DOOD3 80/

MODIFIED RESPONSE SPECTRUM MODEL FOR THE DE$IGN OF
STRUCTURES SUBJECTED TO SPATIALLY VARYING SEISMIC EXCITATIONS

by

Mounir Khaled Berrah \
Ingenieur d’Etat en Genie-Civil
Ecole Nationale Polytechnique d’Alger

P{ gi/-!-‘-
Algeria, June 1985 V

Master of Science in Civil Engineering
M.I.T., June 1987

Submitted to the Department of Civil Engineering
in partial fulfillment of the requirements
for the degree of e

ol vmefl =y = .
olod! sauad iob) L

Doctor of Philosophy |BBLIOTHEQUE — i : =]
Ecele lationale Polytechnique

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1989
© Mounir Khaled Berrah, 1989

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part.

Signature of Author %d'kru-f /( :{WE

Department of Civilﬂgineerh‘tg

May 18, 1989
Certified by é&”""”’//@L
/ / Eduardo Kausel
Thesis Supervisor
/ ( % (o
Accepted by = /{Z?ﬁ,gy e
C Ole S. Madsen

Chairman, Departmental Committee on Graduate Students




Ry 1 R e

EMBASSY OF THE DEMOCRATIC e
AND POPULAR REPUBLIC OF

Tt ,,x_ f
ALGERIA ! 'J’/MJ‘ /

2118 KALORAMA ROAD, N.W

. LD - ! L '-’
S RCTON. D R20008 Washington DC le 22 Mai 1989
Ref. SC No. 95

{29

BIBELIOTHEQUE CENTRALE
I e ECOLE NATIONALE POLYTECHNIQUE

o laad) sowazalt b ) 4L L

BIBLIOTHEQUE — .o EL HARRACH
Ecele Nationale Pulytemniqu;!

Objet : Thése de fin d'Etudes Supérieures

P.J. : 1 Exemplaire

J'ai 1'honneur de vous faire parvenir ci-joint le

P TIITHA Y0
texte de : soutenue avec Succeés en JUIN 198
ar M o bénéficiaire d'une alloca-
1) M. e [ i _
tion de formation du T B 1.'ENSEIGNEMENT SUPERL

La copie de cette thése vous est adressée conformé-
ment aux instructions de la Direction de la Coopération, Forma-
o o Ve

tion et Perfectionnement d 1'Etranger du Ministére de 1'Ensei

gnement Supérieur.

Le Conseiller Culturel,

Abdelhalim HAMMAT




Thése de fin d'Etudes Supérieures

1 Exemplaire

B
S BN 22 2

\'_JL-—-J
Washington DC 1le 22 Mai 1989

~ BIBLIOTHEQUE CENTRALE
ECQOLE NATIONALE POLYTECHNIQUE

EL HARRACH

ol 35 Ll ik N L5
BIBLIOTHEQUE — i__zexd|
Ecsle Hationale Polytechnique

J'ai 1'honneur de vous faire parvenir ci-joint le
texte de PH.D. soutenue avec succés en  JUIN 1989
par M. BERRAH MOUNIR KHALED bénéficiaire d'une alloca-
tion de formation du  MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

La copie de cette thése vous est adressée conformé-
ment aux instructions de la Direction de la Coopération, Forma-
tion et Perfectionnement d 1'Etranger du Ministére de 1'Ensei-
gnement Sunérieur.

Le Conseiller Culturel,

Abde HAMMAT




Modified Response Spectrum Model For the Design of
Structures Subjected to Spatially Varying Seismic Excitations

by

Mounir K. Berrah |Ezsle Haticnale Peolytec

Submitted to the Department of Civil Engineering
on May 18th, 1989, in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

Abstract

An important aspect of earthquake loads exerted on extended structures, or struc-
tures founded on several foundations, is the spatial variability of the seismic motion.
Hence, a rigorous earthquake resistant design of lifeline structures should account for
the spatial character of the seismic input, at least in an approximate way.

A procedure for the modification of the design response spectrum is proposed. It
enables addressing the problem of multiply-supported structures subjected to imper-
fectly correlated seismic excitations by means of an extension to the response spectrum
method. A modified response spectrum model is developed for the design of extended
facilities subjected to single and multicomponent ground motion, and a modal combi-
nation rule is proposed for each case. The modification procedure is based on adjusting
each spectral value of the given design response spectrum by means of a correction
factor which depends on the structural properties and on the characteristics of the
wave propagation phenomenon. Finally, the theoretical model is validated through
digital simulation of seismic ground motion, whereby model predictions are found to
be in satisfactory agreement with exact results.
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Chapter 1

Introduction

1.1 Objectives and Scope

The safety incorporated in the design of large or extended structures, such as
nuclear power plants, industrial buildings, bridges, or lifelines can significantly be
enhanced by improvements in the understanding and the representation of the earth-
quake loads exerted on these facilities. An important aspect of the earthquake loads
for extended structures, or structures founded on several foundations, is the spatial
variability of the seismic motion, whose study is now possible as a result of the deplc;y-
ment of strong motion instrument arrays, started at the end of last decade. Therefore,
a rigorous seismic analysis of lifeline structures should account for the spatial variabil-
ity of the ground motion, at least in an approximate way. This situation has motivated
the present work, whose main objective is to provide a practical means for the seismic
analysis and design of spatially extended facilities accounting for partially correlated
seismic excitations. In order to succeed in including such an aspect into seismic de-
sign practice, it is essential to provide the engineering community with an attractive
means that takes the form of an extension to a commonly used tool. In other words,
while a full Random Fields analysis to address this problem would be fastidious and
not practical, an attractive a.lterna.tive for engineering design situations would consist

in modifying the design response spectrum, so as to account for the spatial extent of



the structure to be analyzed (or designed) and for the spatial character of the input
motion. Therefore, a procedure for the modification of the design response spectrum
is proposed in this thesis, which enables addressing the problem of multiply-supported
structures subjected to imperfectly correlated seismic excitations. The technique is
an extension to the mode superposition method combined with the response spec-
trum method, thereby allowing the inclusion of this potentially important problem

into seismic design practice.
1.2 Organization

In Chapter 2, a review of past work on the subject of strong motion arrays and
spatial variability of ground motion is n:;a,dt;, and the relevance .of the present tﬁesis
work is put into evidence.

In Chapter 3, the general derivation of the modified response spectrum model is
presented. It addresses the cases of discrete systems subjected to both single and
multicomponent ground motion, and the case of bridges subjected to a single ground
motion component.

- In Chapter 4, modal combination rules are developed for the cases of single and
multicomponent ground motion, accounting for the spatial variability of the seismic
excitation.

In Chapter 5, the theoretical response spectrum model is validated through digital
simulation of seismic ground motion.

Finally, Chapter 6 summarizes the results and provides suggestions for further



research.
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Chapter 2

Background

2.1 Introduction

Earthquakes are complex and heavily damaging phenomena that must be accounted
for in estimating the safety of structures. Earthquake ground motions exhibit a high
variability in both time and space, and may be probabilistically modeled based upon
the theory of Random Fields. While the temporal variability has been the object of ex-
tensive research and sophisticated modeling because of its relatively easy quantification
from seismograms, the spatial variability, whose investigation requires the (ieployment
of dense networks of strong motion accelerographs, is not yet well understood.

During an earthquake, a structure is subjected to forces not only caused by the
inertial loading, but also by the spatially varying nature of the ground motion. This
effect, usually referred to as wave passage, is the result of a number of factors, such as
site geology and stratigraphy, wave content, dispersion, scattering, etc. The problem of
wave passage is of essential importance in the seismic analysis and design of of extended
facilities such as dams, nuclear power plants, and bridges, in which differential ground
motion can induce substantial additional stresses. Therefore, for a seismic analysis of

lifeline structures to be rigorous, it behooves to take into account the spatial variability

of the ground motion, at least approximately.




2.2 Review of Previous Work

Past work on the subject of strong motion arrays and spatial variability of ground
motion has mainly focused on four research areas, which will succintly be presented
in subsequent paragraphs.

1. Design, site selection, and deployment of strong motion instrument arrays (e.g.

Iwan, 1979), which is an area that deals, essentially, with topics such as:

e Favorable array locations.

Design of arrays for source mechanisms and wave propagation studies.

Design of arrays for local effects studies.

e Array construction and operation,' and implementation.

Thus, the goal aimed at in this research area, is an improvement in the under-
standing of ground motion nature by providing measurements resulting from actual
earthquakes.

2. Interpretation of actual earthquake records for specific array-sites and seismic
events (e.g. Loh et al., 1982, Bolt et al., 1982, Harichandran and Vanmarcke, 1984,
Abrahamson, 1985, Loh and Yeh, 1988). This research area has flourished after the
installation of the SMART-1 (Strong Motion Array in Taiwan), located in the north-
east corner of Taiwan (Lotung City), and which was begun in September 1980. Being

a dense network of strong motion accelerographs, the SMART-1 provides a good op-
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portunity for the study of spatial variations of seismic waves. Based on the SMART-1

data, the following topics have been tackled:

e Generation of Fourier amplitude spectra for different station pairs.

e Moving window analysis in the time and frequency domains for the study of spatial

variations of ground motion.

Identification of wave types and their directions of propagation.

Description of seismic wave coherency and power spectrum as functions of, wave

number, frequency, azimuth of propagation and wave type.

Space-time correlations.

3. Formulation of analytical tools (both deterministic and statistical) for the pro-
cessing and interpretation of recordings obtained with large instrument arrays (e.g.
Burg, 1964, Aki and Richard, 1980, Vanmarcke, 1983, Harichandran and Vanmarcke,
1984, Loh and Yeh, 1988). This research area is a natural complement to the two

aforementioned ones, and it focuses on:

e Development of schemes for seismic array data processing.

¢ Development of analytical models for the space-time variation of earthquake ground

motions.

13



4. Stochastic characterization of spatial variabilities of ground motion, and analysis
of structures and facilities to spatially varying seismic motions. Among the contribu-

tors to this research area, we can cite the following:

o Kausel and Pais, 1984, investigated the spatial and temporal variabilities of seismic
ground motions that may be expected in soil deposits, by means of simple phys-
ical models for stochastic SH waves travelling in a homogeneous medium. The
statistical properties of the motions at two different points on the surface and/or

within the soil mass were computed and analyzed.

e Harada, 1981.4, presented a probabilist:ic dpscription of spatigl va.ria.tiqn of st_rong
earthquake-generated ground displacement. Maximum values for, the ground
displacement, the relative displacement between two points on ground surface,
and the ground strain, were expressed in terms of the spatial correlation function,

which may be estimated from data analysis.

e Harada and Shinozuka, 1986, in a continuation of the work just described, intro-
duced the notion of ground deformation spectra, which express the relationship
between the maximum value of the relative displacement between two points
on ground surface and the separating distance. The spatial correlation function
was estimated from data analysis, and the theoretical development was based on

univariate and spatially unidimensional time-space stochastic processes.

e Hindy and Novak, 1980, investigated theoretically the response of buried pipelines to

14




partially correlated seismic excitations (an exponential decay of cross-spectrum
was assumed with respect to frequency and separating distance) in both lateral
and longitudinal directions. It was found that partial correlation of seismic
excitations could produce excessive stress in the pipe, which would depend on the
degree of correlation of the excitation and its frequency content. Further, axial
stresses were found to be higher than bending stress, and to be decreasing with
the increase of the pipe radius or the wall thickness. The analytical development

was based on random vibration theory.

e Lee and Penzien, 1983, presented a stochastic method for seismic analysis of struc-
tures and piping systems subjected to multiple.sﬁpport exc_ita.t.idns.' In either the
time domain or the frequency domain, peak response statistics could be found,
including the effects of modal cross-correlation and cross—correlation of multiple

support excitations.

e Zerva et al., 1988, developed a stochastic model for the ground excitations. Based on
this model, 1;h1t=T responses of pipelines and single span simply supported bridges
to perfectly and partially correlated seismic excitations were investigated. It
was found that for continous pipelines, the spatial character of the seismic input
was of importance, and that the differential ground motion was likely to cause
damage at the joints. However, it was concluded that the effect of differential
ground motion was not significant for single-span simply supported bridges, even

though it was found that the bridge response at certain sections would be slightly
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higher for the case of partially correlated excitations than for the case of perfectly

correlated excitations.

e Harichandran and Wang, 1988, investigated the response of simple beams to spa-
tially varying earthquake excitations, using random vibration theory. It was con-
cluded that the assumption of identical support excitations leads to conservative
estimates of the maximum beam response, while the assumption of time-delayed
support excitations can lead to unconservative estimates. Incidentally, it is to
be noted that these conclusions concern maximum beam response only, and do
not apply to arbitrary sections along the beam. Therefore, for design purposes,

.

the situation still needs further investigation.

Having briefly exposed the work done on the subject of spatial variability of ground
motion, it behooves to mention that further investigation is still needed with regard
to both the seismological aspect and the engineering aspect of the problem. Indeed,
from a seismological viewpoint, further exploration of effects of source mechanisms,
geology, stratigraphy, local site, etc., ought to be done so as to improve the available
ground motion models. Regarding the engineering aspect, on the other hand, it is
essential to provide practical means, as an alternative to random vibration theory,
for the seismic analysis of elongated structures, incorporating the spatial variability
of the ground motion, at least approximately. Also, as an additional note to the
engineering aspect, it is important to shed some light on the as yet unresolved issue of

the response of structures to incoherent seismic motions, as opposed to the importance
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of wave travelling effects that was recognized about two decades ago in independent
pioneering studies by Newmark (33| and Scanlan [40]. As was described earlier, the
present thesis work aims at contributing to the engineering aspect of the problem of

spatial variability of ground motion.
2.3 Relevance of Proposed Work

From an earthquake engineering viewpoint, the most prominent parameter char-
acteriziné ground motions is the maximum ground acceleration, and seismic design
criteria are most often expressed in terms of maximum acceleration . A design value
for the maximum acceleration may be obtained from an attenuation relationship as
~ a function of a specified magnitude and distaﬁce, from correlations with a spetl:iﬁed
Modified Mercalli Intensity, or directly from a regional risk map which corresponds to
an appropriate mean return period.

The maximum acceleration per se is by no means a sufficient representation of
earthquake ground motions for seismic analysis and design purposes. It serves, how-
ever, as an anchor for more sophisticated and detailed ground motion descriptions.
Typically, the seismic input takes the form of time histories, spectral density func-
tions, or smooth response spectra, all of which can be conveniently scaled with respect
to the maximum ground acceleration .

Time history analyses performed on different accelerograms - all scaled to the same
ﬁuimum acceleration - can provide valuable information as to the variability of the

seismic response. However, such a task requires extensive calculations and is expensive

17



for practical purposes.

Spectral density functions along with duration of strong ground motion constitute
a second representation of seismic loading. A fundamental property of the spectral
density function lies in the fact that the square root of its integral over all frequencies
is equal to the r.m.s. ground acceleration. Since the r.m.s. ground acceleration is
proportional to the peak ground acceleration, it is possible to scale the seismic input
described by a spectral density function by adjusting the area under the spectrum.
There are more sophisticated models of spectral density functions, based on the concept
of evolutionary spectra, which can handle non stationary processes, whose statistics are
time dependent. But a spectral density function, as a description mode for a seismic
input, is not commonly used in seismic design practice, because it requires involved
stochastic analyses.

The last and most common representation of earthquake ground motions for seis-
mic analysis and design is by means of the response spectrum. The combination of this
seismic loading representation with the modal superposition method is widely used in
earthquake resistant designs of conventional above-ground structures for the approxi;
mate computation of the structural seismic response. The fundamental requirement for
the applicability of this method is that the structure at hand, simply or multiply sup-
ported, be subjected to a uniform translational seismic excitation. Such an assumption
seems to be realistic for non elongated structures, which extend over short distances

relative to earthquake vibration wavelengths. However, it is not the case for elongated

18



structures, such as bridges or dams, which are generally subjected to changing mo-
tions along their length. This twofold situation has provided the essential impetus for
the work contemplated in this thesis, whose objective is the provision of a practical
means for the seismic analysis and design of an extended facility accounting, at least
in an approximate way, for partially correlated seismic excitations (imperfectly coher-
ent seismic motions combined with wave travelling effects). An attractive alternative
for the practical means sought after, would be to develop a procedure that modifies
the design response spectrum - assumed to be spatially homogeneous - by means of
simple models for the cross-correlation functions. In other words, it will be assumed
_tha.t the response spectra do not change in horizontal planes, even though the motions
may not be spatially uniform. The cross-correlation characteristics will be obtained
from models that account for the physical characteristics of the wave-propagation phe-
nomenon. The advantage of such an alternative, over the random vibration approach
for instance, is the possible inclusion of the potentially important problem of spatial

variability of earthquake ground motions into seismic design practice.
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Chapter 3

General Derivation of the

Modified Response Spectrum Model

3.1 Introduction

In earthquake resistant design, it is common to assume that the entire base of a
structure is subjected to a uniform ground motion. In other words, the same seismic
motion is assumed to be acting, simultaneously, at all points attaching the structure to -
the ground. This hypothesis in the treatment of earthquake excitations is undoubtedly
advantageous, because it substantié.lljr facilitates the .dynamic a.naly-sis,.which can be
performed by means of the well established and widely used response spectrum method.
However, such a hypothesis inherently implies that the ground motion is a result of
spatially uniform, vertically propagating shear waves, or, that the base dimensions of
the structure at hand, are small relative to the seismic vibration wavelengths. As a
consequence, it is clear that the assumption of uniform ground motion is inappropriate
for extended facilities, and hence, that the use of the response spectrum method is
invalidated for such structures. Therefore, it behooves to develop a procedure that,
not only addresses the problem of multiple support excitation, but also is practical
enough, in order to gain acceptance within the engineering design community. As was
mentioned in earlier parts of this dissertation, a promising alternative would consist

in modifying the design response spectrum, so as to account for the spatial character

20



of the seismic input. Such a development is the object of the present chapter.

In brief, the design response spectrum, as it is classically understood, is considered
to be given at a site of interest. This design response spectrum will be modified, so
as to account for the spatial character of the seismic input exerted on an extended
facility to be implemented in that site. The modification procedure will be based on
adjusting each spectral value C_‘f the given design response spectrum. Such a task will
be achieved by examining each modal equation, and expressing the mean value of the
maximum modal response for the case of partially correlated excitations, in terms of
the homologous modal response had the seismic input been uniform. By so doing, a
modified design response spectrum will be derived, and it will be expresséd in terms
of the given design response spectrum, by means of a relation that takes the spatially
varying nature of the ground motion into account. It is worth mentioning at this
point, that relating the mean values of the maximum modal responses, as was stated
earlier, is the end result of a multi-step process, which starts by relating the spectral
density functions of these very responses. While the spectrum modification procedure
will be developed by means of a random vibration analysis, such an analysis will be
transparent to the prospective user of the model.

Prior to getting into the development per se, it is important to state the assump-

tions and hypotheses which the present work is based upon:

e Earthquake ground motions are probabilistically modeled by means of a homogenous

space-time random field, which is considered as a collection of temporal random

21



processes at each of the spatial locations. Both seismic input and structural
output are assumed to be zero-mean stationary Gaussian Processes. In fact,
the stationarity of the structural response would be justified even if the seismic
input were considered to be transient stationary, so long as its duration would

be several times larger than the fundamental period of the structure.

e The Design Response Spectrum (mean value R and standard deviation ORr) is as-
sumed to be given. It is also assumed to be spatially homogeneous within the site
of interest, even though the support motions may be different from one location

to another.

Auto-spectra of the ground motion acceleration are considered to be the same at
every location, to be consistent with the given design response spectrum, and to

follow a model whose mathematical expression is given.

e Cross-spectra are related to auto-spectra by means of the coherency function, whose

mathematical expression is assumed to be given.

Soil-structure interaction effects are neglected, and support motions are considered

to be equal to free-field motions.

Structures are assumed to be classically damped.

It is important to mention at this stage, that the proposed procedure is independent

of the mathematical expressions of both the auto-spectra and the coherency function
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of the ground motion. All it is based on, is that these two functions are given, as

opposed to being unknown to be determined.
3.2 Discrete Systems

In this section, the derivation of the modified response spectrum model will be
presented for extended lumped mass systems, such as industrial buildings. The for-
mulation will, at first, account for one ground motion component, and will, in a second

phase, be extended to multicomponent ground motion.
3.2.1 Case of a Single Ground Motion Component

The coupled equations of motion of a linear, lumped mass, multi-degree of free-
dom, multiply-supported structural system subjected to uniform undimensional trans-

lational seismic excitations can be written in matrix form as follows:

M, 0 U, C. Oy U, K, K U, 0
+ < = (3.2.1.1)
0o M||G Cw G || Uy K, K || U P,
where:

s and b are subscripts referring to structure and base (foundation) respectively.

sb and bs are pairs of subscripts referring to coupling between structure and base.

M refers to mass matrices.

C refers to damping matrices.

23



K refers to stiffness matrices.

U, U, and U refer to vectors of, absolute displacement, absolute velocity, and absolute

acceleration, respectively.

P, is a vector of reaction forces at the base (support points).

Note that there is no mass coupling between the structure and the base because
masses are lumped.
Let’s now decompose the displacements into a rigid body component and a non-

rigid body component.

= + (3.2.1.2)
Ub TbUn Vb
where:

T,Uy is the rigid body component of the structural displacement.

V, is the non rigid body component of the structural displacement (relative displace-

ment).
T,Uy is the rigid body component of the base displacement..
V, is the non rigid body component of the base displacement.

Uy is a scalar in this case, since a single ground motion component is under consid-

eration. Uy = uy.
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T, and T, are transformation matrices (influence vectors in this case), for the structure

and the base respectively, which satisfy the rigid body condition:

K.l Kab Tg 0
= (3.2.1.3)

Kbt Kb Tb 0
= K, T, + KT, =0 (3.2.1.4)

Note that likewise, there are no damping forces induced by a rigid body velocity.
Note that V;, = 0 since the ground motion is uniform.
Let’s combine equations (3.2.1.2) ‘and (3.2.1.1), and make use of the rigid body"

condition (3.2.1.3), to write the equations of motion for the structural part:

MV, +C,V, + K,V, = —M,T,i, (3.2.1.5)

Assuming that the structure is classically damped, and using modal coordinates,

one gets:

(8T M,3)Y + (87C,8)Y + (8TK,8)Y = —0T M, T. i ( ;
3.2.1.6

V,=®Y

where:
Y is a vector of modal coordinates.

® is a matrix containing the mode shapes of the structure.

25



From (3.2.1.6), the k*® modal equation can be written as follows:

G + 28wt + Wiye = —Mefio
where:
yi is the k*" modal coordinate

Bk is the viscous damping ratio for mode k, such that:

¢f£cs¢k

2Bwy =
{Mnék

wp is the natural frequency for mode k, such that:

wz =1 {Ks¢k
T ¢TM, ¢

~k is the participation factor for mode k, such that:

_ $M,T,

T = STM, b

(3.2.1.7)

The modal equation (3.2.1.7) could be solved in a number of ways. For design

purposes, however, the response spectrum method is the most widely used means to

compute the maximum value (in the absolute sense) of the modal response. Namely,

if R(w,B) is the design response spectrum at the site of interest then:

lve] =l | R(we, Be)
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It is important to note that, in fact, |y;,|nmc is the mean value of the maximum
modal response.

Alternatively, y, could be characterized by its spectral density function given by:

S (@) = 7} | He(w) [* Say(w) (3.2.1.9)

where:

Sy, (w) is the spectral density function of y;.

1

H = -
£(w) wi — w? + 2ifrww

is the complex frequency function (transfer function) for

mode k.
Si, (w) is the spectral density function of the ground acceleration at the site of interest.

Since stationary Gaussian Processes are assumed, a description through spectral
density functions is a complete characterization in the probabilistic sense.

Having presented the case of uniform seismic excitations, where any physical re-
sponse can be computed by means of the response spectrum method combined with the
mode superposition method, let’s examine the less trivial case of non-uniform seismic
input.

The coupled equations of motion of a linear, lumped mass, multi-degree of free-
dom, multiply-supported structural system subjected to non uniform unidimensional
‘transla.tional seismic excitations are also given, in matrix form, by the general system

of equations (3.2.1.1). However, for the case of non uniform seismic input, support
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motions are different from one location to another. For this reason, the structural
response will not be decomposed into a rigid body component and a non rigid body
component, as for the case of uniform seismic input; because such a decomposition
would make the computation of the non rigid body component of the response very
complicated. Indeed, this response component would be affected by both the rigid
body part of the loading (inertia forces due to uniform seismic input) and the non
rigid part of it. This situation would induce a mixed input problem (acceleration and
displacement), which is highly undesireable.

The strategy to be adopted for the problem of multiple support excitation, is a de-
composition of thé structural response into a pseudo-static component and a dynamic

component [9]. Hence, let us perform the following decomposition:

= o+ (3.2.1.10)

where:

U? is the pseudo-static component of structural displacement.

V, is the dynamic component of structural displacement.

For the static (pseudo-static) case, (3.2.1.1) yields:

K, K, || U 0
= (3.2.1.11)

Ky, K, U, P,

where:
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Py, is a vector of reaction forces at the support points due to static displacements:

(3.2.1.11) = K,U!+ K,U,=0 (3.2.1.12)

= U!=-K;'K,U, (3.2.1.13)

From (3.2.1.11), the equations of motion for the structural part read as follows:

MV, +CV,+K\V,= — M, U’ —C,U,
(3.2.1.14)
= (KU + KaUh)

By virtue of (3.2.1.12), and by neglecting the support damping contributions and the

structural damping term, one gets:

MV +C,V,+K,V, = -M,U? (3.2.1.15)
Which can be rewritten as:
M,V,+C,V, + K,V, = M,K;'K,,U, (3.2.1.16)
by making use of (3.2.13).
Note that it is possible to retrieve the equations of motion for the case of uniform
seismic input. Indeed, Uy = 14Uy => U? = — K[ 'K, T, U from (3.2.1.13)
= U! = -K;(—K,T,)U from (3.2.1.4).
= U? = T, U, (3.2.1.17)
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By substituting (3.2.1.17) into (3.2.1.15), one gets the equations of motion for the
case of uniform seismic motion given by (3.2.1.5). Hence, if seismic motions are uni-
form, then the static component of the structural response is equal to the rigid body
component of it.

After this brief remark, let’s proceed with the case of non uniform seismic input.
Assuming classical damping, and using modal coordinates, one can transform (3.2.1.16)

into:

(3T M, )Y + (87C,8)Y + (8TK,d)Y = 8TM, K K, U,

(3.2.1.18)
V, =Y "

U, is a vector containing support accelerations.
Uy = [@]T, i=1,2,..,n
¢ indicates the support number (or the support point).
n is the total number of supports.
From (3.2.1.18), the k** modal equation can be written as follows:

Tk + 20pwits + Wiy = iA,,,-&,- (3.2.1.19)

i=1

¢ indicates the support point
k indicates the mode.
Because of the nature of the seismic loading, (3.2.1.19) cannot be solved by means of

the design response spectrum, which was used to solve (3.2.1.7). However, y; can be
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characterized in a stochastic sense by the following:

Sy (w) =| Hy(w) |* S5, (w) (3.2.1.20)

where:

SP (w) is the spectral density function of y, for the case of partially correlated exci-

tations (non uniform seismic input).

The superscript p stands for partially correlated excitations.

S =Y Akl ‘(3.2.1.21) -

i=1

S;, (w) is the spectral density function of 3.

Let’s express S;, (w) in terms of auto-spectra and cross-spectra of the ground accel-
eration at the different supports. Prior to doing so, let’s do the same work for the

autocorrelation function R;, (7).

R;, (1) = E[8(t)sk(t + )]

ZA;.,u. ZA;,,u. t+ T))I

s—l i=1
= FE EZA;,‘A*,U.. #i(t+ 1)
i=15=1

By changing order of operation between expectation and summation, one gets:
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R;,(r) = iiAuAkjE[ﬁi(t)ﬁj("+f)]

i=1j=1

iiAHAk:'Rﬁ.-ﬁ,- (7)

i=15=1

Hence,

Riy(r) = 3 AuiAxi Riiy (7 (3:2.1.22)

i=1j5=1

By taking Fourier transforms in (3.2.1.22), one gets:

n n

S; (w) = ZZAHA”'S&-"”‘; (w) (3.2.1.23)

i=15=1

Let’s now make use of the following equations:

Sii; (W) = 3,4, (w) (3.2.1.24)
Sﬁ..a"(w) =T (w, d"")Sﬁo (L\J) (3.2.1.25)

Where:

* indicates complex conjugate.

rij(w,d;;) is the coherency function of the seismic motion, which is taken to be an
exponentially decaying function of both frequency, w, and distance separating

two locations, d;;.

Si, (w) is the autospectrum of the ground acceleration common to all locations.
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By virtue of (3.2.1.24) and (3.2.1.25), (3.2.1.23) can be rewritten as:

Sst(w) = ZAh W)+22AhAkJ uu,( )

S
n—1

= ZA S (W) +2Z Z AksAk: Real( u.u,(w))
i=lj=i+1

n-1 n
= ZA:,--H!Z > AwiAripi;| Sao(w)
i=1 i=1j=i+1

where p;; is the real part of the coherency function. It is the frequency dependent
spatial correlation coefficient.

Hence,

ZAz o+ 22 Z AgiAxj pij

1=1j5=i+1

uo( ) (32126)

Therefore, S?, (w) can be written as follows:

(3.2.1.20)
——

(3.2.1.26)

§7,(w) =| Hi(w z:A F25T 3 Ao | () (3.2.1.27)

i=1j5=i+1

Combining (3.2.1.9) and (3.2.1.27), it is possible to express the spectral density func-
tion of y; for the case of partially correlated excitations, Sj, (w), in terms of the spectral

density function of y, for the case of fully correlated excitations, Sy, (w):

1 n
P w) = "}’_i E.A =+ 22 Z AksAka:J Ft( ) (3'2128)
i=1

i=1 j=i+1

By considering all 4,;’s identical (uniform seismic input) in the k** modal equation for
g .
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the case of non uniform seismic input (3.2.1.14), one gets:

Gk + 2Brwide + wiye = o A) (3.2.1.29)
=1

where o(t) is the ground acceleration acting at all support points if the ground mo-
tion is assumed to be uniform (no loss of coherence and no travelling wave effects).

Comparing (3.2.1.29) and (3.2.1.7), and identifying participation factors, one gets:
Te=—) A (3.2.1.30)

Before getting any further in the development, let us examine two extreme cases:

1. Case of fully correlated support motions: p;;’s = 1 (3.2.1.28) reads as follows:

S? (w) (W)

ZA +2Z EAklAk:

Vi _'2"
Yk |i=1 i=1 j=i+l
1 n
= _2 EA’H Sy w
T \i=1

Using (3.2.1.30), one gets:

Which is an expected result because one should be able to get to the case of uniform
seismic input starting from the case of non uniform seismic input and considering all

support motions to be identical.

2. Case of uncorrelated support motions p;;’s = 0 (3.2.1.28) reads as follows:

57 () = [ZA"]
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>4k
i:l—sﬂk (w)
(;Aki)z

= Sy (w) =

Closing this parenthesis, and pursuing the procedure development, it has been
noted that (3.2.1.28) expresses the relationship between spectral density functions for
the cases of partially and fully (perfectly) correlated seismic excitations. Let us now
relate the corresponding response spectra. In other words, let us express the response
spectrum (mean value of the maximum response) for the case of partially correlated
seismic excita.tionls in terms of the “classical” response spectrum (mean value of the
maximum response for the case of uniform seismic input).

Finding the mean value of the maximum of a stochastic variable given its spectral
density function is a complex problem, and exact solutions are not available. However,
under reasonable assumptions, satisfactory results can be reached. For the present
case, and as was stated in the introduction to this chapter, all stochastic processes are
assumed to be zero-mean, stationary, and Gaussian. Such simplifying assumptions, but
not unjustified for seismic motions, render the task of seeking an expected maximum
value feasible. To briefly justify the aforecited assumptions, it is worth mentioning that
while earthquake induced ground motions are inherently non-stationary, the strong
phase of such motions, during which the peak response generally occurs, is ususally
considered to be nearly stationary. The Gaussian character of the seismic motions

is acceptable on the basis of the central limit theorem, since the earthquake motions
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result from the accumulation of a large number of randomly arriving pulses.

If z(t) is a random process satisfying the precedent assumptions, then a prescribed
duration 7 must be imposed in order to find a realistic maximum absolute value [35].
For the present case, 7 is the duration of the strong motion phase. Let the maximum

value be z, such that:

z,= T |z(t) | (3.2.1.31)

Because of the random nature of z(t), z, is also random. But in practice, the interest
is in the mean value (and the standard deviation) Z, and o, , of z,.
Assuming the excursions above a certain level (barrier) of the process z(t) to be mu- ,.

tually independent and to have a negligible duration (Poisson process), Davenport [11]

has shown that the mean value Z, and the standard deviation o, are approximately

given by:
= i |
T, = |V2nvr + ——| o, 2.2:1:32
vV 2lnvr ( )
T 1
O, = —=———0, 3.2:1:33
" V6V 2Invr ( )
where:

o, is the root mean square of the process z(t) given by:



S.(w) is the spectral density function of z(t).
7 is the prescribed duration.
~ is Euler’s constant = 0.577216.

v is the mean zero-crossing rate of the process z(t)

Prior to further elaborating on v, let us define some necessary parameters:

G.(w), the one-sided spectral density function of the process z(t) defined by:

ol = ./;OOG,(w)dw

or

0 w<O0

Sz(w) being an even function of w.

)i, i*? spectral moment of the process z(t) given by:

Having defined these parameters,

1 Oz 1 Ag
V= ——= —4|—
ToO, V Ao
where o; is the root mean square of the process z(t), given by:
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i LWG,-(w)dw = Amsz,(w)dw = A2
Note that o2 = A,.

For the sake of completeness, one ought to mention that more involved work has
been done on the distribution of the extreme values of the process z(t). Namely,
Vanmarcke [47] derived a distribution for the first-crossing time of a given level by
| = |, which takes into account the statistical dependence among crossings. Based
on Vanmarcke’s work, Der Kiureghian [13] has given empirical expressions for Z, and
... The difference between Der Kiureghian’s expressions and Davenport’s expressions
increases with detl.reasing bandwidth of the process. This difference results from the
fact that for narrow-band processes, statistical dependence should not be disregarded.
However, in many applications, including earthquake engineering, the description of
the dynamic loads contains considerable inaccuracies [36]. Therefore, for the purposes
of the present work, the practical and satisfactory model proposed by Davenport will
be retained.

Starting from (3.2.1.28) relating power spectra, let us try to relate response spectra

(mean value of maximum response) by means of Davenport’s expressions:

(3.2.1.28) >
1 n
Gp = —2 ZAz +2Z Z AriAripii | Gy, (w) (3°2'1'33)
Tk |i=1 i=1 j=i+l
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The above equation relates the one-sided spectral density functions of y, for the cases of
partially correlated seismic excitations and fully correlated seismic excitations. Having
related the one-sided spectral density functions, one can relate the spectral moments:
Let A\, and A2, be the m** spectral moments of the modal response y; for the cases of

fully correlated and partially correlated seismic excitations, respectively.

Hence,

Am = /mw’“G“ (w)dw (3.2.1.34)
0

2 j; WGP, (w)dw | . (3.2:1.35)

Let’s express A? in terms of Ap,.

A2 = j(;mw'"G" (w)dw

n-1 n
j; —2 ZA +2) D AwiAripij
k

i=1 i=1j=i+1
n

= gAi,-f “‘Gﬂ(w)dw+2z Z Ak,Ak,f pi;w™ Gy, (w )dw]

i=1j=i+1

Gy (w)dw

Define:

Jo pijw Gn(w)dw ,
ijm 3.2.1.36
fipa fo w GFE( )dw ( )

Using (3.2.1.34) and (3.2.1.36), A2, can be rewritten as:
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1 n n-1 n
Al == ,\mZAi,- +2Z Z AHAk,-P:‘.fmkAm:I
Tk i=1 i=1j=i+1
Hence,
1 n 3 n-1 n
Moo= = DAL +2) Y AkiAripismi | Am (3.2.1.37)
Tk |i=1 i=1j=i+1

(3.2.1.37) relates the m** spectral moments. Of interest for the evaluation of the peak
response statistics are the zeroth and second spectral moments. Incidentally, p;jox
represents the spatial correlation (cross—correla.tion) coefficient between the relative
responses of two identical oscillators (wy, 8;) respectively subjected to ;(t) and ,(t).
‘While pijor represents the spatial correl.a.tidr‘l (cross-correla.tionj coefﬁt.:ient bétWeen
the relative velocities of the two identical oscillators subjected to the same respective
seismic loading.

Having related spectral moments, let’s relate necessary parameters for the evalua-
tion of the peak response statistics:

1. Root Mean Square of the Processes:
Let 0,, and of be the root mean square of the modal response yi for the cases of

uniform and non uniform seismic input, respectively:

o =10 (3.2.1.38)

of =1/A (3.2.1.39)
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H P 3 o
Let’s express o} in terms of oy,:

n-1 n 1/2
ZA2 + 22 z AhAk}puOk] ’\D]

i=1 1=15=i+1
Hence,
1/2
= [ )}42 +2Z Z A,,.Ak,p.,m]] oy (3.2.1.40)
i=1lj=i+1

2. Mean Zero-Crossing Rate:

Let v and v? be the mean zero-crossing rates of the modal response y; for the cases

of fully correlated and partially correlated seismic excitations:

. TR NTY ' '-
=—|— 2.1.4
v ?r(}\g) (321 1)
1 (AP 1/2
P e
v - (/\g) (3.2.1.42)

Let’s express v? in terms of v:

n n-1 n H/2
DAL +2> AkiAijijzk] A2

i=1 i=1j=i+1

coaa AN 1l
T \ AP T

0 Vi it
l: EA +2> > AkiAkjpijOk] Ao
i=1 i=1j=1+1
n n-1 n 11’2
Y AL +2) Y AwiAripijn 1/2
i=1 i=1j=i+1 1 (A
m )10

n n-1 n
DAL 42D Y AkAiipion
i=1

i=1j=i+1

Using (3.2.1.41), v? can be rewritten as:
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1/2

EAz +2z Z: AhAkastt

VP = i v (3.2.1.43)

n-1 n

ZAz +2)° Z Ak Agjpijor

1=15=i+1

3. Peak Factors:
By virtue of (3.2.1.32) and (3.2.1.33) (Davenport’s expressions), the peak response
statistics for the case of uniform and non uniform seismic input can be written as

follows:
a) Uniform seismic input
Mean(max(y);) = p; -0, (3.2.1.44)

o (max(y);) = g0y, (3.2.1.45)

where p, and ¢, are peak factors given by:

pr = V2nvt + 0 (3.2.1.46)

(3.2.1.47)

b) Non uniform seismic input:

Mean(max(y:),) = p2-oP (3.2.1.48)

of(max(ys),) = ¢f-of,  (3.2.1.49)
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where p? and ¢? are peak factors given by:

2 = V2InuPr + ﬁ (3.2.1.50)

@ =T
LR V6 2lnvrr

(3.2.1.51)

Let’s express p? in terms of p,, and ¢? in terms of g;.

vPT

4 / i
— 2lnur — —4/92] —_—
p”r Vv a2invPt + —2171. nvt + —ZInurl

= R 1 = L_I
& V6 2lnvrr 64/ 2invm

where ; is such that:

P
VWr=vn = n=—7
v

n n-1 n 112
> AL + 2) Y AkAxipijon
=1

= =" =t ] T - (3.2.1.52)

n n-1 n
DAL +2) ) AwAiipijon

=1 1=1j=i+1

Hence,

p: = '\H'ZIRUT]_ + ,J;—

2inv T1
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uqu
Il

™
\/_— 6+/2lnvn

And finally:

P =p,, (3.2.1.53)

@ =qn (3.2.1.54)

The last two equations express that the peak factors for the case of partially correlated

seismic excitations, over a duration 7, are equal to the peak factors for the case of fully

(-:orrela.ted- seismic excitations, over a dﬁratior; ‘ri. 7y and 7 aré related by (3.2.1.52) .'
At present, the final step in the process is reached, and it is to relate the peak

response statistics in each one of the two cases of seismic excitations.

(3.2.1.48) —> Mean(max(y:),) = pioy,

n—1 . i/
ZA ‘+“2Z z AhAk:pUOk]

(3.2.1.40) (3.2.1.53) => Meéan(max(y:),) = p,,la,,,=|
=1 i=1j5=1+1

— Mga.n(ma.x(y;,) ) = Mean(max(yx)r,)

n-1 n 1‘{2
ZA +2> 3 AkiAijijDk]

1=17=1i+1

(3.2.1.55)
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Hence, (3.2.1.55) expresses the mean value of the maximum k** modal response for the
case of partially correlated seismic excitations, in terms of the maximum k** modal
response for the case of fully correlated seismic excitations. Let’s define a modified
response spectrum, which accounts for the spatial character of the seismic input as

follows:

Mean(max(y;),) =| Y | RE(wp, Bx) (3.2.1.56)

where RP(w,) is the modified response spectrum, and ~; is the participation factor
for mode k.

Also,

Mean(max(yk)r,) =| Y& | Ry, (wk, Bk) (3.2.1.57)

where R, (w,f) is the response spectrum which assumes identical support motions.

Hence, (3.2.1.55), (3.2.1.56), and (3.2.1.57) =

n—-1 n 1';2
R?(wk, Br) = Ry, (wk, Br) ZA +2)° Y AwiAxjipijor = (3.2.1.58)
=17=i41
fomp‘J Fk(w)dw — Iﬂmp‘J | Hk(w) [2 Gﬁﬂ (w)du) (3.2.1.36)

Pijok = ==
o KRGy, (w)dw oo | He(w) * Gy (w)dw
Note that the pair (wg, k) is used in a generic (dummy) sense in (3.2.1.58). Alterna-

tively, (3.2.1.58) enables any modal response to be modified to account for partially
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correlated seismic excitations. However, the modification factor (or correction factor)
will vary from mode to mode.

For the sake of completeness, let us also mention that an analogous equation to
(3.2.1.55) could be arrived at for the standard deviation of the maximum modal re-

sponse, namely,

(3.2.1.49) = o” (max(y:),) = ¢fof,

n-1 n 1/2
ZA +2)° > AﬁAij:'ij]

(3.2.1.40) => 0®(max (yi)r) = ¢r,0y, ——
I =10 i=15=i+1

(3.2.1.54)

(3.2.1.45) => 0”(max (yi),) = o(max yk)n

1/2
ZAh + ZE Z AhAk:PuOk]

1=1j=i+1

(3.2.1.59)

Hence, (3.2.1.59) expresses the standard deviation of the maximum modal response

for the case of non uniform seismic input, in terms of the standard deviation of the
maximum modal response for the case of uniform seismic input.

An analogous equation to (3.2.1.59) could be written for the standard deviation to

be accounted for, in the modified response spectrum:

1/2

n-1 n
o (RE(w, Br)) = o(R,, (Wi, Br)) 7— ZA +23 > AnAxjpijor (3.2.1.60)
i=1j=i+1
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where:

o(Ry,(w,B)) is the standard deviation relative to the “classical” response spectrum,
which assumes identical support motions.

o(R?(w,p)) is the modified standard deviation to account for the spatial character
of the seismic input. It is relative to the modified response spectrum.

For practical purposes 7 and 7; will be considered equal. There is a number of rea-
sons favoring such a simplifying consideration. Firstly, the sensitivity of peak response
statistics to the prescribed duration (strong phase duration) is not very pronounced
because of the logarithmic function in the expression of the peak factors. Secondly,
the measurcment of the strong phase duration has some inherent inaccuracy. Thirdly,
equation (3.2.1.52) suggests that from a practical viewpoint, the ratio of 7; to 7 may
be assumed to be close to unity. Therefore, if 7; and 7 are taken to be equal, then
they both can be omitted in the final equations where they appear as parameters of
the response spectra. Such an omission is by no means detrimental to the formulation
presented herein, since the response spectrum, as a means of representing earthquake
ground motion, does not include the strong phase duration.

By virtue of the above, (3.2.1.58) could be rewritten as:

1/2

n n-1 n 1
RP(wg, Br) = R(wk, Be) |D_Ak + 2D D AxiAripijk "l (3.2.1.61)
=1 i=1j=i+1

Likewise, (3.2.1.60) could be rewritten as:
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1/2

o(RP(wk, Bi)) = o(R(we, Bx)) iAi. + 2"2_: Z": Ai Ak piji (3.2.1.62)
i=1 i=1j=i+1 | Ve ]

Where in both equations p;;or has been written as p;;; for the sake of ease of notation.

A last aspect, which will be examined in the context of the present formulation,
is the situation where a given mode does not contribute to the structural response
under uniform seismic excitations. In other words, the case where v, = 0 is under
consideration. It is important to point out that this situation implies, by no means,
that this very mode will have no contribution to the structural response under non

uniform seismic excitations. This fact can be observed from the following:
Y% =0=> S, (w) =1} | Hi(w) |* Si(w) =0 from(3.2.1.9)

Also,

vk =0=> ) A =0, from(3.2.1.30)

i=1

However,

n n-1 n
Ve = 0 7&} S:k (UJ) =| Hk(w) I2 ZA:. + 22 E Aks'Akjps'j Sgo(w) =0, fI'OIIl(3.2.1.27)
=1

i=1j=i+1
Hence, while the spectral density function of y, for the case of uniform seismic input
vanishes, that for the case of non uniform seismic input does not. The way to proceed
in this case would be as follows:
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Let Si(w) =| Hi(w) [* Ss,(w)

(3.2.1.63)

which represents the spectral density function of y, for the case of uniform seismic

input, and for a participation factor ~; equal to unity. Alternatively, y; would be such

that:

Ui + 2Brwi s + wiye = —iy

Hence,

Si(w)

n n-1 n.
DAL 230 Y AkAwipi;

i=1 i=1j=i+1

Following the procedure presented earlier, one gets:

M gan(ma.x(y;,)) Mean (max(y))
i=1j=i+1

n-1 n 1"!2
ZA +2Z Z AHAH,O;_-;J:]

n-1 n 1/3
of (max(yx)) = o(max(y)) [ZA +2> > AkiAkjpijk]

i=1j=i+1

where:

Méan(max(y;)) = 1 - RP(wg, 5)

Mean(max(yx)) = 1 - B(wg, k)
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(3.2.1.64)

(3.2.1.65)

(3.2.1.66)

(3.2.1.67)

(3.2.1.68)

(3.2.1.69)



of (max(yk)) = o(R"(we, Br)) (3.2.1.70)

o(max(yx)) = o(R(wk, Bx)) (3.2.1.71)

Therefore, the modified response spectrum model is given by:

n n-1 n 1/2
R"(w;,,ﬂk) = R(Wk, ﬁ)‘) ZA%. -+ 22 Z AkiAk,-p,-jk (3.2172)
i=1 1=1j57=1+1
And the standard deviation to be accounted for is given by:
n n-1 n . ”2
f:l'(R"I (wg,ﬁ;,)) = O'(R(wk,ﬁk)) ZA:| = 22 Z Ak;Akjp‘-J-g (3.2.1.73)
i=1 i=1j=i+1

Notice that (3.2.1.63) and (3.2.1.65) could have been used from the beginning of the
development, thereby avoiding the issue of mode participation. It has not been done
so, however, so as to put into focus the interesting issue of having a mode which
does not participate to the structural response under uniform seismic excitations, but
which does participate to it under non uniform seismic excitations. This issue will be
illustrated in the last part of this chapter.

As a closing statement for this section, it is worth mentioning that the developed
procedure enables the use of the mode superposition method in combination with a
modified response spectrum model to treat the problem of multiply-supported struc-

tures subjected to imperfectly correlated seismic excitations.
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3.2.2 Case of Multicomponent Ground Motion

Having presented the case of a single ground motion component in the previous sec-
tion, let’s extend the formulation to the case of multicomponent ground motion. The
assumption of uncorrelated (statistically independent) ground motion components,
which is routinely made in practice, will also be followed in the present development.
The reason for adopting such an assumption, is that accounting for statistical depen-
dence would not necessarily improve the quality of the formulation. On the contrary,
it would require a more involved work, throughout which many unresolved questions -
would arise, that would necessitate making supplementary assumptions, whose under-
lying justification would be more mlatheﬁlatical conve.l-lience than phlysic.a.l evidence.

From an organizational viewpoint, the present section will be very similar to the
previous one. For the sake of brevity, results arrived at in the previous section and
needed in the present one will merely be used as such, without redevelopment.

The coupled equations of motion of a linear, three-dimensional, lumped mass,
multi-degree of freedom, multiply-supported structural system subjected to uniform
(or non uniform), three-dimensional translational seismic excitations can be expressed

in matrix form by means of (3.2.1.1):

M, 0 U, c Ch U, K Ka U, 0
+ + = (3.2.1.1)
0o M || T Cie. Gy U, K,, K, U, P,

All parameters have already been defined. The advantage; of the above equation is
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that it is general enough to encompass different situations (uniform seismic input, non
uniform seismic input, unidimensional seismic input, three-dimensional seismic input).
Clearly though, the size and the structure of the parameters will accordingly vary from
one situation to another.

Let’s first examine the case of uniform seismic input (fully correlated seismic ex-
citations). The equations of motion for the structural part are given by (3.2.1.5), in

which the parameters are adjusted to the three-dimensional case:

MV, + C,V, + K,V, = —M,T.i, (3.2.1.5)

The intermediate steps between (3.2.1.1) and (3.2.1.5) have been purposely, skipped:

fig = [fio1 1oz tos)" (3.2.2.1)
where:
ig; and tgp are the ground accelerations for the two horizontal components.
tios is the ground acceleration for the vertical component.

Assuming that the structure is classically damped, and using modal coordinates, one

gets:

(3" M,3)Y + (87C,8)Y + (3T K,®)Y = —0T M, T, i, ( :
3.2.2:2

V,=®Y
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where all parameters have previously been defined. From (3.2.2.2), the k** modal

equation can be written as follows:

Gk + 2Bkwidk + WiYE = — Yk, o1 — Yk, Boz — Yk, thos (3.2.2.3)

where v, is the participation factor for mode k associated with the ¢** ground motion
component.
k=1,2,..., total number of modes.

qg=12,3.

TM,T,
k 8389
e 3.2.24
’Yk‘l ¢{Ms¢k ( )
where T,, is such that:
T, — [Tsl T,g T,s] (3.2.2.5)

(3.2.2.5) expresses that the influence matrix 7, is the assemblage of three vectors,
Ty (g = 1,2,3), each one relative to a ground motion component.

Let R,(w,B) (¢ = 1,2,3) be the design response spectrum corresponding to the
¢'* ground motion component at the site of interest. If the ground motion compo-
nents are uncorrelated, then it can be shown that the mean value of the maximum
modal response is approximately given by the SRSS (square root of sum of square)

combination of the three component contributions:
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3
| Y& |maz= J > Vi R2(we, B (3.2.2.6)

q=1 :
 |maz 18 in fact the mean value of the maximum modal response since R,’s give
q
mean values.

The spectral density function of y; is given by:

S(@) =| Hu(w) [ Siy(@) (3.227)
where:
B0 = Smin®) (3:2:28)

Since the ground motion components are uncorrelated, S;, (w) will be given by:

S;, (w) = i:'vqu&w (w) (3.2.2.9)

Combining (3.2.2.9) and (3.2.2.7), one gets:

: :
Spe(@) = 27y | Hi(w) |* Sig, (w) (3.2.2.10)

q=1
(3.2.2.10) may be used to derive (3.2.2.6). Indeed, let’s express the one-sided spectral

density function of y, G, (w):

Gun(@) = S | Eilw) [ Gy () (3:2:2.11)
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where:
Gio, (w) is the one-sided spectral density function of dig,(t).

Let’s relate the zeroth spectral moments:

3
Aok = D Aokg (3.2.2.12)
q=1
where:
o0
)ﬁog =f G“ (w)dw (32.2.13)
0
o0 2 . o 2 ] e .
Aokg = fo Yeg | He(w) [* Gigy (w)dw (3.2.2.14)
Note that:
[tillmez”
Aok = (M) (3.2.2.15)
Pk
2
)\qu i (M) (3.2.2.16)
Pig

where p; and py, are peak factors. For practical purposes, as described in [14] and [42],
the peak factors will be considered approximately equal. Therefore, by substituting

(3.2.1.15) and (3.2.1.16) into (3.2.1.12), one gets:

| i lnas= \Jgﬂing(wk,ﬁk) = Mean(max(y))

which is (3.2.2.6).
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Having presented the case of a thfee-dimensional uniform seismic input, whose
three translational components are uncorrelated, let’s examine the case of a non uni-
form seismic input (partially correlated seismic excitations). The assumption of sta-
tistically independent ground motion components is, of course, retained.

The equations of motion for the structural part are given by (3.2.1.16), in which the

parameters are adjusted to the three-dimensional case:

M,V, +CV, + K.V, = M,K'K,,U, (3.2.2.16)

U, is a vector containing support accelerations in three directions.
: I} el |
y = ['H.q.,‘] (3.2.2.17)

where:
qg = 1,2,3 refers to the ground motion component.
1 =1,2,...,n refers to the support point.

Assuming classical damping, and using modal coordinates, one gets:

(8T M,®)Y + (87C,3)Y + (8TK,®)Y = 8" M, K, ' K,,U, ( )
3.2.2.18

V,=®Y

From (3.2.2.18), the k** modal equation can be written as :

3 n
Gk + 2Bkwile + Wiye = D) Akgitiqi (3.2.2.19)
g=1li=1
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where k indicates the mode, ¢ the ground motion component, and 1 the support point.
Notice that if @y = i, (uniform seismic input), then by comparing (3.2.2.3) and

(3.2.2.19), one gets:

Teg = _ilAkqi (3.2.2.20)

i=
Because of the non uniform nature of the seismic loading, (3.2.2.19) cannot be solved by
means of the design response spectrum, as was the case for (3.2.2.3) (uniform seismic
input). Hence, let’s characterize y; in a stochastic sense by expressing its spectral

density function:

SP (w) =| He(w) | Si, (w) (3.2.2.21)
where:
&) = 23: 3 Argitigi(t) (3.2:2.22)

Notice that 3;(t) in (3.2.2.8) is different form §i(t) in (3.2.2.22).
Let’s express S;, (w) in terms of auto-spectra and cross-spectra of ground acceler-
ation at the different supports and for the different ground motion components. Let’s

first do the same work for the auto-correlation function Rj, (7).
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R; (1) = E[5:(t)3(t +7)]

= EzAk@uq‘ () (ZZAkq,uq. t+7))

g=1li=1 g=1li=1

- B[S AL Tt u,,-(t+r)]

g=1r=1li=1j=1

Il

By exchanging expectation and summation, one gets:

1) = S S0S A A E [ (£)s (¢ + 7))

g=1r=1i=135=1

Since the different components are uncorrelated, R;, (7) will reduce

Ry, (r) = ZZEAM.AM R (1) (3.2.2.23)

g=1li=1j5=1

By taking Fourier transforms in (3.2.2.23), one gets:

3 non
W) = D DD ArgiArgs Sigiing; (w) (3.2.2.24)

g=1li=15=1

Let’s make use of the following equations:

Sﬁgiﬁq;’(w) = St.:"uq,(w) (3-2.2.25)
Sﬁql‘ﬁq:‘ (OJ) = Tgij S"ioq (OJ) (32.226)

Where:

* indicates complex conjugate.
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ry; is the coherency function of the seismic motion for component g (along axis ¢)
between stations ¢ and j. It will be assumed that for component ¢, there will be a loss
of correlation along axis ¢ only. Hence, depending upon the location of the support
points ¢ and 5 there may or may not be a loss of correlation so far as component ¢ is
concerned.

Saoq(w] is the autospectrum of the ground acceleration corresponding to component
g, and common to all locations.

By virtue of (3.2.2.25) and (3.2.2.26), (3.2.2.24) can be rewritten as:

M

‘S_‘Eg (w) = éAz ..S;m' (w) + izn:Akq,'Akqj S&,.-iiq,‘ (w)

i=17=1
J#

n n-1
ZAz :'Suo., )+ 22 Z ApgiApgiReal(S thgitig; (w))]

_|—1 i=15=i+1

ZAz i T 22 Z Ake‘Akquq-:] Stioq (@)

1 [i=1 1=1j5=i+1

"
Il
-

Il
Mw

L=
|l
-

Il
Mu

Il

q

where py;; is the frequency dependent spatial correlation coefficient. It is the real
part of the coherency function rg;.

Hence,

3

Si, =2 ZA2 i +2Z Z Abgi AkgiPais | Siiog () (3.2.2.27)

q=1 |i=1 i=1j=i+1

Therefore, S?, (w) can be written as follows:

(3.2.2.21)
——

(3.2.2.27)
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3
=2 | Hi(w ZAz it 22 Z Akgi AkgsPai; | Siog (W) (3.2.2.28)
g=1

i=1j5=i+1
It is appropriate at this point to recall (3.2.2.10), which expresses the spectral density

function of y; for the case of uniform seismic input:

Sy, (w) = Zmlffk(w)l Siioq (W) (3.2.2.10)

q_

By comparing (3.2.2.28) and (3.2.2.10), one can observe that both S? (w) and S, (w)

can be written in an analogous way:

Z: m, (3.2.2.29)

3
w) =3 Sy, W) (3.2.2.30)

=1

where:

9*4 _! H" ZAz i T 22 Z Akgi ArgjPgis Sun,( ) (3.2.2.31)

i=1 1=1j5=i+1
Sure = Teq | He(w) |* Sigg (w) (3.2.2.32)

Hence, the contribution from component ¢ to the spectral density furnciton of y; for
the case of partially correlated seismic excitations can be expressed in terms of its

homologous for the case of fully correlated seismic excitations as follows:
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1 n n-1 n
Sh, (W) = ~3 DAL +2D 0 D ArgiArgipgis | Sy, (w) (3.2.2.33)
i=1 i=1j=i+1

which is the equation that was arrived at for the case of a single ground motion
component (3.2.1.28). Therefore, based on the results reached in the previous section,
the mean values of the maximum modal responses due to component g, for the cases

of partially and fully correlated seismic excitations are related as follows:

n—1 1/2
Mean(max(y;,q)) = Mean(max(ys,)) Z:A 23 E Akgi AkajPaijk
i=1 i=1j=i+1
(3.2.2.34)
where:
o Pai Gy, (w)dw
Pgijk = %) 3.2.2.35
BE Gy () (82:3:55)
Gy () = 7Eg | He(w) |* Gigy(w) (3.2.2.36)

Pqijk Tepresents the spatial correlation (cross-correlation) coefficient between the rela-
tive responses of two identical oscillators (wg, i) respectively subjected to #,(t) and
Ugj (2).

Proceeding in an analogous way to that of the previous section, a modified response
spectrum which accounts for spatial correlation of seismic motions for component ¢

can be expressed:
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1/2
Rp(whﬁ*) Rq(whﬂk ZAz i T zrlz:l i Akgi Arg;Paijk L (3-2'2'37)
i=1j=i+1 | kg |
R} is the mean value of the maximum modal response (for a participation factor
equal to unity) due to ground motion component g accounting for non uniform seismic
excitations. R, is the homologous value for the case of uniform seismic excitations. R,
is assumed to be given.

At present, let’s express the maximum modal value of the response in terms of the

maximum modal values due to each ground motion component.

3.2.2.20) = GP ( G | 3.2.2.38
y.kq

Where GY, (w) and G, (w) are one-sided spectral density functions.

By going to zeroth spectral moments, one gets:

3
A= E,\ﬁ,‘q (3.2.2.39)
q=1
where:
o0
7 :'/; GP (w)dw (3.2.2.40)
» 00
N = [ Gl (w)du (3.2.2.41)
Note that:
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p 2
Ak = (Mean(mx(y*n) (3.2.2.42)
Pk
Veg RE (wi, B) | *
Ay, = (""—“p(-bq—"—i)) (3.2.2.43)

By virtue of a previous argument on peak factors, and by substituting (3.2.2.42) and

(3.2.2.43) into (3.2.2.39), one gets:

Meéan(max(y;)) = J > 2, (RE (we, Br))? (3.2.2.44)

Let’s compare (3.2.2.44) with (3.2.2.6):

3

Mean(max(y:)) = J Vg B2 (wk, Br) (3.2.2.6)

q=

As can be observed form the two previous equations, a procedure has been proposed,
based on a modified response spectrum model, which enables the computation of
the mean value of the maximum modal response for the case of non-uniform seismic
input. The way the mean value of the maximum modal response is expressed is exactly
analogous to the way it would be expressed had the seismic input been uniform. The
only difference is that the “classical” response spectrum is replaced by a modified
response spectrum model which accounts for the spatial character of the seismic input.
It is worth mentioning that, for practical purposes, providing a combination rule for
Ithe case of non uniform seismic motions which is exactly analogous to that for the case

of uniform seismic motions is very important. Analogously to the previous section,
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the standard deviation to be accounted for in the modified response spectrum model,

relative to component g, is given by:

1/2

o (Rf (wk, Be)) = o(Rq(we, Be)) EA’ i+ 22 Z Abgi Arg;Poisk (3.2.2.45)

i=1 i=1j=i+1 I kq I
where o(R?) and o(R,) are the standard deviations to be taken into account for the
cases of non uniform and uniform seismic input, respectively.

Finally, the standard deviation of the maximum modal response y; will be expressed

o? (max(yx)) \Jz'nq [o(RE (w, Br)]? (3.2.2.46)

As a last remark, let us note that the case of no participation of a given mode under a
given component of uniform seismic motion, is handled in exactly the same way, based

on the results of the previous section. Namely,

n-1 n 1/2
ZA::« +2)° > AkgiArg pm,k] (3.2.2.47)

i=1 i=1j5=i+1

R (wk, Br) = Ry(wk, Pe)

1/2
o (RY (we, Br)) = o(Rq(we, Br)) EA’ ; +2Z Z Akq,Akq,pq,,k] (3.2.2.48)

=1 1=1j5=1i+1

Mean(max(yx)) = R? (wk, B) (3.2.2.49)
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of(max(yey)) = o (Rf (wk, Br)) (3.2.2.50)

The combination of the different component contributions is performed as already

presented.

3.2.3 Application to Shear Buildings Subjected to a Single Ground Motion

Component

The purpose of the present section is to illustrate the use of the procedure devel-
oped earlier, through the relatively easy case of frame structures behaving as shear
beams (shear buildings), subjected to a singlg ground motion component. If the seis-
.mic excitations at the support points are fﬁlly correlated (i.e. no loss of coherence
and no phase delay), then the maximum modal responses can be obtained form the
design response spectrum R(w, ), given at the site of interest. However, if the seismic
excitations are imperfectly (partially) correlated, may it be due to a loss of coherence,
a phase delay, or both, R(w, ) is no longer the means by which the maximum modal
responses can be obtained. A modified response spectrum model, which accounts for
spatial variability of earthquake ground motions, has been derived. It has been ex-
pressed in terms of, the given design response spectrum R(w, ), at the site of interest,

and the given coherency characteristics of the seismic motion.
3.2.3.1 Single Bay Shear Buildings

Consider the case of a N-story single bay frame structure behaving as a shear
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beam (rigid girders, axial deformations in columns neglected), subjected to a single
horizontal component of partially correlated ground motions (fig. 3.1). For the sake

of simplicity, column stiffnesses will be assumed equal.

[=~4]
e
(]

Figure 3.1

The dynamic equations for the N degree-of-freedom structural part can be written
based on (3.2.1.16).

Namely,

M,V, +C,V, + K.V, = M,K; K, U, (3.2.1.16)
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All parameters retain the same definition as in earlier parts. Because of the column
stiffnesses, purposely chosen to be equal, (3.2.1.16) reduces for the present case to the

following:

MV, +C,V, + K,V,= —M,E3 (3.2.3.1.1)

where:

ET =[11---1] is an influence vector.

= L s =
S(t) = E(tﬂ(t) + ﬂ.z(t)).
Assuming that the system is classically damped, and using modal coordinates, one

gets:

(2"M,®)Y + (87C,8)Y + (87 K,8)Y = —3TM,E3

(3.2.3.1.2)
V,=®Y
From which the k** modal equation can be written as:
Gk + 2Bswi s + wive = —Yi$(t) (3.2.3.1.3)
where ~; is the participation factor for mode k.
HME
6 = e
¢E‘Ms¢k
The previous modal equation could be rewritten as:
- . Tk - Tk =
Tk + 2Brwils + Wiy = Tyl (3.2.3.1.4)
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which follows the same pattern as the general modal equation (3.2.1.19):

Je + 2Bewath + wiye = ) Awi; (3.2.1.19)

=1

Note that in the present case n (the number of support points) is equal to two. And

that:

Ap = ﬂ’_;g (3.2.3.1.5)
AH=—% (3.2.3.1.6)
Note also that (3.2.1.30) is satisfied:
n
e =—) Awi (3.2.1.30)

i=1
Therefore, by applying (3.2.1.61) to this case, the modified response spectrum model

can be expressed as follows:

1/2
LT p‘“‘] (3.2.3.1.7)

RP (wk, Be) = R(wk, Br) [ 2

where:

p12 is the frequency-dependent spatial correlation between stations 1 and 2.

P — f;oplan (w)dw
fooon(w)dW
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Gy, (w) =7k | He(w) |* G,

Hence, the maximum modal response (in the mean value sense) for equation (3.2.3.1.4)
can be expressed as:

Mean(max(yi)) =| vi | R? (we, Be) (3.2.3.1.8)

It can be observed that the expression of the maximum modal response for the case of
partially correlated seismic motions is exactly analogous to that for the case of fully
correlated seismic motions. The difference is that R?(w,3) has replaced R(w, ).

Prior to ending the present case, let’s examine the extreme situations for (3.2.3.1.7):

1. i,(t) and 4i,(t) are fully correlated (i.e. no loss of coherence and no phase del;ay,

i1(t) = ©2(t)), p12 = p120 = 1, and the relation between the response spectra reads as

Rf(w,B) = R(w,B)
which is an expected result.
2. i,(t) and #,(t) are fully negatively correlated (a particular case of time-delayed
excitations: no loss of coherence, and out-of-phase excitations, @(t) = —is(t)), p12 =
—1 (p120 = —1), and the relation between the response spectra shows that the response

spectrum for the case of partially correlated excitations is null.

RP(w,B) =0
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In words, such a loading leads to no response for the given structural system. However,
such a result can by no means be generalized to any single bay shear building in
which the column stiffnesses would not be equal. Further, it is interesting to note
that for the case at hand (single bay shear building with identical columns), the non
uniform seismic loading could be decomposed into a symmetrical part (rigid body
component) and an antisymmetrical part (non rigid body component) (fig. 3.2). And
one would observe that the antisymmetrical part of the loading does not contribute to

the structural response, although it does produce stresses in the members.

P —

[
+

777 7777 Ve 7777 7777
<> <—> <> €«—> €«—> >
iiy iig § 3 d —d

symmetrical antisymmetrical
part part
Figure 3.2
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Let

(g — i) iy =5—d

Based on this argument, the equations of motion (3.2.3.1.1) could be derived with-
out resorting to the general formulation. However, the above considerations are valid
for the present case only, and are not applicable to any general situation.

3. i,(t) and ,(t) are fully uncorrelated (i.e. total loss of coherence), p1; = 0,

p12e = 0, and the relation between the response spectra reads as follows:

(3.

RF(w, ) = R(w, f)

Finally, having examined the extreme situations, one can state that, for the case

at hand, the structural response is overpredicted if the assumption of fully correlated
excitations is made, while it is underpredicted under the assumption of fully negatively

correlated excitations.
3.2.3.2 Multibay Shear Building

Consider the case of a N-story multibay frame structure behaving as a shear beam,
subjected to a single horizontal component of partially correlated ground motions (fig.
3.3). For the sake of making the illustration simple and useful, column stiffnesses will

be assumed equal.
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The equations of motion for the N degree-of-freedom structural part can be written

based on (3.2.1.16):

MV, +C,V, + K,V, = M,K; KU, (3.2.1.16)

Because of the stiffness properties of the structure, (3.2.1.16) reduces for the present

case to the following:

72



MYV, +CV, + K,V, = —M,E3 (3.2.3.2.1)

where

ET =[11---1] is an influence vector.
1 n
5(t) = ;Zﬁ;(t) is the static response component.
i=1
t indicates the support point.

n is the total number of supports.

In the context of the general formulation, note that:

U'=Es

which is the pseudo-static (also referred to as static) component of the structural
displacement.
Assuming classical damping, and using modal coordinates, one can write the k**

modal equation as:

Gk + 28wt + wive = —(t) (3.2.3.2.2)

where 4, is the participation factor for mode k.

_ HME
V= ST M, éx
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(3.2.3.2.2) could be rewritten as:

Tk + 2Bewite + Wive = ) (?) i (3.2.3.2.3)
i=1
Hence, in the context of the general formulation:
1
A = T (3.2.3.2.4)
And
n
Te=—) Aw
i=1

By applying (3.2.1.61) to this case, the modified response spectrum model can be

expressed as follows:

1

n

n-1 n 1/2
1+ %Z 5 p.-,-,,]} (3.2.3.2.5)

i=1j=i+1

RP (wy, Br) = R(wk, PBr) {

gy = J0-Pii | Hi(@) |* Gag (w)duw
T [He(w) [? G (w)dw

pi; is the frequency-dependent spatial correlation between stations ¢ and j. Hence, the

maximum modal response for equation (3.2.3.2.3) is given by:
Mean(max(yi)) =| v | R (ws, Be) (3.2.3.2.6)

which is a similar equation to the case of fully correlated support motions, except for
the fact that R(wg,B) replaces RP(wy, Bi)-

Finally, let’s examine insightful extreme situations for (3.2.3.2.5):
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1. Support motions are fully correlated: All p;;’s = 1, the response spectra relation

reads as follows:

R*(w,8) = R(w,p) { [1+n221]}m

- R
[

1

n

1 1/2
= [1 + 202]}

n n

1 1/2
n )'2’]

= R(w,p) [; + = 1]1;‘2 = R(w,f)

Hence, R?(w,) = R(w,f), which is an expected result.

2. Support motions are uncorrelated: All p;;’s =0

R*(w, ) = R(w,f) {1+ 2 .O]}l,fz 2 R(w’ﬂ)\/g
RP(w,B) = R(w’ﬁ)\/g

3.3 Continuous Systems: Case of Bridges Subjected to a Single Ground

Hence,

Motion Component

The present section aims at extending the procedure developed for discrete systems
to a particular case of elongated continuous systems, namely, that of bridges subjected
to a single component of partially correlated seismic excitations. At first, the general
formulation for a multispan bridge will be exposed. Then, an application of this for-
mulation to the case of a single span bridge will be presented. Throughout this section,

previously derived results will be used as such, without unnecessary redevelopments.

3.3.1 Multispan Bridges
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Consider the case of a multispan bridge, modelled as a continous beam, subjected
to horizontal transverse partially correlated seismic excitations (fig. 3.4). Note that
for the purpose of the present formulation, the bridge could have been subjected to

partially correlated vertical support motions as well.

u

,;/7;’7’:”,—”

e

i Un—1

Figure 3.4

There are several ways of solving this problem. The modal superposition method
combined with the response spectrum method is commonly used if the structure at
hand is subjected to uniform translational excitations. However, if the seismic excita-
tions are imperfectiy correlated, then the use of the aforecited approach is invalidated.
The aim of the present work, therefore, is to develop a modified response spectrum
model, which essentially is an adjustment of the widely used response spectrum to the
situation of spatially varying ground motions.

The equation of motion for a beam flexure situation with viscous damping is given

by:

76




m‘;—zf + c%‘f 2 EI‘B‘" 0 (3.3.1.1)
where:
u(z,t) is the total horizontal transverse displacement of the beam.
m is the mass per unit length assumed to be constant.
¢ is the viscous damping per unit length assumed to be constant. (It is therefore,

implicitely assumed proportional)

E1 is the flexural rigidity of the beam assumed to be constant.

Let’s first examine the case of uniform support motions:

The displacement of the beam can be decomposed as follows:

u(z,t) = uo(t) + v(z,1) (3.3.1.2)

where:
~ ug(t) is arigid body displacement of the beam, induced by identical support motions
applied statically.
v(z,t) is the relative component of the beam displacement.

Substituting (3.3.1.2) into (3.3.1.1), one gets:

(3.3.1.3)
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0%u
—-m at=0 is the essential part of the effective loading. Indeed, the damping term 1::‘ai

ot
is neglected for practical purposes, and the term ET

4
Ug , : .
vanishes from considerations

ozt

relative to the static case.

Hence, (3.3.1.3) reduces to:

v  dv v A*u,

Let us expand the dynamic part of the displacement v(z,t) in terms of modal coordi-
nates:
o(z,t) = i¢j(z)y;(t) (3:3.15)
j=

where:

#;(z) is the j** mode shpae of the structure.

y;(t) is the j**» modal coordinate.

Substituting (3.3.1.5) inot (3.3.1.4), one gets:

d‘d:, i d%u,
qub_, dt: Ly Z¢, Ele Y= —m— (3.3.1.6)
1=

Multiplying through by ¢i(z), integrating over the length of the beam, and using

orthogonality of mode shapes, leads to:

[m / “$1dz l [ [ qbkdzl doe | [EI f i

(3.3.1.7) is in fact the k** modal equation, which can be rewritten as:

d': qbkdzl Yr = —mf drtipdz (3.3.1.7)

Uk + 2Bpwiti + wiye = —Yiiio , (3.3.1.8)
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where:

B is the viscous damping ratio for mode k, such that:
c
28wk = —
m

w; is the natural frequency for mode k, such that:

_ Eld‘$y/dz*

2
w
A m ()8

4k is the participation factor for mode k, such that:

o foL¢k (z)dz

T [ (2)de :

The modal equation (3.3.1.8) could be solved by means of the response spectrum
method. Indeed, if R(w, () is the design response spectrum given at the site of interest,

then the mean value of the maximum modal response can be expressed by:

Mean (maz(yx)) =| v | BR(wk, Br) (3.3.1.9)

Alternatively, yi could be characterized by its spectral density function given by:

Sy (w) = 7% | He(w) |? Sao () (3.3.1.10)
where all parameters have already been defined.

Having presented the case of uniform seismic motions, let’s examine the more

general situation of non uniform seismic motions. The equation of motion is also given
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by (3.3.1.1). Similarly to the formulation for discrete systems, the displacement of the

beam is decomposed by means of the following:

u(z,t) = u,(z,t) + v(z,t) (3.3.1.11)

where:
u,(z,t) is the pseudo static displacement induced by the support motions applied
statically.

v(z,t) is the dynamic component of the displacement.

u,(z,t) can be expressed in terms of the support motions as follows:
uy(z,t) = Y _hi(z)ui(t) (3.3.1.12)
i=1

where:
t indicates the support point.
n is the total number of supports.
hi(z) for i = 1,---,n are shape functions obtained form static beam deflection.
By virtue of previous arguments, the equation of motion (3.3.1.1) can be written as:
% dv otv 0%u,

m—+c—+ El—=—-m

otz " ‘ot ozt at? (3.3:1:19)

Similarly to the case of uniform seismic motion, modal decompostion of the dy-
namic component of the displacement can be made, and the k** modal equation reads

as follows:
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(3.3.1.14)

i . i,d
Tk + 2Bewii + Wiye = JQL))-—-

I HEL!

where all parameters have already been defined. Let’s substitute (3.3.1.12) into the

right hand side of the above equation:

f &x(z)hi(z);(t)dz

% JEdp(z)it,dz .
L2 S
lo'¢k(z)d= j; #2(z)dz
Let
L
(z)d
w1 ¢E(z2)h'(z) = (3.3.1.15)
Jo #i(z)dz
Hence, by using (3.3.1.15), the k** modal equation can be rewritten as:
n
Uk + 2Bewede + wive = Y Awitl; (3.3.1.16)

which has the same form as the equation arrived at for the case of discrete systems,
(3.2.1.19). This equation, as mentioned in earlier sections, cannot be solved by means
of the design response spectrum, which was used to solve the equation for the case
of uniform seismic loading (3.3.1.8). It is important to note that, since the modal
equation for uniform and non uniform seismic inputs for the present case have exactly
the same form as those for the case of discrete systems, the modified response spectrum
model for the former case will be a replica of that of the latter case, with the use of
the relevant parameters of course. In other words, from (3.3.1.8) and (3.3.1.16), it can

be shown that:
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ZA’ +2Z Z AkiAxjpi; | Sy, (w) (3.3.1.17)

i=1lj=i+1

which expresses the spectral density function of y, for the case of partially correlated
support motions in terms of its homologous for the case of fully correlated support
motions. Notice that (3.3.1.17) is identical to (3.2.1.28), which expresses the above
relation for the case of discrete systems. Therefore, by virtue of (3.2.1.61), the modified
response spectrum model to be used for the response analysis of the multispan bridge

subjected to multiple support excitations is given by:

a n—1, 1‘!2 ; .
1
RP(wg, Br) = R(wk, Be) ZA +2EEA,‘,A.,,p.,,, Tl (3.3.1.18)
1=1j=141

Recall that:

Piik = fo Pij |Hk( ) I2 Giiu(w)dw
T I | Hi(w) |* Gy (w)dw

Ap’s and ~; are parameters relative to the present case.
Likewise, based on (3.2.1.62), the standard deviation to be accounted for, in the

modified response spectrum model is given by:

1/2

o(RP(wk, Br)) = o(R(wk, Br)) ZA2 +2Z Z Aki Ak; Pijk

(3.3.1.19)
1=15=1+1 | Tk

Note that (3.2.1.68), (3.2.1.69), ..., (3.2.1.73) are used to handle the situation where

a mode under consideration does not contribute to the structural response due to a
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uniform seismic input.
In conclusion, a general modified response spectrum model has been arrived at. It
can handle both, discrete systems and the case of continous system presented herein,

for the seismic analysis under spatially varying ground motions.
3.3.2 Single Span Bridges

The present section aims at illustrating the use of the modified response spectrum
model, through a relatively simple, but very insightful case study. Consider a single
span extended bridge, modeled as a simple beam, and subjected to spatially varying .

horizontal transvérse support motions (fig. 3.5).

Figure 3.5
Since the structure at hand is not subjected to uniform translational excitations, the
use of the modal superpostion method combined with the response spectrum method
is invalidated. Let’s, then, use the modified response spectrum model, which accounts

for the spatial character of the seismic input, for the computation of modal responses.
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The modes and frequencies of a simple beam in flexure are given by:

mode shapes:

2 . krz
éi(z) = \/;sm = (3.3.2.1)
so that
L
j; ¢e(z)di(z)dz = b (3.3.2.2)
where 6y is Kroenecker symbol given by:
1 ifk =1
6;,1 = {
0 - ifk#l
frequencies:
EI
Liaas
W = km ﬁ (3.3.2.3]

where EI and m have already been defined.

The participation factor of a mode is given by:

Jo'd(z)dz _ [*
= —=— = d
W Egtea M
using (3.3.2.1), one gets:
W/ 0 if k is even
= _;L 1- (- =] (3.3.2.4)

™ \

2 if k is odd

kmr

In other words, if k is even, which means that the mode under consideration is anti-

symmetrical with respect to midspan, then this very mode will not contribute to the
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structural response under uniform support excitations. However, if k is odd, which
means that the mode in question is symmetrical with respect to midspan, then there
will be a contribution from this mode to the structural response under uniform support
excitations.
The equation of motion is given by (3.3.1.13):
%y dv 0tv o%u,

m—é—t;+c§+EI@=—m EYD

(3.3.1.13)

where:

u,(z,t) = ) _hi(z)ui(t) (3.3.2.5)

Bi(z)=1—= 3.3.2.6
@ =1-2 (3526
ha(z) = = (3.3.2.7)
L
Using modal coordinates, the k** modal equation can be written as:
2 .
Gk + 20ewie + wive = ) Awi (3.3.2.8)
i=1
where, by virtue of (3.3.1.15), A, and Ay, are given by:
v2L

Al EX2 v (3.3.2.9)
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V2L

— if k is odd
An=)
——  if k is even
km

The last two equations confirm (3.3.2.4) since,

2
e =— Ak
=1

Hence, the k** modal equation can be rewritten as:

V2L | tatuy if kisodd

Gk + 2Bewilk + Wiyk = e

iy — Uy if k is even

(3.3.2.10)

(3.3.2.11)

And by virtue of earlier development, the modiﬁed response spectrum model will be

given by:

1/% if k is odd
RP (wk, Bx) = R(wk, k)

2vV2L [1— pyg

p 5 if k is even

Hence,

= ~r if k is odd
Mean(max(y:)) = RP(wk, Br)

1 if kis even

which can be rewritten as:

2v2L |1+ pizk

; z 5 if k is odd
Mean(max(yx)) = R(wk, Bk) 4
2v2L |1 — p1ok . :
if k is even
km 2
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Analogously,
2v/ 1
2D Aoish s s dd

o?(max(yi)) = o(R(we, Br)) 25% i 2 (3.3.2.15)

= —2P12k if k is even

Therefore, the use of the modified response spectrum model for the computation of

modal responses under non uniform seismic input has been illustrated.
Let’s now examine this problem from another viewpoint so as to get more physical
insight. Namely, let us decompose the seismic loading into a symmetrical part (rigid

body component), and an antisymmetrical part (non rigid body component) (fig. 3.6).

+

/‘"“ /ﬁ’_ /5 '7{3/& ;{J

|
j
3

symmetrical antisymmetrical
part part
Figure 3.8
where:
) 1 .
8(t) = E(ul(t) + 15(t)) (3.3.2.16)
- T :
d(t) = E(ul(t) — (1)) (3.3.2.17)

In the present case, both parts of the loading will cause a structural response. In fact,
in the context of a mode superposition analysis, the response at any arbitrary point re-

ceives contributions from both symmetrical and antisymmetrical modes (with respect
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to midspan). Symmetrical modes with respect to midspan will be exclusively excited
by the symmetrical part of the loading, while antisymmetrical modes will be exclu-
sively excited by the antisymmetrical part. Hence, in the case of partially correlated
excitations, there will be a modal response at any given mode. It is worth mention-
ing at this point that such a fact would not be captured by the “classical” response
spectrum method since it is based on the assumption that the seismic excitation is
a uniform translation (full correlation), which inherently ignores the contribution of
antisymmetrical modes to the total response.

Following the (:’Lecomposition of the seismic loading, let’s decompose any modal

response as:

Yk = Yr1 T Yk2 (3.3.2.18)

where:

yk is the k** modal response.

yx1 is the contribution to the k** modal response from the symmetrical part of the
loading.

Y2 is the contribution to the k** modal response from the antisymmetrical part of
the loading.

Using (3.3.1.14) yx;1 and yx2 will be such that:

L
U1 + 2Bewilk1 + WYk = — U; ¢>k(.1:)d:c] 3(t) (3.3.2.19)
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& : L 2 -
Jiz + 28xwilnz + Wiyes = — [ ; oe(z)(1 — %)] d(t) (3.3.2.20)
2v/2L
L VoL if k is odd
j; ti(z)dz = L (1— (-1 =] b (3.3.2.4)
0 if k£ is even
. L 0 if k is odd
[ 821 - Byaz = Y21 4 (1) =
kn W2l ..
e if k£ is even

Therefore, yi1 and yi, are mutually exclusive. Alternatively, if k is odd, the mode is

symmetrical with respect to midspan, then:

Ye=Yr1 and yx; =0

which means no contribution from the antisymmetrical part of the loading, which is

expected. On the other hand, if k is even, the mode is antisymmetrical, then:

Ye =UYk2 and y; =0

which means no contribution from the symmetrical part of the loading, which is also

expected. Therefore, the k**» modal equation can be written as:

2v/2L | $(t) if kis odd

km %
d(t) if k is even

e + 2Brwite + wiye = — (3.3.2.21)

which is exactly identical to the equation (3.3.2.11), derived based on the general
formulation.

Before closing this section, let’s examine extreme situation for (3.3.2.14):
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1+ pi12k

Gy if k is odd
Mean(max(y)) = 2~——R(ws, Bt) 3 (3.3.2.14)
km 1—pio
¥ 5 if k is even

1. ,(t) and #,(t) are identical (fully correlated), then p;; = 1 and pyzx = 1, and

(3.3.2.14) reads as follows:

. V2L 1 if k is odd
M'éan(ma.x(yk)) = 2?3(%,5&)
0 if k is even

which is an expected result.
2. 4(t) and i,(t) are fully negatively correlated, p;; = —1, p13x = —1, and

(3.3.2.14) becomes:

/oL, 0 if k is odd
Mean(max(y;)) = 2= —R(wk, Bi)

1 if k is even

which also is expected.
3. i4(t) and #,(¢) are fully uncorrelated, p;; = 0, pi2x = 0, and (3.3.2.14) takes

the form of:

\/E if k is odd

Meéan(max(y;)) = 2~E~R(wk, Br)

SIS

if k£ is even



Chapter 4

Effect of Spatial Variation of Seismic Excitations

on Modal Cross-Correlation

4.1 Introduction

The modified response spectrum model developed in chapter 3 is a means for the
computation of modal responses for the case of partially correlated seismic excitations.
This model takes the form of an adjustment of the classical response spectrum, to the
situation of non uniform seismic input. The computation of a physical (as opposed to
rﬁoda.l) regponse of interest, should it bé for the t-:ase of uniform or non uniform seismic
excitations, is based on the combination of the classical or modified response spectrum
model, with the modal superposition method. In practice, this computation procedure
translates into the use of combination rules for maximum modal responses. For the case
of uniform support excitations, a number of combination rules, with different levels of
sophistication, has been proposed. The simplest rule is the so-called SAV, which stands
for sum of absolute values, and which generally is overconservative. A combination
rule, which is widely used in practice, is the SRSS rule. It stands for square root of
sum of squares, and it is more suitable than the previous one. However, it may be on
the unconservative side for closely spaced modes situations, such as seismic analyses of
nuclear power plants. To overcome this shortcoming of the SRSS rule, more elaborated

rules, which account for modal cross-correlations, exist. Different expressions for the
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cross-correlations coefficients, based on different considerations, have been suggeted
by Wilson et al. [52], Rosenblueth et al. [38], and Der Kiureghian [14], to cite a few
only. Among the aforementioned formulations, the one proposed by the latter author,
based on a random vibration analysis, may be considered to be the most rigorous.
The present chapter aims at proposing expressions for the modal cross-correlation
coefficients for the case of multiple support excitations, thereby providing a combina-
tion rule for the maximum modal responses given by the modified response spectrum
model. It is important to mention that the work spirit of this chapter is similar to
that of the previous one. Namely that, the expressions for the modal cross-correlation
coefficients sought after, will take the form of an adjustment, or an extension, of the
homologous coefficients for the case of uniform support excitations. The formulation
will, at first, account for a single ground motion component, and will, afterwards, be

extended to multicomponent ground motion.
4.2 Case of a Single Ground Motion Component

Let’s first go over the derivation of the existing expressions of modal cross-correlation
coefficients for the case of uniform support excitations. The following formulation is
due to Der Kiureghian [14]. The dynamic response of a linear, multidegree-of-freedom
system, discrete or continuous, classically damped, subjected to a single component of
uniform translational ground motion, can be determined by solving the modal equation

of motion (3.2.1.7 or 3.3.1.8):
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T + 2Brwite + wiye = —Yeio(t) (4.2.1)
where:
k is the mode number.
~k is the participation factor for mode k.
Any response quantity z(t) linearly related to the modal coordinates can be found

using the relation:

2(t) = 3 _Liwa(t) (4.2.2)
k
where L;’s are constant, and depend on' the response of interest. From [9] and [14],

the one-sided spectral density function of the response of interest, G,(w) is given by:

G.(w) = };:zl:LkL[H;(W)H{(W)'Yk’}']Gﬁo(&J) (4.2.3)

where:
k and [ indicate modes.
* indicates the complex conjugate.

H(w) is the transfer function (for displacement response) of mode k given by:

1
w? — w? + 2ifrwrw

Hy(w) =
Gi,(w) is the one-sided spectral density function of the input excitation.
Define E; and E, such that:
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Ex = L (4.2.4)
.E; = L;"T; (4.2.5)

where E; and E; may be considered effective participation factors for modes k and

respectively. Hence, (4.2.3) can be rewritten as;

G,(w) = ;;EgE;H;(w)H; (w) G (w) (4.2.6)
Incidentally, by switching k and ! in the double summation, the real parts of Hy (w)H;(w)
will remain, while the imaginary parts will cancel out.
In order ;:0 evaluate the ﬁlean value of the peak response, it is necessary to compute

the spectral moments of the response. The m*® spectral moment of z(t) is given by:

o0
A = f WG, (w)dw (4.2.7)
0
Substituting (4.2.6) into (4.2.7), one gets:

Am = ;;E,,E, Real fo ” W™ H} (w) Hy () Gy (w) dw (4.2.8)

Let
(o]
Amiy= Real / W™ H; (w) Hi(w) Ga, (w) duw (4.2.9)
0

h

where A, i is the m'* cross-spectral moment associated with modes k and /. Hence,

(4.2.8) can be rewritten as:

A = EZEkEl}tmlu (4.2.10)
E
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Let

A'l'l"l. kl
il = ———B__ (4.2.11)
vV A|'l'!,,kk"‘1l'n,.ll

h cross-correlation coefficient between modes k and . Hence,

where €, 5 is the m!

(4.2.8) can take the following form:

k

Am =YY ExEiemu V Am ke Am i (4.2.12)
1

where: -
A = [ 0™ | Hu(w) [} Gy (w)de (4.2.13)

Note that € is the cross-correlation coefficient between the k** and the I** modal
responses. And that €; i is the cross-correlation coefficient between the kt* and the It*
modal “velocities” (time derivatives of the response of interest). €; has no obvious
physical interpretation. However, it behaves similarly to cross-correlation coefficients
(14]. It is also shown in [14] that:

Wk

If ——vl,then Emiu—!l, m=0,1,2
wh

W

If

7 — O,then €pu —0, m=0,1,2
1

The mean value of the maximum response and the zeroth spectral moment of the

response are related as follows:

o [Mean (maz(z))r (4:2:14)

p
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where p is a peak factor. Hence,

—R(w‘“ﬁ*)} (4.2.15)

Aok = [
P
where:
R(w, ) is the mean response spectrum given at the site of interest.

Pk is a peak factor.

Therefore, by writing (4.2.12) for m =0,

do = DY ExEiour/ Aok rou (4.2.16)
i

k

and substituting (4.2.14) and (4.2.15) into (4.2.16), and by simplifying peak factors

for practical purposes [14] and [41], one gets: -

[Mean(maz(2))]* = ;;eoluEkE;R(wk,ﬁk)R(whB;) (4.2.17)

which can be rewritten as:

Mean(maz(2)) = [Zk:z;:eo'u Mean(maz(z:)) Mean(maz(z))]"/? (4.2.18)

where:

Mean(max(z;)) = ExR(wk, Bx)

Mean(max(z)) = EiR(wi, 5i)
which are the mean values of the maximum k** and /** modal responses, respectively
(they may be negative).
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For structures with well-separated frequencies, the coefficients €y vanish for k # I,

and (4.2.18) becomes:

Mean(maz(z)) = [?LMean(r:r:a:c(z;,)))2]1"2 (4.2.19)

which is the SRSS rule for modal combination.

At present, let us extend this existing formulation to the case of multiple support
excitations. The goal which is aimed at, is to get an analogous equation to (4.2.18)
that would read as follows:

1/2

ngn(max(z)) = [;;egiuﬁl_’éafz_(max(zk))Mgan(ma_.x(z;)) :

where:

The superscript p stands for partially correlated seismic excitations.

Mean(max(z;)) = E°R?(w, Bx)

Meéan(max(z)) = EYRP(wy, B)

RP(w, ) is the modified response spectrum model.

€51 is the modified cross-correlation coefficient between modes k and [ for the case
of non uniform support motions. Ideally, it should be expressed as the product of €

and a correction factor, that accounts for the spatial character of the seismic input.
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Let’s start the formulation by writing the k** modal equation for a linear, mutlidegree-
of-freedom, multiply-supported system, discrete or continous, classically damped, sub-
jected to a single component of non uniform translational ground motion (3.2.1.19 or
3.3.1.16):

T + 2Brwide + wive = ) _Apt (4.2.20)

=1

where all parameters have already been defined.
Any response quantity z(t) linearly related to the modal coordinates can be expressed

2(t) = Y _Liys(t) (4.2.21)
k '

where L;’s are con'stant,'depending-ori the response of interest. Let .
8k(t) = D _Awii(t) (4.2.22)
The spectral density function of the response, S?(w) is given by:
SP(w) = ;;LkL;H; (w) Hy(w) Ss,5, (w) (4.2.23)

where the superscript p stands for partially correlated seismic excitations. By switching
k and ! in the double summation, the real parts of Hj(w)H;(w)S;,; (w) will remain,
while the imaginary parts will cancel out. In order to evaluate spectral moments of the
response, one needs to express the one-sided spectral density function of the response,

G?(w). G%(w) is such that:

fo "GP (w)dw = f ” 57(w)dw | (4.2.24)

z
—00

98



Hence, let’s express the right hand side of (4.2.24):

];:s;’ (W)dw = f_ Z¥Z!:LkL=H£(w)H:(w)Ss,‘-.-,(w)dw
= j;w%:;L;L;z Real [Hj(w)H;(w)Ss,s, (w)]dw
Therefore,

Gt (w) = 2;ZL|§L1RCGJ [Hy (w) Hi(w) S35, (w)] (4.2.25)

Let’s now express spectral mofnents:
A j; "GP (w) dw (4.2.26)
Substituting (4.2.25) into (4.2.26), one gets:
Ape = ;;Lkz,,z Real /0 " W™ H () Hy () S, 5, () dw (4.2.27)
Analogously to the case of uniform excitations, let:

m

X2 & =2 Real /‘;mme;(w)Hg(w)S;k;! (w)dw (4.2.28)

and hence,

A=Y LN, (4.2.29)
k1

where X}, is the m** cross-spectral moment associated with modes k and ! for the
case of non uniform seismic input. Let’s also define the m*"? cross-correlation coefficient

between modes k and [ for the case of non uniform seismic input:

P
’\m,ld

P pP
vV '\m,kk)‘m,u

€ = (4.2.30)
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Therefore, (4.2.29) could be rewritten as:

Moo = 2.2 LiLi€h, ) M s Nt (4.2.31)
E 1

(4.2.31) could rewritten for m = 0 (zeroth spectral moment) as:

Ag = ZZLkL!fg,uv AD 1k A0 1 (4.2.32)
ko1

where:
M =2 [ | Bulw) [ Siy(w)dw

which is equivalent to

AS ik = /; | Hy(w) [_’ Gi, (w)dw (4.2.33)
From previous arguments:
Mé )
L [ f“"(maX(z))‘ i)
p

Mt )

Ak = ! ean(:ax(y"))] (4.2.35)
k

where p and p; are peak factors. By virtue of [14] and [42], (4.2.32) leads to:
Meéan(max(z)) = [ZZES,HLkL;M?:an(ma.x(yk))Mgan(ma.x(y;))]1’!2 (4.2.36)
k1 '
From (3.2.1.56),
Mean(max(ys)) =| 1 | B (wi, Bs) (4237)
Meéan(max(y)) =| v | R”(wi, B) (4.2.38)

where RP(w, ) is the modified response spectrum model.
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Define:

E, if >0
Ez:lfnlLkzq‘

—E; if 7.<0

E if >0
Ef =[m|Li=

i if 5<0

By using (4.2.39), (4.2.40), (4.2.37), and (4.2.38) into (4.2.36), one gets:

1/2
Man(max(z)) = zzes,uE:EERP(wk,mm(wha,)}
k 1
which can be rewritten as:

Mgan(ma.x(z)) = [?Zl:eg.uMgan(ma;(zk))M’éan(max(z; ))]2/?

where

Mean(max(z;)) = ELRP(wy, Bs)
Mgan(max(z;)) = E{R?(w;, )
Notice that if 4 = 0 (or 4, = 0), then (4.2.41) still holds true, with:

Mean(max(2;)) = Li R (w, Bi)

(4.2.39)

(4.2.40)

(4.2.41)

(4.2.42)

(4.2.43)

(4.2.44)

(4.2.45)

where RP(wg,fs) is given by (3.2.1.72), which addresses the case of no modal partici-

pation under uniform seismic input.

Hence, (4.2.42) represents the equation that was aimed at. At present, let’s express

€0, in terms of o u. Let’s first express Aj ,; in terms of Ao . From (4.2.28):

X, =2 Real fo " H} (w) Hi(w) S5, 5, (w) dw
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The first step is to express Sj,;(w) in terms of auto-spectra and cross-spectra of the
ground acceleration at the different supports. The cross correlation R;,; () can be

written as:

R;kgl(f) = F [§k(t 5;(t + T)]

= (EA,,,,,, () (> Auia(t + 7 )}

i=1

E ZZAkiAjjﬁi(t)ﬁ-:‘(t + r)}

1=1j=1

Exchanging the order of summation and expectation, R;,; (1) reads as:

Rs5(7) = iiAHAuRa.-a,- (7) (4.2.47)

i=1;j=1

where:

t and j denote support points.

k and ! denote mode numbers.
By taking Fourier transforms in (4.2.47), the cross-spectral density function, Sj,; (w)
is given by:

3&’! ZzAhAI: t..l,t..lJI ) (42.48)

i=1j5=1

Hence, Aj ,; can be written as:

Y- H—ZRealf H (@) H()3°3  Ari Ay Saca, () doo

i=15=1

~ZZA,;,A¢,2 Real f Hy (w) Hi(w) Sia, (w) duw

= ZEA“A:, [ Biw) Hi(w) Sasy () do
Hence,
Mo = 23wy [ Hi(0)Hi(w) S, () s (4.2.49)

102



Recall that:
Sisa; (W) = rij(w, i) Sip (w) (3.2.1.25)

where r;; is the coherency function between stations ¢ and j.

Define:
[ H () Hy () Saga (w) do
i = TS V) S () (4:2.50)
where:
[ i) Hi)S,() = Real [~ H; () Hi(w) Gy (w)dw = do
Hence,
| riim = ffoooﬂ-;(w)ﬂl(w)sﬁi&j‘(?)dw (4251) .

-~ Aom

ri;u can be thought of as the ratio of the covariance of the relative responses of 2
oscillators (wg,8:) and (w;, B;), respectively subjected to the partially correlated exci-
tations #;(t) and %;(t), to the homologous covariance for the case of fully correlated
excitations.

Hence, A§ ; can be written as:

M = 2.2 AriAijriiudou (4.2.52)
i=15=1
or as:
'\g,u = AD.HZZAHA{;'"{J'H (4.2.53)
i=lj=1

Therefore, € ,, can be expressed as:

AP
= —28 _ from (4.2.30) (4.2.54)

€0 =
V '\S,u '\g.u
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D AwiAijriju

_ Ao,k i=15=1
\,-" ’\'D kk o,ll . /2
(03 Avidusrises) (3 AuAyrizu)
i=1j=1 i=1j=1

; A : :
Using g u = — 208 __ in the above equation, one gets
\/ Ao,k Aol

n n

3> AkiAiriiu

1=15=1

1/2
{ EzAhAmuu)(ZZAhAufuu }

i=1j5=1 i=15=1

€0 = €0, (4.2.55)

Notice that 7,z can be rewritten as:

Yiikk = flc‘f-*lDl}'Ii'-( ) I Su,u:( )dw
'.J Zeo IHE(_‘*’) [2 Si, (w)dw

roiny = 30207 | Hi(w) ! Gio (w)dw
7 Io° | He(w) |* Gy (w)dw

(4.2.56)

where p;; is the frequency dependent spatial correlation coefficient of the seismic motion
between stations 7 and j. It is the real part of the coherency function r;;. From (4.2.56),
one remarks that r;;;; is nothing but p;;;.

Hence,

rs'jkk = Pijk (4.257)

Similarly,

Tijil = Piji (4-2-58]
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Therefore, (4.2.55) could be rewritten as:

n n
3N AkiAijriju

i=15=1

{ QD AriAripiie) D] A Aiipiji) }

i=1j=1 i=15=1

CEIH = GO,H (4.2.59)

Finally, the combination rule has been extended to the case of partially correlated
excitations. And the modal cross—correlation coefficient for such a case has been ex-
pressed in terms of the homologous coefficient for the case of fully correlated (identical)

excitations.

As a closing part of this section, let’s examine extreme cases for (4.2.55) or (4.2.59).
1. Support motions are fully correlated:

All riju = 1, (4.2.55) reads as:

n n

2D Ak

i=1j=1
Eg,u = €o,K

n n n n 1"!2
%ZI%MMZZMM%

i=1j= i=1j=1

n n

2D AuAy
— P i=1j5=1
= €o,u

: o 1/2
{(ZZAHA:,-)’}

i=15=1

= €o,u
Hence,
fg,u = €0,k
which is an expected result.
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2. Support motions are mutually uncorrelated: All r;; =0

MNou = ZAHA;,-AO,H from (4.2.49)
=1
Hence, h
Y AkAy
GE.H = €o,u = = e 1/2
{anan}
i=1 i=1

Since

() = () ()

=1 =1

€0 < €o,u in this case.
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4.3 Case of Multicomponent Ground Motion

Having presented a modal combination rule, and expressed a modal cross-correlation
coefficient for the case of a single component of non uniform translational ground
motion, let’s extend this formulation to the situation of non uniform uncorrelated
multicomponent ground motion. Prior to tackling the problem of non uniform multi-
component ground motion, let’s extend the existing formulation for a single uniform
ground motion component [14] to the case of uniform uncorrelated multicomponent
ground motion.

A typical modal equation for a linear, three-dimensional, lumped mass, multide-
gree of freedom, multiply-supported system',"subjected to uniform, three-dimensional

translational seismic excitations reads as follows: (3.2.2.3)

3
Gk + 2Bewite + WiYE = — Ykqliog (4.3.1)
q=1

where:

g indicates the ground motion component

k indicates the mode number

All parameters have already been defined.
Any response quantity z(t) linearly related to the modal coordinates can be expressed
as:

2(t) = Zk:kak(t) (4.3.2)

where L;’s are constant, and depend on the response of interest.

107



Let

8k(t) = = _Yretiog(t) (4.3.3)

g=1

The spectral density function of the response, S;(w) is given by:

S,(w) = ?;LkL;H;(M)Hg(&J)S&h(M) (4.3.4)

Let’s express S;,; (w).
The cross-correlation function R;,; (7) is given by:
Ry (r) = E[&()a(t +1)]
[ '8 3
= E | (2_Vratlog (£)) (D_atiog (t + f))}

'3 3 y
= F ququlrﬁﬂq(t)ﬁﬂr(tﬁ-f)

[g=1r=1

Exchanging the order of summation and expectation, R;,; (7) can be written as:
3 3
R;, 5, (T) = EZ’T&Q’T“’R%'&O' (T) (4.3.5)
g=1r=1
Since the ground motion components are assumed uncorrelated, (4.3.5) reduces to:

Rigi(r) = 3 b e R (7 (4.3.6)

g=1

And by taking Fourier transform, one gets:

S fi0) = 3 g, () (43.)

=1

Therefore, (4.3.4) may be rewritten as:

S:(w) = X LiLyiHy (w) Hi(w) D _Vrq Mg Siiog (w)

k1 g=1
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S ;;ZLkLIHk (w) Hy (@) Vg Mg Sitg, () (4.3.8)

From (4.3.8), the one-sided spectral density function of the response can be expressed

as:
;;ZL@:H; (W) Hi(w)YrqVig G, (w) (4.3.9)
Let:
Exg = Liig (4.3.10)
Ei, = Livy, (4.3.11)

where Ey, and Ej, can be viewed as effective participation factors.

Hence, (4.3.9) becomes:
3
Go(w) = S5 By Bt H; () Hi(0) Gy () (43.12
=1k |
The spectral moments of the response are then given by:
= [ TG, (w)dw (4.3.13)
0

i —ZZEE;WE;Q Real f W™ H} (@) Hy () G, () deo (4.3.14)

q=1 k

Similarly to the case of a single ground motion component, define Apmg 1 by:
Amgat = Real f " w™Hj () Hy () Gao, () dw (4.3.15)
0

where A, i is the m** cross-spectral moment associated with modes k and [ for the

¢** ground motion component. Hence,
3
= ZZZEMEIq)‘mq,H (4.3.16)
=1 k
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The zeroth spectral moments are of interest. For m =0, (4.3.16) reads as:

3
}10 = ZZZE’!‘I‘E‘?AO‘!»H (4.317)

=1k I

Define €ogq,kl by:

A
ek (4.3.18)

€og,kl = —F——
\/ Aog,kkAog,u

€0g,k1 1s the modal response cross-correlation coefficient between modes k and ! for the

g¢** ground motion component. Therefore,

3
Ao = ZZEEM Eiq€0q,11\/ Aog,kkAog,u (4.3.19)

=1k 1

By virtue of arguments made in the previous-section, (4.3.19) leads to:

Mean(maz(2)) = (355 By Eiqon s Re (w, Be) Ry (wr, )] (4.3.20)

=1k 1

where R,(w,f) is the mean response spectrum of the ¢** ground motion component
given at the site of interest.

Define:

Mean(maz(zy,)) = EryR,(w, B) (4.3.21)

Mean(maz(zy)) = EjyRy(wi, ) (4.3.22)

(4.3.21) and (4.3.22) give the mean values of the maximum response due to modes k
and ! respectively, associated with the ¢** ground motion component.

Finally, (4.3.20) may be rewritten as:

Mean(maz(z)) = [D_) D €oqu Mean(maz(zi,)) Mean(maz(z,))]'?  (4.3.23)

=1k 1
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(4.3.20) and (4.3.23) provide a modal combination rule for the case of uniform uncor-
related multicomponent translational ground motion.

At present, let’s extend this formulation to the case of non uniform uncorrelated
multicomponent translational ground motion. Similarly to the previous section, the
goal is to arrive at equations analogous to (4.3.20) and (4.3.23).

A typical modal equation for a linear, three-dimensional lumped mass, multi-
degree of freedom, multiply-supported system subjected to spatially varying three-

dimensional seismic excitations, reads as follows: (3.2.2.19)

3

Uk + 2Bkwitie + wWive = DD Agitigi (4.3.24)
g=1i=1 !

where:
¢ indicates the ground motion component.
¢ indicates the support number
k indicates the mode number.

Recall from (3.2.2.20) that:

Yeg = = Agi (4.3.25)
i=1

Any response quantity z(t) linearly related to the modal coordinates can be found

using:
2(t) = > Liy(t) (4.3.26)
k
Let 3, (¢) and 3,,(t) be given by:
3 n
Sk(t) = DD _Anrgitiei(t) (4.3.27)
q=1li=1
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Ske(t) = D Argitigi(2) (4.3.28)
i=1
or equivalently,
3
51(t) = D 6m(t) (4.3.29)
g=1

The spectral density function of the response S?(w), is given by:

P(w) = Zg:;LkL;H;(w)H;(w)S;k;, (w) (4.3.30)
where p stands for the case of Ipa.rtially correlated seismic excitations.
Let’s express Sy, ; (w). The cross-correlation function R;,;, (r) is given by:
Ry (1) = E[&(t)&(t +7)]

= Zzskq )8 (t + T)}

g=1r=1

switching orders between summation and expectation, R;,; (7) may be written as:

R ( ZZE[skq )& (t +7)] (4.3.31)

g=1r=1

Assuming uncorrelated ground motion components, (4.3.31) becomes:
3
Rfkfl (T) = ERskqslq(T) (4'3'32)
q=1
Taking Fourier transforms, Sj;,; (w) can be written as:
3
Sﬁikit(w) = Zsykqslq (w) (4‘3°33)
q=1
Substituting (4.3.33) into (4.3.30), SP(w) can be expressed as:
3

- ?;LELIH;(M)HI(E‘J)ZSEM'EI; (w)

g=1

112



ZZZLkLI Hi(w) Hi(w) Siy i, () (4.3.34)

=1 k

And the one-sided spectral density function, G?(w), will be given by:

ZEZL:‘LQ Real [Hg(w)Hi(w)Ss, o, (w)] (4.3.35)

q=1 k

From (4.3.37), the spectral moments will read as:
W = /; TG (w)dw (4.3.36)

or

X2, —ZZZL;L& Real [ "w™ Hy () Hi(w) Siy i, () o (4.3.37)

q=1 k

similarly to the uniform seismic input case, define:
o0
X2, =2 Real /D W™ Hi () Hy() Sy, 1, () dov (4.3.38)

where A} _,; is the m** cross-spectral moment associated with modes k and ! for the
spatially varying ¢'* ground motion component.

(4.3.37) can be rewritten as:

2P —ZZZL;LI p okl (4.3.39)

q=1 k

which for zeroth moments can be written as:

AP —= ZZZLkLIAOQ kl (4.3-40)

g=1 k
Define:

,\P
29k (4.3.41)

qu =
' V Ao, kkA0q,1

113



which is the modal response cross-correlation coefficient between modes k and [ relative
to the spatially varying ¢** ground motion component.

Substituting (4.3.41) into (4.3.40),

3
)ﬁg = Zzzegq,HLkLl\f /\(’}q,kﬁgq,u (4342)

=1k I

Let’s now make use of the following:

\ = [Mﬁan(:lax(z))] (5,35
- [ we
By = -[———""“R‘gf"ﬁ‘)] . (4.3.45)

where:
D, Pk, and p; are peak factors
R?(w, B) is the modified response spectrum model for component q. (3.2.2.37)

(4.3.42) can be rewritten as:

s 1/2
Meéan(max(z)) = |33 By uLeli | Yeq | Mg | BE(we, Be) BE (w1, B1) (4.3.46)

=1k 1

Define:

Ekq if Yig = 0

—qu if Yeg <0

qu if Viq >0
Ef =]y | Li = { (4.3.48)

—qu if Mg < 0
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Using (4.3.47) and (4.3.48), (4.3.46) may be rewritten as:

1/2
Meéan(max(z)) = ZZ):E’ L RE (Wi, Bi) EF RE (wi, By) (4.3.49)
q=1 k
Define:
Meéan(max(zy,)) = Ef,RF(wy, B) (4.3.50)
Mean(max(zy,)) = Ef,RP (w1, B1) (4.3.51)

(4.3.50) and (4.3.51) give the mean value of the maximum response of interest due to
modes k and [ respectively, associated with ground motion component g. (4.3.49) can

be rewritten as:
. ‘ . 1/2
Mean(max(z)) = ZZZG’ ,Mean(max(qu))Mean(ma.x(z;q)) (4.3.52)
g=1 k
Notice that (4.3.49) and (4.3.52) are analogous to (4.3.20) and (4.3.23), which was the
goal aimed at.

Prior to expressing ff:q,u in terms of €y 11, which is the last task in this section, let’s
mention that (4.3.52) can handle the case of no participation of a given mode under a
given component of uniform excitations.

Say
Tkg = 0!
then,

Mean(max(z,)) = Ly R? (wy, Br) (4.3.53)
where RP(wk,Bx) is given by (3.2.2.47).
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Let’s now express €y, ,; in terms of e u. At first, let’s express Aj_,, in terms of
Aog,ki-

X, =2 Real [0 " H () Hi(w) iy i, () (4.3.54)

Let’s write Sj, s, (w) out:

The cross-correlation function Rj, ; (7) is given by:

Ry, 5,(1) = E|[3kg(t)31(t + 7))
= E [(éAh,-ﬁq,-(t))(éA;q,-ﬁq,-(t + T))]

n n
= E ) ) ArgiAigjiigi(t)iy;(t + 1)

i=lj=1

which leads to:

Rsy g (1) = D20 AgiAtgj Ri i (1) (4.3.55)

i=1lj=1

Taking Fourier transforms in (4.3.55),

"h"lq ZzAhlAqu u,.uq,( w) (4.3.56)

i=1j=1
Hence,

AP ogB = = 2 Real f Hk (W H! ZZA-‘?Q'A{QJS tigilig; (w)dw

i=1lj=1

g EZA;,?‘A;“Z REGI/ Hk Hj( )Sﬁpﬁﬂ.(ﬁd)d&)

i=1j=1

Adg et = ZZAM-'AM]; H(w)Hi(w) S, (w)dw (4.3.57)
i=15=1
Analogously to the case of a single ground motion component, define:

J2o HE (@) Hi(w) Sy, (w) dw

Ugillgy

Taijkl = f?mﬂi(w)fft(w)s“w(w)dw_

(4.3.58)
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% H(w)H(w)Ss .6, (w)dw
Toijk = LoHil) ;( )Sugi; (<) (4.3.59)
Og, ki
where rg; is such that:
Sigitig; (@) = TaijStog (W) (4.3.60)

It is the coherency function between stations 1 and j along the ¢** component of ground

motion.
Hence,
A= Aw,k,if:lAm-Amrﬁ,-u (4.3.61)
i=1j=
Consequently,
Abg, bk = Aw,kkif:lAkﬁAkquqijkk + (4.3.62)
i=1j= _
Aoott = AOq,Iti;i;A:in:quqijzt (4.4.63)
i=1j=
Note that:

15 Pgs | He(w) [* Gy, (w)dw

ikk = 4.3.64
08 = T H ) P Gy () i
o Bp | Hifo) P Gy () .
s Jo" | Hi(w) |* Gag, (w)dw
Comparing (4.3.62) and (4.3.63) with (3.2.2.35), one remarks that:
Tqijkk = Paijk (4.3.66)
Sioml (4.3.67)

where p,;; is the real part of rg;.
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Therefore, €, ;; can be written as:

DD ArgAuiTyiiu

> Aog,kl i=1j=1
Og,kl — \/). 2\ 1/2
og,kk\0g,ll nn n n
{ (Do Akgi ArgiPaiin) DD Atgi AtgiPaisi) }
i:lj:], i:]j:l
since
}‘oq,l:l

€og bl = —————
\/ Aog,kkAog,u

€0g,x1 Can be expressed as:

DD ArgiAyjtiiiu

i=1j=1

n n n n 1"’2
(D2 Akgi Argipaiin) DD Atgi Atgj Peit) }

i=1j=1 i=1j=1

€0g k= €0g,kl {

(4.3.68)

(4.3.18)

(4.3.69)

Finally, a modal combination rule has been proposed for the case of uncorrelated

non uniform multicomponent translational seismic excitations (4.3.49) and (4.3.52).

In this combination rule, the modal cross-correlation coefficients have been expressed

in terms of the homologous coefficients for the case of uniform seismic input (4.3.69).
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Chapter 5

Validation of the Theoretical Response Spectrum Model

Through Digital Simulation of Seismic Ground Motion

5.1 Introduction

The modified response spectrum model developed in Chapter 3 is a means for the
computation of modal responses for the case of structures subjected to imperfectly
correlated seismic excitations. This model is the result of a theoretical development
based upon the probabilistic modeling of earthquake ground motions by means of a
homogeneous Ga.uésian space-time random field. The purpose of the present chapter
is to validate the model through digital simulation of seismic ground motion. In
other words, a sample of a random field will be simulated, and the response spectrum,
corresponding to a given effective seismic loading expressed as a combination of support
motions (temporal processes), will be computed and compared with the prediction
given by the modified response spectrum model. In the context of the present thesis,
a modified response spectrum model has been derived to handle general situations.
However, for the purposes of this chapter, two cases will be examined; namely those
of structures having two and three support points, and subjected to a single ground

motion component.
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5.2 Simulation of Unidimensional Homogeneous Gaussian Space-Time Ran-

dom Fields Using Spectral Representation

The Spectral Representation Method proposed by Shinozuka et al. [41] is used
for the simulation of an unidimensional homogeneous Gaussian space-time random
field which is viewed as a collection of temporal random processes at each of the
spatial locations. This section aims at presenting, very concisely, the essence of the
aforementioned method.

As its name indicates, the first step in this approach is the specification of a target

cross-spectral density matrix:

[
Su(w) Slz(w) Sin(w)
Sa1(w) Sza(w) -+ Spp(w
o | ) ) S o
Sni(w) Snz(w) Snn(w)

where:

n is the number of spatial locations (support points).

Sij(w) is the cross-spectral density function between locations ¢ and j.
Note that due to the aséumption of homogeneity, the target cross-spectral density
matrix [S(w)] is Hermitian.

The following step in the method is to find a matrix [H(w)] such that:

120



[$(w)] = [H(w)][H" (w)]" (5.2.2)

where:
* indicates complex conjugate
r indicates transpose

To find [H(w)] in an efficient way, we assume it to be a lower triangular matrix. In

other words, a Choleski decomposition of the matrix [S(w)| is sought after.

It turns out that the elements of the matrix [H (w)] are given by:

Hi(w) = [Bﬁ))]w [ G2

and
1! 21 -1k =5 lsJ
(S (w)]
1.2 =10k
: = 5.2.4
Hji(w) = Hex(w) Di@) (5.2.4)
where:
k=1,2 ..n
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j=k+1,u5n0

[S(w)]

1,2,...k—1,k

is the determinant of a submatrix of [S(w)] obtained by deleting all elements except
the (1,2,...,k — 1,7) th rows and (1,2, ...,k — 1,k) th columns.
It is worth noting that the above decomposition is valid only when the matrix [S(w)]
is Hermitian and positive definite. Since the cross-spectral density matrix [S(w)] is
known to be only non-negative definite, special consideration is needed in those cases
where [S(w)] has a zero principal minor [41].

Once the matrix [H(w)] is determined, the last step in the method is to simulate

the field u;(t) (7 = 1,2,...,n) by the following series:

:zi_ji Hjm(w1) | VAW cos(wit + 0jm(w)) + dmi) (5.2.5)

where:
Aw is the frequency increment.
w; = lAw
N is such that NAw is an upper cut-off frequency.

0;m(w;) is a phase spectrum given by:

ImH,-m(w;)l (5.2.6)

: — tan~!
O;m(wi) = tan [ReHjm[w;)

¢ are independent random phase angles uniformly distributed over the range
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(0,27).
It is worth mentioning that the digital generation of sample functions (5.2.5) can be
efficiently performed by means of the FFT technique.
Finally, it is to be noted that the simulated processes are asymptotically Gaussian as
N becomes large by virtue of the central limit theorem. Also, it may be shown that
in terms of ensemble averages:

Elu;(t)] =0

Elu;j(t)ur(t + 7)] = Rji(r) is the Wiener-Khintchine transform of Sj;(w).

So long as the assumption of independent random phase angles uniformly dis-

tributed over the range (0, 27) is valid.
5.3 Case of Two Support Points

The situation that is of interest in the present section is that of a N-story single bay
frame structure behaving as a shear beam, subjected to a single horizontal component
of partially correlated ground motions. For the sake of simplicity of illustration, column
stiffnesses will be assumed equal (fig. 3.1). As was arrived at in section 3.2.3.1, the

modified response spectrum model is expressed as follows:

1/2 ;
ﬂ] (3.2.3.1.7)

R? (s, ) = R(ws, Bs) [ —

where:

R(w, B) is the response spectrum at the site of interest.
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_ o1z | Hy(w) ? G, (w)dw
P13k = T I Ha(w) [P Gag (w)duw

p12 is the frequency-dependent spatial correlation coefficient between stations 1 and

Incidentally, it is worth mentioning that (3.2.3.1.7) expresses the modified response
spectrum model for the case of symmetrical modes with respect to midspan in a
simply supported bridge (3.3.2.12).

It was also shown that the effective seismic loading, so far as the floor responses are
concerned, is §(t) = %(ﬁ.l(t) + 1i5(t)). Therefore, the aim herein is to examine how
well the modified fesponse spectrum model given by (3.2.3.1:7) predicts the response
spectrum corresponding to 3(t). To do so, %;(t) and #,(t) will be simulated as part of

an unidimensional homogeneous Gaussian random field, using spectral representation.

The target cross-spectral density matrix is given by:

Su(w) Siz(w
[S(w)] = s Sl (5.3.1)

Sgl ((.d) Szg (w)

where the assumption of a common auto spectrum to all spatial locations is maintained

in order to render the validation process meaningful. Hence,
Su(w) = Sgg(w) = S(w) (53.2)

Also,
S12(w) = 85 (w) = r1a(w, D12) S (w) (5.3.3)
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where ry, is the coherency function.

By virtue of (5.2.3) and (5.2.4), the elements of the matrix [H(w)] are given by:

Hy(w) = /S(w) (5.3.4)

Hn(w) == S(w)rn (5.3.5)

Has(w) = \/S(w)y/1— | ra1 |? (5.3.6)

And (5.2.5) shows that #%,(t) and @,(t) can be simulated by the following series:

iy (t) = 22 | Hyy(w;) | VAw cos(w;t + 615) (5.3.7)

N
ia(t) = 23 | Har(wy) | VAw cos(wjt + 021(w;) + 615)

i=1
+ | Haz(w;) | V Aw cos(wjt + ¢2;) (5.3.8)
where:
N Aw is an upper cut-off frequency

w; = JALIJ'

031(0) = tan™ [M]

RCHH (w)

¢:; and ¢,; are independent random phase angles uniformly distributed between 0
and 27.

A Kanai-Tajimi type of autospectrum has been chosen:
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w: + 4ﬁ§w3w2
(w? — w?)? + 442w3?

S(w) = So (5.3.9)

where: w, and 3, are the ground characteristics chosen to be:
w, = 67(rd/s)

B, =0.5

’ 1
Sp is a constant equal to 3 so that the peak acceleration is about 0.5g.

A model for the coherency function proposed by Loh and Yeh [30] has been adopted:

w|D| . D
= ) exp(tw—) (5.3.10)

sD = -
r(w, D) = exp(—a v

o is a constant ‘equallto 0.125

D is the distance between the two spatial locations

V' is the phase velocity of the dominant wave (or the apparent wave-propagation
velocity between the two spatial locations).
The FFT (Fast Fourier Transform) technique is used for the computation of ()
and i,(t). The Fourier transform at zero frequency is taken to be null so as to yield
Zero-mean temporal.processes. For the cases studied, the number of samplings has
been 2'! = 2048, with a time increment of 0.01 sec. These data lead to a time history
duration of 20.48 sec. It is to be noted that the dominant frequency chosen in the
autospectra, 3hz, is much smaller than the Nyquist frequency, 50 hz in these cases,
which rules out aliasing problems. For the sake of making the obtained time histories

more realistic, they are windowed, once computed, by means of the following function:
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t
— 0<t<0.1T build-
01T (build-up phase)

W(t)=1 1 0.1T <t < 0.9T (strong phase)

—t
— 0.9 t i
N5 T<t<T (die-out phase)

where T is the duration of the time history.

In this section, three case studies are looked at:

1. V =500m/s and D = 260m.

The windowed acceleration time histories at locations 1 and 2 are shown in fig. 5.1
and fig. 5.2. The pseudo-acceleration spectra at locations 1 and 2, the pseudo-velocity
spectra at locations 1 and 2, and the relative displacement spectra at locations 1 and
2 are shown in fig. 5.3, fig. 5.4, and fig. 5.5 respectively. It can be observed that
spectra at both locations are close, which is in agreement with the assumption of
spatially homogeneous spectra made prior to developing the model. Exact spectra for
§(t) = %(111(15) +1iy(t)) are computed and compared against the model predictions given
by (3.2.3.1.7). Satisfactory model predictions for the three spectra are shown in fig.
5.6, fig. 5.7, and fig. 5.8. Incidentally, a damping ratio equal to 1% has been used for
all spectra. In fig. 5.9, fig. 5.10, and fig. 5.11, an assessment of the effect of assuming
full coherence is aimed at. In other words, the same exact spectra as those in fig. 5.6,
fig. 5.7, and fig. 5.8 are compared against model predictions which disregard loss of

coherence and account for wave travelling effects exclusively. Alternatively, in fig. 5.6,

fig. 5.7, and fig. 5.8, p;2, the frequency dependent spatial correlation coefficient has
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been taken as:

L"l‘Dl) = 5.3.11)
2V coswv (5.3.

p12(w, D) = exp(—a

which rightly accounts for both loss of coherence effects (exponentially decaying func-
tion), and wave travelling effects. Whereas in fig. 5.9, fig. 5.10, and fig. 5.11, p;; has
been taken as:

D

P12 = cost (5.3.12)

which, wrongly but purposely accounts for wave travelling effects only.

Upon observation of these figures, one can see that, for the case at hand, the impact
of neglecting loss of coherence effects is practically null, except for those frequencies

wD . . wD :

where Vv isan odd multiple of 7, (cos v = —1), and where the model results slightly
underpredict the exact ones. The justification of this observation is that at those very
frequencies, the model is applied to a situation where the components of #,(t) and
i5(t) are fully coherent but 180 degrees out of phase, and hence, cancellation effects

are important. However, it is worth noting that if a stronger decay were considered in

the coherency function, the above conclusions could be changed.

128



0.8
V=500 m/
0.4 De200m |
|
0.2

MA I Mﬂ“ﬂm J\nl IMHAﬂMm

i) LA il
VUL Gl

-0.4+

_0.6 1 i | 1 | L | 115
0 2 4 6 8 10 12 14 16 18 20
Time, Seconds

Figure 5.1 Windowed Acceleration Time History at Location 1

8 cceleration, g —— |
0.2 . A i |
0 A'f il M ﬂ; W\ MH\’\AN fhﬁ | | J!J\ ,]ﬁﬂhl\,f JU "N f*!,n.{ hml‘,l( ; !1\ |
B LR
-0.21 l _;

-0.8 : ‘ ' ' : : '
0 2 4 B 8 10 12 14 16 18 20
Time, seconds

Figure 5.2 Windowed Acceleration Time History at Location 2

129




Pseudo-Acceleration g

|_ — Locatlon 1

Location 2

V=500 m/s
D=200 m

0 | 1 1 L 1 1 1 L L]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Periods, seconds
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2. V =500m/s and D = 500m
Apart from the fact that the separating distance has been increased to D = 500m
in this case study, the results observed are very similar to those of the previous one.

The figures are in a sequence analogous to that of case study 1.

Acceleration, g
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Figure 5.12 Windowed Acceleration Time History at Location 1
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Figure 5.13 Windowed Acceleration Time History at Location 2
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Figure 5.14 Acceleration Spectra at Locations 1 and 2
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Pseudo-Velocity, cm/s

160
140 Model Prediction
120 V=500 m/s
D=500 m
100
80 \/“\
L
60 D\
-\
40 \

20

06 08 1 1.2 14 1.8 1.8 2
Periods, seconds

Figure 5.18 Velocity Spectra: Exact vs Model Prediction
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3. The third case that has been examined is one where the support motions at both
supports are uncorrelated. In other words, the target cross-spectral density matrix has

been set to be:

Sw) 0
[S(w)] = (5.3.13)
0 S(w)
Hence,
Hy = /S(w) (5.3.14)
H;; =0 (5.3.15)

Hgg = ‘\HS(UJ) (5.3.16)

By virtue of the fact that p;2 = 0, (3.2.3.1.7) reads as follows:

R?(w,B) = R(w,B) (5.3.17)

[

The windowed acceleration time histories at locations 1 and 2 are displayed in fig.
5.23 and fig. 5.24. The pseudo-acceleration, pseudo-velocity, and relative-displacement
spectra at locations 1 and 2 are shown in fig. 5.25, fig. 5.26, and fig. 5.27, respectively.
And finally, the model predictions are proved to be satisfactory by comparison to the

exact spectra, as it is shown in fig. 5.28, fig. 5.29, and fig. 5.30.
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Figure 5.27 Displacement Spectra at Locations 1 and 2
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Figure 5.28 Acceleration Spectra : Exact vs Model Prediction
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Figure 5.30 Displacement Spectra: Exact vs Model Prediction
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5.4 Case of Three Support Points

The situation under examination in the present section is that of a N-story dou-
ble bay (three support points) frame structure behaving as a shear beam subjected
to a single horizontal component of partially correlated ground motions. Similarly to
the previous section, column stiffnesses will be assumed equal for the sake of illustra-
tion. As was arrived at in section (3.2.3.2), the modified response spectrum model is

expressed as follows:

1/2
2n 1 n
RP(wy, Bi) = R(we, Bi) (1 = Z > pijx) (3.2.3.2.5)
1—1;—1+1 .
which yields:, after setting n to 3:
1, 2 He
RP (wg, Be) = R(wk, Br) [§ <+ 6(912,! + pask + ,013:;)] (5.4.1)

where:

oy _ i | He(w) |? G, dw
v 55 | Hi(w) |? Gipdw

The effective seismic loading, so far as the floor responses are concerned, is §(t) =
%(ﬁ,l(t) + 15(t) + t3(t)). Therefore, the goal that is aimed at in this section is to
examine how well the modified response spectrum model given by (5.4.1) predicts the
response spectrum corresponding to §(t).

Similarly to the previous section, @,(t), #2(t) and #s(¢) will be generated as part of

an unidimensional homogeneous Gaussian random field, using spectral representation.
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The target cross-spectral density matrix is given by:

[S@) = | S3(w) Saa(w) Sas(w)

where:
' Sn(w) = Szz(w) = Sss(w) = S(Ld)

Sij(w) = S;i(w) = ”s’i(w’D"J‘)S(“)

Su(w) Sﬂ(w) S]s(w)

i Ssl(w) Ssg(QJ) 533((.0) )

(5.4.2)

(5.4.3)

(5.4.4)

l By virtue of (5.2.3) and (5.2.4), the elements of the matrix [H(w)] are given by:

Hy(w) =4/S(w)

Hj (w) =/S(w)rs

Hao(w) = \/S()\/1— | ra1 |7

H31(w) = \f S(LU)T'SI

F P e T3z — T31T12 S(w)
b= Px/

147

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)

(5.4.9)



1— | ri2 |2 — | ris |2 — | ras |2 +2 | r12 || r2s || r1s | cos(812 + 023 — 013 e
Hss(w) = 1— | iz |2 ) 5()

(5.4.10)
where r;; is the coherency function between stations ¢ and j. And 6;; is the corre-

sponding phase spectrum.

(5.2.5) shows that i,(t), i,(t), and ts(t) can be simulated by the following series:

N
iy (t) = 2_2_31 | Hix(wj) | VAwcos(wjt + ¢1;) (5.4.11)

iy(t) = 2D | Har(w;) | \/Ecoé(wjt + 021(w;) + #1;5)

=1

+ | Haz(w;) | VAwcos(wjt + ¢5;) (5.4.12)

is(t) = 2 | Hs1(w;) | VAw cos(wjt + 031 (w;) + ¢15)

i=1

+ | Hsz(w;) | VAw cos(w;t + O55(w;) + 25)
+ | Has(w;) | \/Bcos(w,-t + ¢3;) (5.4.13)

where N,w; and 0;; have already been defined. ¢,;, ¢2; and ¢s; are independent random
phase angles uniformly distributed between 0 and 2.

The same autospectrum and coherency function models have been taken in this
section as in the previous one. The FFT technique has been used for the generation

of time histories using the same characteristics (sampling rate, etc.) as earlier. And
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the same windowing process has been applied. Response spectra have been computed
accounting for a damping ratio of .1% .

The case studied in this section is as follows:

V = 500m/s

D;; = 200m, D,s = 300m, D3 = 500m.
Windowed acceleration time histories at locations 1, 2, and 3 are displayed in fig. 5.31,
fig. 5.32, and fig. 5.33. The spatial homogeneity of the spectra is verified in fig. 5.34,
fig. 5.35, and fig. 5.36. Finally, exact spectra for 3(t) = %(&1(1‘) + 43(t) + 1s(t)) are

computed and compared against the model predictions given by (5.4.1) which prove

to be satisfactory as can be seen from fig. 5.37, fig. 5.38, and fig. 5.39. -
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Figure 5.31 Windowed Acceleration Time History at Location 1
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Figure 5.32 Windowed Acceleration Time History at Location 2
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Figure 5.33 Windowed Acceleration Time History at Location 3
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Figure 5.35 Velocity Spectra at Locations 1, 2 and 3
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Figure 5.37 Acceleration Spectra: Exact vs8 Model Prediction
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Chapter 6

Conclusions and Suggestions

6.1 Conclusions

The spatial variability of seismic ground motion is an important aspect, which
should be taken into account at least approximately, for the earthquake resistant de-
sign of extended facilities. This situation has motivated the present work, whose main
objective is to provide a practical means for the design of elongated structures ac- .
counting for partially correlated seismic excitations.

A procedure for the modification of the design response spectrﬁm is proposed in ‘.
this thesis, which enables addressing the problem of multiply-supported structures
subjected to imperfectly correlated seismic excitations. The technique is an extension
to the response spectrum method which is a commonly used tool in earthquake re-
sistant design, thereby allowing the inclusion of this potentially important problem
into seismic design practice. A modified response spectrum model is developed for the
design of extended facilities subjected to single and multicomponent ground motion,
and a modal combination rule is proposed for each case. The modification procedure is
based on adjusting each spectral value of the given design response spectrum by means
of a correction factor which depends on the structural properties and on the character-
istics of the wave propagation phenomenon. Finally, the theoretical model is validated

through digital simulation of seismic ground motion, whereby model predictions are
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found to be in good agreement with exact results.
6.2 Suggestions for Further Research

A modified response spectrum model for the design of extended structures subjected
to spatially varying ground motion has been developed in this thesis. Further research

in this area should address the following points.

e Investigation of the potential simplification of the derived model by, numerically or
analytically, examining the effect of decomposing the seismic input into a rigid

body component (average value of the individual support motions) and a non

rigid body component, and neglecting the latter component in the computation

of the dynamic part of the structural response.

e Further investigation of the effect of incoherent seismic motions on the response of
structures, while the importance of wave travelling effects was recognized about

two decades ago.

e Inclusion of soil-structure interaction effects.
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