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Résumé : ’évaluation de la qualité d'image présente un intérét substantiel pour les services ainsi que pour
les systémes de traitement d'images ou le dernier maillon de la chaine est I'observateur humain. Le premier
objectif de cette these est de fournir une évaluation statistique complete et approfondie des performances
prédictives d'une large variété de mesures objectives de qualité avec référence complete sur un certain
nombre de bases de données étiquetées avec des scores indiquant la qualité subjective des images. Le second
objectif consiste a définir les attributs de I'image les plus pertinents pour I’évaluation de sa qualité. Deux
méthodes de sélection de caractéristiques ont été utilisées, a savoir la minimisation du risque structurel et
I’approche basée sur le modele connexionniste. Le troisieme objectif de ce travail de recherche est d'exploiter
les techniques d'apprentissage supervisé, en particulier le modele du perceptron multicouche, pour
I'estimation automatique de la qualité de l'image. Le systéme apprend a partir des étiquettes de la qualité
subjective et construit un modele capable de continuer a fournir une mesure objective toujours corresponde a
I'avis de I'homme a toute image qui lui est présentée. Le but principal était d'optimiser la performance
prédictive des mesures développées en fonction de la corrélation, la monotonicité et la précision. La fonction
de colt par défaut basée sur l'erreur a été employée pour la premiére mesure développée (que nous avons
appelé ECF) et une fonction de colt personnalisée basée sur la corrélation a été proposée pour concevoir la
deuxieme mesure (que nous avons appelé le CCF). L’étude comparative de ces deux nouvelles métriques a dix-
huit autres algorithmes de qualité d'image avec référence compléte sur trois bases de données de qualité
d'image montre que les algorithmes d’ECF et CCF prennent en considération les non-linéarités du systeme
visuel humain. L'ECF est plus précise que la majorité des mesures étudiées, tandis que la CCF améliore
largement les résultats de toutes les métriques concurrentes en termes de corrélation et de monotonicité.

Abstract: Image quality assessment presents a substantial interest for image services that target human
observers. The first objective of this thesis is to provide a complete and thorough statistical predictive
performance assessment of a variety of full-reference objective quality measures over number of subjectively
rated image quality databases. The second is to define the image attributes that are the most relevant to its
quality evaluation. Two feature selection methods have been used including the structural risk minimization
and the neural network based approaches. The third objective of this research work is to exploit the supervised
machine learning techniques, especially the multilayer perceptron based model, for automatic image quality
appreciation. The system learns from the subjective quality scores and builds a model capable to further
provide an objective measure that continues to match with the human opinion to any other image. The main
target was to optimize the predictive performance of the developed measures according to correlation,
monotonicity and accuracy. The default cost function based on error was employed for the first developed
measure (that we called ECF) and a customized cost function based on correlation was proposed to design the
second metric (that we called CCF). The comparative investigation to eighteen other full-reference image
quality algorithms over three image quality databases shows that both ECF and CCF take into consideration the
nonlinearities of the human visual system. The ECF is more accurate than the majority of the metrics under
study, while the CCF outperforms all its counterparts in terms of correlation and hence monotonicity.
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Résumé

L’évaluation de la qualité d'image présente un intérét substantiel pour les services ainsi que pour les
systéemes de traitement d'images ou le dernier maillon de la chaine est I'observateur humain. En
effet, la qualité d'image peut étre mesurée de deux maniéres différentes. La premiére, appelée
«évaluation subjective de la qualité", est I'approche évidente étant donnée la nature subjective de la
qualité visuelle des médias. La seconde est appelée «évaluation objective de la qualité» qui permet
de produire automatiquement des valeurs mesurant la qualité de I'image de maniere quantitative. Le
premier objectif de cette these est de fournir une évaluation statistique compléte et approfondie des
performances prédictives d'une large variété de mesures objectives de qualité avec référence
compléte sur un certain nombre de bases de données étiquetées avec des scores indiquant la qualité
des images qui sont évaluées de maniere subjective selon des protocoles strictes. Le second objectif
consiste a définir les attributs de I'image qui sont les plus pertinents pour I'évaluation de sa qualité.
Deux méthodes de sélection de caractéristiques ont été utilisées, a savoir la minimisation du risque
structurel et I'approche basée sur le modéle connexionniste. Cela nous a permis de développer deux
nouvelles métriques objectives de qualité d'image avec référence réduite ol I'estimation de la
qualité de I'image nécessite |'utilisation de seulement quelques uns des descripteurs de I'image de
référence et celle de test. Le troisieme objectif de ce travail de recherche est d'exploiter les
techniques d'apprentissage supervisé, en particulier le modeéle du perceptron multicouche, pour
I’estimation automatique de la qualité de I'image. Le systeme apprend a partir des étiquettes de la
qualité subjective issues des bases d’images utilisées et construit un modele capable de généraliser
apres un certain temps d’entrainement. En d’autres termes, le modéle doit continuer a fournir une
mesure objective toujours corresponde a l'avis de I'homme a toute image qui lui est présentée.
L'objectif principal était d'optimiser la performance prédictive des mesures développées en fonction
de la corrélation, la monotonicité et la précision. La fonction de co(t par défaut basée sur l'erreur a
été employée pour la premiére mesure développée (que nous avons appelé ECF) et une fonction de
colt personnalisée basée sur la corrélation a été proposée pour concevoir la deuxieme mesure (que
nous avons appelé le CCF). L’étude comparative de ces deux nouvelles métriques a dix-huit autres
algorithmes de qualité d'image avec référence compléte sur trois bases de données de qualité
d'image montre que les algorithmes d’ECF et CCF prennent en considération les non-linéarités du
systéme visuel humain. L'ECF est plus précise que la majorité des mesures étudiées, tandis que la CCF
améliore largement les résultats de toutes les métriques concurrentes en termes de corrélation et de

monotonicité.

Mots clés: qualité d’image, objective, subjective, performance prédictive, sélection de

variables, perceptron multicouche, fonction de co(t.



Abstract

Image quality assessment presents a substantial interest for image services that target
human observers. Indeed, Image quality can be measured in two different ways. The first,
called “subjective quality assessment”, is the obvious approach given the subjective nature
of the visual data quality. The second one is called “objective quality assessment” that
automatically allow to produce values that score image quality. In fact, the first objective of
this thesis is to provide a complete and thorough statistical predictive performance
assessment of a variety of full-reference objective quality measures over number of
subjectively rated image quality databases. The second is to define the image attributes that
are the most relevant to its quality evaluation. Two feature selection methods have been
used including the structural risk minimization and the neural network based approaches.
This allowed us to develop two new objective reduced-reference image quality metrics
where the image quality assessment requires the use of only a few features of the reference
and the test images. The third objective of this research work is to exploit the supervised
machine learning techniques, especially the multilayer perceptron based model, for
automatic image quality appreciation. The system learns from the subjective quality scores
and builds a model capable to further provide an objective measure that continues to match
with the human opinion to any other image. The main target was to optimize the predictive
performance of the developed measures according to correlation, monotonicity and
accuracy. The default cost function based on error was employed for the first developed
measure (that we called ECF) and a customized cost function based on correlation was
proposed to design the second metric (that we called CCF). The comparative investigation to
eighteen other full-reference image quality algorithms over three image quality databases
shows that both ECF and CCF take into consideration the nonlinearities of the human visual
system. The ECF is more accurate than the majority of the metrics under study, while the

CCF outperforms all its counterparts in terms of correlation and hence monotonicity.

Keywords: image quality, objective, subjective, predictive performance, feature

selection, multilayer perceptron, cost function.
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Chapter 1

General Introduction

1.1 Motivation

The primary source of information we constantly need to acquire about our world is visual.
Indeed, the ease with which huge amounts of digital visual data is being transmitted and/or
exchanged over the Internet, every minute, increases the use of visual information that have
pervaded our everyday lives. Without being aware, we spontaneously make judgements
about the perceptual quality of the visual content (images, videos, movies, 3D drawings, etc)
we regularly see on our screens. We may open wide the eyes or may make a grimace
showing disappointment when we see a visual content that we deem of very good or of poor
quality, respectively. In an attempt to satisfy the increasing quality requirements of the
target human observers, particular attention has been drawn on the quality measurement of
the visual data. Moreover, assessing visual data quality enables to adjust the parameters of
data processing techniques in order to maximize their quality or to reach a given satisfaction.
Indeed, a great deal of research has been devoted to image and video content quality

assessment.

Image and video quality assessment is an important component in most modern visual data
processing systems. This research field is of increasing interest and therefore considerable
effort has been committed to the development of new image/video quality evaluation tools
in the last couple of decades. This interest goes hand-in-hand with the emergence of many

new applications that require automatic real-time media quality assessment. Quality
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monitoring of massive data transmission over networks and automated media quality

measurement for printing systems are typical examples of such latest applications.

The challenge here relates to stringent requirements to consider the perceptual quality of
image and video in the data storage and transmission devices. In addition, advanced visual
data processing benchmarking tools rely on subjective criteria related to human vision. It is
widely agreed that the Human Visual System (HVS) is able to quickly appreciate the quality
of an image or a video sequence even if its original version is absent, which suggests that it is
probably based on a high level interpretation of the visual data, using a lot of knowledge

about the scene at hand.

Since visual data quality is subjective in nature, its evaluation based on experiments with
subjective ratings is a broadly accepted solution. The first subjective quality rating tests have
been conducted on images which we examine along this research work. Hence, different
methodological options have appeared to construct subjective image quality databases.
Subjective quality tests are, in general, divided into several sessions of limited duration and
consist of a number of subjects invited to judge the quality of a set of images under
particular conditions. Typically, images are divided into two groups: reference images
considered as pristine versions and processed ones that were subject to some degradation
and were used as test images. Whatever the experimental protocol adopted, observers are
asked to bring their appreciation on the perceptual quality of the images they are shown.
The obtained quality ratings are then processed and the average score over all observers is
computed for each image of the database. The average score is commonly referred to as the
Mean Opinion Score (MOS). In some cases where the reference images are also evaluated,
the DMOS (Difference Mean Opinion Score) is derived instead of the MOS. It is the
difference of mean opinion scores obtained on the reference and on the test images,

respectively.

Although subjective assessment is the obvious and ultimate gauge of image quality, it is
time-consuming, and cannot be implemented in systems where a real-time quality score for

images is needed. To overcome these drawbacks, the objective approach, which consists in
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developing objective image quality assessment models, has been well approved. Such
models should be capable to automatically make quality estimations in agreement with the
subjective human opinions. To check this condition, the quality measures are usually
validated by comparing them to the human appreciation of the image quality, in particular
the Mean Opinion Score (MOS) or the Difference Mean Opinion Score (DMOS). This has lead
to the creation of a number of subjectively rated image quality databases. On the other

hand, many image quality metrics have been developed in the last couple of decades.

Machine evaluation of visual data quality takes a potential advantage in a wide range of
application environments where the human visual consumption is exponentially growing.
Furthermore, the goal of objective image quality assessment models is to provide
computational models that can automatically estimate the perceptual quality of images that
an average human observer will report. In other words, solving the problem of image quality

prediction requires matching image quality to human perception appreciation.

As a matter of fact, our knowledge about human perception mechanisms is still very limited.
The existing models of the HVS aim at simulating some functionalities of our perception, in
particular the lower level ones such as the contrast sensitivity functions, the perceptual
decomposition into channels, visual masking and visual attention. Experiments leading to

establish HVS models are generally performed under very restrictive conditions.

Given that the visual data quality appreciation is a nonlinear natural cognitive task that
evolves by time and personal experience, and since mechanisms leading to the image quality
evaluation are still ill-understood, developing machine learning techniques for image quality
assessment can be considered as a legitimate choice that might help us determine how do
humans make judgement about the quality of visual content and which factors mainly affect
this process. Indeed, learning image quality assessment in machines allows us to exploit the
subjective quality scores in order to construct a model capable to further give us an

objective measure that continues to match with the human opinion to any other image.
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There exists variety of image types for a variety of uses: satellite, medical, multispectral and
synthesized images to name just only few ones. In this thesis, we will deal with the natural

images for which there are many image quality databases intended for research purposes.

1.2 Research Questions

One important problem that slows down developments in the image quality field is the lack
of good and complete benchmarking of the proposed metrics. Until now, contributions in
the visual data quality field have only been checked at a reduced scale, i.e. use of singular
image quality datasets, comparison to a little number of yet existing metrics, use of only one
or a reduced number of measures of the algorithm’s performance evaluation. Two questions
are raised in the first part of this thesis. Firstly, was there any significant improvement of the
capability to objectively predict the perceived visual image quality having its original version
at hand? Secondly, is there any significant difference between the existing subjective rating
protocols for image quality databases elaboration? We have attempted to answer these
questions by providing a complete quantitative predictive performance evaluation of
eighteen objective image quality metrics of different approaches over six available subjective

image databases.

Another aspect of image quality assessment is that an image supplies a lot of information
that is not all used for the evaluation of the quality of that image. Thereby, instead of using
the whole image data, the image features are extracted which can consist in a large array of
uneven importance for the quality appreciation task. Selecting only a reduced amount of
image features makes computations easier and speeder. The crucial matter here is: What
are the image features that intervene into the image quality judgement? And which ones
most affect this judgement? The feature selection approach has been used in this research
work to attempt to discern the image attributes that are relevant to the image quality

evaluation from those which are not.

The image feature selection is a key step for developing new objective reduced-reference
image quality measures. A variety of approaches is presented in chapter 2 that shows the

numerous possible ways we have to design such measures. The question is what is the best
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method to integrate the feature selection into the process of definition of a quality metric?
The artificial neural networks with supervised learning have been the favourite candidate.
They have allowed us to find a solution to the problem of how to design image quality
metrics with optimal predictive performance abilities based on correlation, monotonicity and
accuracy measures? This is done by customizing the neural network cost function in such a

way that optimizes the models’ predictive performances.

1.3 Contributions of the Thesis

1) A complete and thorough statistical evaluation of objective methods over subjective
quality databases using the nonparametric Friedman’s statistical analysis has been
conducted.

2) Based on results of the quantitative evaluation, a set of image features is derived,
and feature selection with neural networks is performed to reduce the size of the
initial image attributes and get the vector that conveys more information about the
image quality evaluation.

3) Feature selection is then made using the KXEN polynomial regression statistical
modelling software.

4) Based on results of contributions 3 and 4, the set of selected features is used for the
development of a reduced reference neural network based model image quality
metric shown to outperform other full-reference image quality metrics in terms of
accuracy.

5) Customization of the neural network’s cost function to get more correlated and more

monotonous image quality measure than its counterparts.

1.4 Layout of Dissertation

The dissertation is organized in seven chapters:

Chapter 2 entitled “Objective versus Subjective Quality” provides a review of the state-of-
the-art objective image quality measurement approaches in the first part of the chapter. In

the second part, the subjective rating tests as well as the methodological options available to
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construct subjective image quality databases are outlined. A comprehensive description is
then provided for a range of image quality databases available for the research community
including the Toyama database (2000), LIVE database (2005), IVC database (2006), A57
database (2007), TID database (2008), and CSIQ database (2009). The subjective quality
databases are intended for the predictive performance benchmarking of the objective

quality models carried out in the next chapter.

Chapter 3 deals with the “Quality Metrics Performance Evaluation and Comparison”. It
supplies a complete quantitative evaluation of the objective full-reference image quality
models performance elucidated in chapter 2. Their predictive performance is then computed
and compared using the non parametric Friedman test over the public and subjectively rated
image quality databases described in chapter 3. To do this, three performance measures are
computed: the Pearson’s Correlation Coefficient (PCC) as an indication on the correlation,
the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) to quantify the
prediction accuracy, the Spearman Rank Order Correlation Coefficient (SROCC) and Kendall
Rank Order Correlation Coefficient (KROCC) to indicate the monotonicity measure. All the
calculations are first performed on the whole databases and then on the sets concerned
with four degradation types namely the JPEG compression, JPEG2000 compression, noise

and Gaussian blur.

Chapter 4 is an “Overview on Machine Learning and Artificial Neural Networks”. Besides a
summary of the machine learning theory and the artificial neural networks principles, the
key concepts pertaining to building models based on feed-forward multilayer perceptrons
are presented. The basic issues, mainly the generalization capabilities, linked to the use of

neural networks based methods in chapters 6 and 7 are then laid out.

Chapter 5 is dedicated to “Feature Selection for Image Quality Assessment”. The general
process and the different approaches of feature selection are outlined at the beginning of
this chapter. The issue related to combining and selecting low-level features for image
quality assessment is then discussed and experimented. The aim is to identify the set of

image attributes that are relevant to the evaluation of the quality of an image. Experiments
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are carried out and validated using two different approaches: the artificial neural networks

based approach and the structural risk minimization statistical based approach.

Chapter 6 presents two new “Reduced Reference Multilayer Perceptron based Metrics”.
The proposed measures are based on the variance of the reference and the test images as
well as their covariance. The standard cost function is first employed to develop the ECF
(Error based Cost Function) metric which is shown to be more accurate than the eighteen
full-reference measures compared in chapter 4. The cost function is then modified leading to
the CCF (Correlation based Cost Function) metric that outperforms the aforementioned
metrics to which it has been compared in terms of correlation and monotonicity. The
comparative study has been conducted over three image quality databases including the

LIVE (second release), TID and CSIQ databases.

The summary of the overall work achieved in the present thesis, the open issues and the

perspectives are given as a general conclusion in chapter 7.
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Chapter 2

Objective versus Subjective Quality

2.1 Introduction

Given the phenomenal rate at which image and video content is being generated and
distributed, evaluation of the perceptual quality of the content becomes a critical task.
Indeed, there is a wealth of research on both subjective and objective image quality
measures to reliably predict either perceived quality across different scenes and distortion

types or to predict algorithmic performance computer vision tasks.

The goal of objective image quality assessment models is to provide computational models
that can automatically estimate the perceptual quality of images that an average human
observer will report. In other words, solving the problem of image quality prediction requires
matching image quality to human perception appreciation. The Video Quality Experts Group

(http://www.vgeg.org) is a forum that validates and establishes subjective and objective

approaches to visual data quality measurement.

In the next section, we give an overview of historical and most contemporary objective
image quality assessment methods together with the key concepts involved for each
approach. Particular focus will be given to the full reference image quality measures since
they are the most widely used within the image processing research community. Section 2.3
is dedicated for the subjective quality rating tests; the methodological options available to

construct subjective image quality databases. Section 2.4 provides a comprehensive
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description for each of the subjective quality databases intended for predictive performance

benchmarking of the objective quality models presented in the next chapter.

It is worth noting that although subjective assessment is time-consuming, and cannot be
implemented in systems where a real-time quality score for an image or video sequence is
needed, it is the obvious and ultimate gauge of image quality. The subjective approach is
needed to establish the performance of the objective visual data quality assessment

algorithms that should predict subjective image quality accurately and rapidly.

2.2 Objective Image Quality Measurement Methods

Machine evaluation of image and video quality takes a potential advantage in a wide range
of application environments where the human visual consumption is exponentially growing.
First, they can be employed for image quality monitoring during image acquisition,
transmission and reproduction. Second, they can be deployed for benchmarking image
processing algorithms designated for restoration and enhancement. Third, they can be
embedded in compression and communication systems for parameters optimization [1].
Also, knowledge about the possible distortion processes is eventually important information

that can be supplied about the environment for the development of image quality measures.

2.2.1 Families of image quality metrics

Depending on the amount of information available on the reference image during the
quality assessment process of its distorted version(s), we distinguish three broad families of
models in the literature as schematized in figure 2.1:

e Full reference models: where the reference image is available when evaluating its
test version(s). The task reduces to a comparison of two images and image quality
evaluation can be regarded as an image fidelity problem. The calculation should be
fast and should correlate with human subjective appreciation.

e Reduced reference models: In practical situations, it is not often possible to have the
reference image while evaluating its test version(s). In fact, some applications require

massive image or video transmission via telecommunication networks. Thus, the
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reference image is not entirely provided but only a feature vector giving relevant
information to control the quality of the transmitted visual data. Methods based on
these features are fast, but their relatively poor performances restrict their use to
some specific applications.

o No reference models: also called “blind models”. They attempt to evaluate the
quality of an image without accessing its reference. They are complicated to

elaborate but are the ideal form and the most interesting ones for many applications.

Quality » Quality
Assessment Measure
— (a)
Test image
Feature 4 Quality Quality
Extraction i Assessment Measure
(b)
Quality »  Quality
Assessment Measure
(c)

Figure 2.1: overview of full-reference (a), reduced-reference (b)
and no-reference (c) image quality models [2].

The majority of the proposed state-of-the-art image quality methods fall in the first
category. We can classify the different existing full reference image quality assessment
metrics into two major classes: raw error-based measures and Human Visual System (HVS)

inspired metrics.

2.2.2 Traditional raw-error based image quality measures

Initial investigations on objective image quality assessment focused, for decades, on raw

mathematical metrics based on error quantification between two images. SNR, PSNR and
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MSE were precursors, while the PSNR and MSE were and still are the most widely used
methods to quantify the quality of an image with regard to its reference version. Their

popularity is due to their simplicity and their very low computational cost.

SNR and Peak SNR were derived by considering hypothetically that an image distortion is
only produced by additive noise which is independent from the signal. Thus, SNR is defined
as the ratio of average signal power to noise signal power (eq. 2-1) while PSNR is defined as
the ratio of peak signal power to noise signal power (eq. 2-2).

Let assume that X ={x; | i=1, 2, ..., N} and Y ={y; | i=1, 2, ..., N} are the reference and test

images of size N respectively.

N
2%

SNR =10log,,| ——=—— [[dB] (2-1)
(i —y)
=1

N-Max(X)” i 4g) (22)
D% -y:)

i=1

PSNR =10log,,

=4

Knowing that Max(X) = 2' —1 represents the maximum value of pixel intensities for image X

(and image Y as well) where |/ denotes the number of necessary bits to encode the image

pixels.
For example: Max(X) = 255 = 25-1 for 8-bit image.

In the literature of image processing, PSNR is also expressed in terms of the mean squared

error as follows:

PSNR = 101og10('v'%)é)2] =20 loglo(%j[dm (2-3)
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The higher the SNR (and PSNR) value, the better the similarity between test and reference
images. However, a higher value of the MSE denotes a larger amount of error between the

test and the reference images.

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are also raw error metrics
but not usually employed amongst the image processing research community for image

quality assessment but rather for objective quality estimator’s performance assessment.

Despite of their simplicity and calculation convenience, the objective quality metrics
described above (SNR, PSNR, MSE) are criticised for not correlating with the subjective
quality appreciation. Their limitations have been exposed in [3] and reported later in almost
all the papers on image and video quality. Furthermore, disadvantages of the raw error
methods have become the ultimate argument to the considerable effort that has gone into
developing new objective quality metrics by considering human visual system (HVS)

characteristics.

2.2.3 HVS inspired image quality metrics

A new era for the image quality research community has been started by a Weighted version
of the SNR that has been derived by T. Mitsa et al. [4] using the Contrast Sensitivity Function
(CSF). WSNR (in dB) is therefore defined as the ratio of the averaged weighted signal power
to the average weighted noise power. The development of Picture Quality Scale (PQS) for
achromatic image coding [5] and Noise Quality Metric (NQM) for image restoration purposes

[6] was also a big step in the design and the development of new image quality algorithms.

One of the findings on the HVS is that it is highly adapted to extract structural information
from images. By following the assumption that an image quality degradation is not due to
independent noise as assumed previously, but rather to the loss of structured information in
images, then conceiving a quality metric that measures structural distortions should have

good correlation with the perceived image dissimilarity [7].
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In [8], Z. Wang et al. suggested that the HVS can be decomposed into three independent
channels: Luminance, Contrast and Structure. The universal quality index (UQl) has then
been constructed upon comparisons of the three image components pairs leading to the

following three equations:

2x-y . .
[(X,y) == Xz for luminance comparison (2-4)
X +Yy
20,-0
c(x,y)=—5——  for contrast comparison (2-5)
oy +0,
o
(X, y) = - . for structure comparison (2-6)
x Oy

Hence, the overall value of the UQl measure is obtained using the product of the three

comparison equations as:

UQI =s(x,y)-1(x,y)-c(x,y) (2-7)

40'Xy X 9
QI = = (29)
(GX +Gy)- X +Yy )
_ 1 N _ 1 N
where X = WZ X, and y= WZ y; are the mean pixel intensities values of images X and
i=1 i=1

Y, respectively.

- -\ 1 < -\ I .
o :—Z(Xi — X) o, =m2(yi - y) are the standard deviations of the pixel
i L=l

intensities values of images X and Y, respectively.
| - —
Oy =—— (Xi - X)- (yi - y) is the covariance between pixel intensities values of images X

YON-14G

and Y.
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An instability problem of the UQIl measure arises when the denominator of Equation (2-9)
tends towards zero. The solution to this problem has been suggested in [7] by making some
changes to the luminance, contrast and structure comparison definitions of Equations (2-4),
(2-5) and (2-6). The changes consist of introducing two scalars in order to tune the system

and ensure its stability. Equations (2-4), (2-5) and (2-6) are then rewritten as follows:

2x-y+C
I(x,y) = # for luminance comparison (2-10)
X +y +C,
20,-0,+C
c(x,y)=—>—¥ "2 for contrast comparison (2-11)
2 2
o, +o,+C,
o, +C
s(x,y) = —2——2 for structure comparison (2-12)
0y +Cy

where C; and C; are small positive constants tuned by the SSIM’s authors.

The structural similarity index (SSIM) is then expressed by the following equation:

SSIM =[I(x, ] - [c(x, )] -[s(x, I (2-13)

where a, [,y are positive non zero parameters used to define the importance of each of the

three components.

If ==y =1 and C3=C,/2, SSIM is then given by:

(2§-§+ Cl)- (Zaxy +C2)

SSIM =
-11] (;2+92 +C1)'(0x2 +o, +C2)

The best SSIM score (SSIM=1) is achieved when the test image structure is the same as its

original version and consequently is of the best quality.

Three variants of the SSIM have been suggested later including the multi-scale SSIM (MS-
SSIM) [9], the SSIM with automatic down-sampling (MSSIM) [10], and the Complex
Wavelets-SSIM based on the principle that structural information is more contained in the

phase than in the magnitude of the signal [11].
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Since 2004, a new approach to image quality assessment problems has emerged and new
guality metrics have been developed using an information and communication theoretic
framework. The Information Fidelity Criterion (IFC) [12] and its extensions VIF (Visual
Information Fidelity index) and pixel-based VIF [13] metrics proposed by H. R. Sheikh et al.
belong to a different class of image quality assessment methods which are built upon
Natural Scene Statistics (NSS) models. The employed premise in this case is that visual
fidelity can be accurately quantified if it is known how much Shannon information the test
image brings about from its reference version. Following Shannon’s communication scheme,
the transmitter, the channel and the receiver correspond to the reference source image, the
distortion model applied to it and the test generated distorted image, respectively.
Furthermore, the distortion and HVS models have also been incorporated into the visual
information fidelity index design. VIF has been well appreciated and commonly employed in
the image quality community regarding the good correlation it presents with subjective

quality judgment.

Some researchers chose to rely on advanced signal processing transforms rather than HVS-
behavioural models when developing better quality predictors. Their argument is that the
human vision is too complex to be understood and hence to be modelled or simulated. To
overcome this drawback some well known signal processing techniques having similar
features as the human perception can be used. For example, A. Shnayderman et al. [14]
suggested a Multidimensional full reference quality metric based on the Singular Value
Decomposition (M-SVD). Based on the same theorem, the R-SVD quality predictor has been
developed later by A. Mansouri et al. [15] where the right singular vector matrix of the
original image is used. Similarly, VSNR is a wavelet-based Visual Signal to Noise Ratio
proposed by D. M. Chandler et al. [16] and most recently in 2010, the Riesz-transform based
feature similarity metric (RFSIM) [17].

One can also notice a revival of the raw mathematical metrics including SNR and PSNR
combined to some basic human visual features in the state-of-the-art of image quality
evaluation. This has resulted in the VSNR metric evoked above as well as the HVS based
PSNR (PSNRHVS) [18] and the modified PSNRHVS (PSNRHVSM) [19] developed by N.

Ponomarenko et al. In the first case, only the Contrast Sensitivity Function (CSF) has been
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taken into account as a visual feature. It was combined with the PSNR described at the
beginning of this section. An improvement to the PSNRHVS metric has been brought
thereafter by introducing the model of visual correlation between-coefficient contrast

masking of DCT (Discrete Cosine Transform) functions based on the HVS.

2.3 Subjective Image Quality Rating Tests

Visual data quality assessment measurement can be either qualitative or quantitative. This
section is about subjective quality evaluation where the aim is to provide accurate,

consistent and reliable predictions of the perceptual image/video appreciation.

Subjectively evaluating the quality of content is an extremely difficult task due to the time
and cost involved. Indeed, for the subjective test to be reliable a large number of human test
observers should be invited to participate to the images and/or videos quality evaluation,
under controlled psychometric experimental conditions. In addition, images are divided into
two groups: reference images considered as pristine versions and processed ones that were

subject to some degradation and were used as test images.

Depending on the experimental protocol which is adopted, observers are shown the images
(either the pair reference/test, only the test version, both the reference and all its test
versions, or all the test versions of the same reference) and instructed to rate their
perceived quality, to score the degradation intensity or to order the images according to

their similarity to a given reference.

It is known that perceptual quality may vary from one individual to another. This depends on
observers’ general experience (if he/she is expert in image processing or not), on their
personal appreciation and may vary according to their mood. To alleviate this problem, the
average score of the given individual ratings is computed over all observers and called the
Mean Opinion Score (MQOS). In some cases where the reference images are also evaluated,
the DMOS (Difference Mean Opinion Score) is derived instead of the MOS. It is the

difference of mean opinion scores obtained on the reference and on the test images,
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respectively. Unfortunately, subjective image quality assessment methods present the two

major following disadvantages:

- They are very expensive and obviously cannot be integrated in real time systems.
- The knowledge obtained in the form of quality scores (MOS or DMOS) cannot be

generalized and thus the evaluation process cannot be modelled.

Despite their drawbacks, subjective image quality assessment measurements are essential to
establish the performance of the automatic objective models introduced in section 2.2. This
section deals with the methodology recommended by the International Telecommunications

Union — Radio-communication Sector (http://www.itu.int/ITU-R/) to successfully perform

such elaborate tests. Section 2.4 gives thorough description of the different image quality
databases available for the research community including the Toyama database (2000), LIVE
database (2005), IVC database (2006), A57 database (2007), TID database (2008), and CSIQ
database (2009).

2.3.1 Methodology for subjective quality rating tests

In this subsection, we briefly cover the most important ITU-R BT.500-11 Recommendations

[20] where the methodology for subjective quality rating tests of visual content is described.

a) Test configuration

The following factors related to the test configuration may alter and/or influence the human
observers’ judgements:

= General viewing conditions: the establishment of standardized viewing

environments reduces the influence of outside world on the observation and

evaluation of visual data quality. Factors commonly measured are the luminance

of screen, the display brightness and contrast, chromaticity of image background,

size of the screen and room illumination. These parameters are generally selected

to define an environment slightly more critical than the typical home viewing

situations.
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= QObservation distance: the distance between the observer and the display device
should be set to four or six times the height of the screen.

= Display system: the display devices used in the tests must be tuned in such a way
to reduce the observers’ eyestrain. For this, the ITU-R BT.814 [21] and ITU-R
BT.815 [22] recommendations specify how to measure the luminance and

contrast of the screen. They are also reported in [20].

b) Observers

= Choice of human observers: at least 15 observers should participate to the
experiments. They should be non-expert and should be checked for normal visual
acuity and normal colour vision. Further research needs to be undertaken to assess
some factors that may influence the perceptual quality appreciation; such as
observers’ occupation, intellectual level, gender and age. This is why it is desirable
that these data be provided by the experimenters to facilitate further investigation of
such factors.

= Instructions for the assessment: observers should be introduced to the method of
assessment, the types of impairment or quality factors likely to occur, the grading
scales, the sequence and timing. Training sequences demonstrating the range and
the type of the impairments to be assessed should be used with illustrating pictures
other than those used in the test, but of comparable sensitivity.

= @Grading scales: observers should give the scale very clearly. They should have
numbered boxes or some other means to record their appreciations about quality
according to the ITU-R scales given in table 2.1.

= Test session: a session should last up to half an hour. At the beginning of the first
session, about five training presentations should be introduced to stabilize the
observers’ opinion. The data issued from these presentations must not be taken into
account in the final results. If several sessions are necessary, about three training
presentations are only necessary at the beginning of the following session. The

diagram 2.2 shows how a typical test session is organized.
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Class | Quality | Impairment
5 Excellent | Imperceptible
4 Good perceptible but not annoying
3 Fair slightly annoying
2 Poor annoying
1 Bad Very annoying

Table 2.1: ITU-R Quality and impairment “five-grade” scales.

Training Break Stabilizing ) .
Sequences(s) Sequence(s) Main part of the test session

Figure 2.2: Structure of a typical test session [20].

c) Experimental protocols

International recommendations for subjective video quality assessment [20] include
specifications for how to perform many different types of subjective tests. The most
commonly used experimental methods can be single stimulus or double stimulus as
illustrated in figure 2.3. Some examples are briefly provided in this sub-section and more

details can be found in [20] and [23].

= Single stimulus: observers rate the quality of just the distorted image (or just the
distorted video stream). An example of the single stimulus method is single stimulus
continuous quality evaluation (SSCQE). Observers are shown images sequentially one
by one with a latency time between two presentations allowing them to record their
ratings.

= Double stimulus: observers rate the quality or change in quality between the

reference and the test images (or video streams). The double stimulus continuous
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quality scale (DSCQS) and double stimulus comparison scale (DSCS) are well-known
methods in the category of double stimulus protocols. The two stimuli presentation

time should be the same and they are alternate by a gray screen.

Other methods are employed for elaboration of most recent subjective image quality
databases such as the Continuous rating system, pairwise sorting and linear displacement of

the images. They are defined in section 2.4.

Test image Test image

...... | “

Scoring Scoring

Single stimulus method

Reference Test Reference Test
image image image image
] A A’ B B’
Blank Scoring Blank Scoring
screen screen

Double stimulus method

Figure 2.3: Presentation of the single stimulus and the double stimulus
experimental methods.

d) Processing of the subjective ratings

Data should be collected from all test sessions. A realignment experiment is conducted upon
completion of the series of psycho-visual testing. The aim of the realignment is to eliminate
aberrant values reported by the observers in the 95% confidence interval. For each image i

the mean opinion score MOS(i) is further computed using the following formula:
1 N
MOS (i) =WZscorei (j) (2-15)
j=1

where N is the number of scores collected for image i and SCOre( ])is the score given by

observer j to image i.
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For each image I, all the mean opinion scores should have an associated confidence interval

which is derived from the mean g, and the standard deviation ¢, . It is suggested to use the

95% confidence interval given by equations ( ) to ( ).
[MOS (i)~ 24,,MOS (i) + 1,] (2-16)

O,

N

i, =1,96-

N (MOS(i) - scoreg, )’
o =
S (N -1) (-15)

2.4 Overview of the Subjective Image Quality Databases

All the image quality databases publicly available to the research community were built upon
some extensive psycho-visual experiments performed under specific but different test
conditions. In this section, we investigate six different image quality databases which share

the following points [24]:

v" For each image database, a set of reference images is considered. These images are
assumed to be pristine originals so of perfect quality on which some image distortion
algorithms have been applied to construct a set of test images.

v" The reference images were altered with a single type of distortion.

v" For each induced stimuli process, levels have been selected in order to achieve a
large range of visual quality: from excellent quality where artefacts are not visible, to
bad quality where distortions are annoying.

v All the tested images represent natural scenes except one synthesized image added

to the TID image database.
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2.4.1 Toyama image database (2000)

Toyama image database was published in 2000 by the Multimedia Information and

Communication Technology (MICT) Laboratory at University of Toyama, Japan [25].

The database was built upon 14 high resolution color reference images. These images were
distorted with the JPEG and JPEG2000 coders at different bitrates: 15, 20, 27, 37, 55 and 79
for JPEG and 12, 24, 32, 48, 72 and 96 for JPEG2000. This resulted in 196 test images for

which the quality was evaluated.

According to the adjectival categorical judgment method, during the psychometric
experiments, each of the 16 subjects was shown the images randomly one at a time (single
stimulus) and was asked to assign each image with an adjective that indicates his / her
perception of the quality of these images. The quality adjectives correspond to discrete
numerical values from 1 to 5 as shown in table 2.1. Adjectives were then converted to the
corresponding numerical values and the mean opinion score (MOS) was calculated as the
average of the 16 scores for each image with subject reliability of 95% confidence interval.

Higher value of MOS corresponds to higher visual quality of the image.

Figure 2.4: Reference image samples of the Toyama database.
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Images

Image formats 24-bits/pixel RGB color (768x512)

N. reference images 14
T | Distortion types JPEG JPEG2000
o |\ distorted images 98 98

Total : 196
Y
Test Methodology

A

Test Display CRT 17-inch (1024x768)
M

Configuration | Devices
= Test Standard :

Conditions | ITU-R BT. 500-11 [20]

2 Viewing distance 4H (H: Picture height)
0 Room illumination Low
: Observers 16 (Non expert, college students)

Method Single Stimulus (Adjectival categorical judgment)
0

Raw data Adjective scales corresponding to 5 quality levels:

Subjective Bad =1, Poor = 2, Fair = 3, Good = 4, Excellent=5

ratings of Final scores | MOS

images Scores’ Scale | 1..5

Table 2.2: Summary of Toyama image database description.

-26-




Chapter 2: Objective versus Subjective Quality

2.4.2 LIVE image database (2005)

LIVE image database was developed at the Laboratory for Image and Video Engineering in
collaboration with the Center for Perceptual Systems at the University of Texas at Austin,
USA. The first release was made available online in 2003 while release 2 on which we

conducted the present study was published in 2005 [26].

In both the two releases, the database was created from 29 high resolution color reference
images. In release 2, the perceptual quality of a total of 982 test images was subjectively
estimated. The images were generated using five distortion types: JPEG, JPEG2000, white
noise in the RGB components, Gaussian blur, and transmission errors in the JPEG2000 bit

stream using a fast-fading Rayleigh channel model.

Subjective testing was performed in seven sessions where observers were instructed to rate
images and to provide their perception of quality. The method is similar to the one used for
Toyama database. As the database contains a number of reference images that have been
assessed as well, raw scores (from 1 to 5) were converted for each subject to difference
mean opinion scores (DMOS). This latter represents the difference between the scores
obtained for the reference image and its test version. A low DMOS means little degradation

whereas an important value corresponds to severe distortions in the image.

Figure 2.5: Reference image samples of the LIVE database.
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Images

Image formats

24-bits/pixel RGB color (typically 768x512)

N. reference images 29

Distortions JPEG2000 JPEG White Gaussian Fast-
L

noise blur fading

|

N. distorted images 227 233 174 174 174
v Total : 982
E Test Methodology

Test Display CRT 21-inch (1024x768)
2 Configuration | Devices

Test Standard :
0
Conditions | ITU-R BT. 500-11 [20]
0
Viewing distance 2-2.5 H (H: Screen height)
5 - T
Room illumination normal

Observers 20-29 human observers

Method Single Stimulus (Adjectival categorical judgment)

Subjective Raw data Adjective scales corresponding to 5 quality levels:

ratings of Bad =1, Poor = 2, Fair = 3, Good = 4, Excellent =5

images Final scores | DMOS

Scores’ Scale

0 : for undistorted images

1..100: for distorted images

Table 2.3: Summary of LIVE image database description.
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Subjective quality scores were then stretched to the [1..100] range with a subject reliability
of 95% confidence interval. An update of the DMOS values has been made available online
later using a realignment method. Details on the experiments and raw data processing can
be found in [27].

It is worth noting that we use the second release of the LIVE database and the realigned

DMOS values in the present study.

2.4.3 IVC image database (2006)

The IVC database has been released by the Image, Video and Communication Laboratory at
the University of Nantes, France [28]. This database was derived from 10 square high
resolution color reference images that were subjected to JPEG, JPEG2000, blurring and Local
Adaptive Resolution based coding (LAR). Thus, 160 test images have been generated. The
database also includes 25 monochromatic images for which we do not have any information

about their generation process.

Subjective evaluations of images were carried out by 15 observers according to the double
stimulus impairment scale method. Unlike the single stimulus method employed for Toyama
and LIVE image databases which display the test images randomly, the double stimulus
strategy is based on providing both the reference and the test images sequentially. Each
observer is then asked to assess the artefact annoyance he/she felt on the distorted image
with respect to the reference one. The impairment scales correspond to five classes marked
with adjectives and numbers as shown in table 3.1. Ratings are reported in the form of the

MOS.

Figure 2.6: Reference image samples of the IVC database.
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Images

Image formats

24-bits/pixel RGB color (512x512)

N. reference images 10

Distortions JPEG2000 JPEG Blur LAR

N. distorted images 50 50 20 40
Total : 160

Test Methodology

Test Display One CRT standard definition TV monitor.
Configuration | devices
Test Standard :
Conditions | ITU-R BT.500-11 [20]
Viewing distance 6H (H: Screen height)
Room illumination Background luminance of 10.5
cd/m?
Observers 15 observers
Method Double Stimulus Impairment Scale (DSIS)
Subjective Raw data The impairment scale from 1 to 5:
ratings of 1 = very annoying, 2 = annoying, 3 = slightly annoying,
images 4 = perceptible but not annoying, 5 = not perceptible.
Final scores | MOS
Scores’ Scale | 1..5

Table 2.4: Summary of IVC image database description.
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2.4.4 A57 image database (2007)

The AS57 database freely available on [29] was built upon a psychophysical scaling
experiment accomplished on a set of 54 test images to measure the perceived distortions.
The 3 reference grayscale images from which the database was derived were processed
using six types of distortions: JPEG compression, JPEG2000 compression, Additive White
Noise, Gaussian blurring, JPEG-2000 compression with Dynamic Contrast-Based Quantization
(DCQ), quantization of the LH sub-bands of a 5-level 9/7 filters-DWT of the image (Contrast)
[16].

Seven adult imaging expert observers participated to the image quality database
assessments using a continuous rating system. This method was used to Measure the fidelity
between two impaired images. This is done by presenting both the reference image and the
set of its test versions to the observers who are asked to position the test images such that
the ones which will be placed furthest from the reference were judged to be of lower visual

fidelity.

The advantage of this method is that it gives the observers the opportunity to
simultaneously compare multiple test versions of an image. This allowed them to see if an
image is of better or lower quality relative to both the other distorted versions and the

reference one and to make adjustments to previous judgements if this is necessary.

Figure 2.7: Reference image samples of the A57 database.

The MOSs over the observers and test images were derived from the obtained quality scores
using the z-scores method. The values of the MOS span the range [0, 1] so that a score near
to zero corresponded to the image containing an imperceptible artefact while a MOS value
near to one denotes that the corresponding image was affected so that the distortion is very

annoying.
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Images

Image formats

8-bits/pixel grayscale images (512x512)

N. reference images 3
Distortions JPEG | JPEG2000 | Noise Blur DCQ | Contrast
A
N. distorted images 9 9 9 9 9 9
5
Total : 54
7

Test Methodology

Test Display No display devices: the presented images were high-
5 | Configuration | devices quality, physical printed versions of digital images of size
11 x 11 cm. they were placed on a large, solid gray table.
0 [30]
Test Standard :
0
Conditions | ITU-R BT.500-11 [20]
7
Viewing distance 45 cm
Room illumination D65 lighting *
Observers 07 adult imaging-experts
Method Double stimulus continuous rating system
Subjective Raw data Nature of raw data is not specified by the database
ratings of authors.
images Final scores | MOS
Scores’ 0.1
Scale

Table 2.5: Summary of A57 image database description.

! International-standard Artificial Daylight defined by the International Commission on Illumination (CIE).
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The A57 database is considered to be of limited statistical reliability according to its authors.
This is due to the use of hard copies of images instead of digital ones and to the limited

number of both reference images (3) and human observers (7) [16].

2.4.5 TID image database (2008)

TID2008 (Tampere Image Database) version 1.0 was published in 2008 [31]. By making TID
database available online, the authors aimed to provide a tool for evaluation of full-

reference image visual quality assessment metrics.

TID database includes 25 high resolution color images, 24 out of them are natural images
while the last one is an artificial image synthesized by the database authors. The images
were processed by 17 different distortion types at different levels including JPEG, JPEG2000
compression, Additive Gaussian noise and Gaussian blur. This has resulted in 1700 test

versions of the reference images.

The MOS was obtained from the subjective scores collected from 838 observers from three
countries including 251 in Finland, 150 in Italy and 437 in Ukraine. Part of the experiments

has been carried out via Internet.

Figure 2.8: Reference image samples of the TID database.
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Images
Image formats 24-bits/pixel RGB color (512x384)
N. reference images 25
Distortions JPEG JPEG2000 | Additive | Gaussian | 17
U Gaussian | blur distortion
I noise types
N. distorted images 100 100 100 100 100
D
Total : 1700
Test Methodology
2 Test Display LCD and CRT monitors,
0 Configuration | devices mainly 19-inch (1152x864 pixels)
0 Test Standard : /
Conditions Viewing distance /
8 Room illumination /
Observers 838 observers
25% internet based experiments
75% conventional experiments (in room)
Method Pairwise sorting (choosing the best image that visually
differs less from the original between two considered).
Subjective Raw data Nature of raw data is not specified by the database
ratings of authors.
images Final scores | MOS
Scores’ 0.9
Scale

Table 2.6: Summary of TID image database description.
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2.4.6 CSIQ image database (2009)

The Categorical Subjective Image Quality (CSIQ) database was developed at the Image
Coding Analysis Laboratory at Oklahoma State University, USA [32]. It is the most recent and
the latest image quality database up to the writing of this paper. It consists of 30 color high
resolution square reference images that were distorted using six different image processing
algorithms including JPEG and JPEG2000 compression, Gaussian blurring, Additive Gaussian
white noise, Global contrast decrements, Additive Gaussian pink noise. This has resulted in a
total of 900 distorted images out of which the subjective ratings of only 866 test images are

provided. In this paper, only the labelled images were considered.

Thirty-five human observers rated each image. Their visual dissimilarity measurements were
performed based on a linear displacement strategy. This consists of presenting
simultaneously all the test versions of an image across a monitor array. The images are
digital in order to overcome the inconvenience due to image printing used in the case of the
A57 database. Observers are then asked to place these images so that the horizontal
distance between two test images reflects the perceived dissimilarity between them.
Subjective quality scores have been published in terms of difference scores in quality ranging

from 0 to 9.

Figure 2.9: Reference image samples of the CSIQ database.
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Images

Image formats

24-bits/pixel RGB color (512x512)

N. reference images 30

Distortions JPEG | JPEG2000 G. G. Pink Global
C

blurring | noise noise | contrast

S

N. distorted images 150 150 150 150 150 116
I Total : 866
Q Test Methodology

Test Display 4 calibrated LCD monitors (1920 x 1200) placed side by
2 Configuration | devices side with equal viewing distance to the observer

Test Standard : /
0
Conditions | Viewing distance 80 cm (approximately)
0
Room illumination /

9 -

Observers 35 different male and female observers (ages range from

21to 35)

Method linear displacement of the images

Subjective Raw data Nature of raw data is not specified by the database

ratings of authors.

images Final scores | DMOS

Scores’ Scale | 0..9

Table 2.7: Summary of CSIQ image database description.
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2.5 Conclusion

Given a rich literature for visual data quality assessment, a systematic summarization and
comparison studies are necessary to facilitate the research and application of image quality
techniques. A classification scheme of state-of-the-art objective image quality assessment

methods would be of big importance to serve this purpose.

Despite their evident utility, research should not rely exclusively on objective quality models
development since their predictive performance is usually evaluated in terms of their ability
to predict visual image quality in a manner that agrees with subjective ratings. Similarly,
subjective quality measures have their limitations but cannot be completely substituted
since they are essential to establish the predictive capabilities of their objective
counterparts. In this regard, it is understood that it may not be possible to fully characterize
visual content quality evaluation systems’ performance by objective means. Consequently, it

is necessary to supplement objective measurements with subjective rating tests.

In the next chapter, we present a statistical study where we evaluate the predictive abilities

of eighteen objective quality metrics over six subjective image quality databases and

compare their performances.
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Chapter 3

Quality Metrics Performance

Evaluation and Comparison

3.1 Introduction

This chapter deals with a performance evaluation and comparison of number of objective
image quality state-of-the art full-reference models over six public subjectively rated image

quality databases.

To provide a complete quantitative evaluation investigation on the objective full-reference
image quality models performance (elucidated in section 2.2 of chapter 2), we have
attempted to quantify how much the models are able to predict the raw subjective scores.
Thus, we have measured the Pearson’s Correlation Coefficient (PCC) as an indication on the
correlation, the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) to
quantify the prediction accuracy, the Spearman Rank Order Correlation Coefficient (SROCC)
and Kendall Rank Order Correlation Coefficient (KROCC) to indicate the monotonicity

measure.
All the calculations are first performed on the whole databases (described in section 2.4 of

chapter 2) and then on the sets concerned with the four degradation types namely the JPEG

compression, JPEG2000 compression, noise and Gaussian blur.
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3.2 Predictive Performance Criteria

The Video Quality Experts Group (VQEG) Phase | FR-TV [33] suggests a definition for the
performance of the image quality assessment algorithms. It consists in defining the
performance in terms of several attributes namely correlation, consistency and monotonicity

for comparison to be reliable.

3.2.1 Correlation

Let assume that the subjective image quality ratings represented by the mean opinion score
(MOS) or by difference mean opinion score (DMOS) be called the true values X and the
computed objective image quality measures be called the estimated values Y. Let also
assume that X and Y are vectors of size N given by: X = {x | i=1, 2, .., N}

andY={y; | i=1, 2, ..., N}.

Correlation between X and Y vectors is represented by the Pearson’s Correlation Coefficient
(PCC) defined as the ratio of the covariance between X and Y to the product of their
respective standard deviations. It assumes that the relationship between variables X and Y is

linear and measures its strength.

PCC =X (3-1)

OxOy

2.6 =X).(y; - Y)
PCC = ——1 (3-2)

\/Z(Xi _i)z-\/Z(yi - 7)2

_ 1 N _ 1 N
where x = —Z X, and y= —z y, are the mean values of X and Y vectors, respectively.

i=l1 i=1
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3.2.2 Accuracy

Accuracy establishes the faithfulness of the estimated values Y to match the true values X. It

is measured by the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE)

defined respectively as:

EZ(VV_XJZ

i=1

RMSE =
N

MAE = L3 ]y, | (34
N

Both of RMSE and MAE denote the average magnitude of error and consequently the

nearest they are to zero, the more accurate is the measure.

3.2.3 Monotonicity

In the context of image quality evaluation, monotonicity can be interpreted as the ability of
the measure to assess how well the relationship between qualitative and quantitative image
quality scores can be described using a monotonic function. Spearman’s and Kendall’s rank
order correlation coefficients, denoted by RHO and TAU respectively, are typical non-
parametric estimators of monotonicity. Unlike the Pearson’s correlation coefficient, they do

not require any assumption on the linearity between variables. They are defined as:

RHO:I——6ZZdi (3-5)
N(N2-1)

TP L] (3-6)

[N(N =1)]/2
where d, =rank(x;)—rank(y;),

2 'Cis the number of concordances, 3D is the number of discordances and [N(N-1)]/2 is the

total number of pairs.
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Pearson’s, Spearman’s and Kendall’s correlation coefficient values lie between -1 and +1.
Perfect correlations of -1 or +1 occur when each of the variables is a perfect linear (for PCC)

or monotone (for SROCC and KROCC) function of the other.

3.3 Proposed Comparative Study

In this section, we have investigated eighteen image quality assessment algorithms
described in chapter 2 and summarized in Table 3.1. For the study to be reliable, we have
reused the source code provided in [34] or by the algorithms’ authors. We have also made
evaluation and comparison tests on six image quality databases subjectively rated and

publicly available also described in chapter 2.

To provide a complete quantitative evaluation investigation on the aforementioned
objective full-reference image quality models performance, we have attempted to quantify
how much the models are able to predict the raw subjective scores. Thus, according to the
VQEG recommendations, we have measured the Pearson’s Correlation Coefficient (PCC) as
an indication on the correlation, the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE) to quantify the prediction accuracy, the Spearman Rank Order
Correlation Coefficient (SROCC) and Kendall Rank Order Correlation Coefficient (KROCC) to

indicate the monotonicity measure.

All the calculations are first performed on the whole databases and then on the sets
concerned with the four degradation types namely the JPEG compression, JPEG2000

compression, noise and Gaussian blur [24].

3.3.1 On the use of a logistic function

The VQEG Phase | FR-TV [33] suggests the use of a logistic function for nonlinear mapping
between the subjectively rated scores and the objectively predicted values before
calculating the performance measures related to correlation and accuracy. This
recommendation is valuable for image and video quality assessment but particularly to the

High-definition television (HDTV) since a video quality metric generates as many objective

-42 -



Chapter 3: Quality Metrics Performance Evaluation and Comparison

scores as the number of video sequences under examination, and it is so important to
realign the behaviour of these objective scores to the subjective ones in order to fairly
compare them [35]. The mapping is performed by applying a nonlinear transformation using
a monotonic function whose parameters should be optimized for both the metric’s
generated values and the ratings given by a panel of human observers. This is reiterated for

each quality metric over each considered data sample into a 95% confidence interval.

Symbol / year Metric’s description Reference
MSE Mean Squared Error

PSNR Peak Signal to Noise Ratio

SNR Signal-to-Noise Ratio

WSNR(1993) Weighted Signal-to-Noise Ratio [4]
NQM (2000) Noise Quality Measure [6]
uQl(2001) Universal image Quality Index [8]
SSIM (2003) Structural SImilarity Index [7]
MS-SSIM (2003) Multi-Scale SSIM index [9]
VIF (2004) Visual Information Fidelity [13]
VIFP (2004) Pixel-based VIF [13]
IFC (2005) Information Fidelity Criterion [12]
M-SVD(2006) Multidimensional IQM based on the SVD? [14]
PSNRHVS(2006) HVS based PSNR [18]
PSNRHVSM(2007) Modified PSNRHVS [19]
VSNR(2007) Visual Signal-to-Noise Ratio [16]
MSSIM(2009) Modified SSIM with Automatic down-sampling [9]
R-SVD (2009) Right singular vectors of the SVD based metric [15]
RFSIM(2010) Riesz-transform based Feature Similarity Metric [17]

Table 3.1: Summary of the full-reference IQMs being evaluated and compared.

% SVD denotes the Singular Value Decomposition theorem
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There exist different logistic functions that have been used in the literature amongst
especially the video quality assessment community. There are fitting functions that have
been defined empirically like the ones suggested in [35-37] and psychometric functions

inspired from the behaviour of the human visual system.

However, the fitting function described in [38] by H. R. Sheikh et al. is largely employed
within the image quality assessment community and in the present work. It is a five

parameters monotonic logistic function given by Equations (3-7) and (3-8) below:

Quality(x) = B, logistic(B,,(X— B;)) + B, X+ s (3-7)
. . 1 1
logistic(z, X) = Tr o) (3-8)

where x and Quality(x) denote the objective quality scores before and after nonlinear

mapping, respectively.

In this work, the parameters £, to 5, have been optimized for each database and each quality

metric individually by means of the unconstrained multivariable optimization and the
unconstrained nonlinear minimization techniques. For the first technique, Nelder-Mead
Simplex method [39] has been employed (the Matlab’s fminsearch function). For the second
one, the Quasi-Newton Method with a cubic line search procedure has been applied (the
Matlab’s fminunc function). It uses the FBGS formula [40-43] for updating the approximation
of the Hessian matrix using first order derivatives. FBGS (for Broyden, 1969, Fletcher, 1970,
Goldfarb, 1970, and Shanno, 1970) is generally regarded as the best performing method. The
performance measures concerned with the logistic fitting are the Pearson’s correlation

coefficient (PCC), the root mean squared and the mean absolute errors (RMSE and MAE).

Nevertheless, it is important to point out that there exist some work on image data [44, 45]
as well as on video data [35, 46] where it has been suggested that such nonlinear mappings
yield to higher correlation coefficients as well as they can provide different results under the

influence of parameters tuning.
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3.3.2 The significance of difference

After applying the nonlinear mapping on the PCC, RMSE and MAE but not on the Spearman’s
and Kendall’s rank order correlation coefficients (SROCC and KROCC), we have studied the
significance of the difference of the image quality predictive performance across the six
databases and then between the eighteen objective image quality predictors. This is to
answer the following two main questions: 1) Are there any significant differences between
the existing subjective image quality databases? 2) Is there any significant improvement of
the capability to objectively predict the perceived visual image quality having its original

version at hand?

To achieve this aim, we have used a non parametric Two-Way Analysis Of Variance (ANOVA)
called the Friedman test which is a measure of variability based on the median statistic. The
choice of this statistical method is motivated by the following properties. The first one is that
no assumption is made about the distribution of data being compared. Secondly, the data
should not be independent; this means that it is possible to compare repeated records over
the same samples. The third advantage of the Friedman test is that it is as robust as a
parametric test when the sample size is greater than five which is the case in the present

comparative study.

The first property of the Friedman test is known as the free-distribution property. It is very
useful when the distribution of the data to be compared is not Gaussian; which is the case of
the quality measures values computed on sets of images. Free-distribution tests use the
ranks of the data rather than their raw values to calculate the statistic. However, this
property may become a weakness when the sample size is less than five. This problem is not
of concern in the present work since the sample size is 6 and 18 when assessing the

variability of the databases and the metrics, respectively.

Thus, the Friedman test returns a probability value (p-value) for the null hypothesis "Ho:
there are no significant differences between the variables". If the p-value is near zero, then
Ho is rejected and it can be concluded that at least two of the variables are significantly

different from each other. In our work, we needed additional information about which pairs
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of variables are significantly different, and which are not in the case where the null

hypothesis is rejected. Therefore, we have performed a multiple comparison procedure.

The decision made depends on the confidence interval considered for the comparative
study. If it is 95%, then the p-value should be lower than 0.05 to reject the null hypothesis. If
the confidence interval is 99%, then the p-value should be lower than 0.01 to conclude that

there is significant variability.

3.4 Experimental Results and Comments

As explained in section 3.3, the correlation, accuracy and monotonicity based performance
investigation has been conducted on eighteen objective full-reference image quality
estimators over six publicly available subjective image quality databases. The procedure is
repeated to the whole image datasets, and then to the four image sets subject to the four
degradation types considered in the present work (JPEG, JPEG2000, blur and noise). The
Friedman statistical method has been employed to compute the probability (p-value) that
there are no significant differences between the variables. In the first stage, the 99%
confidence interval has been selected, so the p-value is compared to 0.01. If it is lower then
a pairwise comparison is performed to know which pairs of variables are significantly

different, and which are not.

It turned out that the Friedman analysis over the eighteen image quality metrics in the 99%
Cl is very tight when comparing the objective quality metrics. This leads us to extend the
statistical test to the 95% confidence interval. The p-value is subsequently compared to 0.05.
This allows us to make the tests at a larger scale and thus to get additional information on
the predictive quality models that fall into the same performance range as the ones found in
the 99% confidence interval analysis. The full comparative results have been published in

[47] before logistic fitting and in [24] after applying a logistic function.

The Friedman’s test results are summarized in tables 3.1 to 3.6 and F.1 to F.4 where the "x"
symbol means that a significant difference has been detected between the two variables.

The tables are symmetric since the multiple comparisons have been reiterated pairwise. In
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tables 3.3, 3.5, 3.7 and tables in appendix F, it was more convenient to represent only the
variables pairs that are significantly different than to make 18 x 18 matrices. In order to

know if a measure X is "significantly better" or "significantly worst" than Y, we refer to the

appendices A to E where the full numerical values are provided and also published in [48].

3.4.1 Friedman analysis of the correlation performance

The correlation performance is given by the Pearson’s correlation coefficient (PCC) for which

the absolute values after nonlinear fitting are depicted in appendix A.

a) Comparison of the image quality databases

Results related to the Friedman analysis of the PCC variability in the 99% Cl over the six

image quality databases are presented in table 3.2 below. They show that:

All data sets

IVC | A57

TID

cslQ

\

A57

TID

=

LIVE | x
|vcE - Ix
AS57 |
TID X |x 7///
csiq .
JPEG coded images sets JPEG2000 coded images sets
IVC | A57 | TID | CSIQ IVC | A57 | TID | CSIQ

cslQ | x X
Gaussian blurred images sets Noised images sets
LIVE | IVC | A57 | TID | CSIQ LIVE | A57 | TID | CSIQ
7 Lve | | I«
IVC | X A57 |
e (]
csiq U

Table 3.2: Pearson’s Correlation Coefficient (PCC) variability over the 6 databases
according to the Friedman test in the 99% ClI.
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- The predictive correlation performance of the overall studied metrics obtained over the
Toyama database is always significantly worst than the one obtained on the LIVE and CSIQ
databases for the JPEG and JPEG 2000 coded images sets knowing that the Toyama database

supports only the two aforementioned degradations.

- The lowest correlations are obtained on the overall TID database. In addition, they are
significantly worst than the ones obtained on the LIVE, IVC and the CSIQ databases over the
entire datasets. This is related to the considerable number of aberrant values of PCC

highlighted in frames in appendix A.

- The studied image quality metrics are always significantly less correlated with the
subjective scores on the TID than on the CSIQ databases whatever the image set considered:
all data, JPEG compressed images, JPEG 2000 coded images, noised images or Gaussian

blurred images.

b) Comparison of the image quality metrics

- As can be noticed from the underlined values in appendix A, the best linear correlation
coefficients are mostly achieved with the VIF metric amongst the 18 quality models under
study. This is true over four databases namely Toyama, LIVE, IVC and CSIQ for all the image

sets except the noised images one.

- Moreover, according to the Friedman test results, the predictive performance of the VIF
model in terms of correlation is significantly higher than that of the R-SVD, MSE, PSNR and

SNR depending on the case study as illustrated in table 3.3.

- The R-SVD metric records significant lower correlations than VIF and MS-SSIM on the entire

data sets. This is due to the aberrant (framed) values of the R-SVD on Toyama, A57 and TID

databases in appendix A.
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All data sets JPEG coded images sets
MS-SSIM | VIF_| R-SVD SNR | MS-SSIM
//////////// :T\IER
RSVD | x i/llxlsff
JPEG2000 coded images \S/TLM -
SNR Se\:lslc R-SVD Gaussian blurred images
VIF -
R-SVD

Table 3.3: Pearson’s Correlation Coefficient (PCC) variability over the 18 quality metrics
according to the Friedman test in the 99% ClI.

c) Preliminary conclusions
- For the noised images, no significant variability in correlation between the metrics in the

99% Confidence Interval (Cl) has been detected.

- Unlike the Toyama and LIVE databases, lower linear correlation results are obtained on the

TID database.

3.4.2 Friedman analysis of the accuracy performance

The image quality community usually assesses the accuracy performance of the quality
models by means of the RMSE and the MAE on which the logistic function defined by
Equations (3-7) and (3-8) has been applied. The full numerical error values of the 18 quality

metrics over the 06 databases are given in appendices B and C, respectively.

a) Comparison of the image quality databases

- It is worth noting that the Friedman test gives similar results for the Root Mean Squared

and the Mean Absolute Errors over the six databases in the 99% Confidence Interval.
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- The RMSE and MAE variability depicted in table 3.4 indicate that the predictive accuracy
performance of the quality models obtained over the LIVE database is always significantly
inferior than the one obtained on the IVC, A57 and CSIQ databases whatever the image set
considered. An exception is that the noise degraded images set is not contained in the IVC
database. This statistical analysis result can be justified by the high error values recorded by
the PSNR, SNR, WSNR, NQM, PSNR-HVS and PSNR-HVSM on the LIVE database for the five

case studies as highlighted in bold in appendices B and C.

- The lowest error values and consequently the best accuracy performance of the image
quality metrics is achieved over the A57 and the CSIQ databases. However, this superiority is
found to be significant only to Toyama, LIVE and TID databases but not to IVC. This is true for
the following case studies: all data, JPEG coded images, JPEG 2000 coded images and

Gaussian blurred images sets.

All data sets
IVC | A57 | TID | CSIQ
LIVE | x z z
2/5C7 5
JPEG coded images sets JPEG2000 coded images sets
IVC | A57 | TID | CSIQ A57 | TID | CSIQ
TOY X X X X
LIVE X |X X X X
IVC .
cslQ | x X | x X
Gaussian blurred images sets Noised images sets
I A57 | TID | CSIQ i
LIVE X X X LIVE
////// A57
A57 | x X TID
TID X 1 X csiQ 7//%
csiQ | x %/////%

Table 3.4: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) variability over
the 6 databases according to the Friedman test in the 99% CI.
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b) Comparison of the image quality metrics
- Table 3.5 below illustrates that the MSE, PSNR and SNR models are significantly less
accurate compared to the VIF quality measure according to the case study (JPEG compressed

or Gaussian blurred images).

JPEG coded images sets JPEG coded images sets
(MAE) (RMSE)
SNR VIF PSNR SNR | VIF
SNRL, I« .

\

VIF | x - SNR

VIF X

Gaussian blurred images sets
(MAE)
SNR VIF

MSE

s 7

VIF | x
Table 3.5: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) variability over
the 18 quality metrics according to the Friedman test in the 99% ClI.

c) Preliminary conclusions

- Unlike the Toyama and LIVE databases, higher root mean squared and mean absolute
errors are recorded on the TID database.

- There is no image quality metric over the 18 investigated which is more accurate than
others for the JPEG2000 compressed and the noised images according to the Friedman test

in the 99% confidence interval.

3.4.3 Friedman analysis of the monotonicity performance

The Spearman’s and Kendall’s Rank Order Correlation Coefficients (SROCC & KROCC) are the
measures of the monotonicity performance. The appendices D and F contain the values of
SROCC and KROCC, respectively.

a) Comparison of the image quality databases

The following comments about the monotonicity performance over the six image quality

databases can be made from table 3.6.
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All data sets (SROCC) All data sets (KROCC)

JPEG coded images sets (SROCC) JPEG coded images sets (KROCC)

IVC | A57 | TID | CSIQ
X

IVC | A57 | TID | CSIQ
X

% X X

TID X
cslQ | x

IVC | A57 | TID | CSIQ A57 | TID | CSIQ

C X _
',% . 2
csiQ X

csla X . /////////////

Table 3.6: Spearman’s and Kendall’s Rank Order Correlation Coefficients (SROCC & KROCCQ)
variability over the 6 databases according to the Friedman test in the 99% ClI.
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- The best results are obtained on the LIVE database. However, they are significantly superior

to those gotten on the Toyama, IVC and TID databases whatever the cases study considered.
- The worst monotonicity results are recorded on the A57 database. They are significantly
lower than those recorded on the JPEG 2000 compressed and the Gaussian blurred images

of the LIVE and CSIQ data sets.

b) Comparison of the image quality metrics

All data sets
SNR | MS-SSIM | VIF | MSSIM | R-SVD | RFSIM

MS-SSIM
VIF ///////
MSSIM | x

R-SVD X X
RFSIM

VIF | PSNR-HVSM | MSSIM

MS-SSIM

\P/IST\IR-HVSM i .
MSSIM X %///////////%
JPEG 2000 coded images sets Gaussian blurred images
SNR | MS- PSNR- R- Zilt; VIF M-SVD
SSIM HVSM SvD
¢ SNR_ 0 | x
2/5\]-;5|M x X \h//IIF X 7/%/
HVSM | SvD ////%
R-SVD //////////%

Table 3.7: Spearman’s and Kendall’s Rank Order Correlation Coefficients (SROCC & KROCC)
variability over the 18 quality metrics according to the Friedman test in the 99% ClI.

- The VIF, MS-SSIM, SSIM, PSNR-HVSM and RFSIM image quality models are significantly

more monotonous than SNR, M-SVD and R-SVD measures depending on the case study as
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illustrated in table 3.7. We can also notice the number of the aberrant values of SROCC and

KROCC obtained by the R-SVD algorithm. They are highlighted in frames in appendices D & E.

- For the noised images, no significant variability in monotonicity (for both SROCC and KROCC

values) in the 99% confidence interval has been detected.

c) Preliminary conclusions
- Unlike the Toyama and LIVE databases, lower rank order correlation results are given on

the TID database.

- There is no image quality metric over the 18 investigated which is more monotonous with

the subjective quality scores (MOS or DMOS) than others for the noised images.

3.4.4 Friedman test results on the 95% confidence interval

The Friedman analysis of the eighteen image quality measures in the 99% Cl has shown that
the VIF model outperforms its counterparts. Looking for other metrics that have similar
performance capabilities as the VIF, we have extended the test to the 95% Cl where the
probability value (p-value) that there are no significant differences between the quality
metrics is compared to 0.05 instead of 0.01. If it is lower, then a multiple pairwise

comparison is performed to know which pairs of objective metrics are significantly different.

- The extended Friedman test reveals that the MS-SSIM, MSSIM and VIFP quality measures
have almost the same performance as the VIF model in terms of correlation, accuracy and
monotonicity. This conclusion can be drawn from tables F.1 to F.4 in appendix F where the
variability of the PCC, RMSE, MAE, SROCC and KROCC over the 18 full reference quality

algorithms according to the Friedman analysis in the 95% confidence interval is summarized.

- For the noised images, no significant variability in correlation, accuracy and monotonicity in

the 95% confidence interval has been detected. This is probably due to the fact that the

nature of noise induced to images is different from one database to another. Another
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possible interpretation is that the Friedman test might not be robust when the number of

variables is less than 5 (noise is present in only 4 databases).

3.5 Interpretation of the Results

In this chapter we have carried out a complete quantitative predictive performance
evaluation of eighteen state-of-the-art full reference image quality measures over six public
subjectively rated image quality databases. We were particularly interested in four types of

degradation including JPEG and JPEG2000 compression, noise and Gaussian blur.

Performance evaluation focused on three measures: correlation, accuracy and monotonicity.
Thus we used the Pearson’s Correlation Coefficient, the Root Mean Squared Error, the Mean
Absolute Error, the Spearman’s Rank Order Correlation Coefficient and the Kendall’s Rank
Order Correlation Coefficient. Statistical tests have been performed via the Friedman
analysis to check if there are significant differences between the existing quality databases
on the one hand and between the predictive capabilities of the investigated objective

models on the other hand.

According to the Friedman’s tests over the noised images in the 99% and 95% confidence
intervals, the Noise degradation is ill represented in the existing subjectively rated quality

databases.

Furthermore, the preliminary conclusions in the previous section reveal that unlike the TID
database, the Toyama and LIVE ones record higher values in terms of correlation, accuracy
and monotonicity. This is particularity due to the fact that the LIVE database (release 2)
contains 20.5% of images (202 out of 984) of perfect quality and having a DMOS value equal
to 0, the Toyama database includes 14.3% of non distorted images (28 out of 196). While in

the TID database, 4% of images (68 out of 1700) are very severely degraded.
In the special case of images of perfect quality, the MSE, M-SVD and R-SVD tend towards
zero while the values of UQl, SSIM, MS-SSIM, VIF, VIFP, MSSIM and RFSIM are equal to 1.

However their PSNR, SNR, WSNR, NQM, PSNR-HVS and PSNR-HVSM values tend to infinity.
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The reason for the root mean squared and the mean absolute errors being very high and
their linear correlation coefficient (PCC) is the same as can be seen in bold in appendices A to
C. This is inversed for the images of very poor quality which explains the difference between

the three databases [24].

Coefficients of the logistic function defined by equations and are given in appendices

G through L for each quality measure, for each dataset and for each image quality database.

3.6 Conclusion

According to the results of the investigation presented in this chapter, it can be concluded
that the performance of the error-based image quality estimators depends on the structure
of the image database on which it is applied. We mean by structure, the proportions of
images at different levels of degradation, in particular the proportions of images of very

good or very poor quality.

In order to assert the conclusion that Toyama, LIVE and TID databases are different, we have
run the Friedman analysis only on IVC, A57 and CSIQ ones. No variability over the 18 quality
models has been detected whatever the performance measure assessed and the dataset

considered.

This finding raises the question on the reliability of the image quality metrics performance
evaluation tools based on correlation, accuracy and monotonicity and the impact of the
structure of image quality databases. As a result of the conclusions of this research work, we
propose a new research direction to investigate new benchmarking tools of image quality
metrics in order to reliably measure the evolution of the field and to point out any

shortcomings of each method.
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Chapter 4

Overview on Machine Learning

and Artificial Neural Networks

4.1 Introduction

Learning is an inherent characteristic of humans and animals. Indeed, while executing similar
tasks, the ability to improve performance is acquired via synthesizing different types of
information. As regards machines, learning broadly refers to the enhancements of expected
systems’ performance while executing repeated tasks. Such learning tasks mainly involve
density estimation, regression, and classification where the system attempts to predict the

data density, a continuous target variable or a discrete target variable, respectively.

Machine learning (ML) is an active research field concerned with the development of
algorithms able to generalize from their experience. This is possible by inferring rules from
observing examples used for training the system and suitably making further predictions on

future data. The importance of achieving learning in machines is manifold [49]:

v' Important relationships and correlations might exist among large piles of data. ML
methods can often be used to analyse and extract these relationships (data mining).

v" The amount of knowledge available about certain tasks might be too large for explicit
encoding by humans. Machines that learn this knowledge gradually might be able to
capture which information is relevant to the actual task and which one is non-

informative or redundant (dimensionality reduction / feature selection).
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v" Environments change over time and new knowledge about tasks is constantly being
discovered by humans. Continuing systems redesign is impractical, but machines that
can adapt to a changing environment would be able to track much of the new
knowledge (evolutionary systems).

v" Another important task of ML is classification, which is also referred to as pattern
recognition, in which machines learn to automatically recognize complex patterns, to
distinguish between them, and to make intelligent predictions on their class. When
the classes are not known beforehand, machines might be able to assign a set of
objects into groups called clusters so that the objects in the same cluster are more
similar to each other than to those belonging to other clusters (clustering).

v" Some tasks cannot be defined well except by example. That is, we might be able to
specify data samples but not a concise relationship between inputs and desired
outputs. There exist prediction techniques that allow approximate such an
input/output function (regression).

v" Learning in machines also might help us understand how humans learn. Biological
phenomena are considered nonlinear by nature. In this thesis, we are interested in
visual data quality appreciation which is a nonlinear natural cognitive task that
evolves by time and personal experience. However, mechanisms leading to the visual
data quality evaluation are still ill-understood. Machine learning techniques might
help us determine how do humans make judgement about the quality of what do
they regularly see on their screens and which factors mainly affect this process. In the
following chapters (5 and 6), we develop machine learning based techniques for

image quality assessment in an attempt to shed more light on this subject.

This chapter provides an overview of the principle of learning that can be adhered to
machines to improve their performance. In the next section 4.2, we point out the major
historical events that marked the ML research field. The different paradigms have also been
briefly introduced in section 4.3 with a particular attention drawn on the supervised
approach employed for further investigations in the thesis. The rest of the chapter is
restricted to the artificial neural networks based techniques and more particularly to the

feed-forward multi-layer perceptron employed in most contributions of our work.
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In section 4.4, we address some basic issues related to the use of neural networks. We
essentially focus on the generalization capabilities including the inconveniences presented
by the backpropagation learning algorithm applied to multi-layer perceptrons (section 4.5)
as well as the solutions provided to cope with these problems (section 4.6). The chapter
ends with a brief discussion on the general research questions as well as the choice of the

methods used in chapters 5 and 6.

4.2 Brief History

The learning problem is characterized by the following significant historical events [50]:

4.2.1 Construction of the first learning machines (the 60s)

The first model of machine learning called “perceptron” was suggested by Frank Rosenblatt
in 1957 in [51]. The perceptron was not new concept, but the contribution was the definition
of the model as a program for computers able to solve pattern recognition problems. The
elementary perceptron has N input neurons and one output neuron. Rosenblatt has built
later a model of several levels of neurons where outputs of neurons of the previous level

(i-1) are inputs for neurons of the next one (i).

A. Novikoff proved the first theorem about the perceptron [52] that asserts that the
perceptron algorithm converges after a finite number of iterations if the data set is linearly
separable. Hence, the learning theory that aims at formalizing the automatic learning
process is actually introduced, and the relationship between the generalization ability and

the principle of minimizing the number of errors on the training set has been established.

4.2.2 Elaboration of the fundamentals of the learning theory (1960-1970s)

This period has known a proliferation of numerous learning models dedicated to solving real-
life problems. The Madaline constructed by B. Widrow and M. E. Hoff [53], the learning
matrices constructed by K. Steinbush [54], decision trees originally intended for experts
systems [55], and hidden Markov models developed for speech recognition problems [56]

are typical examples.
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During this period, much work has been done in the statistical learning theory, therefore the
structural risk minimization theory introduced by V. N. Vapnik and A. J. Chervonenkis [57]
has became a popular subject of analysis. M. L. Minsky and S. Papert [58] showed in 1969
that a two layer feed-forward network can overcome many restrictions faced with a single-
layer network, but did not present a solution to the problem of how to adjust the weights

from input to hidden units.

4.2.3 Introduction of the neural networks (the 80s)

In 1986, Y. LeCun [59] and D. E. Rumelhart et al. [60] independently implemented methods
for simultaneously setting the weights’ values of all neurons of the perceptron using the so-
called back-propagation algorithm. The central idea behind this solution is that the errors for
the units of the hidden layer are determined by back-propagating the errors of the units of
the output layer. For this reason the method is often called the back-propagation learning
rule that can also be considered as a generalisation of the delta rule (also called the Least
Mean Square (LMS) method) [53] for non-linear activation functions and multilayer

networks.

Perhaps the most notable work in the field of machine learning in this period was the
pioneering collective book (Volume | and Il) by D. E. Rumelhart, J. L. McClelland, and the PDP
research group on "Parallel Distributed Processing" [561, 62]. Thereby, interest in
information processing models inspired from the nervous system was renewed and many
earliest models particularly the Hebb learning rule [63] and the perceptron model [51] have
been re-examined. The success of the book "Parallel Distributed Processing" is due to the
introduction of new more efficient algorithms, and the emphasis made on the advantages
and features of biological nervous systems (massive parallelism, learning capabilities and

distributed memory).

4.2.4 Development of alternatives to neural networks (since the 1990s)

Big attention has been focused on alternatives to neural networks since the 1990s. During
the time between constructing the perceptron (1957) and implementing the back-

propagation technique (1986), the statistical learning theory introduced in the late 1960’s
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has been extremely developed from a theoretical point of view. Building on thirty years of
analysis of learning processes, the synthesis of novel types of learning algorithms (called
SVMs: Support Vector Machines) controlling generalization ability began in the middle of the
1990’s. Many other kernel methods such as the Radial Basis Functions (RBF) have been

developed later as well as the Bayesian neural networks.
Despite the proliferation of numerous powerful learning methods that generally share the

same framework as the one depicted in figure 4.1 below, the artificial neural networks are

still popular and employed in the most recent applications.

Training Learning R Test
Data Algorithm Model I Data Accuracy = ?

Phase 1 : Training Phase 2 : Testing

A

Figure 4.1: Framework of machine learning systems.

4.3 Machine Learning Paradigms

Learning algorithms fall into four categories with respect to the following factors: (i) the type
of feedback available for the learning task, (ii) the representation of the learned information
and (iii) the availability of the prior knowledge. The field of machine learning usually
distinguishes supervised, unsupervised, semi-supervised and reinforcement learning. The
key concepts and principles of each of the aforementioned learning paradigms are briefly

introduced in this section.

4.3.1 Supervised learning

Supervised learning requires a trainer, who supplies the input-output training data in order
to learn a model of it. The data is termed labelled and the learning system adapts its
parameters by specific algorithms to generate the desired output patterns from a given
input pattern. It is not always convenient to solve practical learning problems using the

supervised techniques. In some applications like text processing, video-indexing and
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bioinformatics, the labelled data are not available, expensive to generate or cannot be
collected for the training process. In the context of classification problems, number of
categories might not be available or known, as in the case of scene classification for
example, or they might increase with more data as for objects identification. A possible

solution to these problems is the use of unsupervised learning systems.

4.3.2 Unsupervised learning

In absence of labelled data or trainer, the desired output for a given input is not known and
the system is provided with only unlabelled training data. Consequently, the learning system
adapts its parameters autonomously to find a meaningful representation of complicated
high dimensional data. Unsupervised learning is commonly used for dimensionality

reduction and clustering applications. More details on these techniques can be found in [64].

Nevertheless, the unsupervised learning approach does not totally resolve problems
encountered with its supervised counterparts. Clustering problems, for example, are often
subjective in nature and the clusters generated by unsupervised models are difficult to
evaluate and interpret. Two ways to overcome this issue have been suggested: (i) the first
one is to supply limited labelled data to guide the unsupervised process (semi-supervised
learning), (ii) the second solution is to incorporate the system’s user suggestions and

feedback (reinforcement learning).

4.3.3 Semi-supervised learning

As the name suggests, it is in between supervised and unsupervised learning techniques. The
semi-supervised solution aims at making advantage of the strengths of both by reducing the
amount of labelled data required for supervised learning as well as improving the results of
unsupervised clustering to the expectations of the users. Many assumptions have to be

made on the labelled/unlabelled data to achieve these goals. However, the difficulty of
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verifying the semi-supervised assumptions or mathematically formalizing them is still an

open issue [65].

4.3.4 Reinforcement learning

It constitutes another possible solution to the drawbacks of supervised and unsupervised
learning techniques. Here, the emphasis is made on learning by the individual from direct
interaction with its environment instead of relying on exemplary supervision or complete

models of the environment.

In reinforcement learning, the system does not explicitly know the input-output examples,
but it receives some form of feedback from its environment. The feedback signals help the
learner to discover which actions yield the most reward by trying them. The learner thus
adapts its parameters through trial-and-error interactions with a dynamic environment.
Another challenging feature specific to reinforcement learning is called delayed reward
where the selected actions may affect not only the immediate reward but also all

subsequent rewards.

There are two main strategies for solving reinforcement-learning problems. The first is to
search in the space of behaviours in order to find one that performs well in the environment.
Genetic algorithms and genetic programming fall into this class of methods. The second is to
use statistical techniques and dynamic programming methods to estimate the utility of

taking one action or another.

4.4 Supervised Learning in Multilayer Neural Networks

The Artificial Neural Networks (ANNs) are variations of the parallel distributed processing
idea. They are nonlinear statistical data modelling tools, and their architecture is based on
interconnected computational building blocks inspired by biological nervous system which
perform the processing in a parallel way as shown in the diagram of figure 4.2. Furthermore,
a special interest in networks arises from their ability to perform nonlinear approximation. It

is known that ANN with one hidden layer (and also higher layer networks) can interpolate
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any multidimensional function with given accuracy and can exactly implement any arbitrary
finite training set [66]. Indeed, artificial neural networks are commonly used to model
complex relationships between inputs and outputs or to find patterns in data. In other
words, they are capable to extract linear combinations of the inputs as derived features, and
then model the target as a nonlinear function of these features. The above mentioned
property of network mapping makes ANNs a powerful learning method with widespread
applications like function fitting (also called regression or function approximation), pattern
recognition, data clustering, and time series analysis. In this section, we focus on the
function approximation learning capabilities of neural networks which we will exploit in

further investigations related to image quality assessment.

Input _ Output
Layer Hidden Layers Layer

Figure 4.2: A multi-layer feed-forward perceptron generic diagram.

4.4.1 The Backpropagation Learning Algorithm

The backpropagation algorithm proposed in [59, 60] can be applied to networks with any
number of layers. The universal approximation theorem has been shown; it states that only
one layer of hidden units suffices to approximate any function with finitely many
discontinuities to arbitrary precision, provided the activation functions of the hidden units
are non-linear [67, 68]. In many applications a feed-forward network with a single layer of

hidden units is used with a sigmoid logistic function (see figure 4.3) for the units.
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The standard backpropagation is a gradient algorithm in which the weights of the units are
computed by a forward pass through the network for each training case. Then, starting from
the output units, the derivatives of the cost function are calculated in backward pass with
respect to the weights of units. In function approximation applications with n outputs, the
standard cost function (also called the performance function or the error rate) is the sum of

the squared errors between the desired and the estimated outputs, Yy,and ¥, respectively is

given by equation (4-1) below:
f(C)=SSE =2 (y,-¥))’ (4-1)
i=l

Feed-forward multilayer perceptrons that have one or more logistic hidden units and are
properly trained using backpropagation tend to give reasonable answers when presented
with inputs that they have never seen. This generalization property makes it possible to
emulate a large variety of tasks that humans perform provided a large enough pool of

representative input-output samples.

VA VA VA
_________ +1 e XY IR k.t S
_
0 > x 0 > x 0 > x
""""" a1 Y A I N I
(a) (b) ()

Figure 4.3: Different types of logistic functions: (a) hard-limit, (b) linear, and (c) sigmoid.

4.5 Problems Related to ANNs Generalization Capabilities

As evoked in the previous section, ANNs are often referred to as universal function
approximators. According to the Kolmogorov’'s theorem, feed-forward backpropagation

networks can exactly implement an arbitrary training set with a sufficient number of
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neurons in the hidden layer [66]. Nevertheless, the capabilities of the nonlinear
approximation of adaptive neural network systems can evolve during the training process for
better or for worse. Unfortunately, they can result in bad generalization to new data that
will lower the predictive ability of the network if it learns both investigated dependencies
and noise. That is, cautions on two design issues must be considered: (i) size of ANN and (ii)

time of ANN training.

The overfitting and overtraining problems refer to exceeding the optimal ANN size and the

time of ANN training, respectively. They result in bad generalization of the system [69].

4.5.1 Overfitting

Overfitting occurs when the error on the training set is driven to a very small value, but
when new data is presented to the network the error is large. The network has memorized
the training examples, but it has not learned to generalize to new situations. We say that it

has learned by heart.

In addition, if we had access to an unlimited number of training data samples, the model
that provides the lowest generalization error is theoretically the one which will be selected
and the phenomenon is commonly referred to as the curse of dimensionality. However in
real applications we only have access to a finite set of samples usually insufficient to directly
solve the problem at hand. To cope with the lack of data, a complicated network with large

number of weights is naively used for training which makes the model liable to overfit.

One method for avoiding overfitting is to find the optimal network architecture (number of
hidden layers and number of neurons in layers) that provides the adequate solution with the
optimal error. Unfortunately, it is difficult to know beforehand how large a network should
be for a specific application. The larger network is used, the more complex the functions the
network can create. Thereby, if the number of parameters in the network is much smaller
than the total number of points in the training set, then there is little or no chance of

overfitting. However, if the model is too simple an underfitting phenomenon can occur.
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Knowing that the feed-forward multilayer neural networks do not require complex model to
establish complex nonlinear relationships, overfitting does not have any influence on
network generalization ability if overtraining is avoided [69] by the "split-sample" method

evoked in the next sections.

4.5.2 Overtraining

The overtraining problem has not benefited from a big deal of attention in the literature.
With time of training, the cost function of the network gradually decreases over learning set.
It is optimal to stop net training before complete convergence has occurred, in other words

the sum squared error should not reach zero.

A probable description of overtraining is that the network learns the gross structure first and
then the fine structure that is generated by noise [69]. A stopping point should be
determined for network training by testing error convergence on an additional test set. The
early stopping method presented below is the most commonly proposed technique to avoid

overtraining.

4.6 Solutions to Generalization Inconveniences

There are methods for improving neural network generalization: early stopping, cross-

validation and Bayesian regularization described in the next subsections.

4.6.1 Early stopping

» The hold-out method

The hold-out method is the default technique used for early stopping in ANNs that aims at
determining a stopping point for the backpropagation error. To do so, the set of available
data is separated into two disjoint subsets: a training subset used to train the network as its

name suggest and a test subset to estimate the generalization error of the obtained model.
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It is crucial to realize that the test error is not a good estimate of the generalization error
since it is periodically computed during training. One way for getting an unbiased estimate of
the generalization error is to compute it on data samples that are not used at all during the

training process: the three-way split-sample solution.

> The three-way split sample method

The three-way split-sample method is an alternative technique used for early stopping in
ANNSs that aims at improving their generalization capabilities. Here, the set of available data
is separated into three disjoint subsets: training, validation and test. The training subset is
applied to the ANN for computing the gradient and updating the network weights and
biases. The validation subset is used to further validate the ANN parameters adjustments.
The error on the validation set is monitored during the training process. It normally
decreases during the initial phase of training. However, when the network begins to overfit
the data, the error on the validation set begins to rise. Practically, when the validation error
increases for a specified number of iterations, the training is stopped, and the weights and
biases at the minimum of the validation error are retrieved. Finally, the test subset
containing not already seen data is used only to assess the performance of the fully-trained
neural network after the final model has been chosen. After evaluation of the final model on

the test subset, no further model tuning would be done.

The division of data set into training, validation and test subsets is often performed
randomly at different proportions. Throughout all our implementations, the input/output
data is randomly split so that 80% of the samples are assigned to the training set, 10% to the

validation set, and 10% to the test set.

» Advantages and shortcomings

Despite their simplicity and fastness, the hold-out and the three-way split-sample methods
have two basic drawbacks. Firstly, in problems where we have a dataset of very limited size,
we may not be able to afford the opportunity of setting aside a portion of the dataset for
test (hold-out method) or even two portions for validation and test (three-way split-sample
method). Secondly, since it is a single train-test (or train-validation-test) experiment, these

methods estimate of generalization error will be misleading if the split has been
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inappropriate. The limitations of the holdout can be overcome with the cross-validation
family of methods at the expense of more computations. Figure 4.4 below shows the

differences between the hold-out and the three-way split sample methods used for early

stopping.
Gen. A
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Figure 4.4: Splitting data samples and generalization error plots for
(a) the hold-out method and (b) the three-way split sample method.

4.6.2 Cross-validation

The cross-validation method can be used either to evaluate the performance of a given
model or to perform model selection. In the first case, the generalization error of the model
is estimated for several architectures in order to choose the number of hidden units, for
example. In the model selection case, the cross-validation is used to choose among several
models with different inputs subsets the one that has the smallest estimated generalization
error. The model selection problem is coped with in chapter 5. The two most popular cross-
validation methods used in neural networks are K-fold and Leave-One-Out (LOO). Diagram of

figure 4.5 allows make distinction between them.
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> K-fold cross-validation

The K-fold divides all the samples in K groups of samples (called folds) of approximately
equal sizes. For each of K experiments, the prediction function is learned using K — 1 folds,
and the remaining fold is used for testing. The generalization error is estimated as the
average error over the K test folds. A common choice for K-fold cross-validation is K=10

which we will adopt throughout all our implementations.

> Leave-One-Out cross-validation

For a sample set of size N, when K is chosen to be equal to N the K-fold methods is called
Leave-One-Out (LOO). The Leave-One-Out (or LOO) is a simple cross-validation. Each learning
set is created by taking all the samples except one, the test set being the sample left out.
Thus, for N samples, we have N different learning sets and N different tests set. This cross-
validation procedure does not waste much data as only one sample is removed from the

learning set. As usual, the generalization error is estimated as the average error over the N

test folds.
Total number of samples Total number of samples (N)

Experiment 1 Experiment 1
Experiment 2 Experiment 2
Experiment 3 Experiment 3
Experiment 4

Experiment 5 Experiment N

/ /
Test subsets Single test subsets
(a) (b)

Figure 4.5: cross-validation experiments: (a) K-fold method (example K=5),
and (b) LOO method (K=N).
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> Advantages and shortcomings

The advantage of the K-fold cross-validation is that all the data samples are eventually used

1
for both training and testing. However for limited data samples size, the E-IOO% portion

set aside for testing can constitute a waste of data for training and give rise to underfitting
problem. This can be overcome by leaving out only one sample at each experiment (leave-
one-out cross-validation). With a large number of folds the generalization error is very
accurately estimated since it is the average of the generalization errors computed over the K
test folds. Nevertheless, the number of experiments and therefore computation time is

increased.

For choosing subsets of inputs in regression, L. Breiman and P. Spector [70] found 10-fold
and 5-fold cross-validation to work better than leave-one-out found to have some subtle

deficiencies for model selection [71].

» The bias-variance dilemma

The bias-variance dilemma occurs when training is performed on different dataset samples
equally representative as in the case of training with cross-validation. The number of folds
needed to get good estimation results is the crucial issue while designing cross-validation
based learning models. On the one hand, a learning algorithm is said to have a large bias for
a given input vector V; if, when trained on each of the different subset samples, it
systematically gives biased predictions to the output vector V,. On the other hand, a learning
algorithm is said to have high variance for a given input vector V; if it leads to completely

different predictions of the output vector V, on different training subsets.

Consequently, with a large number of folds:
- The estimator is very accurate, that is the bias of the optimal performance error is
small,
- The variance of the estimator is large,

- And the computational cost is high due to the large number of experiments.
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Inversely, with a small number of folds:
- The bias of the estimator is large,
- The variance of the model is reduced,
- And, the number of experiments and therefore computational cost are

reduced.

As a matter of fact, it is commonly agreed that an unbiased estimator seems to be very
interesting though it does not guarantee the lowest possible generalization error. The
optimal model performance is attained when the correct tradeoff is found between the bias
and the variance of the estimator. More details on the bias-variance dilemma can be found

in[72].

4.6.3 Bayesian Regularization

Bayesian regularized artificial neural networks (BRANNs) are more robust for improving
generalization than standard back-propagation nets and can reduce or eliminate the need
for lengthy cross-validation. The BRANNSs provide solutions to a number of problems such as
choice of model, robustness of model, size of validation subset, and optimization of network
architecture. This involves modifying the standard cost function, which is normally chosen to

be the sum of squares of the network errors on the training set.

D. MacKay [73] has proposed a Bayesian framework which can be directly applied to the
neural network learning problem. It also allows estimating the effective number of
parameters (weights) actually used by the model to solve a particular problem.

The cost function f (C) is then expanded to search not only for the minimal error, but the

optimal combination of sum squared errors and sum squared network parameters as shown

in equation
f(C)=a-E,+B-E, (4-2)
where E, is the sum of the squared errors, E, is the sum of squared weights and biases, «

and S are Bayesian hyper-parameters.
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Bayesian regularized artificial neural networks are difficult to overtrain, since evidence
procedures provide an objective Bayesian criterion for stopping training. They are also
difficult to overfit, because the BRANN calculates and trains on a number of effective
network parameters or weights, effectively turning off those that are not relevant. This
effective number is usually considerably smaller than the number of weights in a standard

fully connected back-propagation neural net [64].

4.6.4 Structural Risk Minimization Method

Structural risk minimization (SRM) introduced by Vapnik and Chervonekis in 1974 [57] is an
inductive principle for model selection used for learning from finite training data sets. It
describes a general model of capacity control and provides a trade-off between hypothesis
space complexity (the VC dimension of approximating functions) and the quality of fitting

the training data (empirical error). The procedure is outlined below.

1. Using a priori knowledge of the domain, choose a class of functions, such as
polynomials of degree n, neural networks having n hidden layer neurons, a set
of splines with n nodes or fuzzy logic models having n rules.

2. Divide the class of functions into a hierarchy of nested subsets in order of
increasing complexity. For example, polynomials of increasing degree.

3. Perform empirical risk minimization on each subset (this is essentially
parameter selection).

4. Select the model in the series whose sum of empirical risk and VC confidence

is minimal.

4.7 Conclusion

The background principles of learning in machines have been exposed at the beginning of
this chapter. A wide range of learning algorithms has been reviewed, each with its strengths
and weaknesses. Without diving into the specifics of individual algorithms, interest has been
focused on artificial neural networks (ANNs) with supervised learning that will be used for

further research work in next chapters. The choice of ANNs, particularly the multilayer feed-
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forward perceptrons, has been justified. Thereby, universality and powerful capabilities of

this model has been explained.

The backpropagation learning algorithm is the standard method applied to the multilayer
perceptrons. It is used to improve the generalization performances of machine learning
systems; however it may suffer from overfitting and overtraining problems. These subtle
inconveniences occur depending on how available data is representative, how amount of
data is available and how much the problem to model is complex. Early stopping, cross-
validation, Bayesian regularization, and structural risk minimization methods are among
number of potential solutions to get better models’ accuracy. They have been elucidated

and adopted later in chapters 5 and 6.

-75-



|APTER




Chapter 5

Feature Selection for Image Quality Assessment

5.1 Introduction

In learning systems, the data provided may correspond to measurements performed on a
physical system or to feature information gathered from observations on a phenomenon.
Usually all features are not equally informative: some of them may be noisy, meaningless,
redundant, correlated or irrelevant for the learning task [74]. As the name suggests, feature
selection is the iterative process of selecting a subset of only pertinent features by removing
interfering ones. Training after feature selection would be easier and better estimation
performances would be achieved which leads to better model interpretability [75].
Nevertheless, it is not always obvious to find the subset of features at iteration (i) that
contains the best subset of features at iteration (i+1). A feature can be informative when
included within a feature subset but noisy or meaningless when associated with another

different one.

Indeed, with the proliferation of large datasets within many domains and the development
of new applications in recent years, new research topics of pressing needs have emerged.
Hence, feature selection has been an active field of research for decades and is widely

applied to data mining [76 -78] and ultra-high dimensional data [79].
The issue related to combining and selecting low-level features for image quality assessment

is laid out in this chapter. The general process of feature selection is explained in section 5.2

and the different approaches are outlined in section 5.3. The section 5.4 gives more specific
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details on how to select features using a neural network based approach that will be utilized
for further experiments in this chapter. Experiments will also be carried out using another
class of methods based on the polynomial regression. To do, an automated modelling
software KXEN (Knowledge eXtraction ENgine) presented in section 5.5 has been employed
in order to validate the results obtained with the neural networks. The experimental setup is
described in section 5.6. It is worth noting that the same data samples have been used for
low-level image quality indicators selection in both groups of experiments to fairly compare

their results. The chapter ends with a discussion of the outcomes and a conclusion.

5.2 Feature Selection Process

As depicted in figure 5.1, feature selection is generally performed through two basic phases:
feature selection, and model learning / performance evaluation. The feature selection phase
is based on three interleaved functionalities: feature subset search, feature subset
evaluation and stop criterion. Since the feature selection problem consists at identifying the
optimal set of pertinent variables that lead to better recognition rate in the case of
classification and to better prediction quality in the case of regression, a feature selection
system would respond to the following questions:

1) How to measure the pertinence of a variable ? Here an evaluation criterion should
be defined that measures the importance and the utility of a candidate feature or a
candidate set of features.

2) How to generate the optimal subset ? Here a search strategy should be performed
to look for a candidate set containing a subset of the pertinent features defined via
the evaluation criterion.

3) Which optimality criterion to use ? The answer here consists at describing the

condition(s) that when met, the search procedure is terminated [80].
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Once a subset of features assumed to be the best is selected, the second phase consists at
training the data based on the selected features to learn the model according to the task
(prediction or classification). The performance achieved is computed on a test set of the

pertinent features that has not been already used in the feature selection phase.

Phase 1 : Feature Selection

\ 4

Feature subset Feature subset o
~-1_p| Generation ~3] Evaluation Stop Criterion
Training | | '
Data R I Ao H Yes
v

Test Test Learning P Train Learning Best
Data | "1 7™ Model -~ Model Subset

|

Accuracy =7

Phase 2 : Model Learning / Performance Evaluation

Figure 5.1: A generic scheme for the feature selection process [81].

5.2.1 Feature subset evaluation

The search problem is driven by a certain feature evaluation criterion which is used to assess
the utility and the relevance of each feature subset. A variable is pertinent when “its
suppression causes the deterioration of the learning system performances, i.e., the
discrimination capabilities for classification or the prediction quality for regression” [81].
Furthermore, several feature evaluation criteria, based either on statistical grounds or
heuristics, have been proposed for measuring the importance of variable subsets, comparing
them and selecting one of them. For classification applications, classical criteria use
probabilistic distances or entropy measures, often replaced in practice by simple interclass
distance measures. Some statistical methods such as the error measures are also used for

regression [82] and classification [83].
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The feature evaluation criterion is sometimes assumed to be monotonous which means that
the learning system’s performance always improves each time a feature assumed to be non
relevant is discarded from the subset. However, most of the existing and widely used feature

evaluation criteria do not verify the monotonicity hypothesis.

5.2.2 Feature subset search

The feature selection problem can be stated as the search for an optimal number of features
out of the total number of available ones without degrading the performance of the
resulting learning model when using either set of features [84]. For a non monotonous
evaluation criterion and for an initial set of N variables, there are 2"-1 possible combinations
of variables where “2” represents the two alternatives of whether to select a variable or not.
In fact, comparison of feature subsets amounts to a NP-hard problem which becomes

computationally unfeasible, even for moderate initial features set size.

A possible alternative is the use of the Branch and Bound exploration algorithm [76, 85] that
allows reducing the search of optimal features subset for originally or assumed monotonous
criteria. Nevertheless, the use of this technique is limited due to the non monotonicity of
evaluation criteria in most cases. Sub-optimal search techniques that follow one of the

following sequential search scenarios are then employed:

= Start with an empty set of features and iteratively add features that optimize the
evaluation criterion to the already selected feature set (Forward Methods).

= Start with the full set of features and iteratively remove the less relevant features
according to the evaluation criterion from the selected candidate set (Backward
Methods).

= Start with an empty set and alternate forward and backward steps (Stepwise
Methods). The number of forward and backtracking steps can be fixed before hand
as in the “plus [ take away r” algorithm [86] which alternates / forward selections and
r backward deletions, or can be instead dynamically tuned using Floating Sequential
Search Methods [87]. Approaches based on Genetic Algorithms [88, 89] constitute an

attractive alternative to heuristic tree search methods.
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It is worth noting that in the process of generating the candidate set and evaluating it, the
feature selection algorithm may use the information from the training data, current selected
features, target learning model, and given prior knowledge to guide the search and
evaluation procedures [90]. Based on the search strategy, some features in the candidate set
may be discarded or added to the selected feature set according to their relevance. Some
methods rely only on the data for computing relevant variables and do not take into
consideration the model which will then be used for processing these data after the
selection step. They may rely on hypothesis about the data distribution (parametric
methods) or not (non parametric methods). Other methods take into account
simultaneously the model and the data; this is usually the case for neural network based

variable selection.

5.2.3 Stop criterion

Let be given a feature evaluation criterion and a search procedure, the optimal number of
pertinent features is not known a priori. The stopping criterion is needed to determine
whether the current set of selected features is good enough when no more variable is
significantly more informative. If it is, the feature selection algorithm will return the set of
selected features, otherwise, it iterates until the stopping criterion is met. In most
applications, an estimate of the generalization error is computed for the successive variable
subsets generated by the search algorithm. The selected features will be those giving the
best performances, i.e., minimizing the generalization error. This latter is obtained using a
validation set to optimize the learning parameters in the data training step or the cross-
validation strategy. When using a neural network, retraining the model is necessary for each

subset.

5.2.4 Learning model and performance evaluation

Once a set of features is selected, it can be used to filter the training and test data for model
fitting or classification. The performance achieved by a particular learning model on the test
data can also be used for evaluating the effectiveness of the feature selection algorithm for

that learning model [75].
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Similarly to machine learning techniques presented in the previous chapter, the feature
selection algorithms can be supervised, unsupervised or semi-supervised depending on

whether the training data is labelled, unlabelled or partially labelled, respectively.

In the evaluation process, a supervised feature selection algorithm determines features'
pertinence by evaluating their discrimination or predication power accuracy. Without labels,
an unsupervised feature selection algorithm may exploit data variance or data distribution in
its evaluation of features' relevance. A semi- supervised feature selection algorithm uses a
small amount of labelled data as additional information to improve unsupervised feature

selection [75].

5.3 Approaches to Feature Selection

Depending on how and when the evaluation of selected features is made, different
approaches can be distinguished which broadly fall into three categories: filter, wrapper and

embedded models.

0 Filters: features evaluation and selection of filter model is performed independently
of the learning algorithm that will use the selected variables. It relies essentially on
analyzing the general characteristics of the data set which allows the algorithms to
have very simple structure. Consequently, a straightforward and fast search strategy,
such as forward selection or backward suppression is usually adequate. The
performance assessment is defined using statistical tests. Compared to wrappers and
embedded methods, this class of models has shown a relative robustness against
overfitting, but may fail to select the most useful features.

0 Wrappers: unlike the filter models that do not involve the learning model in the
evaluation and selection procedure, the wrapper models take into consideration the
influence of the selected variables on the performances of the learning algorithm
that is used in the evaluation step as a measure of feature subsets usefulness.
Wrappers adopt the exhaustive strategy that explores the space of all features

subsets. They are more robust than filters in finding the most useful variables that
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result in higher learning performance for a particular learning model. Unfortunately,
they suffer from overfitting.

0 Embedded methods: Algorithms of the embedded model incorporate feature
selection as a part of the learning process (classification or regression), and variables
are selected based on their usefulness in such a way to optimize the objective
function of the learning model. Compared to wrappers, embedded models also
employ cross-validation in the assessment step. Therefore, they are usually less
computationally expensive and less prone to overfitting. Figure 5.2 shows up the

differences between the three aforementioned approaches.

Artificial neural networks (ANNs) are a typical example of wrapper models capable to find

the optimal global solution for any nonlinear and convex problem in a very efficient way.
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Figure 5.2: Flow charts of (a) filter, (b) wrapper, and (c) embedded
methods for feature selection.
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5.4 Feature Selection with Neural Networks

As explained above, feature selection with artificial neural networks is model dependent; the
selection and the processing of the data are performed simultaneously. Unlike the model
independent selection where the parameters optimization is tuned by the user, the neural
network based selection is part of the training process and the model selection criterion is
globally optimized depending on the model parameters. Here, the number of variables is
directly related to the architecture of the neural network model as well as the complexity of
the function being learned [80]. The main aspect used when deriving such algorithms is the
nonlinearity of the ANN models. Hence, the ANN based approach avoids the linearity
assumption on the input-output data that constrains the other existing model independent

techniques.

Furthermore, no sophisticated search strategies are needed; the backward deletion
technique is generally employed. The main concept is to make the ANN converge to a local
minimum using the entire initial set of features, and then to make variable selection by
suppressing the less pertinent ones. At each selection step, the neural network is retrained
with the remaining features until the model parameters are globally optimized. The
optimization relies on the importance of the architecture connexions measured by means of

the first and second derivatives of the ANN cost function.

With the perspective to find the low-level image indicators that are the most relevant in the
process of image quality evaluation, we apply the neural network based feature selection in
order to estimate, at each experiment, the Mean Opinion Score (MOS) or the Difference
Mean opinion Score (DMOS) based on the image features fed as input vectors. The
experimental setup is described in detail in section 5.6. Another group of MOS/DMOS
estimators is built using the KXEN software presented hereafter and results of both the two

methods are reported in section 5.7 with concluding comments.
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5.5 KXEN Statistical Modelling Software

A lot of statistical models can be used to build an estimator of the Mean Opinion Score
(MOS) based on the image features. We chose to stick with a simple and efficient approach
that consists in a regularized multi-dimensional polynomial estimator, implemented by KXEN

(Knowledge eXtraction ENgine).

KXEN is composed of several modules that allow to automatically performing:
- Robust regression,
- Data standardization and recoding,

- Handling of missing data by inserting inferred values, etc.

The KXEN package K2R (Kxen Robust Regression) is the package responsible for regression

modelling we have exploited in our work.

Like other statistical tools (for example: STATISTICA, SPSS, Weka, R, Rapid Miner, etc.), this
model is an implementation of the statistical learning theory. Therefore, the K2R component
is presented to be a very powerful tool for regression modelling. On the one hand, it can
safely handle huge datasets (very high numbers of over one million input-output samples) in
a highly automated manner. This makes it very easy to use since the amount of data
preparation necessary before modeling is reduced which accelerates the modeling process.
On the other hand, the prediction accuracy of the algorithm is high. It provides indicators
and graphs to ensure that the quality and robustness of trained models can be easily
assessed. It also gives indication of which attributes either contain no relevant information

or are redundant with other attributes (http://kxen.com).

To optimize the models parameters and hyper-parameters, the KXEN algorithm relies on the
Structural Risk Minimization (SRM) theory of V. N. Vapnik and A. J. Chervonenkis [57]
introduced in the previous chapter. The most interesting feature of SRM is that the
theoretical basis is much more generalized, and it does not make many of the assumptions

that constrain some other approaches (normality, linearity, independence, etc.).
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This kind of statistical modelling can supply an accurate estimation of the target variable (the
MOS in our experiments) and can also estimate the contribution of the low-level image
indicators that are basically ranked according to their weight in the polynomial expression.
This allows to take into account eventual correlations between the features and cases where
individual features are not correlated to the target variable, but their (non linear)

combination carries valuable information.

5.6 Experimental setup

The objective of the experiments presented in this section is to determine the most relevant
descriptors for the subjective image quality assessment. The first step is to extract the image
features that may convey useful information to the process of image quality appreciation. In
the second step, the models parameters are estimated on different sets of labelled images
(with known MQOS or DMOS) and with different input vectors. Thirdly, the feature selection is
performed in order to choose the image features vector that gives best accuracy of the

learning model [91, 92].

5.6.1 Step 1: image statistical features extraction

The results of the predictive performance study of eighteen objective image quality
measures - carried out using the Friedman analysis in chapter 3 - show that the class of
metrics based on statistical features such as the structural similarity index (SSIM) and its
variants is an interesting class of measures in many cases of the investigation. Another
motivation is that the statistical features are not computationally expensive; these are the
arguments for which we have chosen to derive the statistical low-level indicators from
images pairs (reference / test) after being converted into a grayscale representation as input
vectors for the learning models developed in this chapter. The output vector contains the
subjective quality ratings of the test images that consists either on the mean opinion scores
(MOQOS) or the difference mean opinion scores (DMQOS) depending on the data available with

the image quality databases as shown below.
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Table 5.1 summarizes the information related to the three image databases used for feature
selection testing, namely the LIVE database (release 2), the TID and the CSIQ databases.
However, there exist other subjective image quality databases that we could not use in the
present experiments because of their limited size as can be seen in bold from Table 5.2. A

thorough description of the six image quality databases is provided in chapter 2.

LIVE TID csiQ
Publisher University of | Tampere Univ. of | Oklahoma State
Texas at Austin Tech., Finland Univ., USA
Reference [26] [31] [32]
Year of publication 2005 2008 2010
Number of reference images | 29 25 30
Number of labelled images | 982 1700 866
Number of observers 29 838 35
Subjective scores DMOS MOS DMOS
Score’s range 0..100 0..9 0..9

Table 5.1: Summary of the image databases used in the modelling experiments.

TOYAMA IvVC A57
Publisher University of | University of | Cornell Univ.,
Toyama, Japan Nantes, France Ithaca, NY, USA
Reference [25] [28] [29]
Year of publication 2000 2006 2007
Number of reference images | 14 10 3
Number of labelled images | 196 160 54
Number of observers 16 15 7
Subjective scores MQOS MQOS MOS
Score’s range 1..5 1..5 0..1

Table 5.2: Summary of the image databases excluded from the modelling experiments.
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The extracted statistical descriptors including the mean, variance, covariance and mean

squared error are listed and described in Table 5.3.

Sixty two (62) different input vectors have been generated by combining the statistical
image attributes listed above. A battery of tests has been driven with the different input
vectors using two distinct learning models including our neural network implementation and

the polynomial regression using the KXEN algorithm.

Image indicator Description
mul, Mean pixels values of the reference and
mu?2 test images, respectively.
sigmal_sq, Variance of pixels values of the reference
sigma2_sq and test images pixels, respectively.
sigmal2 Covariance between pixels values of the
reference and test images.
mse_error Mean squared error between reference and
test images.

Table 5.3: List of statistical image indicators employed for feature selection.

5.6.2 Step2: the estimation models

At first stage, we use a multilayer perceptron (MLP) based model. The MLP is a one hidden
layer neural network. The inputs are a features vector extracted from the pairs of images
(reference and test). The output is a numerical real value that represents the MOS (or
DMOS) corresponding to the test images. The transfer functions are the tangent sigmoid and
the linear function for the hidden and the output layer respectively. The Levenberg-

Marquardt learning algorithm is employed.

The feature selection phase is crucial; it allows finding the most informative combination of
image features that will be used to develop objective image quality evaluation measures. It
is useful to use more than one single estimation model in order to get the most reliable

feature selection results.
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The KXEN software has been used for his efficiency and ease of manipulation. It is important
to understand that the variables are encoded using a non-linear procedure inside the Kxen

Consistent Coder (K2C) component before being used by the polynomial regressor as

depicted in figure 5.3.

-

Statistical Modeling

~

» Consistent Robust g
Reference and Test —1 Coder Regression Estimate
Images features |:> > MOS (or DMOS)
—:L) K2C

N,

wta Preparation

K2R '

Data Modelliy

Figure 5.3: The estimation model involved by the KXEN algorithm.

5.6.3 Step3: the feature selection procedure

All presented results in next section are obtained by a 10-fold cross-validation procedure
(described in section 4.6 of chapter 4). Because this step is essential for further
investigations, it is necessary to be sure to avoid both the overfitting and overtraining. To do
so, the image features set is randomly split into three parts for each combination: the
training subset with 80% of images, the validation subset with 10% of the images, and a test

subset with the remaining 10%.

On each of the ten runs, the models parameters are estimated on the training subset, and
generalization (hyper-parameters) is controlled by observing the error on the validation one.
The estimation models are trained 30 times and the minimum validation error is researched.
When the validation error starts to go up, learning is stopped (see early stopping in section
4.6 in the previous chapter). Finally, the model that leads to this minimum error is validated
and then applied on the test subset. It is worth noting that training and validation subsets
are normalized according to the mean and the standard deviation of the training base

values. Data processing is clarified on figure 5.4.
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Figure 5.4: Data processing: the 10-fold cross-validation
and three-way split-sample methods are applied
to avoid overfitting and overtraining of the models.

Because the feature selection is performed to further develop image quality metrics using
the selected image features, the performance measure is naturally the predictive
performance measures including the Pearson’s correlation coefficient (PCC) as indication on
the correlation of the estimated MOS (or DMQOS) and the real ones. The root mean squared
error and the mean absolute error to gauge accuracy, and the Spearman’s and Kendall’s rank
order correlation coefficients to check the monotonicity. These five measures are averaged

on the ten distinct test subsets coming from cross-validation.
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The model estimation procedure can be outlined as follows:

0. Data refers here to the image features vectors (inputs/outputs) corresponding to different
combinations

. For each combination, divide randomly the available data into 10 folds.

. For each fold, split the data into training, validation and test subsets.

. Select architecture and training parameters

. For each fold, train the model using the training subsets

1

2

3

4

5. Evaluate the model using the validation subsets

6. Compute the validation error periodically during training

7. Stop training when the validation error starts to go up

8. Repeat steps 3 through 7 using different architectures and training parameters

9. Select the best model and train it using data from the training and validation subsets

10. Assess the final model using the test subsets.

5.7 Results and Discussion

As explained above, we have made multiple combinations of the five previously described
statistical descriptors which resulted in 62 input vectors to the estimation models. After
training, many combinations have been discarded and only 19 ones (C1 to C19) have been

retained. They are listed in Table 5.4.

Performance measures corresponding to correlation, accuracy and monotonicity computed
on the LIVE, TID and CSIQ image quality databases of the best estimation models for the 19
combinations are presented in Tables 5.5 to 5.9. For each database, results are obtained
with the neural network based systems and with the KXEN modelling tool. The framed

values correspond to the maximum performance achieved.
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Statistical image indicators combinations

C1 mul, mu2
C2 mul, mu2, mul_sqg, mu2_sq
C3 mul, mu2, mul_mu?2
C4 | mul, mu2, sigmal_sq, sigma2_sq
c5 mul, mu2, mul_sq, mu2_sq, sigmal_sq, sigma2_sq
C6 mul, mu2, mul _muz2, sigmal_sq, sigma2_sq
c7 mul, mu2, mul_sq, mu2_sqg, mul _mu2, sigmal_sq, sigma2_sq
C8 |mul, mu2, sigmal_sq, sigma2_sq, sigmal2
C9 |mul_mu2, sigmal_sq, sigma2_sq, sigmal2
C10 |mul, mu2, mul_sq, mu2_sq, sigmal_sq, sigma2_sq, sigmal2
Cl11l |mul, mu2, mul_mu2, sigmal_sq, sigma2_sq, sigmal2
Cl12 |mul_sqg, mu2_sq, mul_mu2, sigmal_sq, sigma2_sq, sigmal2
C13 |mul, mu2, mul_sq, mu2_sqg, mul_mu2, sigmal_sq, sigma2_sq, sigmal2
C14 |mul, mu2, sigmal_sq, sigma2_sq, sigmal2, mse_error
C15 |mul_muz2, sigmal_sq, sigma2_sq, sigmal2, mse_error
C16 |mul, mu2, mul_sq, mu2_sq, sigmal_sq, sigma2_sq, sigmal2, mse_error
C17 |mul, mu2, mul_mu2, sigmal_sq, sigma2_sq, sigmal2, mse_error
C18 |mul_sq, mu2_sq, mul_mu2, sigmal_sq, sigma2_sq, sigmal2, mse_error
C19 |sigmal_sq, sigma2_sq, sigmal2
Table 5.4: List of the retained statistical image indicators combinations.

LIVE TID csiQ

ANN KXEN ANN KXEN ANN KXEN
C1 0,359 0,917 0,060 0,281 0,164 0,753
Cc2 0,383 0,917 0,087 0,281 0,154 0,753
c3 0,367 0,986 0,053 0,236 0,140 0,658
c4 0,663 0,917 0,387 0,281 0,325 0,753
c5 0,612 0,917 0,369 0,281 0,460 0,753
Cé 0,630 0,986 0,394 0,236 0,373 0,658
c7 0,555 0,917 0,393 0,236 0,398 0,658
C8 0,954 0,986 0,798 0,281 0,894 0,894
c9 0,936 0,418 0,790 0,586 0,876 0,876
C10 0,947 0,917 0,785 0,299 0,889 0,753
Ci1 0,945 0,986 0,774 0,236 0,887 0,658
C12 0,949 0,418 0,770 0,586 0,893 0,893
C13 0,950 0,348 0,785 0,236 0,895 0,658
Ci14 0,944 0,906 0,769 0,287 0,890 0,690
C15 0,942 0,819 0,753 0,684 0,884 0,884
C16 0,948 0,906 0,774 0,287 0,895 0,690
C17 0,946 0,930 0,765 0,243 0,883 0,696
C18 0,951 0,468 0,786 0,399 0,887 0,887
C19 0,954 0,986 0,804 0,684 0,901 0,753

Table 5.5: Pearson’s correlation coefficient (PCC) for the 19 features’ combinations using the
neural network approach and the KXEN software on the LIVE, TID and CSIQ databases.
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LIVE TID csiQ

ANN KXEN ANN ANN KXEN ANN
C1 28,942 31,130 1,340 1,447 0,258 0,272
Cc2 28,818 31,130 1,336 1,447 0,261 0,272
Cc3 28,923 30,708 1,339 1,461 0,261 0,277
c4 23,156 31,130 1,237 1,447 0,248 0,272
C5 24,271 31,130 1,244 1,447 0,229 0,272
cé 24,087 30,708 1,236 1,461 0,238 0,277
c7 26,109 30,708 1,235 1,461 0,239 0,277
c8 9,694 31,130 0,806 1,447 0,113 0,116
c9 10,890 34,829 0,814 1,636 0,125 0,125
c10 9,974 31,130 0,828 1,447 0,119 0,272
C11 10,064 36,522 0,842 1,461 0,119 0,277
C12 9,732 34,829 0,853 1,636 0,117 0,117
C13 9,304 30,708 0,823 1,461 0,117 0,277
Ci4 10,112 31,075 0,861 1,449 0,119 0,275
Ci5 10,427 33,776 0,880 1,657 0,123 0,123
Ci6 9,744 31,075 0,849 1,449 0,116 0,275
C17 9,926 30,694 0,867 1,464 0,123 0,274
Ci8 9,537 33,776 0,818 1,657 0,120 0,120
C19 9,649 30,708 0,794 1,447 0,116 0,272

Table 5.6: Root Mean Squared Error (RMSE) for the 19 features’ combinations using the
neural network approach and the KXEN software on the LIVE, TID and CSIQ databases.

LIVE TID csiQ

ANN KXEN ANN ANN KXEN ANN
C1 24,493 25,821 1,084 1,161 0,218 0,224
Cc2 24,343 25,821 1,081 1,161 0,222 0,224
Cc3 24,601 25,717 1,089 1,176 0,222 0,227
c4 18,572 25,821 1,008 1,161 0,206 0,224
C5 19,553 25,821 1,016 1,161 0,185 0,224
cé 19,465 25,717 1,008 1,176 0,196 0,227
c7 21,578 25,717 1,004 1,176 0,196 0,227
c8 7,479 25,821 0,647 1,161 0,086 0,090
c9 8,410 28,967 0,655 1,292 0,096 0,096
c10 7,735 25,821 0,655 1,161 0,091 0,224
C11 7,804 25,717 0,673 1,176 0,091 0,227
C12 7,445 28,967 0,684 1,292 0,090 0,090
C13 7,390 30,267 0,662 1,176 0,090 0,227
Ci14 7,817 25,854 0,689 1,162 0,091 0,227
C15 8,251 28,306 0,706 1,307 0,094 0,094
Cl16 7,558 25,854 0,681 1,162 0,090 0,227
C17 7,681 25,790 0,682 1,179 0,095 0,227
Ci8 7,389 28,306 0,655 1,307 0,093 0,093
C19 7,120 25,717 0,633 1,161 0,089 0,224

Table 5.7: Mean Absolute Error (MAE) for the 19 features’ combinations using the neural
network approach and the KXEN software on the LIVE, TID and CSIQ databases.
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LIVE TID csiQ

ANN KXEN ANN ANN KXEN ANN
C1 0,289 0,668 0,075 0,220 0,219 0,844
Cc2 0,278 0,668 0,093 0,220 0,191 0,844
Cc3 0,277 0,648 0,086 0,278 0,171 0,787
c4 0,691 0,668 0,285 0,220 0,353 0,844
C5 0,679 0,668 0,274 0,220 0,514 0,844
cé 0,682 0,648 0,288 0,278 0,407 0,787
c7 0,591 0,648 0,294 0,278 0,432 0,787
c8 0,944 0,668 0,788 0,220 0,906 0,844
C9 0,934 0,478 0,788 0,547 0,894 0,894
C10 0,943 0,293 0,784 0,221 0,894 0,844
C11 0,942 0,648 0,776 0,278 0,897 0,787
C12 0,945 0,478 0,779 0,547 0,902 0,902
C13 0,948 0,648 0,794 0,278 0,905 0,787
C14 0,942 0,596 0,777 0,219 0,903 0,802
C15 0,940 0,554 0,776 0,714 0,897 0,897
C16 0,945 0,596 0,775 0,219 0,901 0,802
C17 0,942 0,576 0,770 0,279 0,897 0,794
C18 0,945 0,299 0,781 0,220 0,898 0,898
C19 0,946 0,668 0,793 0,714 0,905 0,905

Table 5.8: Spearman’s Rank Order Correlation Coefficient (SROCC) for the 19 features’ combinations
using the ANN approach and the KXEN software on the LIVE, TID and CSIQ databases.

LIVE TID csiQ

ANN KXEN ANN ANN KXEN ANN
C1 0,210 0,478 0,051 0,138 0,147 0,576
Cc2 0,202 0,478 0,065 0,138 0,131 0,576
c3 0,202 0,462 0,059 0,181 0,117 0,537
c4 0,522 0,478 0,192 0,138 0,249 0,576
c5 0,514 0,478 0,186 0,138 0,373 0,576
Cé 0,514 0,462 0,194 0,181 0,294 0,537
c7 0,442 0,462 0,199 0,181 0,311 0,537
C8 0,804 0,478 0,595 0,138 0,735 0,576
c9 0,782 0,329 0,594 0,366 0,714 0,714
C10 0,800 0,204 0,593 0,138 0,718 0,576
Ci1 0,800 0,462 0,586 0,181 0,721 0,537
C12 0,804 0,329 0,586 0,366 0,727 0,727
C13 0,812 0,462 0,602 0,181 0,730 0,537
Ci14 0,799 0,425 0,583 0,144 0,729 0,554
C15 0,794 0,386 0,580 0,476 0,717 0,717
C16 0,805 0,425 0,585 0,144 0,725 0,554
C17 0,797 0,404 0,579 0,187 0,720 0,542
C18 0,804 0,208 0,590 0,138 0,723 0,723
C19 0,809 0,478 0,602 0,476 0,729 0,729

Table 5.9: Kendall’s Rank Order Correlation Coefficient (KROCC) for the 19 features’ combinations
using the ANN approach and the KXEN software on the LIVE, TID and CSIQ databases.
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5.8 Conclusion

Feature selection results presented in tables 5.5 through 5.9 show that combinations C8, C13
and C19 achieve better performances. This means that these input vectors provide good
results in terms of correlation, accuracy and monotonicity on the LIVE, TID and CSIQ image

quality databases. The C19 Combining the variance of both the reference and test images

2

(o, Gi) and their covariance ¢, generates the best results amongst the combinations

mentioned above. It will be used to develop two reduced reference image quality measures

based on multi-layer perceptron model, and are the object of the next chapter.
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Chapter 6

Reduced Reference Multilayer

Perceptron based Metrics

6.1 Introduction

Objective image quality assessment is a complex problem due to the subjective nature of the
human visual perception. Hence, image quality has been defined in several ways in the
literature leading to different approaches that have been suggested to predict the human
perception appreciation. In this chapter, we regard the image quality evaluation task in
terms of a mapping function between qualitative and quantitative attributes. Thereby,
developing a quality measure is to find a fitting function to the subjective human

appreciation scores.

Feed-forward artificial neural networks are universal approximators; they are capable to fit
any linear or non linear function. Designing and implementing multilayer perceptron is then
a possible solution to the problem of objective image quality metrics design and

development.

In this chapter, based on results of feature selection performed in chapter 5, we propose
two reduced reference variance / covariance based image quality metrics using a neural
network approach. The main contribution is that the proposed metrics are computationally
simple and do not require the entire reference image to be calculated while still giving

interesting performances when compared to eighteen full reference image quality metrics
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available in the literature. The first metric called ECF (Error based Cost Function) is more
accurate than most of its counterparts while the second measure called CCF (Correlation
based Cost Function) outperforms the metrics to which it has been compared in terms of
correlation and monotonicity. A comparative study has been conducted over three image
quality databases including the LIVE (second release), TID2008 and CSIQ introduced in

chapter 2.

Typically, image quality databases are constructed with labelled images where subjective
quality scores are collected using thorough and expensive psycho-visual experiments. These
individual scores are then transformed into either the Mean Opinion Score (MOS) or the

Difference Mean Opinion Score (DMOS) with the reference images also rated.

The rest of the chapter is organized as follows; section 6.2 presents the details of the
method and implementation. Explanations are provided about the design of the two
different cost functions that have been used to develop the two image quality metrics.
Section 6.3 includes the performance benchmarking methodology of image quality measures
that is applied for evaluating the proposed metrics (ECF and CCF). A comparative study is
then supplied where the superiority of the predictive capabilities of the proposed measures

is shown. Finally, concluding remarks are made in section 6.4.

6.2 The Reduced Reference Image Quality Metrics Design

The contribution consists of using two different cost functions for the MLP and by
performing a complete performance evaluation of the proposed image quality metrics [93,
94]. The block diagram of Fig. 6.1 shows the model components. We attempt to learn useful
information about human image quality evaluation by mimicking the human reasoning when

an observer proceeds to give his/her appreciation about the quality of an image.

The objective of implementing an MLP based model in the present work is threefold. The
first one is for feature selection application that helps to determine the most relevant
descriptors for the subjective image quality assessment among a set of feature vectors. This

step has been laid out in chapter 5. The second goal is to map the subjective image quality
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scores onto a mathematical formula that represents the objective image quality metric. The
multilayer perceptron cost function is, at third stage, customized in such a way to optimize
the image quality algorithms performance criteria including correlation, monotonicity and

accuracy [94].
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Figure 6.1: Systems’ block diagram.

6.2.1 Standard error based cost function

In the first stage, we have used a fully connected multilayer perceptron with two hidden
layers of 10 and 4 cells, respectively. The inputs are the features vector extracted from the
pairs of images (reference and test) and the outputs are the known MOS (or DMOS) values
associated with the test images. The transfer functions are the tangent sigmoid of the
hidden layers and the linear function for the output layer. The neural network weights and
biases are updated according to the Levenberg-Marquardt learning algorithm using the

Bayesian regularization process of David MacKay [73].
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The Bayesian regularization is adopted to improve the generalization capabilities of MLP
networks. This consists of estimating the effective number of network parameters (weights
and biases) actually needed to solve the problem at hand. The cost function is then
expanded to search not only for the minimal error, but the optimal combination of sum

squared errors and sum squared network parameters as shown in equation (6-1).
f(C)=a-E,+B-E, (6-1)

where E. is the sum of the squared errors, E, is the sum of squared weights and biases, a and
B are Bayesian hyper-parameters. Using this cost function causes the network to have
smaller weights and biases, thus forcing the network’s response to be smoother and less

likely to overfit [95].

6.2.2 Correlation based cost function

In the second stage, we have modified the standard error based cost function to a
correlation based one. This is due to the fact that we have noticed a significant and
substantial decrease in both the root mean square error (RMSE) and the mean absolute
error (MAE) between real MOS (DMOS) values and the computed neural network outputs as
can be seen from results highlighted in bold in tables 6.1 and 6.2. Therefore, we propose to
develop a cost function such as to increase the correlation between subjective and objective
quality scores. We have used a one hidden layer feed-forward neural network with 10 cells.
The transfer functions are the tangent sigmoid and the linear function for the hidden and the
output layer, respectively. The Levenberg-Marquardt learning algorithm with early stopping

paradigm is employed.

The proposed cost function is inspired from the one presented by Englisch et al. in [96] and

can be written as:

r2=LCC2=(U¢) (6-2)

Oy Oy
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r? is called coefficient of determination which is simply the square of the linear correlation
coefficients between the observed quality values (vector X) and the predicted ones (vector

Y). It is a convex and differentiable function whose values range from 0 to 1.

The backpropagation algorithm minimizes the cost function; hence the absolute value of the
computed output of the MLP is then subtracted from 1 since we aim to maximize the

correlation between calculated and desired outputs as given by equation (6-3) below:

Y =1-)] (6-3)

6.3 Proposed image quality measures’ performance

This is concerned with the results of a comparative performance investigation in terms of

the correlation, accuracy and monotonicity. It is similar to the one conducted in chapter 3.

6.3.1 Accuracy

We first show the results related to the accuracy performance criterion of image quality
measures. We have used a standard error based cost function described in section 6.2.1 to
develop the ECF quality metric. It can be noticed from values highlighted in bold in tables 6.1
and 6.2 that both the root mean square error (RMSE) and the mean absolute error (MAE)
have been drastically minimized with our proposed ECF metric over the three quality

databases.

Error values are considerably inferior to the ones obtained for the 18 full reference state-of-
the-art metrics (MSE, ..., RFSIM) as well as for the newly developed reduced reference CCF
metric before applying the logistic function described by eq. (3-7) and eq. (3-8) of chapter 3.
After the logistic function has been carried out, a few exceptions of the RMSE and MAE
results of MS-SSIM, VIF, VIFP, MSSIM and RFSIM on the LIVE database - and sometimes over
TID and CSIQ datasets - are lower (so better) than our proposed metric (ECF) as underlined in

tables 6.1 and 6.2.
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Root Mean Square Error — RMSE Root Mean Square Error — RMSE
Before nonlinear regression After nonlinear regression
LIVE TID csiQ LIVE TID csiQ

MSE 1313,1 1332,7 394,9 36,695 1,341 0,233
PSNR 29796,5 22,9 30,3 73,589 1,129 0,172
SNR 29796,5 16,7 24,1 73,582 1,158 0,175
WSNR 29796,5 26,2 32,2 73,591 1,181 0,178
NQM 29796,5 18,8 27,3 73,585 1,098 0,182
ual 49,3 4,0 0,6 10,834 1,089 0,147
SSIM 49,2 3,9 0,6 10,475 1,069 0,152
MS-SSIM 49,0 3,8 0,7 8,690 0,844 0,116
VIF 49,4 4,1 0,6 6,980 0,936 0,098
VIFP 49,4 4,2 0,5 6,956 0,997 0,113
IFC 60,4 21,7 9,8 10,400 1,038 0,213
M-SVD 24,5 65,5 38,8 14,507 1,320 0,218
PSNRHVS 45466,6 21,2 28,4 82,608 1,103 0,162
PSNRHVSM | 45466,6 24,3 32,6 82,610 1,126 0,165
VSNR 61,1 1589,7 29,4 9,427 1,323 0,176
MSSIM 49,1 3,9 0,6 8,358 0,953 0,129
R-SVD 49,3 4,4 0,2 19,669 1,263 0,226
RFSIM 49,4 4,1 0,6 8,717 0,822 0,105
ECF 9,595 0,790 0,119 9,587 0,789 0,114
CCF 1073,349 15,287 0,517 36,449 1,341 0,263

Table 6.1: Root mean square error of ECF and CCF from the 18 image quality metrics over
the LIVE, TID and CSIC databases.

Results also show that the nonlinear regression applied to the ECF metric has slightly
changed the values compared to those obtained before the nonlinear mapping; which is not
the case for all other image quality models considered in the present comparative study.
This demonstrates that the nonlinearities of the human visual system have been taken into
consideration and have been fitted using the multilayer perceptron (MLP) based model. This
demonstrates that the MLP has learnt to reduce the error between the calculated output
and the desired one which is the MOS (or DMOS) value of test images. This has led to

considerably improve the metric’s accuracy performance.
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Mean Absolute Error - MAE Mean Absolute Error — MAE
Before nonlinear regression After nonlinear regression

LIVE TID csiQ LIVE TID csiQ
MSE 369,1 449,8 220,1 29,174 1,087 0,199
PSNR 13573,3 22,3 29,3 69,341 0,866 0,135
SNR 13575,5 15,8 22,7 69,333 0,894 0,139
WSNR 13573,9 24,3 30,0 69,347 0,899 0,137
NOM 13574,8 17,2 24,6 69,338 0,808 0,146
ual 38,3 3,8 0,5 7,862 0,868 0,112
SSIM 38,2 3,7 0,5 7,579 0,847 0,116
MS-SSIM 38,1 3,6 0,6 6,608 0,616 0,088
VIF 38,4 3,9 0,5 5,366 0,680 0,074
VIFP 38,5 4,0 0,5 4,925 0,779 0,091
IFC 52,4 10,5 7,1 7,984 0,825 0,182
M-SVD 17,6 33,0 26,6 10,451 1,064 0,188
PSNRHVS 20699,4 20,1 26,8 76,747 0,780 0,124
PSNRHVSM 20699,7 22,7 30,2 76,752 0,800 0,127
VSNR 48,8 59,7 26,6 6,582 1,074 0,131
MSSIM 38,1 3,7 0,6 6,306 0,719 0,099
R-SVD 38,2 4,1 0,2 13,871 0,985 0,182
RFSIM 38,3 3,9 0,5 6,519 0,584 0,077
ECF 6,936 0,631 0,092 6,964 0,629 0,086
CCF 950,415 13,360 0,371 30,313 1,087 0,223

Table 6.2: mean absolute error of ECF and CCF from the 18 image quality metrics over
the LIVE, TID and CSIC databases.

6.3.2 Correlation

Since correlation is also an important criterion for the predictive performance in image
quality, we have proposed a neural network approach which is capable to improve its

performance. Therefore, we have customized the cost function elucidated in section 6.2.2.

As highlighted in Table 6.3, the Pearson’s correlation coefficient between our CCF
(Correlation based Cost Function) quality metric and the subjective quality scores in the form
of MOS (or DMOS) is visibly superior to the correlation results obtained for the other studied
metrics. This includes the reduced reference metric (ECF) proposed in the present work for
which the cost function is based on error as well as the 18 full reference quality measures
except VIF and VIFP as underlined in the table below. This is true for the three image quality

databases including LIVE (second release), TID2008 and CSIQ.
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The results show that our CCF quality metric outperforms all other considered metrics in the
present comparative study in terms of correlation but also in terms of monotonicity as

explained in the next section.

Pearson’s correlation coeff. — PCC Pearson’s correlation coeff. — PCC
Before nonlinear regression After nonlinear regression

LIVE TID csiQ LIVE TID csiQ
MSE 0,478 0,042 0,462 0,589 0,042 0,461
PSNR 0,629 0,410 0,756 0,629 0,541 0,756
SNR 0,629 0,389 0,745 0,629 0,505 0,745
WSNR 0,629 0,399 0,736 0,629 0,505 0,736
NQM 0,629 0,499 0,719 0,629 0,576 0,719
ual 0,936 0,554 0,829 0,938 0,585 0,829
SSIM 0,861 0,459 0,765 0,942 0,604 0,815
MS-SSIM 0,758 0,327 0,771 0,961 0,777 0,898
VIF 0,963 0,707 0,922 0,975 0,717 0,928
VIFP 0,945 0,588 0,881 0,975 0,669 0,903
IFC 0,685 0,213 0,582 0,944 0,634 0,582
M-SVD 0,778 0,180 0,556 0,886 0,180 0,556
PSNRHVS 0,629 0,481 0,785 0,629 0,570 0,785
PSNRHVSM 0,629 0,481 0,778 0,629 0,544 0,778
VSNR 0,723 0,043 0,743 0,954 0,247 0,743
MSSIM 0,841 0,457 0,804 0,964 0,704 0,871
R-SVD 0,777 0,307 0,476 0,778 0,337 0,509
RFSIM 0,960 0,757 0,913 0,960 0,790 0,916
ECF 0,952 0,808 0,892 0,952 0,809 0,900
CCF 0,998 0,970 0,997 0,986 0,970 0,988

Table 6.3: Pearson’s correlation coefficient of ECF and CCF for 18 image quality metrics using
the LIVE, TID and CSIC databases.

6.3.3 Monotonicity

Since the Spearman’s and Kendall’s rank order correlation coefficients are related to the
Pearson’s correlation coefficient, we are interested to assess the effect of the correlation
based cost function on the monotonicity results. As shown in Table 6.4, the Spearman’s Rank
Order Correlation Coefficient (SROCC) and Kendall’'s Rank Order Correlation Coefficient
(KROCC) values for our CCF quality metric are higher than those obtained for the 19 metrics

(even VIF and VIFP) against which the predictive performance comparison is performed.
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It is worth noting that the SROCC and KROCC values are not subject to the nonlinear

mapping as suggested by the Video Quality Expert Group in [36].

Spearman’s Rank Order Correlation Kendall’s Rank Order Correlation
Coefficient - SROCC Coefficient — KROCC

LIVE TID csiQ LIVE TID csiQ
MSE 0,936 0,513 0,806 0,791 0,374 0,607
PSNR 0,936 0,513 0,806 0,791 0,374 0,607
SNR 0,931 0,483 0,799 0,783 0,346 0,600
WSNR 0,956 0,450 0,773 0,833 0,363 0,599
NQM 0,955 0,577 0,740 0,832 0,426 0,563
ual 0,945 0,552 0,807 0,806 0,402 0,615
SSIM 0,954 0,585 0,837 0,821 0,424 0,632
MS-SSIM 0,972 0,789 0,914 0,862 0,605 0,739
VIF 0,976 0,702 0,919 0,866 0,552 0,753
VIFP 0,975 0,619 0,879 0,863 0,470 0,695
IFC 0,956 0,541 0,748 0,818 0,406 0,574
M-SVD 0,907 0,588 0,768 0,750 0,440 0,583
PSNRHVS 0,958 0,549 0,830 0,831 0,442 0,653
PSNRHVSM 0,964 0,518 0,822 0,844 0,417 0,653
VSNR 0,958 0,650 0,810 0,822 0,493 0,624
MSSIM 0,973 0,708 0,883 0,862 0,524 0,695
R-SVD 0,795 0,345 0,557 0,623 0,238 0,383
RFSIM 0,969 0,803 0,929 0,854 0,628 0,764
ECF 0,955 0,798 0,909 0,816 0,603 0,727
CCF 0,989 0,984 0,998 0,992 0,990 0,998

Table 6.4: Spearman and Kendall’s correlation coefficients of ECF and CCF against those of
the 18 image quality metrics using the LIVE, TID and CSIC databases.

6.4 Interpretation and Concluding Comments

In this chapter we have proposed two reduced reference variance/covariance based image
quality metrics using a multilayer perceptron approach. Two different neural network cost
functions have been employed, evaluated and compared in this chapter. In the first stage,
we have used a standard error based cost function and the results obtained were very
encouraging especially for the quality metric’s accuracy. In addition, both the root mean
square error and the mean absolute error values have been drastically minimized. Then, we
have proposed a correlation based cost function and demonstrated that correlation between

the subjective image quality scores and the objective measure values outperforms all the
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quality measures presented in the literature. Pearson, Spearman and Kendall correlation

coefficients are consequently maximized.

These results clearly show that the neural network based method is an efficient way to
directly optimize performance features related to image quality problem. We suggest that
neural network cost function has an important role for the fitting function outputs. We aim
to design a multi-objective neural network where the two cost functions used in the present
work are combined in order to simultaneously minimize the errors while still maximizing
correlation. In so doing, we expect to obtain a quality metric that allows to considerably
gaining in accuracy, correlation as well as monotonicity. We also plan to compare our

metrics performance to the state-of-the art reduced reference measures [94].

It is worth noting that we did use Bayesian regularization method for the error based cost
function metric but not for the correlation based one. We suggest employing it for future
work and to make tests on different neural network architectures including the Support

Vector Machine where the generalization capabilities are more controlled.
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Chapter 7

General Conclusion

7.1 Summary

In this thesis, the problem of image quality assessment has been tackled from different
points of view. Initially, we have supplied a comprehensive overview of the most commonly
used state-of-the-art objective image quality estimators. After that, we have studied the
subjective quality measures and supplied a thorough and complete description of number of
subjectively rated image quality databases that are publicly. We have also discussed the
advantages and limitations of the objective and subjective quality assessment approaches,
concluding that we cannot substitute for one approach or the other. Indeed, our interest
must be simultaneously focused on these two ways of design since the ability of an objective
model to predict the perceptual quality of an image should be established regarding the

subjective ratings provided by human observers.

In this perspective, the predictive performance benchmarking problem of objective image
quality measures has been addressed. We have examined eighteen standard, well-known
and widely used full-reference image quality models. Their ability to automatically predict
the human quality appreciation has been evaluated and compared over six image quality
databases constructed using different standard protocols. Because it is robust and free-
distribution, the Friedman statistical method has been suggested to analyse if there are

significant differences between the performances of the investigated objective models on
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the one hand, and between the behaviour of the existing subjective databases on the other
hand. Performance evaluation focused on three standard measures: correlation, accuracy

and monotonicity.

One of the major findings of the present work is that the performance of the objective image
quality estimators as it is actually applied depends on the structure of the image database
the algorithm is being assessed on. Structure here refers to the proportion of very good or
very poor quality images. This questions the reliability of the standard performance

evaluation methodology.

Another outcome of applying the Friedman test in the 95% confidence interval reveals that
the quality algorithms that belong to the natural statistics class, such as MS-SSIM, MSSIM,
VIF and VIFP introduced in chapter 2, perform better than their counterparts in terms of
correlation, accuracy and monotonicity. However, the predictive performances of the most
traditional image quality models that rely on simple mathematical formulas, - such as the
MSE and PSNR also presented in chapter 2 -, fall into the same statistical range as many
other more sophisticated measures inspired from the human visual system. The severe
criticism that has been levelled to the classical quality algorithms in numerous research
papers was based on counter-examples that show situations (i.e. image examples) where the
PSNR or the MSE give objective scores that do not reflect the visual reality. In this way,
whenever there is a new image quality measure, the metric developers tend to highlight the

subjectivity of their own metric.

Nevertheless, there exists theoretically at least one counter-example to each quality
measure that demonstrates its inconvenience since there does not exist one universal and
100% perfect image quality metric. In the case of PSNR and MSE, their mathematical
formulas are simple, and it is easy to find many counter examples (i.e., image examples)
where these models are shown to be poor quality predictors. Finding counter-examples for
the existing image quality models just needs more efforts due to their relatively more

complicated formulas.
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Furthermore, the necessity to supplement objective measurements with subjective rating
scores has led us to develop learning systems where the model is fed information about the

image and its parameters are estimated according to the images subjective quality values.

7.2 Open Issues

Our work on the image quality assessment problem has lead to the production of several

results, although some open problems remain.

The reliability of the image quality metrics performance evaluation tools based on
correlation, accuracy and monotonicity is questioned since it was found that standard
benchmarking methods are impacted by the structure of image quality databases. Looking
for new processes for validating objective quality models and standardized image quality
assessment solutions to make the perceptual quality measurement evaluation procedure

more efficient are open research issues.

Concerning the reliability and robustness of the supervised learning algorithms developed
and/or used in this research work, it is important to mention that there is no single learning
algorithm that works best on all supervised learning problems as stipulated by the “No Free
Lunch” theorem. It is then important to experiment the various options of machine learning
approaches to find the best model that characterizes the problem at hand (feature selection

integrated to image quality evaluation).

7.3 Perspectives

Like any research work, ours is far from to be complete. Some work still to be done in the

same direction.

v' The development of a taxonomic scheme for classification of the state-of-the-art
objective image quality assessment algorithms will be of big help to sort out the
different theoretic foundations upon which these estimators are built as well as the

fundamental ideas behind their development.
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v" It would be interesting to develop an image quality measure that combines the
predictive capabilities of the metrics proposed in chapter 6. The Error based Cost
Function (ECF) quality model gives very attractive performances in terms of
accuracy whereas the Correlation based Cost Function (CCF) quality metric works
very well in terms of correlation and monotonicity. Designing a reduced-
reference image quality algorithm that outperforms the existing both full-
reference and reduced reference models is possible by customizing the
perceptron’s cost function.

v' An image database independent objective measure would be a good
improvement of ECF and CCF proposed metrics. Learning on one database and
testing on a different one would be a possible alternative, as well as using second
order image features.

v" The learning models based on neural networks are sometimes criticised as they
are considered as black box systems that do not allow understanding the
mechanisms leading to learning the task being modelled. Nevertheless, it is
possible to extract the neural network’s formula knowing its architecture, the
number of hidden layers and of units (input, hidden and output), the transfer
functions at each layer, as well as the biases and weights values after estimation
step.

v" The neural networks have been selected to design image quality algorithms in
this thesis to simulate the behaviour of the human visual system when giving
judgment on the perceptual quality of a visual content. Other machine learning
classes that do not owe their origins to the study of the human brain but that
possess the ability to acquire and store knowledge can also be further
experimented. Approaches based on statistical principles such as the Support
Vector Machines would be interesting to customize for the current applications.

v' Elaborate methods for Verification and Validation (V&V) of machine learning
based systems are beginning to emerge. It would be thoughtful to apply the
compatible V&V methods in order to validate the quality assessment metrics

stemming from machine learning oriented models.
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Appendix A: Absolute values of the Pearson’s Correlation Coefficient (PCC) after nonlinear regression

Toy| uve| ivc| As7| TiD] csia Toy| uve| vc| As7| TID | csiQ Toy| uve| ivc| As7| TiD | csia
All data set JPEG coded images set JPEG 2000 coded images set
MSE 0,578 0589 0,510 0661|0042 0461 | | 0379 0923 0741 0,767 0508 0,785 | | 0,820 0929 0,844 0,775 0,800 0,871
PSNR 0,475 0,629 0,720 0,634 0,541 0,756 | | 0,493 0,621 0,739 0,700 0,830 0,891 | | 0,458 0,658 0,848 0,796 0,743 0,947
SNR 0,475 0,629 0,652 0574 0,505 0,745 | | 0,493 0,621 0,660 0,557 0,756 0,805 | | 0,458 0,658 0,817 0,761 0,671 0,927
WSNR 0,475 0,629 0,862 0930 0,505 0,736 | | 0,493 0,621 0,885 0,979 0,905 0,937 | | 0,458 0,658 0,915 0,979 0,818 0,961
NQM 0,475 0,629 0,850 0,802 0,576 0,719 | | 0,493 0,621 0,878 0,890 0,897 0955 | | 0,458 0,658 0,859 0,906 0,817 0,969
ual 0,790 0,938 0,832 0,450 0,585 0,829 | | 0,860 0,943 0,833 0960 0,805 0914 | | 0,735 0,925 0,809 0,987 0,774 0,903
SSIM 0,841 0942 0,792 0,419 0,604 0,815 | | 0,746 0970 0,832 0971 0,888 0940 | | 0,930 0967 0,863 0,884 0,758 0,922
MS-SSIM | 0,909 0,961 0,887 0,848 0,777 0,898 | | 0,879 0987 0,925 0956 0,916 0,981 | | 0,951 0981 0,927 0916 0,831 0,977
VIF 0933 0975 0903 0,621 0717 0928 | | 0923 0990 0939 0,953 0,918 0,988 | | 0968 0,985 0936 0,852 0,829 0,978
VIFP 0,881 0,975 0,823 0,802 0,669 0,903 | | 0,808 0,988 0,867 0,970 0,909 0,983 | | 0,950 0,981 0,883 0,943 0,816 0,978
IFC 0,528 0,944 0,908 0577 0,634 0582 | | 0552 0959 0,961 0,854 0,865 0,809 | | 0,506 0,949 0,935 0,766 0,799 0,825
M-SVD 0,818 0,886 0,776 0,703 0,556 | | 0,709 0,934 0,740 0,794 0,909 0,916 | | 0,928 0,946 0,930 0,808 0,663 0,937
PSNRHVS | 0,475 0,629 0,865 0,874 0,570 0,785 | | 0,493 0,621 0,907 0,964 0,917 0,906 | | 0,458 0,658 0,906 0,887 0,816 0,966
PSNRHVSM | 0,475 0,629 0,891 0916 0,544 0,778 | | 0,493 0,621 0,941 0959 0,922 0931 | | 0,458 0,658 0,932 0,920 0,828 0,946
VSNR 0,900 0,954 0,803 0,945 0,743 | | 0857 0,983 0,842 0974 0,882 0,951 | |0943 0978 0,862 0,959 0,800 0,932
MSSIM 0,931 0964 0,925 0,787 0,704 0,871 | | 0,941 0985 0,957 0931 0,905 0977 | |0957 0,981 0,934 0910 0,818 0,974
R-SVD 0,069 | 0,778 0,553 0509 | [0012]0961 0912 0952 0573 0846 | [0,155] 0,955 0,785 0,594 0,720 0,919
RFSIM 0,831 0,960 0,836 0,845 0,790 0916 | | 0,759 0,979 0,836 0,931 0,898 0,968 | | 0,904 0,965 0,830 0,896 0,807 0,968
Noised images set Gaussian blurred images set

MSE / 078 / 0801][0,108 | 0,838 / 0728 0,782 0,852 0,657 0,878
PSNR / 0637 / 093 0909 0,953 / 0711 0,891 0,590 0,869 0,908
SNR / 0637 / 0987 0806 0,925 / 0711 0,826 0444 0,823 0,885
WSNR / 0637 / 098 0,838 0,923 / 0711 0935 0911 0,866 0,958
NQM / 0637 / 0922 0740 0,907 / 0711 0981 0,894 0,823 0,970
ual / 095 / 0823 0539 0,727 / 0974 0942 0,955 0,833 0,949
SSIM / 0970 / 0862 0,788 0,895 / 0931 0910 0912 0,881 0,900
MS-SSIM / 098 / 0874 0,790 0,941 / 0961 0,955 0,946 0,897 0,964
VIF / 099 / 089 0,880 0,957 / 0979 0989 0,950 0,880 0,979
VIFP / 0993 / 0843 0811 0,962 / 0980 0975 0,919 0,883 0,965
IFC / 098 / 0549 0601 0,821 / 0976 0978 0,844 0,844 0,901
M-SVD / 0943 / 0936 0907 0,908 / 0827 0805 0,866 0,864 0,898
PSNRHVS / 0637 / 093 0909 0,953 / 0711 0968 0,838 0,889 0,938
PSNRHVSM | / 0,637 / 0921 0,891 0,956 / 0711 0965 0,880 0,882 0,919
VSNR / 098 / 0916 0,750 0,910 / 0964 0981 0915 0,873 0,915
MSSIM / 0982 / 0973 0,705 0,892 / 0967 0956 0,957 0,880 0,959
R-SVD / 0942 0,645 0,842 / 0973 0944 0895 0,870
RFSIM / 0966 / 0,903 0,810 0,940 / 0955 0,962 0,902 0,889 0,956




Appendix B: Root Mean Squared Error (RMSE) after nonlinear regression

TOY uve| vc| As7] TiD] csia Toy | uvE|] vc| As7] TID | csiq Toy| uve| ivc| As7| TID | csia
All data set JPEG coded images set JPEG 2000 coded images set
MSE 1,077 36,695 1,048 0,184 1,341 0,233 1,221 13,551 0,782 0,165 1,479 0,189 0,755 10,699 0,691 0,142 1,292 0,155
PSNR 7,071 73,589 0,846 0,190 1,129 0,172 7,060 76,825 0,784 0,183 0,949 0,139 7,083 67,747 0,685 0,136 1,307 0,102
SNR 7,071 73,582 0,924 0,201 1,158 0,175 7,060 76,819 0,874 0,213 1,116 0,181 7,082 67,743 0,743 0,146 1,447 0,118
WSNR 7,072 73,591 0,617 0,090 1,181 0,178 7,060 76,827 0,543 0,052 0,724 0,107 7,083 67,748 0,520 0,046 1,123 0,088
NaQM 7,071 73,585 0,642 0,147 1,098 0,182 7,060 76,820 0,557 0,117 0,752 0,090 7,082 67,744 0,660 0,095 1,125 0,079
val 0,809 10,834 0,675 0,220 1,089 0,147 0,674 11,702 0,645 0,072 1,010 0,124 0,893 10,971 0,758 0,036 1,235 0,136
ssiM 0,714 10,475 0,743 0,223 1,069 0,152 0,879 8601 0,645 0,061 0,785 0,104 0,485 7,407 0,653 0,105 1,273 0,122
MS-SSIM 0,551 8,690 0,563 0,130 0,844 0,116 0,629 5743 0,441 0,075 0,681 0,059 0,409 5,604 0,484 0,090 1,084 0,067
VIF 0,477 6,980 0,524 0,193 0,936 0,098 0,507 4,845 0,401 0,078 0,674 0,047 0,329 4,952 0,455 0,118 1,092 0,066
VIFP 0,623 6,956 0,692 0,147 0,997 0,113 0,777 5501 0,580 0,063 0,711 0,056 0,411 5,659 0,605 0,075 1,128 0,066
IFC 1,121 10,400 0,511 0,201 1,038 0,213 1,101 9,984 0,321 0,134 0,854 0,180 1,137 9,178 0,457 0,145 1,173 0,179
M-SVD 0,759 14,507 0,769 0,175 1,320 0,218 0,930 12,620 0,782 0,156 0,709 0,123 0,490 9,333 0,474 0,133 1,461 0,111
PSNRHVS | 10,843 82,608 0,611 0,119 1,103 0,162 10,831 87,028 0,490 0,068 0,679 0,130 10,855 81,196 0,546 0,104 1,127 0,082
PSNRHVSM | 10,843 82,610 0,554 0,099 1,126 0,165 10,831 87,030 0,394 0,073 0,659 0,111 10,856 81,197 0,467 0,089 1,093 0,103
VSNR 0,576 9,427 0,726 0,080 1,323 0,176 0,679 6,522 0,627 0,058 0,802 0,095 0,437 6,063 0,653 0,064 1,171 0,114
MSSIM 0,483 8358 0,463 0,152 0,953 0,129 0,445 6,175 0,338 0,093 0,726 0,065 0,382 5,568 0,460 0,093 1,121 0,072
R-SVD 1,317 19,669 1,015 0,245 1,263 0,226 1,319 9,680 0,477 0,078 1,396 0,163 1,303 8,543 0,799 0,181 1,353 0,125
RFSIM 0,734 8717 0,669 0,132 0,822 0,105 0,859 7,126 0,639 0,095 0,748 0,077 0,564 7,533 0,719 0,100 1,153 0,079
Noised images set Gaussian blurred images set

MSE / 25777 / 0079 0,645 0,123 / 16,432 0,712 0,105 0,920 0,137
PSNR / 70,365 / 0,046 0,255 0,069 / 59,323 0,518 0,162 0,580 0,120
SNR / 70,358 / 0,021 0,362 0,086 / 59,315 0,644 0,180 0,666 0,133
WSNR / 70,370 / 0,026 0,333 0,087 / 59,326 0,405 0,083 0,587 0,082
NQM / 70,362 / 0,051 0,411 0,095 / 59,318 0,221 0,090 0,667 0,070
val / 9836 / 0,075 0,514 0,155 / 538 0,383 0,059 0,649 0,090
SSIM / 8058 / 0,066 0,376 0,101 / 8,750 0,473 0,082 0,556 0,125
MS-SSIM / 4905 / 0,064 0,374 0,077 / 6,613 0,338 0,065 0,519 0,077
VIF / 4697 / 0,058 0,291 0,066 / 4,901 0,171 0,063 0,557 0,058
VIFP / 3776 /0,071 0,357 0,062 / 4,809 0,253 0,079 0,551 0,075
IFC / 8358 / 0,110 0,483 0,129 / 5193 0,238 0,107 0,630 0,124
M-SVD / 11,055 / 0,046 0,257 0,095 / 13,508 0,677 0,100 0,591 0,126
PSNRHVS / 83,250 / 0,047 0,255 0,069 / 61,033 0,287 0,109 0,537 0,099
PSNRHVSM / 83,251 / 0051 0,277 0,067 / 61,035 0,299 0,095 0,553 0,113
VSNR / 5581 / 0,053 0,404 0,094 / 6,369 0,222 0,081 0573 0,116
MSSIM / 6310 / 0,030 0433 0,102 / 6,219 0,334 0,058 0,557 0,081
R-SVD / 11,135 / 0,131 0,467 0,122 / 5495 0,376 0,089 1,135 0,141
RFSIM / 8594 / 0,056 0,358 0,077 / 7,211 0,311 0,087 0,537 0,084




Appendix C: Mean Absolute Error (MAE) after nonlinear regression

TOY uve| wvc| As7| TID| csiQ Toy| uve| wvc| As7| TiD| csiQ Toy| uve| ivc|] As7| TID | csiQ
All data set JPEG coded images set JPEG 2000 coded images set
MSE 0,942 29,174 0,914 0,150 1,087 0,199 1,100 10,275 0,605 0,124 1,231 0,151 0,612 8026 0,474 0,113 1,139 0,130
PSNR 4,410 69,341 0,667 0,161 0,866 0,135 4,413 71,494 0,617 0,149 0,744 0,096 4,407 63,240 0,474 0,099 1,009 0,073
SNR 4,408 69,333 0,743 0,174 0,894 0,139 4,411 71,486 0,721 0,180 0,877 0,155 4,405 63,233 0,538 0,109 1,138 0,086
WSNR 4,412 69,347 0,484 0,076 0,899 0,137 4,416 71,502 0,425 0,043 0,489 0,088 4,408 63,244 0,393 0,042 0,724 0,070
NaQM 4,409 69,338 0,524 0,117 0,808 0,146 4,413 71,491 0,461 0,090 0,529 0,073 4,406 63,236 0,542 0,083 0,724 0,060
val 0,617 7,862 0,523 0,170 0,868 0,112 0,501 8,189 0,514 0,066 0,779 0,089 0,689 7,588 0,609 0,030 0,887 0,099
ssiM 0,542 7,579 0,555 0,185 0,847 0,116 0,701 5832 0476 0,051 0,561 0,075 0,372 5,195 0,454 0,089 0,935 0,088
MS-SSIM 0,430 6,608 0,427 0,106 0,616 0,088 0,499 4,446 0,316 0,065 0,432 0,045 0,323 4,394 0,332 0,065 0,645 0,051
VIF 0,370 5,366 0,410 0,139 0,680 0,074 0,405 3,667 0,281 0,067 0,416 0,035 0,259 3,631 0,336 0,090 0,643 0,048
VIFP 0,453 4,925 0519 0,115 0,779 0,091 0,586 3,647 0,395 0,047 0,487 0,042 0,310 4,130 0,435 0,068 0,725 0,047
IFC 0,959 7,984 0,396 0,161 0,825 0,182 0,936 7,596 0,256 0,121 0,649 0,155 0,981 7,250 0,343 0,122 0,804 0,142
M-SVD 0,593 10,451 0,600 0,138 1,064 0,188 0,762 8324 0,624 0,116 0,465 0,097 0,376 6,472 0,372 01112 1,176 0,094
PSNRHVS | 5,890 76,747 0,461 0,090 0,780 0,124 5893 80,016 0,332 0,055 0,446 0,109 5886 73,139 0,369 0,082 0,727 0,060
PSNRHVSM | 5,891 76,752 0,437 0,081 0,800 0,127 5895 80,022 0,277 0,057 0,406 0,092 5,887 73,143 0,322 0,080 0,666 0,085
VSNR 0,422 6582 0,559 0,062 1,074 0,131 0,507 4,567 0,512 0,048 0,536 0,070 0,327 4,215 0,497 0,055 0,778 0,092
MSSIM 0,374 6,306 0,363 0,126 0,719 0,099 0,349 4,866 0,244 0,085 0,487 0,048 0,292 4,129 0,325 0,069 0,708 0,055
R-SVD 1,197 13,871 0,831 0,206 0,985 0,182 1,192 6,692 0,366 0,060 1,115 0,110 1,184 5585 0,631 0,166 1,020 0,091
RFSIM 0,565 6,519 0,501 0,112 0,584 0,077 0,683 5128 0,485 0,085 0,534 0,054 0,427 5,535 0,530 0,082 0,761 0,059
Noised images set Gaussian blurred images set

MSE / 20298 / 0,071 0,538 0,103 / 13,067 0,628 0,092 0,658 0,106
PSNR / 65574 / 0,042 0,192 0,055 / 56,652 0,378 0,144 0,415 0,094
SNR / 65566  / 0,016 0,282 0,069 / 56,643 0,473 0,154 0,513 0,107
WSNR / 65581 / 0,018 0,263 0,070 / 56,658 0,327 0,067 0,420 0,064
NQM / 65573  / 0,043 0,313 0,075 / 56,649 0,186 0,067 0,501 0,055
val / 7629  / 0,060 0,423 0,124 / 3,987 0,272 0,047 0,490 0,064
SSIM / 6,894  / 0,057 0,302 0,083 / 6,563 0,342 0,065 0,397 0,085
MS-SSIM / 3,995  / 0,061 0,287 0,061 / 5678 0,260 0,056 0,356 0,058
VIF / 3,873/ 0,050 0,225 0,054 / 3,563 0,139 0,046 0,371 0,042
VIFP / 2,865  / 0,062 0277 0,052 / 3,619 0,208 0,064 0,378 0,052
IFC / 6655 / 0,097 0,392 0,103 / 3,820 0,191 0,093 0,464 0,098
M-SVD / 8802 / 0,040 0,193 0,078 / 10,874 0,488 0,082 0,441 0,095
PSNRHVS / 75758 / 0,042 0,191 0,055 / 58071 0246 0,083 0,368 0,077
PSNRHVSM | / 75762 / 0,048 0,211 0,054 / 58074 0,257 0,074 0,387 0,092
VSNR / 4213 / 0,040 0,317 0,072 / 4,740 0,173 0,062 0,399 0,090
MSSIM / 4905 / 0,027 0,348 0,083 / 5402 0,247 0,047 0,388 0,060
R-SVD / 7,410 / 0,111 0,381 0,100 / 4,087 0,296 0,071 0,941 0,104
RFSIM / 7056 / 0,050 0,274 0,064 / 53838 0,245 0,063 0,367 0,063




Appendix D: Spearman’s Rank Order Correlation Coefficient (SROCC)

Toy| uve| ivc| As7]| TiD | csiQ Toy| uve| ivc| As7] TiD] csia ToY| uve| vc]| As7] TmiD] csia
All data set JPEG coded images set JPEG 2000 coded images set
MSE 0,722 0,936 0,689 0,618 0,513 0,806 0,509 0,943 0,674 0,633 0,826 0,888 0,884 0,956 0,850 0,800 0,650 0,936
PSNR 0,722 0,936 0,689 0,618 0,513 0,806 0,509 0,943 0,674 0,633 0,826 0,888 0,884 0,956 0,850 0,800 0,650 0,936
SNR 0,695 0,931 0,636 0,572 0,483 0,799 0,480 0,937 0,608 0,550 0,758 0,878 0,860 0,945 0,814 0,750 0,618 0,931
WSNR 0,850 0,956 0,859 0,920 0,450 0,773 0,815 0,974 0,878 0,983 0,873 0,956 0,900 0,966 0,918 0,917 0,772 0,970
NQM 0,909 0,955 0,835 0,798 0,577 0,740 0,910 0,979 0,853 0,900 0,859 0,953 0,917 0,977 0,859 0,933 0,769 0,963
val 0,780 0,945 0,827 0,425 0,552 0,807 0,846 0,953 0,825 0,933 0,758 0,901 0,723 0,941 0,796 0,983 0,731 0,881
SSIM 0,840 0,954 0,779 0,407 0,585 0,837 0,739 0,970 0,807 0,950 0,871 0,922 0,922 0,973 0,850 0,883 0,699 0,921
Ms-SSIM | 0,906 0,972 0,885 0,840 0,789 0,914 0,875 0,985 0,918 0,950 0,887 0,962 0,942 0,986 0,929 0,900 0,784 0,969
VIF 0,916 0,976 0,897 0,622 0,702 0,919 0,917 0,980 0,924 0,900 0,878 0,970 0,944 0,979 0,936 0,817 0,789 0,967
VIFP 0,877 0,975 0,811 0,769 0,619 0,879 0,814 0,977 0,830 0,917 0,883 0,968 0,935 0,975 0,883 0,933 0,770 0,970
IFC 0,872 0,956 0,898 0,319 0,541 0,748 0,910 0,962 0,954 0,800 0,812 0,939 0,853 0,954 0,934 0,717 0,755 0,926
M-SVD 0,817 0,907 0,774 0,645 0,588 0,768 0,710 0,943 0,711 0,633 0,892 0,946 0,912 0,960 0,932 0,883 0,775 0,974
PSNRHVS | 0,837 0,958 0,859 0,850 0,549 0,830 0,771 0,971 0,885 0,900 0,901 0,940 0,909 0,972 0,907 0,883 0,775 0,962
PSNRHVSM | 0,884 0,964 0,884 0,896 0,518 0,822 0,894 0,979 0,924 0,950 0,882 0,952 0,932 0,981 0,933 0,850 0,786 0,970
VSNR 0,885 0,958 0,798 0,936 0,650 0,810 0,845 0,972 0,777 0,983 0,867 0,903 0,925 0,971 0,868 0,967 0,762 0,948
MSSIM | 0925 0973 0914 0,795 0,708 0,883 0,934 098 0944 0933 0864 0,956 | | 0945 0984 0,925 0,850 0,775 0,963
R-SVD [ 0,061 ] 0,795 0,456 0,345 0,557 0,004 | 0,959 0,899 0867 0556 0,839 | [0,131]0957 0,784 0,433 0,681 0,908
RFSIM 0,831 0,969 0,819 0,821 0,803 0,929 0,754 0,976 0,791 0,883 0,884 0,950 0,900 0,972 0,832 0,850 0,760 0,964
Noised images set Gaussian blurred images set

MSE / 0991 / 0950 0,882 0,934 / 0874 0,805 0,467 0,863 0,929
PSNR / 0991 / 0950 0,882 0,934 / 0874 0,805 0,467 0,863 0,929
SNR / 0982 / 0967 0,809 0,925 / 0857 0,733 0,367 0,808 0,915
WSNR / 098 / 0967 0,83 0,921 / 0950 0,882 0,800 0,862 0,965
NQM / 0992 / 0933 0743 0,911 / 0933 0956 0917 0,817 0,958
val / 0947 / 0,783 0528 0,716 / 0967 0941 0,867 0,829 0,944
SSIm / 0978 / 0817 0,785 0,894 / 0939 0,869 0,683 0,872 0,924
MS-SSIM / 098 /0917 0,791 0,933 / 0976 0944 0,783 0,889 0,972
VIF / 098 / 0950 0,877 0,951 / 0982 0973 0817 0,888 0,975
VIFP / 098 / 0817 0818 0,957 / 0974 0953 0,667 0,876 0,968
IFC / 0962 / 0450 0,606 0,828 / 0977 0952 0,883 0,831 0,959
M-SVD / 093 / 0967 0,89% 0,937 / 0802 0,738 0,233 0,850 0,910
PSNRHVS / 099 / 0950 0,868 0,933 / 0935 0923 0,600 0,886 0,961
PSNRHVSM | / 0992 / 0950 0,881 0,943 / 0960 0922 0,717 0,882 0,971
VSNR / 098 / 0950 0,760 0,908 / 0,964 0968 0,900 0,872 0,945
MSSIM / 099 / 0950 0,695 0,884 / 0978 0947 0,783 0,873 0,967
R-SVD / 0949 / 0,649 0,847 / 0963 0908 0,900 0,875
RFSIM / 098 / 0,900 0,820 0,935 / 0946 0942 0,633 0,882 0,963




Appendix E: Kendall’s Rank Order Correlation Coefficient (KROCC)

Toy| uve| ivc| As7]| TiD | csiQ Toy| uve| ivc| As7] TiD] csia ToY| uve| vc]| As7] TmiD] csia
All data set JPEG coded images set JPEG 2000 coded images set
MSE 0,540 0,791 0,522 0,430 0,374 0,607 | | 0362 0,801 0519 0500 0,650 0,692 0,713 0,829 0,726 0,667 0,484 0,766
PSNR 0,540 0,791 0,522 0,430 0,374 0,607 | | 0362 0801 0519 0500 0,650 0,692 0,713 0,829 0,726 0,667 0,484 0,766
SNR 0,517 0,783 0,464 0,403 0,346 0,600 | | 0,344 0,792 0,448 0,444 0,565 0,689 0,684 0,809 0,654 0,611 0472 0,763
WSNR 0,656 0,833 0,665 0,753 0,363 0,599 | | 0,620 0,876 0,696 0944 0,690 0,813 0,734 0851 0,766 0,778 0,696 0,845
NQMm 0,739 0,832 0,634 0,592 0,426 0,563 0,750 0,889 0,666 0,722 0,679 0,812 0,755 0,874 0,680 0,778 0,684 0,840
ual 0,600 0,806 0,627 0,332 0,402 0,615 0,672 0,822 0,625 0,833 0541 0,719 0,546 0,800 0,606 0,944 0,621 0,707
SSIM 0,649 0,821 0,59 0,424 0,632 0,543 0,863 0,630 0,889 0,705 0,753 0,762 0,863 0,692 0,722 0,565 0,753
MS-SSIM | 0,732 0,862 0,701 0,648 0,605 0,739 | | 0,690 0,913 0,780 0,833 0,726 0,828 | | 0,803 0,902 0,782 0,778 0,733 0,846
VIF 0,740 0,866 0,717 0,459 0,552 0,753 0,747 0,895 0,791 0,778 0,699 0,855 0,801 0,880 0,790 0,667 0,721 0,849
VIFP 0,691 0,863 0,631 0,564 0,470 0,695 0,621 0,880 0,676 0,778 0,726 0,839 0,777 0,865 0,723 0,833 0,689 0,849
IFC 0,678 0,818 0,719 0,406 0,574 | | 0,740 0,831 0,816 0611 0595 0,795 0,648 0,808 0,779 0,556 0,658 0,781
M-SVD 0,626 0,750 0,588 0,471 0,440 0,583 0,522 0,804 0,537 0,500 0,743 0,790 | | 0,752 0,841 0,787 0,722 0,697 0,856
PSNRHVS | 0,642 0,831 0,672 0675 0442 0,653 0,573 0,863 0,734 0,833 0,770 0,781 0,742 0,862 0,761 0,722 0,698 0,822
PSNRHVSM | 0,701 0,844 0,694 0,725 0,417 0,653 0,715 0,887 0,790 0,833 0,711 0,804 | | 0,782 0,887 0,795 0,722 0,730 0,844
VSNR 0,698 0,822 0,604 0,803 0,493 0,624 | | 0,654 0,861 0,583 0,944 0,695 0,715 0,757 0,859 0,695 0,889 0,671 0,792
MsSIM | 0,764 0,862 0,738 0,595 0,524 0,695 0,780 0,905 0,821 0,778 0,674 0,815 0,809 0,896 0,767 0,722 0,706 0,831
R-SVD [ 0,045 ] 0,623 0,330 0,383 0010 | 0,824 0,722 0722 0372 0,652 | |0,103 | 0,820 0,588 0,548 0,740
RFSIM 0,637 0,854 0,645 0,631 0,628 0,764 | |0559 0,879 0622 0722 0728 0797 | |[0727 0861 0,665 0,667 0,664 0,831
Noised images set Gaussian blurred images set

MSE / 0924 / 0833 069 0,761 / 0705 0667 0,38 0,730 0,754
PSNR / 0924 / 0833 069 0,761 / 0705 0667 0,38 0,730 0,754
SNR / 087 / 0889 0611 0,753 / 0693 058 0333 0,643 0,740
WSNR / 0898 / 0889 064l 0,747 / 0821 0709 0667 0,719 0,831
NQMm / 0928 / 0833 0542 0,731 / 0,797 0836 0,778 0,632 0,826
ual / 0803 / 0611 0368 0,520 / 0853 0815 0,778 0,652 0,801
SSIM / 081 / 0667 058 0,709 / 0797 0,709 0,611 0,743 0,765
MS-SSIM / 0903 / 0778 0598 0,773 / 0872 0825 0611 0,774 0,851
VIF / 0913 / 0833 068 0,79 / 0887 0899 0667 0,774 0,866
VIFP / 0914 / 0667 0622 0,818 / 0863 0825 0556 0,743 0,843
IFC / 080 / 0333 0430 0,629 / 0873 0847 0,722 0,664 0,827
M-SVD / 081 / 0889 0721 0770 / 0628 0614 0,696 0,728
PSNRHVS / 0920 / 0833 0661 0,760 / 0,78 0825 0,556 0,769 0,824
PSNRHVSM | / 0928 / 0,833 0,685 0,783 / 0836 0794 0611 0,756 0,849
VSNR / 0895 / 088 0556 0,731 / 0837 0878 0833 0,734 0,790
MSSIM / 0854 / 0833 0510 0,692 / 0876 0825 0611 0,741 0,834
R-SVD / 0812 / 0,466 0,650 / 0838 0772 0778 0,695
RFSIM / 0914 / 0778 0622 0,770 / 0813 0815 0500 0,759 0,829
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Appendix F: Friedman’s analysis results of the variability of the 18 image quality metrics
over the six databases (Toyama, LIVE, IVC, A57, TID and CSIQ) in the 95% Confidence Interval

All data sets JPEG coded images sets
SNR | MS- | VIF | MSSIM | RSVD MSE | PSNR | SNR | MS- | VIF | VIFP | MSSIM
SSIM SSIM
MS W///%/ o : 2/5\IER %///%/ ;
SSIM //// ///
:\//llzsm X = i/ll\lsR o e
) VIFP ; : z
MSSIM -
JPEG 2000 coded images sets Gaussian blurred images sets
VIF | MSSIM | RSVD , MSE SNR | VIF VIFP
MS-SSIM i i I;/II\ISFI{E %///////////” ; .
\_/IF X VIF
MSSIM X VIFP

R-SVD

Table F.1: Pearson’s Correlation Coefficient (PCC) variability over the 18 quality metrics
according to the Friedman test in the 95% ClI.



All data sets JPEG coded images sets
VIF | MSSIM | R- MSE | PSNR | SNR | MS- | VIF | VIFP | MSSIM
SSIM

X MSE X

N\
\\

| | PSNR | x
I\/_ISS|M . SNFT /////////% [ X
RSVD | x | x 2/|5|SM — ////%

z:EP S =
MSSIM %///////////%
JPEG 2000 coded images sets Gaussian blurred images sets
SNR | MS-SSIM | VIF | MSSIM | R-SVD
% X X X MSE
MsssM | x [ ] SNR 1 X
VIF X / VIF |
:AZ\S)I;\A X VIFP X X %//////////%

Table F.2: Root Mean Square Error (RMSE) variability
over the 18 quality metrics according to the Friedman test in the 95% CI.

All data sets JPEG coded images sets
R-SVD SNR | MS-SSIM | VIF | VIFP | MSSIM
MSE X
| X PSNR | X
W////////% SNR %///////%/ X X X X
MS-SSIM X /////////////////
VIF X X X ///%/
VIFP X /////////
MSSIM X |
Gaussian blurred images sets
SNR | VIF | VIFP | M-SVD

\

VIF X X x |

Table F.3: Mean Absolute Error (MAE) variability
over the 18 quality metrics according to the Friedman test in the 95% CI.



All data sets JPEG coded images sets
SN | Ms- [ Vi [ VIF] Mmssl | R- | RESI MS | PSN | SN | MS- | VI | PSNRHVS | MsSI
R | sst | F P M sV M E R R | ssi | F M M
M D M
X X MSE X X
X PSNR X
SSIM | -
VIF X ////%% X SNR /////%% X X X X
VIFP MS
/% i X - X X X % I
MSS| VIF
M X /////%/ § " ’ " %%
R-SVD PSNR-
<1 X HVSM X ///////%/
RFSIM MSS|
Iy X X X
JPEG 2000 coded images sets Gaussian blurred images sets
SNR | MS- [ VIF [ VIFP | PSNRHVSM | MSSIM | R- MSE | PSNR [ SNR | MS- | VIF | M-
/ SSIM SVD - SSIM SVD
SNR . X X X X MSE ////%%
MS-SSIM X /////// PSNR %////%/
VIF p SNR T x [ x
VIFP MS- X | X
SSIM /%/
PSNRHVSM | x VIF X X X %
MSSIM M- X
’ SVD
R-SVD X .

Table F.4: Spearman’s and Kendall’s Rank Order Correlation Coefficients (SROCC & KROCC)
variability over the 18 quality metrics according to the Friedman test in the 95% ClI.
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Appendix G: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the TOYAMA database.

)| v2) | 3 [ va) )| v2) | B [ wa) ()| u2)| B3 [ ua)
All data set JPEG coded images set JPEG 2000 coded images set

MSE -3,87500  0,01615 50,02827 3,07079 -3,87500  0,02064 49,06286 | 3,01339 -3,87500  0,01366 50,99368 3,12819
PSNR 3,87500  0,00004  9390,39937  3,07079 3,87500  0,00004  9389,55481 | 3,01339 3,87500  0,00004  9391,24394 3,12819
SNR 3,87500  0,00004  9385,21226 3,07079 3,87500  0,00004  9384,36770 | 3,01339 3,87500  0,00004  9386,05682 3,12819
WSNR 3,87500  0,00004  9396,81980 3,07079 3,87500  0,00004  9397,60201 | 3,01339 3,87500  0,00004  9396,03759 3,12819
NQM 3,87500  0,00004  9388,87787 3,07079 3,87500  0,00004  9389,02318 | 3,01339 3,87500  0,00004  9388,73256 3,12819
ual 3,87500  5,88620 0,72952 3,07079 3,87500  5,88048 0,73890 | 3,01339 3,87500  5,87973 0,72014 3,12819
SSIM 3,87500 11,80645 0,89926 3,07079 3,87500 15,80644 0,90388 | 3,01339 3,87500  9,81697 0,89464 3,12819
MS-SSIM 3,87500  44,90482 0,97893 3,07079 3,87500  69,15253 0,98235 | 3,01339 3,87500 36,17508 0,97550  3,12819
VIF 3,87500  4,28096 0,63064 3,07079 3,87500  4,80605 0,65133 | 3,01339 3,87500  3,90628 0,60995 3,12819
VIFP 3,87500  4,52716 0,56780 3,07079 3,87500  4,83941 0,55357 | 3,01339 3,87500  4,26484 0,58204 3,12819
IFC 3,87500  0,03767 15,21411  3,07079 3,87500  0,03770 15,44730 | 3,01339 3,87500  0,03746 14,98091  3,12819
M-SVD -3,87500  0,11468 11,16983  3,07079 -3,87500  0,12934 12,13103 | 3,01339 -3,87500  0,10470 10,20863  3,12819
PSNRHVS 3,87500  0,00003 14313,68539 3,07079 3,87500  0,00003 14314,22020 | 3,01339 3,87500  0,00003 14313,15059 3,12819
PSNRHVSM | 3,87500  0,00003 14318,00299 3,07079 3,87500  0,00003 14319,61736 | 3,01339 3,87500  0,00003 14316,38862 3,12819
VSNR 3,87500  0,03106 43,45760 3,07079 3,87500  0,03116 43,40589 | 3,01339 3,87500  0,03081 43,50931 3,12819
MSSIM 3,87500 21,87576 0,95358 3,07079 3,87500 30,11041 0,96203 | 3,01339 3,87500 18,40025 0,94513  3,12819
R-SVD -3,87500  7,07319 0,30453  3,07079 3,87500  7,21534 0,29119 | 3,01339 -3,87500  6,96491 0,31787 3,12819
RFSIM 3,87500  5,22022 0,74800 3,07079 3,87500  6,34295 0,76494 | 3,01339 3,87500  4,54848 0,73106  3,12819




Appendix H: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the LIVE database.

) [ 42 | B[ w4 ) [ 2] 3) [ w4 ) [ 42)] ) [ w4
All data set JPEG coded images set JPEG 2000 coded images set
MSE 114,41000 0,00078  406,14947 38,53848 111,41000  0,00548  137,05398 37,99747 91,37200  0,00562 110,80341 32,46584
PSNR -114,41000 0,00004 13569,27681 38,53848 -111,41000  0,00004 16334,99293 37,99747 -91,37200  0,00003 16767,16683 32,46584
SNR -114,41000 0,00004 13564,43523 38,53848 -111,41000  0,00004 16330,36873 37,99747 -91,37200  0,00003 16762,64909 32,46584
WSNR -114,41000 0,00004 13572,52338 38,53848 -111,41000  0,00004 16339,07774 37,99747 -91,37200  0,00003 16769,59265 32,46584
NQM -114,41000 0,00004 13567,21482 38,53848 -111,41000  0,00004 16332,82521 37,99747 -91,37200  0,00003 16764,51088 32,46584
ual -114,41000  3,46005 0,65960 38,53848 -111,41000  3,59870 0,68623 37,99747 -91,37200  3,95309 0,69513  32,46584
SSIM -114,41000  4,19940 0,78269 38,53848 -111,41000  5,95349 0,83253 37,99747 -91,37200  6,25206 0,84667 32,46584
MS-SSIM -114,41000 6,71888 0,91148 38,53848 -111,41000 12,58539 0,93994 37,99747 -91,37200  14,13565 0,94746  32,46584
VIF -114,41000  2,91652 0,53760 38,53848 -111,41000  2,81382 0,57194 37,99747 -91,37200  2,87506 0,54943  32,46584
VIFP -114,41000 3,16192 0,50686 38,53848 -111,41000  3,09527 0,53235 37,99747 -91,37200  3,15930 0,55824  32,46584
IFC -114,41000 0,03193 19,83364 38,53848 -111,41000  0,02984 23,04352  37,99747 -91,37200  0,02943 23,17655 32,46584
M-SVD 114,41000 0,03243 25,39984 38,53848 111,41000  0,05425 17,37517 37,99747 91,37200  0,05204 15,84758  32,46584
PSNRHVS | -114,41000 0,00002 20692,46619 38,53848 -111,41000  0,00002 24913,76305 37,99747 -91,37200  0,00002 25571,24597  32,46584
PSNRHVSM | -114,41000 0,00002 20695,06842 38,53848 -111,41000  0,00002 24917,17238 37,99747 -91,37200  0,00002 25573,53387  32,46584
VSNR -114,41000  0,02899 39,40786 38,53848 -111,41000  0,02770 43,95902 37,99747 -91,37200  0,02767 44,84420 32,46584
MSSIM -114,41000 4,99377 0,85499  38,53848 -111,41000  7,07389 0,88974 37,99747 -91,37200  8,19314 0,89926 32,46584
R-SVD 114,41000 4,40266 0,34442 38,53848 111,41000  4,69520 0,32530 37,99747 91,37200  4,56241 0,31530 32,46584
RFSIM -114,41000 3,12062 0,61612 38,53848 -111,41000  3,10056 0,65128 37,99747 -91,37200  3,47929 0,67204 32,46584
Noised images set Gaussian blurred images set

MSE 111,77000 0,00037  1533,25464 47,14174 93,40900  0,00451 185,42933  38,10032
PSNR -111,77000 0,00004 10941,74715 47,14174 -93,40900  0,00004 10944,79279  38,10032
SNR -111,77000 0,00004 10936,66773 47,14174 -93,40900  0,00004 10939,71337  38,10032
WSNR -111,77000 0,00004 10945,98016 47,14174 -93,40900  0,00004 10947,62453  38,10032
NQMm -111,77000 0,00004 10940,43928 47,14174 -93,40900  0,00004 10942,82491 38,10032
ual -111,77000  2,98446 0,53055 47,14174 -93,40900  3,97065 0,70304  38,10032
SSIM -111,77000  2,82603 0,57379 47,14174 -93,40900  6,56990 0,82551 38,10032
MS-SSIM -111,77000  3,99250 0,80186 47,14174 -93,40900 11,45514 0,94008  38,10032
VIF -111,77000  2,87454 0,49021 47,14174 -93,40900  3,31934 0,52537 38,10032
VIFP -111,77000  2,96226 0,42092 47,14174 -93,40900  3,64832 0,50315  38,10032
IFC -111,77000  0,03426 16,03972 47,14174 -93,40900  0,03505 17,66692 38,10032
M-SVD 111,77000 0,02235 34,15496 47,14174 93,40900  0,03450 35,52911  38,10032
PSNRHVS | -111,77000 0,00003 16685,54650 47,14174 -93,40900  0,00003 16686,56951 38,10032
PSNRHVSM | -111,77000 0,00003 16688,08269 47,14174 -93,40900  0,00003 16689,01919  38,10032
VSNR -111,77000  0,03002 34,37642 47,14174 -93,40900  0,03123 34,28466 38,10032
MSSIM -111,77000  3,29153 0,71697 47,14174 -93,40900  7,44675 0,89410 38,10032
R-SVD 111,77000 9,67348 0,22189 47,14174 93,40900  4,03297 0,45984  38,10032
RFSIM -111,77000  2,61431 0,49761 47,14174 -93,40900  3,79326 0,61807 38,10032




Appendix |: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the IVC database.

) [ )] B3 [ ta) ) [ 42)] 3 [ ta) [ w2 w3 w4
All data set JPEG coded images set JPEG 2000 coded images set
MSE -3,88462  0,00959 111,22692 2,95655 -3,61538  0,01131  91,96977 2,76077 -3,88462  0,00939 87,54495  3,09462
PSNR 3,88462  0,26056  29,29060 2,95655 3,61538  0,30627  29,82619 2,76077 3,88462  0,22766 30,88586  3,09462
SNR 3,88462  0,23971  24,00789 2,95655 3,61538  0,27311  24,75899  2,76077 3,88462  0,21576 25,81866 3,09462
WSNR 3,88462  0,18760  32,89503 2,95655 3,61538  0,20997  34,18492 2,76077 3,88462  0,17611 33,43365 3,09462
NQM 3,88462  0,19428  26,05829 2,95655 3,61538  0,22319 2597765 2,76077 3,88462  0,18178 26,03416 3,09462
ual 3,88462  7,45915  0,60008 2,95655 3,61538  8,69831  0,60567 2,76077 3,88462  6,93538  0,60705 3,09462
SSIM 3,88462  9,81168  0,80612 2,95655 3,61538 12,34602  0,82323 2,76077 3,88462  8,81001  0,82829 3,09462
MS-SSIM 3,88462 23,04748  0,94547 2,95655 3,61538 34,64848  0,95469 2,76077 3,88462 19,78817  0,94836 3,09462
VIF 3,88462  6,21896  0,38407 2,95655 3,61538  7,39596  0,40076 2,76077 3,88462  5,32870  0,38336 3,09462
VIFP 3,88462  8,19939  0,39680 2,95655 3,61538  9,74760  0,40643 2,76077 3,88462  6,76340  0,42317 3,09462
IFC 3,88462  0,68107  2,84530 2,95655 3,61538 092373  2,74572 2,76077 3,88462  0,68340  2,74071 3,09462
M-SVD -3,88462  0,09324  15,58082  2,95655 -3,61538  0,13380  13,27548 2,76077 -3,88462  0,10140 12,89837  3,09462
PSNRHVS 3,88462  0,22722  26,81286 2,95655 3,61538  0,26698  27,79448 2,76077 3,88462  0,19981 27,65437 3,09462
PSNRHVSM | 3,88462  0,18030  29,72254 2,95655 3,61538  0,19626  31,33449 2,76077 3,88462  0,16866 30,26814 3,09462
VSNR 3,88462  0,16163  23,63299 2,95655 3,61538  0,19345  24,22597 2,76077 3,88462  0,13664 24,70046 3,09462
MSSIM 3,88462 13,23169  0,89128 2,95655 3,61538 17,81646  0,90108 2,76077 3,88462 11,47671  0,89160 3,09462
R-SVD -3,88462 12,09973  0,50081 2,95655 -3,61538 10,86380  0,50011 2,76077 -3,88462 22,81586  0,49661 3,09462
RFSIM 3,88462 552770  0,59438 2,95655 3,61538  6,17788  0,59166 2,76077 3,88462  4,99423  0,59525 3,09462
Noised images set Gaussian blurred images set

MSE -3,50000  0,00952 171,85522 2,36346
PSNR 3,50000 0,28282  26,86977 2,36346
SNR 3,50000 0,25787  21,49393 2,36346
WSNR 3,50000 0,14215  30,01189 2,36346
NQMm 3,50000 0,13943  26,95577 2,36346
ual 3,50000 557040  0,57012 2,36346
SSIM 3,50000 843402  0,76022 2,36346
MS-SSIM 3,50000 16,91468  0,91930 2,36346
VIF 3,50000 4,53153  0,35822 2,36346
VIFP 3,50000 6,85445  0,38076 2,36346
IFC 3,50000 0,36324  3,53085 2,36346
M-SVD -3,50000 0,07463  31,21067 2,36346
PSNRHVS 3,50000 0,20937  23,20008 2,36346
PSNRHVSM 3,50000 0,16416  25,14843 2,36346
VSNR 3,50000 0,17047  18,65126 2,36346
MSSIM 3,50000 10,46189  0,85680 2,36346
R-SVD -3,50000 12,29608  0,62961 2,36346
RFSIM 3,50000 572967  0,54138 2,36346




Appendix J: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the A57 database.

) [ 42)] 3 [ ta) ) [ 2] 3 [ ta) ) [ ) 3 [ ta)
All data set JPEG coded images set JPEG 2000 coded images set
MSE 0,91126  0,01208 104,68563 0,42153 0,76339  0,01185 103,61092 0,42482 0,68406  0,01094 107,29942 0,46549
PSNR -0,91126  0,29642  29,19616 0,42153 -0,76339  0,28546  29,20825 0,42482 -0,68406  0,27853  29,13113  0,46549
SNR -0,91126  0,24433  25,03052 0,42153 -0,76339  0,23471  25,04261 0,42482 -0,68406  0,23060  24,96549  0,46549
WSNR -0,91126  0,17196  35,12519  0,42153 -0,76339  0,17420  36,82715 0,42482 -0,68406  0,23441  33,44610 0,46549
NQM -0,91126  0,15993  25,83704 0,42153 -0,76339  0,20723  25,90169 0,42482 -0,68406  0,23080  24,19051 0,46549
ual -0,91126  8,07207  0,63982 0,42153 -0,76339  8,89553  0,58385 0,42482 -0,68406  9,29931  0,54283  0,46549
SSIM -0,91126 10,21045  0,81418 0,42153 -0,76339 11,78730  0,81469 0,42482 -0,68406 11,12361  0,79437 0,46549
MS-SSIM -0,91126 29,81371  0,95226 0,42153 -0,76339 28,87558  0,95562 0,42482 -0,68406 27,21765  0,94284 0,46549
VIF -0,91126  6,43010  0,46798 0,42153 -0,76339 556319  0,43241 0,42482 -0,68406  8,33575  0,31549 0,46549
VIFP -0,91126 10,66459  0,39902 0,42153 -0,76339  10,20271  0,37423 0,42482 -0,68406 10,59214  0,34573  0,46549
IFC -0,91126  0,55909  3,85091 0,42153 -0,76339  0,63574  3,04236 0,42482 -0,68406  1,10479  2,15738 0,46549
M-SVD 0,91126  0,09658  17,40458 0,42153 0,76339  0,10877 1543072 0,42482 0,68406  0,09366  16,05178 0,46549
PSNRHVS | -0,91126  0,25000  27,38595 0,42153 -0,76339  0,21176  28,827838 0,42482 -0,68406  0,27566  26,35621 0,46549
PSNRHVSM | -0,91126  0,18516  30,61693 0,42153 -0,76339  0,13860  33,47032 0,42482 -0,68406  0,24263  28,86637 0,46549
VSNR -0,91126  0,19028  23,40258 0,42153 -0,76339  0,20195  24,29750 0,42482 -0,68406  0,24883  21,93632 0,46549
MSSIM -0,91126 16,21330  0,90186 0,42153 -0,76339  14,50499  0,90578 0,42482 -0,68406 1576032  0,88098  0,46549
R-SVD -0,91126  8,66141  0,41777 0,42153 0,76339 32,89732  0,31087 0,42482 0,68406 14,26318  0,45757 0,46549
RFSIM -0,91126  6,19119  0,59066 0,42153 -0,76339  6,07017  0,60262 0,42482 -0,68406 581491  0,53437 0,46549
Noised images set Gaussian blurred images set

MSE 0,42151  0,01109 107,42054 0,30426 0,68490  0,01223 100,59463 0,37494
PSNR -0,42151  0,27854  29,11323  0,30426 -0,68490  0,28520  29,33477 0,37494
SNR -0,42151  0,23035  24,94760 0,30426 -0,68490  0,23407  25,16914 0,37494
WSNR -0,42151  0,22466  37,71460 0,30426 -0,68490  0,21577  37,39931 0,37494
NQM -0,42151  0,27047  27,77901 0,30426 -0,68490  0,22872  32,58922 0,37494
ual -0,42151 14,24692  0,61595 0,30426 -0,68490  7,89945  0,72517 0,37494
SSIM -0,42151 10,13338  0,71007 0,30426 -0,68490 11,26377  0,85398 0,37494
MS-SSIM -0,42151 30,67147  0,94100 0,30426 -0,68490 40,03654  0,97273 0,37494
VIF -0,42151  9,00073  0,54982 0,30426 -0,68490  6,44719  0,54534 0,37494
VIFP -0,42151 12,98482  0,42559 0,30426 -0,68490  9,94988  0,45711 0,37494
IFC -0,42151  1,51108  3,69717 0,30426 -0,68490  0,48991  5,65918 0,37494
M-SVD 0,42151  0,17506  10,98656 0,30426 0,68490  0,08003  23,91866 0,37494
PSNRHVS | -0,42151  0,27732  29,08805 0,30426 -0,68490  0,26332  27,58524 0,37494
PSNRHVSM | -0,42151  0,25759  32,71473 0,30426 -0,68490  0,19474  31,37267 0,37494
VSNR -0,42151  0,25965  25,57925 0,30426 -0,68490  0,24360  23,16782 0,37494
MSSIM -0,42151 14,88129  0,86703 0,30426 -0,68490 22,88095  0,94883 0,37494
R-SVD -0,42151 11,30714  0,46211 0,30426 0,68490 12,12341  0,50192 0,37494
RFSIM -0,42151  6,14345  0,64394 0,30426 -0,68490  7,56938  0,66902 0,37494




Appendix K: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the TID database.

) [ 42)] 3 [ ta) ) [ 2] 3 [ ta) ) [ ) 3 [ ta)
All data set JPEG coded images set JPEG 2000 coded images set
MSE -7,71430  0,00080 454,22416 4,47960 -5,55290  0,00083 375,91297 4,08799 6,44000  0,00079 464,84080 3,14254
PSNR 7,71430  0,17284  26,74428 4,47960 555290  0,18237  27,99072 4,08799 6,44000  0,21560  25,50371 3,14254
SNR 7,71430  0,16395  20,12782 4,47960 555290  0,17013  21,37426 4,08799 6,44000 0,19861  18,88725 3,14254
WSNR 7,71430  0,09732  28,72446  4,47960 555290  0,10136  32,62923 4,08799 6,44000  0,10220  28,16936 3,14254
NQM 7,71430  0,10238  20,90801 4,47960 555290  0,10608  23,07895 4,08799 6,44000  0,09426  19,47113 3,14254
ual 7,71430  3,78208  0,65305 4,47960 555290  4,29783  0,53475 4,08799 6,44000  3,85867  0,41861 3,14254
SSIM 7,71430  4,83196  0,77183  4,47960 555290  5,64725  0,76067 4,08799 6,44000 566470  0,69780 3,14254
MS-SSIM 7,71430 563020  0,89569 4,47960 555290 576121  0,89961 4,08799 6,44000 521569  0,83981 3,14254
VIF 7,71430  3,56098  0,55467 4,47960 555290  4,11591  0,39077 4,08799 6,44000  4,81920  0,23442 3,14254
VIFP 7,71430  3,76367  0,50036 4,47960 555290  6,07741  0,34479 4,08799 6,44000  6,35924  0,25537 3,14254
IFC 7,71430  0,05001  13,44490 4,47960 555290  0,44300  2,99565 4,08799 6,44000  0,47790  1,97309 3,14254
M-SVD -7,71430  0,01769  37,13071 4,47960 -5,55290  0,01816  33,73342  4,08799 -6,44000  0,01793  47,33449 3,14254
PSNRHVS 7,71430  0,13715  24,60270 4,47960 555290  0,13189  27,02617 4,08799 6,44000  0,16601  22,59517 3,14254
PSNRHVSM | 7,71430  0,10711  27,16240 4,47960 555290  0,09857  31,12007 4,08799 6,44000  0,12799  25,03271 3,14254
VSNR 7,71430  0,00063  63,84381 4,47960 555290  0,10584  24,93174 4,08799 6,44000  0,09594  21,76092 3,14254
MSSIM 7,71430  4,86984  0,83611 4,47960 555290 507043  0,83229 4,08799 6,44000  4,34440  0,73387 3,14254
R-SVD -7,71430  6,65229  0,35240 4,47960 -5,55290 14,67527  0,26972  4,08799 -6,44000 12,20020  0,24156 3,14254
RFSIM 7,71430  3,84116  0,56469 4,47960 555290 3,81561  0,51483 4,08799 6,44000  4,32104  0,37818 3,14254
Noised images set Gaussian blurred images set

MSE -2,46130  0,00077 368,77439 4,90393 -5,06060  0,00117 380,16441 3,94111
PSNR 2,46130  0,19879  28,34892  4,90393 506060 0,19071  26,21491 3,94111
SNR 2,46130  0,18294  21,73246 4,90393 506060 0,18436  19,59845 3,94111
WSNR 2,46130  0,13937  34,75049 4,90393 506060 0,13019  27,85584 3,94111
NQM 2,46130  0,13504  26,09736 4,90393 506060 0,12625  19,53482 3,94111
ual 2,46130  4,83294  0,58520 4,90393 506060 3,91683  0,57376 3,94111
SSIM 2,46130 524487  0,68403 4,90393 506060 506958  0,74454 3,94111
MS-SSIM 2,46130  5,83402  0,90803 4,90393 506060 576636  0,89284 3,94111
VIF 2,46130  6,09800  0,52747 4,90393 506060 4,11223  0,39519 3,94111
VIFP 2,46130  7,46502  0,40819 4,90393 506060 543918  0,37219 3,94111
IFC 2,46130  0,55074  3,88038 4,90393 506060 0,34486  4,24173 3,94111
M-SVD -2,46130  0,01770  24,28429  4,90393 -5,06060 0,01922  50,75023 3,94111
PSNRHVS 2,46130  0,17733  28,10309 4,90393 506060 0,16323  22,83852 3,94111
PSNRHVSM | 2,46130  0,15129  31,71447 4,90393 506060 0,13915  24,92483 3,94111
VSNR 2,46130  0,13071  27,56039 4,90393 506060 0,12742  20,37970 3,94111
MSSIM 2,46130 537626  0,84208 4,90393 506060 4,96406  0,82629 3,94111
R-SVD -2,46130 13,20471  0,32779  4,90393 -5,06060 14,02037  0,29357 3,94111
RFSIM 2,46130 522465  0,60674 4,90393 506060 4,13290  0,50219 3,94111




Appendix L: Coefficients values for each of the 18 image quality metrics over the five considered datasets for the CSIQ database.

) [ )] B3 [ ta) ) [ 42)] 3 [ ta) ) [ 42) | 3 [ ta)
All data set JPEG coded images set JPEG 2000 coded images set
MSE 1,00000 0,00305 220,41741 0,35074 0,91764  0,00690 130,41332 0,37005 0,99979 0,00475 186,38610 0,40531
PSNR -1,00000  0,13058  29,60169 0,35074 -0,91764  0,11050  32,02640 0,37005 -0,99979 0,13809  29,73371 0,40531
SNR -1,00000 0,12687  23,03935 0,35074 -0,91764  0,10955  25,46779 0,37005 -0,99979 0,13355  23,17510 0,40531
WSNR -1,00000  0,08657  30,34404 0,35074 -0,91764  0,07811  36,48167 0,37005 -0,99979 0,09476  31,09866 0,40531
NQM -1,00000  0,08551  24,97816 0,35074 -0,91764  0,09255  29,31941 0,37005 -0,99979 0,09387  25,73535 0,40531
ual -1,00000 3,93329  0,66861 0,35074 -0,91764  3,70138  0,63643 0,37005 -0,99979 3,68733  0,56288 0,40531
SSIM -1,00000 587907  0,80651 0,35074 -0,91764  6,59988  0,82415 0,37005 -0,99979 5,61145  0,78630 0,40531
MS-SSIM -1,00000 9,51296  0,91769 0,35074 -0,91764 14,79187  0,94101 0,37005 -0,99979 8,30981  0,90292 0,40531
VIF -1,00000  3,45011  0,54719 0,35074 -0,91764  2,96358  0,51103 0,37005 -0,99979 3,23776  0,39032 0,40531
VIFP -1,00000  4,00867  0,52199 0,35074 -0,91764  3,73643  0,47165 0,37005 -0,99979 4,07980  0,40671 0,40531
IFC -1,00000 0,14972  7,39925 0,35074 -0,91764  0,16763  6,00551 0,37005 -0,99979 0,27532  3,75958 0,40531
M-SVD 1,00000 0,03533  26,99826 0,35074 0,91764  0,07082 1567621 0,37005 0,99979 0,04511  22,20595 0,40531
PSNRHVS | -1,00000 0,10927  27,12021 0,35074 -0,91764  0,08710  31,49873 0,37005 -0,99979 0,11485  26,80599 0,40531
PSNRHVSM | -1,00000  0,08316  30,56177 0,35074 -0,91764  0,06604  37,05515 0,37005 -0,99979 0,09005  30,19246 0,40531
VSNR -1,00000 0,08139  26,97878 0,35074 -0,91764  0,06407  30,94687 0,37005 -0,99979 0,07899  27,80378 0,40531
MSSIM -1,00000 6,38539  0,85661 0,35074 -0,91764  7,95496  0,88484 0,37005 -0,99979 5,54863  0,83356 0,40531
R-SVD 1,00000 569780  0,38756 0,35074 0,91764 40,69038  0,25700 0,37005 0,99979 6,62560  0,43555 0,40531
RFSIM -1,00000  3,41547  0,58937 0,35074 -0,91764  3,31483  0,62366 0,37005 -0,99979 3,28847  0,54000 0,40531
Noised images set Gaussian blurred images set

MSE 0,81237  0,00910 100,97346 0,39411 0,98797  0,00439 211,44656 0,38995
PSNR -0,81237  0,15572  31,71788 0,39411 -0,98797  0,15460  28,52555 0,38995
SNR -0,81237  0,14865  25,15927 0,39411 -0,98797  0,14852  21,96694 0,38995
WSNR -0,81237  0,14818  26,67734 0,39411 -0,98797  0,09073  31,61332 0,38995
NQMm -0,81237  0,16024  20,08702 0,39411 -0,98797  0,07401  30,35604 0,38995
ual -0,81237 523394  0,75426 0,39411 -0,98797  3,30085  0,65625 0,38995
SSIM -0,81237  7,53398  0,85887 0,39411 -0,98797 537338  0,80619 0,38995
MS-SSIM -0,81237 12,02015  0,92651 0,39411 -0,98797  7,81222  0,90730 0,38995
VIF -0,81237  4,80324  0,61337 0,39411 -0,98797  3,16990  0,46756 0,38995
VIFP -0,81237  4,80752  0,57873 0,39411 -0,98797  3,99717  0,45549 0,38995
IFC -0,81237  0,31088  5,64399 0,39411 -0,98797  0,20562  6,03897 0,38995
M-SVD 0,81237  0,06974  22,18878 0,39411 0,98797  0,04283  32,46851 0,38995
PSNRHVS | -0,81237  0,15555  27,34557 0,39411 -0,98797  0,12567  25,66469 0,38995
PSNRHVSM | -0,81237  0,14740  28,41241 0,39411 -0,98797  0,08117  30,60296 0,38995
VSNR -0,81237  0,12523  26,12798 0,39411 -0,98797  0,09711  24,74562 0,38995
MSSIM -0,81237  7,42861  0,86687 0,39411 -0,98797 545139  0,85708 0,38995
R-SVD 0,81237  5,47580  0,49897 0,39411 0,98797 17,60429  0,28331 0,38995
RFSIM -0,81237  3,84595  0,54877 0,39411 -0,98797  3,40082  0,55846 0,38995
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Résumé : ’évaluation de la qualité d'image présente un intérét substantiel pour les services ainsi que pour
les systémes de traitement d'images ou le dernier maillon de la chaine est I'observateur humain. Le premier
objectif de cette these est de fournir une évaluation statistique complete et approfondie des performances
prédictives d'une large variété de mesures objectives de qualité avec référence complete sur un certain
nombre de bases de données étiquetées avec des scores indiquant la qualité subjective des images. Le second
objectif consiste a définir les attributs de I'image les plus pertinents pour I’évaluation de sa qualité. Deux
méthodes de sélection de caractéristiques ont été utilisées, a savoir la minimisation du risque structurel et
I’approche basée sur le modéle connexionniste. Le troisieme objectif de ce travail de recherche est d'exploiter
les techniques d'apprentissage supervisé, en particulier le modéle du perceptron multicouche, pour
I’estimation automatique de la qualité de l'image. Le systéeme apprend a partir des étiquettes de la qualité
subjective et construit un modele capable de continuer a fournir une mesure objective toujours corresponde a
I'avis de I'homme a toute image qui lui est présentée. Le but principal était d'optimiser la performance
prédictive des mesures développées en fonction de la corrélation, la monotonicité et la précision. La fonction
de colt par défaut basée sur l'erreur a été employée pour la premiére mesure développée (que nous avons
appelé ECF) et une fonction de colt personnalisée basée sur la corrélation a été proposée pour concevoir la
deuxieme mesure (que nous avons appelé le CCF). L’étude comparative de ces deux nouvelles métriques a dix-
huit autres algorithmes de qualité d'image avec référence compléte sur trois bases de données de qualité
d'image montre que les algorithmes d’ECF et CCF prennent en considération les non-linéarités du systeme
visuel humain. L'ECF est plus précise que la majorité des mesures étudiées, tandis que la CCF améliore
largement les résultats de toutes les métriques concurrentes en termes de corrélation et de monotonicité.

Abstract: Image quality assessment presents a substantial interest for image services that target human
observers. The first objective of this thesis is to provide a complete and thorough statistical predictive
performance assessment of a variety of full-reference objective quality measures over number of subjectively
rated image quality databases. The second is to define the image attributes that are the most relevant to its
quality evaluation. Two feature selection methods have been used including the structural risk minimization
and the neural network based approaches. The third objective of this research work is to exploit the supervised
machine learning techniques, especially the multilayer perceptron based model, for automatic image quality
appreciation. The system learns from the subjective quality scores and builds a model capable to further
provide an objective measure that continues to match with the human opinion to any other image. The main
target was to optimize the predictive performance of the developed measures according to correlation,
monotonicity and accuracy. The default cost function based on error was employed for the first developed
measure (that we called ECF) and a customized cost function based on correlation was proposed to design the
second metric (that we called CCF). The comparative investigation to eighteen other full-reference image
quality algorithms over three image quality databases shows that both ECF and CCF take into consideration the
nonlinearities of the human visual system. The ECF is more accurate than the majority of the metrics under
study, while the CCF outperforms all its counterparts in terms of correlation and hence monotonicity.



