA	SU
Tension de vapeur minihum (g/cm²)	500	500
Tension de vapeur maximum (g/cm²)	800	700
Nombre d'octane Res minimum	90	98

Les caractéristiques de TV et de NO sont supposees se mé - langur en volume. Touter les bases sont ethylees ou maximum Carburéadreurs: obtenus avec l'une des 2 formules types :

% volume	F1	F2
ΕΊ	18	8
E2	30	55
PT	52	<u>37</u>
	100	100

Gas oil:

Obtenu par mélange de 3 bases : GO1 + GO2 + PT Seule une spécification de 0,5% poids maximum de soufre est à respecter.

FUEL/: Obtenu par molange de 4 bases : GO1 +GO2+ RE1+ RE2 Spécification de viscosité tell que le "nombre de viscosité" du mélange T respecte:

VI/ Equivalents calorifique:

GL: $1 \text{ m}^3 \text{ GL} = 0.65 \text{ m}^3 \text{ fuel}$

Ess. légères: 1 m^3 E1 = 0,75 m³ fuel 1 m^3 GZ = 1 m^3 fuel

VII/Bases économiques:

-côut opératoire:

Distillation: 0,5 DA/m3 alimenté

Réforming

-sev.92 : 3 7 DA/m³ -sev.98 : 4;2 DA/m³ alimenté alimenté

- Prix des bruts (rendu raffinerie)

:78,5DA/m3 BR1

:70,5DA/m³ BR2

VIII/Hypothèses quantitatives:

-La période couverte par le plan est un semestre.

.../...

-Capacité de traitement des unités (maximum)

Distillation:

500 000m⁵/ mois

Péforming:

80 000 m³/mois

-Productions demandées pour le semestre:

GL : 60 000 m³
E1 : 20 000m³

CB : 200 000 m³

SU : 130 000m³

CA : 38 000 m³

GO : $610\ 000\ \text{m}^3$

FL : 8
- Disponibilité en bruts:

Brut léger (BR1): 500 000 m³ minimum

2000 000 m³ maximum

Brut lourd (BR2): 500000 m^3 minimum

3000 000 m³ maximum

-					
Nº	CODE	Designation .	W:	CODE	Designation
1	BIGZ	bilau gas	24	BR1	quantité da brut mil
2	BIGL	blan gaz liquide		BR2	quoutité de brut n=2
3	BIE1	blau esseur legere	7.0	GŽBRU	gas vers & reseau embristibles
4	BIEL	blau esseure loude	Forest	GLBRU	gas liquide vero reseau ambortibles
2	BIPT	blau pétiole		EIBRU	losence legie vero pescar conhertibles
6	BIG \$1	bilau gas oil léger		FLBRU	feel loud was combestibles.
1	BIGOR	blan gas oil loud	1000	ELCA	esseure légée veis carbuant outo
8	BIRE 1	blas rendu 1	1000	E1SU	eneuce legere ver supe carbinant
9	BIREL	blan residu 2		EICB	essence legée ves carbureactoir
10	BIBRU	blan brulen (hlu controtiles)	1 20	errefy2	essence lovede vero reforming base
41	BIREFSS	bilew reforming basse severité			sciente
12	BIREF98	below reforming hante severité		E2 REF98	essence louise vus reforming hante
13	BICA	blan carbusat auto			seventé
14	8150	blan supre curbuant	41	Et CB	soscue loude ver carlineactur
15	BICB	hlau Carline acteur		PTGM	fetiole vero gas oil
16	BIGM	bilar gas oil		PTCBF1	setiole vers curlineateur formule 1
143	BIFL	blan feel loud		GOIGH	gas oil leger vers gas oil
AF	CREFGE	Contraullé réforming bear service		GO1FL	gas vil leger vas fuel lours
19	TVICA	contrainte teurir de vapeur carburant auto	Town to	GOZGH	gas or loud vers gas or
		(lunite diferium)		G02 FL	gas at loved was freet land
20	TVSCA	Contraute tenny & vapeur carburant auto		RE1 FL	Reside 1 vers fuel loved
		(lieute superium)		RE 2 FL	Rendu & vero fuel louis
21	NORCA	Contrainte nombre d'octone carburant auto		R92	reformat base sevents
2.2	TVISU	contrainte travais de vajeur vagu carbonant		R98	reformat haute sevente
	- Truckle	(limite inferious)		R92 CA	reformat bane severilé vers carbinant
23	TVSSU	Containte tecenier de vapeur super carbinant			auto
		Climbe original	52	Rgesu	reformat basic sievilé reco super.
1	NOR SU	ecultante nombre d'octave oupe carbenant	-	TO FILE	carlmant
3	VIEL	contrauté de viorenté pour le fuel loure	55	R98 CA	reformat hante severilé vus contre-
		(unite in fainne)	-		- raut auto
26	VSFL	Contrainte de viscosite pour le fuel lorred	54	R985U	reformat hemite severité vers soujer
		(lunte myenane)			-carlmant
	CR98	contraute reforming houte severite.	5	PTC8F2	jetole vero carbucactan formule 2
28	CDIST	centrande distillation		FRAIS	facture économique à minimise
4					

MISE EN EQUATIONS DE L'AVANT PROJET

Les contraintes qui interviennent sont de 2 sortes/:

-contraintes de bilan-matière qui consistent à exprimer que pour le produit considéré, les quantités à fabriquer sont égales à celles qui sont utilisées ou demandées.

Suivant le cas elles s'écriront:

quantités produites - quantités utilisée = 0

ou:

quantités produites - quantité utilisée = débouché prévu l'ilan gaz : BIGZ.

Le gaz provient de la distillation atmosphérique et du réforming; il n'est utilisé que comme combustible. Il s'écrit:

BIGZ = 0,002BR1 + 0,004BR2 + 0,104 | R92+ 0,1711R98-GZBRU = 0
Bilan essence légère: BIE1.

La coupe E1 provient de la distillation et est utilisable comme combustible; elle peut être aussi incorporée au carburant auto (E1CA), au supercarburant(E1SU) ou au carburéacteur(E1CB).

BIE1 = 0,05BR1 + 0,05BR2 -E1BRU -E1CA-E1SU -0,346PTCBF1

-0.216PTCBF2 > Demande en E1

remarque: pour la commodité des calculs, E1CB a été exprimé en fonction du pétrole qui va au carburéacteur. Les calculs sont, à ce sujet, donnés dans la suite. Bilan gaz liquide: BIGL.

Les gaz propane et butane(GL) proviennent de la distillation et du réforming. Il sont utilisés, en partie, comme combustible(GLBRU).

BIGL =0,018BR1 + 0,021BR2 + 0,1904R92 + 0,3479 R98 -GLBRU Demande Bilan essence lourde:BIE2.

La coupe E2 provient de la distillation et est utilisée comme charge du réforming(E2REF92 et E2REF98); elle est en outre incorporée au carburéacteur(E2CB).Comme pour E1,E2CB a été exprimé en fonction de la quantité de pétrole incorporé au carburéacteur.

BIE2 = 0,16BR1 + 0,09BR2 - E2REF92 E2REF98 - 0,577PTCBF1 -1,486PTCBF2 = 0

Bilan pétrole: BIPT.

La coupe pétrole est utilisable pour la fabrication du carburéacteur(PTCB) suivant 2 formules F1 et F2(PTCBF1 et PTCBF2), et est aussi incorporée dans le gas-oil moteur (PTGM).

BIPT = 0,16BR1 + 0,10.BR2 - PTGM - PTCBF1 - PTCBF2 = 0
Bilan gas-oil lourd: BIGØ2.

Le gas-oil lourd est incorporé au GM, (GØ2GM), et au fuel lourd (GØ2FL).

BIGØ2 = 0,21BR2 - GØ2GM - GØ2FL = 0

Bilan gas-oil léger: BIGØ1.

Le gas-oil léger est incorporé au GN, (GØ1GM), et au fuel lourd (GØ1FL).

BIGØ1 = 0.31BR1 - GØ1GN - GØ1FL = 0

Bilan résidu léger: BIRE1.

Le résidu léger RE1 n'est utilisé que pour la fabrication du fuel lourd (RE1FL).

BIRE1 = 0,30BR1 - RE1FL = 0
Bilan bruleur (bilan de chauffe): BIBRU.

La consommation de combustible des installations de la raffinerie, exprimée en équivalent fuel lourd, atteint:

2% du brut léger BR1

2% du brut lourd BR2

8% de l'alimentation du platforming SEV92, soit en ramenant cela au réformat obtenu: $8 \times 1,2945 = 10,356\%$. R92

9% de l'alimentation du platforming SEV 98, soit en ramenant cela au réformat R98 obtenu: 9x1,519 = 13,671% .R98

Comme certains combustibles ont un pouvoir calorifique différent de celui du fuel lourd, on emploiera des coefficients de correction fixant, conformément au rapport des pouvoirs calorifiques, la quantité de fuel lourd qui corres pond à un mètre cube de chacun des combustibles. Ces coefficients seront:

1 pour le fuel lourd (FLBRU).
1 " le gaz (GZBRU)

0,65 pour le GL (GLBRU). 0,75 " E1 (E1BRU).

Le bilan combustible consistera à écrire que la quantité de combustibles est au moins égale aux besoins. Cette contrainte est sous la forme d'une inéquation afin d'accepter des excédents éventuels qui représenteront alors les quantités brûlées à la torche de la raffinerie. On aura donc:

BIBRU = FLERU + GZBRU + 0,65GLBRU + 0,75E1BRU - 0,02ER1

-0,02BR2 - 0,10356R92 - 0,13671R98 > 0 Bilan réforming: BIREF.

Ce bilan consistera à écrire que ,au niveau du réforming. ce qui sort est égale à ce qui rentre. On écrira cela pour chacune des 2 sévérités.

BIRLF92 = E2REF92 - 1,2945R92 = 0

BIREF98 = E2REF98 - 1,519 R98 = 0

Bilan carburant auto: BICA.

Il consistera à écrire que le CA obtenu par le mélange de l'essence légère (E1CA), les réformats SEV92 et SEV98 (respectivement R92CA et R98CA), est au moins égale à la demande.

BICA = E1CA + R92CA + R98CA > Demande en CA

Bilan supercarburant: BISU.

Il s'effectue de la même manière que pour le carburant-auto.

BISU = E4SU +R92SU + R98SU > Demande en SU Bilan carburéacteur: BICB.

Le carburéacteur peut être obtenu par l'une des 2 méthodes F1 ou F2indiquées . Pour la commodité des calculs ,déterminons les % de E1 et de E2 incorporés dans le CB par rapmort à la quantité de pétrole utilisée dans chacune des 2 méthodes F1 et F2 .On obtient:

Pour 100 m ³ de	PTCB:	F1	F2
	E1	34,6	21,6
	E2	57,7	148,6
		92.3	170,2

On aura alors:
BICB= 1,923 PTCBF1 + 2,702 PTCBF2 > Demande. - C5
Bilan gas oil moteur:BIC | |

Le GM est obtenu par le mélange de pétrole(PTGM), de gas oil léger(GØ1GM) et de gas-oil lourd (GØ2GM). On écrira que la production de GM est au moins égale à la demande en GM.

BIGM = PTGN + GØ1GM + GØ2GM Demande ... CM
Bilan fuel lourd:BIFL .

Le fuel lourd est obtenu par le mélange des résidus légers et lourds (RE1FL of RE2FL), et des gas oils légers et lourds (GØ1FL et GØ2FL). Ecrivons que la production de FL est au moins égale à la demande, en tenant compte du FL envoyé au four. BIFL = GØ.FL+ GØ2FL + RE1FL + RE2FL _FLERU > Demandeen FL Tension de vapeur pour le carburant auto: TVCA.

Les spécifications du problème sont telles que 500 TVCA (898m²) On admettra que la tension de vapeur Reid d'un mélange s'obtient en faisant la somme des produits des tensions de vapeur des constituants par leurs concentrations volumétriques. Soit:

BICA500 (TVCA = 800E1CA + 400R92CA + 450R98CA < 800 BICA soit, en décomposant cette double inéquation en 2 inéquations qu'on nommera TVICA (I pour inférieure) et TVSCA (S pour supérieure) et en simplifiant:

TVIGA = 0,8E1GA + 0,4R92GA + 0,45R98GA - 0,50BIGA > 0

TVSGA = 0,8BIGA -0,8E1GA - 0,4R92GA -0,45R98GA > 0

Nombre d'octane pour le CA: NORGA.

Le CA doit avoir un nombre d'octane au moins égale à 90. Le nombre d'octane d'un mélange s'obtient en faisant la somme des produits des nombres d'octane des constituants par leurs concentrations volumétriques (ceci n'étant valable que si tous les constituants ont une teneur identique de plomb tétra-éthyle)

On obtient aprés simplification:

NORCA = 0,85E1CA + 0,98R92CA + 1,02R98CA - 0,90BICA > 0

Tension de vapeur du supercarburant: TVSU.

En effectuant le même raisonnement que pour le CA, on aboutit à :

TVISU = 0,8E1SU + 0,4R92SU + 0,45R98SU - 0,5BISU > 0

TVSSU = 0,7BISU -0,8E1SU - 0,4R92SU - 0,45R98SU 0
Nombre d'octane du supercarburant: NORSU.

De la même manière que pour le carburant auto, on aura:

NORSU = 0,85E1SU + 0,98R92SU + 1,02R98SU - 0,98BISU) 0

La contrainte correspondant à la teneur en soufre pour le GN consistera à écrire que la masse totale de soufre contenue dans l'ensemble des constituants, est inférieure ou égale à 0,5% de la masse du gasoil méteur(BIGM) . On obtient, compte tenu des données et tous calculs faits:

TSGM =0,00312PTGM + 0,003735GØ1GM - 0,0129GØ2GM > 0
On a en effet:

avec:
$$V_1 = V_1 + V_2 + V_3$$
 $V_1 = V_1 + V_2 + V_3$ $V_2 = V_3$ $V_3 = 0,001$ $V_4 = 0,005$ $V_5 = 0,85$ $V_6 = 0,005$

et par un simple calcul, onaboutit à la relation donnée.

Viscosité du fuel lourd: VIL.

Teneur en soufre du GM: TSGM.

Pour exprimer cette contrainte, on a recours aux indices de mélange. On aura, en simplifiant:

0,35BIFL VFL=0,2GØ:FL+0,2GØ2FL+0,3'+RE1FL+0,4RE2FL & 0,37BIFL soit, en décomposant cette double inéquation:

VIFL= 0,2GØ1FL+0,2GØ2FL+0,34RE1FL+0,4RE2FL-0,35BIFL > 0

VSFL=0,37BIFL-0,2GØ1FL-0,2GØ2FL-0,34RE1FL-0,4RE2FL > 0

Capacité de distillation: CDIST.

La contrainte de distillation est donnée par la relation suivante, les calculs étant établis pour une durée de 6 mois.

CDIST = BR1 + BR2 \leq 3 000 000 m³

Capacité du réforming: CREF.

Cette contrainte s'exprime de la manière suivante: CREF = E2REF92 + E2REF98 < 480 000 m³

Contraintes sur les réformats: CR92 et CR98.

Ecrivons que les réformats obtenus R92 et R98 sont totalement utilisés pour la fabrication de CA et SU.

CR92 = R92 - R92CA - R92SU = 0

CR98 = R98 - R98CA - R98SU = 0

Bilan résidu lourd: BIRE2 (j'ai oublié de le mentionner + haut)

Le résidu lourd RE2 n'est utilisé que pour la fabrication du fuel lourd.

BIRE2 = 0,525BR2 - RE2FL = 0

Fonction économique : FRAIS.

Ayant établi les différents bilans matière et les différentes contraintes, il nous reste maintenant à écrire l'equation de la fonction économique à minimiser. Compte tenu des bases économiques données, et en ramenant ces bases économiques, en ceq qui concerne le réforming, par rapport aux reformats R92 et R98, on obtient:

FRAIS = 79BR1 + 71BR2 +4,78965R92 + 6,3798 R98

Les résultats obtenus, après traitement sur ordinateur, sont donnés dans le tableau ci-après. Dans ce tableau les résultats sont donnés en m⁵, à l'exception bien entendu des tension de vapeur, des viscosités, des teneurs en soufre, des contraintes sur le nbre d'octane.

A ...

foretim	economique	FRAIS = 151 425 709 DA	5.0
---------	------------	------------------------	-----

Nom de la Variable	Solution en milleus de m³	nom de la Variable	Solution en milliers de m³	Nom de la Variable	Solution en millian de m 3	nom de la variable	limites migrocas	Resultato
BR1	1006, 883	BIE2	0.	BIBRU	0	TVICA	>> 0	5, 553
BRE	1002,542	E2REF92	60,055	BIREF92	0	TVSCA	> 0	5,846
CDIST	2009,425	E 1 REF98	114,093	BIREF98	0	NORCA	>,0	0
BIGZ	0,	BIPT	0	CREF	174, 149	TVISU	>,0	0
R 92	46,393	PTGM	167,651	CR92	0	TVSSU	>,0	86
R98	75, 111	B1G01	0	R92CA	14,615	NORSU	>,0	0
GZBRU	23, 704	GO1GM	312, 133	R925U	31, 777	TSGM	>0	0,009
BIGL	60, 000	GO1FL	0	CR98	0	VIFL	>, 0	17,8
GLBRU	14, 141	BIGO2	0	R98 CA	0	VSFL	>0	0
BIE1	20,000	GO2GM	130,214	R985U	75, 111			
E1BRU	4, 859	GO2FL	80, 319	BICA	38,000			
E1CA	23, 384	BIRE1	0	BISU	130,000			
E15U	93, 111	RE1FL	302,064	BICB	200,000			
PTCBF1	68, 276	BIRES	0	BIGM	610,000			
PTCBFL	25, 427	RELFL	526,334	BIFL	890,000			
Licera		FLBRU	18, 719					

2

5ème PART IE

ETUDE du PROJET

// P R O J E T //

Le modèle adopté pour ce projet est celui de la raffinerie d'Arzew. On essayera de faire ici l'étude comparative dans les deux cas suivants

- 1°) Cas où l'on importe du brut irakien qu'on traitera (en plus du brut de H. Messaoud) et dont le résidu servira pour la fabrication des bitumes. Ceci constituera la 1ère partie du projet.
- 2°) Cas où l'on ne traite que du brut de H. Messaoud et où l'on importe du résidu irakien qui servira à la fabrication du bitume (c'est ce qui se fait actuellement à Arzew).

I/Définition des équipements:

La raffinerie peut traiter 2 bruts de qualité différents. Elle comporte: -1 unité de distillation atmosphérique.

-1 unité de flashmont l'obtention des bitumes.

-1 unité de reforming.

-1 complexe pour la fabrication des huiles.

-des équipements de mélange pour essences, gas

oils, carburéacteur, fuels lourdet domestique, bitumes ainsi qu'une unité de séparation des gaz.

II/Bases économiques:

Coût opératoire: distillation atmosphérique 1,6DA/T 12 DA/T basse sevértté reforming : 16 DA/T haute 5 DA/T hydrodésulfuration 2,5DA/T flash 170 DA/Td'huile complexe des huiles Prix des matières premières: 140 DA/T brut de H. Messaoud (BR1) 120 DA/T (BR2) brut de Kirkuk (RE2IMP) 80 DA/T résidu de Kirkuk

5.392			
II/Rendementd	des unités:		
Distillation	on:	Brut de Hassi Mess	a Brut de Kirkuk
rend. % poids		-oud (BR1)	(BR2)
C	(GZ)	0,1	
Gaz		and Market	0,1
Propane	(PR)	0,7	
Butane	(BU)	2,0	1,3
c ₅ -95°c	(E1)	10,7	8,2
95-170°0	(E2)	19,2	14,1
170-280°C	(PT)	22,6	20,6
280 - 370°C	(GØ)	19,3	15,4
570°C +	(RE)	24,9	39,8
Pertes	ō*	0,5	0,5
	Potal:	100,0	100,0
Reforming:		Haute sévérite	Basse sévérité
rend. % poids			
Gaz	(GZ)	7,1	4,5
Propane	(PR)	6,9	5
Butane	(BU)	8	6
Réformat	(R92 ,R98)	77,0	83,5
Pertes		1	1
- 01 00		100,0	100,0
Production si	multanée pour	100tonnes de platf	ormat:
Gaz	(GZ)	9,22	7,29
Propane	(PR)	8,96	5,99
Butane	(BU)	10,39	7,18
Pertes		1,30	1,20
101000	<u>.</u>	29,87	19,76
Caractéristic	ques du platfo		
D ₄ 5		0,79	0,78
TVR (en bar)	0,45	0,40
N.O. éthyléà		101,5	96

Complexe_des_huiles :

rend. % poids par rapport à la charge:

Huiles	50,0
Sous produit utilisé pour la	, , ,
fabrication des bitumes: (SP1)	15,0
Sous produit envoyé au bruleur(SP2):	20,7
Gas oil sous vide (VGØ):	14,3
Unité de fab rication des bitumes: rend. % poids par rapport à la charge:	100
Bitumes	50,0
Sous produits brulés:	50,0
TIT (D	100

III/Bilan de chauffe:

Les produits et sous-produits utilisés comme combustibles sont indiqués dans le schéma(cf suite).

consommation de combustibles:

- Distillation: 2% en poids de l'alimentation pour ant
- Reforming: Haute sév. : 9% en poids de l'alimentation

Basse sév. : 8% " "

soit par rapport aux réformats R92 et R98:

Haute sév. : 11,6883%

Basse sév. : 9,5808%

- Complexe des huiles : 5% en poids de l'alimentation.
- Unité des bitumes : 2% " " "
- unité de désulfuration : 1,8% ". "

IV/Spécifications des produits finis:

Elles ont été groupés dans les tableaux donnés dans les pages qui suivent. On donnera ici les 2 méthodes d'obtention du carburéacteur. Celui-ci est obtenu par l'une des 2 formules suivantes:

% poids	ΡΊ	F2
E1	15,78	7,01
E2	29,58	54,16
PT	54,64	38,8 3
	100,0	100,0

soit, en calculant ces pourcentages par rapport à la quantité de pétrole employé; pour la fabrication de CB (soit PTCBF1 et PTCBF2 respectivement pour la formule F1 et pour la formule F2).

E1	28,88	18,05
E2 .	54,14	139,48
	83.02	157.53

V/Hypothèses quantitatives:

Les capacités de traitement des unités sont:

Distillation:	3	000	000t/an
Reforming :		300	000t/an
Complexe des huiles:		200	000t/an
Unité des bitumes :		120	000t/an

L'étude sera faite pour quatre années consécutives. Les productions demandées pour chacune des différentes années sont:

Nom du produit	Année1	Année2	Année3	Ann&e4
		120		
Propane	5 800	6400	6800	7200
Butane	55 000	60000	65000	70000
Carburant-auto	284000	313000	329000	345000
Supercarburant	95000	115000	125000	135000
Carburéacteur	200000	210000	220000	230000
Gas oil moteur	255000	315000	345000	375000
Fuel oil domestiq	ue335000	395000	425000	455000
Fuel lourd	130000	210000	250000	290000
Bitumes	62000	68000	71000	74000
Huiles	40000	44000	46000	48000
220				

Les quantitésci-dessus sont exprimées en tonnes.

Il faut cependant remarquer qu'au cours du traitement du problème sur ordinateur, il aété impossible de fabriquer toute la quantité demandée, tout au moins pour certains produit. En effet ,on n'arrivaitpas à atteindre l'optimum car la raffinerie était dans l'incapacité de produire le tonnage fixé. Cela aété le cas pour le GM par exemple.

Liste des actintés et des entraintes

Nº	CODE	DESIGNATION	N:	CODE	DESIGNATION
1	BIGZ	Islan gast.	42	PC GH	It de empelation gew. oil nuteur.
2	BIPR	hear propage.	43	VFD	Venonté fuel demestique.
3	BIBU	bilas butane.	44	PCFD	Pt de congelation fuel-re donnestique.
4	BIE1	blau esseure legere.	45	TSFL	tenen in southe feel louis.
5	BIE &	blau eneua londe.	46	VFL	Visionte fuel loud.
6	BIPT	Islan Petrole.	47	BRI	brut de Hassi. Herraenid.
7	PPT	Production sétable.	48	BR2	brut de Kirkuk.
8	BIGO	Inlan gas-vil.	49	R92	Reformat basse sevente.
9	PGO	Production de geo-vil.	50	R98	Reformat haute seventé.
10	BIRE1	Bilan reside Hassi Memoris.	M	GZBRU	gaz vers brillerge (nixer curlintelles)
11	BIRE2	Bilan rendu de KIRKUK.	52	PRBRU	Propieue veis builage
12	BIGH	Inlan ges. vil muteur.	23	BUBRU	Butane vers brûlage
13	BIFD	Inlan fuel oil domertique.	54	E1BRU	Esseure legére vero brulay.
14	BIFL	Irlan fuel lond.	10	FLBRU	fuel loved ver brûlage.
15	BIBRU	blan contristibles.	26	DUFBRU	distillat utilisé couve fuel vers bûlage.
16	BICA	blan carbinant auto.	27	v go bru	Gas il de la distablation mus vido ver milage.
17	BISU	blan Sujer Carbinant		SP2 BRU	Sur perduit no: 2 du Conglese huiles vus brûlage.
18	BICE	bleu carlineacteur.	54	E1CA	Encure legie vers carburant auto
19	BIREFYL	blan reforming bane sevente.	60	ELSU	Essence lègeie vers pryer-carbruant
20	BIREF98	blan reforming haute sevente.	61	E1CB	Encure legie ses confure acteur
21	BIDUF	Islan distribut utilise enune fuel.	62	E2CB	Essence lande ver carbucactous.
22	BIVGO	blan squa at distillation mus wite.	63	E 2 REF92	Esseure lourde vero reforming basse severile
23	BIH	Vilan des hules.	-	E2REP98	Essence lourde vers reforming haute sevente
24	BISP1	bilear our produit no 1 delle couplete des huiles.		PTCBF1	Petrole vers curline cteur formule F1
26	B1582	blan sus produit nº 2 du emplese de huils.		PTC8F2	Fethole vers carbureactum formule Fl
26	BIBIT	blan botune.		PTGM	Petrole vero gers in - moteur.
27	CR92	Contrainte reformat base sevente.	67	GOGH	gas of vew gas of motion
124	CRAS	contrainte reformat haute seventé.		GOFD	gas-vil res firel vil domentique
24	CREF	Contrainte reforming		GOFL	gas-vil res fuel land
100	СТОР	Contravile capacité distillation atmonfemence.		VGOF	vacuu gas - I vas fuel domestique
31	CFLASH	Contraute capaciti mute de flass.		P E1 CH	Revidu nº 1 vers enrylete des huiles.
32		contrainte capacité complete huille.		REL FL	Rendu n: 1 vew fuel land
33	CDCA	contrainte deeroté carbinant auto.		RE2 BIT	Residu nº 2 vero unte de flash
34		Teunis de vajeur carbinant auto.	Miles	RE2 FL	Rendu nº 2 vers fuel toud
35	NOCA	Nombre d'octave currenant - ento.		SP1 BIT	sono product n: 1 vers between
36	CDSU	Contraute deunté pape carburant.		BU CA	butane vero carburant auto
37 38	TYSU	Teura de vajour prije continant	165 III	BU SU	britaire vers organicalturant
39	Nosu	None d'octave super-carbuant.		R92 CA	Reformat borne sevents vers curlinant auto
40		Teller en prophe du gas-oil.		R985 U	Reformed hante sevente vero supercarlinamen
41	IGM	Inflammabilité gas-ort-Motur.		R92 SU	Reformed being sevents vero supercarlinant
	VGM FRAIS	Viòronte gas-il-distrui.		RASCA RELEMP	Reformat hauts sevente vers carlmantano handa unputé (Krikuk)
1	i KAIS	forecast fore as majorately.	-		The state of the s

Mise en équation:

1º/Cas où l'on importe du brut irakien.

La mise en équation s'effectuera de la même manière que celle de l'avant projet, avec la différence que les bilans s'effectueront ici en masse et non en volume.

Bilan gaz: BIGZ.

Le gaz provient de la distillation atmosphérique et du reforming. Il n'est utilisé que comme combustible. On aura:

BIGZ = 0,001BR1 + 0,0539R92 + 0,0922R98 - GZBRU = 0

Bilan propane : BIPR.

Le propane provient de la distillation et du réforming.Il est vendu en l'état et sert éventuellement comme combustible. Le bilan propane s'écrit:

BIPR =0,007BR1 + 0,001BR2 + 0,0599R92 + 0,0896R98 -PRBRU Dem. Bilan butane : BIBU.

Le butane est produit à la distillation et au reforming . Il est vendu ;il est utilisé comme combustible (BUBRU) et peut être incorporé au carburant-auto et au supercarburant. On aura:

BIBU =0,02BR1 + 0,013BR2 + 0,0718R92 + 0,1039R98 - BUCA -BUSU - BUBRU > Demande

Bilan essence légère : BIE1.

La coupe E1 provient de la distillation et est utilisable comme combustible (E1BRU); elle peut être incorporée au carburant auto (E1CA), au supercarburant (E1SU) et au carburéacteur. Cependant, comme pour l'avant projet, les quantités de E1 utilisée dans la fabrication du CB seront exprimées par rapport au pétrole allant au CB. (Il en sera de même pour E2CB).

BIE1 =0,107BR1 + 0,082BR2 - E1CA - E1SU - 0,2888PTCBF1-E1BF0 - 0,1805PTCBF2 Demande.

Bilan essence lourde E2 : BIE2.

E2 provient de la distillation et est utilisée comme charge du reforming (E2REF92 et E2REF98); elle est aussi incorporé au carburéacteur. On aura:

BIE2 =0,192BR1 + 0,141BR2 - E2REF92 - E2REF98 - 0,5414PTCBF1
-2,575%PTCBF2 = 0

Production et bilan pétrole: PPT et BIPT.

Le pétrole provient de la distillation;

PPT = 0,226BR1 + 0,206BR2

Il est utilisé pour la fabrication du CB suivant 2 formules F1 et F2 (PTCBF1 et PTCBF2). Il est aussi incorporé dans le gas oil moteur (PTGM).

BIPT = PPT - PTCBF1 - PTCBF2 - PTGM = O

Production de gas oil et bilan gas oil: PGO et BIGO.

Le gas oil est obtenu par distillation.

PGO = 0,193BR1 + 0,154BR2

Il est incorpore dans le GM, (GOGM), dans le fuel domestique (GOFD) et dans le fuel lourd (GOFL).

BIGO = PGO - GOGM - GOFD - GOFL - = O

Bilan résidu Hassi Messaoud: BIRE1.

Le résidu provenant de la distillation du brut de H.Messaoud est utilisé pour la fabrication des huiles lubrifiantes; il est aussi incorporé dans le fuel lourd.

BIRE1 = 0,249BR1 - RE1CH - RE1FI = 0

Bilan résidu du Kirkuk : BIRE2.

Le résidu provenant de la distillation du brut de Kirkuk est utilisé pour la fabrication des bitumes (RE2BIT); il est aussi incorporé dans le fuel lourd(RE2FL).

BIRE2 = 0,398BR2 - RE2BIT - RE2FL = 0
Dilan de chauffe: BIBRU.

La consommation en combustible des installations de la raffinerie, exprimées en équivalent fuel, a été indiquée plus haut. Il faut cependant tenir compte, comme pour l'avant projet, des différents pouvoirs calorifiques des composés envoyés aux fours. Les coefficients qui seront affectés aux différents combustibles seront:

1 pour le fuel lourd (FLBRU).

.1 pour E1 (E1BRU).

1.15 pour BU (BUBRU).

1,18 pour PR (PRBRU).

1,20 pour GZ (GZBRU).

1 pour SP2 (SP2BRU).

1 pour DUF et VGO (DUFBRU) et (VGOBRU).

Le bilan combustibles s'écrira de la même manière que l'avant projet, soit:

BIBRU =FLBRU + E1BRU + 1,15BUBRU + 1,18PRBRU + 1,2GZBRU +

DUFBRU + VGOBRU + SP2BRU - 0,02BR1 - 0,01954BR2 -

0,0958R92 - 1,1688R96 - 0,02RE2BIT - 0,05RE1CH), 0

Bilan reforming: BIREF.

Il consistera à écrire que, au niveau du reforming, ce qui rentre est égal à ce qui sort et cela pour chacune des 2 sévérités.

BIREF92 = E2REF92 - 1,1976R92 = 0

BIREF98 = E2REF98 - 1,2987R98 = 0

Bilan carburant auto : BICA (en volume).

Le CA est constitué par mélange de butane, de E1, de réformat R92 et dereformat R98. Les composants du CA étant exprimés en masse, il faudra faire intervenir leurs densités pour pouvoir exprimer le bilan CA en volume. On obtient, tous calcul. fait.:

BICA = 1,724BUCA + 1,48E1CA + 1,28R92CA + 1,265R98CA > Demande
Bilan en volume du supercarburant: BISU.

Le SU est constitué par les mêmes bases que CA. On obtient:
BISU = 1,724BUSU + 1,48E1SU + 1,28R92SU + 1,265R98SU >, Demande
Bilan carburéacteur : BICB.

Le CB peut être par l'une des deux méthodes F1 et F2 indiquées. Comme pour l'avant projet, on déterminera les % en E1 et E2 en fonction de la quantité de pétrole incorporé dans CB.

Pour 100	tonnes	dе	PTCB:	F1	F2
			E1	28,88	18,05
			E2	54,14	139,48
				83.02	157,53

Le bilan CB s'écrira:

BICB = 1,8302PTCBF1 + 2,5753PTCBF2 \rangle Demande

Bilan gas oil moteur: BIGM.

Le GM est obtenu par mélange de pétrole et de gas oil.Le bilan s'écrira:

BIGM = PTGM + GOGM > Demande.

"Canacteristiques des produits intermédicines et opécifications des produits finis".

	20771-			-		Street Hills					-	A STATE OF THE PARTY OF THE PAR	
	80	E1	. 2T1 . PT2	R92	R98	CA	עצ	GM . FD	FL .	GΦ1 GΦε.	VGO .	RE1	REE
deunté	0,58	0,616	0,811 0,81	0,70	0,79	€0,765	€0,H	01816 9 60189					
TYR (en bay)	6,5	0,7		0,29	0,33	€0,7	40,7						
N.O. éthylé	110	85		96	101,5	>,91	>98						
Tenew en S (% prido)			0,012 0,35					\$ 0,5	< 4	0,20 1,4		0,30	2,34
Pt de congélateur (Indice de velaure) correspondant			-40°C -39°C					<-10°C (27,6)		_13°c -13°c (25,6) (25,	4°c (22,9)		
Viocopité à lo'c (Est) (Inducé de nelouse correspondant)			2,5 2,1 (12,70)					≤ 9,5 (23,27)		6 (20,43)	12		
Viscosté à 50°C (mainde milange									≤ ³⁶⁰ (36,88)	5	2 (11.4)	320	360
Inflammabilité (Indice de nulbange cur- respondant)			50°C (11,6)					> 56°c (7,1)	(30,00)	84,0	4.11)	(*6(*8))	

Remarque: Les opécifications des produits fruis sont médiquées sons formes d'unegalités.

Bilan fuel domestique: BIFD.

Le fuel domestique s'obtient par le mélange du gas oil provenant de la distillation atmosphérique et du gas oil provenar { de la distillation sous vide. Le bilan s'écrira:

BIFD = GOFD + VGOFD Demande.

Bilan fuel lourd : BIFL.

Le fuel lourd est obtenu par mélange des résidus de la distillation atmosphérique de BR1 et BR2 ainsi que du gas oil. Il est en outre utilisé comme combustible. Le bilan s'écrit: BIFL = RE1FL + RE2FL + GOFL - FLBRU > Demande.

Bilan du distillat provenant de l'unité de flash: BIDUF.

Dans l'unité de flash,50% des produits obtenus à la sortie constituent les distillats utilisés comme fuel ou DUF.Le bilan de ces distillats s'écrit:

BIDUF = 0,5RE2BIT - DUFBRU = 0

Bilan vacum gas oil : BIVGO.

Le gas oil provenant du complexe des huiles est utilisé comme combustible. Il est en outre incorporé dans le fuel oil domestique. Le bilan s'écrit.:

BIVGO = 0,143RE1CH - VGOFD - VGOBRU = 0

Bilan sous produit 1 du complexe des huiles: BISP1.

Dans le complexe des huiles ,une partie de l'extrait aromatique (obtenue par traitement au furfural) ainsi q'une partie de l'extrait asphalté (obtenu par traitement au propane) sont mélangées et constituent le sous produit 1 qui est utilisé pour la fabrication des bitumes .Le SP1 constitue approximativement 15% de l'alimentation du complexe des huiles.On a:

BISP1 = 0,15RE1CM - SP1BIT = 0

Bilan sous produit 2 du complexe des huiles: BISP2.

La 2ème partie des sous produits obtenus dans le complexe des huiles est utilisée comme fuel au bruleur. On a:

BISP2 = 0,207RE1CH - SP2BRU = 0

Bilan bitume : BIBIT.

Le pitume est obtenu à partir de l'unité de flash ainsi que du sous produit 2 du complexe ace huiles. BIBIT = SP1BIT + 0,5 RE2BIT > Demande

Contrainte distillation atmosphérique: CTOP.

La capacité de la distillation étant de 3000 000 t /an,la contrainte de distillation s'écrira: GTOP = BR1 + BR2 (3 000 000

Contrainte reforming : CREF.

La capacité du reforming étant de 300 000 t/an, cette contrainte s'écrira:

CREF = E2REF92 + E2REF98 \$ 300 000

Contraintes sur les réfrmats : CR92 et CR98.

On écrira que les reformats obtenus en haute et basse sévérité sont totalement utilisés pour la fabrication du CAet SU.

CR92 = R92 - R92CA - R92SU = 0

CR98 = R98 - R98CA - R98SU

Contrainte unité de flash : CFLASH.

La capacité de l'unité de flash étant de 200 000 t/an, cette contrainte s'écrira:

CFLASH = RE2BIT < 200 000

Contrainte complexe des huiles : CCH.

La capacité du complexe des huiles étant de 120 000t/an, la contrainte s'écrira:

CCH = RE1CH < 120 000

Contraintes carburant auto:

1°) Contrainte de densité: CDCA.

La densité maximale spécifiée pour le carburant auto est

de 0,765. Pour formuler cette contrainte, on écrira que la somme des masses des différents constituants du CA qui est égale à la masse de CA fabriqué, est inférieure au produit 0,765 x BICA (le bilan CA ayant été effectué en volume).

CDCA = 0,765BICA - BUCA - E1CA - R92CA - R98CA >, 0

2°)Tension de vapeur du carburant auto: TVCA.

La tension de vapeur Reid maximale spécifiée pour CA est de 0,7bar. On admet que la tension de vapeur Reid d'un mélange s'obtient en faisant la somme des produits des tensions de vapeur des constituants par leurs concentrations volumétriques. On aura alors, en tenant compte des densités et des tensions de vapeur données dans le tableau (cf tableau).

TVCA = 0,7BICA - 11,2BUCA - 1,035E1CA - 0,372R92CA - 0,417R98CA;0

3°)Nombre d'octane du carburant auto: NOCA.

Le N.O minimum demandé pour CA est de 91. On aura en raisonnant de la même manière que pour l'avant projet:

NOCA = 1,896BUCA + 1,256E1CA + 1,23R92CA + 1,285R98CA-0,91BICA,0

Contraintes du supercarburant:

1°)Contrainte de densité: CDSU.

La densité maximum pour le supercarburant doit être de 0,77. De la même manière que pour le CA, on obtient:

CDSU =0,77BISU - BUSU - E1SU - R92SU - R98SU), 0

2°) Tension de vapeur du supercarburant: TVSU.

La tension de vapeur maximale du supercarburant doit être de 0,7bar. De la même manière que pour le CA, on obtient;

TVSU =0,7BISU-11,2BUSU-1,035E1SU-0,372R92SU - 0,417R98SU) 0 3°)Nombre_d'octane du_super: NOSU.

Le N.O. minimum demandé pour le super est de 98.La contrainte s'écrira (cf avant projet):

NOSU =1,896BUSU+1,256E1SU+1,23R92SU+1,285R98SU - 0,98BISU > 0

14

Contrainte sur le gas oil:

Le gas oil employé pour la fabrication du FD et du GM est un mélange du gas oil provenant du brut de H.Messaoud et de celui de Kirkuk .Ecrivons que la teneur en soufre du mélange (TSGO) est inférieure à la spécification en soufre permise pour FD et GM, à savoir 0,5% poids.

En raisonnant de la même manière que pour la teneur en soufre du GM dans l'avant projet, on obtient:

TSGO = 0,5PGO - 0,0386BR1 - 0,215BR2

Contraintes sur le gas oil moteur:

1°)Teneur en saufre et densité:

Du fait que les composants du GM ont une teneur en soufre inférieure ou égale à celle spécifiée pour le GM(cf ci-dessus

le tableau des spécifications donné dans les pages précédentes), la spécification en soufre est donc satisfaite.

Ceci est aussi valable pour la contrainte de densité.

2°)Contrainte de viscosité à 20°C: VGM.

Le GM doit avoir, à la température de 20°C, une viscosité maximale de 9,50st. Pour exprimer cette contrainte, on utilisera les indices de mélange pour les viscosités.

On aura alors, en utilisant le tableau des spécifications donné antérieurement:

VGM = 2,327BIGM - 1,269PIGM - 2,043GOGM > 0

3°)Point de congélation du GM: _ PCGM.

Le point de congélation maximum du GM doit être de -10°C. Pour formuler cette contrainte, il faut aussi passer par les indices de mélange pour les points de congélation. On obtient compte tenu des données consignées dans le tableau des spécifications:

PCGM = 2,76BIGM - 1,4PTGM - 2,56GOGM > 0

4°) Inflammabilité du GM: _ IGM.

La température d'inflammabilité du GM doit être supérieure ou êgale à 56°C. Pour écrire cette contrainte, on utilisera les indices de mélange pour les inflammabilités. On obtient:

IGM = 7,1BIGM - 11,6PTGM - 1,1GOGM > 0

Contraintes fuel domestique:

Comme pour le GM , les contraintes de densité et de soufre sont vérifiées du fait que les composants du FD ont une te--neur en soufre et une densité qui sont dans les normes des spécifications exigées pour FD.

1°) Viscosité du fuel domestique: VFD. (à 20°C)

La viscosité maximale du FD, à la température de 20°C, doit être inférieure ou égale à 9,50st. On aura ainsi en utilisant les indices de mélange, comme pour le GM:

VFD = 2,327BIFD - 2,043GOFD - 2,458VGOFD > 0

2°)Point_de congélation du FD: _ PCFD._

Le point de congélation du FD doit être inférieur ou égal à -10°C. La contrainte s'écrira (cf pour le GM):

PCFD = 2,76BIFD - 2,56GOFD - 2,29VGOFD > 0

Contraintesfuel lourd:

1°)Teneur_en_soufre_:_TSFL._

Elle doit être inférieure ou égale à 0,4% poids. Comme pour l'avant projet et compte tenu des données (cf tableau), cette contrainte s'écrit:

TSFL = 4BIFL - 0,3RE1FL - 2,34RE2FL - 0,5GOFL >> 0 2°)Viscosité à 50°C: VFL.

La viscosité du fuel lourd à 50°C doit être inférieure ou égale à 360Cst.Compte tenu des indices de mélange, on aura , en éliminant FLBRU (lont on ne tient pas compte pour spécifications puisqu'elle n'est que brulée) dont on suppose l'indice de mélange identique à la spécification de FL.

VFL = 3,688BIFL +3,688FLBRU-1,917GOFL-3,645RE1FL-3,675RE2FL)0

Bilan huile: BIH.

Le rendement pour la fabrication des huiles à pattir du brut algérien est approximativement égal à 50% par rapport à l'alimentation. On aura:

BIH = 0,5 RE1CH > Demande

Fonctin économique FRAIS:

Compte tenu des différents coûts opératoires et des différents prix des matières premières, la fonction économique à minimiser s'écrira:

FRAIS = 141,6BR1 + 121,741BR2 + 2,5RE2BIT + 170BIH + 14,3712R92 + 20,7792R98

Ici aussi, comme pour l'avant projet, on a calculé, pour ce qui est du reforming, les frais de traitement par rapport aux reformats R92 et R98.

Les résultats obtenus, après traitement sur ordinateur, sont consignés dans les tableaux donnés plus loin. Ces résultats sont donnés en tonnes, à l'exception des tensions de vapeur, des teneurs en soufre, des points de congélation, des inflammabilités et des points de congélation.

2ème partie: Cas où l'on importe du résidu irakien.

Dans ce cas on traite uniquement du brut algérien et on importe du résidu irakien pour fabriquer des bitumes.

La mise en équation est pratiquement la même que celle effectuée précédemment à l'exception de quelques légères modifications comme par exemple la supression des termes en BR2 ainsi que de la désulfuration de E2.

On se bornera donc à signaler ce qu'il faut enlever ou éventuellement ajouter dans la mise en équation précédente pour obtenir la mise en équation de ce deuxième cas.

BIPR : enlever le terme en BR2.

BIBU: "

BIE1: "

BIE2 : "

PPT: "

PGO: "

BIRE2; Le bilan RE2 s'écrira:

BIRE2 = RE2IMP - RE2BIT = 0

BIBRU: enlever le terme en BR2.

BIFL: enlever le termes RE2FL.

CTOP: enlever le terme en BR2.

TSGO: enlever le terme en BR2.

VGM : La viscosité du GM ș'écrira:

VGM = 2,32BIGM = 1,355PTGM = 2,043GOGM > 0

TSFL: La contrainte de soufre pour le fuel lourd s'ecrit:

TSFL = 4BIFL - 0,3RE1FL - 0,2GOFL

VFL : enlever le terme en RE2FL

Fonction économique FRAIS:

Dans le cas où l'on ne traite que du brut algérien, il n'est pas necessaire d'effectuer une désulfuration pour la charge du platforming. Compte tenu des données sur les coûts de traitement et sur les prix des matières premières donnés antérieurement, la fonction économique à minimiser s'écrira:

FRAIS = 141,6BR1 + 82,5RE2IMP + 14,3712R92 + 20,7792R98 + 170BIH

Les résultats obtenus après traitement sur ordinateur sont consignés sur les tableaux donnés dans les pages qui suivent.

Tableau des résultats obtenus par traitement sur ordinateur dans le cas où l'on importe du brut irakien.

	on on one	are secure			
Nom de la variable		OLUTIONS	OBTENUES		
variave	Année 1	Année 2	Année 3	Année 4	
FRAIS	328 552 904	391 963 880	423 760 994	433 023 924	
881	2 036 660	2 456 717	2 666 746	2 716 8 93	
8192	0	0	0	0	
R32	7 683	38 249	36 405	0	
R38	130 599	120 541	131 767	171 951	
GEBRU	14 492	15 632	16 777	18 570	
BIPR	26 639	30 539	32 920	34 706	
BRZ	221 105	251 256	266 331	281 407	
PR BR II	0	0	0	0	
BIBU	55 000	60 060	65 000	70 000	
BUCA	58	3 896	4 696	4 295	
BUSU	2 669	3 774	4 005	1 566	
BUBRU	0	0	0	0	
BIE1	0	0	0	0	
EICA	121 498	136 147	143 106	150 066	
E1SU	13 131	7 995	10 101	20 457	
PTC 8 F1	336 304	390 792	418 330	465 444	
PTC BF2	23 813	36 184	42 076	33 400	
E1 BRU	0	19 937	25 564	2 810	
81 E2	0	0	0	0	
F2 REF92	9 201	45 807	43 599	0	
E2 REF38	169 609	156 547	171 126	223 313	
PPT	505 832	606 977	657 549	671 987	
BIRT	0	0	0	173 142	
PTGM	145 714	180 000 512 840	197 142 555 697	567 697	
PGO	427 125		333 257	0	
8160	109 285	135 000	147 857	129 857	
GOGM	317 840	377 840		437 840	
GOFD E1CB	101 422,84	119 3 91,94	128 408,42	140 448,9	
E2C8	215 289,36	262 044,23	285 171,47	298 577,7	
GOFL	0	0	0	0	
BIRE1	0	0	0	0	
RE1CH	120 000	119 999	120 000	120 000	
RETFL	387 128	491 722	544 019	556 506	
BIREL	0	0	0	0	
REZBIT	88 000	100 000	106 000	112 000	
RE2 FL	0	0	0	0	
FL BRU	119 964	93 061	100 617	163 118	
BI BRU	0	0	53 000	56 222	
DUFBRU	43 999	50 000	53 000	56 000	
VGOBRU	0	20 030	24 8 40	24 8 40	
SP2BRU	24 840	24 839	24 840	0	
81 REF 92	0	0	0	0	
BIREF 98	2811 200	313 000	329 000	345 000	
BICA (ca us lung	284 000	373 000			

Cableau des résultats obtenus par territement sur ordination dans le cas où l'on importe du brut trakien

Nom de la	SOLUTIONS OBTENUES					
variable	Année 1	Année 2	Année 3	Année 4		
R92 CA	0	0	0	0		
R98 C A	82 277	82 833	87 067	91 301		
81511	95 000	115 000	125 000	135 000		
R925U	7 683	38 249	36 405	0		
R38SU	48 322	37 708	44 699	80 650		
BICB	<i>6</i> 83 559	816 230	802 352	947 181		
BIGM	255 000	315 000	3 45 000	303 000		
BIFD	335 000	395 000	425 000	455 000		
VGOFD	17 160	17 159	17 160	17 160		
BIFL	267 164	398 661	443 401	393 387		
BIDUF	0	0	0	0		
81490	0	0	0	0		
8 I H	60 000	59 999	59 999	60 000		
815 P1	0	0	0	0		
SP1 BIT	18 000	17 999	18 000	18 000		
BISPZ	0	0	0	0		
BIBIT	62 000	68 000	71 000	74 000		
CTOP	2 257 765	2 707 974	2 933 078	2 998 300		
CREF	178 811	202 354	214 725	223 313		
CFLASH	88 000	100 000	106 000	112 000		
ССН	120 000	120 000	120 000	120 000		
CDCA	13 425	16 567	17 414	18 261		
TVCA	38 079	0	0	0		
MOCA	0	0	0	0		
CASU	1 342	822	2 037	1 275		
TVSU	0	0	0	22 150		
HOSLI	0	0	0	0		
TSGO	87 277	107 419	117 494	118 305		
IGM	0	0	0	0		
VGM	183 417	226 574	248 153	217 943		
PCGM	220 028	271 800	297 685	261 445		
VFD	88 018	105 058	113 578	122 098		
PCFD	71 633	83 633	. 89 633	95 633		
75FL	952 518	1 447 130	1 610 401	1 406 599		
VFL	16 646	21 144	23 392	23 929		
CR92	. 0	0	0	0		
C R.98	0	0	0	0		
		Division of				
		A PARTIE AND A STATE OF THE PARTIES AND ADDRESS				
VALUE OF STREET						

		-					- 17		
Nom de la		_ 50,	LUTIONS	OBTE	NUES_				
variable	Annie 1		Annie 2		Année 3		Année	-4	
FRAIS	333 632	709	397 745	298	429 . 889 .	297	447	625	921
	THE THE								
BR1	2 213	086	2 657	202	2 879	259	2 5	399	170
BIG₹		0		0		0			0
R92		0	72	740	72	966			0
R98	134	733	95	774	105	513		200	5.96
GZ BRU	14	635	15	408	16	540			543
BIPR	27	563	31	538	33	979		36	100
PR BRU		0		0		0			0
BIBU	55	000	60	000	65	000		70	000
BUCA		734	5	260	5	463			911
84511	2	525	3	057	3	323		3	589
BUBRU		0		0		0			0
BI E1		0		0		0		2110	0
E1CA	121	854	116	293	123	191		149	841
E1 SU	15	228	18	434	20	037		21	640
PTG BF1	325	907	385	613	412	840		444	727
PTCBF2	28	535	34	914	40	729		H5	oas 853
E1 8RD		404	31	925	38	271		16	
BIE2		0	7.	0	47	205			0
E2 REF 32		0	87	114	87	385		218	956
E2 REF 98	174	977	124	381	137	1			812
PPT	500	157	600	527	650	712		677	0
BIPT	11.5	0	10.	000	107	142		188	000
PTGM	145	714	180 512	840	197 555	697		578	840
PGO	427	125	3/2	0	333	0		-10	0
8140	109	285	135	000	147	857	LF1	141	000
GOGM	317	840	377	840	407	840		437	840
GOFL	3.7	0	-17	0		0	Call		0
BI RE1		0		0		0	1 3 4 1		0
REICH	120	000	120	000	120	000	1000	120	000
RE1 FL	431	058	547	643	5.96	935	123 E.S.	626	693
REZIMA	88	000	100	000	106	000	To the same	112	000
BIRE2		0		0		0	The latest		0
REZBIT	88	000	100	000	106	000	The same	112	000
FLBRU	122	690	54	798	60	059		149	333
BIBRU		0		0		0	Die B		0
BUFBRU	44	000	50	000	53	000		56	000
VGO BRU		0	8-55	.0		0			0
SP2 B RU	24	839	24	839	24	833		24	839
BIREF92		0	Suzal con	0	Was and	0	15293		0
BIREF 98		0		0	THE STATE OF	0		21.5	0
BICA (en uplu	284	000	313		329		1	345	
R92 CA	The state of the s	0	72		72		1 2 1 5 5 5	pa	0 100
R.98 CA	80	8.93	30		34			92	
BISH (envolu	95	000	115	000	125	000		135	000

Tableau des résultats obtenus par traitement sur ordinateur dans le cas où l'on importe le résidu irakien

Mar. 10 00		COLUTIONS OB	TENUES _			
variable	Année 1	Année 2	Année 3	Année 4		
				V VIEW P		
R92SU						
R985U	52 020	0	0			
BICB	53 839 676 482	65 174	70 841	76 50.		
BIGM		803 376	868 727	938 942		
BIFD		315 000	345 000	329 00		
VGOFD		395 000	425 000	455 000		
BZFL	17 159	17 159	17 159	17 155		
BIDUF	308 368	486 845	536 876	477 460		
BIVGO	0	0	0			
BIH	0	0	0			
81591	60 000	60 000	60 000	60 000		
SPIBIT	0	0	0	0		
BISP2	17 999	17 999	17 299	17 999		
BIBIT	0	0	0	0		
108	62 000	68 500	71 000	74 000		
208	99 272,51	117 667/11	126 579,78	136 575		
TOP	216 246,68	257 468,93	280 3 20,39	303 659,		
REF	2 213 086	2 657 202	2 879 259	2 999 170		
FLASH	174 977	211 496	224 415	218 956		
CCH	88 000	100 000	106 000	112 000		
DC A	120 000	120 000	120 000			
VCA	13 737	14 550	15 391			
YOCA	30 676	0	0			
DSU	0	0	0			
the state of the s	1 555	1 863	2 047	0		
VSU	0	0	0	2 210		
10SU 1SG 0	0	0	0	•		
	128 137	153 852	166 709	472 672		
GM	0	0	0	173 652		
	170 886	211 095	231 199	222 472		
FD	220 028	271 800	297 685	220 477		
CFD	88 018	105 058	113 578	283 880		
SFL	71 633	83 633	89 633	122 098		
FL	1 104 155	1 784 887	1 968 425	95 633 1 720 0		
	18 535	23 290	25 668	7 721 804		
892	٥	0	6	26 952		
R98	0	0	0	0		
			NULLE VALUE OF BUILDING	0		

CONCLU SION

La production algérienne de pétrole brut augmente de plus en plus et atteint aujourd'hui 50M.T/an environ.

Le brut algérien, compte tenu de ses qualités, est considéré aujourd'hui comme l'un des meilleurs du monde. Le pourcentage de distillats qu'il donne est de l'ordre de 80%. Sa teneur en soufre est trés faible (0,1%) en comparaison de celle des bruts du Moyen Orient, principal producteur mondial, dont la teneur en soufre varie entre 1,5 et 2% en poids. Il faut aussi signaler que le point découlement du brut algérien est bas(-30°C).

Cependant, le pétrole algérien contient trés peu d'asphaltes (0,1%). Cette propriété, trés demandée quant il s'agit de produire des huiles lubrifiantes, est un handicap lorsqu'il s'agit de produire des bitumes surtout si l'on tient compte des demandes en bitumes du marché algérien qui ne cessent d'augmenter (de 60000 t/an à 100 000 t/an à la fin du 2ème plan quadriennal). C'est peur combler cette lacune que les 2 solutions ont été envisagées.

La comparaison ,année par année, des résultats obtenus montrent que la fonction économique FRAIS est légèrement plus faible dans le cas où l'on importe du brut irakien. Ceci est dû au fait que le brut algérien, vu ses qualités, coûtent plus cher que celui d'Irak(respectivement 140DA et 120DA/tonne).

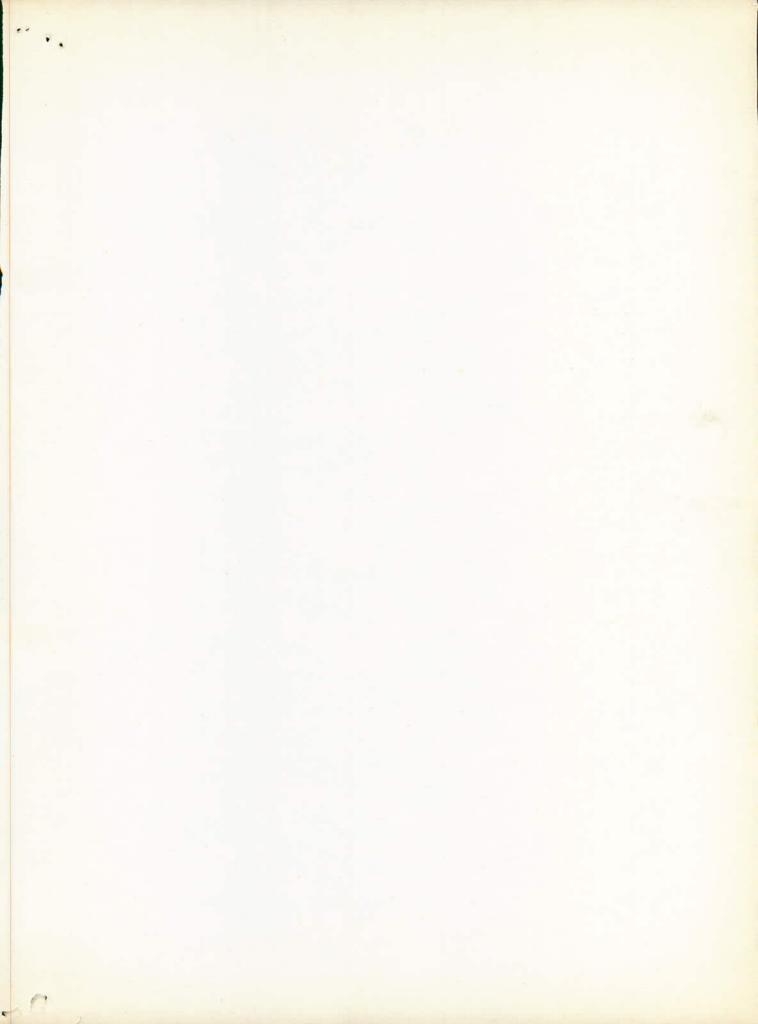
Il faut cependant signaler que:

1%- le fait de traiter du brut irakien pose le problème de la désulfuration, problème inexistant dans le cas où l'on traite du brut algérien.

2%- compte tenu des spécifications sur les produits finis; on est limité dans l'utilisation du brut irakien et, par voie de conséquence, dans la production des bitumes. Si donc, à un moment donné, la demande en

bitumes venait à augmenter brusquement, il est difficile d'y faire face.

3°/-la nécessité de valoriser au maximum et avant tout la matière 1ère nationale plaide en faveur de la 2ème solution, à savoir l'importation du résidu d'Irak.


De ce qui précède, on peut dire que la meilleure solution pour l'Algêrie est d'importer le résidu pour produire les bitumes (c'est ce qui se fait actuel-lement à Arzew).

En plus de cela, et comme le montrent les résultats obtenus, l'utilisation de la programmation linéaire permet d'obtenir les quantités des différentes bases à mélanger en vu d'obtenir les quantités de produits finis succeptibles de satisfaire la demande locale.

C'est ce qui fait de la programmation linéaire un outil fondamental trés utilisé dans le raffinage.

BIBLIOGRAPHIE

- H. MAURIN Programmation linéaire appliquée.
- P. WUITHIER Raffinage et génie chimique.
- J. WEISMANN Carburants et combustibles pour moteurs à combustion interne.
- -Brochure IBM 1130 LP.MOSS
- -Polycope sur l'optimisation (Institut polytechnique de Nancy)
- -Les méthodes de calcul sur ordinateurs appliquées au raffinage et à la pétroléochimie. (Technip)
- -Brochure donnant les spécifications françaises concernant les produits raffinés.
- -Polycope sur le raffinage et la pétrochimie de M.BORHAM

